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Motivation

Why planar and straight-line?

|[Bennett, Ryall, Spaltzeholz and Gooch "07]
The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics . .
Drawing conventions

By far the most agreed-upon edge placement heuristic

18 to(minimize the number of edge crossings)in a graph B Nocr OSSINgS = planar
[BMRW98, Har98, DH96, Pur(2, TR05, TBB88]|. The impor- ® No bends = straight—line

tance of avoiding edge crossings has also been extensively
validated in terms of user preference and performance (see
Section 4). Similarly, based on perceptual principles, it is
beneficial m within a
graph [Pur02, TRO5, TBB88]. Edge bends make edges more B Area
difficult to follow because an edge with a sharp bend is more

likely to be perceived as two separate objects. This leads to

the heuristic of keeping edge bends uniform with respect to

the bend’s position on the edge and its angle [TRO5]. If an

edge must be bent to satisfy other aesthetic criteria, the an-

gle of the bend should be as little as possible, and the bend

placement should evenly divide the edge.

Drawing aestethics



Planar Graphs

Ks K33
‘Theorem. [Kuratowski 1930]\
G planar <
neither K5 nor K33 minor of G
‘Theorem. [Hopcroft & Tarjan 1974]

For a graph G with n vertices, there is an O(n) time algorithm

to test whether G is planar.

Also computes an embedding in O(n).

‘Theorem. [Wagner 1936, Fary 1948, Stein 1951]
Every planar graph has a planar drawing where the edges are

straight-line segments.

Characterization

Recognition

Drawing



Ir iangulations <ith planar embedding @

A plane (inner) triangulation is a plane \
graph where every (inner) face is a ;

triangle. ! O
A maximal planar graph is a planar 4 \

graph where adding any edge would

destroy planarity. c@

(Observation. ) We focus on plane triangulations:

A maximal plane graph is a plane Lemma. )
triangulation. ) Every plane graph is subgraph of a

- N plane triangulation.

Lemma. - <
A plane triangulation is at least Corollary.

3-connected and thus has a unique Tutte’s algorithm creates a planar
planar embedding. straight-line drawing for every planar

) ’ graph. (but with exponential area) )




5-6

Planar Straight-Line Drawings bt et P

*Paris, France *1954, Budapest, Hungary

‘Theorem. [De Fraysseix, Pach, Pollack ’90]\
Every n-vertex planar graph has a planar straight-line
drawing of size (2n —4) x (n — 2).

Idea.
( \
Theorem.

. . Richard Pollack
Every n-vertex planar graph has a planar stra1ght-hne 1035 M o U
drawing of size (n —2) x (n —2). +2018, Montclair, USA
- y
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Canonical Order — Definition

Definition.
Let G = (V,E) be a triangulated plane graph on n > 3 vertices.

An order 7w = (v1,vp,...,7y) is called a canonical order, if the
following conditions hold for each k, 3 < k < n:

(C1) Vertices {v1,...v;} induce a biconnected internally
triangulated graph; call it G.

(C2) Edge (vq1,v,) belongs to the outer face of G;.

(C3) If k < n then vertex v}, lies in the outer face of G, and all

neighbors of v, | in G, appear on the boundary of G,
consecutively.

Ok+1




Canonical Order — Example

(C1) Vertices {vq,...v;} induce a biconnected internally
triangulated graph; call it G;.

(C2) Edge (v1,v;) belongs to the outer face of Gy.

(C3) If k < n then vertex v, lies in the outer face of Gy,
and all neighbors of v, in Gy appear on the boundary
of G consecutively.
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Canonical Order — Example

(C1) Vertices {vq,...v;} induce a biconnected internally
triangulated graph; call it G;.

(C2) Edge (v1,v;) belongs to the outer face of Gy.

(C3) If k < n then vertex v, lies in the outer face of Gy,
and all neighbors of v, in Gy appear on the boundary
of G consecutively.

chord

edge joining two
nonadjacent
vertices in a cycle
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Can()nlcal Order — EXIStenCe (C1) Gy biconnected and internally

triangulated

Lemma. (C2) (v1,v7) on outer face of G

Every triangulated plane graph has a canonical order. | (©3) k <n = o, inouter face of C,
neighbors of vy 1 in Gy

B C consecutive on boundary

ase Lase.
Let G,, = G, and let v1, vy, v,; be the vertices of the outer face
of G,,. Conditions (C1) — (C3) hold. Have to show:

Induction hypothesis:
Vertices v,,_1, ..., 01 have been chosen such that conditions
(C1)-(C3) hold for k+1 <1 < n.

Induction step: Consider Gj. We search for v.

Uk
because v cut vertex
adjacent to a
Gy chord Ge_
01 0 01 (%]

2

10 -18



11 -23

Canonical Order — Existence

Claim 1. Claim 2.
If vy is not adjacent to a chord, There exists a vertex in G that is not
then G, _ is biconnected. adjacent to a chord as choice for vy.

- contradiction to edges
k Uk being consecutive o Uk

Gy not biconnected

This completes proof of Lemma.




Canonical Order — Implementation

outer face

CanonicalOrder(G = (V,E), (v1,v2,0,))
forall v € V do

. | chords(v) < 0; out(v) < false; + false
| , , out(vq), out(vy), out(v,) < true
fork =nto3do :
| choose v such that = false, out(v) = true, and
chords(v) =0 :
Uy < 0, < true

// Let w1 = vq,W», ..., Ws_1, W = Uy denote the
boundary of Gx_q in Gx_ and let wy, ..., w, be the
neighbors of vy

out(w;) <= trueforall p <i < g

update number of chords for w;

and its neighbours

' (Lemma.

| Algorithm CanonicalOrder
‘| computes a canonical order
| of a plane graph in O(n)

12 -22

B chord(v): # chords
adjacent to v

M out(v) = true iff v is

currently outer vertex

] = true iff v has

received its number

| time.
. J
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Shift Method — Idea

Drawing invariants:
Gj_1 is drawn such that

B v ison (0,0), vy ison (2k — 6,0),
B boundary of Gy_7 (minus edge (v1,v;)) is
drawn x-monotone,

B each edge of the boundary of Gy_1

(minus edge (v1,v;)) is drawn with slopes +1.
Ok

} Overlaps!

) 4// What could be the solution?




14 - 20

Shift Method — Idea

Drawing invariants: Does vy land on grid?
Gj_1 is drawn such that

B vy ison (0,0), vy ison (2k — 6,0),

B boundary of Gy_7 (minus edge (v1,v;)) is Y
drawn x-monotone,

B each edge of the boundary of G;_4
(minus edge (v1,v;)) is drawn with slopes +1.
\yes, beause w, and w,

have even Manhattan
distance




Shift Method — Example




Shift Method — Example




Shift Method — Example




16 - 11

Shift Method — Planarity

Observations. Lemma.

B Each internal vertex is covered exactly once. |Let 0 < 91 < dp < --- < 9 € N,
B Covering relation defines a tree in G such that 9; —0p > 2 and even.

B andaforestin G;,1 <i<mn-—1.




16 - 13

Shift Method — Planarity

Observations. Lemma. )
B Each internal vertex is exactly once.|[Let0 < 61 <0p < --- <0 € N,
B Covering relation defines a tree in G such that 0; — 0, > 2 and even.

If we shift by ¢; to the

' 1 <i<n-1. :
B and aforestin G;, 1 <i<n—1 right, then we get a planar

kstraight—line drawing.

J

Proof by induction:
If G4 is drawn planar and straight-line,
then so is G;.
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Shift Method — Pseudocode

Running Time?




Shift Method — Linear Time Implementation

Idea 1.
To compute x(v;) & v(vy),
we only need y(w,) and and x(w,) — x(w)

Idea 2.
Instead of storing explicit x-coordinates,
we store x-distances.

19 -




Shift Method — Linear Time Implementation

Idea 1.
To compute x(v;) & v(vy),
we only need y(w,) and and x(w,) — x(w)

Idea 2.
Instead of storing explicit x-coordinates,
we store x-distances.

After x distance for v, computed, use

preorder traversal to compute all
x-coordinates.

19 -
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Shift Method — Linear Time Implementation

Relative x-distance tree.
For each vertex v store

B x-offset Ay(v) from parent ® y-coordinate y(v)

Calculations.
B Ay (wWppq)++, Ax(wy)++
Ax(wp, wg) = Ay (Wpi1) + ...+ Ax(wy)
Ax(vy) by (3) ® y(v) by (2) \ root 7 #
Ax(wy) = Bx(wp, wy) — Ay (vk) O(n) in total
Ax(wpi1) = Ax(wp1) — Ax (k)



Result & Variations

‘Theorem. |De Fraysseix, Pach, Pollack ’90]N
Every n-vertex planar graph has a planar straight-line drawing of size
\(Zn —4) X (n —2). Such a drawing can be computed in O(n) time.

J

‘Theorem. |[Chrobak & Kant ’97]N
Every n-vertex 3-connected planar graph has a planar straight-line
drawing of size (n —2) x (n — 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.

‘Theorem. [Brandenburg '08] |

Every n-vertex planar graph has a planar straight-line drawing of size

211 X 211. Such a drawing can be computed in O(7n) time.
3 3 ) p

J
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