
1

Visualization of Graphs
Lecture 6:

Orthogonal Layouts

Philipp Kindermann

Part I:
Topology – Shape – Metrics

2 - 4

Orthogonal Layout – Applications

Organigram of HS Limburg Circuit diagram by Jeff Atwood

UML diagram by Oracle
ER diagram in OGDF

3 - 20

Orthogonal Layout – Definition

Observations.

� Edges lie on grid⇒
bends lie on grid points

� Max degree of each
vertex is at most 4

Aesthetic criteria.
� Number of bends
� Length of edges
� Width, height, area
� Monotonicity of edges
� ...

Definition.
A drawing Γ of a graph G = (V, E) is called orthogonal if
� vertices are drawn as points on a grid,

� each edge is represented as a sequence of alternating
horizontal and vertical segments, and

� pairs of edges are disjoint or cross orthogonally.

� Otherwise

Planarization.
� Fix embedding
� Crossings become

vertices

4 - 7

Topology – Shape – Metrics
Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

planar
orthogonal

drawing

1
2

3
4

bend minimization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

5

Visualization of Graphs
Lecture 6:

Orthogonal Layouts

Philipp Kindermann

Part II:
Orthogonal Representation

7 - 15

Orthogonal Representation

� An orthogonal representation H(G) of G is defined as

H(G) = {H(f) | f ∈ F}.

� A face representation H(f) of f is a clockwise ordered se-
quence of edge descriptions (e, δ, α).

� Let e be an edge with the face f to the right.
An edge description of e wrt f is a triple (e, δ, α) where
� δ is a sequence of {0, 1}∗ (0 = right bend, 1 = left bend)
� α is angle ∈ {π

2 , π, 3π
2 , 2π} between e and next edge e′

e f

(e, 100, π)

Idea.
Describe orthogonal drawing combinatorically.

1
0

0 πDefinitions.
Let G = (V, E) be a plane graph with faces F and outer face f0.

8 - 31

Orthogonal Representation – Example

f1 f2

f0

e1

e2
e3

e4

e5

e6

H(f0) = ((e1, 11, π
2), (e5, 111, 3π

2), (e4, ∅, π), (e3, ∅, π), (e2, ∅, π
2))

H(f1) = ((e1, 00, 3π
2), (e2, ∅, π

2), (e6, 00, π))

H(f2) = ((e5, 000, π
2), (e6, 11, π

2), (e3, ∅, π), (e4, ∅, π
2))

f0

e1

e2 e3 e4

e5

f1
f2

f0

Concrete coordinates are not fixed yet!

0
1

00
11

0
1

0
1

0 0
1 1

3π
2 π

2
ππ

2
π
2

π
2 π 3π

2
πππ

2

π
2

e6

9 - 20

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f0.

(H2) For each edge {u, v} shared by faces f and g with
((u, v), δ1, α1) ∈ H(f) and ((v, u), δ2, α2) ∈ H(g)
sequence δ1 is reversed and inverted δ2.

(H3) Let |δ|0 (resp. |δ|1) be the number of zeros
(resp. ones) in δ and r = (e, δ, α).
Let C(r) := |δ|0 − |δ|1 + 2− α · 2/π.
For each face f it holds that:

∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of incident angles is 2π.

C(e3) = 0− 0 + 2− π· 2
π = 0

C(e4) = 0− 0 + 2− π
2 ·

2
π = 1

e4

C(e5) = 3− 0 + 2− π
2 ·

2
π = 4

e1

e2 e3 e4

e5

e6

f1
f2

f0
0

00

0

0
1

11

1

1

π 3π
2 π

2
ππ

2
π
2

π
2

π
2

π
2 π 3π

2
π

1
0 0

1

e3

e6

e5

C(e6) = 0− 2 + 2− π
2 ·

2
π = −1

12

Visualization of Graphs
Lecture 6:

Orthogonal Layouts

Philipp Kindermann

Part III:
Flow Networks

13 - 24

Flow Networks

Flow network (G = (V, E); S, T; u) with
� directed graph G = (V, E)
� sources S ⊆ V, sinks T ⊆ V
� edge capacity u : E→ R+

0

A function X : E→ R+
0 is called S-T-flow, if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E

∑
(i,j)∈E

X(i, j)− ∑
(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ (S ∪ T)

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3
1 2

2

3
1

2
2

5

5
8

3

2

1
2

1

3/
1/ 2/

1/

2/

3/
1/

7/

2/
2/

2/

1/
2/

3/

5
33/

4/

3/
6/

3/4/

A maximum S-T-flow is an S-T-flow where ∑
(i,j)∈E,i∈S

X(i, j) is maximized.

14 - 9

s-t-Flow Networks
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3
1 2

2

3
1

2
2

5

5
8

3

2

1
2

1

3/
1/ 2/

1/

2/

3/
1/

7/

2/
2/

2/

1/
2/

3/

5
33/

4/

3/
6/

3/4/Flow network (G = (V, E); s, t; u) with
� directed graph G = (V, E)
� source s ∈ V, sink t ∈ V
� edge capacity u : E→ R+

0

A function X : E→ R+
0 is called s-t-flow, if:

0 ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E

∑
(i,j)∈E

X(i, j)− ∑
(j,i)∈E

X(j, i) = 0 ∀i ∈ V \ {s, t}

A maximum s-t-flow is an s-t-flow where ∑
(s,j)∈E

X(s, j) is maximized.

∞

∞

∞

∞

15 - 14

Residual Network

s

v1

t

v4

16
12

20

4
14

9
4

13

7

8/

4/

4/

12/

3/

3/

10/

0/

3/

v3

v2

Residual network GX = (V, E′):
� X(v, v′) < u(v, v′)⇒ (v, v′) ∈ E′

s t

v4

v3

v2

Flow network (G = (V, E); s, t; u)

� X(v, v′) > 0⇒ (v′, v) ∈ E′

v1

Flow-increasing path W

c(v, v′) = u(v, v′)− (v, v′)

8

9
11

6
7

10

1

c(v, v′) = u(v, v′)

4

12

8

4

3

3

3

10

16 - 12

FordFulkerson
FordFulkerson(G = (V, E); s, t; u)

foreach (v, v′) ∈ E do
X(v, v′) = 0

while GX contains s-t-path W do
∆W = min(v,v′)∈W c(v, v′)
foreach (v, v′) ∈W do

if (v, v′) ∈ E then
X(v, v′) = X(v, v′) + ∆W

else
X(v, v′) = X(v, v′)− ∆W

return X

}
Initialization with Zero-flow

}
Max Flow

}
Capacity of W
Increasing flow along W

FordFulkerson finds a maximum s-t-flow in O(|X∗| · n) time.

17 - 8

FordFulkerson – Example

s t
1/1000

0/1

1/1000
1/1000

1/1000

s

w

v

t
0/1000

0/1

0/1000
0/1000

0/1000
G

s

w

v

t
1000

1

1000
1000

1000
GX

s

w

v

t
1/1000

1/1

1/1000
0/1000

0/1000

s

w

v

t

999

1

999
1000

1000

w

v

1
1

. . .

18 - 4

EdmondsKarp
FordFulkerson(G = (V, E); s, t; u)

foreach (v, v′) ∈ E do
X(v, v′) = 0

while GX contains s-t-path W do
W = s-t-path in GX
∆W = min(v,v′)∈c(v,v′)
foreach (v, v′) ∈W do

if (v, v′) ∈ E then
X(v, v′) = X(v, v′) + ∆W

else
X(v, v′) = X(v, v′)− ∆W

return X

EdmondsKarp

shortest

R
ic

ha
rd

M
.K

ar
p

*1
93

5
Bo

st
on

,M
A

Ja
ck

R
.E

dm
on

ds
*1

93
4

EdmondsKarp finds a maximum s-t-flow in O(nm2) time.

19 - 8

EdmondsKarp – Example

1000

s t
1000/1000

0/1

1000/10001000/1000

1000/1000

s

w

v

t
0/1000

0/1

0/1000
0/1000

0/1000
G

s

w

v

t
1000

1

1000
1000

1000
GX

s

w

v

t
1000/1000

0/1

0/1000
0/1000

1000/1000
s

w

v

t1

1000

1000

w

v

1000

1000

s

w

v

t1

1000

1000
1000

20 - 10

General Flow Network
[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

7

5

3
1 2

2

3
1

2
2

5

5
8

3

2

1
2

1

3/
1/ 2/

1/

2/

3/
1/

7/

2/
2/

2/

1/
2/

3/

5
33/

4/

3/
6/

3/4/

4/

5/

1/

2/

1/

4/

Flow network (G = (V, E); b; `; u) with
� directed graph G = (V, E)
� node production/consumption b : V → R with ∑i∈V b(i) = 0
� edge lower bound ` : E→ R+

0

� edge capacity u : E→ R+
0

A function X : E→ R+
0 is called valid flow, if:

`(i, j) ≤ X(i, j) ≤ u(i, j) ∀(i, j) ∈ E

∑
(i,j)∈E

X(i, j)− ∑
(j,i)∈E

X(j, i) = b(i) ∀i ∈ V

� Cost function cost : E→ R+
0 and cost(X) := ∑(i,j)∈E cost(i, j) · X(i, j)

A minimum cost flow is a valid flow where cost(X) is minimized.

21 - 3

General Flow Network – Algorithms

Theorem. [Cornelsen & Karrenbauer 2011]
The minimum cost flow problem for planar
graphs with bounded costs and faze sizes can be
solved in O(n3/2) time.

[Orlin 1991]

Theorem. [Orlin 1991]
The minimum cost flow problem can be solved in
O(n2 log2 n + m2 log n) time.

22

Visualization of Graphs
Lecture 6:

Orthogonal Layouts

Philipp Kindermann

Part IV:
Bend Minimization

23

Topology – Shape – Metrics
Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

planar
orthogonal

drawing

1
2

3
4

bend minimization

area mini-
mization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

24 - 7

Bend Minimization with Given Embedding

Compare with the following variation.

Geometric bend minimization.
� Plane graph G = (V, E) with maximum degree 4
� Combinatorial embedding F and outer face f0

Given:

Orthogonal drawing with minimum number of bends
that preserves the embedding.

Find:

Combinatorial bend minimization.
� Plane graph G = (V, E) with maximum degree 4
� Combinatorial embedding F and outer face f0

Given:

Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.

Find:

25 - 5

Combinatorial Bend Minimization

Idea.
Formulate as a network flow problem:

� a unit of flow =]π
2

� vertices]−→ faces (#]π
2 per face)

� faces]−→ neighbouring faces (# bends toward the neighbour)

Combinatorial bend minimization.
� Plane graph G = (V, E) with maximum degree 4
� Combinatorial embedding F and outer face f0

Given:

Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

Find:

26 - 11

Flow Network for Bend Minimization
Define flow network N(G) = ((V ∪ F, E); b; `; u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂ f } ∪
{(f , g)e ∈ F× F | f , g have common edge e}

e
e′g

f

v

Directed multigraph!

(H1) H(G) corresponds to F, f0.

(H2) For each edge {u, v} shared by fa-
ces f and g, sequence δ1 is reversed
and inverted δ2.

(H3) For each face f it holds that:

∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 2π.

26 - 26

Flow Network for Bend Minimization
Define flow network N(G) = ((V ∪ F, E); b; `; u; cost):

� E = {(v, f)ee′ ∈ V × F | v between edges e, e′ of ∂ f } ∪
{(f , g)e ∈ F× F | f , g have common edge e}

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG(f) +

{
−4 if f = f0,
+4 otherwise

⇒ ∑w b(w) = 0
(Euler)

∀(v, f) ∈ E, v ∈ V, f ∈ F `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)
cost(v, f) = 0

∀(f , g) ∈ E, f , g ∈ F `(f , g) := 0 ≤ X(f , g) ≤ ∞ =: u(f , g)
cost(f , g) = 1 We model only the

number of bends.
Why is it enough?

1

1 1

12
−6

(H1) H(G) corresponds to F, f0.

(H2) For each edge {u, v} shared by fa-
ces f and g, sequence δ1 is reversed
and inverted δ2.

(H3) For each face f it holds that:

∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 2π.

1
2

27 - 18

Flow Network Example

f1 f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

V
F

4

4

4

4

4

-2 -4

-14

111

cost = 1
one bend
(outward)

V × F ⊇

F× F ⊇

`/u/cost
1/4/0

0/∞/1

4 = b -value

3 flow

11

Legend

1 1

1

1
3

2

3

3
2

27 - 21

Flow Network Example

V
F

V × F ⊇

F× F ⊇

`/u/cost
1/4/0

0/∞/1

4 = b -value

3 flow

Legend

f1

f2

f0

e1

e2

e3

e4

e5

e6

v1

v2 v3

v4v5

111

1 11

3
2

3

32

1

1

28 - 10

Bend Minimization – Result

Proof.
⇐ Given valid flow X in N(G) with cost k.

Construct orthogonal representation H(G) with k bends.

� Transform from flow to orthogonal description.
� Show properties (H1)–(H4).

Theorem. [Tamassia ’87]
A plane graph (G, F, f0) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

(H1) H(G) matches F, f0 X
(H2) Bend order inverted and reversed on opposite sides X
(H3) Angle sum of f = ±4 X
(H4) Total angle at each vertex = 2π X

Exercise.

(H1) H(G) corresponds to F, f0.

(H2) For each edge {u, v} shared by fa-
ces f and g, sequence δ1 is reversed
and inverted δ2.

(H3) For each face f it holds that:

∑
r∈H(f)

C(r) =

{
−4 if f = f0

+4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 2π.

28 - 17

Bend Minimization – Result

Proof.
⇒ Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.
� Define flow X : E→ R+

0 .
� Show that X is a valid flow and has cost k.

Theorem. [Tamassia ’87]
A plane graph (G, F, f0) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

(N1) X(v f) = 1/2/3/4 X

(N2) X(f g) = |δ f g|0, (e, δ f g, x) describes e ∗= f g from f X
(N3) capacities, deficit/demand coverage X
(N4) cost = k X

� b(v) = 4 ∀v ∈ V

� b(f) = −2 degG (f) +

{
−4 if f = f0,
+4 otherwise

� `(v, f) := 1 ≤ X(v, f) ≤ 4 =: u(v, f)
cost(v, f) = 0
`(f , g) := 0 ≤ X(f , g) ≤ ∞ =: u(f , g)
cost(f , g) = 1

29 - 5

Bend Minimization – Remarks
� From Theorem follows that the combinatorial orthogonal

bend minimization problem for plane graphs can be solved
using an algorithm for the Min-Cost-Flow problem.

Theorem. [Cornelsen & Karrenbauer 2011]
The minimum cost flow problem for planar graphs with
bounded costs and faze sizes can be solved in O(n3/2) time.

Theorem. [Garg & Tamassia 2001]
Bend Minimization without a given combinatorial embedding
is an NP-hard problem.

Theorem. [Garg & Tamassia 1996]
The minimum cost flow problem for planar graphs with
bounded costs and vertex degrees can be solved in
O(n7/4√log n) time.

30

Visualization of Graphs
Lecture 6:

Orthogonal Layouts

Philipp Kindermann

Part V:
Area Minimization

31

Topology – Shape – Metrics
Three-step approach:

V = {v1, v2, v3, v4}
E = {v1v2, v1v3, v1v4, v2v3, v2v4}

combinatorial
embedding/
planarization

1
2

3

4

orthogonal
representation

1

2

3

4

planar
orthogonal

drawing

1
2

3
4

bend minimization

area mini-
mization

[Tamassia 1987]

reduce
crossings

Topology Shape Metrics— —

32 - 12

Compaction

Special case.
All faces are rectangles.

→ Guarantees possible � minimum total edge length
� minimum area

Properties.
� bends only on the outer face
� opposite sides of a face have the same length

Compaction problem.
� Plane graph G = (V, E) with maximum degree 4
� Orthogonal representation H(G)

Given:

Compact orthogonal layout of G that realizes H(G)Find:

Idea.
� Formulate flow network for horizontal/vertical compaction

33 - 16

Flow Network for Edge Length Assignment
Definition.
Flow Network Nhor = ((Whor, Ehor); b; `; u; cost)

� Whor = F \ { f0} ∪ {s, t}
� Ehor = {(f , g) | f , g share a horizontal segment and f lies

below g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ehor

� u(a) = ∞ ∀a ∈ Ehor

� cost(a) = 1 ∀a ∈ Ehor

� b(f) = 0 ∀ f ∈Whor s

t

34

Flow Network for Edge Length Assignment
Definition.
Flow Network Nver = ((Wver, Ever); b; `; u; cost)

� Wver = F \ { f0} ∪ {s, t}
� Ever = {(f , g) | f , g share a vertical segment and f lies to

the left of g} ∪ {(t, s)}
� `(a) = 1 ∀a ∈ Ever

� u(a) = ∞ ∀a ∈ Ever

� cost(a) = 1 ∀a ∈ Ever

� b(f) = 0 ∀ f ∈Wver

s t

35 - 7

Compaction – Result

What values of the drawing represent the following?
� |Xhor(t, s)| and |Xver(t, s)|?
� ∑e∈Ehor

Xhor(e) + ∑e∈Ever Xver(e)

What if not all
faces rectangular?

Theorem.
Valid min-cost-flows for Nhor and Nver exists iff
corresponding edge lenghts induce orthogonal drawing.

width and height of drawing

total edge length

36 - 12

Refinement of (G, H) – Inner Face

e′

e

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1
front(e′)

project(e′)

extend(e′)

� turn(e) =


1 left turn
0 no turn
−1 right turn

f

� Dummy vertices for bends

36 - 18

Refinement of (G, H) – Inner Face

e′

next(e)

corner(e)

−1

−1

1

−1

−1

−1

−1

1

1

1 1

11

1

1

1

project(e′)

extend(e′)

� turn(e) =


1 left turn
0 no turn
−1 right turn

f

� Dummy vertices for bends

37 - 3

Refinement of (G, H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1
−1

−1
−1

37 - 7

Refinement of (G, H) – Outer Face

f0

1

1

−1

1

1

1

1

−1

−1

−1 −1

−1−1
−1

−1
−1

37 - 13

Refinement of (G, H) – Outer Face

f0

37 - 17

Refinement of (G, H) – Outer Face

Area minimized? No!
But we get bound O((n + b)2) on the area.

Theorem. [Patrignani 2001]
Compaction for given orthogonal
representation is in general NP-hard.

	Orthogonal Layouts
	Applications
	Definition

	Topology - Shape - Metrics
	Orthogonal Representation
	Definition
	Example
	Correctness

	Flow Networks
	S-T-Flow Networks
	s-t-Flow Networks
	Residual Network
	FordFulkerson
	FordFulkerson - Example
	EdmondsKarp
	EdmondsKarp - Example
	General Flow Network
	General Flow Network - Algorithms

	Bend Minimization
	Problem Statement
	Idea
	Flow Network
	Example
	Result
	Remarks

	Area Minimization
	Problem Statement
	Flow Network
	Result
	Refinement of Inner Face
	Refinement of Outer Face

