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Upward Planar Drawings – Motivation
� What may the direction of edges in a digraph represent?

� Time
� Flow
� Hierarchy
� . . .

PERT diagram Petri net Phylogenetic network

� Would be nice to have general direction preserved in drawing.
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Upward Planar Drawings – Definition

A directed graph G = (V, E) is upward planar when it admits a
drawing Γ that is
� planar and
� where each edge is drawn as an upward, y-monotone curve.
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Upward Planarity – Necessary Conditions
� For a digraph G to be upward planar, it has to be:

� planar
� acyclic
� bimodal

bimodal vertex not bimodal

� . . . but these conditions are not sufficient.
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Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

t

︸ ︷︷ ︸︸ ︷︷ ︸
no crossings

acyclic digraph with
a single source s and single sink t

Additionally:
Embedded such that
s and t are on the
outerface f0.

or:
Edge (s, t) exists.

s
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Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.
(2)⇒ (1) By definition. (1)⇔ (3) Example:
(3)⇒ (2) Triangulate & construct drawing:

Case 1:Claim.
Can draw in
prespecified
triangle.
Induction on n.

Case 2:

t

s

s

t
chord no chord

s

t

s

t
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Upward Planarity – Complexity
Theorem. [Garg & Tamassia, 1995]
For a planar acyclic digraph it is in general NP-hard to decide
whether it is upward planar.

Theorem. [Hutton & Lubiw, 1996]
For a single-source acyclic digraph it can be tested in O(n)
time whether it is upward planar.

Corollary.
For a triconnected planar digraph it can be tested in O(n2)
time whether it is upward planar.

Theorem. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph it can be tested
in O(n2) time whether it is upward planar.



8 - 4

The Problem
Fixed Embedding Upward Planarity Testing.
Let G = (V, E) be a plane digraph with set of faces F and
outer face f0.
Test whether G is upward planar (wrt to F, f0).

Idea.

� Find property that any upward planar drawing of G satisfies.
� Formalize property.
� Find algorithm to test property.
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Angles, Local Sources & Sinks
Definitions.
� A vertex v is a local source wrt a face f if v has two

outgoing edges on ∂ f .
� A vertex v is a local sink wrt a face f if v has two

incoming edges on ∂ f .
� An angle α at a local source / sink is large when α > π

and small otherwise.
� L(v) = # large angles at v
� L( f ) = # large angles in f
� S(v) & S( f ) for # small angles
� A( f ) = # local sources wrt f

= # local sinks wrt f
Lemma 1.
L( f ) + S( f ) = 2A( f )
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Assignment Problem
� Vertex v is a global source.
� At which face does v have a large angle?

f2

f1

v
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Angle Relations

Proof by induction.

� L( f ) = 0 ⇒ S( f ) = 2

� L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to
� sink v with small/large angle:

L( f )− S( f ) = L( f1) + L( f2) + 1
− (S( f1) + S( f2)− 1)

= − 2

u

v

f2f1

Lemma 2.

L( f )− S( f ) =

{
−2, f 6= f0

+2, f = f0

-2 -2
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Angle Relations

Proof by induction.

� L( f ) = 0 ⇒ S( f ) = 2

� L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to
� source v with small/large angle:

u

v

u

v

Lemma 2.

L( f )− S( f ) =

{
−2, f 6= f0

+2, f = f0

-2 -2

L( f )− S( f ) = L( f1) + L( f2) + 2
− (S( f1) + S( f2))

= − 2
f2f1



12 - 34

Angle Relations

Proof by induction.

� L( f ) = 0 ⇒ S( f ) = 2

� L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to

L( f )− S( f ) = L( f1) + L( f2) + 1
− (S( f1) + S( f2)− 1)

= − 2

u

v

f2f1

� vertex v that is neither source nor sink:

� Otherwise “high” source u exists.

Lemma 2.

L( f )− S( f ) =

{
−2, f 6= f0

+2, f = f0

-2 -2
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Number of Large Angles

Proof.

Lemma 3.
In every upward planar drawing of G holds that

� for each vertex v ∈ V : L(v) =

{
0 v inner vertex,
1 v source / sink;

� for each face f : L( f ) =

{
A( f )− 1 f 6= f0,
A( f ) + 1 f = f0.

Lemma 1: L( f ) + S( f ) = 2A( f )
Lemma 2: L( f )− S( f ) = ±2.
⇒ 2L( f ) = 2A( f )± 2.
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Assignment of Large Angles to Faces

Definition.
A consistent assignment Φ : S ∪ T → F is a mapping where

Φ : v 7→ incident face, where v forms large angle

such that

|Φ−1( f )| = L( f ) =

{
A( f )− 1 if f 6= f0,
A( f ) + 1 if f = f0.

Let S and T be the sets of sources and sinks, respectively.
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Example of Angle to Face Assignment

L( f1) = 2
A( f1) = 3

L( f4) = 1
A( f4) = 2

A( f5) = 2
L( f5) = 1

L( f2) = 0
A( f2) = 1

L( f0) = 4
A( f0) = 3 L( f7) = 1

A( f7) = 2

L( f3) = 0
A( f3) = 1

L( f6) = 0
A( f6) = 1

L( f8) = 0
A( f8) = 1

L( f9) = 0
A( f9) = 1

f1

f2

f3

f4

f5

f6

f7

f8

f9

f0

v1

v2

v3

v4

v5

v6

v7

v8

v9

global sources & sinks

assignment
Φ : S ∪ T → F

A( f ) # sources / sinks of f

L( f ) # large angles of f
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Finding a Consistent Assignment

Example.Flow network.
NF, f0(G) = ((W, E′); b; `; u)
� W = {v ∈ V | v source or sink} ∪ F
� E′ = {(v, f ) | v incident to f }
� `(e) = 0 ∀e ∈ E′

� u(e) = 1 ∀e ∈ E′

� b(w) =


1 ∀w ∈W ∩V
−(A(w)− 1) ∀w ∈ F \ { f0}
−(A(w) + 1) w = f0

Idea.
Flow (v, f ) = 1 from global source / sink v to the
incident face f its large angle gets assigned to.

−2

−3

0
−1

1

1

1

1

1
1
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Result Characterization

Proof.
⇒: As constructed before.
⇐: Idea:
� Construct planar st-digraph that is supergraph of G.
� Apply equivalence from Theorem 1.

Theorem 3.
Let G = (V, E) be an acyclic plane digraph with embedding
given by F, f0.
Then G is upward planar (respecting F, f0) if and only if G is
bimodal and there exists consistent assignment Φ.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]
[...] G is upward planar
⇔ G is the spanning subgraph of a planar st-digraph.
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Refinement Algorithm – Φ, F, f0 → st-digraph
Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .

� For f 6= f0 with |σf | ≥ 2 containing 〈L, S, S〉 at vertices x, y, z:

� x source⇒ insert edge (z, x)

� Goal: Add edges to break large angles (sources and sinks).

LL

S

S
S

S

x

y

z
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Refinement Algorithm – Φ, F, f0 → st-digraph
Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .

� For f 6= f0 with |σf | ≥ 2 containing 〈L, S, S〉 at vertices x, y, z:

� x source⇒ insert edge (z, x)

� Goal: Add edges to break large angles (sources and sinks).

� x sink ⇒ insert edge (x, z).

LL

S

S
S

S x
y

z
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Refinement Algorithm – Φ, F, f0 → st-digraph
Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .

� For f 6= f0 with |σf | ≥ 2 containing 〈L, S, S〉 at vertices x, y, z:

� x source⇒ insert edge (z, x)

� Goal: Add edges to break large angles (sources and sinks).

� Refine outer face f0.

� Refine all faces.⇒ G is contained in a planar st-digraph.
� Planarity, acyclicity, bimodality are invariants under construction.

� x sink ⇒ insert edge (x, z).

LL

S

S
S

S
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Refinement Example

L

L

L L

L

L
S

S S
S

S

S

S

S
S

S

S

S

S

S
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Refinement Example

L

L L

L

L
S

S S
S

S

S

S

S
S

S

S

S

S

S

S
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Refinement Example

S

S S
S

S

S

S

S
S

S

S

S

S

S

s

t

S

S

S

S S

S
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Result Upward Planarity Test

Proof.

� Test for bimodality.

� Test for a consistent assignment Φ (via flow network).

� If G bimodal and Φ exists, refine G to plane st-digraph H.

� Draw H upward planar.

� Deleted edges added in refinement step.

Theorem 2. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph G it can be
tested in O(n2) time whether it is upward planar.
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Discussion
� There exist fixed-parameter tractable algorithms to test up-

ward planarity of general digraphs with the parameter being
the number of triconnected components.
[Healy, Lynch 2005, Didimo et al. 2009]

� Finding assignment in Theorem 2 can be sped up to
O(n + r1.5) where r = # sources / sinks.
[Abbasi, Healy, Rextin 2010]

� Many related concepts have been studied: quasi-planarity,
upward drawings of mixed graphs, upward planarity on cy-
linder/torus, . . .
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