
Chapter 9

Priority Queues

9.1 Priority Queues (p queue)

1. Definition

An instance Q of the parameterized data type p queue<P, I> is a collection of items (type

pq item). Every item contains a priority from a linearly ordered type P and an information

from an arbitrary type I. P is called the priority type of Q and I is called the information

type of Q. If P is a user-defined type, you have to define the linear order by providing

the compare function (see Section 2.3). The number of items in Q is called the size of Q.

If Q has size zero it is called the empty priority queue. We use 〈p, i〉 to denote a pq item

with priority p and information i.

Remark: Iteration over the elements of Q using iteration macros such as forall is not

supported.

#include < LEDA/core/p queue.h >

2. Types

p queue<P, I> :: item the item type.

p queue<P, I> ::prio type the priority type.

p queue<P, I> :: inf type the information type.

3. Creation

p queue<P, I> Q; creates an instance Q of type p queue<P, I> based on
the linear order defined by the global compare function
compare(const P&, const P&) and initializes it with the
empty priority queue.

177

178 CHAPTER 9. PRIORITY QUEUES

p queue<P, I> Q(int (∗cmp)(const P& , const P&));

creates an instance Q of type p queue<P, I> based on the lin-
ear order defined by the compare function cmp and initializes
it with the empty priority queue. Precondition: cmp must
define a linear order on P .

4. Operations

const P& Q.prio(pq item it) returns the priority of item it.
Precondition: it is an item in Q.

const I& Q.inf(pq item it) returns the information of item it.
Precondition: it is an item in Q.

I& Q[pq item it] returns a reference to the information of item it.
Precondition: it is an item in Q.

pq item Q.insert(const P& x, const I& i)

adds a new item <x, i> to Q and returns it.

pq item Q.find min() returns an item with minimal priority (nil if Q is
empty).

P Q.del min() removes the item it = Q.find min() from Q and
returns the priority of it.
Precondition: Q is not empty.

void Q.del item(pq item it) removes the item it from Q.
Precondition: it is an item in Q.

void Q.change inf(pq item it , const I& i)

makes i the new information of item it.
Precondition: it is an item in Q.

void Q.decrease p(pq item it , const P& x)

makes x the new priority of item it.
Precondition: it is an item in Q and x is not larger
then prio(it).

int Q.size() returns the size of Q.

bool Q.empty() returns true, if Q is empty, false otherwise.

void Q.clear() makes Q the empty priority queue.

5. Implementation

Priority queues are implemented by binary heaps [91]. Operations insert, del item,

del min take time O(logn), find min, decrease p, prio, inf, empty take time O(1) and

clear takes time O(n), where n is the size of Q. The space requirement is O(n).

