
Quicksort

Quicksort is a general sorting algorithm of type "Divide and Conquer". It is based on splitting

the array that is to be sorted into two parts and sorting the two parts independently. The

algorithm has the following form:

void quicksort (int A[], int l, int r)

{

if(l >= r) return;

int i = l;

int j = r+1;

int v = A[l];

for (;;)

{

while(A[++i] < v && i < r);

while(A[--j] > v);

if(i >= j) {

swap(A, l, j);

break;

}

swap(A, i, j);

}

quicksort(A, l, j-1);

quicksort(A, j+1, r);

}

The parameter l and r bound the part of the array inside the original array that is to be sorted;

the call quicksort(A, 0, A.size()-1) sorts the whole array.

The crucial part of the method is the code inside the in�nite loop for(;;), which rearranges

the array in such a way that the following conditions are satis�ed:

i. For an arbitrary j the element A[j] is in its �nal position in the array.

ii. All elements A[l], : : : ,A[j-1] are smaller than or equal to A[j].

iii. All elements A[j+1], : : : ,A[r] are greater than or equal A[j].

In the �rst step the splitting element v = A[l] is chosen, which is to be placed in its �nal

position. Now the search begins from the left until an element is found that is greater than v .

Then the search begins from the right until an element is found that is smaller than v.

If the pointers i and j have not yet met, the elements A[i] and A[j] are exchanged, otherwise

another exchange operation ensures condition i. and the in�nite loop is left by a break.

In the following the function is called recursively for the left part and afterwards for the right

part of the array. Finally the array is in non-decreasing order.

1



Correctness of the Algorithm

Proof.

It has to be shown that the following holds in every iteration step:

A[l], : : : A[i] � A[j], : : : ,A[r].

Induction Base:

Before the �rst iteration we have i = l and j = r+1.

Induction Step:

The transition from iold ! inew and jold ! jnew.

By Induction Hypothesis we have:

A[l], : : : ,A[iold] � A[jold], : : : ,A[r]

By construction we have:

A[iold+1], : : : ,A[inew-1] � A[jnew+1], : : : ,A[jold+1]

It follows that

A[l], : : : ,A[inew-1] � A[jnew+1], : : : ,A[r]

It is also true that

A[inew] � x und A[jnew] � x

After exchanging A[inew] and A[jnew] we have:

A[l], : : : ,A[inew] � A[jnew], : : : ,A[r]

Running Time (worst-case)

We assume that we have the worst case if the array is already in non-decreasing order. In this

case in every recursive call only one element is removed from the still to be sorted part of the

array (see animation). The resulting running time T (n) has the complexity.

T (n) = O

 
nX

i=2

i + n � c

!

= O
�
n

2
�

2



Proof.

In general we have:

T (n) = max
1�q�n�1

fT (q) + T (n� q) + c1 � ng

It is shown now that T (n) � (c � n2) for c �
c1

2
�

n0

n� 1
for n0 big enough holds.

T (n) � max
1�q�n�1

fT (q) + T (n� q) + c1 � ng

I.H.

� max
1�q�n�1

fc � q2 + c � (n� q)2 + c1 � ng

= c � max
1�q�n�1

fq + (n� q)2 � 2q � (n� q)g+ c1 � n

= c � n2 � 2c � min
1�q�n�1

fq � (n� q)g+ c1 � n

= c � n2 � 2c � 1(n� 1) + c1 � n

For n big enough it follows that

T (n) = c � n� 2 �
c1

2
�

n

n� 1
� (n� 1) + c1 � n

= c � n2

In practice the algorithm is used very often. One reason, among others, is the average running

time, which is examined in the following.

Theorem 1. Quicksort needs on average 2 logn + �(1) many comparisons. By randomized

quicksort (randomly exchanging two elements in the still to be sorted part of the array) the

worst case is avoided with high probability.

Proof.

QSA(n) = n + 2 +
1

n� 1
�
X

1�q�n�1

(QSA(q) +QSA(n� q))

with

X
1�q�n�1

QSA(q) =
X

1�q�n�1

QSA(n� q))

3



follows

QSA(n) = n + 2 +
2

n� 1
�
X

1�q�n�1

QSA(q)

(n� 1) �QSA(n) = (n+ 2) � (n� 1) + 2 �
X

1�q�n�1

QSA(q) j �

(n� 2) �QSA(n) = (n+ 1) � (n� 2) + 2 �
X

1�q�n�1

QSA(q)

(n� 1) �QSA(n)� (n� 2) �QSA(n� 1) = (n+ 2) � (n� 1)| {z }
n2�n+2

� (n + 1) � (n� 2)| {z }
n2+n�2

+2 �QSA(n� 1)

(n� 1) �QSA(n) = 2 � n+ n �QSA(n� 1) j : n � (n� 1)

QSA(n)

n

=
QSA(n� 1)

n� 1
+

2

n� 1

=
QSA(n� 2)

n� 2
+

2

n� 2
+

2

n� 1

=
QSA(n� 2)

n� 3
+

2

n� 3
+

2

n� 2
+

2

n� 1

: : :

QSA(k) = c for a �xed k follows

QSA(n)

n

= �

 
c+ 2 �

n�1X
i=1

1

i

!

= 2 logn +�(1)

= � (logn)

QSA(n) = � (n logn)

4


