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Lecture 3:
Force-Directed Drawing Algorithms

Part I
Algorithm Framework

Philipp Kindermann



General Layout Problem

Input: Graph G = (V,E)
Output: Clear and readable straight-line drawing of G

Drawing aesthetics:

adjacent vertices are close

non-adjacent vertices are far apart

edges short, straight-line, similar length

densely connected parts (clusters) form communities

as few crossings as possible

nodes distributed evenly

Optimization criteria partially contradict each other

- 10



Fixed Edge Lengths?

Input: Graph G = (V, E), required edge length ¢(e), Ve € E
Output: Drawing of G which realizes all the edge lengths

Qe
e o o xR i
e Q e
5 & ? & o 0O ¢ (04 %
& 0 0
© 0 Lo © & O
NP-hard for

B uniform edge lengths in any dimension [Johnson "82]
B uniform edge lengths in planar drawings [Eades, Wormald "90]
B edge lengths {1,2} [Saxe '80]



Physical Analogy

Idea. |[Eades "84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system ... The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

Attractive forces.
adjacent vertices u and v:

1/ OMWWWO U

f attr

So-called sprin;g embedders or Repulsive forces.

force-directed algorithms that work all vertices x and y:
according to this or similar principles are x
among the most frequently used O‘Ebo Y

graph-drawing methods in practice.
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Force-Directed Algorithms

initial layout

end layout

threshold
max # iterations

-
)
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Spring Embedder by Eades — Model

repulsion constant (e.g. 2.0)
Pull

B Repulsive forces

frep(” ) = 5 m

Py —

B Attractive forces spring constant (e.g. 1.0)

HpvzpuH m

— frep(”rv)

f 8pring(”r V) = Cspring * log
fattr (u/ U)

— fspring (u/ 0)

B Resulting displacement vector

lForceDlrec:ted(G (V,E), p = (Po)vev, € >0,K € ]N)
Cte1
' while ¢ < K and max,cy ||F,(f)|| > € do

foreach u € V do

|_ Fy(t) < Yoev frep(”rv) + Yuvekr fatr (4, 0)
foreach u € V do

| Pu < pu+06(t) - Fu(t)

._ t+—t+1
' return p '
Notation.
B ||p, — vo|| = Euclidean
distance between u
and v

O pupvz — unit vector
pointing from u to v

B / = ideal spring length
for edges



Spring Embedder by Eades — Force Diagram

fattr(u/ TJ) = fspring(u/ U) _frep(u/ U)

Force

-

{; A fspring(u/ U) — Cspring log Hpv z Pu” “PuPo
Iy

=

¥ Distance

>

: Fep(1t,0) = 1=y - o
: P Mpo — pull? T
c

o))

=

Q.



Spring Embedder by Eades — Discussion

Advantages.
B very simple algorithm

B good results for small and medium-sized graphs

B empirically good representation of symmetry and structure

Disadvantages.
B system is not stable at the end

B converging to local minima
B timewise fopring in O(|E|) and frep in O(|V|?)

Influence.
B original paper by Peter Eades [Eades "84] got ~ 2000 citations

B basis for many further ideas
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Variant by Fruchterman & Reingold

B Repulsive forces

lForceDirec:ted(G = (V,E), p = (pv)vev, € >0, K € N),

t+1
while t < K and maxycy ||F,(t)|| > € do
foreach u € V do

I_ Fu(t) — ZvEV frep(u/ Z)) + ZuveE fattr(u/ U)
foreach u € V do
L Pu < pu+0(t) - Fu(t)

l |t t+1

22NN
rep\U, V) = y
Jren (00 = =y P
B Attractive forces
. 2
fater (1, 0) = Po = pull Dl

14

B Resulting displacement vector

E, = Zfrep(uzv)+ Z fattr(ulv)

veV uvekE

1
' return p

Notation.

B ||p, — vo|| = Euclidean
distance between u
and v

O pupvz — unit vector
pointing from u to v

B / = ideal spring length
for edges

11
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Fruchterman &/F

Force

-

fspring(u/ 0) = fattr(4,0) —|—frep(u/ 0)

Distance

12 -

push u away pull u to v
=

rep\U,0) =
frep(t:0) = 1 ]

" PoPu
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Idea

a
Consider a fixed triangle (a, b, )
with one common neighbor v
b
(Where would you place U?]
. barycenter(a, b, )

barycenter(xq,...,x;) = Zé‘:l x;/k

Idea.
Repeatedly place every vertex at barycenter of neighbors.

14 -12

William T. Tutte
1917 — 2002

HOW TO DRAW A GRAPH

By W. T. TUTTE

[Received 22 May 1962]

1. Introducgion

WE use the definitions of (11). However, in deference to some recent
attempts to unify the terminology of graph theory we replace the term
‘eircuit’ by ‘polygon’, and ‘degree’ by ‘valency’.

A graph G is 3-comnected (nodally 3-connected) if it is simple and
non-separable and satisfies the following condition; if @ is the union of
two proper subgraphs H and K such that Hn K consists solely of two
vertices u and v, then one of H and K is a link-graph (arc-graph) with
ends « and v.

It should be noted that the union of two proper subgraphs H and K
of @ can be the whole of @ only if each of H and K includes at least one
edge or vertex not belonging to the other. In this paper we are concerned
mainly with nodally 3-connected graphs, but a specialization to 3-connected

aravmbe 1o rmada 1w 10



Tutte’s Forces ForceDirected(G = (V,E), p = (pv)vev, € > 0, K € N).

t <1
Goal. while t < K and maxycy ||F(t)|| > € do
py = barycenter(U,,cr ?) foreach u € V do
=Y ocE Po/ deg(u) | Fu(t) < Loev frep(,0) + Liek fatte (1, 0)
foreach u € V do

Fu(t) = Lupek po/ deg(u) — pu | Pu < Pu + 3] 1- Fu(t)

= Luvee(Po — pu)/ deg(u) | tt+1 |

= Y ock [Py — pol|/ deg(u) return p barycenter(xy,...,x;) = Y, x;/k -

B Repulsive forces Solution: p, = (0,0) Vu € V

frep(u,0) = Fix coordinates
B Attractive forces of outer face!

(1,0) 0 u fixed
attr ulv —
fat e llpu—pill ese | Demo




16 - 40

Linear System of Equations

Goal. pu = (xu, Yu) Ax=b Ay=b b= (0),
Pu = barycenter(UuUEE ZJ) — ZquE Pv/ deg(u)

Xy = ZquE Xy / deg(u) And deg(u) "Xy = ZquE Xv = deg(u) "Xy — ZquE Xy =0
Yu = ZquE yv/ deg(u) A deg(u) "Yu = ZquE Yo A deg(u) "Yu — ZquE Yo = 0

y U1 Uo Us Uy Uus Ug
1

wp [ 3 -1 -1 0 —1 0\ Aj; = deg(u;)
) iy 4—1—3——1-——1—0—0 {1 v e E
Us -1 -1 3 0 0 -1 Ai]',i;é]' — J
“ ol 0 -1 0 3 -1 -1 0 wuj ¢ E
: s | =1 0 0 -1 2 0
e\ 0 0 -1 -1 0 2

" Laplacian matrix of G

k variables, k constraints, det(A) >0
k = #free vertices — unique solution



16 - 42

Linear System of Equations

(Theorem. Tutte drawing

Tutte’s barycentric algorithm admits a unique solution.
It can be computed in polynomial time.

Goal. p, = (xy,yu)
py = barycenter(U,,cr ?)

J

Xy = ZquE Xy / deg(u) And deg(u) "Xy = ZquE Xv = deg(u) "Xy — ZquE Xy =0
Yu = Luvce Yo/ deg(u) < deg(u) -yu = Yypecpyo < deg(u) - Yu — Luver Yo =0

y Uy Up Uz Uy U5 Ug
1

wp (3 -1 -1 0 —1 0) Aj; = deg(u;)
) ur t—1—3 -1 -1 -0 0 1w, € E
Us -1 -1 3 0 0 -1 Ai]',i;é]' — J
oyl 0 =1 0 3 -1 —1 0 wu; ¢ E
; us | =1 0 0 -1 2 0
e\ 0 0 -1 -1 0 2

" Laplacian matrix of G

k variables, k constraints, det(A) >0
k = #free vertices — unique solution
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3-Connected Planar Graphs

planar: G can be drawn in such a way (Theorem. [Whitney 1933]
that no edges cross each other Every 3-connected planar graph
connected: There is a u-v-path for every u,v € V \has a unique planar embedding. )
k-connected: G — {vy,...,v,_1} is connected Proof sketch.
forany vy...,00_ 1€V I'1, I, embeddings of G
or (equivalently) face of I'5, but not I'y
There are at least k vertex-disjoint u inside C in I'y, v outside C in I';
u-v-paths for every u,v € V both on same side in I'p




Tutte’s Theorem

‘'Theorem. [ Tutte 1963T

Let G be a 3-connected planar graph, and

let " be a face of its unique embedding.

If we fix C on a strictly convex polygon, then the Tutte
\drawing of G is planar and all its faces are strictly convex.

J
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Properties of Tutte Drawings

Property 1. Let v € V free, / line through v.
d1uv € E on one side of / = dovw € E on other side

Otherwise, all forces to same side ...

Property 2. All free vertices lie inside .
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Properties of Tutte Drawings

Property 1. Let v € V free, / line through v.
Juv € E on one side of / = Jow € E on other side

Otherwise, all forces to same side ... 1

Property 2. All free vertices lie inside

Property 3. Let / be any line. P
Let I/, be all vertices on one side of /.
Then G[V/,] is connected.

furthest away from /¢
Pick any vertex u, ¢’ parallel to ¢ throught u

G connected, v not on ¢'= Jw on ¢’ with neighbor further away from ¢
= 3 path from u to

Property 4. No vertex is collinear with all of its neighbors.

g/

Not all vertices collinear

G 3-connected
= K33 minor




Proof of Tutte’s Theorem

‘Lemma. Let 10 € E be a non-boundary edge, / line
through 0. Then the two faces f{, f» incident to
1o lie completely on opposite sides of /.

\

Property 1. Let v € V free, [ line through v.
Juv € E on one side of / = Jvw € E on other side o o

Property 3. Let / be any line. —O—O_o—
Let V, be all vertices on one side of /. o :
Then G[V/] is connected. ‘

Property 4. No vertex is collinear with all of its neighbors.

~~~~~~~

(Lemma. All faces are strictly convex. J (Lemma. The drawing is planar. J

p inside two faces
Property 2. All/free vertices lie inside C. p
= g in one face
jumping over edge
— #faces the same
= p inside one face é
q




Literature

Main sources:

|GD Ch. 10] Force-Directed Methods
|DG Ch. 4] Drawing on Physical Analogies

Referenced papers:

Johnson 1982] The NP-completeness column: An ongoing guide

Eades, Wormald 1990] Fixed edge-length graph drawing is NP-hard
Saxe 1980] Two papers on graph embedding problems

Eades 1984] A heuristic for graph drawing

Fruchterman, Reingold 1991] Graph drawing by force-directed placement

Frick, Ludwig, Mehldau 1994] A fast adaptive layout algorithm for undirected
graphs

[Tutte 1963] How to draw a graph

23



	Algorithm Framework
	General Layout Problem

	Fixed Edge Lengths?
	Physical Analogy
	Force-Directed Algorithms

	Spring Embedders by Eades
	Model
	Force diagram
	Discussion

	Variant by Fruchterman & Reingold
	Model
	Force diagram

	Tutte Drawing
	Idea
	Tutte's Forces
	Linear System of Equations

	Tutte's Theorem
	3-Connected Planar Graphs
	The Theorem

	Proof of Tutte's Theorem
	Properties of Tutte Drawings
	Proof of Tutte's Theorem

	Literature

