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APPROXIMATION SCHEMES FOR THE RESTRICTED
SHORTEST PATH PROBLEM*

REFAEL HASSIN

This note contains two fully polynomial approximation schemes for the shortest path
problem with an additional constraint. The main difficulty in constructing such algorithms
arises since no trivial lower and upper bounds on the solution value, whose ratio is
polynomially bounded, are known. In spite of this difficulty, one of the algorithms presented
here is strongly polynomial. Applications to other problems are also discussed.

1. Introduction. This note describes fully polynomial approximation schemes for
the restricted shortest path problem. In this problem a directed graph G = (V, E)
with a vertex set V' ={1,..., n} and an edge set FE is given. Each edge (i, j) € E has
a length c;; and a transition time t;;. These numbers are assumed here to be integers
and, in order to simplify the presentation, positive. The length ¢(S) and transition
time t(.S) of a set of edges S is defined as the sum of the lengths and transition times,
respectively, of the edges in this set. A directed path from vertex i to vertex j (an i-f
path) is called a z-path if its transition time is less than or equal to ¢. The restricted
shortest path problem is to compute, for a given value 7', a shortest 1 — n T-path.

Fully polynomial approximation schemes (FPAS) are known already for many
NP-complete problems that can be solved by pseudopolynomial algorithms. These
algorithms usually apply rounding and scaling to the data (for definitions and a
description of the basic ideas, see Sahni 1977 and Garey and Johnson 1979). In order
to select an appropriate scaling factor, and guarantee that the resulting approxima-
tion will be polynomial, these algorithms require knowledge of upper and lower
bounds on the optimal solution whose ratio is bounded by a polynomial function of
the size of the input.

For example, Ibarra and Kim (1975) obtained a FPAS for the 0-1 knapsack
problem, and Lawler (1979) improved their algorithm. The algorithm uses the fact
that a variant of the greedy algorithm gives a lower bound that is at least half the
value of an optimal solution.

A main difficulty in the development of a FPAS for the restricted shortest path
problem is that no trivial upper and lower bounds are known such that their ratio is
bounded by a polynomial function of the input. In spite of this difficulty, Warburton
(1987) developed a FPAS for the problem, and as a matter of fact also for the
broader class of problems of identifying the Pareto optimal paths of multiple
objective problems. The ideas presented here can be combined with his results and
extended to yield a strongly polynomial approximation procedure for the approxima-
tion of Pareto optima in multiple objective path problems. When applied to the
restricted shortest path problem in acyclic graphs, Warburton’s algorithm requires
O(n®~'log nlog B) time. Here B is an upper bound on the optimal solution value,
equal to n — 1 times the maximum edge-length, and the algorithm produces a path

*Received July 11, 1988; revised April 6, 1990.

AMS 1980 subject classification. Primary: 05C38.

IAOR 1973 subject classification. Main: Graphs.

OR/MS Index 1978 subject classification. Primary: 489 Networks (graphs) theory.
Key words. Strongly polynomial approximation scheme, restricted shortest path.

36
0364-765X /92 /1701 /0036 /$01.25

Copyright © 1992, The Institute of Management Sciences /Operations Research Society of America



APPROXIMATION FOR RESTRICTED SHORTEST PATH PROBLEM 37

with length at most 1 + € times the length of an optimal path. The computation time
is measured here by the number of real additions, multiplications, divisions, and
comparisons.

Following Warburton (1987), we assume that the underlying graph is acyclic. This
assumption simplifies the presentation while the extension of the algorithms to
general graphs is straightforward.

In the next section we outline two exact pseudopolynomial algorithms. In §3 and §4
we present an O(log log B(|E|(n/€) + loglog B)) e-approximation algorithm (B is an
upper bound on the solution). The principles of this algorithm are close to those of
Warburton’s algorithm, using the basic technique of rounding and scaling. The above
complexity, while polynomial, depends on the size of the input numbers. In §5 and §6
we present an alternative FPAS whose complexity depends only on the number of
input variables and 1/e. The number of arithmetic operations required is
O(|El(n?/e)log(n /€)). We conclude the paper with an application to a scheduling
problem in §7.

2. Exact algorithms. Some authors constructed practical algorithms for the
restricted shortest path problem (Joksch 1966, Lawler 1976, Handler and Zang 1980,
Aneja, Aggarwal and Nair 1983, Henig 1985). None of these algorithms are polyno-
mial, and as a matter of fact the problem is NP-hard (cf., Garey and Johnson 1979). It
is well known that the problem can be solved by pseudopolynomial algorithms, and
thus if the input numbers are uniformly bounded it is polynomially solvable. In fact as
we show in this section, it suffices that the edge lengths or transit times are bounded.
We now outline the pseudopolynomial procedures. We will assume that the vertices
are numbered in a way such that (i, j) € E implies i < j. This numbering can be done
in O(/E]) time. We denote by OPT the length of a shortest 1 — n T-path. We first
describe the standard dynamic programming procedure (e.g., Joksch 1966, Lawler
1976):

Algorithm A. Denote by f(¢) the length of a shortest 1 — j t-path. Then:
fi(t) =0, t=0,...,T,
f;(0) = o, Jj=2,...,n,

fi(t) = min{fj-(t - 1), k'rtniri[{fk(t — 1) + ij}}a j=2,...,n,t=1,...,T.
k)=
The algorithm computes a shortest 1 — n T-path of length OPT = f (T) in O(/E|T)
time. Joksch (1966) presented an improvement to this algorithm, noting that f;(¢)is a
step function and thus it suffices to locate its steps. However, the worst case
complexity of this improvement is not better than that of the basic application. For
our purposes another recursive algorithm is more suitable:

Algorithm B. Denote by gj(c) the time of a quickest 1 — j path whose length is at
most ¢. Then:

g(c)=0, ¢=0,...,0PT,
gj-(O) = 0, Jj=2,...,n,

gi(c) = min{gj(c — 1), min {gk(c —Cy;) + tkj-}},

kIcAlsc'
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Note that OPT is not known a priori, but it satisties OPT = min{c|g,(¢) < T}.
Thus g]-(c) is computed first for ¢ = | and j = 2,...,n, then for ¢ =2 and j =
2,....n and so on, until the first valuc of ¢ for which g,(¢) < T. Then OPT is sct to
this value of ¢. The complexity of this algorithm is O(|E|OPT).

3. A testing procedure. Lct V' be a given value, and supposc we want to test
whether OPT = V' or not. A polynomial procedure that answers this query can be
extended to a polynomial algorithm for finding the exact value of OPT. Onc simply
performs binary search on {0, ..., B}, where B is an upper bound on OPT such as the
one mentioned in the introduction. The exact value of OPT is then found after
O(log B) applications of the polynomial procedure. As the problem is NP-hard it
comes that we will have to be satisfied with a weaker test.

Let € be fixed, 0 < e < I. We now show how to construct a polynomial time
e-approximation test. This test has the following properties: If it outputs a positive
answer then definitely OPT > V. If it outputs a negative answer, then all we know 1s
that OPT < V(1 + e€).

The test rounds the edge-lengths ¢

i

replacing them by

C/j Ve
{Ve/(n - ])Jn -1

This decreases each edge-length by at most Ve /(n — 1), and each path-length by at
most Ve. Now the problem can be solved by applying Algorithm B to a network with
the scaled edge-lengths |c,;,/(Ve/(n — 1)]. The values gi{c), j = 2,...,n, arc first
computed for ¢ = 1, then for ¢ = 2,3,... until either g,(c) < T for some ¢ = ¢ <
(n—=1)/e,orc>=(n—1)/e.

In the first case, a T-path of length at most

Ve
n—1

¢+ Ve < V(1 +¢€)

has been found. In the second case, every T-path has ¢’ > (n — 1)/e or ¢ > V, so
that OPT > V. Thus the test performs as required. The test is summarized as
following:

Procedure TEST(V').
1. Set ¢ « 0.
For all (i, ) € E:
If ¢;; > V,set E < E\{(, ).
Else, set ¢, « le;j(n — 1) /Vel.
2.If ¢ = (n — 1)/€ output YES.
Else use Algorithm B to compute gj(c) for j=2,...,n.
If g,(c) < T output NO.
Else set ¢ «< ¢ + 1 and repeat Step 2.

Taking the integer part of a nonnegative number 4 which is known to be bounded
from above by an integer U can be done in O(log U) time using binary search on
{0,...,U). Step 1 of TEST(V') requires O(E) such operations. Since we scale only
costs ¢,; that are less than or equal to V/, then all of the numbers to which we apply
floor operations are smaller than (n — 1) /e. Thus Step 1 requires O(|Ellog(n /€))
time. Step 2 uses O(n/e) iterations of Algorithm B, so that its time is O(|E|n /e).
The latter is therefore also the complexity of the whole TEST procedure.
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4. First FPAS: rounding and scaling. To approximate OPT we first need easily
computable upper and lower bounds. An upper bound, denoted UB, can be set to the
sum of the n — 1 longest edge-lengths, or to the length of the quickest 1 — n path. (If
this path is not a 7-path then clearly no feasible solution exists.) A lower bound,
denoted by LB, can be set to the length of a shortest (unrestricted) 1 — n path, or
simply to 1. Another possibility is to relax the integer programming formulation of the
problem by replacing the binary constraints by nonnegativity constraints. The result-
ing linear program can be solved to obtain a lower bound on OPT. However, this may
involve relatively high time complexity and does not supply a feasible solution
associated with the bound.

If UB < (1 + €)LB then UB is an e-approximation to OPT. Suppose now that
UB > (1 + €)LB. Let V be a given value LB <V < UB(1 + €)™ . TEST(}') can be
applied now to improve the bounds on OPT. Specifically either LB is increased to V
or UB is decreased to V(1 + €). By performing a sequence of tests the ratio UB/LB
can be reduced. Once this ratio reduces below some predetermined constant, say 2,
then an e-approximation can be obtained by applying Algorithm B to the scaled costs
lc;;,/(LBe/(n — 1))}. The error introduced is at most eLB < eOPT and the time
complexity is O(|E|n/¢), as for a single application of TEST(V).

Reduction of the ratio UB /LB is best achieved by performing binary search on the
interval (LB, UB) in a logarithmic scale. After each test we modify the bounds. To
guarantee fast reduction in the bounds’ ratio we execute the first test in the point x
such that UB/x = x /LB, that is x = (UB - LB)"/?. The number of tests required to
reduce the ratio below 2 is therefore O(loglog(UB/LB)):

Rounding Algorithm.
0. Set LB and UB to their initial values.
(For example, set LB = 1, UB = sum of (n — 1) longest edge-lengths.)
1. If UB < 2LB go to Step 2.
Let V = (LB - UB)'?,
If TEST(V) = YES, set LB = V.
If TEST(V) = NO, set UB = V(1 + €).
Repeat Step 1.
2. Set ¢;; < lc,-j(n — 1)/eLB].
Apply Algorithm B to compute an optimal 7T-path.
Output this path.

Computing (LB - UB)'/? to high precision may be time consuming. Instead, we can
find in O(loglog(LB/UB)) time an integer V' satisfying (UB/LB)'/* <V’ <
(UB/LB)'/?. This is done by generating the sequence a;, = 2?9, i = 1,2,..., till for
the first time we have a;, > UB/LB. Then V' = a,_, satisfies the above inequalities.
Now let the test point be V' = V' - LB. Note that the ratio of the new bounds, after
applying TEST(V), is at most (UB /LB)*/*. (This is true if (1 + €)* < 2. Else, the first
line of Step 1 of the procedure can be modified: If UB < (1 + €)*LB go to Step 2.)
The total number of tests may increase as a result of this approximation, but it is still
O(log log(UB /LB)). Each test requires O(|E|n /€) and together with the time needed
to compute the test point we obtain a total of O(loglog(UB/LBX|Eln/€) +
log log(UB/LB))).

RemaRrk. The idea of reducing a ratio by performing binary search in a logarith-
mic scale is not limited to the present model. We now mention two examples.
Hochbaum and Shmoys (1988) developed a polynomial approximation scheme for the
minimum makespan problem on uniform parallel machines. Lenstra, Shmoys, and
Tardos (1987) achieved such a result for scheduling a bounded number of unrelated
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parallel machines (improving the space requirement of a polynomial approximation
scheme developed by Horowitz and Sahni 1976). To obtain these results a procedure
similar to the one developed by Warburton (1987) was used (cf. Theorem 1 of
Hochbaum and Shmoys 1988 and Lemma 1 of Lenstra, Shmoys, and Tardos 1987).
Replacing the binary search by a search procedure as in Step 1 of Rounding
Algorithm will reduce the number of tests required by the algorithms from
O(log(UB /LB)) to O(loglog(UB/LB)).

5. Partitioning. Suppose we are given a set Q = {p,,..., p,,} and a number X
such that p,,...,p,, X > 0. We are interested in partitioning Q into subsets
Ry,...,R,, such that p, € R, if and only if X(j - 1)/k <p, <Xj/k for j=
1,...,k, and p, € R,,, if and only if p, > X. This task is easily performed in
O(m log k) operations by letting p, € R, for j = min{k + 1,[kp,/X}. Suppose now
that X is of unknown value, but a test is available to check for any number V
whether X > V or X < V. The following procedure partitions Q in O(log mk) tests,
and O(mk log mk) additional operations.

Procedure PARTITION(Q, X, k). Let P={p,lp;=kp/j, i=1,....k, i=
1,...,m}

1. Sort P in increasing order.

Let 7w = (m,,..., ;) be the resulting sequence of distinct values.

Extend 7 by adding w, = 0, 7;,, = ».

2. Perform binary search on 7 to locate the interval [7Tg, T, +1) containing X.
3.Fori=1,...,m:Insert p; into R; if p, ;_y>m, >2p;j ] =1,..., k.

Insert p; into R, if m, <p, =p,.

To explain Step 3 we note that if p, ;_;, > m, > p;; then also p; ;_1y > 7, > X
> p;; implying X(j — 1)/k <p; < Xj/k. If m, <p, then also m,,, < p; = p; im-
plying X < p,.

A reduction in the number of additional operations, while maintaining the number
of tests, is possible if we exploit the special structure of P. This is done by applying
techniques for searching over matrices with sorted rows (see, for example, Frederick-
son and Johnson 1982). Basically, one finds in O(m) time an element of P which is
known to be greater than or equal to a quarter of the elements and also smaller than
or equal to a quarter of them (for the first iteration this is just the median of the
(k/2)th column). Then this element is tested and at least a quarter of the elements
can be discarded. After O(log(mk/m)) iterations only O(m) elements are left. In
additional O(log m) tests and O(m) other operations the search is completed. Note
that O(m log k) is also the complexity of Step 3. Thus, in total, PARTITION(Q, X, k)
requires O(log mk) tests and O(m log k) other operations.

Suppose now that instead of an exact test for the query “X > VV?” we have an
e-approximate test such as TEST(})/). In this case we know that X is in the extended
interval [, 7, . (1 + €)). The sets generated by PARTITION(Q, X, [k(1 + €)]) have
the property that p;, € R; implies X(j — 1)/k <p;, < Xj/(k(1 + €)). Also, p, €
Ry +¢)+1 implies that p, > X.

6. Second FPAS: interval partitioning. While the rounding algorithm is polyno-
mial, its time complexity depends on the size of the edge-lengths, via the initial upper
bound, UB. In this section we introduce a second FPAS whose complexity depends
only on n and 1/e. The underlying technique is related to the interval partitioning
algorithm of Sahni (cf. Sahni 1977).
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The algorithm consists of n — 1 iterations, where in iteration i a set S® of 1 — i
paths is generated. All 1 — j paths generated later for j > i, that use vertex i, will be
restricted to have as their initial 1 — i segment only members of S‘”. The main
achievement of the procedure will be in restricting the size of the sets S so that the
algorithm’s time complexity will be kept small, while maintaining an error that is
bounded by eOPT.

Partitioning Algorithm.
0. Let S contain the path consisting of vertex 1.
Set i = 2.
1. Set Q© = {the lengths of 1 — i paths constructed by appending edge (j, i) to a
1 — j path of S for some j < i}.
If i =n set c(P*) = min{c(P)|P € Q*} where Q* = {P € Q™|t(P) < T}, and
STOP. )
(If Q* = @ then no feasible solution exists. Else, P* is a 1 — n T-path with
length c(P*) < (1 + €)OPT.)
2. Apply PARTITION(Q®, OPT,[(n — 1X1 + €)/€]) using the TEST procedure
for the binary search on =7 in Step 2.
Form S by picking up a quickest subpath from each set R, j=1,...,
[(n — DA + e)/el
Set i < i + 1 and return to Step 1.

The set S is formed in Step 2 of the algorithm from Q” by deleting paths that
are known to be longer than OPT(1 + €), and other paths that are known to be
slower than a path in S whose length differs from the deleted path by at most
OPTe/(n — 1X1 + €). Therefore the relative error accumulated during the execution
of the algorithm increases by at most € /(n — 1)X1 + €) per vertex and € /(1 + €) < €
in total. The size of the set S is [(n — 1)1 + €) /€] = O(n/e). The size of Q) is at
most L, ;ISY| = O(n’/e). Thus each application of PARTITION requires
O((n? /e)log(n /€)) elementary operations and

n(l+e)n®
€

O(log ) = O(log(n/¢€))

tests. Each test is O_(lEl(n/e)) so testing amounts in total to O(En /e)log(n /¢€)).
Forming the sets S takes O(]Q")|) = O(n?/¢€). Thus for a fixed i Step 2 requires
O(|El(n/e)log(n /€)) and altogether the algorithm is O(|E|(n?/e)log(n /¢)).

7. Concluding remarks. The techniques presented in this paper can also be
applied to other minimization problems for which a dynamic programming algorithm
is available, but good lower and upper bounds are not known.

As an example consider the following scheduling problem solved in Sahni (1977):
Each of n jobs needs processing on a given machine. Job i has a processing time
requirement ¢,, a deadline d;, and a profit p;, which is earned only if the processing of
the job is completed by d,. The objective is to find a schedule that maximizes the
profit. An exact algorithm is presented in Sahni (1977). It solves the problem by first
ordering the jobs by their deadlines and then constructing partial solutions by
determining at the ith stage whether Job i will be processed in time or not. The
algorithm’s complexity is O(min{2", n¥}_, p;, nX}_ t;, L7_; d;}). Sahni applies inter-
val partitioning and scaling to yield e-approximation schemes of time O(n?/¢). The
idea of the partitioning heuristic is to use the highest value obtained in the ith stage,
say B;, as a lower bound on the solution value OPT. Then the interval [1, B,] is
partitioned to O(n/e€) subintervals of size at most €B,;/n, and in each subinterval all
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but one solution are discarded. Since B; < OPT the total error accumulated in the n
stages is at most eOPT.

Suppose now that the problem is posed in a slightly different way, where the only
change is that the objective is to minimize the lost profit due to jobs that are not
completed in time. In other words, p; can be viewed as a fixed penalty (not a function
of the size of the delay) associated Job i if it is not completed by its deadline. Clearly
the two objectives are identical as long as exact computation is concerned and, as a
matter of fact, their sum is constant for all possible solutions. However, an e-
approximation scheme for the first may give large errors relative to the latter. This is
so since B; may be very large relative to OPT and the subintervals may be too large.
Our approach yields an FPAS as follows: We use the approximation scheme of Sahni
as our TEST(V') where V, the trial value, is used instead of B; to construct the
subintervals. One possibility is to apply this test O(loglog I, d,) times, as described
above in §4. The other is to use the partitioning algorithm of §6. Here both m and k
are O(n/e) since |Q®| < 2|S¢~ VY|, Therefore, the overall complexity of performing
Olog(mk) tests and O(m log k) other operations in each stage amounts to O((n> /¢)
log(n/e€)).
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