

NETWORK FLOWS

Theory, Algorithms,
and Applications

BA VINDRA K. AHUJA
Department of Industrial & Management Engineering
Indian Institute of Technology, Kanpur

THOMAS L. MAGNANT!
Sloan School of Management
Massachusetts Institute of Technology, Cambridge

JAMES B. ORLIN
Sloan School of Management
Massachusetts Institute of Technology, Cambridge

PRENTICE HALL, Upper Saddle River, New Iersey 07458

Library of Congress Cataloging-in-Publication Data

Ahuja, Ravindra K. (date)
Network flows: theory, algorithms, and applications I Ravindra K.

Ahuja, Thomas L. Magnantl. James B. Orlin.
p. cm.

Includes bibliographical references and index.
ISBN 0-13-6J7S49-X
I. Network analysis (Planning) 2. Mathematical optimization.

I. Magnanti, Thomas L. II. Orlin. James B .. (datel. III. Title.
TS7.SS.A37 1993
6SS.4'032-dc20

Acquisitions editor: Pete Janzow
Production editor: Merrill Peterson
Cover designer: Design Source
Prepress buyer: Linda Behrens
Manufacturing buyer: David Dickey
Editorial assistant: Phyllis Morgan

92-26702
CIP

The author and publisher of this book have used their best efforts in preparing this book. These effort!
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shaH
not be liable in any event for incidental or consequential damages in connection with, or arising out of
the furnishing, performance, or use of these Drograms.

C 1993 by Prentice-Hall, Inc.
Upper Saddle River. New Jeney 074S8

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

16 17 18 19

ISBN 0-13-617S49-X

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL OF AUSTRALIA PrY. LIMITED, Sydney
PRENTICE-HALL CANADA INC., Toronto
PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

Ravi dedicates this book to his spiritual master,
Revered Sri Ranaji Saheb.

Tom dedicates this book to his favorite network,
Beverly and Randy.

Jim dedicates this book to Donna,
who inspired him in so many ways.

Collectively, we offer this book as a tribute
to Lester Ford and Ray Fulkerson, whose pioneering research

and seminal text in network flows have been an enduring
inspiration to us and to a generation

of researchers and practitioners.

CONTENTS

PREFACE, xl

1 INTRODUCTION, 1

1.1 Introduction, 1
1.2 Network Flow Problems, 4
1.3 Applications, 9
1.4 Summary, 18

Reference Notes, 19
Exercises, 20

2 PATHS, TREES, AND CYCLES, 23
2.1 Introduction, 23
2.2 Notation and Definitions, 24
2.3 Network Representations, 31
2.4 Network Transformations, 38
2.5 Summary, 46

Reference Notes, 47
Exercises, 47

3 ALGOlUTHM DESIGN AND ANALYSIS, ~3
3.1 Introduction, 53
3.2 Complexity Analysis, 56
3.3 Developing Polynomial-Time Algorithms, 66
3.4 Search Algorithms, 73
3.5 Flow Decomposition Algorithms, 79
3.6 Summary, 84

Reference Notes, 85
Exercises, 86

4 SHORTEST PA THS: LABEL-SETTING ALGOBITHMS, 93
4.1 Introduction, 93
4.2 Applications, 97
4.3 Tree of Shortest Paths, 106
4.4 Shortest Path Problems in Acyclic Networks, 107
4.5 Dijkstra's Algorithm, 108
4.6 Dial's Implementation, 113
4.7 Heap Implementations, 115
4.8 Radix Heap Implementation, 116

v

4.9 Summary, 121
Reference Notes, 122
Exercises, 124

15 SHORTEST PATHS: LABEL-COBBECTING ALGOBITHMS, 133
5.1 Introduction, 133
5.2 Optimality Conditions, 135
5.3 Generic Label-Correcting Algorithms, 136
5.4 Special Implementations of the Modified Label-Correcting Algorithm, 141
5.5 Detecting Negative Cycles, 143
5.6 All-Pairs Shortest Path Problem, 144
5.7 Minimum Cost-to-Time Ratio Cycle Problem, 150
5.8 Summary, 154

Reference Notes, 156
Exercises, 157

8 MAXIMUM FLOWS: BABIC IDEAS, 188
6.1 Introduction, 166
6.2 Applications, 169
6.3 Flows and Cuts, 177
6.4 Generic Augmenting Path Algorithm, 180
6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem, 184
6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem, 188
6.7 Flows with Lower Bounds, 191
6.8 Summary, 196

Reference Notes, 197
Exercises, 198

7 MAXIMUM FLOWS: POLYNOMIAL ALGOBITHMB, 207
7.1 Introduction, 207
7.2 Distance Labels, 209
7.3 Capacity Scaling Algorithm, 210
7.4 Shortest Augmenting Path Algorithm, 213
7.5 Distance Labels and Layered Networks, 221
7.6 Generic Preflow-Push Algorithm, 223
7.7 FIFO Preflow-Push Algorithm, 231
7.8 Highest-Label Preflow-Push Algorithm, 233
7.9 Excess Scaling Algorithm, 237
7.10 Summary, 241

Reference Notes, 241
Exercises, 243

8 MAXIMUM FLOWS: ADDITIONAL TOPICS, 2lJO

8.1 Introduction, 250
8.2 Flows in Unit Capacity Networks, 252
8.3 Flows in Bipartite Networks, 255
8.4 Flows in Planar Undirected Networks, 260
8.5 Dynamic Tree Implementations, 265

vi Contents

8.6 Network Connectivity, 273
8.7 All-Pairs Minimum Value Cut Problem, 277
8.8 Summary, 285

Reference Notes, 287
Exercises, 288

9 MINIMUM COST FLOWS: BABIC ALGOBITHMS, 294
9.1 Introducti"on, 294
9.2 Applications, 298
9.3 Optimality Conditions, 306
9.4 Minimum Cost Flow Duality, 310
9.5 Relating Optimal Flows to Optimal Node Potentials, 315
9.6 Cycle-Canceling Algorithm and the Integrality Property, 317
9.7 Successive Shortest Path Algorithm, 320
9.8 Primal-Dual Algorithm, 324
9.9 Out-of-Kilter Algorithm, 326
9.10 Relaxation Algorithm, 332
9.11 Sensitivity Analysis, 337
9.12 Summary, 339

Reference Notes, 341
Exercises, 344

10 MINIMUM COST FLOWS: POLYNOMIAL ALGORITHMS, 8lJ7
10.1 Introduction, 357
10.2 Capacity Scaling Algorithm, 360
10.3 Cost Scaling Algorithm, 362
10.4 Double Scaling Algorithm, 373
10.5 Minimum Mean Cycle-Canceling Algorithm, 376
10.6 Repeated Capacity Scaling Algorithm, 382
10.7 Enhanced Capacity Scaling Algorithm, 387
10.8 Summary, 395

Reference Notes, 396
Exercises, 397

11 MINIMUM COST FLOWS: NETWORK SIMPLEX ALGO.RlTHMS, 402
11.1 Introduction, 402
11.2 Cycle Free and Spanning Tree Solutions, 405
11.3 Maintaining a Spanning Tree Structure, 409
11.4 Computing Node Potentials and Flows, 411
11. 5 Network Simplex Algorithm, 415
11.6 Strongly Feasible Spanning Trees, 421
11.7 Network Simplex Algorithm for the Shortest Path Problem, 425
11.8 Network Simplex Algorithm for the Maximum Flow Problem, 430
11.9 Related Network Simplex Algorithms, 433
11.10 Sensitivity Analysis, 439
11.11 Relationship to Simplex Method, 441
11.12 U nimodularity Property, 447
11.13 Summary, 450

Reference Notes, 451
Exercises, 453

Contents vii

12 ABSIGNMENTSANDMATCHINGS, 481
12.1 Introduction, 461
12.2 Applications, 463
12.3 Bipartite Cardinality Matching Problem, 469
12.4 Bipartite Weighted Matching Problem, 470
12.S Stable Marriage Problem, 473
12.6 Nonbipartite Cardinality Matching Problem, 475
12.7 Matchings and Paths, 494
12.8 Summary, 498

Reference Notes, 499
Exercises, 501

13 MINIMUM SPANNING TREES, 1510
13.1 Introduction, 510
13.2 Applications, 512
13.3 Optimality Conditions, 516
13.4 Kruskal's Algorithm, 520
13.S Prim's Algorithm, 523
13.6 Sollin's Algorithm, 526
13.7 Minimum Spanning Trees and Matroids, 528
13.8 Minimum Spanning Trees and Linear Programming, 530
13.9 Summary, 533

Reference Notes, 535
Exercises, 536

14 CONVEX COST FLOWS, 1543
14.1 Introduction, 543
14.2 Applications, 546
14.3 Transformation to a Minimum Cost Flow Problem, 551
14.4 Pseudopolynomial-Time Algorithms, 554
14.S Polynomial-Time Algorithm, 556
14.6 Summary, 560

Reference Notes, 561
Exercises, 562

15 GENEBALIZED FLOWS, 1588
IS.1 Introduction, 566
IS.2 Applications, 568
15.3 Augmented Forest Structures, 572
IS.4 Determining Potentials and Flows for an Augmented Forest Structure, 577
IS.S Good Augmented Forests and Linear Programming Bases, 582
IS.6 Generalized Network Simplex Algorithm, 583
IS.7 Summary, 591

Reference Notes, 591
Exercises, 593

viii Contents

16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION, 698
16.1 Introduction, 598
16.2 Problem Relaxations and Branch and Bound, 602
16.3 Lagrangian Relaxation Technique, 605
16.4 Lagrangian Relaxation and Linear Programming, 615
16.5 Applications of Lagrangian Relaxation, 620
16.6 Summary, 635

Reference Notes, 637
Exercises, 638

17 MULTICOMMODITY FLOWS, 849
17.1 Introduction, 649
17.2 Applications, 653
17.3 Optimality Conditions, 657
17.4 Lagrangian Relaxation, 660
17.5 Column Generation Approach, 665
17.6 Dantzig-Wolfe Decomposition, 671
17.7 Resource-Directive Decomposition, 674
17.8 Basis Partitioning, 678
17.9 Summary, 682

Reference Notes, 684
Exercises, 686

18 COMPUTATIONAL TESTING OF ALGOlUTHMS, 896
18.1 Introduction, 695
18.2 Representative Operation Counts, 698
18.3 Application to Network Simplex Algorithm, 702
18.4 Summary, 713

Reference Notes, 713
Exercises, 715

19 ADDITIONAL APPLICATIONS, 717

19.1 Introduction, 717
19.2 Maximum Weight Closure of a Graph, 719
19.3 Data Scaling, 725
19.4 Science Applications, 728
19.5 Project Management, 732
19.6 Dynamic Flows, 737
19.7 Arc Routing Problems, 740
19.8 Facility Layout and Location, 744
19.9 Production and Inventory Planning, 748
19.10 Summary, 755

Reference Notes, 759
Exercises, 760

Contents Ix

APPENDIX A DATA STBUCTUBES, 78~

A.I Introduction, 765
A.2 Elementary Data Structures, 766
A.3 d-Heaps, 773
A.4 Fibonacci Heaps, 779

Reference Notes, 787

APPENDIX B Nf/I-COMPLETENESS, 788
B.I Introduction, 788
B.2 Problem Reductions and Transformations, 790
B.3 Problem Classes r;p, ,Nr;p, ,Nr;p-Complete, and ,Nr;p-Hard, 792
B.4 Proving ,Nr;p-Completeness Results, 796
B.5 Concluding Remarks, 800

Reference Notes, 801

APPENDIX C LINEAR PROGRAMMING, 802
C.I Introduction, 802
C.2 Graphical Solution Procedure, 804
C.3 Basic Feasible Solutions, 805
C.4 Simplex Method, 810
C.S Bounded Variable Simplex Method, 814
C.6 Linear Programming Duality, 816

Reference Notes, 820

BEFEBENCES, 821

INDEX, 840

x Contents

PREFACE

If you would not be forgotten,
As soon as you are dead and rotten,

Either write things worthy reading,
Or do things worth the writing.

-Benjamin Franklin

Network flows is an exciting field that brings together what many students, prac
titioners, and researchers like best about the mathematical and computational sci
ences. It couples deep intellectual content with a remarkable range of applicability,
covering literally thousands of applications in such wide-ranging fields as chemistry
and physics, computer networking, most branches of engineering, manufacturing,
public policy and social systems, scheduling and routing, telecommunications, and
transportation. It is classical, dating from the work of Gustav Kirchhoff and other
eminent physical scientists of the last century, and yet vibrant and current, bursting
with new results and new approaches. Its heritage is rooted in the traditional fields
of mechanics, engineering, and applied mathematics as well as the contemporary
fields of computer science and operations research.

In writing this book we have attempted to capture these varied perspectives
and in doing so to fill a need that we perceived for a comprehensive text on network
flows that would bring together the old and the new, and provide an integrative view
of theory, algorithms, and applications. We have attempted to design a book that
could be used either as an introductory or advanced text for upper-level under
graduate or graduate students or as a reference for researchers and practitioners.
We have also strived to make the coverage of this material as readable, accessible,
and insightful as possible, particularly for readers with a limited background in com
puter science and optimization.

The book has the following features:

• In-depth and self-contained treatment of shortest path, maximum flow, and
minimum cost flow problems, including descriptions of new and novel poly
nomial-time algorithms for these core models.

• Emphasis on powerful algorithmic strategies and analysis tools, such as data
scaling, geometric improvement arguments, and potential function arguments.

• An easy-to-understand description of several important data structures, in
cluding d-heaps, Fibonacci heaps, and dynamic trees.

• Treatment of other important topics in network optimization and of practical
solution techniques such as Lagrangian relaxation.

xi

• Each new topic introduced by a set of applications and an entire chapter de
voted to applications.

• A special chapter devoted to conducting empirical testing of algorithms.
• Over 150 applications of network flows to a variety of engineering, manage

ment, and scientific domains.
• Over 800 exercises that vary in difficulty, including many that develop exten

sions of material covered in the text.
• Approximately 400 figures that illustrate the material presented in the text.
• Extensive reference notes that provide readers with historical contexts and

with guides to the literature.

As indicated by this list, we have not attempted to cover all topics at the same
level of depth, but instead, have treated certain core topics more extensively than
others. Moreover, although we have focused on the design and analysis of efficient
algorithms, we have also placed considerable emphasis on applications.

In attempting to streamline the material in this book and present it in an in
tegrated fashion, we have devoted considerable time, and in several cases conducted
research, to improve our presentation. As a result, our coverage of some topics
differs from the discussion in the current literature. We hope that this approach will
not lead to any confusion, and that it will, in fact, promote a better understanding
of the material and uncover new connections between topics that might not appear
to be so related in the literature.

TO INSTRUCTORS AND STUDENTS

We have attempted to write this book so that it is accessible to students with many
backgrounds. Although students require some mathematical maturity-for example,
a basic understanding of proof techniques-and some familiarity with computer
programming, they need not be specialists in mathematics, computer science, or
optimization. Some basic knowledge of these topics would undoubtedly prove to be
useful in using this book. In Chapter 3 and Appendices A, B, and C, we have provided
some of this general background.

The book contains far more material than anyone could possibly cover in a
one-semester course. Chapters 1 to 3, 19, selected material from Chapters 5 to 12,
16, and 17, and portions of Chapters 13 to 15 and 18 would serve as a broad-based
course on network flows and network optimization. Because the chapters are gen
erally modular, instructors might use the introductory material in the first few sec
tions of each chapter as well as a selection of additional material for chapters that
they would not want to cover in their entirety. An advanced course on algorithms
might focus on Chapter 4 to 12, covering the material in these chapters in their
entirety.

In teaching the algorithms in this book, we feel that it is important to understand
the underlying methods of algorithm design and analysis as well as specific results.
Therefore, we encourage both instructors and students to refer frequently back to
Chapter 3 and its discussion of algorithm design and analysis.

Many of the topics that we have examined in this book are specially structured

xii Preface

linear programs. Therefore, we could have adopted a linear programming approach
while presenting much of the material. Instead, with the exception of Chapter 17
and parts of Chapters 15 and 16, we have argued almost exclusively from first prin
ciples and adopted a network or graphical viewpoint. We believe that this approach,
while occasionally imposing a less streamlined development than might be possible
using linear programming, offers several advantages. First, the material is readily
accessible to a wider audience. Second, this approach permits students who are not
optimization specialists to learn many of the ideas of linear programming in a con
crete setting with easy geometric and algebraic interpretations; it also permits stu
dents with prior knowledge of linear programming to refine their understanding by
seeing material in a different light. In fact, when the audience for a course has a
background in linear programming, we would encourage instructors and students to
make explicit connections between our coverage and more general results in linear
programming.

Although we have included some numerical exercises that test basic under
standing of material presented in the text, many of the exercises address applications
or theory. Instructors might like to use this material, with suitable amplification, as
lecture material. Instructors wishing more numerical examples might modify the
ones we have provided.

TO OUB GENERAL READERS

Professionals in applied mathematics, computer science, engineering, and manage
ment science/operations research as well as practitioners in a variety of application
domains might wish to extract specific information from the text without covering
the book in detail. Since the book is organized primarily by model type (e.g., shortest
path or spanning tree problems), readers have ready access to the material along
these dimensions. For a guide to applications, readers might consult Section 19.10,
which contains a set of tables summarizing the various network flow applications
that we have considered in the text. The end-of-chapter reference notes also contain
references to a number of applications that we have either not discussed or consid
ered only in the exercises. For the most part, with the exception of applications, we
have been selective in our citations to the literature. Many of the general references
that we have mentioned at the end of Chapter 1 contain more detailed references
to the literature.

We have described many algorithms in this book using a pseudocode that should
be understandable to readers with any passing familiarity with computer program
ming. This approach provides us with a certain degree of universality in describing
algorithms, but also requires that those wishing to use the algorithms must translate
them into specific programming languages and add material such as input/output and
error handling procedures that will be implementation dependent.

FEEDBACK

Any book of this size and complexity will undoubtedly contain errors; moreover,
in writing this book, we might have inadvertently not given proper credit to everyone
deserving recognition for specific results. We would be pleased to learn about any

Preface xiii

comments that you might have about this book, including errors that you might find.
Please direct any feedback as follows:

Professor James B. Orlin
Sloan School of Management, MIT
Cambridge, MA 02139, USA
e-mail: jorlin@eagle.mit.edu
fax: 617-258-7579

ACKNOWLEDGMENTS

Many individuals have contributed to this text by enhancing our understanding of
network flows, by advising us in general about the book's content, or by providing
constructive feedback on early drafts.

We owe an intellectual debt to several individuals. From direct collaborations
or through the writings ofE. Dinic, Jack Edmonds, Hal Gabow, Fred Glover, Matsao
Iri, Bruce Golden, Richard Karp, A. Karzanov, Darwin Klingman, Eugene Lawler,
Robert TaIjan, Eva Tardos, Richard Wong, and so many others, we have learned
much about the general topic of networks and network optimization; the pioneering
efforts of George Dantzig, Lester Ford, and Delbert Fulkerson in the 1950s defined
the field of network flows as we know it today. We hope that our treatment of the
subject is true to the spirit of these individuals. Many of our colleagues, too numerous
to mention by name, responded to a questionnaire that we distributed soliciting
advice on the coverage for this book. Their comments were very helpful in refining
our ideas about the book's overall design. Anant Balakrishnan and Janny Leung
read and commented on portions of the manuscript; S. K. Gupta, Leslie Hall, Prak
ash Mirchandani, and Steffano Pallottino each commented in detail about large seg
ments of the manuscript. We are especially indebted to Steffano Pallottino for several
careful reviews of the manuscript and for identifying numerous corrections. Bill
Cunningham offered detailed suggestions on an earlier book chapter that served as
the starting point for this book. Each of these individual's advice has greatly im
proved our final product. Over the years, many of our doctoral students have helped
us to test and refine our ideas. Several recent students-including Murali Kodialam,
Yusin Lee, Tim Magee, S. Raghavan, Rina Schneur, and Jim Walton-have helped
us in developing exercises. These students and many others in our classes have
discovered errors and offered constructive criticisms on the manuscript. In this re
gard, we are particularly grateful to the Spring 1991 class at MIT in Network Op
timization. Thanks also to Prentice Hall reviewer Leslie Hall, Princeton University.
Charu Aggarwal and Ajay Mishra also provided us valuable assistance in debugging
the book, proofreading it, and preparing the index; our special thanks go to them.

Ghanshyam Hoshing (I.LT., Kanpur) and Karen Martel and Laura Terrell (both
at M.LT., Cambridge) each did a superb job in typing portions of the manuscript.
Ghanshyam Hoshing deserves much credit for typing/drawing and editing most of
the text and figures.

We are indebted to the Industrial and Management Engineering Department
at I.I.T., Kanpur and to the Sloan School of Management and Operations Research
Center at M.LT. for providing us with an environment conducive to conducting

xiv Preface

research in network flows and to writing this book. We are also grateful to the
National Science Foundation, the Office of Naval Research, the Department of
Transportation, and GTE Laboratories for supporting our research that underlies
much of this book.

We'd like to acknowledge our parents, Kailash and Ganesh Das Ahuja, Flor
ence and Lee Magnanti, and Roslyn and Albert Orlin, for their affection and en
couragement and for instilling in us a love for learning. Finally, we offer our heartfelt
thanks to our wives-Smita Ahuja, Beverly Magnanti, Donna Orlin-and our chil
dren-Saumya and Shaman Ahuja; Randy Magnanti; and lenna, Ben, and Caroline
Orlin-for their love and understanding as we wrote this book. This book started
as a far less ambitious project and so none of our families could possibly have realized
how much of our time and energies we would be wresting from them as we wrote
it. This work is as much theirs as it is ours!

Kanpur and Cambridge

Preface

R. K. Ahuja
T. L. Magnanti

J. B. Orlin

xv

1

INTRODUCTION

ClJapter Outline

1.1 Introduction

Begin at the beginning ... and go on till you come to the end:
then stop.

-Lewis Carroll

1.2 Network Flow Problems
1.3 Applications
1.4 Summary

1.1 INTRODUCTION

Everywhere we look in our daily lives, networks are apparent. Electrical and power
networks bring lighting and entertainment into our homes. Telephone networks per
mit us to communicate with each other almost effortlessly within our local com
munities and across regional and international borders. National highway systems,
rail networks, and airline service networks provide us with the means to cross great
geographical distances to accomplish our work, to see our loved ones, and to visit
new places and enjoy new experiences. Manufacturing and distribution networks
give us access to life's essential foodstock and to consumer products. And computer
networks, such as airline reservation systems, have changed the way we share in
formation and conduct our business and personal lives.

In all of these problem domains, and in many more, we wish to move some
entity (electricity, a consumer product, a person or a vehicle, a message) from one
point to another in an underlying network, and to do so as efficiently as possible,
both to provide good service to the users of the network and to use the underlying
(and typically expensive) transmission facilities effectively. In the most general
sense, this objective is what this book is all about. We want to learn how to model
application settings as mathematical objects known as network flow problems and
to study various ways (algorithms) to solve the resulting models.

Network flows is a problem domain that lies at the cusp between several fields
of inquiry, including applied mathematics, computer science, engineering, manage
ment, and operations research. The field has a rich and long tradition, tracing its
roots back to the work of Gustav Kirchhof and other early pioneers of electrical
engineering and mechanics who first systematically analyzed electrical circuits. This
early work set the foundations of many of the key ideas of network flow theory and
established networks (graphs) as useful mathematical objects for representing many

1

physical systems. Much of this early work was descriptive in nature, answering such
questions as: If we apply a set of voltages to a given network, what will be the
resulting current flow? The set of questions that we address in this book are a bit
different: If we have alternative ways to use a network (i.e., send flow), which
alternative will be most cost-effective? Our intellectual heritage for answering such
questions is much more recent and can be traced to the late 1940s and early 1950s
when the research and practitioner communities simultaneously developed optimi
zation as an independent field of inquiry and launched the computer revolution,
leading to the powerful instruments we know today for performing scientific and
managerial computations.

For the most part, in this book we wish to address the following basic questions:

1. Shortest path problem. What is the best way to traverse a network to get from
one point to another as cheaply as possible?

2. Maximum flow problem. If a network has capacities on arc flows, how can we
send as much flow as possible between two points in the network while honoring
the arc flow capacities?

3. Minimum cost flow problem. If we incur a cost per unit flow on a network with
arc capacities and we need to send units of a good that reside at one or more
points in the network to one or more other points, how can we send the material
at minimum possible cost?

In the sense of traditional applied and pure mathematics, each of these problems
is trivial to solve. It is not very difficult (but not at all obvious for the later two
problems) to see that we need only consider a finite number of alternatives for each
problem. So a traditional mathematician might say that the problems are well solved:
Simply enumerate the set of possible solutions and choose the one that is best.
Unfortunately, this approach is far from pragmatic, since the number of possible
alternatives can be very large-more than the number of atoms in the universe for
many practical problems! So instead, we would like to devise algorithms that are in
a sense "good," that is, whose computation time is small, or at least reasonable,
for problems met in practice. One way to ensure this objective is to devise algorithms
whose running time is guaranteed not to grow very fast as the underlying network
becomes larger (the computer science, operations research, and applied mathematics
communities refer to the development of algorithms with such performance guar
antees as worst-case analysis). Developing algorithms that are good in this sense is
another major theme throughout this book, and our development builds heavily on
the theory of computational complexity that began to develop within computer sci
ence, applied mathematics, and operations research circles in the 1970s, and has
flourished ever since.

The field of computational complexity theory combines both craftsmanship and
theory; it builds on a confluence of mathematical insight, creative algorithm design,
and the careful, and often very clever use of data structures to devise solution meth
ods that are provably good in the sense that we have just mentioned. In the field of
network flows, researchers devised the first, seminal contributions of this nature in
the 1950s before the field of computational complexity theory even existed as a
separate discipline as we know it today. And throughout the last three decades,

2 Introduction Chap. 1

researchers have made a steady stream of innovations that have resulted in new
solution methods and in improvements to known methods. In the past few years,
however, researchers have made contributions to the design and analysis of network
flow algorithms with improved worst-case performance guarantees at an explosive,
almost dizzying pace; moreover, these contributions were very surprising: Through
out the 1950s, 1960s, and 1970s, network flows had evolved into a rather mature
field, so much so that most of the research and practitioner communities believed
that the core models that we study in this book were so very well understood that
further innovations would be hard to come by and would be few and far between.
As it turns out, nothing could have been further from the truth.

Our presentation is intended to reflect these new developments; accordingly,
we place a heavy emphasis on designing and analyzing good algorithms for solving
the core optimization models that arise in the context of network flows. Our intention
is to bring together and synthesize the many new contributions concerning efficient
network flow algorithms with traditional material that has evolved over the past four
decades. We have attempted to distill and highlight some of the essential core ideas
(e.g., scaling and potential function arguments) that underlie many of the recent
innovations and in doing so to give a unified account of the many algorithms that
are now available. We hope that this treatment will provide our readers not only
with an accessible entree to these exciting new developments, but also with an
understanding of the most recent and advanced contributions from the literature.
Although we are bringing together ideas and methodologies from applied mathe
matics, computer science, and operations research, our approach has a decidedly
computer science orientation as applied to certain types of models that have tra
ditionally arisen in the context of managing a variety of operational systems (the
foodstuff of operations research).

We feel that a full understanding of network flow algorithms and a full appre
ciation for their use requires more than an in-depth knowledge of good algorithms
for core models. Consequently, even though this topic is our central thrust, we also
devote considerable attention to describing applications of network flow problems.
Indeed, we feel that our discussion of applications throughout the text, in the ex
ercises, and in a concluding chapter is one of the major distinguishing features of
our coverage.

We have not adopted a linear programming perspective throughout the book,
however, because we feel there is much to be gained from a more direct approach,
and because we would like the material we cover to be readily accessible to readers
who are not optimization specialists. Moreover, we feel that an understanding of
network flow problems from first principles provides a useful concrete setting from
which to draw considerable insight about more general linear programs.

Similarly, since several important variations of the basic network flow problems
are important in practice, or in placing network flows in the broader context of the
field of combinatorial optimization, we have also included several chapters on ad
ditional topics: assignments and matchings, minimum spanning trees, models with
convex (instead of linear) costs, networks with losses and gains, and multicommodity
flows. In each of these chapters we have not attempted to be comprehensive, but
rather, have tried to provide an introduction to the essential ideas of the topics.

The Lagrangian relaxation chapter permits us to show how the core network

Sec. 1.1 I nlroduc lion 3

models arise in broader problem contexts and how the algorithms that we have
developed for the core models can be used in conjunction with other methods to
solve more complex problems that arise frequently in practice. In particular, this
discussion permits us to introduce and describe the basic ideas of decomposition
methods for several important network optimization models-constrained shortest
paths, the traveling salesman problem, vehicle routing problem, multicommodity
flows, and network design.

Since the proof of the pudding is in the eating, we have also included a chapter
on some aspects of computational testing of algorithms. We devote much of our
discussion to devising the best possible algorithms for solving network flow prob
lems, in the theoretical sense of computational complexity theory. Although the
theoretical model of computation that we are using has proven to be a valuable guide
for modeling and predicting the performance of algorithms in practice, it is not a
perfect model, and therefore algorithms that are not theoretically superior often
perform best in practice. Although empirical testing of algorithms has traditionally
been a valuable means for investigating algorithmic ideas, the applied mathematics,
computer science, and operations research communities have not yet reached a
consensus on how to measure algorithmic performance empirically. So in this chapter
we not only report on computational experience with an algorithm we have pre
sented, but also offer some thoughts on how to measure computational performance
and compare algorithms.

1.2 NETWORK FLOW PROBLEMS

In this section we introduce the network flow models we study in this book, and in
the next section we present several applications that illustrate the practical impor
tance of these models. In both the text and exercises throughout the remaining
chapters, we introduce many other applications. In particular, Chapter 19 contains
a more comprehensive summary of applications with illustrations drawn from several
specialties in applied mathematics, engineering, lpgistics, manufacturing, and the
physical sciences.

Minimum Cost Flow Problem

The minimum cost flow model is the most fundamental of all network flow problems.
Indeed, we devote most of this book to the minimum cost flow problem, special
cases of it, and several of its generalizations. The problem is easy to state: We wish
to determine a least cost shipment of a commodity through a network in order to
satisfy demands at certain nodes from available supplies at other nodes. This model
has a number of familiar applications: the distribution of a product from manufac
turing plants to warehouses, or from warehouses to retailers; the flow of raw material
and intermediate goods through the various machining stations in a production line;
the routing of automobiles through an urban street network; and the routing of calls
through the telephone system. As we will see later in this chapter and in Chapters
9 and 19, the minimum cost flow model also has many less transparent applications.

In this section we present a mathematical programming formulation of the
minimum cost flow problem and then describe several of its specializations and

4 Introduction Chap. 1

variants as well as other basic models that we consider in later chapters. We assume
our readers are familiar with the basic notation and definitions of graph theory; those
readers without this background might consult Section 2.2 for a brief account of this
material.

Let G = (N, A) be a directed network defined by a set N of n nodes and a
set A of m directed arcs. Each arc (i, j) E A has an associated cost Cij that denotes
the cost per unit flow on that arc. We assume that the flow cost varies linearly with
the amount of flow. We also associate with each arc (i, j) E A a capacity Uij that
denotes the maximum amount that can flow on the arc and a lower bound lij that
denotes the minimum amount that must flow on the arc. We associate with each
node i E N an integer number b(i) representing its supply/demand. If b(i) > 0, node
i is a supply node; if b(i) < 0, node i is a demand node with a demand of - b(i); and
if b(i) = 0, node i is a transshipment node. The decision variables in the minimum
cost flow problem are arc flows and we represent the flow on an arc (i,}) E A by
Xij. The minimum cost flow problem is an optimization model formulated as follows:

Minimize 2 CijXij
(i,j)EA

subject to

2 Xij - 2 Xj; = b(i)
{j:(i,j)EA} {j:(j,i)EA}

for all (i,}) E A,

(l.la)

for all i E N, (l.Ib)

(l.Ic)

where 27= 1 b(i) = O. In matrix form, we represent the minimum cost flow problem

as follows:

Minimize cx

subject to
Xx = b,

I :5 X :5 U.

(l.2a)

(l.2b)

(l.2c)

In this formulation, X is an n x m matrix, called the node-arc incidence matrix
of the minimum cost flow problem. Each column X ij in the matrix corresponds to
the variable Xij. The column X ij has a + 1 in the ith row, a -1 in the jth row; the
rest of its entries are zero.

We refer to the constraints in (l.Ib) as mass balance constraints. The first
term in this constraint for a node represents the total outflow of the node (i.e., the
flow emanating from the node) and the second term represents the total inflow of
the node (i.e., the flow entering the node). The mass balance constraint states that
the outflow minus inflow must equal the supply/demand of the node. If the node is
a supply node, its outflow exceeds its innow; if the node is a demand node, its inflow
exceeds its outflow; and if the node is a transshipment node, its outflow equals its
inflow. The flow must also satisfy the lower bound and capacity constraints (1.1 c),
which we refer to asflow bound constraints. The flow bounds typically model phys
ical capacities or restrictions imposed on the flows' operating ranges. In most ap
plications, the lower bounds on arc flows are zero; therefore, if we do not state
lower bounds for any problem, we assume that they have value zero.

Sec. 1.2 Network Flow Problems 5

In most parts of the book we assume that the data are integral (i.e., all arc
capacities, arc costs, and supplies/demands of nodes are integral). We refer to this
assumption as the integrality assumption. The integrality assumption is not restric
tive for most applications because we can always transform rational data to integer
data by mUltiplying them by a suitably large number. Moreover, we necessarily need
to convert irrational numbers to rational numbers to represent them on a computer.

The following special versions of the minimum cost flow problem playa central
role in the theory and applications of network flows.

Shortest path problem. The shortest path problem is perhaps the simplest
of all network flow problems. For this problem we wish to find a path of minimum
cost (or length) from a specified source node s to another specified sink node t,
assuming that each arc (i, j) E A has an associated cost (or length) Cij' Some of the
simplest applications of the shortest path problem are to determine a path between
two specified nodes of a network that has minimum length, or a path that takes least
time to traverse, or a path that has the maximum reliability. As we will see in our
later discussions, this basic model has applications in many different problem do
mains, such as equipment replacement, project scheduling, cash flow management,
message routing in communication systems, and traffic flow through congested cities.
If we set b(s) = 1, b(t) = - 1, and b(i) = 0 for all other nodes in the minimum
cost flow problem, the solution to the problem will send 1 unit of flow from node s
to node t along the shortest path. The shortest path problem also models situations
in which we wish to send flow from a single-source node to a single-sink node in an
uncapacitated network. That is, if we wish to send v units of flow from node s to
node t and the capacity of each arc of the network is at least v, we would send the
flow along a shortest path from node s to node t. If we want to determine shortest
paths from the source node s to every other node in the network, then in the minimum
cost flow problem we set b(s) = (n - 1) and b(i) = - 1 for all other nodes. [We
can set each arc capacity Uij to any number larger than (n - 1).] The minimum cost
flow solution would then send unit flow from node s to every other node i along a
shortest path.

Maximum flow problem. The maximum flow problem is in a sense a com
plementary model to the shortest path problem. The shortest path problem models
situations in which flow incurs a cost but is not restricted by any capacities; in
contrast, in the maximum flow problem flow incurs no costs but is restricted by flow
bounds. The maximum flow problem seeks a feasible solution that sends the max
imum amount of flow from a specified source node s to another specified sink node
t. If we interpret uijas the maximum flow rate of arc (i,j), the maximum flow problem
identifies the maximum steady-state flow that the network can send from node s to
node t per unit time. Examples of the maximum flow problem include determining
the maximum steady-state flow of (1) petroleum products in a pipeline network, (2)
cars in a road network, (3) messages in a telecommunication network, and (4) elec
tricity in an electrical network. We can formulate this problem as a minimum cost
flow problem in the following manner. We set b(i) = 0 for all i E N, Cij = 0 for all
(i, j) E A, and introduce an additional arc (t, s) with cost C ts = - 1 and flow bound
U ts = 00. Then the minimum cost flow solution maximizes the flow on arc (t, s); but

6 Introduction Chap. J

since any flow on arc (t, s) must travel from node s to node t through the arcs in A
[since each b(i) = 0], the solution to the minimum cost flow problem will maximize
the flow from node s to node t in the original network.

Assignment problem. The data of the assignment problem consist of two
equally sized sets Nt and N z (i.e., / Nt / = / N z /), a collection of pairs A ~ Nt x
N z representing possible assignments, and a cost cij associated with each element
(i, j) E A. In the assignment problem we wish to pair, at minimum possible cost,
each object in Nt with exactly one object in N z. Examples of the assignment problem
include assigning people to projects, jobs to machines, tenants to apartments, swim
mers to events in a swimming meet, and medical school graduates to available in
ternships. The assignment problem is a minimum cost flow problem in a network
G = (Nt U N 2 , A) with b(i) = 1 for all i E N l , b(i) = -1 for all i E N 2 , and
uij = 1 for all (i, j) E A.

Transportation problem. The transportation problem is a special case of
the minimum cost flow problem with the property that the node set N is partitioned
into two subsets NJ and N z (of possibly unequal cardinality) so that (1) each node
in Nl is a supply node, (2) each node N z is a demand node, and (3) for each arc
(i,j) inA, i E Nt andj E N z. The classical example of this problem is the distribution
of goods from warehouses to customers. In this context the nodes in N 1 represent
the warehouses, the nodes in N2 represent customers (or, more typically, customer
zones), and an arc (i, j) in A represents a distribution channel from warehouse i to
customer j.

Circulation problem. The circulation problem is a minimum cost flow prob
lem with only transshipment nodes; that is, b(i) = 0 for all i E N. In this instance
we wish to find a feasible flow that honors the lower and upper bounds lij and Uij

imposed on the arc flows Xij' Since we never introduce any exogenous flow into the
network or extract any flow from it, all the flow circulates around the network. We
wish to find the circulation that has the minimum cost. The design of a routing
schedule of a commercial airline provides one example of a circulation problem. In
this setting, any airplane circulates among the airports of various cities; the lower
bound lij imposed on an arc (i, j) is 1 if the airline needs to provide service between
cities i and j, and so must dispatch an airplane on this arc (actually, the nodes will
represent a combination of both a physical location and a time of day so that an arc
connects, for example, New York City at 8 A.M. with Boston at 9 A.M.).

In this book, we also study the following generalizations of the minimum cost
flow problem.

Convex cost flow problems. In the minimum cost flow problem, we assume
that the cost of the flow on any arc varies linearly with the amount of flow. Convex
cost flow problems have a more general cost structure: The cost is a convex function
of the amount of flow. Flow costs vary in a convex manner in numerous problem
settings, including (1) power losses in an electrical network due to resistance, (2)
congestion costs in a city transportation network, and (3) expansion costs of a com
munication network.

Sec. J.2 Network Flow Problems 7

Generalized flow problems. In the minimum cost flow problem, arcs con
serve flows (Le., the flow entering an arc equals the flow leaving the arc). In gen
eralized flow problems, arcs might "consume" or "generate" flow. If Xij units of
flow enter an arc (i, j), then jJ.ijXij units arrive at node j; jJ.ij is a positive multiplier
associated with the arc. If 0 < jJ.ij < I, the arc is lossy, and if I < jJ.ij < 00, the arc
is gainy. Generalized network flow problems arise in several application contexts:
for example, (I) power transmission through electric lines, with power lost with
distance traveled, (2) flow of water through pipelines or canals that lose water due
to seepage or evaporation, (3) transportation of a perishable commodity, and (4)
cash management scenarios in which arcs represent investment opportunities and
multipliers represent appreciation or depreciation of an investment's value.

Multicommodity flow problems. The minimum cost flow problem models
the flow of a single commodity over a network. Multicommodity flow problems arise
when several commodities use the same underlying network. The commodities may
either be differentiated by their physical characteristics or simply by their origin
destination pairs. Different commodities have different origins and destinations, and
commodities have separate mass balance constraints at each node. However, the
sharing of the common arc capacities binds the different commodities together. In
fact, the essential issue addressed by the multicommodity flow problem is the al
location of the capacity of each arc to the individual commodities in a way that
minimizes overall flow costs. Multicommodity flow problems arise in many practical
situations, including (I) the transportation of passengers from different origins to
different destinations within a city; (2) the routing of nonhomogeneous tankers (non
homogeneous- in terms of speed, carrying capability, and operating costs); (3) the
worldwide shipment. of different varieties of grains (such as corn, wheat, rice, and
soybeans) from countries that produce grains to those that consume it; and (4) the
transmission of messages in a communication network between different origin
destination pairs.

Other Models

In this book we also study two other important network models: the minimum span
ning tree problem and the matching problem. Although these two models are not
flow problems per se, because of their practical and mathematical significance and
because of their close connection with several flow problems, we have included
them as part of our treatment of network flows.

Minimum spanning tree problem. A spanning tree is a tree (i.e., a con
nected acyclic graph) that spans (touches) all the nodes of an undirected network.
The cost of a spanning tree is the sum of the costs (or lengths) of its arcs. In the
minimum spanning tree problem, we wish to identify a spanning tree of minimum
cost (or length). The applications of the minimum spanning tree problem are varied
and include (1) constructing highways or railroads spanning several cities; (2) laying
pipelines connecting offshore drilling sites, refineries, and consumer markets; (3)
designing local access networks; and (4) making electric wire connections on a con
trol panel.

8 Introduction Chap. 1

Matching problems. A matching in a graph G = (N, A) is a set of arcs
with the property that every node is incident to at most one arc in the set; thus a
matching induces a pairing of (some 00 the nodes in the graph using the arcs in A.
In a matching, each node is matched with at most one other node, and some nodes
might not be matched with any other node. The matching problem seeks a matching
that optimizes some criteria. Matching problems on a bipartite graphs (i.e., those
with two sets of nodes and with arcs that join only nodes between the two sets, as
in the assignment and transportation problems) are called bipartite matching prob
lems, and those on nonbipartite graphs are called nonbipartite matching problems.
There are two additional ways of categorizing matching problems: cardinality match
ing problems, which maximize the number of pairs of nodes matched, and weighted
matching problems, which maximize or minimize the weight of the matching. The
weighted matching problem on a bipartite graph is also known as the assignment
problem. Applications of matching problems arise in matching roommates to hostels,
matching pilots to compatible airplanes, scheduling airline crews for available flight
legs, and assigning duties to bus drivers.

1.3 APPLICATIONS

Networks are pervasive. They arise in numerous application settings and in many
forms. Physical networks are perhaps the most common and the most readily iden
tifiable classes of networks; and among physical networks, transportation networks
are perhaps the most visible in our everyday lives. Often, these networks model
homogeneous facilities such as railbeds or highways. But on other occasions, they
correspond to composite entities that model, for example, complex distribution and
logistics decisions. The traditional operations research "transportation problem" is
illustrative. In the transportation problem, a shipper with inventory of goods at its
warehouses must ship these goods to geographically dispersed retail centers, each
with a given customer demand, and the shipper would like to meet these demands
incurring the minimum possible transportation costs. In this setting, a transportation
link in the underlying network might correspond to a complex distribution channel
with, for example, a trucking shipment from the warehouse to a railhead, a rail
shipment, and another trucking leg from the destination rail yard to the customer's
site.

Physical networks are not limited to transportation settings; they also arise in
several other disciplines of applied science and engineering, such as mathematics,
chemistry, and electrical, communications, mechanical, and civil engineering. When
physical networks occur in these different disciplines, their nodes, arcs, and flows
model many different types of physical entities. For example, in a typical commu
nication network, nodes will represe'nt telephone exchanges and'transmission facil
ities, arcs will denote copper cables or fiber optic links, and flow would signify the
transmission of voi~e messages or of data. Figure 1",1 shows some typical associations
for the nodes, arcs, and flows in a variety of physical networks.

Network flow problems also arise in surprising ways for problems that on the
surface might not appear to involve networks at all. Sometimes these applications
are linked to a physical entity, and at other times they are not. Sometimes the nodes
and arcs have a temporal dimension that models activities that take place over time.

Sec. 1.3 Applications 9

Physical analog of
Applications nodes Physical analog of arcs Flow

Communication Telephone exchanges, Cables, fiber optic Voice messages, data,
systems computers, links, microwave video transmissions

transmission relay links
facilities, satellites

Hydraulic systems Pumping stations, Pipelines Water, gas, oil,
reservoirs, lakes hydraulic fluids

Integrated computer Gates, registers, Wires Electrical current
circuits processors

Mechanical systems Joints Rods, beams, springs Heat, energy

Transportation Intersections, airports, Highways, railbeds, Passengers, freight,
systems rail yards airline routes vehicles, operators

Figure 1.1 Ingredients of some common physical networks.

Many scheduling applications have this flavor. In any event, networks model a va
riety of problems in project, machine, and crew scheduling; location and layout
theory; warehousing and distribution; production planning and control; and social,
medical, and defense contexts. Indeed, these various applications of network flow
problems seem to be more widespread than are the applications of physical networks.
We present many such applications throughout the text and in the exercises; Chapter
19, in particular, brings together and summarizes many applications. In the following
discussion, to set a backdrop for the next few chapters, we describe several sample
applications that are intended to illustrate a range of problem contexts and to be
suggestive of how network flow problems arise in practice. This set of applications
provides at least one example of each of the network models that we introduced in
the preceding section.

Application 1.1 Reallocation of Housing

A housing authority has a number of houses at its disposal that it lets to tenants.
Each house has its own particular attributes. For example, a house might or might
not have a garage, it has a certain number of bedrooms, and its rent falls within a
particular range. These variable attributes permit us to group the house into several
categories, which we index by i = 1, 2, ... , n.

Over a period of time a number of tenants will surrender their tenancies as
they move or choose to live in alternative accommodations. Furthermore, the re
quirements of the tenants will change with time (because new families arrive, children
leave home, incomes and jobs change, and other considerations). As these changes
occur, the housing authority would like to relocate each tenant to a house of his or
her choice category. While the authority can often accomplish this objective by
simple exchanges, it will sometimes encounter situations requiring multiple moves:
moving one tenant would replace another tenant from a house in a different category,
who, in turn, would replace a tenant from a house in another category, and so on,
thus creating a cycle of changes. We call such a change a cyclic change. The decision

10 Introduction Chap. J

problem is to identify a cyclic change, if it exists, or to show that no such change
exists.

To solve this problem as a network problem, we first create a relocation graph
G whose nodes represent various categories of houses. We include arc (i, j) in the
graph whenever a person living in a house of category i wishes to move to a house
of category j. A directed cycle in G specifies a cycle of changes that will satisfy the
requirements of one person in each of the categories contained in the cycle. Applying
this method iteratively, we can satisfy the requirements of an increasing number of
persons.

This application requires a method for identifying directed cycles in a network,
if they exist. A well-known method, known as topological sorting, will identify such
cycles. We discuss topological sorting in Section 3.4. In general, many tenant reas
signments might be possible, so the relocation graph G might contain several cycles.
In that case the authority's management would typically want to find a cycle con
taining as few arcs as possible, since fewer moves are easier to handle administra
tively. We can solve this problem using a shortest path algorithm (see Exercise 5.38).

Applioation 1.2 Assortment of Struotural Steel Beams

In its various construction projects, a construction company needs structural steel
beams of a uniform cross section but of varying lengths. For each i = 1, ... , n,
let D; > 0 denote the demand of the steel beam of length L;, and assume that LJ <
L2 < '" < Ln. The company could meet its needs by maintaining and drawing upon
an inventory of stock containing exactly Di units of the steel beam of length L;. It
might not be economical to carry an the demanded lengths in inventory, however,
because of the high cost of setting up the inventory facility to store and handle each
length. In that case, if the company needs a beam oflength L; not carried in inventory,
it can cut a beam of longer length down to the desired length. The cutting operation
will typically produce unusable steel as scrap. Let K; denote the cost for setting up
the inventory facility to handle beams of length L j , and let C; denote the cost of a
beam of length L;. The company wants to determine the lengths of beams to be
carried in inventory so that it will minimize the total cost of (1) setting up the in
ventory facility, and (2) discarding usable steel lost as scrap.

We formulate this problem as a shortest path problem as follows. We construct
a directed network G on (n + 1) nodes numbered 0, 1, 2, ... , n; the nodes in this
network correspond to various beam lengths. Node 0 corresponds to a beam of length
zero and node n corresponds to the longest beam. For each node i, the network
contains a directed arc to every node j = i + 1, i + 2, ... , n. We interpret the
arc (i, j) as representing a storage strategy in which we hold beams of length Lj in
inventory and use them to satisfy the demand of all the beams of lengths L; + J ,

Li+2' .•• , Lj • The cost Cij of the arc (i, j) is
j

Cij = Kj + Cj L. D k·
k=i+ J

The cost of arc (i, j) has two components: (1) the fixed cost Kj of setting up
the inventory facility to handle beams of length Lj , and (2) the cost of using beams
oflength L j to meet the demands of beams of lengths L;+ 1, ••• ,Lj • A directed path

Sec. 1.3 Applications 11

from node 0 to node n specifies an assortment of beams to carry in inventory and
the cost of the path equals the cost associated with this inventory scheme. For
example, the path 0-4-6-9 corresponds to the situation in which we set up the
inventory facility for handling beams of lengths L4 , L6 , and L9. Consequently, the
shortest path from node 0 to node n would prescribe the least cost assortment of
structural steel beams.

Application 1.8 Tournament Problem

Consider a round-robin tournament between n teams, assuming that each team plays
against every other team c times. Assume that no game ends in a draw. A person
claims that ai for 1 :s i :s n denotes the number of victories accrued by the ith team
at the end of the tournament. How can we determine whether the given set of non
negative integers at, 0.2, ..• , an represents a possible winning record for the n
teams?

Define a directed network G = (N, A) with node set N = {I, 2, ... , n} and
arc set A = {(i, j) E N x N: i < j}. Therefore, each node i is connected to the nodes
i + 1, i + 2, ... , n. Let Xij for i < j represent the number of times team i defeats
teamj. Observe that the total number of times team i beats teams i + 1, i + 2, ... ,
n is ~{j:(i,j)EA} Xij. Also observe that the number of times that team i beats a team
j < i is c - Xji. Consequently, the total number of times that team i beats teams 1,
2, ... , i-I is (i - l)c - ~{j:(j,i)EA} Xji' The total number of wins of team i must
equal the total number of times it beats the teams 1, 2, ... , n. The preceding
observations show that

L Xij
{j:(i,j)EA}

L Xji = (X; - (i - l)c
{j:(j,i)EA}

for all i E N. (1.3)

In addition, a possible winning record must also satisfy the following lower
and upper bound conditions:

for all (i, j) E A. (1.4)

This discussion shows that the record a; is a possible winning record if
the constraints defined by (1.3) and (1.4) have a feasible solution x. Let b(i) =
(X; - (i - l)c. Observe that the expressions LiEN(Xi and LiEN(i - l)c are both
equal to cn(n - 1)/2, which is the total number of games played. Consequently,
LiE~(i) = O. The problem of finding a feasible solution of a network flow system

like (1.3) and (1.4) is called a feasible flow problem and can be solved by solving a
maximum flow problem (see Section 6.2).

Application 1.4 Leveling Mountainous Terrain

This application was inspired by a common problem facing civil engineers when they
are building road networks through hilly or mountainous terrain. The problem con
cerns the distribution of earth from high points to low points of the terrain to produce
a leveled roadbed. The engineer must determine a plan for leveling the route by

12 Introduction Chap. 1

specifying the number of truckloads of earth to move between various locations
along the proposed road network.

We first construct a terrain graph: it is an undirected graph whose nodes rep
resent locations with a demand for earth (low points) or locations with a supply of
earth (high points). An arc of this graph represents an available route for distributing
the earth, and the cost of this arc represents the cost per truckload of moving earth
between the two points. (A truckload is the basic unit for redistributing the earth.)
Figure 1.2 shows a portion of the terrain graph.

5 Figure 1.2 Portion of the terrain graph.

A leveling plan for a terrain graph is a flow (set of truckloads) that meets the
demands at nodes (levels the low points) by the available supplies (by earth obtained
from high points) at the minimum cost (for the truck movements). This model is
clearly a minimum cost flow problem in the terrain graph.

Application 1. IS Rewiring of Typewriters

For several years, a company had been using special electric typewriters to prepare
punched paper tapes to enter data into a digital computer. Because the typewriter
is used to punch a six-hole paper tape, it can prepare 26 = 64 binary hole/no-hole
patterns. The typewriters have 46 characters, and each punches one of the 64 pat
terns. The company acquired a new digital computer that uses a different coding
hole/no-hole patterns to represent characters. For example, using 1 to represent a
hole and 0 to represent a no-hole, the letter A is 111100 in the code for the old
computer and 011010 in the code for the new computer. The typewriter presently
punches the former and must be modified to punch the latter.

Each key in the typewriter is connected to a steel code bar, so changing the
code of that key requires mechanical changes in the steel bar system. The extent of
the changes depends on how close the new and old characters are to each other.
For the letter A, the second, third, and sixth bits are identical in the old and new
codes and no changes need be made for these bits; however, the first, fourth, and
fifth bits are different, so we would need to make three changes in the steel code
bar connected to the A-key. Each change involves removing metal at one place and

Sec. 1.3 Applications 13

adding metal at another place. When a key is pressed, its steel code bar activates
six cross-bars (which are used by all the keys) that are connected electrically to six
hole punches. If we interchange the fourth and fifth wires of the cross-bars to the
hole punches (which is essentially equivalent to interchanging the fourth and fifth
bits of all characters in the old code), we would reduce the number of mechanical
changes needed for the A-key from three to one. However, this change of wires
might increase the number of changes for some of the other 45 keys. The problem,
then, is how to optimally connect the wires from the six cross-bars to the six punches
so that we can minimize the number of mechanical changes on the steel code bars.

We formulate this problem as an assignment problem as follows. Define a
network G = (NJ U N 2, A) with node sets NJ = {I, 2, ... , 6} and N2 = {I',
2', ... , 6'}, and an arc set A = NJ x N 2; the cost of the arc (i, j') E A is the
number of keys (out of 46) for which the ith bit in the old code differs from the jth
bit in the new code. Thus if we assign cross-bar i to the punch j, the number of
mechanical changes needed to print the ith bit of each symbol correctly is Cij' Con
sequently, the minimum cost assignment will minimize the number of mechanical
changes.

Application 1.6 Pairing Stereo Speakers

As a part of its manufacturing process, a manufacturer of stereo speakers must pair
individual speakers before it can sell them as a set. The performance of the two
speakers depends on their frequency response. To measure the quality of the pairs,
the company generates matching coefficients for each possible pair. It calculates
these coefficients by summing the absolute differences between the responses of the
two speakers at 20 discrete frequencies, thus giving a matching coefficient value
between 0 and 30,000. Bad matches yield a large coefficient, and a good pairing
produces a low coefficient.

The manufacturer typically uses two different objectives in pairing the speak
ers: (1) finding as many pairs as possible whose matching coefficients do not exceed
a specification limit, or (2) pairing speakers within specification limits to minimize
the total sum of the matching coefficients. The first objective minimizes the number
of pairs outside specification, and so the number of speakers that the firm must sell
at a reduced price. This model is an application of the nonbipartite cardinality match
ing problem on an undirected graph: the nodes of this graph represent speakers and
arcs join two nodes if the matching coefficients of the corresponding speakers are
within the specification limit. The second model is an application of the nonbipartite
weighted matching problem.

Application 1.7 Measuring Homogeneity of Bimetallio
Objects

This application shows how a minimum spanning tree problem can be used to de
termine the degree to which a bimetallic object is homogeneous in composition. To
use this approach, we measure the composition of the bimetallic object at a set of
sample points. We then construct a network with nodes corresponding to the sample

14 Introduction Chap. 1

points and with an arc connecting physically adjacent sample points. We assign a
cost with each arc (i, j) equal to the product of the physical (Euclidean) distance
between the sample points i and j and a homogeneity factor between 0 and 1. This
homogeneity factor is 0 if the composition of the corresponding samples is exactly
alike, and is 1 if the composition is very different; otherwise, it is a number between
o and 1. Note that this measure gives greater weight to two points if they are different
and are far apart. The cost of the minimum spanning tree is a measure of the ho
mogeneity of the bimetallic object. The cost of the tree is 0 if all the sample points
are exactly alike, and high cost values imply that the material is quite nonhomo
geneous.

Application 1.8 Electrical Networks

The electrical network shown in Figure 1.3 has eight resistors, two current sources
(at nodes 1 and 6), and one current sink (at node 7). In this network we wish to
determine the equilibrium current flows through the resistors. A popular method for
solving this problem is to introduce a variable Xi} representing the current flow on
the arc (i, j) of the electrical network and write a set of equilibrium relationships
for these flows; that is, the voltage-current relationship equations (using Ohm's law)
and the current balance equations (using Kirchhofs law). The solution of these
equations gives the arc currents Xi}. An alternative, and possibly more efficient ap
proach is to formulate this problem as a convex cost flow problem. This formulation
uses the well-known result that the equilibrium currents on resistors are those flows
for which the resistors dissipate the least amount of the total power supplied by the
voltage sources (i.e., the electric current follows the path of least resistance). Ohm's
law shows that a resistor of resistance 'i; dissipates ,;;xri watts of power. Therefore,
we can obtain the optimal currents by solving the following convex cost flow prob
lem:

Minimize ~ rijxt
(i,j)EA

subject to

~ Xi)- ~ Xji = b(i)
{j: (i,j)EA} {j:(j,i)EA}

for each node i EN,

for each arc (i,j) E A.

In this model b(i) represents the supply/demand of a current source or sink.

Figure 1.3 Electrical network.

Sec. 1.3 Applications IS

The formulation of a set of equilibrium conditions as an equivalent optimization
model is a poweIful idea in the physical sciences, dating from the last century, which
has become known as so-called variational principles. The term "variational" arises
because the equilibrium conditions are the "optimality conditions" for the equivalent
optimization model that tell us that we cannot improve the optimal solution by vary
ing (hence the term "variational") the optimal solution to this optimization model.

Application 1.9 Determining an Optimal Energy Policy

As part of their national planning effort, most countries need to decide on an energy
policy (i.e., how to utilize the available raw materials to satisfy their energy needs).
Assume, for simplicity, that a particular country has four basic raw materials: crude
oil, coal, uranium, and hydropower; and it has four basic energy needs: electricity,
domestic oil, petroleum, and gas. The country has the technological base and in
frastructure to convert each raw material into one or more energy forms. For ex
ample, it can convert crude oil into domestic oil or petrol, coal into electricity, and
so on. The available technology base specifies the efficiency and the cost of each
conversion. The objective is to satisfy, at the least possible cost of energy conversion,
a certain annual consumption level of various energy needs from a given annual
production of raw materials.

Figure 1.4 shows the formulation of this problem as a generalized network flow
problem. The network has three types of arcs: (1) source arcs (s, i) emanating from
the source node s, (2) sink arcs (j, t) entering the sink node t, and (3) conversion
arcs (i, j). The source arc (s, i) has a capacity equal to the availability a(i) of the
raw material i and a flow multiplier of value 1. The sink arc (j, t) has capacity equal
to the demand ~(j) of type j energy need and flow mUltiplier of value 1. Each con
version arc (i, j) represents the conversion of raw material i into the energy form j;
the mUltiplier of this arc is the efficiency of the conversion (i.e., units of energy j
obtained from 1 unit of raw material i); and the cost of the arc (i, j) is the cost of
this conversion. In this model, since a(i) is an upper bound on the use of raw material

Crude oil Electricity

4

~a(i) --.
;=1

Hydropower Gas

Figure 1.4 Energy problem as a generalized network flow problem.

16 Introduction Chap. J

i, ~:= I <x(i) is an upper bound on the flow out of node s. Similarly, :L: = I J3(i) is a
lower bound on the flow into node t. In Exercise 15.29, we show how to convert
this problem into a standard form without bounds on supplies and demands.

Application 1.10 Racial Balancing of Schools

In 1968, the U.S. Supreme Court ruled that all school systems in the country should
begin admitting students to schools on a nondiscriminatory basis and should employ
faster techniques to promote desegregated schools across the nation. This decision
made it necessary for many school systems to develop radically different procedures
for assigning students to schools. Since the Supreme Court did not specify what
constitutes an acceptable racial balance, the individual school boards used their own
best judgments to arrive at acceptable criteria on which to base their desegregation
plans. This application describes a multicommodity flow model for determining an
optimal assignment of students to schools that minimizes the total distance traveled
by the students, given a specification of lower and upper limits on the required racial
balance in each school.

Suppose that a school district has S schools and school j has capacity Uj. For
the purpose of this formulation, we divide the school district into L popUlation cen
ters. These locations might, for example, be census tracts, bus stops, or city blocks.
The only restriction on the population centers is that they be finite in number and
that a single distance measure reasonably approximates the distance any student at
center i must travel if he or she is assigned to school j. Let Sik denote the available
number of students of the kth ethnic group at the ith population center. The objective
is to assign students to schools in a way that achieves the desired ethnic composition
for each school and minimizes the total distance traveled by the students. Each
school j has the ethnic requirement that it must enroll at least ljk and no more than
Ujk students from the kth ethnic group.

We can model this problem as a multi commodity flow problem on an appro
priately defined network. Figure 1.5 shows this network representation for a problem
with three population centers and three schools. This network has one node for each
popUlation center and for each school as well as a "source" and a "sink" node for
each ethnic group. The flow commodities represent the students of different ethnic
groups. The students of the kth ethnic group flow from source ak to sink ek via
population center and school nodes. We set the upper bound on arc (ak, bi) con
necting the kth ethnic group source node and the ith population center equal to Sik

and the cost of the arc (b i , Cj) connecting the ith popUlation center and jth school
equal to f ij, the distance between that population center and that school. By setting
the capacity of the arc (Cj, dj) equal to Uj, we ensure that the total number of students
(of all ethnic groups) allocated to thejth school does not exceed the maximum student
population for this school. The students of all ethnic groups must share the capacity
of each school. Finally, we incorporate constraints on the ethnic compositions of
the schools by setting the lower and upper bounds on the arc (dj , ek) equal to ljk and
Ujk. It is fairly easy to verify that the multicommodity flow problem models the racial
balancing problem, so a minimum multicommodity flow will specify an optimal as
signment of students to the schools.

Sec. 1.3 Applications 17

Ethnic
groups
(sources)

Population
centers

Schools
(input)

Schools
(output)

Ethnic
groups
(sinks)

Figure I.S Formulating the racial balancing problem as a multicommodity flow prob
lem.

1.4 SUMMABY

In this chapter we introduced the network flow problems that we study in this book
and described a few scenarios in which these problems arise. We began by giving
a linear programming formulation of the minimum cost flow problem and identifying
several special cases: the shortest path problem, the maximum flow problem, the
assignment problem, the transportation problem, and the circulation problem. We
next described several generalizations of the minimum cost flow problem: the convex
cost flow problem, the generalized network flow problem, and the multicommodity
flow problem. Finally, we described two other important network models: the min
imum spanning tree problem and the matching problem. Although these two prob
lems are not network flow problems per se, we have included them in this book
because they are closely related to several network flow problems and because they
arise often in the context of network optimization.

Networks are pervasive and arise in numerous application settings. Physical
networks, which are the most readily identifiable classes of networks, arise in many
applications in many different types of systems: communications, hydraulic, me
chanical, electronic, and transportation. Network flow problems also arise in sur
prising ways in optimization problems that on the surface might not appear to involve
networks at all. We described several of these "indirect" applications of network
flow problems, in such problem settings as urban housing, production planning,
electrical networks, racial balancing, leveling mountainous terrain, evaluating tour
naments, matching stereo speakers, wiring typewriters, assessing the homogeneity
of physical materials, and energy planning. The applications we have considered
offer only a brief glimpse of the wide-ranging practical importance of network flows;
although our discussion of applications in this chapter is limited, it does provide at
least one example of each of the network models that we have introduced in this
chapter.

18 Introduction Chap. J

REFERENCE NOTES

The study of network flow models predates the development of linear programming.
The first studies in this problem domain, conducted by Kantorovich [1939], Hitch
cock [1941], and Koopmans [1947], considered the transportation problem, a special
case of the minimum cost flow problem. These studies provided insight into the
problem structure and yielded algorithmic approaches. Interest in the network flow
problems grew with the advent of the simplex method by Oantzig in 1947, who also
specialized this algorithm for the transportation problem (see Oantzig [1951]).

During the 1950s, researchers began to exhibit increasing interest in the min
imum cost flow problem and its specializations-the shortest path problem, the
maximum flow problem, and the assignment problem-mainly because of the im
portance of these models in real-world applications. Soon researchers developed
special algorithms for solving these problems. Dantzig, Ford, and Fulkerson pi
oneered these efforts. Whereas Oantzig focused on the simplex-based methods, Ford
and Fulkerson developed primal-dual combinatorial algorithms. The landmark
books by Oantzig [1962] and Ford and Fulkerson [1962] present thorough discussions
of these early contributions.

In the years following this groundbreaking work, network flow problems and
their generalizations emerged as major research topics in thousands of papers and
numerous text and reference books. The following books summarize developments
in the field and serve as a guide to the literature:

1. Flows in Networks (Ford and Fulkerson [1962])
2. Programming, Games and Transportation Networks (Berge and Ghouila-Houri

[1962])
3. Finite Graphs and Networks (Busacker and Saaty [1965])
4. Network Flow, Transportation and Scheduling (Iri [1969])
5. Integer Programming and Network Flows (Hu [1969])
6. Communication, Transmission, and Transportation Networks (Frank and

Frisch [1971])
7. Flows in Transportation Networks (Potts and Oliver [1972])
8. Graph Theory: An Algorithmic Approach (Christophides [1975])
9. Flow Algorithms (Adel'son-Vel'ski, Oinics, and Karzanov [1975])

10. Graph Theory with Applications (Bondy and Murty [1976])
11. Combinatorial Optimization: Networks and Matroids (Lawler [1976])
12. Optimization Algorithms for Networks and Graphs (Minieka [1978])
13. Graph Algorithms (Even [1979])
14. Algorithms for Network Programming (Kennington and Helgason [1980])
15. Network Flow Programming (Jensen and Barnes [1980])
16. Fundamentals of Network Analysis (Phillips and Garcia-Oiaz [1981])
17. Combinatorial Optimization: Algorithms and Complexity (Papadimitriou and

Steiglitz [1982])
18. Discrete Optimization Algorithms (Syslo, Oeo, and Kowalik [1983])
19. Data Structures and Network Algorithms (TaIjan [1983])

Chap. 1 Reference Notes 19

20. Graphs and Algorithms (Gondran and Minoux [1984])
21. Network Flows and Monotropic Optimization (Rockafellar [1984])
22. Linear Programming and Network Models (Gupta [1985])
23. Programming in Networks and Graphs (Derigs [1988])
24. Linear Programming and Network Flows, 2nd ed. (Bazaraa, Jarvis, and Sherali

[1990])

As an additional source of references, the reader might consult the bibliogra
phies on network optimization prepared by Golden and Magnanti [1977], Ahuja,
Magnanti, and Orlin [1989, 1991], Bazaraa, Jarvis, and Sherali [1990], and the ex
tensive set of references on integer programming compiled by researchers at the
University of Bonn (Kastning [1976], Hausman [1978], and Von Randow [1982,
1985]).

Since the applications of network flow models are so pervasive, no single source
provides a comprehensive account of network flow models and their impact on
practice. Several researchers have prepared general surveys of selected application
areas. Notable among these are the papers by Bennington [1974], Glover and Kling
man [1976], Bodin, Golden, Assad, and Ball [1983], Aronson [1989], and Glover,
Klingman, and Phillips [1990]. The book by Gondran and Minoux [1984] also de
scribes a variety of applications of network flow problems. In this book we describe
or cite over 150 selected applications of network flow problems. We provide the
references for these problems in the reference notes given at the end of Chapters
4,6,9, 12, 13, 14, 15, 16, 17, and 19. We have adapted many of these applications
from the paper of Ahuja, Magnanti, Orlin, and Reddy [1992].

The applications we present in Section 1.3 are adapted from the following
references:

1. Reallocation of housing (Wright [1975])
2. Assortment of structural steel beams (Frank [1965])
3. Tournament problem (Ford and Johnson [1959])
4. Leveling mountainous terrain (Farley [1980])
5. Rewiring of typewriters (Machol [1961])
6. Pairing stereo speakers (Mason and Philpott [1988])
7. Measuring homogeneity of bimetallic objects (Shier [1982])
8. Electrical networks (Hu [1966])
9. Determining an optimal energy policy (Gondran and Minoux [1984])

10. Racial balancing of schools (Clarke and Surkis [1968])

EXERCISES

1.1. Formulate the following problems as circulation problems: (1) the shortest path prob
lem; (2) the assignment problem; and (3) the transportation problem.

1.2. Consider a variant of the transportation problem for which (1) the sum of demands
exceeds the sum of supplies, and (2) we incur a penalty Pi for every unit of unfulfilled
demand at demand nodej. Formulate this problem as a standard transportation problem
with total supply equal to total demand.

20 Introduction Chap. 1

1.3. In this exercise we examine a generalization of Application 1.2, concerning assortment
of structural steel beams. In the discussion of that application, we assumed that if we
must cut a beam of length 5 units to a length of 2 units, we obtain a single beam of
length 2 units; the remaining 3 units have no value. However, in practice, from a beam
of length 5 we can cut two beams of length 2; the remaining length of 1 unit will have
some scrap value. Explain how we might incorporate the possibility of cutting mUltiple
beam lengths (of the same length) from a single piece and assigning some salvage value
to the scrap. Assume that the scrap has a value of r3 per unit length.

1.4. Large-scale personnel assignment. A recurring problem in the U.S. armed forces is ef
ficient distribution and utilization of skilled personnel. Each month thousands of in
dividuals in the U.S. military vacate jobs, and thousands of personnel become available
for assignment. Each job has particular characteristics and skill requirements, while
each person from the pool of available personnel has specific skills and preferences.
Suppose that we use this information to compute the utility (or desirability) dij of each
possible assignment of a person to a job. The decision problem is to assign personnel
to the vacancies in a way that maximizes the total utility of all the assignments. Explain
how to formulate this problem as a network flow problem.

1.5. Dating problem. A dating service receives data from p men and p women. These data
determine what pairs of men and women are mutually compatible. Since the dating
service's commission is proportional to the number of dates it arranges, it would like
to determine the maximum number of compatible couples that can be formed. Formulate
this problem as a matching problem.

1.6. Pruned chessboard problem. A chessboard consists of 64 squares arranged in eight rows
and eight columns. A domino is a wooden or plastic piece consisting of two squares
joined on a side. Show that it is possible to fully cover the chessboard using 32 dominos
(i.e., each domino covers two squares of the board, no two dominos overlap, and some
domino covers each square). A pruned board is a chessboard with some squares re
moved.
(a) Suppose that we want to know whether it is possible to fully cover a pruned board,

and if not, to find the maximum number of dominos we can place on the pruned
board so that each domino covers two squares and no two dominos overlap. For
mulate this problem as a bipartite cardinality matching problem.

(b) Suppose that we prune only two diagonally opposite corners of the chessboard.
Show that we cannot cover the resulting board with 31 dominos.

1.7. Paragraph problem. The well-known document processing program TeX uses an op
timization procedure to decompose a paragraph into several lines so that when lines
are left- and right-adjusted, the appearance of the paragraph wiH be the most attractive.
Suppose that a paragraph consists of n words and that each word is assigned a sequence
number. Let Cij denote the attractiveness of a line if it begins with the word i and ends
with the word} - 1. The program TeX uses formulas to compute the value of each Cij.

Given the cu,'s, show how to formulate the problem of decomposing the paragraph into
several lines of text in order to maximize the total attractiveness (of all lines) as a
shortest path problem.

1.8. Seat-sharing problem. Several families are planning a shared car trip on scenic drives
in the White Mountains, New Hampshire. To minimize the possibility of any quarrels,
they want to assign individuals to cars so that no two members of a family are in the
same car. Formulate this problem as a network flow problem.

1.9. Police patrol problem (Khan [1979]). A police department in a small city consists of
three precincts denoted PI, Pz, and P3. Each precinct is assigned a number of patrol
cars equipped with two-way radios and first-aid equipment. The department operates
with three shifts. Figure 1.6(a) and (b) shows the minimum and maximum number of
patrol cars needed in each shift. Administrative constraints require that (1) shifts 1, 2,
and 3 have, respectively, at least cars 10, 20, and 18 cars available; and (2) precincts
Ph P2, and P3 are, respectively, allocated at least 10, 14, and 13 cars. The police de
partment wants to determine an allocation of patrol units that will meet all the require-

Chap. J Exercises 21

Shift Shift Shift Shift Shift Shift
I 2 3 1 2 3

PI 2 4 3 PI 3 7 5

P2 3 6 5 P2 5 7 10

P3 5 7 6 P3 8 12 10

(a) (b)

Figure 1.6 Patrol car requirements: (a) minimum required per shift; (b) maximum
required per shift.

ments with the fewest possible units committed to the field. Formulate this problem
as a circulation problem.

1.10. Forest scheduling problem. Paper and wood products companies need to define cutting
schedules that will maximize the total wood yield of their forests over some planning
period. Suppose that a company with control of p forest units wants to identify the
best cutting schedule over a planning horizon of k years. Forest unit i has a total acreage
of aj units, and studies that the company has undertaken predict that this unit will have
wij tons of woods available for harvesting in the jth year. Based on its prediction of
economic conditions, the company believes that it should harvest at least Ij tons of
wood in year j. Due to the availability of equipment and personnel, the company can
harvest at most Uj tons of wood in year j. Formulate the problem of determining a
schedule with maximum wood yield as a network flow problem.

11 Introduction Chap. 1

2

PATHS, TREES, AND CYCLES

Cbapter Outline

2.1 Introduction
2.2 Notation and Definitions
2.3 Network Representations
2.4 Network Transformations
2.5 Summary

S.l INTRODUCTION

I hate definitions.
-Benjamin Disraeli

Because graphs and networks arise everywhere and in a variety of alternative forms,
several professional disciplines have contributed important ideas to the evolution of
network flows. This diversity has yielded numerous benefits, including the infusion
of many rich and varied perspectives. It has also, however, imposed costs: For
example, the literature on networks and graph theory lacks unity and authors have
adopted a wide variety of conventions, customs, and notation. If we so desired, we
could formulate network flow problems in several different standard forms and could
use many alternative sets of definitions and terminology. We have chosen to adopt
a set of common, but not uniformly accepted, definitions: for example, arcs and
nodes instead of edges and vertices (or points). We have also chosen to use models
with capacitated arcs and with exogenous supplies and demands at the nodes. The
circulation problem we introduced in Chapter 1, without exogenous supplies and
demands, is an alternative model and so is the capacitated transportation problem.
Another special case is the uncapacitated network flow problem. In Chapter 1 we
viewed each of these models as special cases of the minimum cost network flow
problem. Perhaps somewhat surprisingly, we could have started with any of these
models and shown that all the others were special cases. In this sense, each of these
models offers another way to capture the mathematical essence of network flows.

In this chapter we have three objectives. First, we bring together many basic
definitions of network flows and graph theory, and in doing so, we set the notation
that we will be using throughout this book. Second, we introduce several different
data structures used to represent networks within a computer and discuss the relative
advantages and disadvantages of each of these structures. In a very real sense, data
structures are the life blood of most network flow algorithms, and choosing among
alternative data structures can greatly influence the efficiency of an algorithm, both

23

in practice and in theory. Consequently, it is important to have a good understanding
of the various available data structures and an idea of how and when to use them.
Third, we discuss a number of different ways to transform a network flow problem
and obtain an equivalent model. For example, we show how to eliminate flow bounds
and formulate any model as an uncapacitated problem. As another example, we
show how to formulate the minimum cost flow problem as a transportation problem
(i.e., how to define it over a bipartite graph). This discussion is of theoretical interest,
because it establishes the equivalence between several alternative models and there
fore shows that by developing algorithms and theory for any particular model, we
will have at hand algorithms and theory for several other models. That is, our results
enjoy a certain universality. This development is also of practical value since on
various occasions throughout our discussion in this book we will find it more con
venient to work with one modeling assumption rather than another-our discussion
of network transformations shows that there is no loss in generality in doing so.
Moreover, since algorithms developed for one set of modeling assumptions also
apply to models formulated in other ways, this discussion provides us with one very
reassuring fact: We need not develop separate computer implementations for every
alternative formulation, since by using the transformations, we can use an algorithm
developed for anyone model to solve any problem formulated as one of the alter
native models.

We might note that many of the definitions we introduce in this chapter are
quite intuitive, and much of our subsequent discussion does not require a complete
understanding of all the material in this chapter. Therefore, the reader might simply
wish to skim this chapter on first reading to develop a general overview of its content
and then return to the chapter on an "as needed" basis later as we draw on the
concepts introduced at this point.

2.2 NOTATION AND DEFINITIONS

In this section we give several basic definitions from graph theory and present some
basic notation. We also state some elementary properties of graphs. We begin by
defining directed and undirected graphs.

Directed Graphs and Networks: A directed graph G = (N, A) consists of a set N of nodes
and a set A of arcs whose elements are ordered pairs of distinct nodes. Figure 2.1 gives
an example of a directed graph. For this graph, N= {t, 2, 3,4,5,6, 7} and A = {(l,
2), (l, 3), (2, 3), (2,4), (3, 6), (4, 5), (4, 7), (5, 2), (5, 3), (5, 7), (6, 7)}. A directed network
is a directed graph whose nodes and/or arcs have associated numerical values (typically,

Figure 2.1 Directed graph.

24 Paths, Trees, and Cycles Chap. 2

costs, capacities, and/or supplies and demands). In this book we often make no dis
tinction between graphs and networks, so we use the terms "graph" and "network"
synonymously. As before, we let n denote the number of nodes and m denote the number
of arcs in G.

Undirected Graphs and Networks: We define an undirected graph in the same manner as we
define a directed graph except that arcs are unordered pairs of distinct nodes. Figure
2.2 gives an example of an undirected graph. In an undirected graph, we can refer to
an arc joining the node pair i and j as either (i, j) or (j, i). An undirected arc (i, j) can
be regarded as a two-way street with flow permitted in both directions: either from
node ito nodej or from nodej to node i. On the other hand, a directed arc (i,j) behaves
like a one-way street and permits flow only from node i to node j.

Figure 2.2 Undirected graph.

In most of the material in this book, we assume that the underlying network
is directed. Therefore, we present our subsequent notation and definitions for di
rected networks. The corresponding definitions for undirected networks should be
transparent to the reader; nevertheless, we comment briefly on some definitions for
undirected networks at the end of this section.

Tails and Heads: A directed arc (i, j) has two endpoints i andj. We refer to node i as the tail
of arc (i, j) and node j as its head. We say that the arc (i, j) emanates from node i and
terminates at nodej. An arc (i,j) is incident to nodes i andj. The arc (i,j) is an outgoing
arc of node i and an incoming arc of node j. Whenever an arc (i, j) E A, we say that
node j is adjacent to node i.

Degrees: The indegree of a node is the number of incoming arcs of that node and its outdegree
is the number of its outgoing arcs. The degree of a node is the sum of its indegree and
outdegree. For example, in Figure 2.1, node 3 has an indegree of 3, an outdegree of 1,
and a degree of 4. It is easy to see that the sum of indegrees of all nodes equals the
sum of outdegrees of all nodes and both are equal to the number of arcs m in the network.

Adjacency List: The arc adjacency list AU) of a node i is the set of arcs emanating from that
node, that is, A(i) = {(i,j) E A: j EN}. The node adjacency list AU) is the set of nodes
adjacent to that node; in this case, A(i) = {j E N: (i,j) E A}. Often, we shall omit the
terms "arc" and "node" and simply refer to the adjacency list; in all cases it will be
clear from context whether we mean arc adjacency list or node adjacency list. We
assume that arcs in the adjacency list A(i) are arranged so that the head nodes of arcs
are in increasing order. Notice that I A(i) I equals the outdegree of node i. Since the
sum of all node outdegrees equals m, we immediately obtain the following property:

Property 2.1. LiEN I A(i) I = m.

Multiarcs and Loops: Multiarcs are two or more arcs with the same tail and head nodes. A
loop is an arc whose tail node is the same as its head node. In most of the chapters in
this book, we assume that graphs contain no multiarcs or loops.

Sec. 2.2 Notation and Definitions 2S

Subgraph: A graph G' = (N', A') is a subgraph of G = (N, A) if N' ~ N and A 1 ~ A. We
say that G' = (N', A ') is the subgraph of G induced by N' if A 1 contains each arc of
A with both endpoints in N'. A graph G ' = (N', A') is a spanning subgraph of G =
(N, A) if N' = N and A 1 ~ A.

Walk: A walk in a directed graph G = (N, A) is a subgraph of G consisting of a sequence
of nodes and arcs i. - al - i2 - a2 - ... - ir- I - ar-I - ir satisfying the property
that for aliI ::s; k ::s; r - 1, either ak = (h, h+ d E A or ak = (ik+ I, h) E A. Alternatively,
we shall sometimes refer to a walk as a set of (sequence of) arcs (or of nodes) without
any explicit mention of the nodes (without explicit mention of arcs). We illustrate this
definition using the graph shown in Figure 2.1. Figure 2.3(a) and (b) illustrates two
walks in this graph: 1-2-5-7 and 1-2-4-5-2-3.

I 3

(a) (b)

Figure 2.3 Examples of walks.

Directed Walk: A directed walk is an "oriented" version of a walk in the sense that for any
two consecutive nodes hand h+ Ion the walk, (h, h+ dE A. The walk shown in Figure
2.3(a) is not directed; the walk shown in Figure 2.3(b) is directed.

Path: A path is a walk without any repetition of nodes. The walk shown in Figure 2.3(a) is
also a path, but the walk shown in Figure 2.3(b) is not because it repeats node 2 twice.
We can partition the arcs of a path into two groups: forward arcs and backward arcs.
An arc (i, j) in the path is aforward arc if the path visits node i prior to visiting node
j, and is a backward arc otherwise. For example, in the path shown in Figure 2.3(a),
the arcs (1, 2) and (5, 7) are forward arcs and the arc (5, 2) is a backward arc.

Directed Path: A directed path is a directed walk without any repetition of nodes. In other
words, a directed path has no backward arcs. We can store a path (or a directed path)
easily within a computer by defining a predecessor index pred(j) for every node
j in the path. If i and j are two consecutive nodes on the path (along its orientation),
predU) = i. For the path 1-2-5-7 shown in Figure 2.3(a), pred(7) = 5, pred(5) = 2,
pred(2) = 1, and pred(1) = O. (Frequently, we shall use the convention of setting the
predecessor index of the initial node of a path equal to zero to indicate the beginning
of the path.) Notice that we cannot use predecessor indices to store a walk since a
walk may visit a node more than once, and a single predecessor index of a node cannot
store the multiple predecessors of any node that a walk visits more than once.

Cycle: A cycle is a path;, - i2 - ... - ir together with the arc (in id or (i" ir)' We shall
often refer to a cycle using the notation i l - ;2 - ... - ir - it. Just as we did for paths,
we can define forward and backward arcs in a cycle. In Figure 2.4(a) the arcs (5, 3)
and (3, 2) are forward arcs and the arc (5, 2) is a backward arc of the cycle 2-5-3.

26 Paths, Trees, and Cycles Chap. 2

Directed Cycle: A directed cycle is a directed path i l - i2 - ... - ir together with the arc
(ir, it>. The graph shown in Figure 2.4(a) is a cycle, but not a directed cycle; the graph
shown in Figure 2.4(b) is a directed cycle.

~ .

.......•.•. ':.: •... I ... ' •. ' ... : •.•.. '.'.' ..• : .•..••. '...... ~(i: ... : .•. : .•..•• ,1 ...••. : •....... : .•. '•• ' •...• '. ~ .. ,... ~

:1: .. !~

<a) <b) Figure 1.4 Examples of cycles.

Acyclic Graph: A graph is a acyclic if it contains no directed cycle.

Connectivity: We will say that two nodes i and j are connected if the graph contains at least
one path from node i to node j. A graph is connected if every pair of its nodes is
connected~ otherwise, the graph is disconnected. We refer to the maximal connected
subgraphs of a disconnected network as its components. For instance, the graph shown
in Figure 2.5(a) is connected, and the graph shown in Figure 2.5(b) is disconnected.
The latter graph has two components consisting of the node sets {I, 2, 3, 4} and {5, 6}.
In Section 3.4 we describe a method for determining whether a graph is connected or
not, and in Exercise 3.41 we discuss a method for identifying all components of a graph.

<a) (b)

Figure 1.S (a) Connected and (b) disconnected graphs.

Strong Connectivity: A connected graph is strongly connected if it contains at least one directed
path from every node to every other node. In Figure 2.5(a) the component [see Figure
2.5(b») defined on the node set {l, 2, 3, 4} is strongly connected; the component defined
by the node set {5, 6} is not strongly connected because it contains no directed path
from node 5 to node 6. In Section 3.4 we describe a method for determining whether
or not a graph is strongly connected.

Cut: A cut is a partition of the node set N into two parts, Sand 5 = N - S. Each cut defines
a set of arcs consisting of those arcs that have one endpoint in S and another endpoint
in 5. Therefore, we refer to this set of arcs as a cut and represent it by the notation
[S, 51. Figure 2.6 illustrates a cut with S = {l, 2, 3} and 5 = {4, 5, 6, 7}. The set of
arcs in this cut are {(2, 4), (5, 2), (5, 3), (3, 6)}.

Sec. 2.2 Notation and Definitions 27

Figure 2.6 Cut.

s-t Cut: ~n s-t cut is defined with respect to two disti~uished nodes sand t, and is a cut
[S, S] satisfying the property that s E Sand t E S. For instance, if s = 1 and t = 6,
the cut depicted in Figure 2.6 is an s-t cut; but if s = 1 and t = 3, this cut is not an
s-t cut.

Figure 2.7 Example of two trees.

Tree. A tree is a connected graph that contains no cycle. Figure 2.7 shows two examples of
trees.

A tree is a very important graph theoretic concept that arises in a variety of
network flow algorithms studied in this book. In our subsequent discussion in later
chapters, we use some of the following elementary properties of trees.

Property 2.2
(a) A tree on n nodes contains exactly n - 1 arcs.
(b) A tree has at least two leaf nodes (i.e., nodes with degree O.
(c) Every two nodes of a tree are connected by a unique path.

Proof. See Exercise 2.13.

Forest: A graph that contains no cycle is a forest. Alternatively, a forest is a collection of
trees. Figure 2.8 gives an example of a forest.

28 Paths, Trees, and Cycles Chap. 2

Figure 2.8 Forest.

Subtree: A connected subgraph of a tree is a subtree.
Rooted Tree: A rooted tree is a tree with a specially designated node, called its root; we

regard a rooted tree as though it were hanging from its root. Figure 2.9 gives an instance
of a rooted tree; in this instance, node 1 is the root node.

Figure 2.9 Rooted tree.

We often view the arcs in a rooted tree as defining predecessor-successor (or
parent-child) relationships. For example, in Figure 2.9, node 5 is the predecessor
of nodes 6 and 7, and node 1 is the predecessor of nodes 2, 4, and 5. Each node i
(except the root node) has a unique predecessor, which is the next node on the
unique path in the tree from that node to the root; we store the predecessor of node
i using a predecessor index pred(i). If j = pred(i), we say that node j is the pred
ecessor of node i and node i is a successor of node j. These predecessor indices
uniquely define a rooted tree and also allow us to trace out the unique path from
any node back to the root. The descendants of a node i consist of the node itself,
its successors, successors of its successors, and so on. For example, in Figure 2.9
the node set {5, 6, 7, 8} is the set of descendants of node 5. We say that a node is
an ancestor of all of its descendants. For example, in the same figure, node 2 is an
ancestor of itself and node 3.

In this book we occasionally use two special type of rooted trees, called a
directed in-tree and a directed out-tree.

Directed·Out· Tree: A tree is a directed out-tree routed at node s if the unique path in the tree
from node s to every other node is a directed path. Figure 2.1O(a) shows an instance
of a directed out-tree rooted at node 1. Observe that every node in the directed out
tree (except node 1) has indegree 1.

Sec. 2.2 Notation and Definitions 29

<a) (b)

Figure 2.10 Instances of directed out-tree and directed in-tree.

Directed-In-Tree: A tree is a directed in-tree routed at node s if the unique path in the tree
from any node to node s is a directed path. Figure 2.1O(b) shows an instance of a directed
in-tree rooted at node 1. Observe that every node in the directed in-tree (except node
1) has outdegree 1.

Spanning Tree: A tree T is a spanning tree of G if T is a spanning subgraph of G. Figure 2.11
shows two spanning trees of the graph shown in Figure 2.1. Every spanning tree of a
connected n-node graph G has (n - 1) arcs. We refer to the arcs belonging to a spanning
tree T as tree arcs and arcs not belonging to T as nontree arcs.

2

<a) (b)

Figure 2.11 Two spanning trees of the network in Figure 2.1.

Fundamental Cycles: Let T be a spanning tree of the graph G. The addition of any nontree
arc to the spanning tree T creates exactly one cycle. We refer to any such cycle as a
fundamental cycle of G with respect to the tree T. Since the network contains m -
n + 1 nontree arcs, it has m - n + 1 fundamental cycles. Observe that if we delete
any arc in a fundamental cycle, we again obtain a spanning tree.

Fundamental Cuts: Let T be a spanning tree of the graph G. The deletion of any tree arc of
the spanning tree T produces a disconnected graph containing two subtrees Tl and T2 •

Arcs whose endpoints belong to the different subtrees constitute a cut. We refer to any
such cut as a fundamental cut of G with respect to the tree T. Since a spanning tree
contains n - 1 arcs, the network has n - 1 fundamental cuts with respect to any tree.
Observe that when we add any arc in the fundamental cut to the two subtrees Tl and
T2 , we again obtain a spanning tree.

30 Paths, Trees, and Cycles Chap. 2

Bipartite Graph: A graph G = (N, A) is a bipartite graph if we can partition its node set into
two subsets NJ and N2 so that for each arc (i,}) in A either (i) i E NJ and} E N 2, or
(ii) i E N2 and} EN]. Figure 2.12 gives two examples of bipartite graphs. Although it
might not be immediately evident whether or not the graph in Figure 2.12(b) is bipartite,
if we define NJ = {l, 2, 3, 4} and N2 = {5, 6, 7, 8}, we see that it is.

11---------~

~--------------~ 2

(8) (b)
Figure 2.12 Examples of bipartite
graphs.

Frequently, we wish to discover whether or not a given graph is bipartite.
Fortunately, there is a very simple method for resolving this issue. We discuss this
method in Exercise 3.42, which is based on the following well-known characteri
zation of bipartite graphs.

Property 2.3. A graph G is a bipartite graph if and only if every cycle in G
contains an even number of arcs.

Proof See Exercise 2.21.

Definitions for undirected networks. The definitions for directed net
works easily translate into those for undirected networks. An undirected arc (i, j)
has two endpoints, i and j, but its tail and head nodes are undefined. If the network
contains the arc (i, j), node i is adjacent to node j, and node j is adjacent to node i.
The arc adjacency list (as well as the node adjacency list) is defined similarly except
that arc (i, j) appears in A (i) as well as A(j). Consequently, LiEN I AU) I = 2m.

The degree of a node is the number of nodes adjacent to node i. Each of the graph
theoretic concepts we have defined so far-walks, paths, cycles, cuts and trees
has essentially the same definition for undirected networks except that we do not
distinguish between a path and a directed path, a cycle and a directed cycle, and so
on.

'.8 NETWORK REPRESENTATIONS

The performance of a network algorithm depends not only on the algorithm, but also
on the manner used to represent the network within a computer and the storage
scheme used for maintaining and updating the intermediate results. By representing

Sec. 2.3 Network Representations 31

a network more cleverly and by using improved data structures, we can often im
prove the running time of an algorithm. In this section we discuss some popular
ways of representing a network. In representing a network, we typically need to
store two types of information: (1) the network topology, that is, the network's node
and arc structure; and (2) data such as costs, capacities, and supplies/demands as
sociated with the network's nodes and arcs. As we will see, usually the scheme we
use to store the network's topology will suggest a natural way for storing the as
sociated node and arc information. In this section we describe in detail represen
tations for directed graphs. The corresponding representations for undirected net
works should be apparent to the reader. At the end of the section, however, we
briefly discuss representations for undirected networks.

Node-Arc Incidence Matrix

The node-arc incidence matrix representation, or simply the incidence matrix rep
resentation, represents a network as the constraint matrix of the minimum cost flow
problem that we discussed in Section 1.2. This representation stores the network as
an n x m matrix .N which contains one row for each node of the network and one
column for each arc. The column corresponding to arc (i,}) has only two nonzero
elements: It has a + 1 in the row corresponding to node i and a-I in the row
corresponding to node}. Figure 2.14 gives this representation for the network shown
in Figure 2.13.

0) (ell' u) ·0
(15,40)

2

(25,30)

(45, 10)
(35,50)

(35,50)

3
(25,20) Figure 2.13 Network example.

(I, 2) (I, 3) (2, 4) (3, 2) (4, 3) (4, 5) (5, 3) (5, 4)

0 0 0 0 0 0

2 -I 0 -I 0 0 0 0

3 0 -1 0 -1 0 -1 0

4 0 0 -I 0 0 -1

5 0 0 0 0 0 -1

Figure 2.14 Node-arc incidence matrix of the network example.

32 Paths, Trees, and Cycles Chap. 2

The node-arc incidence matrix has a very special structure: Only 2m out of
its nm entries are nonzero, all of its nonzero entries are + 1 or - 1, and each column
has exactly one + 1 and one -1. Furthermore, the number of + 1 's in a row equals
the outdegree of the corresponding node and the number of - 1 's in the row equals
the indegree of the node.

Because the node-arc incidence matrix .N' contains so few nonzero coefficients,
the incidence matrix representation of a network is not space efficient. More efficient
schemes, such as those that we consider later in this section would merely keep
track of the nonzero entries in the matrix. Because of its inefficiency in storing the
underlying network topology, use of the node-arc incidence matrix rarely produces
efficient algorithms. This representation is important, however, because it represents
the constraint matrix of the minimum cost flow problem and because the node-arc
incidence matrix possesses several interesting theoretical properties. We study some
of these properties in Sections 11.11 and 11.12.

Node-Node Adjacenoy Matrix

The node-node adjacency matrix representation, or simply the adjacency matrix
representation, stores the network as an n x n matrix 71f. = {hu}. The matrix has a
row and a column corresponding to every node, and its ijth entry hu equals 1 if
(i, j) E A and equals 0 otherwise. Figure 2.15 specifies this representation for the
network shown in Figure 2.13. If we wish to store arc costs and capacities as well
as the network topology, we can store this information in two additional n x n
matrices, <f6 and OU.

The adjacency matrix has n 2 elements, only m of which are nonzero. Conse
quently, this representation is space efficient only if the network is sufficiently dense;
for sparse networks this representation wastes considerable space. Nevertheless,
the simplicity of the adjacency representation permits us to use it to implement most
network algorithms rather easily. We can determine the cost or capacity of any arc
(i, j) simply by looking up the ijth element in the matrix <f6 or OU. We can obtain the
arcs emanating from node i by scanning row i: If the jth element in this row has a
nonzero entry, (i, j) is an arc of the network. Similarly, we can obtain the arcs
entering node j by scanning columnj: If the ith element of this column has a nonzero
entry, (i,j) is an arc of the network. These steps permit us to identify all the outgoing
or incoming arcs of a node in time proportional to n. For dense networks we can
usually afford to spend this time to identify the incoming or outgoing arcs, but for

2 3 4 ,
0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0
Figure 2.1S Node-node adjacency

5 0 0 0 matrix of the network example.

Sec. 2.3 Network Representations 33

sparse networks these steps might be the bottleneck operations for an algorithm.
The two representations we discuss next permit us to identify the set of outgoing
arcs A(i) of any node in time proportional to 1 A(i) I.

Adjacency Lists

Earlier we defined the arc adjacency list A(i) of a node i as the set of arcs emanating
from that node, that is, the set of arcs (i, j) E A obtained as j ranges over the nodes
of the network. Similarly, we defined the node adjacency list of a node i as the set
of nodes j for which (i, j) E A. The adjacency list representation stores the node
adjacency list of each node as a singly linked list (we refer the reader to Appendix
A for a description of singly linked lists). A linked list is a collection of cells each
containing one or more fields. The node adjacency list for node i will be a linked
list having 1 A (i) 1 cells and each cell will correspond to an arc (i, j) EA. The cell
corresponding to the arc (i, j) will have as many fields as the amount of information
we wish to store. One data field will store nodej. We might use two other data fields
to store the arc cost Cij and the arc capacity Uij. Each cell will contain one additional
field, called the link, which stores a pointer to the next cell in the adjacency list. If
a cell happens to be the last cell in the adjacency list, by convention we set its link
to value zero.

Since we need to be able to store and access n linked lists, one for each node,
we also need an array of pointers that point to the first cell in each linked list. We
accomplish this objective by defining an n-dimensional array, first, whose element
first(i) stores a pointer to the first cell in the adjacency list of node i. If the adjacency
list of node i is empty, we set first(i) = O. Figure 2.16 specifies the adjacency list
representation of the network shown in Figure 2. 13.

In this book we sometimes assume that whenever arc (i,j) belongs to a network,
so does the reverse arc (j, i). In these situations, while updating some information
about arc (i, j), we typically will also need to update information about arc (j, i).
Since we will store arc (i, j) in the adjacency list of node i and arc (j, i) in the
adjacency list of node j, we can carry out any operation on both arcs efficiently if
we know where to find the reversal (j, i) of each arc (i,j). We can access both arcs

2

3

4

5

34

-+---.13[151301 :f-.I 5 1451601 0 l

-+--+1'31251201 I .14 (35150(0 1 Figure 2.16 Adjacency list
representation of the network example.

Paths, Trees, and Cycles Chap. 2

easily if we define an additional field, mate, that contains a pointer to the cell con
taining data for the reversal of each arc. The mate of arc (i, j) points to the cell of
arc (j, i) and the mate of arc (j, i) points to the cell of arc (i, j).

Forward and Reverse Star Representations

The forward star representation of a network is similar to the adjacency list rep
resentation in the sense that it also stores the node adjacency list of each node. But
instead of maintaining these lists as linked lists, it stores them in a single array. To
develop this representation, we first associate a unique sequence number with each
arc, thus defining an ordering of the arc list. We number the arcs in a specific order:
first those emanating from node 1, then those emanating from node 2, and so on.
We number the arcs emanating from the same node in an arbitrary fashion. We then
sequentially store information about each arc in the arc list. We store the tails, heads,
costs, and capacities of the arcs in four arrays: tail, head, cost, and capacity. So if
arc (i, j) is arc number 20, we store the tail, head, cost, and capacity data for this
arc in the array positions tail(20), head(20), cost(20), and capacity(20). We also main
tain a pointer with each node i, denoted by point(i), that indicates the smallest
numbered arc in the arc list that emanates from node i. [If node i has no outgoing
arcs, we set point(i) equal to point(i + 1).] Therefore, the forward star representation
will store the outgoing arcs of node i at positions point(i) to (point(i + 1) - 1) in
the arc list. Ifpoint(i) > point(i + 1) - 1, node i has no outgoing arc. For consistency,
we set point(l) = 1 and point(n + 1) = m + 1. Figure 2. 17(a) specifies the forward
star representation of the network given in Figure 2.13.

The forward star representation provides us with an efficient means for de
termining the set of outgoing arcs of any node. To determine, simultaneously, the
set of incoming arcs of any node efficiently, we need an additional data structure
known as the reverse star representation. Starting from a forward star representa
tion, we can create a reverse star representation as follows. We examine the nodes
i = 1 to n in order and sequentially store the heads, tails, costs, and capacities of
the incoming arcs at node i. We also maintain a reverse pointer with each node i,
denoted by rpoint(i), which denotes the first position in these arrays that contains
information about an incoming arc at node i. [If node i has no incoming arc, we set
rpoint(i) equal to rpoint(i + 1).] For sake of consistency, we set rpoint(l) = 1
and rpoint(n +.1) = m + 1. As before, we store the incoming arcs at node i at posi
tions rpoint(i) to (rpoint(i + 1) - 1). This data structure gives us the representation
shown in Figure 2.17(b).

Observe that by storing both the forward and reverse star representations, we
will maintain a significant amount of duplicate information. We can avoid this du
plication by storing arc numbers in the reverse star instead of the tails, heads, costs,
and capacities of the arcs. As an illustration, for our example, arc (3, 2) has arc
number 4 in the forward star representation and arc (1, 2) has an arc number 1. So
instead of storing the tails, cos~s, and capacities of the arcs, we simply store arc
numbers; and once we know the arc numbers, we can always retrieve the associated
information from the forward star representation. We store arc Qumbers in an array
trace of size m. Figure 2.18 gives the complete trace array of our example.

In our discussion of the adjacency list representation, we noted that sometimes

Sec. 2.3 Network Representations 3S

point tail

I I

2 3 2 I

3 4 3 2

4 5 4 3

5 7 5 4

6 9 6 4

7 5

8 5

(a)

cost capacity tail

45 10 3

25 30 I

35 50 I

15 30 4

25 20 5

35 50 5

15 40 2

45 60 4

(b)

head

2

3

4

2

3

5

3

4

head

2

2 2

3 3

3 4

3 5

4 6

4 7

5 8

cost capacity

25 30

35 50

15 40

45 10

15 30

45 60

25 20

35 50

rpoint

I

I 2

3 3

6 4

8 5

9 6

Figure 2.17 (a) Forward star and (b) re
verse star representations of the network
example.

while updating data for an arc (i, j), we also need to update data for its reversal
(j, i). Just as we did in the adjacency list representation, we can accomplish this
task by defining an array mate of size m, which stores the arc number of the reversal
of an arc. For example, the forward star representation shown in Figure 2.17(a)
assigns the arc number 6 to arc (4, 5) and assigns the arc number 8 to arc (5, 4).

36 Paths. Trees. and Cycles Chap. 2

2

3

4

5

6

point tail head cost capacity trace rpoint

1 1 2 25 30 4 1

3 2 1 3 35 50 1 2 1

4 3 2 4 15 40 2 3 3

5 4 3 2 45 10 5 4 6

7 5 4 3 15 30 7 5 8

9 6 4 5 45 60 8 6 9

7 5 3 25 20 3 7

8 5 4 35 50 6 8

Fll1lre 2.18 Compact forward and reverse star representation of the network ex
ample.

2

3

4

5

6

Therefore, if we were using the mate array, we would set mate(6) = 8 and mate(8)
= 6.

Comparison of Forward Star and Adjacenoy List
Bepresentations

The major advantage of the forward star representation is its space efficiency. It
requires less storage than does the adjacency list representation. In addition, it is
much easier to implement in languages such as FORTRAN that have no natural
provisions for using linked lists. The major advantage of adjacency list representation
is its ease of implementation in languages such as Pascal or C that are able to ma
nipulate linked lists efficiently. Further, using an adjacency list representation, we
can add or delete arcs (as well as nodes) in constant time. On the other hand, in the
forward star representation these steps require time proportional to m, which can
be too time consuming.

Storing Parallel Arcs

In this book we assume that the network does not contain parallel arcs; that is, no
two arcs have the same tail and head nodes. By allowing parallel arcs, we encounter
some notational difficulties, since (i, j) will not specify the arc uniquely. For networks
with parallel arcs, we need more complex notation to specify arcs, arc costs, and
capacities. This difficulty is merely notational, however, and poses no problems
computationally: both the adjacency list representation and the forward star rep
resentation data structures are capable of handling parallel arcs. If a node i has two

Sec. 2.3 Network Representations 37

outgoing arcs with the same head node but (possibly) different costs and capacities,
the linked list of node i will contain two cells corresponding to these two arcs.
Similarly, the forward star representation allows several entries with the same tail
and head nodes but different costs and capacities.

Representing Undirected Networks

We can represent undirected networks using the same representations we have just
described for directed networks. However, we must remember one fact: Whenever
arc (i, j) belongs to an undirected network, we need to include both of the pairs
(i,j) and (j, i) in the representations we have discussed. Consequently, we will store
each arc (i, j) of an undirected network twice in the adjacency lists, once in the list
for node i and once in the list for node j. Some other obvious modifications are
needed. For example, in the node-arc incidence matrix representation, the column
corresponding to arc (i, j) will have + 1 in both rows i and j. The node-node ad
jacency matrix will have + 1 in position hij and h j ; for every arc (i, j) E A. Since
this matrix will be symmetric, we might as well store half of the matrix. In the
adjacency list representation, the arc (i, j) will be present in the linked lists of both
nodes i and j. Consequently, whenever we update information for one arc, we must
update it for the other arc as well. We can accomplish this task by storing for each
arc the address of its other occurrence in an additional mate array. The forward star
representation requires this additional storage as well. Finally, observe that undi
rected networks do not require the reverse star representation.

2.4 NETWORK TRANSFORMATIONS

Frequently, we require network transformations to simplify a network, to show
equivalences between different network problems, or to state a network problem in
a standard form required by a computer code. In this section, we describe some of
these important transformations. In describing these transformations, we assume
that the network problem is a minimum cost flow problem as formulated in Section
1.2. Needless to say, these transformations also apply to special cases of the min
imum cost flow problem, such as the shortest path, maximum flow, and assignment
problems, wherever the transformations are appropriate. We first recall the for
mulation of the minimum cost flow problem for convenience in discussing the net
work transformations.

Minimize L CijXij
(i,j)EA

subject to

L xij-
{j: (i.j)EA}

38

(2.1a)

L Xji = b(i) for all i E N, (2.1b)
{j:(J.;)EA}

for all (i, j) E A. (2.1c)

Paths, Trees, and Cycles Chap. 2

Undirected Aros to Directed Aros

Sometimes minimum cost flow problems contain undirected arcs. An undirected arc
(i, j) with cost Cij 2: 0 and capacity Uij permits flow from node i to node j and also
from node j to node i; a unit of flow in either direction costs C ij, and the total flow
(i.e., from node ito nodej plus from nodej to node i) has an upper bound Uij. That
is, the undirected model has the constraint Xij + Xji :s Uij and the term CijXij + CijXji

in the objective function. Since the cost Cij 2: 0, in some optimal solution one of Xu

and Xji will be zero. We refer to any such solution as non-overlapping.
For notational convenience, in this discussion we refer to the undirected arc

(i, j) as {i, j}. We assume (with some loss of generality) that the arc flow in either
direction on arc {i, j} has a lower bound of value 0; our transformation is not valid if
the arc flow has a nonzero lower bound or the arc cost Cij is negative (why?). To
transform the undirected case to the directed case, we replace each undirected arc
{"~ j} by two directed arcs, (i, j) and (j, i), both with cost Cij and capacity Uij. To
establish the correctness of this transformation, we show that every non-overlapping
flow in the original network has an associated flow in the transformed network with
the same cost, and vice versa. If the undirected arc {i, j} carries ex units of flow from
node i to node j, in the transformed network Xij :::; ex and Xji :::; O. If the undirected
arc {i, j} carries ex units of flow from node j to node i, in the transformed network
Xij :::; 0 and Xji :::; ex. Conversely, if Xij and Xji are the flows on arcs (i, j) and (j, i)
in the directed network, Xij - Xji or Xji - Xij is the associated flow on arc {i, j} in
the undirected network, whichever is positive. If Xij - Xji is positive, the flow from
node i to node j on arc {i, j} equals this amount. If Xji - Xij is positive, the flow from
nodej to node i on arc {i,j} equals Xj; - Xij. In either case, the flow in the opposite
direction is zero. If Xji - Xij is zero, the flow on arc {i, j} is O.

Removing Nonzero Lower Bounds

If an arc (i, j) has a nonzero lower bound lij on the arc flow Xij, we replace Xij by
xij + lij in the problem formulation. The flow bound constraint then becomes lij :s
xi.; + lij :S Uij, or 0 :S x~· :S (uij - lij). Making this substitution in the mass balance
constraints decreases b(i) by lij units and increases b(j) by lij units [recall from
Section 1.2 that the flow variable Xij appears in the mass balance constraint (2.1b)
of only nodes i and j]. This substitution changes the objective function value by a
constant that we can record separately and then ignore when solving the problem.
Figure 2.19 illustrates this transformation graphically. We can view this transfor
mation as a two-step flow process: We begin by sending lij units of flow on
arc (i, j), which decreases b(i) by lij units and increases b(j) by lij units, and
then we measure (by the variable xI;) the incremental flow on the arc beyond the
flow value lij.

bU) b(J,) b(i) -I'j (I) b(i) +, lij
Ci)1---("';C'}-' u....,;.'i_) _.~(j) -+ Q)_ Cij, u:j- ij Cl) Figure 2.t9 Removing nonzero lower

" Xi} xij bounds.

Sec. 2.4 Network Transformations 39

Arc Reversal

The arc reversal transformation is typically used to remove arcs with negative costs.
Let Uu denote the capacity of the arc (i, j) or an upper bound on the arc's flow if
the arc is uncapacitated. In this transformation we replace the variable Xu by Uu -
Xji. Doing so replaces the arc (i, j), which has an associated cost cu, by the arc
(j, i) with an associated cost - Cu. As shown in Figure 2.20, the transformation has
the following network interpretation. We first send Uu units of flow on the arc (which
decreases b(i) by Uu units and increases b(j) by Uu units) and then we replace arc
(i, j) by arc (j, i) with cost - Cu. The new flow Xji measures the amount of flow we
"remove" from the "full capacity" flow of uu.

Removing Arc Capacities

Figure 1.10 Arc reversal
transformation.

If an arc (i, j) has a positive capacity Ui.h we can remove the capacity, making the
arc uncapacitated, by using the following idea: We introduce an additional node so
that the capacity constraint on arc (i, j) becomes the mass balance constraint of the
new node. Suppose that we introduce a slack variable Sij 2! 0, and write the capacity
constraint Xu s Uu in an equality form as Xu + Su = uu. Multiplying both sides of
the equality by - 1, we obtain

-Xu - Su = -uu (2.2)

We now treat constraint (2.2) as the mass balance constraint of an additional
node k. Observe that the flow variable Xij now appears in three mass balance con
straints and Sij in only one. By subtracting (2.2) from the mass balance constraint
of node j (which contains the flow variable Xu with a negative sign), we assure that
each of Xu and Su appears in exactly two constraints-in one with a positive sign
and in the other with a negative sign. These algebraic manipulations correspond to
the network transformation shown in Figure 2.21.

b(i)
(cjj• U jj)

b{j) b(i)
(clj.oo)

-Ujj (0. 00)
b(j)+u ij

-+
X;j Xij S;J

Figure 1.21 Transformation for removing an arc capacity.

To see the relationships between the flows in the original and transformed
networks, we make the following observations. If Xij is the flow on arc (i, j) in the
original network, the corresponding flow in the transformed network is Xlk = Xu and
XJk = Uu - Xu. Notice that both the flows X and x' have the same cost. Similarly,
a flow Xik, XJk in the transformed network yields a flow Xu = Xik of the same cost in
the original network. Furthermore, since Xlk + X}k = Uu and xlk and X}k are both
nonnegative, Xu = Xlk S Uu. Therefore, the flow Xu satisfies the arc capacity, and
the transformation does correctly model arc capacities.

40 Paths, Trees, and Cycles Chap. 2

Suppose that every arc in a given network G = (N, A) is capacitated. If we
apply the preceding transformation to every arc, we obtain a bipartite uncapacitated
network G' (see Figure 2.22 for an illustration). In this network (1) each node ion
the left corresponds to a node i E N of the original network and has a supply equal
to b(i) + L{k:(k.i)EA}Uki' and (2) each node i-j on the right corresponds to an arc
(i,j) E A in the original network and has a demand equal to Uij; this node has exactly
two incoming arcs, originating at nodes i and j from the left. Consequently, the
transformed network has (n + m) nodes and 2m arcs.

b(i) b(j)

(lr--_(_c'J_' u_ij_> _~. (j)

o
(8)

-20

b(i) b(j)

(D_----=ciJ_. ~.(f)

(b)

Figure 2.22 Transformation for
removing arc capacities: (a) original
network; (b) transformed network with
uncapacitated arcs.

At first glance we might be tempted to believe that this technique for removing
arc capacities would be unattractive computationally since the transformation sub
stantially increases the number of nodes in the network. However, on most occasions
the original and transformed networks have algorithms with the same complexity,
because the transformed network possesses a special structure that permits us to
design more efficient algorithms.

Node Splitting

The node splitting transformation splits each node i into two nodes i' and i" cor
responding to the node's output and input functions. This transformation replaces
each original arc (i, j) by an arc (i', j") of the same cost and capacity. It also adds
an arc (i", i') of zero cost and with infinite capacity for each i. The input side of

Sec. 2.4 Network Transformations 41

node i (i.e., node i") receives all the node's inflow, the output side (i.e., node i')
sends all the node's outflow, and the additional arc (i", i') carries flow from the input
side to the output side. Figure 2.23 illustrates the resulting network when we carry
out the node splitting transformation for all the nodes of a network. We define the
supplies/demands of nodes in the transformed network in accordance with the fol
lowing three cases:

1. If b(i) > 0, then b(i") = b(i) and b(i') = O.
2. If b(i) < 0, then bU") = 0 and b(i') = b(i).

3. If b(i) = 0, then b(i') = b(i") = o.

It is easy to show a one-to-one correspondence between a flow in the original
network and the corresponding flow in the transformed network; moreover, the flows
in both networks have the same cost.

The node splitting transformation permits us to model numerous applications
in a variety of practical problem domains, yet maintain the form of the network flow
model that we introduced in Section 1.2. For example, we can use the transformation
to handle situations in which nodes as well as arcs have associated capacities and
costs. In these situatior ,each flow unit passing through a node i incurs a cost Cj

and the maximum flow that can pass through the node is Uj. We can reduce this
problem to the standard' 'arc flow" form of the network flow problem by performing
the node splitting transformation and letting Ci and Uj be the cost and capacity of arc

42

6 1

3

b(i) b(j)

(0 e
'j ·0

0
4

4

5

3 r-----~~(5

o -8
(a)

3

o 0 6

(b)

Figure 2.23 Node splitting transformation: (a) original network; (b) transformed net
work.

Paths, Trees, and Cycles Chap. 2

(i", i'). We shall study more applications of the node splitting transformation in
Sections 6.6 and 12.7 and in several exercises.

Working with Reduoed Costs

In many of the network flow algorithms discussed in this book, we measure the cost
of an arc relative to "imputed" costs associated with its incident nodes. These
imputed costs typically are intermediate data that we compute within the context
of an algorithm. Suppose that we associate with each node i E N a number 7f(i),
which we refer to as the potential of that node. With respect to the node potentials
1T = (1T(1), 1T(2), ... , 1T(n», we define the reduced cost cij of an arc (i, j) as

cij = Cij - 1T(i) + 7f(j). (2.3)

In many algorithms discussed later, we often work with reduced costs cij
instead of the actual costs Cij' Consequently, it is important to understand the
relationship between the objective functions z(7f) = ~(i.j)EA cijXij and z(O) =

LU.})EA CijXij. Suppose, initially, that 7f = 0 and we then increase the node potential
of node k to 7f(k). The definition (2.3) of reduced costs implies that this change
reduces the reduced cost of each unit of flow leaving node k by 7f(k) and increases
the reduced cost of each flow unit entering node k by 7f(k). Thus the total decrease
in the objective function equals 7f(k) times the outflow of node k minus the inflow
of node k. By definition (see Section 1.2), the outflow minus inflow equals the supply/
demand of the node. Consequently, increasing the potential of node k by 7f(k) de
creases the objective function value by 7f(k)b(k) units. Repeating this argument
iteratively for each node establishes that

z(O) - z(7f) = ~ 7f(i)b(i) = 7fb.
iEN

For a given node potential 7f, 7fb is a constant. Therefore, a flow that minimizes
z(7f) also minimizes z(O). We formalize this result for easy future reference.

Property 2.4. Minimum cost flow problems with arc costs Cij or cij have the
same optimal solutions. Moreover, z(7f) = z(O) - 7fb.

We next study the effect of working with reduced costs on the cost of cycles
and paths. Let W be a directed cycle in G. Then

~ cij = ~ (Cij - 7f(i) + 7f(j»,
(i.}}E W (i.})E W

~ Cij + ~ (7f(j) - 7f(i»,
(i,})E W (i,})E W

::: ~ Cij'
(i,}}E W

The last equality follows from the fact that for any directed cycle W, the expres
sion L(i,}}EW (7f(j) - 7f(i» sums to zero because for each node i in the cycle W,

1T(i) occurs once with a positive sign and once with a negative sign. Similarly, if P

Sec. 2.4 Network Transformations 43

is a directed path from node k to node I, then

L cll = L (cij - 7T(i) + 7T(j»,
(i,})EP (i,})EP

L Cij - L (7T(i) - 7T(j»,
(i,})EP (i,J)EP

L Cij - 7T(k) + 7T(l),
(i,})EP

because all 7T(') corresponding to the nodes in the path, other than the terminal nodes
k and I, cancel each other in the expression L(i,J)EP (7T(i) - 7T(j». We record these
results for future reference.

Property 2.5
(a) For any directed cycle W and for any node potentials 7T, L(i.j)EW cll =

LU,j)E W Cij.

(b) For any directed path P from node k to node I and for any node potentials 7T,

L(i.})EP cll = L(i,)EP cij - 7T(k) + 7T(l).

Working with Residual Networks

In designing, developing, and implementing network flow algorithms, it is often
convenient to measure flow not in absolute terms, but rather in terms of incremental
flow about some given feasible solution-typically, the solution at some intermediate
point in an algorithm. Doing so leads us to define a new, ancillary network, known
as the residual network, that functions as a "remaining flow network" for carrying
the incremental flow. We show that formulations of the problem in the original
network and in the residual network are equivalent in the sense that they give a one
to-one correspondence between feasible solutions to the two problems that preserves
the value of the cost of solutions.

The concept of residual network is based on the following intuitive idea. Sup
pose that arc (i, j) carries Xu units of flow. Then we can send an additional U;j -
Xu units of flow from node i to node j along arc (i, j). Also notice that we can send
up to Xu units of flow from node j to node i over the arc (i, j), which amounts to
canceling the existing flow on the arc. Whereas sending a unit flow from node i to
node j on arc (i, j) increases the flow cost by Cij units, sending flow from node j to
node i on the same arc decreases the flow cost by Cij units (since we are saving the
cost that we used to incur in sending the flow from node i to node j).

Using these ideas, we define the residual network with respect to a given flow
XO as follows. We replace each arc (i, j) in the original network by two arcs, (i, j)
and (j, 0: the arc (i, j) has cost Cij and residual capacity rij = Uij - xij, and the arc
(j, t) has cost - Cij and residual capacity rJi :: Xu (see Figure 2.24). The residual
network consists of only the arcs with a positive residual capacity. We use the
notation G(XO) to represent the residual network corresponding to the flow xO.

In general, the concept of residual network poses some notational difficulties.
If for some pair i and j of nodes, the network G contains both the arcs (t, j) and

44 Paths, Trees, and Cycles Chap. 2

Figure 2.24 Constructing the residual
network G(xo).

(j, 0, the residual network may contain two (parallel) arcs from node i to node j
with different costs and residual capacities, and/or two (parallel) arcs from node j
to node i with different costs and residual capacities. In these instances, any ref
erence to arc (i, j) will be ambiguous and will not define a unique arc cost and
residual capacity. We can overcome this difficulty by assuming that for any pair of
nodes i and j, the graph G does not contain both arc (i, j) and arc (j, i); then the
residual network will contain no parallel arcs. We might note that this assumption
is merely a notational convenience; it does not impose any loss of generality, because
by suitable transformations we can always define a network that is equivalent to
any given network and that will satisfy this assumption (see Exercise 2.47). However,
we need not actually make this transformation in practice, since the network rep
resentations described in Section 2.3 are capable of handling parallel arcs.

We note further that although the construction and use of the residual network
poses some notational difficulties for the general minimum cost flow problem, the
difficulties might not arise for some special cases. In particular, for the maximum
flow problem, the parallel arcs have the same cost (of zero), so we can merge both
of the parallel arcs into a single arc and set its residual capacity equal to the sum
of the residual capacities of the two arcs. For this reason, in our discussion of the
maximum flow problem, we will permit the underlying network to contain arcs join
ing any two nodes in both directions.

We now show that every flow x in the network G corresponds to a flow x' in
the residual network G(XO). We define the flow x' ~ 0 as follows:

xij - xi; = Xi} - xij, (2.4)

and

xijxi; = o. (2.5)

The condition (2.5) implies that xij and xi; cannot both be positive at the same
time. If Xi} ~ xij, we set xij = (xi) - xij) and xi; = O. Notice that if Xi} :5 Uij, then
xij :5 Uij - xij = 'ij. Therefore, the flow xij satisfies the flow bound constraints.
Similarly, if Xv' < xij, we set xb' = 0 and Xl; = xi;· - Xi}. Observe that 0 :5 Xl; :5 xij
= 'j;, so the flow xi; also satisfies the flow bound constraints. These observations
show that if x is a feasible flow in G, its corresponding flow x I is a feasible flow in
G(XO).

We next establish a relationship between the cost of a flow x in G and the cost
of the corresponding flow x' in G(XO). Let c' denote the arc costs in the residual
network. Then for every arc (i, j) E A, cij = cij and ci; = - Cij' For a flow Xi} on
arc (i, j) in the original network G, the cost of flow on the pair of arcs (i, j) and
(j, 0 in the residual network G(XO) is cijxij + ci;Xl; = cij(xij - xi;) = Ci}Xij -
Ci}xij; the last equality follows from (2.4). We have thus shown that

c'x' = cx - cxo.

Sec. 2.4 Network Transformations 45

Similarly, we can show the converse result that if x' is a feasible flow in the
residual network G(XO), the solution given by Xij = (xu - xJ;) + xij is a feasible flow
in G. Moreover, the costs of these two flows is related by the equality cx =
c' x' + cxo. We ask the reader to prove these results in Exercise 2.48. We summarize
the preceding discussion as the following property.

Property 2.6. A flow x is a feasible flow in the network G if and only if its
corresponding flow x', defined by Xu - xi; = Xij - xij and xuxi; = 0, is feasible in
the residual network G(XO). Furthermore, cx = c ' x' + CXO.

One important consequence of Property 2.6 is the flexibility it provides us.
Instead of working with the original network G, we can work with the residual
network G(XO) for some XC: Once we have determined an optimal solution in the
residual network, we can immediately convert it into an optimal solution in the
original network. Many of the maximum flow and minimum cost flow algorithms
discussed in the subsequent chapters use this result.

2.1S SUMMARY

In this chapter we brought together many basic definitions of network flows and
graph theory and presented basic notation that we will use throughout this book.
We defined several common graph theoretic terms, including adjacency lists, Walks,
paths, cycles, cuts, and trees. We also defined acyclic and bipartite networks.

Although networks are often geometric entities, optimization algorithms re
quire computer representations of them. The following four representations are the
most common: (1) the node-arc incidence matrix, (2) the node-node adjacency
matrix, (3) adjacency lists, and (4) forward and reverse star representations. Figure
2.25 summarizes the basic features of these representations.

Network
representations Storage space Features

N ode-arc incidence nm I. Space inefficient
matrix 2. Too expensive to manipulate

3. Important because it represents the constraint
matrix of the minimum cost flow problem

Node-node kn2 for some constant k I. Suited for dense networks
adjacency matrix 2. Easy to implement

Adjacency list kJn + k2m for some I. Space efficient
constants kJ and kl 2. Efficient to manipulate

3. Suited for dense as well as sparse networks

Forward and k3n + k4m for some I. Space efficient
reverse star constants k3 and k4 2. Efficient to manipulate

3. Suited for dense as well as sparse networks

Figure 1.lS Comparison of various network representations.

46 Paths, Trees, and Cycles Chap. 2

The field of network flows is replete with transformations that allow us to
transform one problem to another, often transforming a problem that appears to
include new complexities into a simplified "standard" format. In this chapter we
described some of the most common transformations: (1) transforming undirected
networks to directed networks, (2) removing nonzero lower flow bounds (which
permits us to assume, without any loss of generality, that flow problems have zero
lower bounds on arc flows), (3) performing arc reversals (which often permits us to
assume, without any loss of generality, that arcs have nonnegative arc costs), (4)
removing arc capacities (which allows us to transform capacitated networks to un
capacitated networks), (5) splitting nodes (which permits us to transform networks
with constraints and/or cost associated with' 'node flows" into our formulation with
all data and constraints imposed upon arc flows), and (6) replacing costs with reduced
costs (which permits us to alter the cost coefficients, yet retain the same optimal
solutions).

The last transformation we studied in this chapter permits us to work with
residual networks, which is a concept of critical importance in the development of
maximum flow and minimum cost flow algorithms. With respect to an existing flow
x, the residual network G(x) represents the capacity and cost information in the
network for carrying incremental flows on the arcs. As our discussion has shown,
working with residual networks is equivalent to working with the original network.

REFERENCE NOTES

The applied mathematics, computer science, engineering, and operations research
communities have developed no standard notation of graph concepts; different re
searchers and authors use different names to denote the same object (e.g., some
authors refer to nodes as vertices or points). The notation and definitions we have
discussed in Section 2.2 and adopted throughout this book are among the most
popular in the literature. The network representations and transformation that we
described in Sections 2.3 and 2.4 are part of the folklore; it is difficult to pinpoint
their origins. The books by Aho, Hopcroft, and Ullman [1974], Gondran and Minoux
[1984], and Cormen, Leiserson, and Rivest [1990] contain additional information on
network representations. The classic book by Ford and Fulkerson [1962] discusses
many transformations of network flow problems.

EXERCISES

Note: If any of the following exercises does not state whether a graph is undirected
or directed, assume either option, whichever is more convenient.

2.1 Consider the two graphs shown in Figure 2.26.
(8) List the indegree and outdegree of every node.
(b) Give the node adjacency list of each node. (Arrange each list in the increasing order

of node numbers.)
(c) Specify a directed walk containing six arcs. Also, specify a walk containing eight

arcs.
(d) Specify a cycle containing nine arcs and a directed cycle containing seven arcs.

Chap. 2 Exercises 47

·~--------------~~2

" .14-----------(3

(a) (b)

Figure 2.26 Example networks for Exercises 2.1 to 2.4.

2.2. Specify a spanning tree of the graph in Figure 2.26(a) with six leaves. Specify a cut of
the graph in Figure 2.26(a) containing six arcs.

2.3. For the graphs shown in Figure 2.26, answer the following questions.
(a) Are the graphs acyclic?
(b) Are the graphs bipartite?
(c) Are the graphs strongly connected?

2.4. Consider the graphs shown in Figure 2.26.
(a) Do the graphs contain a directed in-tree for some root node?
(b) Do the graphs contain a directed out-tree for some root node?
(c) In Figure 2.26(a), list all fundamental cycles with respect to the following spanning

tree T = {(I, 5), (I, 3), (2, 5), (4, 7), (7, 5), (7, 9), (5, 8), (6, 8)}.
(d) For the spanning tree given in part (c), list all fundamental cuts. Which of these

are the s-t cuts when s = 1 and t = 9?
2.S. (a) Construct a directed strongly connected graph with five nodes and five arcs.

(b) Construct a directed bipartite graph with six nodes and nine arcs.
(c) Construct an acyclic directed graph with five nodes and ten arcs.

2.6. Bridges of Konigsberg. The first paper on graph theory was written by Leonhard Euler
in 1736. In this paper, he started with the following mathematical puzzle: The city of
Konigsburg has seven bridges, arranged as shown in Figure 2.27. Is it possible to start
at some place in the city, cross every bridge exactly once, and return to the starting
place? Either specify such a tour or prove that it is impossible to do so.

Figure 2.27 Bridges of Konigsberg.

48 Paths, Trees, and Cycles Chap. 2

2.7. At the beginning of a dinner party, several participants shake hands with each other.
Show that the participants that shook hands an odd number of times must be even in
number.

2.S. Show that in a directed strongly connected graph containing more than one node, no
node can have a zero indegree or a zero outdegree.

2.9. Suppose that every node in a directed graph has a positive indegree. Show that the
graph must contain a directed cycle.

2.10. Show that a graph G remains connected even after deleting an arc (i, j) if and only if
arc (i, j) belongs to some cycle in G.

2.11. Show that an undirected graph G = (N, A) is connected ifand only if for every partition
of N into subsets NJ and N 2 , some arc has one endpoint in NJ and the other endpoint
in N 2 •

2.12. Let dmin denote the minimum degree of a node in an undirected graph. Show that the
graph contains a path containing at least dmin arcs.

2.13. Prove the following properties of trees.
(a) A tree on n nodes contains exactly (n - 1) arcs.
(b) A tree has at least two leaf nodes (Le., nodes with degree 1).
(e) Every two nodes of a tree are connected by a unique path.

2.14. Show that every tree is a bipartite graph.
2.15. Show that a forest consisting of k components has m = n - k arcs.
2.16. Let dmax denote the maximum degree of a node in a tree. Show that the tree contains

at least dmax nodes of degree 1. (Hint: Use the fact that the sum of the degrees of all
nodes in a tree is 2m = 2n - 2.)

2.17. Let Q be any cut of a connected graph and T be any spanning tree. Show that Q n T
is nonempty.

2.1S. Show that a closed directed walk containing an odd number of arcs contains a directed
cycle having an odd number of arcs. Is it true that a closed directed walk containing
an even number of arcs also contains a directed cycle having an even number of arcs?

2.19. Show that any cycle of a graph G contains an even number of arcs (possibly zero) in
common with any cut of G.

2.20. Let dmin denote the minimum degree of a node in an undirected graph G. Show that if
dmin ~ 2, then G must contain a cycle.

2.21. (a) Show that in a bipartite graph every cycle contains an even number of arcs.
(b) Show that a (connected) graph, in which every cycle contains an even number of

arcs, must be bipartite. Conclude that a graph is bipartite if and only if every cycle
has an even number of arcs.

2.22. The k-color problem on an undirected graph G = (N, A) is defined as follows: Color
all the nodes in N using at most k colors so that for every arc (i, j) E A, nodes i and
j have a different color.
(a) Given a world map, we want to color countries using at most k colors so that the

countries having common boundaries have a different color. Show how to formulate
this problem as a k-color problem.

(b) Show that a graph is bipartite if and only if it is 2-colorable (i.e., can be colored
using at most two colors).

2.23. Two undirected graphs G = (N, A) and G' = (N', A') are said to be isomorphic if we
can number the nodes of the graph G so that G becomes identical to G'. Equivalently,
G is isomorphic to G' if some one-to-one function f maps N onto N' so that (i, j) is
an arc in A if and only if (f(O, f(j» is an arc in A'. Give several necessary conditions
for two undirected graphs to be isomorphic. (Hint: For example, they must have the
same number of nodes and arcs.)

2.24. (a) List all nonisomorphic trees having four nodes.
(b) List all nonisomorphic trees having five nodes. (Hint: There are three such trees.)

Chap. 2 Exercises 49

2.25. For any undirected graph G = (N, A), we define its complement GC = (N, A C) as
follows: If (i, j) E A, then (i, j) e A c, and if (i, j) e A, then (i, j) E A c. Show that if
the graph G is disconnected, its complement G C is connected.

2.26. Let G = (N, A) be an undirected graph. We refer to a subset N, ~ N as independent
if no two nodes in NJ are adjacent. Let J3(G) denote the maximum cardinality of any
independent set of G. We refer to a subset N2 ~ N as a node cover if each arc in A
has at least one of its endpoints in N 2 • Let TJ(G) denote the minimum cardinality of
any node cover G. Show that J3(G) + TJ(G) = n. (Hint: Show that the complement of
an independent set is a node cover.)

2.27. Problem of queens. Consider the problem of determining the maximum number of queens
that can be placed on a chessboard so that none of the queens can be taken by another.
Show how to transform this problem into an independent set problem defined in Ex
ercise 2.26.

2.28. Consider a directed graph G = (N, A). For any subset S ~ N, let neighbor(S) denote
the set of neighbors of S [i.e., neighbor(S) = {j E N:for some i E S, U,j) E A andj
e S}]. Show that G is strongly connected if and only if for every proper nonempty
subset SeN, neighbor(S) # 0.

2.29. A subset N, ~ N of nodes in an undirected graph G = (N, A) is said to be a clique if
every pair of nodes in N, is connected by an arc. Show that the set N) is a clique in
G if and only if NJ is independent in its complement G C

•

2.30. Specify the node-arc incidence matrix and the node-node adjacency matrix for the
graph shown in Figure 2.28.

b(;)
(c,l, u,)

b(j)

CD ·0
-15

(-2, 10)
-10

4
(5, (0)

20 (-1,20) (2, (0)

(3, (0)

3 5
5

(10, (0)
0 Figure 2.28 Network example.

2.31. (a) Specify the forward star representation of the graph shown in Figure 2.28.
(b) Specify the forward and reverse star representations of the graph shown in Figure

2.28.
2.32. Let N denote the node-arc incidence matrix of an undirected graph and let NT denote

its transpose. Let "." denote the operation of taking a product of two matrices. Show
how to interpret the diagonal elements of N . NT?

2.33. Let 'M denote the node-node adjacency matrix of a directed network, and let N denote
the node-arc incidence matrix of this network. Can 'M = N . NT?

2.34. Let 'M be the node-node adjacency matrix of a directed graph G = (N, A). Let 'MT be
the transpose of'M, and let GT be the graph corresponding to 'MT. How is the graph
GT related to G?

50 Paths, Trees, and Cycles Chap. 2

2.35. Let G be a bipartite graph. Show that we can always renumber the nodes of G so that
the node-node adjacency matrix 'M of G has the following form:

o F

E 0

2.36. Show that a directed graph G is acyclic if and only if we can renumber its nodes so
that its node-node adjacency matrix is a lower triangular matrix.

2.37. Let 'M denote the node-node adjacency matrix of a network G. Define 'Mk = 'M . 'M k- I

for each k = 2, 3, ... , n. Show that the {ith entry of th~ matrix 'M2 is the number of
directed paths consisting of two arcs from node ito nodej. Then using induction, show
that the {ith entry of matrix 'Mk is the number of distinct walks from node i to node j
containing exactly k arcs. In making this assessment, assume that two walks are distinct
if their sequences of arcs are different (even if the unordered set of arcs are the same).

2.38. Let 'M denote the node-node adjacency matrix of a network G. Show that G is strongly
connected if and only if the matrix ffi defined by ffi = 'M + 'M2 + 'M3 + ... + 'M" has
no zero entry.

2.39. Write a pseudocode that takes as an input the node-node adjacency matrix represen
tation of a network and produces as an output the forward and reverse star represen
tations of the network. Your pseudocode should run in O(n 2

) time.
2.40. Write a pseudocode that accepts as an input the forward star representation ofa network

and produces as an output the network's node-node adjacency matrix representation.
2.41. Write a pseudocode that takes as an input the forward star representation of a network

and produces the reverse star representation. Your pseudocode should run in O(m)
time.

2.42. Consider the minimum cost flow problem shown in Figure 2.28. Suppose that arcs
(1, 2) and (3, 5) have lower bounds equal to 112 = 135 = 5. Transform this problem to
one where all arcs have zero lower bounds.

2.43. In the network shown in Figure 2.28, some arcs have finite capacities. Transform this
problem to one where all arcs are uncapacitated.

2.44. Consider the minimum cost flow problem shown in Figure 2.28 (note that some arcs
have negative arc costs). Modify the problem so that all arcs have nonnegative arc
costs.

2.45. Construct the residual network for the minimum cost flow problem shown in Figure
2.28 with respect to the following flow: XI2 = XI3 = X32 = 10 and X24 = X35 = X54 =
5.

2.46. For the minimum cost flow problem shown in Figure 2.28, specify a vector 11' of node
potentials so that eli ~ 0 for every arc (i,j) EA. Compute ex, cll'x, and 11'b for the flow
given in Exercise 2.45 and verify that ex = cll'x + 11'b.

2.47. Suppose that a minimum cost flow problem contains both arcs U,j) and (j, i) for some
pair of nodes. Transform this problem to one in which the network contains either arc
(i, j) or arc (j, i), but not both.

2.48. Show that if x' is a feasible flow in the residual network G(XO), the solution given by
xi} = (xij - xi;) + xij is a feasible flow in G and satisfies ex = c ' x' + cxo.

2.49. Suppose that you are given a minimum cost flow code that requires that its input data
be specified so that lij = Uij for no arc (i, j). How would you eliminate such arcs?

Chap. 2 Exercises 51

2.50. Show how to transform a minimum cost flow problem stated in (2.1) into a circulation
problem. Establish a one-to-one correspondence between the feasible solutions of these
two problems. (Hint: Introduce two new nodes and some arcs.)

2.51. Show that by adding an extra node and appropriate arcs, we can formulate any minimum
cost flow problem with one or more inequalities for supplies and demands (Le., the
mass balance constraints are stated as "~b(i)" for a supply node i, and/or "';?b(j)"
for a demand node j) into an equivalent problem with all equality constriants (Le.,
" = b(k)" for all nodes k).

52 Paths, Trees, and Cycles Chap. 2

3

ALGORITHM DESIGN AND ANALYSIS

Numerical precision is the very soul of science.
-Sir D'Arcy Wentworth Thompson

CJJapter OutJbJe

3.1 Introduction
3.2 Complexity Analysis
3.3 Developing Polynomial-Time Algorithms
3.4 Search Algorithms
3.5 Flow Decomposition Algorithms
3.6 Summary

8.1 INTBODUCTION

Scientific computation is a unifying theme that cuts across many disciplines, in
cluding computer science, operations research, and many fields within applied math
ematics and engineering. Within the realm of computational problem solving, we
almost always combine three essential building blocks: (1) a recipe, or algorithm,
for solving a particular class of problems; (2) a means for encoding this procedure
in a computational device (e.g., a calculator, a computer, or even our own minds);
and (3) the application of the method to the data of a specific problem. For example,
to divide one number by another, we might use the iterative algorithm of long di
vision, which is a systematic procedure for dividing any two numbers. To solve a
specific problem, we could use a calculator that has this algorithm already built into
its circuitry. As a first step, we would enter the data into storage locations on the
calculator; then we would instruct the calculator to apply the algorithm to our data.

Although dividing two numbers is an easy task, the essential steps required to
solve this very simple problem-designing, encoding, and applying an algorithm
are similar to those that we need to address when solving complex network flow
problems. We need to deveiop an algorithm, or a mathematical prescription, for
solving a class of network flow problems that contains our problem-for example,
to solve a particular shortest path problem, we might use an algorithm that is known
to solve any shortest path problem with nonnegative arc lengths. Since solving a
network flow problem typically requires the solution of an optimization model with
hundreds or thousands of variables, equations, and inequalities, we will invariably
solve the problem on a computer. Doing so requires that we not only express the
mathematical steps of the algorithm as a computer program, but that we also develop
data structures for manipUlating the large amounts of information required to rep-

S3

resent the problem. We also need a method for entering the data into the computer
and for performing the necessary operations on it during the course of the solution
procedure.

In Chapter 2 we considered the lower-level steps of the computational problem
solving hierarchy; that is, we saw how to represent network data and therefore how
to encode and manipulate the data within a computer. In this chapter we consider
the highest level of the solution hierarchy: How do we design algorithms, and how
do we measure their effectiveness? Although the idea of an algorithm is an old one
Chinese mathematicians in the third century B.C. had already devised algorithms for
solving small systems of simultaneous equations-researchers did not begin to ex
plore the notion of algorithmic efficiency as discussed in this book in any systematic
and theoretical sense until the early 1970s. This particular subject matter, known as
computational complexity theory, provides a framework and a set of analysis tools
for gauging the work performed by an algorithm as measured by the elementary
operations (e.g., addition, multiplication) it performs. One major stream of research
in computational complexity theory has focused on developing performance guar
antees or worst-case analyses that address the following basic question: When we
apply an algorithm to a class of problems, can we specify an upper bound on the
amount of computations that the algorithm will require? Typically, the performance
guarantee is measured with respect to the size of the underlying problem: for ex
ample, for network flow problems, the number n of nodes and the number m of arcs
in the underlying graph. For example, we might state that the complexity of an
algorithm for solving shortest path problems with nonnegative arc lengths is 2n2,
meaning that the number of computations grow no faster than twice the square of
the number of nodes. In this case we say that the algorithm is "good" because its
computations are bounded by a polynomial in the problem size (as measured by the
number of nodes). In contrast, the computational time for a "bad" algorithm would
grow exponentially when applied to a certain class of problems. With the theoretical
worst-case bound in hand, we can now assess the amount of work required to solve
(nonnegative length) shortest path problems as a function of their size. We also have
a tool for comparing any two algorithms: the one with the smaller complexity bound
is preferred from the viewpoint of a worst-case analysis.

Network optimization problems have been the core and influential subject mat
ter in the evolution of computational complexity theory. Researchers and analysts
have developed many creative ideas for designing efficient network flow algorithms
based on the concepts and results emerging in the study of complexity theory; at
the same time, many ideas originating in the study of network flow problems have
proven to be useful in developing and analyzing a wide variety of algorithms in many
other problem domains. Although network optimization has been a constant subject
of study throughout the years, researchers have developed many new results con
cerning complexity bounds for network flow algorithms at a remarkable pace in
recent years. Many of these recent innovations draw on a small set of common ideas,
which are simultaneously simple and powerful.

Our intention in this chapter is to bring together some of the most important
of these ideas. We begin by reviewing the essential ingredients of computational
complexity theory, including the definition and computational implications of good

S4 Algorithm Design and Analysis Chap. 3

algorithms. We then describe several key ideas that appear to be mainstays in the
development and analysis of good network flow algorithms. One idea is an approx
imation strategy, known as scaling, that solves a sequence of" simple" approximate
versions of a given problem (determined by scaling the problem data) in such a way
that the problems gradually become better approximations of the original problem.
A second idea is a geometric improvement argument that is quite useful in analyzing
algorithms; it shows that whenever we make sufficient (i.e., fixed percentage) im
provements in the objective function at every iteration, an algorithm is good.

We also describe some important tools that can be used in analyzing or stream
lining algorithms: (1) a potential function method that provides us with a scalar
integer-valued function that summarizes the progress of an algorithm in such a way
that we can use it to bound the number of steps that the algorithm takes, and (2) a
parameter balancing technique that permits us to devise an algorithm based on some
underlying parameter and then to s.et the parameter so that we minimize the number
of steps required by the algorithm. Next, we introduce the idea of dynamic pro
gramming, which is a useful algorithmic strategy for developing good algorithms.
The dynamic programming technique decomposes the problem into stages and uses
a recursive relationship to go from one stage to another. Finally, we introduce the
binary search technique, another well-known technique for obtaining efficient al
gorithms. Binary search performs a search over the feasible values of the objective
function and solves an easier problem at each search point.

In this chapter we also describe important and efficient (i.e., good) algorithms
that we use often within the context of network optimization: search algorithms that
permit us to find all the nodes in a network that satisfy a particular property. Often
in the middle of a network flow algorithm, we need to discover all nodes that share
a particular attribute; for example, in solving a maximum flow problem, we might
want to find all nodes that are reachable from the designated source node along a
directed path in the residual network. Search algorithms provide us with a mechanism
to perform these important computations efficiently. As such, they are essential,
core algorithms used to design other more complex algorithms.

Finally, we study network decomposition algorithms that permit us to decom
pose a solution to a network flow problem, formulated in terms of arc flows, into a
set of flows on paths and cycles. In our treatment of network flow problems, we
have chosen to use a model with flows defined on arcs. An alternative modeling
approach is to view all flows as being carried along paths and cycles in the network.
In this model, the variables are the amount of flow that we send on any path or
cycle. Although the arc flow formulation suffices for most of the topics that we
consider in this book, on a few occasions such as our discussion of multicommodity
flows in Chapter 17, we will find it more convenient to work with a path and cycle
flow model. Moreover, even if we do not use the path and cycle flow formulation
per se, understanding this model provides additional insight about the nature of
network flow problems. The network decomposition algorithms show that the arc
flow model and the path and cycle flow model are equivalent, so we could use any
of these models for formulating network flow problems; in addition, these algorithms
provide us with an efficient computational procedure for finding a set of path and
cycle flows that is equivalent to any given set of arc flows.

Sec. 3.1 Introduction ss

3.2 COMPLEXITY ANALYSIS

An algorithm is a step-by-step procedure for solving a problem. By a problem we
mean a generic model such as the shortest path problem or the minimum cost flow
problem. Problems can be subsets of one another: For example, not only does the
set of all shortest path problems define a problem, but so does the class of all shortest
path problems with nonnegative arc costs. An instance is a special case of a problem
with data specified for all the problem parameters. For example, to define an instance
of the shortest path problem we would need to specify the network topology G =
(N, A), the source and destination nodes, and the values of the arc costs. An al
gorithm is said to solve a problem P if when applied to any instance of P, the algorithm
is guaranteed to produce a solution. Generally, we are interested in finding the most
"efficient" algorithm for solving a problem. In the broadest sense, the notion of
efficiency involves all the various computing resources needed for executing an
algorithm. However, in this book since time is often a dominant computing resource,
we use the time taken by an algorithm as our metric for measuring the "most effi
cient" algorithm.

Different Complexity Measures

As already stated, an algorithm is a step-by-step procedure for solving a problem.
The different steps an algorithm typically performs are (1) assignment steps (such
as assigning some value to a variable), (2) arithmetic steps (such as addition, sub
traction, mUltiplication, and division), and (3) logical steps (such as comparison of
two numbers). The number of steps performed (or taken) by the algorithm is said
to be the sum total of all steps it performs. The number of steps taken by an algorithm,
which to a large extent determines the time it requires, will differ from one instance
of the problem to another. Although an algorithm might solve some "good" instances
of the problem quickly, it might take a long time to solve some "bad" instances.
This range of possible outcomes raises the question of how we should measure the
performance of an algorithm so that we can select the "best" algorithm from among
several competing algorithms for solving a problem. The literature has widely
adopted three basic approaches for measuring the performance of an algorithm:

56

1. Empirical analysis. The objective of empirical analysis is to estimate how al
gorithms behave in practice. In this analysis we write a computer program for
the algorithm and test the performance of the program on some classes of
problem instances.

2. A verage-case analysis. The objective of average-case analysis is to estimate
the expected number of steps an algorithm takes. In this analysis we choose
a probability distribution for the problem instances and using statistical analysis
derive asymptotic expected running times for the algorithm.

3. Worst-case analysis. Worst-case analysis provides upper bounds on the number
of steps that a given algorithm can take on any problem instance. In this analysis
we count the largest possible number of steps; consequently, this analysis pro
vides a "guarantee" on the number of steps an algorithm will take to solve
any problem instance.

Algorithm Design and Analysis Chap. 3

Each of these three performance measures has its relative merits and draw
backs. Empirical analysis has several major drawbacks: (1) an algorithm's perfor
mance depends on the programming language, compiler, and computer used for the
computational experiments, as well as the skills of the programmer who wrote the
program; (2) often this analysis is too time consuming and expensive to perform;
and (3) the comparison of algorithms is often inconclusive in the sense that different
algorithms perform better on different classes of problem instances and different
empirical studies report contradictory results.

Average-case analysis has major drawbacks as well: (1) the analysis depends
crucially on the probability distribution chosen to represent the problem instances,
and different choices might lead to different assessments as to the relative merits of
the algorithms under consideration; (2) it is often difficult to determine appropriate
probability distributions for problems met in practice; and (3) the analysis often
requires quite intricate mathematics even for assessing the simplest type of algo
rithm-the analysis typically is extremely difficult to carry out for more complex
algorithms. Furthermore, the prediction of an algorithm's performance, based on its
average-case analysis, is tailored for situations in which the analyst needs to solve
a large number of problem instances; it does not provide information about the
distribution of outcomes. In particular, although the average-case performance of
an algorithm might be good, we might encounter exceptions with little statistical
significance on which the algorithm performs very badly.

Worst-case analysis avoids many of these drawbacks. The analysis is inde
pendent of the computing environment, is relatively easier to perform, provides a
guarantee on the steps (and time) taken by an algorithm, and is definitive in the
sense that it provides conclusive proof that an algorithm is superior to another for
the worst possible problem instances that an analyst might encounter. Worst-case
analysis is not perfect, though: One major drawback of worst-case analysis is that
it permits "pathological" instances to determine the performance of an algorithm,
even though they might be exceedingly rare in practice. However, the advantages
of the worst-case analysis have traditionally outweighed its shortcomings, and this
analysis has become the most popular method for measuring algorithmic perfor
mance in the scientific literature. The emergence of the worst-case analysis as a tool
for assessing algorithms has also had a great impact on the field of network flows,
stimulating considerable research and fostering many algorithmic innovations. In
this book, too, we focus primarily on worst-case analysis. We also try to provide
insight about the empirical performance, particularly in Chapter 18, since we believe
that the empirical behavior of algorithms provides important information for guiding
the use of algorithms in practice.

Problem Size

To express the time requirement of an algorithm, we would like to define some
measure of the "complexity" of the problem instances we encounter. Having a single
performance measure for all problem instances rarely makes sense since as the
problem instances become larger, they typically become more difficult to solve (i.e.,
take more time); often the effort required to solve problem instances varies roughly

Sec. 3.2 Complexity Analysis 57

with their size. Hence to measure the complexity of problem instances, we must
consider the "size" of the problem instance. But what is the size of a problem?

Before we address this question, let us discuss what is the size of a data item
whose value is x. We can make one of the two plausible assumptions: (1) assume
that the size of the data item is x, or (2) assume that the size of the data item is log
x. Of these, for several reasons the second assumption is more common. The primary
reason is that log x reflects the way that computers work. Most modern computers
represent numbers in binary form (i.e., in bits) and store them in memory locations
of fixed bit size. The binary representation of item x requires log x bits, and hence
the space required to store x is proportional to log x.

The size of a network problem is a function of how the problem is stated. For
a network problem, the input might be in the form of one of the representations
discussed in Section 2.3. Suppose that we specify the network in the adjacency list
representation, which is the most space-efficient representation we could use. Then
the size of the problem is the number of bits needed to store its adjacency list
representation. Since the adjacency list representation stores one pointer for each
node and arc, and one data element for each arc cost coefficient and each arc ca
pacity, it requires approximately n log n + m log m + m log C + m log U bits to
store all of the problem data for a minimum cost network flow problem (recall that
C represents the largest arc cost and U represents the largest arc capacity). Since
m ::; n2

, log m :5 log n2 = 2 log n. For this reason, when citing the size of problems
using a "big 0" complexity notation that ignores constants (see the subsection en
titled "big 0" to follow), we can (and usually do) replace each occurrence of log m
by the term log n.

In principle, we could express the running time of an algorithm as a function
of the problem size; however, that would be unnecessarily awkward. Typically, we
will express the running time more simply and more directly as a function of the
network parameters n, m, log C, and log U.

Worst-Case Complexity

The time taken by an algorithm, which is also called the running time of the algorithm,
depends on both the nature and size of the input. Larger problems require more
solution time, and different problems of the same size typically require different
solution times due to differences in the data. A time complexity function for an
algorithm is a function of the problem size and specifies the largest amount of time
needed by the algorithm to solve any problem instance of a given size. In other
wor4s, the time complexity function measures the rate of growth in solution time
as the problem size increases. For example, if the time complexity function of a
network algorithm is cnm for some constant c ~ 0, the running time needed to solve
any network problem with n nodes and m arcs is at most cnm. Notice that the time
complexity function accounts for the dependence of the running time on the problem
size by measuring the largest time needed to solve any problem instance of a given
size; at this level of detail in measuring algorithmic performance, the complexity
function provides a performance guarantee that depends on the appropriate measure
of the problem's input data. Accordingly, we also refer to the time complexity func
tion as the worst-case complexity (or, simply, the complexity) of the algorithm. We

S8 Algorithm Design and Analysis Chap. 3

also refer to the worst-case complexity of an algorithm as its worst-case bound, for
it states an upper bound on the time taken by the algorithm.

Big 0 Notation

To define the complexity of an algorithm completely, we need to specify the values
for one or more constants. In most cases the determination of these constants is a
nontrivial task; moreover, the determination might depend heavily on the computer,
and other factors. Consider, for example, the following segment of an algorithm,
which adds two p x q arrays:

for i: = 1 to P do
for j: = 1 to q do

elj: = ail + bij ;

At first glance, this program segment seems to perform exactly pq additions
and the same number of assignments of values to the computer locations storing the
values of the variables Cij' This accounting, however, ignores many computations
that the computer would actually perform. A computer generally stores a two
dimensional array of size p x q as a single array of length pq and so would typically
store the element aij at the location (i - l)q + j of the array a. Thus each time we
retrieve the value of aij and bij we would need to perform one subtraction, one
multiplication, and one addition. Further, whenever, the computer would increment
the index i (or j), it would perform a comparison to determine whether i > p (or
j> q). Needless to say, such a detailed analysis of an algorithm is very time con
suming and not particularly illuminating.

The dependence of the complexity function on the constants poses yet another
problem: How do we compare an algorithm that performs 5n additions and 3n com
parisons with an algorithm that performs n multiplications and 2n subtractions? Dif
ferent computers perform mathematical and logical operations at different speeds,
so neither of these algorithms might be universally better.

We can overcome these difficulties by ignoring the constants in the complexity
analysis. We do so by using "big 0" notation, which has become commonplace in
computational mathematics, and replace the lengthy and somewhat awkward expres
sion "the algorithm required cnm time for some constant c" by the equivalent
expression "the algorithm requires O{nm) time." We formalize this definition as
follows:

An algorithm is said to run in O{f(n» time if for some numbers c and no, the
time taken by the algorithm is at most cf{n) for all n 2: no.

Although we have stated this definition in terms of a single measure n of a
problem-size parameter, we can easily incorporate other size parameters m, C, and
U in the definition.

The big 0 notation has several implications. The complexity of an algorithm
is an upper bound on the running time of the algorithm for sufficiently large values
of n. Therefore, this complexity measure states the asymptotic growth rate of the
running time. We can justify this feature of the complexity measure from practical

Sec. 3.2 Complexity Analysis S9

considerations since we are more interested about the behavior of the algorithm on
very large inputs, as these inputs determine the limits of applicability of the algo
rithm. Furthermore, the big 0 notation indicates only the most dominant term in
the running time, because for sufficiently large n, terms with a smaller growth rate
become insignificant as compared to terms with a higher growth rate. For example,
if the running time of an algorithm is lOOn + n2 + 0.OOOln3

, then for all n ~ 100,
the second term dominates the first term, and for all n ~ 10,000, the third term
dominates the second term. Therefore, the complexity of the algorithm is O(n3

).

Another important implication of ignoring constants in the complexity analysis
is that we can assume that each elementary mathematical operation, such as addition,
subtraction, mUltiplication, division, assignment, and logical operations, requires an
equal amount of time. A computer typically performs these operations at different
speeds, but the variation in speeds can typically be bounded by a constant (provided
the numbers are not too large), which is insignificant in big 0 notation. For example,
a computer typically multiplies two numbers by repeated additions and the number
of such additions are equal to number of bits in the smaller number. Assuming that
the largest number can have 32 bits, the multiplication can be at most 32 times more
expensive than addition. These observations imply that we can summarize the run
ning time of an algorithm by recording the number of elementary mathematical op
erations it performs, viewing every operation as requiring an equivalent amount of
time.

Similarity Assumption

The assumption that each arithmetic operation takes one step might lead us to un
derestimate the asymptotic running time of arithmetic operations involving very large
numbers on real computers since, in practice, a computer must store such numbers
in several words of its memory. Therefore, to perform each operation on very large
numbers, a computer must access a number of words of data and thus take more
than a constant number of steps. Thus the reader should be forewarned that the
running times are misleading if the numbers are exponentially large. To avoid this
systematic underestimation of the running time, in comparing two running times,
we will sometimes assume that both C (i.e., the largest arc cost) and U (i.e., the
largest arc capacity) are polynomially bounded in n [i.e., C = O(nk) and U = O(nk),
for some constant k]. We refer to this assumption as the similarity assumption.

Polynomial- and Exponential-Time Algorithms

We now consider the question of whether or not an algorithm is "good." Ideally,
we would like to say that an algorithm is good if it is sufficiently efficient to be
usable in practice, but this definition is imprecise and has no theoretical grounding.
An idea that has gained wide acceptance in recent years is to consider a network
algorithm "good" if its worst-case complexity is bounded by a polynomial function
of the problem's parameters (Le., it is a polynomial function of n, m, log C, and
log U). Any such algorithm is said to be a polynomial-time algorithm. Some ex
amples of polynomial-time bounds are O(n 2

), O(nm), O(m + n log C), O(nm
log(n 21m», and O(nm + n 2 log U). (Note that log n is polynomially bounded because

60 Algorithm Design and Analysis Chap. 3

"
10

100
1000

10,000

its growth rate is slower than n.) A polynomial-time algorithm is said to be a strongly
polynomial-time algorithm if its running time is bounded by a polynomial function
in only nand m, and does not involve log C or log U, and is a weakly polynomial
time algorithm otherwise. Some strongly polynomial time bounds are 0(n 2 m) and
O(n log n). In principle, strongly polynomial-time algorithms are preferred to weakly
polynomial-time algorithms because they can solve problems with arbitrary large
values for the cost and capacity data.

Note that in this discussion we have said that an algorithm is polynomial time
if its running time is bounded by a polynomial in the network parameters n, m, log C,
and log U. Typically, in computational complexity we say that an algorithm is
polynomial time if its running time is bounded by a polynomial in the problem size,
in this case n log n + m log m + n log C + m log U; however, it is easy to see that
the running time of a network problem is bounded by a polynomial in its problem
size if and only if it is also bounded by a polynomial in the problem parameters. For
example, if the running time is bounded by n 100, it is strictly less than the problem
size to the lOOth power. Similarly, if the running time is bounded by the problem
size to the l00th power, it is less than (n log n + m log m + n log C + m log U)IOO,
which in turn is bounded by (n2 + m 2 + n log C + m log U)I00, which is a poly
nomial in n, m, log C, and log U.

An algorithm is said to be an exponential-time algorithm if its worst-case run
ning time grows as a function that cannot be polynomially bounded by the input
length. Some examples of exponential time bounds are O(nC), 0(2"), O(n !), and
O(nlog II). (Observe that nC cannot be bounded by a polynomial function of nand
log C.) We say that an algorithm is a pseudopolynomial-time algorithm if its running
time is polynomially bounded in n, m, C, and U. The class of pseudopolynomial
time algorithms is an important subclass of exponential-time algorithms. Some ex
amples of pseudo polynomial-time bounds are O(m + nC) and O(mC). For problems
that satisfy the similarity assumption, pseudopolynomial-time algorithms become
polynomial-time algorithms, but the algorithms will not be attractive if C and U are
high-degree polynomials in n.

There are several reasons for preferring polynomial-time algorithms to expo
nential-time algorithms. Any polynomial-time algorithm is asymptotically superior
to any exponential-time algorithm, even in extreme cases. For example, n4000 is
smaller than nO. I log II if n is sufficiently large (i.e., n ~ 2100,(00). Figure 3.1 illustrates
the growth rates of several typical complexity functions. The exponential complexity
functions have an explosive growth rate and, in general, they are able to solve only
small problems. Further, much practical experience has shown that the polynomials
encountered in practice typically have a small degree, and generally, polynomial
time algorithms perform better than exponential-time algorithms.

log n nO.5 n2 n3 2n n!

3.32 3.16 102 103 103 3.6 x 1(f>
6.64 10.00 ur tW 1.27 x 1030 9.33 x 10m

9.97 31.62 1(f> 109 1.07 x 10301 4.02 X 102•
567

13.29 100.00 lOS 10'2 0.99 X 103,010 2.85 X 1035•659

Figure 3.1 Growth rates of some polynomial and exponential functions.

Sec. 3.2 Complexity Analysis 61

A brief examination of the effects of improved computer technology on algo
rithms is even more revealing in understanding the impact of various complexity
functions. Consider a polynomial-time algorithm whose complexity is 0(n2). Sup
pose that the algorithm is able to solve a problem of size n) in 1 hour on a computer
with speed of s) instructions per second. If we increase the speed of the computer
to S2, then (n2/n.)2 = S2/S) specifies the size n2 of the problem that the algorithm
can solve in the same time. Consequently, a lOO-fold increase in computer speed
would allow us to solve problems that are 10 times larger. Now consider an expo
nential-time algorithm with a complexity of 0(2"). As before, let n) and n2 denote
the problem sizes solved on a computer with speeds S1 and S2 in 1 hour of computation
time. Then S2/S) = 2"2/2"1. Alternatively, n2 = n) + log(s2/s.). In this case, a 100-
fold increase in computer speed would allow us to solve problems that are only about
7 units larger. This discussion shows that a substantial increase in computer speed
allows us to solve problems by polynomial-time algorithms that are larger by a mul
tiplicative factor; for exponential-time algorithms we obtain only additive improve
ments. Consequently, improved hardware capabilities of computers can have only
a marginal impact on the problem-solving ability of exponential-time algorithms.

Let us pause to summarize our discussion of polynomial and exponential-time
algorithms. In the realm of complexity theory, our objective is to obtain polynomial
time algorithms, and within this domain our objective is to obtain an algorithm with
the smallest possible growth rate, because an algorithm with smaller growth rate is
likely to permit us to solve larger problems in the same amount of computer time
(depending on the associated constants). For example, we prefer O(log n) to O(nk)
for any k > 0, and we prefer 0(n2) to 0(n3). However, running times involving
more than one parameter, such as O(n m log n) and 0(n 3), might not be comparable.
If m < n2/log n, then O(n m log n) is superior; otherwise, 0(n3) is superior.

Can we say that a polynomial-time algorithm with a smaller growth rate would
run faster in practice, or even that a polynomial-time algorithm would empirically
outperform an exponential-time algorithm? Although this statement is generally true,
there are many exceptions to the rule. A classical exception is provided by the
simplex method and Khachian's "ellipsoid" algorithm for solving linear program
ming problems. The simplex algorithm is known to be an exponential-time algorithm,
but in practice it runs much faster than Khachian's polynomial-time algorithm. Many
of these exceptions can be explained by the fact that the worst-case complexity is
greatly inferior to the average complexity of some algorithms, while for other al
gorithms the worst-case complexity and the average complexity might be compa
rable. As a consequence, considering worst-case complexity as synonymous with
average complexity can lead to incorrect conclusions.

Sometimes, we might not succeed in developing a polynomial-time algorithm
for a problem. Indeed, despite their best efforts spanning several decades, research
ers have been unable to develop polynomial-time alogorithms for a huge collectin of
important combinatorial problems; all known algorithms for these problems are
exponential-time algorithms. However, the research community has been able to
show that most of these problems belong to a class of problems, called ,NCfP-complete
problems, that are equivalent in the sense that if there exists a polynomial-time
algorithm for one problem, there exists a polynomial-time algorithm for every other
,NCfP-complete problem. Needless to say, developing a polynomial-time algorithm

62 Algorithm Design and Analysis Chap. 3

for some .N'~-complete problem is one of the most challenging and intriguing is
sues facing the research community; the available evidence suggests that no such
algorithm exists. We discuss the theory of .N'~-completeness in greater detail in
Appendix B.

Big n and Big e Notation

The big 0 notation that we introduced earlier in this section is but one of several
convenient notational devices that researchers use in the analysis of algorithms. In
this subsection we introduce two related notational constructs: the big!l (big omega)
notation and the big e (big theta) notation.

Just as the big 0 notation specifies an upper bound on an algorithm's perfor
mance, the big !l notation specifies a lower bound on the running time.

An algorithm is said to be !l(f(n» if for some numbers e / and no and all n ~
no, the algorithm takes at least e'f(n) time on some problem instance.

The reader should carefully note that the big 0 notation and the big !l notation
are defined in somewhat different ways. If an algorithm runs in O(f(n» time, every
instance of the problem of size n takes at most ef(n) time for a constant e. On the
other hand, if an algorithm runs in !l(f(n» time, some instance of size n takes at
least e'f(n) time for a constant e'.

The big e (big theta) notation provides both a lower and an upper bound on
an algorithm's performance.

An algorithm is said to be e(f(n» if the algorithm is both O(f(n» and !l(f(n».

We generally prove an algorithm to be an O(f(n» algorithm and then try to
see whether it is also an !l(f(n» algorithm. Notice that the proof that the algorithm
requires O(f(n» time does not imply that it would actually take ef(n) time to solve
all classes of problems of the type we are studying. The upper bound of ef(n) could
be "too loose" and might never be achieved. There is always a distinct possibility
that by conducting a more clever analysis of the algorithm we might be able to
improve the upper bound of ef(n), replacing it by a "tighter" bound. However, if
we prove that the algorithm is also !l(f(n», we know that the upper bound of ef(n)
is "tight" and cannot be improved by more than a constant factor. This result would
imply that the algorithm can actually achieve its upper bound and no tighter bound
on the algorithm's running time is possible.

Potential Functions and Amortized Complexity

An algorithm typically performs some basic operations repetitively with each op
eration performing a sequence of steps. To bound the running time of the algorithm
we must bound the running time of each of its basic operations. We typically bound
the total number of steps associated with an operation using the following approach:
We obtain a bound on the number of steps per operation, obtain a bound on the
number of operations, and then take a product of the two bounds. In some of the

Sec. 3.2 Complexity Analysis 63

algorithms that we study in this book, the time required for a certain operation might
vary depending on the problem data and/or the stage the algorithm is in while solving
a problem. Although the operation might be easy to perform most of the time, oc
casionally it might be quite expensive. When this happens and we consider the time
for the operation corresponding to the worst-case situation, we could greatly
overestimate the running time of the algorithm. In this situation, a more global anal
ysis is required to obtain a "tighter" bound on the running time of the operation.
Rather than bounding the number of steps per operation and the number of operations
executed in the algorithm, we should try to bound the total number of steps over
all executions of these operations. We often carry out this type of worst-case analysis
using a potential function technique.

We illustrate this concept on a problem of inserting and removing data from a
data structure known as a stack (see Appendix A for a discussion of this data struc
ture). On a stack S, we perform two operations:

push(x, S). Add element x to the top of the stack S.

popall(S). Pop (i.e., take out) every element of S.

The operation push(x, S) requires 0(1) time and the operation popall(S) re
quires 0(1 S I) time. Now assume that starting with an empty stack, we perform a
sequence of n operations in which push and popall operations occur in a random
order. What is the worst-case complexity of performing this sequence of n opera
tions?

A naive worst-case analysis of this problem might proceed as follows. Since
we require at most n push operations, and each push takes 0(1) time, the push
operations require a total of O(n) time. A popall requires 0(1 S I> time and since
1 S 1 ~ n, the complexity of this operation is O(n). Since our algorithm can invoke
at most n popall operations, these operations take a total of 0(n2) time. Conse
quently, a random sequence of n push and popall operations has a worst-case com
plexity of 0(n2).

However, if we look closely at the arguments we will find that the bound of
0(n2) is a substantial overestimate of the algorithm's computational requirements.
A popall operation pops 1 S 1 items from the stack, one by one until the stack becomes
empty. Now notice that any element that is popped from the stack must have been
pushed into the stack at some point, and since the number of push operations is at
most n, the total number of elements popped out of the stack must be at most n.
Consequently, the total time taken by all popall operations is O(n). We can therefore
conclude that a random sequence of n push and popall operations has a worst-case
complexity of O(n).

Let us provide a formal framework, using potential functions, for conducting
the preceding arguments. Potential function techniques are general-purpose tech
niques for establishing the complexity of an algorithm by analyzing the effects of
different operations on an appropriately defined function. The use of potential func
tions enables us to define an "accounting" relationship between the occurrences of
various operations of an algorithm so that we can obtain a bound on the operations
that might be difficult to obtain using other arguments.

Let <t>(k) = 1 S 1 denote the number of items in the stack at the end of the kth

64 Algorithm Design and Analysis Chap. 3

step; for the purpose of this argument we define a step as either a push or a popall
operation. We assume that we perform the popall step on a nonempty stack; for
otherwise, it requires 0(1) time. Initially, 4>(0) = O. Each push operation increases
q,(k) by 1 unit and takes 1 unit of time. Each popall step decreases 4>(k) by at least
1 unit and requires time proportional to 4>(k). Since the total increase in <f> is at
most n (because we invoke at most n push steps), the total decrease in 4> is also at
most n. Consequently, the total time taken by all push and popall steps is O(n).

This argument is fairly representative of the potential function arguments. Our
objective was to bound the time for the popalls. We did so by defining a potential
function that decreases whenever we perform a popall. The potential increases only
when we perform a push. Thus we can bound the total decrease by the total increase
in 4>. In general, we bound the number of steps of one type by using known bounds
on the number of steps of other types.

The analysis we have just discussed is related to the concept known as am
ortized complexity. An operation is said to be of amortized complexity O(f(n» if
the time to perform a sequence of k operations is O(kf(n» for sufficiently large k.
In our preceding example, the worst-case complexity of performing k popalls for
k ~ n is O(k); hence the amortized complexity of the popall operation is 0(1).
Roughly speaking, the amortized complexity of an operation is the "average" worst
case complexity of the operation so that the total obtained using this average will
indeed be an upper bound on the number of steps performed by the algorithm.

Parameter Balancing

We frequently use the parameter balancing technique in situations when the running
time of an algorithm is a function of a parameter k and we wish to determine the
value of k that gives the smallest running time. To be more specific, suppose that
the running time of an algorithm is O(f(n, m, k) + g(n, m, k» and we wish to
determine an optimal value of k. We shall assume that f(n, m, k) ~ 0 and g(n, m,
k) 2: 0 for all feasible values of k. The optimization problem is easy to solve if the
functions f(n, m, k) and g(n, m, k) are both either monotonically increasing or
monotonically decreasing in k. In the former case, we set k to the smallest possible
value, and in the latter case, we set k to the largest possible value. Finding the
optimal value of k is more complex if one function is monotonically decreasing and
the other function is monotonically increasing. So let us assume that f(n, m, k) is
monotonically decreasing in k and g(n, m, k) is monotonically increasing in k.

One method for selecting the optimal value of k is to use differential calculus.
That is, we differentiate f(n, m, k) + g(n, m, k) with respect to k, set the resulting
expression equal to zero, and solve for k. A major drawback of this approach is that
finding a value of k that will set the expression to value zero, and so determine the
optimal value of k, is often a difficult task. Consider, for example, a shortest path
algorithm (which we discuss in Section 4.7) that runs in time O(m lo~n + nk logkn).
In this case, choosing the optimal value of k is not trivial. We can restate the al
gorithm's time bound as O«m log n + nk log n)l1og k). The derivative of this expres
sion with respect to k is

(nk log n log k - m log n - nk log n)/kOog k)2.

Sec. 3.2 Complexity Analysis 6S

Setting this expression to zero, we obtain

m + nk - nk log k = o.
Unfortunately, we cannot solve this equation in closed form.

The parameter balancing technique is an alternative method for determining
the "optimal value" of k and is based on the idea that it is not necessary to select
a value of k that minimizes f(n, m, k) + g(n, m, k). Since we are evaluating the
performance of algorithms in terms of their worst-case complexity, it is sufficient
to select a value of k for which f(n, m, k) + g(n, m, k) is within a constant factor
of the optimal value. The parameter balancing technique determines a value of k so
that f(n, m, k) + g(n, m, k) is at most twice the minimum value.

In the parameter balancing technique, we select k* so that f(n, m, k*) =
g(n, m, k*). Before giving a justification of this approach, we illustrate it on two
examples. We first consider the O(m logkn + nk logkn) time shortest path algorithm
that we mentioned earlier. We first note that m logkn is a decreasing function of k
and nk logkn is an increasing function of k. Therefore, the parameter balancing tech
nique is appropriate. We set m logk*n = nk* logk*n, which gives k* = min. Con
sequently, we achieve the best running time of the algorithm, O(m logmlnn), by
setting k = min.

Our second example concerns a maximum flow algorithm whose running time
is O«n 3Ik)(log k) + nm(log k». We set

n3

-log k* = nm log k*,
k*

which gives k* = n2lm. Therefore, the best running time of this maximum flow
algorithm is O(nm log(n 2Im». In Exercise 3.13 we discuss more examples of the
parameter balancing technique.

We now justify the parameter balancing technique. Suppose we select k* so
that f(n, m, k*) = g(n, m, k*). Let A. * = f(n, m, k*) + g(n, m, k*). Then for any
k < k*,

f(n, m, k) + g(n, m, k) ~ f(n, m, k) 2: f(n, m, k*) = A. */2. (3.1)

The second inequality follows from the fact that the function f(n, m, k) is mono
tonically decreasing in k. Similarly, for any k > k*,

f(n, m, k) + g(n, m, k) 2: g(n, m, k) 2: g(n, m, k*) = A. */2. (3.2)

The expressions (3.1) and (3.2) imply that for any k,

f(n, m, k) + g(n, m, k) 2: A. */2.

This result establishes the fact that A. * = f(n, m, k*) + g(n, m, k*) is within
a factor of 2 of the minimum value of f(n, m, k) + g(n, m, k).

3.3 DEVELOPING POLYNOMIAL-TIME ALGOBITHMS

Researchers frequently employ four important approaches for obtaining polynomial
time algorithms for network flow problems: (1) a geometric improvement approach,
(2) a scaling approach, (3) a dynamic programming approach, and (4) a binary search

66 Algorithm Design and Analysis Chap. 3

approach. In this section we briefly outline the basic ideas underlying these four
approaches.

Geometrio Improvement Approach

The geometric improvement approach permits us to show that an algorithm runs in
polynomial time if at every iteration it makes an improvement in the objective func
tion value proportional to the difference between the objective values of the current
and optimal solutions. Let H be the difference between the maximum and minimum
objective function values of an optimization problem. For most network problems,
H is a function of n, m, C, and V. For example, in the maximum flow problem
H = mV, and in the minimum cost flow problem H = mCV. We also assume that
the optimal objective function value is integer.

Theorem 3.1. Suppose that Zk is the objective function value of some solution
of a minimization problem at the kth iteration of an algorithm and z* is the minimum
objective function value. Furthermore, suppose that the algorithm guarantees that
for every iteration k,

(3.3)

(i.e., the improvement at iteration k + 1 is at least a times the total possible im
provement) for some constant a with 0 < a < 1 (which is independent of the problem
data). Then the algorithm terminates in O«(log H)/a) iterations.

Proof. The quantity (Zk - z*) represents the total possible improvement in
the objective function value after the kth iteration. Consider a consecutive sequence
of 2/a iterations starting from iteration k. If each iteration of the algorithm improves
the objective function value by at least a(zk - z*)/2 units, the algorithm would
determine an optimal solution within these 2/a iterations. Suppose, instead, that at
some iteration q + 1, the algorithm improves the objective function value by less
than a(zk - z*)/2 units. In other words,

zq - zq + 1 ~ a(zk - z*)/2. (3.4)

The inequality (3.3) implies that

a(zq - z*) ~ zq - zq+l. (3.5)

The inequalities (3.4) and (3.5) imply that

(zq - z*) ~ (Zk - z*)/2,

so the algorithm has reduced the total possible improvement (Zk - z*) by a factor
at least 2. We have thus shown that within 2/a consecutive iterations, the algorithm
either obtains an optimal solution or reduces the total possible improvement
by a factor of at least 2. Since H is the maximum possible improvement and
every objective function value is an integer, the algorithm must terminate within
O«log H)/a) iterations. •

We have stated this result for the minimization version of optimization prob
lems. A similar result applies to the maximization problems.

Sec. 3.3 Developing Polynomial-Time Algorithms 67

The geometric improvement approach might be summarized by the statement
"network algorithms that have a geometric convergence rate are polynomial-time
algorithms." To develop polynomial-time algorithms using this approach, we look
for local improvement techniques that lead to large (i.e., fixed percentage) improve
ments in the objective function at every iteration. The maximum augmenting path
algorithm for the maximum flow problem discussed in Section 7.3 and the maximum
improvement algorithm for the minimum cost flow problem discussed in Section 9.6
provide two examples of this approach.

Scaling Approach

Researchers have used scaling methods extensively to derive polynomial-time al
gorithms for a wide variety of network and combinatorial optimization problems.
Indeed, for problems that satisfy the similarity assumption, the scaling-based al
gorithms achieve the best worst-case running time for most of the network opti
mization problems we consider in this book.

We shall describe the simplest form of scaling, which we call bit-scaling. In
the bit-scaling technique, we represent the data as binary numbers and solve a prob
lem P parametrically as a sequence of problems PI, P2 , P3 , ••• , PK : The problem
PI approximates data to the first most significant bit, the problem P2 approximates
data to the first two most significant bits, and each successive problem is a better
approximation, until PK = P. Moreover, for each k = 2, ... ,K, the optimal solution
of problem P k - I serves as the starting solution for problem P k • The scaling technique
is useful whenever reoptimization from a good starting solution is more efficient
than solving the problem from scratch.

For example, consider a network flow problem whose largest arc capacity has
value U. Let K = rlog Ul and suppose that we represent each arc capacity as a
K-bit binary number, adding leading zeros if necessary to make each capacity K
bits long. Then the problem Pk would consider the capacity of each arc as the k
leading bits in its binary representation. Figure 3.2 illustrates an example of this type
of scaling.

The manner of defining arc capacities easily implies the following property.

Property 3.2. The capacity of an arc in Pk is twice that in Pk - 1 plus 0 or 1.

The algorithm shown in Figure 3.3 encodes a generic version of the bit-scaling
technique.

This approach is very robust, and variants of it have led to improved algorithms
for both the maximum flow and minimum cost flow problems. This approach works
well for these applications, in part, for the following reasons:

68

1. The problem PI is generally easy to solve.
2. The optimal solution of problem Pk - I is an excellent starting solution for prob

lem Pk since Pk - I and Pk are quite similar. Therefore, we can easily reoptimize
the problem starting from the optimal solution of Pk - 1 to obtain an optimal
solution of P k •

Algorithm Design and Analysis Chap. 3

7

5

(a) (b) (c)

(d) (e)

Figure 3.2 Examples of a bit-scaling technique: (a) network with arc capacities; (b) network
with binary expansions of arc capacities; (c)-(e) problems PI, P2 , and P3 •

3. The number of reoptimization problems we solve is O(log C) or O(log U). Thus
for this approach to work, reoptimization needs to be only a little more efficient
(i.e., by a factor of log C or log U) than optimization.

Consider, for example, the maximum flow problem. Let Vk denote the maximum
flow value for problem Pk and let Xk denote an arc flow corresponding to Vk. In the
problem Pk, the capacity of an arc is twice its capacity in Pk - I plus 0 or 1. If we
multiply the optimal flow Xk - 1 of P k - I by 2, we obtain a feasible flow for P k. More
over, Vk - 2Vk-1 :$ m because multiplying the flow Xk-I by 2 takes care of the
doubling of the capacities and the additional 1 's can increase the maximum flow
value by at most m units (if we add 1 to the capacity of any arc, we increase the

algorithm bit-scaling;
begin

obtain an optimal solution of P1 ;

for Ie = 2 to K do
begin

reoptimize using the optimal solution of Pk.-1 to obtain an optimal solution of Pk.;
end;

end;

Figure 3.3 Typical bit-scaling algorithm.

Sec. 3.3 Developing Polynomial-Time Algorithms 69

maximum flow from the source to the sink by at most 1). In general, it is easier to
reoptimize such a maximum flow problem than to solve a general problem from
scratch. For example, the classical labeling algorithm as discussed in Section 6.5
would perform the reoptimization in at most m augmentations, requiring O(m 2

) time.
Therefore, the scaling version of the labeling algorithm runs in O(m2 log U) time,
improving on the running time O(nmU) of the nonscaling version. The former time
bound is polynomial and the latter bound is only pseudopolynomial. Thus this simple
bit-scaling algorithm improves the running time dramatically.

An alternative approach to scaling considers a sequence of problems PO),
P(2), ... , P(K), each involving the original data, but in this case we do not solve
the problem P(k) optimally, but solve it approximately, with an error of ~k' Initially,
~l is quite large, and it subsequently converges geometrically to O. Usually, we can
interpret an error of ~k as follows. From the current nearly optimal solution Xk, there
is a way of modifying some or all of the data by at most ~k units so that the resulting
solution is optimal. Our discussion of the capacity scaling algorithm for the maximum
flow problem in Section 7.3 illustrates this type of scaling.

Dynamic Programming

Researchers originally conceived of dynamic programming as a stagewise optimi
zation technique. However, for our purposes in this book, we prefer to view it as
a "table-filling" approach in which we complete the entries of a two-dimensional
tableau using a recursive relationship. Perhaps the best way to explain this approach
is through several illustrations.

Computing Binomial Coefficients

In many application of combinatorics, for example in elementary probability, we
frequently wish to determine the number PCq of different combinations of p objects
taken q at a time for some given values of p and q (p 2: q). As is well known, PCq =
p!/«p - q)!q!). Suppose that we wish to make this computation using only the
mathematical operation of addition and using the fact that the combination function
PCq satisfies the following recursive relationship:

(3.6)

To solve this problem, we define a lower triangular table D = {d(i, j)} with p
rows and q columns: Its entries, which we would like to compute, will be d(i, j) =
iCj for i 2: j. We will fill in the entries in the table by scanning the rows in the order
1 through p; when scanning each row i, we scan its columns in the order 1 through
i. Note that we can start the computations by setting the ith entry d(i, 1) = iC I in
the first column to value i since there are exactly i ways to select one object from
a collection of i objects. Observe that whenever we scan the element (i, j) in the
table, we have already computed the entries i-ICj and i-ICj _ l , and their sum yields
d(i, j). So we always have the available information to compute the entries in the
table as we reach them. When we have filled the entire table, the entry d(p, q) gives
us the desired answer to our problem.

70 Algorithm Design and Analysis Chap. 3

Knapsack Problem

We can also illustrate the dynamic programming approach on another problem,
known as the knapsack problem, which is a classical model in the operations research
literature. A hiker must decide which goods to include in her knapsack on a forth
coming trip. She must choose from among p objects: Object i has weight Wi (in
pounds) and a utility Uj to the hiker. The objective is to maximize the utility of the
hiker's trip subject to the weight limitation that she can carry no more than W pounds.
This knapsack problem has the following formulation as an integer program:

p

Maximize L UiXi
i=1

subject to
p

L WiXi:5 W,
i=)

Xi == {O, I}

(3.7a)

(3.7b)

for all i. (3.7c)

To solve the knapsack problem, we construct a p x W table D whose elements
d(i, j) are defined as follows:

d(i, j): The maximum utility of the selected items if we restrict our selection
to the items 1 through i and impose a weight restriction of j.

Clearly, our objective is to determine d(p, W). We determine this value by
computing d(i, j) for increasing values of i and, for a fixed value of i, for increasing
values ofj. We now develop the recursive relationship that would allow us to compute
d(i,j) from those elements of the tableau that we have already computed. Note that
any solution restricted to the items 1 through i, either (1) does not use item i, or (2)
uses this item. In case (1), d(i, j) = d(i - 1, j). In case (2), d(i, j) = Ui + d(i -
1, j - Wi) for the following reason. The first term in this expression represents the
value of including item i in the knapsack and the second term denotes the optimal
value obtained by allocating the remaining capacity of j - Wi among the items 1
through i-I. W e have thus shown that

d(i, j) = max{d(i - 1, j), Ui + d(i - 1, j - Wi)}.

When carrying out these computations, we also record the decision corre
sponding to each d(i, j) (i.e., whether Xi = 0 or Xi == 1). These decisions allow us
to construct the solution for any d(i, j), including the desired solution for d(p, W).

In both these illustrations of dynamic programming, we scanned rows of the
table in ascending order and for each fixed row, we scanned columns in ascending
order. In general, we could scan the rows and columns of the table in either ascending
or descending order as long as the recursive relationship permits us to determine
the entries needed in the recursion from those we have already computed.

To conclude this brief discussion, we might note that much of the traditional
literature in dynamic programming views the problem as being composed of' 'stages"
and "states" (or possible outcomes within each state). Frequently, the stages cor-

Sec. 3.3 Developing Polynomial-Time Algorithms 71

respond to points in time (this is the reason that this topic has become known as
dynamic programming). To reconceptualize our tabular approach in this stage and
state framework, we would view each row as a stage and each column within each
row as a possible state at that stage. For both the binomial coefficient and knapsack
applications that we have considered, each stage corresponds to a restricted set of
objects (items): In each case stage i corresponds to a restricted problem containing
only the first i objects. In the binomial coefficient problem, the states are the number
of elements in a subset of the i objects; in the knapsack problem, the states are the
possible weights that we could hold in a knapsack containing only the first i items.

Binary Search

Binary search is another popular technique for obtaining polynomial-time algorithms
for a variety of network problems. Analysts use this search technique to find, from
among a set of feasible solutions, a solution satisfying "desired properties." At every
iteration, binary search eliminates a fixed percentage (as the name binary implies,
typically, 50 percent) of the solution set, until the solution set becomes so small that
each of its feasible solutions is guaranteed to be a solution with the desired properties.

Perhaps the best way to describe the binary search technique is through ex
amples. We describe two examples. In the first example, we wish to find the tele
phone number of a person, say James Morris, in a phone book. Suppose that the
phone book contains p pages and we wish to find the page containing James Morris's
phone number. The following "divide and conquer" search strategy is a natural
approach. We open the phone book to the middle page, which we suppose is page
x. By viewing the first and last names on this page, we reach one of the following
three conclusions: (1) page x contains James Morris's telephone number, (2) the
desired page is one of pages 1 through x-I, or (3) the desired page is one of pages
x + 1 to p. In the second case, we would next turn to the middle of the pages 1
through x-I, and in the third case, we would next turn to the middle of the pages
x + 1 through p. In general, at every iteration, we maintain an interval [a, b] of
pages that are guaranteed to contain the desired phone number. Our next trial page
is the middle page of this interval, and based on the information contained on this
page, we eliminate half of the pages from further consideration. Clearly, after
O(log p) iterations, we will be left withjust one page and our search would terminate.
If we are fortunate, the search would terminate even earlier.

As another example, suppose that we are given a continuous function f(x)
satisfying the properties that f(O) < 0 and f(1) > O. We want to determine an interval
of size at most E > 0 that contains a zero of the function, that is, a value of x for
which f(x) = 0 (to within the accuracy of the computer we are using). In the first
iteration, the interval [0, 1] contains a zero of the function f(x), and we evaluate
the function at the midpoint of this interval, that is, at the point 0.5. Three outcomes
are possible: (1) f(0.5) = 0, (2) f(0.5) < 0, and (3) f(0.5) > O. In the first case, we
have found a zero x and we terminate the search. In the second case, the continuity
property of the function f(x) implies that the interval [0.5, 1] contains a zero of the
function, and in the third case the interval [0, 0.5] contains a zero. In the second
and third cases, our next trial point is the midpoint of the resulting interval. We
repeat this process, and eventually, when the interval size is less than E, we dis-

72 Algorithm Design and Analysis Chap. 3

continue the search. As the reader can verify, this method will terminate within
o (log(1/ e» iterations.

In general, we use the binary search technique to identify a desired value of
a parameter among an interval of possible values. The interval [I, u] is defined by
a lower limit I and an upper limit u. In the phone book example, we wanted to
identify a page that contains a specific name, and in the zero value problem we
wanted to identify a value of x in the range [0, 1] for which f(x) is zero. At every
iteration we perform a test at the midpoint (l + u)/2 of the interval, and determine
whether the desired parameter lies in the range [I, (l + u)/2] or in the range [(I +
u)/2, u]. In the former case, we reset the upper limit to (l + u)/2, and in the latter
case, we reset the lower limit to (l + u)/2. We might note that eliminating one-half
of the interval requires that the problem satisfy certain properties. For instance, in
the phone book example, we used the fact that the names in the book are arranged
alphabetically, and in the zero-value problem we used the fact that the function f(x)
is continuous. We repeat this process with the reduced interval and keep reapplying
the procedure until the interval becomes so small that it contains only points that
are desired solutions. If W max denotes the maximum (i.e., starting) width of the
interval (i.e., u - l) and Wmin denotes the minimum width of the interval, the binary
search technique required o (log(wmax/Wmin» iterations.

In most applications of the binary search technique, we perform a single test
and eliminate half of the feasible interval. The worst-case complexity of the technique
remains the same, however, even if we perform several, but a constant number, of
tests at each step and eliminate a constant portion (not necessarily 50 percent) of
the feasible interval (in Exercise 3.23 we discuss one such application). Although
we typically use the binary search technique to perform a search over a single pa
rameter, a generalized version of the method would permit us to search over multiple
parameters.

8.4 SEARCH ALGORITHMS

Search algorithms are fundamental graph techniques that attempt to find all the nodes
in a network satisfying a particular property. Different variants of search algorithms
lie at the heart of many maximum flow and minimum cost flow algorithms. The
applications of search algorithms include (1) finding all nodes in a network that are
reachable by directed paths from a specific node, (2) finding all the nodes in a network
that can reach a specific node t along directed paths, (3) identifying all connected
components of a network, and (4) determining whether a given network is bipartite.
To illustrate some of the basic ideas of search algorithms, in this section we discuss
only the first two of these applications; Exercises 3.41 and 3.42 consider the other
two applications.

Another important application of search algorithms is to identify a directed
cycle in a network, and if the network is acyclic, to reorder the nodes 1, 2, ... , n
so that for each arc (i, j) E A, i < j. We refer to any such order as a topological
ordering. Topological orderings prove to be essential constructs in several appli
cations, such as project scheduling (see Chapter 19). They are also useful in the
design of certain algorithms (see Section 10.5). We discuss topological ordering later
in this section.

Sec. 3.4 Search Algorithms 73

To illustrate the basic ideas of search algorithms, suppose that we wish to find
all the nodes in a network G = (N, A) that are reachable along directed paths from
a distinguished node s, called the source. A search algorithm fans out from the source
and identifies an increasing number of nodes that are reachable from the source. At
every intermediate point in its execution, the search algorithm designates all the
nodes in the network as being in one of the two states: marked or unmarked. The
marked nodes are known to be reachable from the source, and the status of unmarked
nodes has yet to be determined. Note that if node i is marked, node j is unmarked,
and the network contains the arc (i, j), we can mark node j; it is reachable from
source via a directed path to node i plus arc (i,j). Let us refer to arc (i,j) as admissible
if node i is marked and node j is unmarked, and refer to it as inadmissible otherwise.
Initially, we mark only the source node. Subsequently, by examining admissible
arcs, the search algorithm will mark additional nodes. Whenever the procedure
marks a new node j by examining an admissible arc (i, j), we say that node i is a
predecessor of nodej [i.e., pred(j) = iJ. The algorithm terminates when the network
contains no admissible arcs.

The search algorithm traverses the marked nodes in a certain order. We recorci
this traversal order in an array order: the entry order(i) is the order of node i in the traversal.
Figure 3.4 gives a formal description of the search algorithm. In the algorithmic
description, LIST represents the set of marked nodes that the algorithm has yet to
examine in the sense that some admissible arcs might emanate from them. When
the algorithm terminates, it has marked all the nodes in G that are reachable from
s via a directed path. The predecessor indices define a tree consisting of marked
nodes. We call this tree a search tree. Figure 3.5(b) and (c), respectively, depict two
search trees for the network shown in Figure 3.5(a).

To identify admissible arcs, we need to be able to access the arcs of the network
and determine whether or not they connect a marked and unmarked node. To do
so we must design a data structure for storing the arcs and assessing the status of

74

algorithm search;
begin

unmark all nodes in N;
mark node s;
pred(s): = 0;
next: = 1;
order(s): = s;
LIST: = {s}
while LIST :F 0do
begin

select a node; in LIST;
If node i is incident to an admissible arc (i, j) then
begin

end

mark node j;
pred(j): = i;
next: = next + 1;
order(j): = next;
add node j to LIST;

el.e delete node i from LIST;
end;

end; Figure 3.4 Search algorithm.

Algorithm Design and Analysis Chap. 3

order(i) order(j)

(j)--.(j)
4

6 6

(a) 3 (b) 5

1 1

3 (c) 4

Figure 3.5 Two search trees of a network.

their incident nodes. In later chapters, too, we need the same data structure to
implement maximum flow and minimum cost flow algorithms. We use the current
arc data structure, defined as follows, for this purpose. We maintain with each node
i the adjacency list A (i) of arcs emanating from it (see Section 2.2 for the definition
of adjacency list). For each node i, we define a current arc (i, j), which is the next
candidate arc that we wish to examine. Initially, the current arc of node i is the first
arc in A(i). The search algorithm examines the list A (i) sequentially: At any stage,
if the current arc is inadmissible, the algorithm designates the next arc in the arc
list as the current arc. When the algorithm reaches the end of the arc list, it declares
that the node has no admissible arc. Note that the order in which the algorithm
examines the nodes depends on how we have arranged the arcs in the arc adjacency
lists A(i). We assume here, as well as elsewhere in this book, that we have ordered
the arcs in AU) in the increasing order of their head nodes [i.e., if (i, j) and (i, k)
are two consecutive arcs in AU), thenj < k].

It is easy to show that the search algorithm runs in O(m + n) = O(m) time.
Each iteration of the while loop either finds an admissible arc or does not. In the
former case, the algorithm marks a new node and adds it to LIST, and in the latter
case it deletes a marked node from LIST. Since the algorithm marks any node at
most once, it executes the while loop at most 2n times. Now consider the effort
spent in identifying the admissible arcs. For each node i, we scan the arcs in A(i)
at most once. Therefore, the search algorithm examines a total of ~jEN I A(i) I
m arcs, and thus terminates in O(m) time.

Sec. 3.4 Search Algorithms 7S

The algorithm, as described, does not specify the manner for examining the
nodes or for adding the nodes to LIST. Different rules give rise to different search
techniques. Two data structures have proven to be the most popular for maintaining
LIST -a queue and a stack (see Appendix A for a discussion of these data struc
tures)-and they give rise to two fundamental search strategies: breadth-first search
and depth-first search.

Breadth-First Search

If we maintain the set LIST as a queue, we always select nodes from the front of
LIST and add them to the rear. In this case the search algorithm selects the marked
nodes in a first-in, first-out order. Ifwe define the distance of a node i as the minimum
number of arcs in a directed path from node s to node i, this kind of search first
marks nodes with distance 1, then those with distance 2, and so on. Therefore, this
version of search is called a breadth-first search and the resulting search tree is a
breadth-first search tree. Figure 3.5(b) specifies the breadth-first search tree for the
network shown in Figure 3.5(a). In subsequent chapters we use the following prop
erty of the breadth-first search tree whose proof is left as an exercise (see Exercise
3.30).

Property 3.3. In the breadth-first search tree, the tree path from the source
node s to any node i is a shortest path (i.e., contains the fewest number of arcs
among all paths joining these two nodes).

Depth-First Search

If we maintain the set LIST as a stack, we always select the nodes from the front
of LIST and also add them to the front. In this case the search algorithm selects the
marked node in a last-in, first-out order.- This algorithm performs a deep probe,
creating a path as long as possible, and backs up one node to initiate a new probe
when it can mark no new node from the tip of the path. Consequently, we call this
version of search a depth-j'irst search and the resulting tree a depth-first search tree.
The depth-first traversal of a network is also called its preorder traversal. Figure
3.5(c) gives the depth-first search tree for the network shown in Figure 3.5(a).

In subsequent chapters we use the following property of the depth-first search
tree, which can be easily proved using induction arguments (see Exercise 3.32).

Property 3.4
(a) If node j is a descendant C!f node i and j =1= i, then order(j) > orderU).
(b) All the descendants of any node are ordered consecutively in sequence.

Reverse Search Algorithm

The search algorithm described in Figure 3.4 allows us to identify all the nodes in
a network that are reachable from a given node s by directed paths. Suppose that
we wish to identify all the nodes in a network from which we can reach a given node
t along directed paths. We can solve this problem by using the algorithm we have

76 Algorithm Design and Analysis Chap. 3

just described with three slight changes: (1) we initialize LIST as LIST = {t}; (2)
while examining a node, we scan the incoming arcs of the node instead of its outgoing
arcs; and (3) we designate an arc (i,j) as admissible if i is unmarked andj is marked.
We subsequently refer to this algorithm as a reverse search algorithm. Whereas the
(forward) search algorithm gives us a directed out-tree rooted at node s, the reverse
search algorithm gives us a directed in-tree rooted at node t.

Deter.mining Strong Connectivity

Recall from Section 2.2 that a network is strongly connected if for every pair of
nodes i and j, the network contains a directed path from node i to node j. This
definition implies that a network is strongly connected if and only if for any arbitrary
node s, every node in G is reachable from s along a directed path and, conversely,
node s is reachable from every other node in G along a directed path. Clearly, we
can determine the strong connectivity of a network by two applications of the search
algorithm, once applying the (forward) search algorithm and then the reverse search
algorithm.

We next consider the problem of finding a topological ordering of the nodes
of an acyclic network. We will show how to solve this problem by using a minor
modification of the search algorithm.

Topological Ordering

Let us label the nodes of a network G = (N, A) by distinct numbers from 1 through
n and represent the labeling by an array order [i.e., order(i) gives the label of node
i]. We say that this labeling is a topological ordering of nodes if every arc joins
a lower-labeled node to a higher-labeled node. That is, for every arc (i, j) E A,
order(i) < order(j). For example, for the network shown in Figure 3.6(a), the labeling
shown in Figure 3.6(b) is not a topological ordering because (5, 4) is an arc and
order(5) > order(4). However, the labelings shown in Figure 3.6(c) and (d) are to
pological orderings. As shown in this example, a network might have several to
pological orderings.

Some networks cannot be topologically ordered. For example, the network
shown in Figure 3.7 has no such ordering. This network is cyclic because it contains
a directed cycle and for any directed cycle W we can never satisfy the condition
order(i) < order(j) for each (i, j) E W. Indeed, acyclic networks and topological
ordering are closely related. A network that contains a directed cycle has no to
pological ordering, and conversely, we shall show next that a network that does not
contain any negative cycle can be topologically ordered. This observation shows
that a network is acyclic if an only if it possesses a topological ordering of its nodes.

By using a search algorithm, we can either detect the presence of a directed
cycle or produce a topological ordering of the nodes. The algorithm is fairly easy
to describe. In the network G, select any node of zero indegree. Give it a label of
1, and then delete it and all the arcs emanating from it. In the remaining subnetwork
select any node of zero indegree, give it a label of 2, and then delete it and all arcs
emanating from it. Repeat this process until no node has a zero indegree. At this
point, if the remaining subnetwork contains some nodes and arcs, the network G

Sec. 3.4 Search Algorithms 77

(8)

2

(c)

order(;) order(})

~
4

2 3

(b)

3 2

4 3 4

(d)

Figure 3.6 Topological ordering of nodes.

Figure 3.7 Network without a
topological ordering of the nodes.

contains a directed cycle (see Exercise 3.38). Otherwise, the network is acyclic and
we have assigned labels to all the nodes. Now notice that whenever we assign a
label to a node at an iteration, the node has only outgoing arcs and they all must
necessarily point to nodes that will be assigned higher labels in subsequent iterations.
Consequently, this labeling gives a topological ordering of nodes.

We now describe an efficient implementation of this algorithm that runs in
O(m) time. Figure 3.8 specifies this implementation. This algorithm first computes
the indegrees of all nodes and forms a set LIST consisting of all nodes with zero
indegrees. At every iteration we select a node i from LIST, for every arc (i, j) E
A(i) we reduce the indegree of node j by 1 unit, and if indegree of node j becomes
zero, we add node j to the set LIST. [Observe that deleting the arc (i, j) from the

78 Algorithm Design and Analysis Chap. 3

algorithm topological ordering;
begin

for all i E N do indegree(I): = 0;
for all (i, j) E A do indegree(j): = indegree(j) + 1;
LIST: = 0;
next: = 0;
for all i E N do

If indegree(l) = 0 then LIST: = LIST u {I};
while LIST ~ 0do
begin

select a node i from LIST and delete it;
next: = next+ 1;
order(l): = next;
for all (i, j) E A(I) do
begin

indegree(j): = indegree(j) - 1;
If indegree(j) = 0 then LIST: = LIST U {j};

end;
end;
If next < n then the network contains a directed cycle
else the network is acyclic and the array order gives a topological order of nodes;

end;

Figure 3.8 Topological ordering algorithm.

network is equivalent to decreasing the indegree of node j by 1 unit.] Since the
algorithm examines each node and each arc of the network DO) times, it runs in
O(m) time.

'.IS FLOW DECOMPOSITION ALGORITHMS

In formulating network flow problems, we can adopt either of two equivalent mod
eling approaches: We can define flows on arcs (as discussed in Section 1.2) or define
flows on paths and cycles. For example, the arc flow shown in Figure 3.9(a) sends
7 units of flow from node 1 to node 6. Figure 3.9(b) shows a path and cycle flow

4 units

~
6

3 units
(b)

Figure 3.9 Two ways to express flows in a network: (a) using arc flows; (b) using path and
cycle flows.

Sec. 3.5 Flow Decomposition Algorithms 79

corresponding to this arc flow: In the path and cycle flow, we send 4 units along
the path 1-2-4-6, 3 units along the path 1-3-5-6, and 2 units along the cycle 2-
4-5-2. Throughout most of this book, we use the arc flow formulation; on a few
occasions, however, we need to use the path and cycle flow formulation or results
that stem from this modeling perspective. In this section we develop several con
nections between these two alternative formulations.

In this discussion, by an "arc flow" we mean a vector x = {xu} that satisfies
the following constraints:

~ Xij- ~ Xji = -e(i) for all i E N, (3.Sa)
{j:(i.j)EA} {j:(j.i)EA}

for all (i, j) E A. (3.Sb)

where ~7= 1 e(i) = O. Notice that in this model we have replaced the supply/demand
b(i) of node i by another term, - e(i); we refer to e(i) as the node's imbalance. We
have chosen this alternative modeling format purposely because some of the max
imum flow and minimum cost flow algorithms described in this book maintain a
solution that satisfies the flow bound constraints, but not necessarily the supply/
demand constraints. The term e(i) represents the inflow minus outflow of node i. If
the inflow is more than outflow, e(i) > 0 and we say that node i is an excess node.
If inflow is less than the outflow, e(i) < 0 and we say that node i is a deficit node.
If the inflow equals outflow, we say that node i is a balanced node. Observe that if
e = - b, the flow x is feasible for the minimum cost flow problem.

In the arc flow formulation discussed in Section 1.2, the basic decision variables
are flows Xij on the arcs (i, j) EA. The path and cycle flow formulation starts with
an enumeration of all directed paths P between any pair of nodes and all directed
cycles W of the network. We let r;p denote the collection of all paths and OW the
collection of all cycles. The decision variables in the path and cycle flow formulation
are f(P), the flow on path p, and f(W), the flow on cycle W; we define these variables
for every directed path P in r;p and every directed cycle W in OW.

Notice that every set of path and cycle fows uniquely determines arc flows in
a natural way: The flow Xij on arc (i, j) equals the sum of the flows f(P) and f(W)
for all paths P and cycles W that contain this arc. We formalize this observation by
defining some new notation: 8ij(P) equals 1 if arc (i, j) is contained in the path P,
and is 0 otherwise. Similarly, 8ij(W) equals 1 if arc (i, j) is contained in the cycle
W, and is 0 otherwise. Then

Xu = ~ 8ij(P)f(P) + ~ 8ij(W)f(W).
PE'!i> WEW

Thus each path and cycle flow determines arc flows uniquely. Can we reverse
this process? That is, can we decompose any arc flow into (i.e., represent it as) path
and cycle flow? The following theorem provides an affirmative answer to this ques
tion.

Theorem 3.5 (Flow Decomposition Theorem). Every path and cycle flow has a
unique representation as nonnegative arc flows. Conversely, every nonnegative arc
flow x can be represented as a path and cycle flow (though not necessarily uniquely)
with the following two properties:

80 Algorithm Design and Analysis Chap. 3

(a) Every directed path with positive flow connects a deficit node to an excess node.
(b) At most n + m paths and cycles have nonzero flow; out of these, at most m

cycles have nonzero flow.

Proof In the light of our previous observations, we need to establish only the
converse assertions. We give an algorithmic proof to show how to decompose any
arc flow x into a path and cycle flow. Suppose that io is a deficit node. Then some
arc (io, it> carries a positive flow. If il is an excess node, we stop; otherwise, the
mass balance constraint (3.8a) of node il implies that some other arc (it, i2) carries
positive flow. We repeat this argument until we encounter an excess node or we
revisit a previously examined node. Note that one of these two cases will occur
within n steps. In the former case we obtain a directed path P from the deficit node
io to some excess node ik , and in the latter case we obtai a a directed cycle W. In
either case the path or the cycle consists solely of arcs with positive flow. If we
obtain a directed path, we let f(P) = min{ - e(io), e(ik), min{xij: (i, j) E P}} and
redefine e(io) = e(io) + f(P), e(ik) = e(ik) - f(P), and Xij = Xij - f(P) for each
arc (i, j) in P. If we obtain a directed cycle W, we let f(W) = min{xij: (i, j) E W}
and redefine xij = Xij - f(W) for each (i, j) in W.

We repeat this process with the redefined problem until all node imbalances
are zero. Then we select any node with at least one outgoing arc with a positive
flow as the starting node, and repeat the procedure, which in this case must find a
directed cycle. We terminate when x = 0 for the redefined problem. Clearly, the
original flow is the sum of flows on the paths and cycles identified by this method.
Now observe that each time we identify a directed path, we reduce the excess/deficit
of some node to zero or the flow on some arc to zero; and each time we identify a
directed cycle, we reduce the flow on some arc to zero. Consequently, the path and
cycle representation of the given flow x contains at most n + m directed paths and
cycles, and at most m of these are directed cycles. •

Let us consider a flow x for which e(i) = 0 for all i E N. Recall from Section
1.2 that we call any such flow a circulation. When we apply the flow decomposition
algorithm to a circulation, each iteration discovers a directed cycle consisting solely
of arcs with positive flow, and subsequently reduces the flow on at least one arc to
zero. Consequently, a circulation decomposes into flows along at most m directed
cycles.

Property 3.6. A circulation x can be represented as cycle flow along at most
m directed cycles.

We illustrate the flow decomposition algorithm on the example shown in Figure
3.1O(a). Initially, nodes 1 and 5 are deficit nodes. Suppose that the algorithm selects
node 5. We would then obtain the directed path 5-3-2-4-6 and the flow on this
path is 3 units. Removing this path flow gives the flow given in Figure 3.IO(b). The
algorithm selects node 1 as the starting node and obtains the path flow of 2 units
along the directed path 1-2-4-5-6. In the third iteration, the algorithm identifies a
cycle flow of 4 units along the directed cycle 5-3-4-5. Now the flow becomes zero
and the algorithm terminates.

Sec. 3.5 Flow Decomposition Algorithms 81

eU) e(j)

(J)-4(j)

o

6 0

o

Figure 3.10 Illustrating the flow decomposition theorem.

What is the time required for the flow decomposition algorithm described in
the proof of Theorem 3.5? In the algorithm, we first construct a set LIST of deficit
nodes. We maintain LIST as a doubly linked list (see Appendix A for a description
of this data structure) so that selection of an element as well as addition and deletion
of an element require 0(1) time. As the algorithm proceeds, it removes nodes from
LIST. When LIST eventually becomes empty, we initialize it as the set of arcs with
positive flow. Consider now another basic operation in the flow decomposition al
gorithm: identifying an arc with positive flow emanating from a node. We refer to
such arcs as admissible arcs. We use the current-arc data structure (described in
Section 3.4) to identify an admissible arc emanating from a node. Notice that in any
iteration, the flow decomposition algorithm requires O(n) time plus the time spent
in scanning arcs to identify admissible arcs. Also notice that since arc flows are
nonincreasing, an arc found to be inadmissible in one iteration remains inadmissible
in subsequent iterations. Consequently, we preserve the current arcs of the nodes
in the current-arc data structure when we proceed from one iteration to the next.
Since the current-arc data structure requires a total of Oem) time in arc scanning to
identify admissible arcs and the algorithm performs at most (n + m) iterations, the
flow decomposition algorithm runs in Oem + (n + m)n) = O(nm) time.

The flow decomposition theorem has a number of important consequences. As
one example, it enables us to compare any two solutions of a network flow problem
in a particularly convenient way and to show how we can build one solution from

82 Algorithm Design and Analysis Chap. 3

another by a sequence of simple operations. The augmenting cycle theorem, to be
discussed next, highlights these ideas.

We begin by introducing the concept of augmenting cycles with respect to a
flow x. A cycle W (not necessarily directed) in G is called an augmenting cycle with
respect to the flow x if by augmenting a positive amount of flow f(W) around the
cycle, the flow remains feasible. The augmentation increases the flow on forward
arcs in the cycle Wand decreases the flow on backward arcs in the cycle. Therefore,
a cycle W is an augmenting cycle in G if Xu < Uu for every forward arc (i, j) and
xu> 0 for every backward arc (i,j). We next extend the notation of 8u(W) for cycles
that are not necessarily directed. We define 8u(W) equal to 1 if arc (i, j) is a forward
arc in the cycle W, 8u(W) equal to -1 if arc (i,j) is a backward arc in the cycle W,
and equal to 0 otherwise.

Notice that in terms of residual networks (defined in Section 2.4), each aug
menting cycle W with respect to a flow x corresponds to a directed cycle Win G(x),
and vice versa. We define the cost of an augmenting cycle Was c(W) = ~(i.j)EW
cu8u(W). The cost of an augmenting cycle represents the change in the cost of a
feasible solution if we augment 1 unit of flow along the cycle. The change in flow
cost for augmenting f(W) units along the cycle W is c(W)f(W).

We next use the flow decomposition theorem to prove an augmenting cycle
theorem formulated in terms of residual networks. Suppose that x and XO are any
two feasible solutions of the minimum cost flow problem. We have seen earlier that
some feasible circulation Xl in G(XO) satisfies the property that x = XO + Xl.

Property 3.6 implies that we can represent the circulation Xl as cycle flows f(W1),

!(W2), ••• , !(Wr), with r :5 m. Notice that each of the cycles WI, W2 , ••• , Wr
is an augmenting cycle in G(XO). Furthermore, we see that

~ CuXu = ~ cuxij + ~ CUX &
(i.j)EA (i.j)EA (i.j)EG(xO)

r

~ cuxij + ~ c(Wk)f(Wk).
(i.j)EA k= I

We have thus established the following result:

Theorem 3.7 (Augmenting Cycle Theorem). Let x and XO be any two feasible
solutions of a network flow problem. Then x equals XO plus the flow on at most m
directed cycles in G(XO). Furthermore, the cost of x equals the cost of XO plus the
cost of flow on these augmenting cycles. •

In Section 9.3 we see that the augmenting cycle theorem permits us to obtain
the following novel characterization of the optimal solutions of the minimum cost
flow problem.

Theorem 3.8 (Negative Cycle Optimality Theorem). A feasible solution x* of the
minimum cost flow problem is an optimal solution if and only if the residual network
G(x*) contains no negative cost directed cycle.

Sec. 3.5 Flow Decomposition Algorithms 83

8.6 SUMMARY

The design and analysis of algorithms is an expansive topic that has grown in im
portance over the past 30 years as computers have become more central to scientific
and administrative computing. In this chapter we described several fundamental
techniques that are widely used for this purpose. Having some way to measure the
performance of algorithms is critical for comparing algorithms and for determining
how well they perform. The research community has adopted three basic approaches
for measuring the performance of an algorithm: empirical analysis, average-case
analysis, and worst-case analysis. Each of these three performance measures has
its own merits and drawbacks. Worst-case analysis has become a widely used ap
proach, due in large part to the simplicity and theoretical appeal of this type of
analysis. A worst-case analysis typically assumes that each arithmetic and logical
operation requires unit time, and it provides an upper bound on the time taken by
an algorithm (correct to within a constant factor) for solving any instance of a prob
lem. We refer to this bound, which we state in big 0 notation as a function of the
problem's size parameters n, m, log C, and log U, as the worst-case complexity of
the algorithm. This bound gives the growth rate (in the worst case) that the algorithm
requires for solving successively larger problems. If the worst-case complexity of
an algorithm is a polynomial function of n, m, log C, and log U, we say that the
algorithm is a polynomial-time algorithm; otherwise, we say that it is an exponential
time algorithm. Polynomial-time algorithms are preferred to exponential-time al
gorithms because polynomial-time algorithms are asymptotically (i.e., for sufficiently
large networks) faster than exponential-time algorithms. Among several polynomial
time algorithms for the same problem, we prefer an algorithm with the least order
polynomial running time because this algorithm will be asymptotically fastest.

A commonly used approach for obtaining the worst-case complexity of an
iterative algorithm is to obtain a bound on the number of iterations, a bound on the
number of steps per iteration, and take the product of these two bounds. Sometimes
this method overestimates the actual number of steps, especially when an iteration
might be easy most of the time, but expensive occasionally. In these situations,
arguments based on potential functions (see Section 3.3) often allow us to obtain a
tighter bound on an algorithm's required computations.

In this chapter we described four important approaches that researchers fre
quently use to obtain polynomial-time algorithms for network flow problems: (1)
geometric improvement, (2) scaling, (3) dynamic programming, and (4) binary search.
Researchers have recently found the scaling approach to be particularly useful for
solving network flow problems efficiently, and currently many of the fastest network
flow algorithms use scaling as an algorithmic strategy.

Search algorithms lie at the core of many network flow algorithms. We de
scribed search algorithms for performing the following tasks: (1) identifying all nodes
that are reachable from a specified source node via directed paths, (2) identifying
all nodes that can reach a specified sink node via directed paths, and (3) identifying
whether a network is strongly connected. Another important application of search
algorithms is to determine whether a given directed network is acyclic and, if so,
to number the nodes in a topological order [i.e., so that i < j for every arc (i, j) E
A]. This algorithm is a core subroutine in methods for project planning (so called

84 Algorithm Design and Analysis Chap. 3

CPM/PERT models) that practitioners use extensively in many industrial settings.
All of these search algorithms run in O(m) time. Other O(m) search algorithms are
able (1) to identify whether a network is disconnected and if so to identify all of its
components, and (2) to identify whether a network is bipartite. We discuss these
algorithms in the exercises for this chapter.

We concluded this chapter by studying flow decomposition theory. This theory
shows that we can formulate flows in a network in two alternative ways: (1) flows
on arcs, or (2) flows along directed paths and directed cycles. Although we use the
arc flow formulation throughout most of this book, sometimes we need to rely on
the path and cycle flow formulation. Given a path and cycle flow, we can obtain the
corresponding arc flow in a straightforward manner (to obtain the flow on any arc,
add the flow on this arc in each path and cycle); finding path and cycle flows that
corresponds to a set of given arc flows is more difficult. We described an O(nm)
algorithm that permits us to find these path and cycle flows. One important con
sequence of flow decomposition theory is the fact that we can transform any feasible
flow of the minimum cost flow problem into any other feasible flow by sending flows
along at most m augmenting cycles. We used this result to derive a negative cycle
optimality condition for characterizing optimal solutions for the minimum cost flow
problem. These conditions state that a flow x is optimal if and only if the residual
network G(x) contains no negative cost augmenting cycle.

REFERENCE NOTES

Over the past two decades, worst-case complexity (see Section 3.2) has become a
very popular approach for analyzing algorithms. A number of books provide ex
cellent treatments of this topic. The book by Garey and Johnson [1979] is an es
pecially good source of information concerning the topics we have considered. Books
by Aho, Hopcroft, and Ullman [1974], Papadimitriou and Steiglitz [1982], Tarjan
[1983], and Cormen, Leiserson, and Rivest [1990] provide other valuable treatments
of this subject matter.

The techniques used to develop polynomial-time algorithms (see Section 3.3)
fall within the broad domain of algorithm design. Books on algorithms and data
structures offer extensive coverage of this topic. Edmonds and Karp [1972] and Dinic
[1973] independently discovered the scaling technique and its use for obtaining
polynomial-time algorithms for the minimum cost flow problem. Gabow [1985] pop
ularized the scaling technique by developing scaling-based algorithms for the shortest
path, maximum flow, assignment, and matching problems. This book is the first that
emphasizes scaling as a generic algorithmic tool. The geometric improvement tech
nique is a combinatorial analog of linear convergence in the domain of nonlinear
programming. For a study of linear convergence, we refer the reader to any book
in nonlinear programming. Dynamic programming, which was first developed by
Richard Bellman, has proven to be a very successful algorithmic tool. Some im
portant sources of information on dynamic programming are books by Bellman
[1957], Bertsekas [1976], and Denardo [1982]. Binary search is a standard technique
in searching and sorting; Knuth [1973b] and many other books on data structures
and algorithms develop this subject.

Search algorithms are important subroutines for network optimization algo-

Chap. 3 Reference Notes 85

rithms. The books by Aho, Hopcroft, and Ullman [1974], Even [1979], TaIjan [1983],
and Cormen, Leiserson, and Rivest [1990] present insightful treatments of search
algorithms. Ford and Fulkerson [1962] developed flow decomposition theory; their
book contains additional material on this topic.

EXERCISES

3.1. Write a pseudocode that, for any integer n, computes n" by performing at most 2 log
n multiplications. Assume that multiplying two numbers, no matter how large, requires
one operation.

3.2. Compare the following functions for various values of n and determine the approximate
values of n when the second function becomes larger than the first.
(a) l000n 2 and 2"/100.
(b) (log n)3 and no.OOJ •

(c) 1O,OOOn and 0.ln 2
.

3.3. Rank the following functions in increasing order of their growth rates.
(a) 2108 log", n 1, n2 , 2", (1.5)(lOg ,,)2.

(b) l000(log n)2, 0.005no.oool , log log n, (log n)(log log n).

3.4. Rank the following functions in increasing order of their growth rates for two cases:
(1) when a network containing n nodes and m arcs is connected and very sparse [i.e.,
m = O(n)]; and (2) when the network is very dense [i.e., m = O(n2)].
(a) n2m 1/2, nm + n2 log n, nm log n, nm log(n2Im).
(b) n2, m log n, m + n log n, m log log n.
(c) n 3 log n, (m log n)(m + n log n), nm(log log n)log n.

3.S. We say that a function f(n) is O(g(n» if for some numbers c and no, f(n) :5 cg(n) for
all n ~ no. Similarly, we say that a function is O(g(n» if for some numbers c' and no,
f(n) ~ c' g(n) for infinitely many n ~ no. Finally, we say that a function f(n) is 8(g(n»
if f(n) = O(g(n» and f(n) = O(g(n». For each of the functions f(n) and g(n) specified
below, indicate whether f(n) is O(g(n», O(g(n», 8(g(n», or none of these.

In if n is odd I n if n is even
(a) f(n) = n2 if n is even; g(n) = n2 if n is odd

b) f() - n if n is odd. () _ n if n is prim~
(n - n2 if n is even' g n - n2 if n is not prime
(c) f(n) = 3 + lI(log n); g(n) = (n + 4)/(n + 3)

3.6. Are the following statements true or false?
(a) (log n)l00 = O(nE) for any E > O.
(b) 2"+ 1 = 0(2").
(c) f(n) + g(n) = O(max(f(n), g(n»).
(d) If f(n) = O(g(n», then g(n) = O(f(n».

3.7. Let g(n, m) = m logdn, where d = r mIn + 21. Show that for any E > 0, g(n, m) =
O(m l + tE

).

3.8. Show that if f(n) = O(g(n» and g(n) = O(h(n», then f(n) = O(h(n». Is it true that
if f(n) = O(g(n» and g(n) = O(h(n», then f(n) = O(h(n»? Prove or disprove this
statement.

3.9. Bubble sort. The bubble sort algorithm is a popular method for sorting n numbers in
nondecreasing order of their magnitudes. The algorithm maintains an ordered set of the
numbers {ai, a2, ... , an} that it rearranges through a sequence of several passes over
the set. In each pass, the algorithm examines every pair of elements (ak' ak + I) for each
k = 1, ... ,(n.I), and if the pair is out of order (i.e., ak > ak + 1)' it swaps the positions
of these elements. The algorithm terminates when it makes no swap during one entire
pass. Show that the algorithm performs at most n passes and runs in 0(n2) time. For
every n, construct a sorting problem (Le., the initial ordered set of numbers {a.,

86 Algorithm Design and Analysis Chap. 3

a2, ... ,an} SO that the algorithm performs O(n2) operations. Conclude that the bubble
sort is a 8(n 2

) algorithm.
3.10. Bin packing problem. The bin packing problem requires that we pack n items of lengths

ai, a2, ... , an (assume that each ai :5 1) into bins of unit length using the minimum
possible number of bins. Several approximate methods, called heuristics, are available
for solving the bin packing problem. The first-fit heuristic is one of the more popular
of these heuristics. It works as follows. Arrange items in an arbitrary order and examine
them one by one in this order. For an item being examined, scan the bins one by one
and put the item in the bin where it fits first. If an items fits in none of the bins that
currently contain an item, we introduce a new bin and place the item in it. Write a
pseudocode for the first-fit heuristic and show that it runs in O(n2) time. For every n,
construct an instance of the bin packing problem for which your first-fit heuristic runs
in O(n2) time. Conclude that the first-fit heuristic runs in 8(n 2) time.

3.11. Consider a queue of elements on which we perform two operations: (1) ;nsert(i), which
adds an element i to the rear of the queue; and (2) delete(k), which deletes the k frontmost
elements from the queue. Show that an arbitrary sequence of n insert and delete op
erations, starting with an empty queue, requires a total of O(n) time.

3.12. An algorithm performs three different operations. The first and second operations are
executed O(nm) and O(n 2) times respectively and the number of executions of the third
operation is yet to be determined. These operations have the following impact on an
appropriately defined potential function <1>: Each execution of operation J increases <I>

by at most n units, each execution of operation 2 increases <I> by 1 unit, and each
execution of operation 3 decreases cf> by at least 1 unit. Suppose we know that 1 :5 cf>
:5 n 2

• Obtain a bound on the number of executions of the third operation.
3.13. Parameter balancing. For each of the time bounds stated below as a function of the

parameter k, use the parameter balancing technique to determine the value of k that
yields the minimum time bound. Also try to determine the optimal value of k using
differential calculus.

(a) o(n; + knm)

(b) o(nk + T)
(c) 0 (m log n + n k log n)

log k log k
3.14. Generalized parameter balancing. In Section 3.3 we discussed the parameter balancing

technique for situations when the time bound contains two expressions. In this exercise
we generalize the technique to bounds containing three expressions. Suppose that the
running time of an algorithm is O(j(n, k) + g(n, k) + h(n, k» and we wish to determine
the optimal value of k-that is, the value of k producing the smallest possible overall
time. Assume that for all k, f(n, k), g(n, k), and h(n, k) are all nonnegative, f(n, k)
is monotonically increasing, and both g(n, k) and h(n, k) are monotonically decreasing.
Show how to obtain the optimal value of k and prove that your method is valid. Illus
trate your technique on the following time bounds: (I) kn 2 + n 3/k + n 4/k 2; (2) nm/k +
kn 2 + n 2 logk U.

3.15. In each of the algorithms described below, use Theorem 3.1 to obtain an upper bound
on the total number of iterations the algorithm performs.
(a) Let v* denote the maximum flow value and v the flow value of the current solution
in a maximum flow algorithm. This algorithm increases the flow value by an amount
(v* - v)/m at each iteration. How many iterations will this algorithm perform?
(b) Let z * and z represent the optimal objective function value and objective function
value of the current solution in an application of the some algorithm for solving the
shortest path problem. Suppose that this algorithm ensures that each iteration decreases
the objective function value by at least (z - z*)/2n2. How many iterations will the
algorithm perform?

Chap. 3 Exercises 87

3.16. Consider a function fen, m), defined inductively as follows:

fen, 0) = n, f(O, m) = 2m, and

fen, m) = fen - 1, m) + fen, m - 1) - fen - 1, m - 1).

Derive the values of fen, m) for all values of n, m :s; 4. Simplify the definition of
fen, m) and prove your result using inductive arguments.

3.17. In Section 3.3 we described a dynamic programming algorithm for the 0-1 knapsack
problem. Generalize this approach so that it can be used to solve a knapsack problem
in which we can place more than one item of the same type in the knapsack.

3.18. Shortest paths in layered networks. We say that a directed network G = (N, A) with
a specified source node s and a specified sink node t is layered if we can partition its
node set N into k layers N .. N 2 , ••• , Nk so that N, = {s}, Nk = {t}, and for every
arc (i, j) E A, nodes i and j belong to adjacent layers (i.e., i E NI and j E N 1+, for
some 1 :s; I:s; k - 1). Suggest a dynamic programming algorithm for solving the shortest
path problem in a layered network. What is the running time of your algorithm? (Hint:
Examine nodes in the layers N" N 2 , ••• , Nk. in order and compute shortest path
distances.)

3.19. Let G = (N, A) be a directed network. We want to determine whether G contains an
odd-length directed cycle passing through node i. Show how to solve this problem using
dynamic programming. [Hint: Define dk(j) as equal to 1 if the network contains a walk
from node i to node j with exactly k arcs, and as 0 otherwise. Use recursion on k.]

3.20. Now consider the problem of determining whether a network contains an even-length
directed cycle passing through node i. Explain why the approach described in Exercise
3.19 does not work in this case.

3.21. Consider a network with a length cij associated with each arc (i, j). Give a dynamic
programming algorithm for finding a shortest walk (Le., of minimum total length) con
taining exactly k arcs from a specified node s to every other node j in a network. Does
this algorithm work in the presence of negative cycles? [Hint: Define dk(j) as the length
of the shortest walk from node s to nodej containing exactly k arcs and write a recursive
relationship for dk(j) in terms of dk-'(j) and Cij's.]

3.22. Professor May B. Wright suggests the following sorting method utilizing a binary search
technique. Consider a list of n numbers and suppose that we have already sorted the
first k numbers in the list (i.e., arranged them in the nondecreasing order). At the
(k + 1)th iteration, select the (k + l)th number in the list, perform binary search over
the first k numbers to identify the position of this number, and then insert it to produce
the sorted list of the first k + 1 elements. Professor Wright claims that this method
runs in O(n log n) time because it performs n iterations and each binary search requires
O(log n) time. Unfortunately, Professor Wright's claim is false and it is not possible
to implement the algorithm in O(n log n) time. Explain why. (Hint: Work out the details
of this implementation including the required data structures.)

3.23. Given a convex function f(x) of the form shown in Figure 3.11, suppose that we want
to find a value of x that minimizes f(x). Since locating the exact minima is a difficult
task, we allow some approximation and wish to determine a value x so that the interval
(x - E, X + E) contains a value that minimizes f(x). Suppose that we know that f(x)

i
f(x)

Figure 3.11 Convex function.

88 Algorithm Design and Analysis Chap. 3

attains its minimum value in the interval [0, V]. Develop a binary search algorithm for
solving this problem that runs in o (log(Vie)) time. (Hint: At any iteration when [a, b]
is the feasible interval, evaluate f(x) at the points (a + b)/4 and 3(a + b)/4, and exclude
the region [a, (a + b)/4] or [3(a + b)/4, b].)

3.24. (a) Determine the breadth-first and depth-first search trees with s = 1 as the source
node for the graph shown in Figure 3.12.

~------------~ 4 ~------------~.

3 r-----------~~

Figure 3.12 Example for Exercise 3.24.

(b) Is the graph shown in Figure 3.12 acyclic? If not, what is the minimum number of
arcs whose deletion will produce an acyclic graph? Determine a topological ordering
of the nodes in the resulting graph. Is the topological ordering unique?

3.25. Knight's tour problem. Consider the chessboard shown in Figure 3.13. Note that some
squares are shaded. We wish to determine a knight's tour, if one exists, that starts at
the square designated by s and, after visiting the minimum number of squares~ ends at
the square designated by t. The tour must not visit any shaded square. Formulate this
problem as a reachability problem on an appropriately defined graph.

Figure 3.13 Chessboard.

3.26. Maze problem. Show how to formulate a maze problem as a reachability problem in a
directed network. Illustrate your method on the maze problem shown in Figure 3.14.
(Hint: Define rectangular segments in the maze as cords and represent cords by nodes.)

Start

l..-______ ..L-_____________ End Figure 3.14 Maze.

Chap. 3 Exercises 89

3.27. Wine division problem. Two men have an 8-gallon jug full of wine and two empty jugs
with a capacity of 5 and 3 gallons. They want to divide the wine into two equal parts.
Suppose that when shifting the wine from one jug to another, in order to know how
much they have transferred, the men must always empty out the first jug or fill the
second, or both. Formulate this problem as a reachability problem in an appropriately
defined graph. (Hint: Let a, b, and c. respectively, denote a partitioning of the 8 gallons
of wine into the jugs of 8. 5, and 3 gallons capacity. Refer to any such partitioning as
a feasible state of the jugs. Since at least one of the jugs is always empty or full, we
can define 16 possible feasible states. Suppose that we represent these states by nodes
and connect two nodes by an arc when we can permissibly move wine from one jug
to another to move from one state to the other.)

3.28. Give a five-node network for which a breadth-first traversal examines the nodes in the
same order as a depth-first traversal.

3.29. Let T be a depth-first search tree of an undirected graph G. Show that for every nontree
arc (k, /) in G, either node k is an ancestor of node I in T or node I is an ancestor of
node k in T. Show by a counterexample that a breadth-first search tree need not satisfy
this property.

3.30. Show that in a breadth-first search tree. the tree path from the source node to any node
i is a shortest path (i.e., contains the fewest number of arcs among all paths joining
these two nodes). (Hint: Use induction on the number of labeled nodes.)

3.31. In an undirected graph G = (N. A), a set of nodes 5 C; N defines a clique if for every
pair of nodes i,} in 5, (i,}) EA. Show that in the depth-first tree of G, all nodes in
any clique 5 appear on one path. Do all the nodes in a clique 5 appear consecutively
on the path?

3.32. Show that a depth-first order of a network satisfies the following properties.
(a) If node} is a descendant of node i, order(j) > order(i).
(b) All the descendants of any node are ordered consecutively in the order sequence.

3.33. Show that a directed network G is either strongly connected or contains a cut [5, 51
having no arc U.}) with i E 5 and} E S.

3.34. We define the diameter of a graph as a longest path (i.e., one containing the largest
number of arcs) in the graph: The path can start and end at any node. Construct a graph
whose diameter equals the longest path in a depth-first search tree (you can select any
node as the source node). Construct another graph whose diameter is strictly less than
the longest path in some depth-first search tree.

3.35. Transitive closure. A transitive closure of a graph G = (N, A) is a matrix T = {Ti)
defined as follows:

if the graph G contains a directed path from node i to node}
otherwise.

Give an O(nm) algorithm for constructing the transitive closure of a (possibly cyclic)
graph G.

3.36. Let 'Je = {hij} denote the node-node adjacency matrix of a graph G. Consider the
following set of statements:

90

for I: = 1 to n - 1 do
for k: = 1 to n do

for j: = 1 to n do
for i: = 1 to n do

h,,: = max{h". h,k. hk,};

Show that at the end of these computations. the matrix 'Je represents the transitive
closure of G.

Algorithm Design and Analysis Chap. 3

3.37. Given the transitive closure of a graph G, describe an O(n2) algorithm for determining
all strongly connected components of the graph.

3.38. Show that in a directed network, if each node has indegree at least one, the network
contains a directed cycle.

3.39. Show through an example that a network might have several topological orderings of
its nodes. Show that the topological ordering of a network is unique if and only if the
network contains a simple directed path passing through all of its nodes.

3.40. Given two n-vectors (0:(1), 0:(2), ... , o:(n» and (f3(l), f3(2), ... , f3(n», we say that
0: is lexicographically smaller than ~ (i.e., 0: s; ~) if for the first index k for which
o:(k) :I: ~(k), o:(k) is less than f3(k). [For example, (2, 4, 8) is lexicographically smaller
than (2, 5, 1).] Modify the algorithm given in Figure 3.8 so that it gives the lexico
minimum topological ordering of its nodes (i.e., a topological ordering that is lexico
graphically smaller than every other topological ordering).

3.41. Suggest an O(m) algorithm for identifying all components of a (possibly) disconnected
graph. Design the algorithm so that it will assign a label 1 to all nodes in the first
component, a label 2 to all nodes in the second component, and so on. (Hint: Maintain
a doubly linked list of all unlabeled node.)

3.42. Consider an (arbitrary) spanning tree T of a graph G. Show how to label each node in
Tas 0 or 1 so that whenever arc (i,j) is contained in the tree, nodes i and} have different
labels. Using this result, prove that G is bipartite if and only if for every nontree arc
(k, I), nodes k and I have different labels. Using this characterization, describe an O(m)
algorithm for determining whether a graph is bipartite or not.

3.43. In an acyclic network G = (N, A) with a specified source node s, let o:(i) denote the
number of distinct paths from node s to node i. Give an O(m) algorithm that determines
aU) for all i E N. (Hint: Examine nodes in a topological order.)

3.44. For an acyclic network G with a specified source node s, outline an algorithm that
enumerates all distinct directed paths from the source node to every other node in the
network. The running time of your algorithm should be proportional to the total length
of all the paths enumerated (i.e., linear in terms of the output length.) (Hint: Extend
your method developed in Exercise 3.43.)

3.45. In an undirected connected graph G = (N, A), an Euler tour is a walk that starts at
some node, visits each arc exactly once, and returns to the starting node. A graph is
Eulerian if it contains an Euler tour. S~ow that in an Eulerian graph, the degree of
every node is even. Next, show that if every node in a connected graph has an even
degree, the graph is Eulerian. Establish the second result by describing an O(m) al
gorithm for determining whether a graph is Eulerian and, if so, will construct an Euler
tour. (Hint: Describe an algorithm that decomposes any graph with only even-degree
nodes into a collection of arc-disjoint cycles, and then converts the cycles into an Euler
tour.)

3.46. Let T be a depth-first search tree of a graph. Let DU) denote an ordered set of de
scendants of the node i E T, arranged in the same order in which the depth-first search
method labeled them. Define last(i) as the last element in the set DU). Modify the depth
first search algorithm so that while computing the depth-first traversal of the network
G, it also computes the last index of every node. Your algorithm should run in O(m)
time.

3.47. Longest path-in a tree (Handler, 1973). A longest path in an undirected tree T is a path
containing the maximum number of arcs. The longest path can start and end anywhere.
Show that we can determine a longest path in T as follows: Select any node i and use
a search algorithm to find a node k farthest from node i. Then use a search algorithm
to find a node I farthest from node k. Show that the tree path from node k to node I is
a longest path in T. (Hint: Consider the midmost node or arc on any longest path in
the tree depending on whether the path contains an even or odd number or arcs. Need
the longest path starting from any node j pass through this node or arc?)

Chap. 3 Exercises 91

3.48. Consider the flow given in Figure 3.1S(a). Compute the imbalance eO) for each node
i E N and decompose the flow into a path and cycle flow. Is this decomposition unique?

(8)

(4, 17,20)

(b)

Figure 3.1S Examples for Exercises 3.48 and 3.49.

3.49. Consider the circulation given in Figure 3.1S(b). Decompose this circulation into flows
along directed cycles. Draw the residual network and use Theorem 3.8 to check whether
the flow is an optimal solution of the minimum cost flow problem.

3.50. Consider the circulation shown in Figure 3.16. Show that there are k! distinct flow
decompositions of this circulation.

Figure 3.16 Example for Exercise 3.50.

3.51. Show that a unit flow along directed walk from node i to nodej(i =1= J) containing any arc at most
once can be decomposed into a directed path from node i to node j plus some arc-disjoint direct
ed cycles. Next, show that a unit flow along a closed directed walk can be decomposed into unit
flows along arc-disjoint directed cycles.

3.52. Show that if an undirected connec.ted graph G = (N, A) contains exactly 2k odd-degree
nodes, the graph contains k arc-disjoint walks PI, P2 , ••• , Pk satisfying the property
that A = PI U P2 U ... U Pk •.

3.53. Let G = (N, A) be a connected network in which every arc (i, j) E A has positive
lower bound IQ > 0 and an infinite upper bound UQ = 00. Show that G contains a feasible
circulation (Le., a flow in which the inflow equals the outflow for every node) if and
only if G is strongly connected.

3.54. Show that a solution x satisfying the flow bound constraints is a circulation if and only
if the net flow across any cut is zero.

92 Algorithm Design and Analysis Chap. 3

4

SHORTEST PATHS: LABEL-SE11'1NG
ALGORITHMS

A journey of a thousand miles starts with a single step and if
that step is the right step. it becomes the last step.

-Lao Tzu

ClJapter Outlme

4.1 Introduction
4.2 Applications
4.3 Tree of Shortest Paths
4.4 Shortest Path Problems in Acyclic Networks
4.5 Dijkstra's Algorithm
4.6 Dial's Implementation
4.7 Heap Implementations
4.8 Radix Heap Implementation
4.9 Summary

4.1 INTRODUCTION

Shortest path problems lie at the heart of network flows. They are alluring to both
researchers and to practitioners for several reasons: (1) they arise frequently in
practice since in a wide variety of application settings we wish to send some material
(e.g., a computer data packet, a telephone call, a vehicle) between two specified
points in a network as quickly, as cheaply, or as reliably as possible; (2) they are
easy to solve efficiently; (3) as the simplest network models, they capture many of
the most salient core ingredients of network flows and so they provide both a bench
mark and a point of departure for studying more complex network models; and (4)
they arise frequently as subproblems when solving many combinatorial and network
optimization problems. Even though shortest path problems are relatively easy to
solve, the design and analysis of most efficient algorithms for solving them requires
considerable ingenuity. Consequently, the study of shortest path problems is a nat
ural starting point for introducing many key ideas from network flows, including the
use of clever data structures and ideas such as data scaling to improve the worst
case algorithmic performance. Therefore, in this and the next chapter, we begin our
discussion of network flow algorithms by studying shortest path problems.

We first set our notation and describe several assumptions that we will invoke
throughout our discussion.

93

Notation and Assumptions

We consider a directed network G = (N, A) with an arc length (or arc cost) Cij
associated with each arc (i, j) EA. The network has a distinguished node s, called
the source. Let A(i) represent the arc adjacency list of node i and let C = max{cij:
(i, j) E A}. We define the length of a directed path as the sum of the lengths of
arcs in the path. The shortest path problem is to determine for every nonsource
node i E N a shortest length directed path from node s to node i. Alternatively, we
might view the problem as sending 1 unit of flow as cheaply as possible (with arc
flow costs as cij) from node s to each of the nodes in N - {s} in an uncapacitated
network. This viewpoint gives rise to the following linear programming formulation
of the shortest path problem.

Minimize ~ c ijXij
U,j)EA

subject to

~ Xi) - ~ Xji = { n - 1
{j:(i,j)EA} {j:(j,i)EA} - 1

for i = s
for all i E N - {s}

for all (i, j) E A.

(4.1a)

(4.1b)

(4.1c)

In our study of the shortest path problem, we will impose several assumptions.

Assumption 4.1. All arc lengths are integers.

The integrality assumption imposed on arc lengths is necessary for some al
gorithms and unnecessary for others. That is, for some algorithms we can relax it
and still perform the same analysis. Algorithms whose complexity bound depends
on C assume integrality of the data. Note that we can always transform rational arc
capacities to integer arc capacities by multiplying them by a suitably large number.
Moreover, we necessarily need to convert irrational numbers to rational numbers
to represent them on a computer. Therefore, the integrality assumption is really not
a restrictive assumption in practice.

Assumption 4.2. The network contains a directed path from node s to every
other node in the network.

We can always satisfy this assumption by adding a "fictitious" arc (s, i) of
suitably large cost for each node i that is not connected to node s by a directed path.

Assumption 4.3. The network does not contain a negative cycle (i.e., a di
rected cycle of negative length).

Observe that for any network containing a negative cycle W, the linear pro
gramming formulation (4.1) has an unbounded solution because we can send an
infinite amount of flow along W. The shortest path problem with a negative cycle

94 Shortest Paths: Label-Setting Algorithms Chap. 4

is substantially harder to solve than is the shortest path problem without a negative
cycle. Indeed, because the shortest path problem with a negative cycle is an .NI!P
complete problem, no polynomial-time algorithm for this problem is likely to exist
(see Appendix B for the definition of .NI!P-complete problems). Negative cycles com
plicate matters, in part, for the following reason. All algorithms that are capable of
solving shortest path problems with negative length arcs essentially determine short
est length directed walks from the source to other nodes. If the network contains
no negative cycle, then some shortest length directed walk is a path (Le., does not
repeat nodes), since we can eliminate directed cycles from this walk without in
creasing its length. The situation for networks with negative cycles is quite different;
in these situations, the shortest length directed walk might traverse a negative cycle
an infinite number of times since each such repetition reduces the length of the walk.
In these cases we need to prohibit walks that revisit nodes; the addition of this
apparently mild stipulation has significant computational implications: With it, the
shortest path problem becomes substantially more difficult to solve.

Assumption 4.4. The network is directed.

If the network were undirected and all arc lengths were nonnegative, we could
transform this shortest path problem to one on a directed network. We described
this transformation in Section 2.4. If we wish to solve the shortest path problem on
an undirected network and some arc lengths are negative, the transformation de
scribed in Section 2.4 does not work because each arc with negative length would
produce a negative cycle. We need a more complex transformation to handle this
situation, which we describe in Section 12.7.

Various Types of Shortest Path Problems

Researchers have studied several different types of (directed) shortest path problems:

1. Finding shortest paths from one node to all other nodes when arc lengths are
nonnegative

2. Finding shortest paths from one node to all other nodes for networks with
arbitrary arc lengths

3. Finding shortest paths from every node to every other node
4. Various generalizations of the shortest path problem

In this and the following chapter we discuss the first three of these problem
types. We refer to problem types (1) and (2) as the single-source shortest path prob
lem (or, simply, the shortest path problem), and the problem type (3) as the all-pairs
shortest path problem. In the exercises of this chapter we consider the following
variations of the shortest path problem: (1) the maximum capacity path problem,
(2) the maximum reliability path problem, (3) shortest paths with turn penalties, (4)
shortest paths with an additional constraint, and (5) the resource-constrained shortest
path problem.

Sec. 4.1 Introduction 95

Analog Solution of the Shortest Path Problem

The shortest path problem has a particularly simple structure that has allowed re
searchers to develop several intuitively appealing algorithms for solving it. The fol
lowing analog model for the shortest path problem (with nonnegative arc lengths)
provides valuable insight that helps in understanding some of the essential features
of the shortest path problem. Consider a shortest path problem between a specified
pair of nodes sand t (this discussion extends easily for the general shortest path
model with multiple destination nodes and with nonnegative arc lengths). We con
struct a string model with nodes represented by knots, and for any arc (i, j) in A,
a string with length equal to c(doining the two knots i and j. We assume that none
of the strings can be stretched. After constructing the model, we hold the knot
representing node s in one hand, the knot representing node t in the other hand, and
pull our hands apart. One or more paths will be held tight; these are the shortest
paths from node s to node t.

We can extract several insights about the shortest path problem from this simple
string model:

1. For any arc on a shortest path, the string will be taut. Therefore, the shortest
path distance between any two successive nodes i andj on this path will equal
the length Cij of the arc (i, j) between these nodes.

2. For any two nodes i and j on the shortest path (which need not be successive
nodes on the path) that are connected by an arc (i, j) in A, the shortest path
distance from the source to node i plus Cij (a composite distance) is always as
large as the shortest path distance from the source to node j. The composite
distance might be larger because the string between nodes i and j might not be
taut.

3. To solve the shortest path problem, we have solved an associated maximization
problem (by pulling the string apart). As we will see in our later discussions,
in general, all network flow problems modeled as minimization problems have
an associated "dual" maximization problem; by solving one problem, we gen
erally solve the other as well.

Label-Setting and Label-Correcting Algorithms

The network flow literature typically classifies algorithmic approaches for solving
shortest path problems into two groups: label setting and label correcting. Both
approaches are iterative. They assign tentative distance labels to nodes at each step;
the distance labels are estimates of (i.e., upper bounds on) the shortest path dis
tances. The approaches vary in how they update the distance labels from step to
step and how they "converge" toward the shortest path distances. Label-setting
algorithms designate one label as permanent (optimal) at each iteration. In contrast,
label-correcting algorithms consider all labels as temporary until the final step, when
they all become permanent. One distinguishing feature of these approaches is the
class of problems that they solve. Label-setting algorithms are applicable only to (1)
shortest path problems defined on acyclic networks with arbitrary arc lengths, and
to (2) shortest path problems with nonnegative arc lengths. The label-correcting

96 Shortest Paths: Label-Setting Algorithms Chap. 4

algorithms are more general and apply to all classes of problems, including those
with negative arc lengths. The label-setting algorithms are much more efficient, that
is, have much better worst-case complexity bounds; on the other hand, the label
correcting algorithms not only apply to more general classes of problems, but as we
will see, they also offer more algorithmic flexibility. In fact, we can view the label
setting algorithms as special cases of the label-correcting algorithms.

In this chapter we study label-setting algorithms; in Chapter 5 we study label
correcting algorithms. We have divided our discussion in two parts for several rea
sons. First, we wish to emphasize the difference between these two solution ap
proaches and the different algorithmic strategies that they employ. The two problem
approaches also differ in the types of data structures that they employ. Moreover,
the analysis of the two types of algorithms is quite different. The convergence proofs
for label-setting algorithms are much simpler and rely on elementary combinatorial
arguments. The proofs for the label-correcting algorithms tend to be much more
subtle and require more careful analysis.

Chapter Overview

The basic label-setting algorithm has become known as Dijkstra' s algorithm because
Dijkstra was one of several people to discover it independently. In this chapter we
study several variants of Dijkstra's algorithm. We first describe a simple imple
mentation that achieves a time bound of O(n 2

). Other implementations improve on
this implementation either empirically or theoretically. We describe an implemen
tation due to Dial that achieves an excellent running time in practice. We also con
sider several versions of Dijkstra's algorithm that improve upon its worst-case com
plexity. Each of these implementations uses a heap (or priority queue) data structure.
We consider several such implementations, using data structures known as binary
heaps, d-heaps, Fibonacci heaps, and the recently developed radix heap. Before
examining these various algorithmic approaches, we first describe some applications
of the shortest path problem.

4.1 APPLICATIONS

Shortest path problems arise in a wide variety of practical problem settings, both
as stand-alone models and as subproblems in more complex problem settings. For
example, they arise in the telecommunications and transportation industries when
ever we want to send a message or a vehicle between two geographical locations
as quickly or as cheaply as possible. Urban traffic planning provides another im
portant example: The models that urban planners use for computing traffic flow
patterns are complex nonlinear optimization problems or complex equilibrium
models; they build, however, on the behavioral assumption that users of the trans
portation system travel, with respect to prevailing traffic congestion, along shortest
paths from their origins to their destinations. Consequently, most algorithmic ap
proaches for finding urban traffic patterns solve a large number of shortest path
problems as subproblems (one for each origin-destination pair in the network).

In this book we consider many other applications like this with embedded
shortest path models. These many and varied applications attest to the importance

Sec. 4.2 Applications 97

i
/(x)

of shortest path problems in practice. In Chapters 1 and 19 we discuss a number of
stand-alone shortest path models in such problem contexts as urban housing, project
management, inventory planning, and DNA sequencing. In this section and in the
exercises in this chapter, we consider several other applications of shortest paths
that are indicative of the range of applications of this core network flow model.
These applications include generic mathematical applications-approximating func
tions, solving certain types of difference equations, and solving the so-called knap
sack problem-as well as direct applications in the domains of production planning,
telephone operator scheduling, and vehicle fleet planning.

Application 4.1 Approximating Piecewise Linear
Functions

Numerous applications encountered within many different scientific fields use piece
wise linear functions. On several occasions, these functions contain a large number
of breakpoints; hence they are expensive to store and to manipulate (e.g., even to
evaluate). In these situations it might be advantageous to replace the piecewise linear
function by another approximating function that uses fewer breakpoints. By ap
proximating the function we will generally be able to save on storage space and on
the cost of using the function; we will, however, incur a cost because of the inac
curacy of the approximating function. In making the approximation, we would like
to make the best possible trade-off between these conflicting costs and benefits.

Let f.(x) be a piecewise linear function ofa scalar x. We represent the function
in the two-dimensional plane: It passes through n points al = (XI, YI), a2 =
(X2' Y2), ... , an = (xn, Yn). Suppose that we have ordered the points so that XI :S

X2 :S ... :S Xn. We assume that the function varies linearly between every two consec
utive points Xi and Xi+ I. We consider situations in which n is very large and for
practical reasons we wish to approximate the function f I (x) by another function
f2(X) that passes through only a subset of the points a1, a2, ... , an (including al
and an). As an example, consider Figure 4.I(a): In this figure we have approximated
a function fl(x) passing through 10 points by a function f2(X) drawn with dashed
lines) passing through only five of the points.

This approximation results in a savings in storage space and in the use of the
function. For purposes of illustration, assume that we can measure these costs by
a per unit cost 0: associated with any single interval used in the approximation (which

98

x----+
(8)

(b)

Figure 4.1 Illustrating Applications 4.1: (a) approximating the function II (x) passing through

10 points by the function h(x); (b) corresponding shortest path problem.

Shortest Paths: Label-Setting Algorithms Chap. 4

is defined by two points, aj and aj). As we have noted, the approximation also
introduces errors that have an associated penalty. We assume that the error of an
approximation is proportional to the sum of the squared errors between the actual
data points and the estimated points (i.e., the penalty is ~ L7=. [I. (Xi) - I2(Xi»)2
for some constant ~). Our decision problem is to identify the subset of points to be
used to define the approximation function I2 (X) so that we incur the minimum total
cost as measured by the sum of the cost of storing and using the approximating
function and the cost of the errors imposed by the approximation.

We will formulate this problem as a shortest path problem on a network G with
n nodes, numbered 1 through n, as follows. The network contains an arc (i, j) for
each pair of nodes i and j such that i < j. Figure 4.l(b) gives an example of the
network with n = 5 nodes. The arc (i,j) in this network signifies that we approximate
the linear segments of the function II (X) between the points aj, aj+., ... , aj by
one linear segment joining the points aj and aj. The cost C ij of the arc (i, j) has two
components: the storage cost a and the penalty associated with approximating all
the points between aj and aj by the corresponding points lying on the line joining ai
and aj. In the interval [Xi, Xj], the approximating function is I2(X) = It(Xi) + (x -
xi)[I. (Xj) - II (xj»)/(xj - Xi), so the total cost in this interval is

cij = a + ~[~; (fl(x,) - f2(x.»2 J
Each directed path from node 1 to node n in G corresponds to a function I2(X),

and the cost of this path equals the total cost for storing this function and for using
it to approximate the original function. For example, the path 1-3-5 corresponds
to the function I2(X) passing through the points aI, a3, and as. As a consequence
of these observations, we see that the shortest path from node 1 to node n specifies
the optimal set of points needed to define the approximating function I2(X).

Application 4.2 Anocating Inspection Effort on a
Production Line

A production line consists of an ordered sequence of n production stages, and each
stage has a manufacturing operation followed by a potential inspection. The product
enters stage 1 of the production line in batches of size B ;::: 1. As the items within
a batch move through the manufacturing stages, the operations might introduce
defects. The probability of producing a defect at stage i is ai. We assume that all of
the defects are nonrepairable, so we must scrap any defective item. After each stage,
we can either inspect all of the items or none of them (we do not sample the items);
we assume that the inspection identifies every defective item. The production line
must end with an inspection station so that we do not ship any defective units. Our
decision problem is to find an optimal inspection plan that specifies at which stages
we should inspect the items so that we minimize the total cost of production and
inspection. Using fewer inspection stations might decrease the inspection costs, but
will increase the production costs because we might perform unnecessary manu
facturing operations on some units that are already defective. The optimal number
of inspection stations will achieve an appropriate trade-off between these two con
flicting cost considerations.

Sec. 4.2 Applications 99

Suppose that the following cost data are available: (1) Pi, the manufacturing
cost per unit in stage i; (2) fu, the fixed cost of inspecting a batch after stagej, given
that we last inspected the batch after stage i; and (3) gij, the variable per unit cost
for inspecting an item after stagej, given that we last inspected the batch after stage
i. The inspection costs at station j depend on when the batch was inspected last,
say at station i, because the inspector needs to look for defects incurred at any of
the intermediate stages i + 1, i + 2, ... ,j.

We can formulate this inspection problem as a shortest path problem on a
network with (n + 1) nodes, numbered 0, 1, ... , n. The network contains an arc
(i, j) for each node pair i and j for which i < j. Figure 4.2 shows the network for an

Figure 4.2 Shortest path network
associated with the inspection problem.

inspection problem with four stations. Each path in the network from node 0 to node
4 defines an inspection plan. For example, the path 0-2-4 implies that we inspect
the batches after the second and fourth stages. Letting B(i) = B n~= 1 (1 - Uk)

denote the expected number of nondefective units at the end of stage i, we associate
the following cost Cij with any arc (i, j) in the network:

j

Cij = f ij + B(i)gij + B(i) L Pk. (4.2)
k=i+l

It is easy to see that Cij denotes the total cost incurred in the stages i + 1, i +
2, ... ,j; the first two terms on the right-hand side of (4.2) are the fixed and variable
inspection costs, and the third term is the production cost incurred in these stages.
This shortest path formulation permits us to solve the inspection application as a
network flow problem.

Application 4.8 Knapsack Problem

In Section 3.3 we introduced the knapsack problem and formulated this classical
operations research model as an integer program. For convenience, let us recall the
underlying motivation for this problem. A hiker must decide which goods to include
in her knapsack on a forthcoming trip. She must choose from among P objects:
Object i has weight Wi (in pounds) and a utility Ui to the hiker. The objective is to
maximize the utility of the hiker's trip subject to the weight limitation that she can
carry no more than W pounds. In Section 3.3 we described a dynamic programming
algorithm for solving this problem. Here we formulate the knapsack problem as a
longest path problem on an acyclic network and then show how to transform the
longest path problem into a shortest path problem. This application illustrates an
intimate connection between dynamic programming and shortest path problems on
acyclic networks. By making the appropriate identification between the stages and
"states" of any dynamic program and the nodes of a network, we can formulate
essentially all deterministic dynamic programming problems as equivalent shortest

100 Shortest Paths: Label-Setting Algorithms Chap. 4

path problems. For these reasons, the range of applications of shortest path problems
includes most applications of dynamic programming, which is a large and extensive
field in its own right.

We illustrate our formulation using a knapsack problem with four items that
have the weights and utilities indicated in the accompanying table:

j 1 2 3 4

Uj 40 15 20 10

Wj 4 2 3 1

Figure 4.3 shows the longest path formulation for this sample knapsack prob
lem, assuming that the knapsack has a capacity of W = 6. The network in the
formulation has several layers of nodes: It has one layer corresponding to each item
and one layer corresponding to a source node s and another corresponding to a sink
node t. The layer corresponding to an item i has W + 1 nodes, iO, it, ... , iW. Node

layer 0 layer I layer 2 layer 3 layer 4 layer 5

Figure 4.3 Longest path formulation of the knapsack problem.

Sec. 4.2 Applications 101

ik in the network signifies that the items 1, 2, ... , i have consumed k units of the
knapsack's capacity. The node ik has at most two outgoing arcs, corresponding to
two decisions: (1) do not include item (i + 1) in the knapsack, or (2) include item
i + 1 in the knapsack. [Notice that we can choose the second of these alternatives
only when the knapsack has sufficient spare capacity to accommodate item U + 1),
i.e., k + Wi+! ::5 W.] The arc corresponding to the first decision is Uk, U + 1)k) with
zero utility and the arc corresponding to the second decision (provided that k +
Wi+! ::5 W) is Uk, U + l)k+wi+l) with utility Ui+!. The source node has two incident
arcs, (s, 1°) and (s, lWl), corresponding to the choices of whether or not to include
item 1 in an empty knapsack. Finally, we connect all the nodes in the layer corre
sponding to the last item to the sink node t with arcs of zero utility.

Every feasible solution of the knapsack problem defines a directed path from
node s to node t; both the feasible solution and the path have the same utility.
Conversely, every path from node s to node t defines a feasible solution to the
knapsack problem with the same utility. For example, the path s-I°-22 -35 -45-t
implies the solution in which we include items 2 and 3 in the knapsack and exclude
items 1 and 4. This correspondence shows that we can find the maximum utility
selection of items by finding a maximum utility path, that is, a longest path in the
network.

The longest path problem and the shortest path problem are closely related.
We can transform the longest path problem to a shortest path problem by defining
arc costs equal to the negative ofthe arc utilities. If the longest path problem contains
any positive length directed cycle, the resulting shortest path problem contains a
negative cycle and we cannot solve it using any of the techniques discussed in the
book. However, if all directed cycles in the longest path problem have nonpositive
lengths, then in the corresponding shortest path problem all directed cycles have
nonnegative lengths and this problem can be solved efficiently. Notice that in the
longest path formulation of the knapsack problem, the network is acyclic; so the
resulting shortest path problem is efficiently solvable.

To conclude our discussion of this application, we offer a couple of concluding
remarks concerning the relationship between shortest paths and dynamic program
ming. In Section 3.3 we solved the knapsack problem by using a recursive relation
ship for computing a quantity dU, j) that we defined as the maximum utility of
selecting items if we restrict our selection to items 1 through i and impose a weight
restriction of j. Note that dU, j) can be interpreted as the longest path length from
node s to node i j

• Moreover, as we will see, the recursion that we used to solve the
dynamic programming formulation of the knapsack problem is just a special imple
mentation of one of the standard algorithms for solving shortest path problems on
acyclic networks (we describe this algorithm in Section 4.4). This observation pro
vides us with a concrete illustration of the meta statement that "(deterministic)
dynamic programming is a special case of the shortest path problem."

Second, as we show in Section 4.4, shortest path problems on acyclic networks
are very easy to solve-by methods that are linear in the number n of nodes and
number m of arcs. Since the nodes of the network representation correspond to the
"stages" and "states" of the dynamic programming formulation, the dynamic pro
gramming model will be easy to solve if the number of states and stages is not very
large (i.e., do not grow exponentially fast in some underlying problem parameter).

102 Shortest Paths: Label-Setting Algorithms Chap. 4

Application 4.4 Tramp Steamer Problem

A tramp steamer travels from port to port carrying cargo and passengers. A voyage
of the steamer from port i to port j earns Pij units of profit and requires Tij units of
time. The captain of the steamer would like to know which tour W of the steamer
(i.e., a directed cycle) achieves the largest possible mean daily profit when we define
the daily profit for any tour W by the expression

/-L(W)

L pij
(i.j)EW

L Tij
(i,j)EW

We assume that Tij ;:=: 0 for every arc (i, j) E A, and that LU,j)EW Tij > 0 for every
directed cycle W in the network.

In Section 5.7 we study the tramp steamer problem. In this application we
examine a more restricted version of the tramp steamer problem: The captain of the
steamer wants to know whether some tour W will be able to achieve a mean daily
profit greater than a specified threshold /-Lo. We will show how to formulate this
problem as a negative cycle detection problem. In this restricted version of the tramp
steamer problem, we wish to determine whether the underlying network G contains
a directed cycle W satisfying the following condition:

L Pij
(i.j)EW

'" > /-Lo· £.oJ Tij
(i,j)EW

By writing this inequality as L(i.j)EW (/-LOTij - pij) < 0, we see that G contains
a directed cycle W in G whose mean profit exceeds /-Lo if and only if the network
contains a negative cycle when the cost of arc (i, j) is (/-LOTij - pij). In Section 5.5
we show that label-correcting algorithms for solving the shortest path problem are
able to detect negative cycles, which implies that we can solve this restricted version
of the tramp steamer problem by applying a shortest path algorithm.

Application 4.5 System of Difference Constraints
In some linear programming applications, with constraints of the form Six ::5 b, the
n x m constraint matrix Si contains one + 1 and one - 1 in each row; all the other
entries are zero. Suppose that the kth row has a + 1 entry in column jk and a -1
entry in column ik ; the entries in the vector b have arbitrary signs. Then this linear
program defines the following set of m difference constraints in the n variables x ==
(x(1), x(2), ... , x(n»:

for each k = 1, ... , m. (4.3)

We wish to determine whether the system of difference constraints given by
(4.3) has a feasible solution, and if so, we want to identify a feasible solution. This
model arises in a variety of applications; in Application 4.6 we describe the use of
this model in the telephone operator scheduling, and in Application 19.6 we describe
the use of this model in the scaling of data.

Each system of difference constraints has an associated graph G, which we

Sec. 4.2 Applications 103

call a constraint graph. The constraint graph has n nodes corresponding to the n
variables and m arcs corresponding to the m difference constraints. We associate
an arc Uk, A) of length b(k) in G with the constraint x(A) - XUk) :5 b(k). As an
example, consider the following system of constraints whose corresponding graph
is shown in Figure 4.4(a):

-10

5

8

-11

(a)

x(3) - x(4) :5 5,

x(4) - x(1) :5 -10,

x(1) - x(3) :5 8,

x(2) - x(1) :5 -11,

x(3) - x(2) :5 2.

o /
/

/
I

./
./

/ /0
I /

/'~
/'

2 ti'~ -10

\ "" 0
\ "
\ "
" " o ",-

'- '-----

5

8

-11

------(b)

Figure 4.4 Graph corresponding to a system of difference constraints.

2

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

In Section 5.2 we show that the constraints (4.4) are identical with the optimality
conditions for the shortest path problem in- Figure 4.4(a) and that we can satisfy
these conditions if and only if the network contains no negative (cost) cycle. The
network shown in Figure 4.4(a) contains a negative cycle 1-2-3 of length -1, and
the corresponding constraints [i.e., x(2) - x(1) :5 - 11, x(3) - x(2) :5 2, and
x(1) - x(3) :5 8] are inconsistent because summing these constraints yields the invalid
inequality 0 :5 - 1.

As noted previously, we can detect the presence of a negative cycle in a network
by using the label-correcting algorithms described in Chapter 5. The label-correcting
algorithms do require that all the nodes are reachable by a directed path from some
node, which we use as the source node for the shortest path problem. To satisfy
this requirement, we introduce a new node s andjoin it to all the nodes in the network
with arcs of zero cost. For our example, Figure 4.4(b) shows the modified network.
Since all the arcs incident to node s are directed out of this node, node s is not
contained in any directed cycle, so the modification does not create any new directed
cycles and so does not introduce any cycles with negative costs. The label-correcting
algorithms either indicate the presence of a negative cycle or provide the shortest
path distances. In the former case the system of difference constraints has no so
lution, and in the latter case the shortest path distances constitute a solution of (4.4).

104 Shortest Paths: Label-~ettihg Algorithms Chap. 4

Application 4.6 Telephone Operator Scheduling

As an application of the system of difference constraints, consider the following
telephone operator scheduling problem. A telephone company needs to schedule
operators around the clock. Let b(i) for i = 0, 1,2, ... ,23, denote the minimum
number of operators needed for the ith hour of the day [here b(O) denotes number
of operators required between midnight and 1 A.M.]. Each telephone operator works
in a shift of 8 consecutive hours and a shift can begin at any hour of the day. The
telephone company wants to determine a "cyclic schedule" that repeats daily (i.e.,
the number of operators assigned to the shift starting at 6 A.M. and ending at 2 P.M.

is the same for each day). The optimization problem requires that we identify the
fewest operators needed to satisfy the minimum operator requirement for each hour
of the day. Letting Yi denote the number of workers whose shift begins at the ith
hour, we can state the telephone operator scheduling problem as the following op
timization model:

23

Minimize L Yi
i~O

subject to

(4.5a)

Yi-7 + Yi-6 + + Yi 2:: b(i) for all i = 8 to 23, (4.5b)

Y17+i + ... + Y23 + Yo + + Yi 2:: b(i) for all i = 0 to 7, (4.5c)

Yi 2:: 0 for all i = 0 to 23. (4.5d)

Notice that this linear program has a very special structure because the as
sociated constraint matrix contains only 0 and 1 elements and the l' s in each row
appear consecutively. In this application we study a restricted version of the tele
phone operator scheduling problem: We wish to determine whether some feasible
schedule uses p or fewer operators. We convert this restricted problem into a system
of difference constraints by redefining the variables. Let x(O) -::: Yo, x(1) = Yo + Yl,
x(2) = Yo + Yl + Y2, ... , and x(23) = Yo + Y2 + .. , + Y23 = p. Now notice that
we can rewrite each constraint in (4.5b) as

x(i) - x(i - 8) 2:: b(i)

and each constraints in (4.5c) as

for all i = 8 to 23, (4.6a)

x(23) - x(16 + i) + x(i)
= p - x(16 + i) + x(i) 2:: b(i)

Finally, the nonnegativity constraints (4.5d) become

x(i) - x(i - 1) 2:: O.

for all i = 0 to 7. (4.6b)

(4.6c)

By virtue of this transformation, we have reduced the restricted version of the
telephone operator scheduling problem into a problem of finding a feasible solution
ofthe system of difference constraints. We discuss a solution method for the general
problem in Exercise 4.12. Exercise 9.9 considers a further generalization that in
corporates costs associated with various shifts.

In the telephone operator scheduling problem, the rows of the underlying op-

Sec. 4.2 Applications 105

timization model (in the variables y) satisfy a "wraparound consecutive l' s prop
erty"; that is, the variables in each row have only 0 and 1 coefficients and all of the
variables with 1 coefficients are consecutive (if we consider the first and last variables
to be consecutive). In the telephone operator scheduling problem, each row has
exactly eight variables with coefficients of value 1. In general, as long as any op
timization model satisfies the wraparound consecutive 1 's property, even if the rows
have different numbers of variables with coefficients of value 1, the transformation
we have described would permit us to model the problem as a network flow model.

4.3 TREE OF SHORTEST PATHS

In the shortest path problem, we wish to determine a shortest path from the source
node to all other (n - 1) nodes. How much storage would we need to store these
paths? One naive answer would be an upper bound of (n - 1? since each path could
contain at most (n - 1) arcs. Fortunately, we need not use this much storage: (n
- 1) storage locations are sufficient to represent all these paths. This result follows
from the fact that we can always find a directed out-tree rooted from the source
with the property that the unique path from the source to any node is a shortest path
to that node. For obvious reasons we refer to such a tree as a shortest path tree.
Each shortest path algorithm discussed in this book is capable of determining this
tree as it computes the shortest path distances. The existence of the shortest path
tree relies on the following property.

Property 4.1. If the path s = i l i2 - ... - ih = k is a shortest path from
node s to node k, then for every q = 2,3, ... , h - 1, the subpath s = i l - i2 -

- iq is a shortest path from the source node to node iq •

This property is fairly easy to establish. In Figure 4.5 we assume that the
shortest path P I -P3 from node s to node k passes through some node p, but the
subpath PI up to node p is not a shortest path to node p; suppose instead that path
P2 is a shorter path to node p. Notice that P2-P3 is a directed walk whose length is
less than that of path P I -P3 • Also, notice that any directed walk from node s to
node k decomposes into a directed path plus some directed cycles (see Exercise
3.51), and these cycles, by our assumption, must have nonnegative length. As a
result, some directed path from node s to node k is shorter than the path PI-P3 ,

contradicting its optimality.

Figure 4.5 Proving Property 4.1.

Let dO denote the shortest path distances. Property 4.1 implies that if P is a
shortest path from the source node to some node k, then d(j) = d(i) + Cij for every
arc (i, j) E P. The converse of this result is also true; that is, if d(j) = d(i) + cij

106 Shortest Paths: Label-Setting Algorithms Chap. 4

for every arc in a directed path P from the source to node k, then P must be a shortest
path. To establish this result, let s = it - iz - ... - ih = k be the node sequence
in P. Then

d(k) == d(ih) = (d(ih) - d(ih-t» + (d(ih- d - d(ih-2» + ... + (d(i2) - d(id),

where we use the fact that d(id = O. By assumption, d(j) - d(i) == Cij for every
arc (i, j) E P. Using this equality we see that

(i,j)EP

,,'
Consequently, P is a directed path from the source node to node k of length

d(k). Since, by assumption, d(k) is the shortest path distance to node k, P must be
a shortest path to node k. We have thus established the following result.

Property 4.2. Let the vector d represent the shortest path distances. Then a
directed path P from the source node to node k is a shortest path if and only if
d(j) = d(i) + cijfor every arc (i,j) E P.

We are now in a position to prove the existence of a shortest path tree. Since
only a finite number of paths connect the source to every node, the network contains
a shortest path to every node. Property 4.2 implies that we can always find a shortest
path from the source to every other node satisfying the property that for every arc
(i, j) on the path, d(j) = d(i) + Cij. Therefore, if we perform a breadth-first search
of the network using the arcs satisfying the equality d(j) = d(i) + Cij, we must be
able to reach every node. The breadth-first search tree contains a unique path from
the source to every other node, which by Property 4.2 must be a shortest path to
that node.

4.4 SHORTEST PATH PROBLEMS IN ACYCLIC NETWORKS

Recall that a network is said to be acyclic if it contains no directed cycle. In this
section we show how to solve the shortest path problem on an acyclic network in
Oem) time even though the arc lengths might be negative. Note that no other al
gorithm for solving the shortest path problem on acyclic networks could be any
faster (in terms of the worst-case complexity) become any algorithm for solving the
problem must examine every arc, which itself would take Oem) time.

Recall from Section 3.4 that we can always number (or order) nodes in an
acyclic network G = (N, A) in Oem) time so that i <j for every arc (i,j) EA. This
ordering of nodes is called a topological ordering. Conceptually, once we have de
termined the topological ordering, the shortest path problem is quite easy to solve
by a simple dynamic programming algorithm. Suppose that we have determined the
shortest path distances d(i) from the source node to nodes i = 1, 2, ... , k - 1.
Consider node k. The topological ordering implies that all the arcs directed into this
node emanate from one of the nodes 1 through k - 1. By Property 4.1, the shortest
path to node k is composed of a shortest path to one of the nodes i = 1, 2, ... ,
k - 1 together with the arc (i, k). Therefore, to compute the shortest path distance

Sec. 4.4 Shortest Path Problems in Acyclic Networks 107

to node k, we need only select the minimum of d(i) + Cik for all incoming arcs
(i, k). This algorithm is a pulling algorithm in that to find the shortest path distance to
any node, it "pulls" shortest path distances forward from lower-numbered nodes.
Notice that to implement this algorithm, we need to access conveniently all the arcs
directed into each node. Since we frequently store the adjacency list A(i) of each
node i, which gives the arcs emanating out of a node, we might also like to implement
a reaching algorithm that propagates information from each node to higher-indexed
nodes, and so uses the usual adjacency list. We next describe one such algorithm.

We first set des) = 0 and the remaining distance labels to a very large number.
Then we examine nodes in the topological order and for each node i being examined,
we scan arcs in A(i). Iffor any arc (i, j) E A(i), we find that d(j) > d(i) + Cij, then
we set d(j) = d(i) + Cij. When the algorithm has examined all the nodes once in
this order, the distance labels are optimal.

We use induction to show that whenever the algorithm examines a node, its
distance label is optimal. Suppose that the algorithm has examined nodes 1, 2, ... ,
k and their distance labels are optimal. Consider the point at which the algorithm
examines node k + 1. Let the shortest path from the source to node k + 1 be s =
it - iz - '" - ih - (k + 1). Observe that the path it - i2 - ... - ih must be a
shortest path from the source to node ih (by Property 4.1). The facts that the nodes
are topologically ordered and that the arc (ih, k + 1) E A imply that ih E {1, 2, ... ,
k} and, by the inductive hypothesis, the distance label of node ih is equal to the
length of the path it - i2 - ... - ih • Consequently, while examining node ih , the
algorithm must have scanned the arc (ih, k + 1) and set the distance label of node
(k + 1) equal to the length of the path it - i2 - ••• - ih - (k + 1). Therefore,
when the algorithm examines the node k + 1, its distance label is optimal. The
following result is now immediate.

Theorem 4.3. The reaching algorithm solves the shortest path problem on
acyclic networks in Oem) time.

In this section we have seen how we can solve the shortest path problem on
acyclic networks very efficiently using the simplest possible algorithm. Unfortu
nately, we cannot apply this one-pass algorithm, and examine each node and each
arc exactly once, for networks containing cycles; nevertheless, we can utilize the
same basic reaching strategy used in this algorithm and solve any shortest path
problem with nonnegative arc lengths using a modest additional amount of work.
As we will see, we incur additional work because we no longer have a set order for
examining the nodes, so at each step we will need to investigate several nodes in
order to determine which node to reach out from next.

4.5 D1JKSTRA'S ALGORITHM

As noted previously, Dijkstra's algorithm finds shortest paths from the source node
s to all other nodes in a network with nonnegative arc lengths. Dijkstra's algorithm
maintains a distance label d(i) with each node i, which is an upper bound on the

108 Shortest Paths: Label-Setting Algorithms Chap. 4

shortest path length to node i. At any intermediate step, the algorithm divides the
nodes into two groups: those which it designates as permanently labeled (or per
manent) and those it designates as temporarily labeled (or temporary). The distance
label to any permanent node represents the shortest distance from the source to that
node. For any temporary node, the distance label is an upper bound on the shortest
path distance to that node. The basic idea of the algorithm is to fan out from node
s and permanently label nodes in the order of their distances from node s. Initially,
we give node s a permanent label of zero, and each other node j a temporary label
equal to 00. At each iteration, the label of a node i is its shortest distance from the
source node along a path whose internal nodes (i.e., nodes other than s or the node
i itself) are all permanently labeled. The algorithm selects a node i with the minimum
temporary label (breaking ties arbitrarily), makes it permanent, and reaches out from
that node-that is, scans arcs inA(t) to update the distance labels of adjacent nodes.
The algorithm terminates when it has designated all nodes as permanent. The cor
rectness of the algorithm relies on the key observation (which we prove later) that
we can always designate the node with the minimum temporary label as permanent.

Dijkstra's algorithm maintains a directed out-tree T rooted at the source that
spans the nodes with finite distance labels. The algorithm maintains this tree using
predecessor indices [i.e., if (t, j) E T, then pred(j) = il. The algorithm maintains
the invariant property that every tree arc (i, j) satisfies the condition d(j) = d(i) +
Cij with respect to the current distance labels. At termination, when distance labels
represent shortest path distances, T is a shortest path tree (from Property 4.2).

Figure 4.6 gives a formal algorithmic description of Dijkstra's algorithm.
In Dijkstra's algorithm, we refer to the operation of selecting a minimum tem

porary distance label as a node selection operation. We also refer to the operation
of checking whether the current labels for nodes i and j satisfy the condition
d(j) > d(t) + Cij and, if so, then setting d(j) = d(i) + Cij as a distance update
operation.

We illustrate Dijkstra's algorithm using the numerical example given in Figure
4.7(a). The algorithm permanently labels the nodes 3, 4, 2, and 5 in the given se
quence: Figure 4.7(b) to (e) illustrate the operations for these iterations. Figure 4.7(f)
shows the shortest path tree for this example.

Sec. 4.5

algorithm Dijkstra;
begin

S: = IiI; S: = N;
d(/) : = 00 for each node i E N;
d(s) := 0 and pred(s) : = 0;
while lSI < n do
begin

let i E Sbe a node for which d(/) = min{d(j) : j E S};
S: = S U {J};
s: = S - {I};
for each (i, j) E A(I) do

if d(j) > d(I) + cij then d(j) : = d(I) + Clj and pred(j) : = i;
end;

end;

Figure 4.6 Dijkstra's algorithm.

Dijkstra's Algorithm 109

111 '.,">,

Id(ol IdWI

CD cij .0)
w+-El El rm ' /: El--.w

3 3

111 J:«,~~~ 8

7 7

~El
(a)

8 W
(b)
8~

rm W " ~. ,~

W 111
(c)

Figure 4.7 Illustrating Dijkstra's algorithm.

Correctness of Dijkstra.'s Algorithm

We use inductive arguments to establish the validity of Dijkstra's algorithm. At any
iteration, the algorithm has partitioned the nodes into two sets, Sand S. Our induction
hypothesis are (1) that the distance label of each node in S is optimal, and (2) that
the distance label of each node in S is the shortest path length from the source
provided that each internal node in the path lies in S. We perform induction on the
cardinality of the set S.

To prove the first inductive hypothesis, recall that at each iteration the algo
rithm transfers a node i in the set S with smallest distance label to the set S. We
need to show that the distance label d(i) of node i is optimal. Notice that by our
induction hypothesis, d(i) is the length of a shortest path to node i among all paths
that do not contain any node in S as an internal node. We now show that the length
of any path from s to i that contains some nodes in S as an internal node will be at
least d(i). Consider any path P from the source to node i that contains at least one
node in S as an internal node. The path P can be decomposed into two segments
PI and P2 : the path segment PI does not contain any node in S as an internal node,
but terminates at a node k in S (see Figure 4.8). By the induction hypothesis, the
length of the path PI is at least d(k) and since node i is the smallest distance label

110 Shortest Paths: Label-Setting Algorithms Chap. 4

s s

in S, d(k) 2:: d(i). Therefore, the path segment PI has length at least d(i). Further
more, since all arc lengths are nonnegative, the length of the path segment P2 is
nonnegative. Consequently, length ofthe path P is at least d(i). This result establishes
the fact that d(i) is the shortest path length of node i from the source node.

We next show that the algorithm preserves the second induction hypothesis.
After the algorithm has labeled a new node i permanently, the distance labels of
some nodes in S - {i} might decrease, because node i could become an internal
node in the tentative shortest paths to these nodes. But recall that after permanently
labeling node i, the algorithm examines each arc (i, j) E A(i) and if d(j) > d(i) +
Cij, then it sets d(j) = d(i) + cij and pred(j) = i. Therefore, after the distance update
operation, by the induction hypothesis the path from node j to the source node
defined by the predecessor indices satisfies Property 4.2 and so the distance label
of each node in S - {i} is the length of a shortest path subject to the restriction that
each internal node in the path must belong to S U {i}.

Running Time of Dijkstra's Algorithm

We now study the worst-case complexity of Dijkstra's algorithm. We might view
the computational time for Dijkstra's algorithm as allocated to the following two
basic operations:

1. Node selections. The algorithm performs this operation n times and each such
operation requires that it scans each temporarily labeled node. Therefore, the
total node selection time is n + (n - 1) -+ (n - 2) + ... + 1 = 0(n2).

2. Distance updates. The algorithm performs this operation I A(i) I times for node
i. Overall, the algorithm performs this operation LiEN I A(i) I = m times. Since
each distance update operation requires 0(1) time, the algorithm requires Oem)
total time for updating all distance labels.

We have established the following result.

Theorem 4.4. Dijkstra's algorithm solves the shortest path problem in 0(n2)
time.

Sec. 4.5 Dijkstra's Algorithm 111

The O(n2) time bound for Dijkstra's algorithm is the best possible for com
pletely dense networks [i.e., m = O(n 2

)], but can be improved for sparse networks.
Notice that the times required by the node selections and distance updates are not
balanced. The node selections require a total of O(n2) time, and the distance updates
require only Oem) time. Researchers have attempted to reduce the node selection
time without substantially increasing the time for updating the distances. Conse
quently, they have, using clever data structures, suggested several implementations
of the algorithm. These implementations have either dramatically reduced the run
ning time of the algorithm in practice or improved its worst-case complexity. In
Section 4.6 we describe Dial's algorithm, which is an excellent implementation of
Dijkstra's algorithm in practice. Sections 4.7 and 4.8 describe several implemen
tations of Dijkstra's algorithm with improved worst-case complexity.

Reverse Dijkstra's Algorithm

In the (forward) Dijkstra's algorithm, we determine a shortest path from node s to
every other node in N - {s}. Suppose that we wish to determine a shortest path
from every node in N - {t} to a sink node t. To solve this problem, we use a slight
modification of Dijkstra's algorithm, which we refer to as the reverse Dijkstra's
algorithm. The reverse Dijkstra's algorithm maintains a distance d'U) with each
node j, which is an upper bound on the shortest path length from node j to node t.
As before, the algorithm designates a set of nodes, say S', as permanently labeled
and the remaining set of nodes, say 8', as temporarily labeled. At each iteration,
the algorithm designates a node with the minimum temporary distance label, say
d'U), as permanent. It then examines each incoming arc (i, j) and modifies the
distance label of node i to min{d'(i), Cij + d'U)}. The algorithm terminates when
all the nodes have become permanently labeled.

Bidirectional Dijkstra,'s Algorithm

In some applications of the shortest path problem, we need not determine a shortest
path from node s to every other node in the network. Suppose, instead, that we
want to determine a shortest path from node s to a specified node t. To solve this
problem and eliminate some computations, we could terminate Dijkstra's algorithm
as soon as it has selected t from 8 (even though some nodes are still temporarily
labeled). The bidirectional Dijkstra's algorithm, which we describe next, allows us
to solve this problem even faster in practice (though not in the worst case).

In the bidirectional Dijkstra's algorithm, we simultaneously apply the forward
Dijkstra's algorithm from node s and reverse Dijkstra's algorithm from node t. The
algorithm alternatively designates a node in 8 and a node in 8' as permanent until
both the forward and reverse algorithms have permanently labeled the same node,
say node k (i.e., S n s' = {k}). At this point, let P(i) denote the shortest path from
node s to node i E S found by the forward Dijkstra's algorithm, and let P'U) denote
the shortest path from nodej E S' to node tfound by the reverse Dijkstra's algorithm.
A straightforward argument (see Exercise 4.52) shows that the shortest path from
node s to node t is either the path P(k) U P'(k) or a path P(i) U {(i, j)} U P'U) for
some arc (i,j), i E S andj E S'. This algorithm is very efficient because it tends to

112 Shortest Paths: Label-Setting Algorithms Chap. 4

permanently label few nodes and hence never examines the arcs incident to a large
number of nodes.

4.6 DIAL'S IMPLEMENTATION

The bottleneck operation in Dijkstra's algorithm is node selection. To improve the
algorithm's performance, we need to address the following question. Instead of scan
ning all temporarily labeled nodes at each iteration to find the one with the minimum
distance label, can we reduce the computation time by maintaining distances in some
sorted fashion? Dial's algorithm tries to accomplish this objective, and reduces the
algorithm's computation time in practice, using the following fact:

Property 4.5. The distance labels that Dijkstra' s algorithm designates as per
manent are nondecreasing.

This property follows from the fact that the algorithm permanently labels a
node i with a smallest temporary label d(i), and while scanning arcs in A(i) during
the distance update operations, never decreases the distance label of any temporarily
labeled node below d(i) because arc lengths are nonnegative.

Dial's algorithm stores nodes with finite temporary labels in a sorted fashion.
It maintains nC + 1 sets, called buckets, numbered 0,1,2, ... , nC: Bucket k stores
all nodes with temporary distance label equal to k. Recall that C represents the largest
arc length in the network, and therefore nC is an upper bound on the distance label
of any finitely labeled node. We need not store nodes with infinite temporary distance
labels in any of the buckets-we can add them to a bucket when they first receive
a finite distance label. We represent the content of bucket k by the set content(k).

In the node selection operation, we scan buckets numbered 0, 1,2, ... , until
we identify the first nonempty bucket. Suppose that bucket k is the first nonempty
bucket. Then each node in content(k) has the minimum distance label. One by one,
we delete these nodes from the bucket, designate them as permanently labeled, and
scan their arc lists to update the distance labels of adjacent nodes. Whenever we
update the distance label of a node i from dt to d2;~e'move node i from content(d t)

to content(d2). In the next node selection operation, we resume the scanning of
buckets numbered k + 1, k + 2, ... to select the next nonempty bucket. Property
4.5 implies that the buckets numbered 0, 1, 2, ... , k will always be empty in the
subsequent iterations and the algorithm need not examine them again.

As a data structure for storing the content of the buckets, we store each set
content(k) as a doubly linked list (see Appendix A). This data structure permits us
to perform each of the following operations in 0(1) time: (1) checking whether a
bucket is empty or nonempty, (2) deleting an element from a bucket, and (3) adding
an element to a bucket. With this data structure, the algorithm requires 0(1) time
for each distance update, and thus a total of O(m) time for all distance updates. The
bottleneck operation in this implementation is scanning nC + 1 buckets during node
selections. Consequently, the running time of Dial's algorithm is O(m + nC).

Since Dial's algorithm uses nC + 1 buckets, its memory requirements can be
prohibitively large. The following fact allows us to reduce the number of buckets to
C+l.

Sec. 4.6 Dial's Implementation 113

Property 4.6. If d(i) is the distance label that the algorithm designates as
permanent at the beginning of an iteration, then at the end of that iteration, d(j)
::5 d(i) + C for each finitely labeled node j in S.

This fact follows by noting that (1) d(l) ::5 d(i) for each node IE S (by Property
4.5), and (2) for each finitely labeled node j in S, d(j) = d(l) + Clj for some node
I E S (by the property of distance updates). Therefore, d(j) = d(l) + Clj ::5 dU) +
C. In other words, all finite temporary labels are bracketed from below by d(i) and
from above by d(i) + C. Consequently, C + 1 buckets suffice to store nodes with
finite temporary distance labels.

Dial's algorithm uses C + 1 buckets numbered 0, 1,2, ... ,C, which we might
view as arranged in a circular fashion as in Figure 4.9. We store a temporarily labeled
node j with distance label d(j) in the bucket d(j) mod(C + 1). Consequently, during
the entire execution of the algorithm, bucket k stores nodes with temporary distance
labels k, k + (C + 1), k + 2(C + 1), and so on; however, because of Property 4.6,
at any point in time, this bucket will hold only nodes with the same distance label.
This storage scheme also implies that if bucket k contains a node with the minimum
distance label, then buckets k + 1, k + 2, ... , C, 0, 1, 2, ... , k - 1 store nodes
in increasing values of the distance labels.

c 0

k k-l

3

Figure 4.9 Bucket arrangement in
Dial's algorithm.

Dial's algorithm examines the buckets sequentially, in a wraparound fashion,
to identify the first nonempty bucket. In the next iteration, it reexamines the buckets
starting at the place where it left off previously. A potential disadvantage of Dial's
algorithm compared to the original O(n2) implementation of Dijkstra's algorithm is
that it requires a large amount of storage when C is very large. In addition, because
the algorithm might wrap around as many as n - 1 times, the computational time
could be large. The algorithm runs in O(m + nC) time, which is not even polynomial,
but rather, is pseudopolynomial. For example, ifC = n4, the algorithm runs in O(n5)

time, and if C ;, 2n , the algorithm requires exponential time in the worst case.
However, the algorithm typically does not achieve the bound of O(m + nC) time.
For most applications, C is modest in size, and the number of passes through all of
the buckets is much less than n - 1. Consequently, the running time of Dial's
algorithm is much better than that indicated by its worst-case complexity.

114 Shortest Paths: Label-Setting Algorithms Chap. 4

4.7 HEAP IMPLEMENTATIONS

This section requires that the reader is familiar with heap data structures. We refer
an unfamiliar reader to Appendix A, where we describe several such data structures.

A heap (or priority queue) is a data structure that allows us to perform the
following operations on a collection H of objects, each with an associated real num
ber called its key. More properly, a priority queue is an abstract data type, and is
usually implemented using one of several heap data structures. However, in this
treatment we are using the words "heap" and "priority queue" interchangeably.

create-heap(H). Create an empty heap.
find-min{i, H). Find and return an object i of minimum key.
insert{i, H). Insert a new object i with a predefined key.
decrease-key(value, i, H). Redl!ce the key of an object i from its current value
to value, which must be smaller than the key it is replacing.
delete-min(i, H). Delete an object i of minimum key.

If we implement Dijkstra's algorithm using a heap, H would be the collection
of nodes with finite temporary distance labels and the key of a node would be its
distance label. Using a heap, we could implement Dijkstra's algorithm as described
in Figure 4.10.

As is clear from this description, the heap implementation of Dijkstra's algo
rithm performs the operations find-min, delete-min, and insert at most n times and
the operation decrease-key at most m times. We now analyze the running times of
Dijkstra's algorithm implemented using different types of heaps: binary heaps, d
heaps, Fibonacci heaps, and another data structure suggested by Johnson. We de
scribe the first three of these four data structures in Appendix A and provide a
reference for the fourth data structure in the reference notes.

algorithm heap-Dijkstra;
begin

create-heap(H);
d(j) : = 00 for all j E N;
d(s) : = 0 and pred(s) : = 0;
insert(s, H);
while H ¥0do
begin

find-min(i, H);
delete-min(i, H);
for each (i, j) E A(/) do
begin

value: = d(/) + Cij;

if d(j) > value then
if d(j) = 00 then d(j) : = value, pred(j) : = i, and insert (j, H)
else set d(j) : = value, pred(j) : = i, and decrease-key(value, i. H);

end;
end;

end;

Figure 4.10 Dijkstra's algorithm using a heap.

Sec. 4.7 Heap Implementations 115

Binary heap implementation. As discussed in Appendix A, a binary heap
data structure requires O(log n) time to perform insert, decrease-key, and delete
min, and it requires 0(1) time for the other heap operations. Consequently, the binary
heap version of Dijkstra's algorithm runs in Oem log n) time. Notice that the binary
heap implementation is slower than the original implementation of Dijkstra' s algo
rithm for completely dense networks [i.e., m = O(n2)], but is faster when m =
0(n2/log n).

d-Heap implementation. For a given parameter d ;::: 2, the d-heap data
structure requires O(lOgd n) time to perform the insert and decrease-key operations;
it requires Oed logd n) time for delete-min, and it requires 0(1) steps for the other
heap operations. Consequently, the running time of this version of Dijkstra's al
gorithm is Oem logd n + nd logd n). To obtain an optimal choice of d, we equate
the two terms (see Section 3.2), giving d = max{2, rm/nl}. The resulting running
time is Oem logd n). Observe that for very sparse networks [i.e., m = O(n)J, the run
ning time of the d-heap implementation is O(n log n). For nonsparse networks [i.e.,
m = O(n 1 + €) for some E > OJ, the running time of d-heap implementation is Oem
logd n) = O«m log n)/(log d» = O«m log n)/(log n€» = O«m log n)/(E log n» =

Oem/E) = Oem). The last equality is true since E is a constant. Thus the running
time is Oem), which is optimal.

Fibonacci heap implementation. The Fibonacci heap data structure per
forms every heap operation in 0(1) amortized time except delete-min, which requires
O(Iog n) time. Consequently the running time of this version of Dijkstra's algorithm
is Oem + n log n). This time bound is consistently better than that of binary heap
and d-heap implementations for all network densities. This implementation is also
currently the best strongly polynomial-time algorithm for solving the shortest path
problem.

Johnson's implementation. Johnson's data structure (see the reference
notes) is applicable only when all arc lengths are integer. This data structure requires
O(log log C) time to perform each heap operation. Consequently, this implemen
tation of Dijkstra's algorithm runs in Oem log log C) time.

We next discuss one more heap implementation of Dijkstra's algorithm, known
as the radix heap implementation. The radix heap implementation is one ofthe more
recent implementations; its running time is Oem + n 10g(nC».

4.8 RADIX HEAP IMPLEMENTATION

The radix heap implementation of Dijkstra's algorithm is a hybrid of the original
0(n2) implementation and Dial's implementation (the one that uses nC + 1 buckets).
These two implementations represent two extremes. The original implementation
considers all the temporarily labeled nodes together (in one large bucket, so to speak)
and searches for a node with the smallest label. Dial's algorithm uses a large number
of buckets and separates nodes by storing any two nodes with different labels in

116 ,'Shortest Paths,' Label-Setting Algorithms Chap. 4

different buckets. The radix heap implementation improves on these methods by
adopting an intermediate approach: It stores many, but not all, labels in a bucket.
For example, instead of storing only nodes with a temporary label k in the kth bucket,
as in Dial's implementation, we might store temporary labels from lOOk to lOOk +
99 in bucket k. The different temporary labels that can be stored in a bucket make
up the range of the bucket; the cardinality of the range is called its width. For the
preceding example, the range of bucket k is (lOOk, lOOk + 99] and its width is 100.
Using widths of size k permits us to reduce the number of buckets needed by a
factor of k. But to find the smallest distance label, we need to search all of the
elements in the smallest indexed nonempty bucket. Indeed, if k is arbitrarily large,
we need only one bucket, and the resulting algorithm reduces to Dijkstra's original
implementation.

Using a width of 100, say, for each bucket reduces the number of buckets, but
still requires us to search through the lowest-numbered nonempty bucket to find the
node with minimum temporary label. If we could devise a variable width scheme,
with a width of 1 for the lowest-numbered bucket, we could conceivably retain the
advantages of both the wide-bucket and narrow bucket approaches. The radix heap
algorithm we consider next uses variable widths and changes the ranges dynamically.
In the version of the radix heap that we present:

1. The widths of the buckets are 1, 1, 2, 4, 8, 16, ... , so that the number of
buckets needed is only O(log(nC».

2. We dynamically modify the ranges of the buckets and we reallocate nodes with
temporary distance labels in a way that stores the minimum distance label in
a bucket whose width is 1.

Property 1 allows us to maintain only O(log(nC» buckets and thereby over
comes the drawback of Dial's implementation of using too many buckets. Property
2 permits us, as in Dial's algorithm, to avoid the need to search the entire bucket
to find a node with the minimum distance label. When implemented in this way, this
version of the radix heap algorithm has a running time of Oem + n 10g(nC».

To describe the radix heap in more detail, we first set some notation. For a
given shortest path problem, the radix heap consists of 1 + pog(nC)l buckets. The
buckets are numbered 0,1,2, ... ,K = rlog(nC)l. We represent the range of bucket
k by range(k) which is a (possibly empty) closed interval of integers. We store a
temporary node i in bucket k if d(i) E range(k). We do not store permanent nodes.
The set content(k) denotes the nodes in bucket k. The algorithm will change the
ranges of the buckets dynamically, and each time it changes the ranges, it redis
tributes the nodes in the buckets. Initially, the buckets have the following ranges:

Sec. 4.8

range(O) = [0];
range(1) = [1];
range(2) = [2, 3];
range(3) = [4, 7];
range(4) = [8, 15];

range(K) ~ [2K- 1 , 2K - 1].

Radix Heap Implementation 117

These ranges change as the algorithm proceeds; however, the widths of the buckets
never increase beyond their initial widths.

As we have noted the fundamental difficulty associated with using bucket
widths larger than 1, as in the radix heap algorithm, is that we have to examine
every node in the bucket containing a node with the minimum distance label and
this time might be "too large" from a worst-case perspective. The radix heap al
gorithm overcomes this difficulty in the following manner. Suppose that at some
stage the minimum indexed nonempty bucket is bucket 4, whose range is [8, 15].
The algorithm would examine every node in content(4) to identify a node with the
smallest distance label. Suppose that the smallest distance label of a node in con
tent(4) is 9. Property 4.5 implies that no temporary distance label will ever again be
less than 9 and, consequently, we will never again need the buckets 0 to 3. Rather
than leaving these buckets idle, the algorithm redistributes the range [9, 15] to
the previous buckets, resulting in the ranges range(O) = [9], range(1) = [10],
range(2) = [11, 12], range(3) = [13,15] and range(4) = 0. Since the range of bucket
4 is now empty, the algorithm shifts (or redistributes) the nodes in content(4) into
the appropriate buckets (0, 1, 2, and 3). Thus each of the nodes in bucket 4 moves
to a lower-indexed bucket and all nodes with the smallest distance label move to
bucket 0, which has width 1.

To summarize, whenever the algorithm finds that nodes with the minimum
distance label are in a bucket with width larger than 1, it examines all nodes in the
bucket to identify a node with minimum distance label. Then the algorithm redis
tributes the bucket ranges and shifts each node in the bucket to the lower-indexed
bucket. Since the radix heap contains K buckets, a node can shift at most K times,
and consequently, the algorithm will examine any node at most K times. Hence the
total number of node examinations is O(nK), which is not "too large."

We now illustrate the radix heap data structure on the shortest path example
given in Figure 4.11 with s = 1. In the figure, the number beside each arc indicates
its length. For this problem C = 20 and K = flog(120)l = 7. Figure 4.12 specifies
the distance labels determined by Dijkstra's algorithm after it has examined node
1; it also shows the corresponding radix heap.

To select the node with the smallest distance label, we scan the buckets 0, 1,
2, ... , K to find the first nonempty bucket. In our example, bucket 0 is nonempty.
Since bucket 0 has width 1, every node in this bucket has the same (minimum)
distance label. So the algorithm designates node 3 as permanent, deletes node 3 from
the radix heap, and scans the arc (3, 5) to change the distance label of node 5 from

13 2

20
o 4

Figure 4.11 Shortest path example.

118 Shortest Paths: Label-Setting Algorithms Chap. 4

node i 1 2 3 4 5 6

label d(/) 0 13 0 15 20 00

bucket k 0 1 2 3 4 5 6 7

range(k) [0] [1] [2,3] [4,7] [8,15] [16,31] [32,63] [64, 127]

content(k) {3} fJ fJ fJ {2,4} {5} fJ

Figure 4.12 Initial radix heap.

20 to 9. We check whether the new distance label of node 5 is contained in the range
of its present bucket, which is bucket 5. It is not. Since its distance label has de
creased, node 5 should move to a lower-indexed bucket. So we sequentially scan
the buckets from right to left, starting at bucket 5, to identify the first bucket whose
range contains the number 9, which is bucket 4. Node 5 moves from bucket 5 to
bucket 4. Figure 4.13 shows the new radix heap.

node i 2 4 5 6

label d(/) 13 15 9 00

bucket k 0 1 2 3 4 5 6 7

range(k) [0] [1] [2,3] [4,7] [8,15] [16,31] [32,63] [64,127]

content(k) fJ fJ fJ fJ {2, 4, 5} fJ fJ fJ

Figure 4.13 Radix heap at the end of iteration 1.

We again look for the node with the smallest distance label. Scanning the
buckets sequentially, we find that bucket k = 4 is the first nonempty bucket. Since
the range of this bucket contains more than one integer, the first node in the bucket
need not have the minimum distance label. Since the algorithm will never use the
ranges range(O), ... , range(k - 1) for storing temporary distance labels, we can
redistribute the range of bucket k into the buckets 0, 1, ... , k - 1, and reinsert
its nodes into the lower-indexed buckets. In our example, the range of bucket 4 is
[8, 15], but the smallest distance label in this bucket is 9. We therefore redistribute
the range [9, 15] over the lower-indexed buckets in the following manner:

Sec. 4.8 Radix Heap Implementation 119

range(O) = [9],
range(1) = [10],
range(2) = [11, 12],
range(3) = [13, 15],
range(4) = 0.

Other ranges do not change. The range of bucket 4 is now empty, and we must
reassign the contents of bucket 4 to buckets ° through 3. We do so by successively
selecting nodes in bucket 4, sequentially scanning the buckets 3, 2, 1, ° and inserting
the node in the appropriate bucket. The resulting buckets have the following con
tents:

content(O) = {5},
content(1) = 0,
content(2) = 0,
content(3) = {2, 4},
content(4) = 0.

This redistribution necessarily empties bucket 4 and moves the node with the smallest
distance label to bucket 0.

We are now in a position to outline the general algorithm and analyze its com
plexity. We first consider moving nodes between the buckets. Suppose that j E
content(k) and that we are re-assigning nodej to a lower-numbered bucket (because
either d(j) decreases or we are redistributing the useful range of bucket k and re
moving the nodes from this bucket). If d(j) E range(k), we sequentially scan lower
numbered buckets from right to left and add the node to the appropriate bucket.
Overall, this operation requires Oem + nK) time. The term m reflects the number
of distance updates, and the term nK arises because every time a node moves, it
moves to a lower-indexed bucket: Since there are K + 1 buckets, a node can move
at most K times. Therefore, O(nK) is a bound on the total number of node move
ments.

Next we consider the node selection operation. Node selection begins by scan
ning the buckets from left to right to identify the first nonempty bucket, say bucket
k. This operation requires O(K) time per iteration and O(nK) time in total. If k = ° or k = 1, any node in the selected bucket has the minimum distance label. If k ?

2, we redistribute the "useful" range of bucket k into the buckets 0, 1, ... , k -
1 and reinsert its contents in those buckets. If the range of bucket k is [l, u] and the
smallest distance label of a node in the bucket is dmin , the useful range of the bucket
is [dmin, u].

The algorithm redistributes the useful range in the following manner: We assign
the first integer to bucket 0, the next integer to bucket 1, the next two integers to
bucket 2, the next four integers to bucket 3, and so on. Since bucket k has width
less than 2k - 1, and since the widths of the first k buckets can be as large as 1, 1,
2, ... ,2k

-
2 for a total potential width of2k

-
1

, we can redistribute the useful range
of bucket k over the buckets 0, 1, ... , k - 1 in the manner described. This redis
tribution of ranges and the subsequent reinsertions of nodes empties bucket k and
moves the nodes with the smallest distance labels to bucket 0. The redistribution of
ranges requires O(K) time per iteration and O(nK) time over all the iterations. As

120 Shortest Paths: Label-Setting Algorithms Chap. 4

we have already shown, the algorithm requires O(nK) time in total to move nodes
and reinsert them in lower-indexed buckets. Consequently, the running time of the
algorithm is O(m + nK). Since K = pog(nC)l, the algorithm runs in O(m +
n 10g(nC» time. We summarize our discussion as follows.

Theorem 4.7. The radix heap implementation of Dijkstra's algorithm solves
the shortest path problem in O(m + n 10g(nC» time.

This algorithm requires 1 + flog(nC)l buckets. As in Dial's algorithm, Property
4.6 permits us to reduce the number of buckets to 1 + flog Cl. This refined im
plementation of the algorithm runs in O(m + n log C) time. Using a Fibonacci heap
data structure within the radix heap implementation, it is possible to reduce this
bound further to O(m + n Vlog C), which gives one of the fastest polynomial-time
algorithm to solve the shortest path problem with nonnegative arc lengths.

4.9 SUMMARY

The shortest path problem is a core model that lies at the heart of network opti
mization. Mter describing several applications, we developed several algorithms for
solving shortest path problems with nonnegative arc lengths. These algorithms,
known as label-setting algorithms, assign tentative distance labels to the nodes and
then iteratively identify a true shortest path distance (a permanent label) to one or
more nodes at each step. The shortest path problem with arbitrary arc lengths re
quires different solution approaches; we address this problem class in Chapter 5.

The basic shortest path problem that we studied requires that we determine a
shortest (directed) path from a source node s to each node i E N - {s}. We showed
how to store these (n - 1) shortest paths compactly in the form of a directed out
tree rooted at node s, called the tree of shortest paths. This result uses the fact that
if P is a shortest path from node s to some node j, then any subpath of P from node
s to any of its internal nodes is also a shortest path to this node.

We began our discussion of shortest path algorithms by describing an O(m)
algorithm for solving the shortest path problem in acyclic networks. This algorithm
computes shortest path distances to the nodes as it examines them in a topological
order. This discussion illustrates a fact that we will revisit many times throughout
this book: It is often possible to develop very efficient algorithms when we restrict
the underlying network by imposing special structure on the data or on the network's
topological structure (as in this case).

We next studied Dijkstra's algorithm, which is a natural and simple algorithm
for solving shortest path problems with nonnegative arc lengths. Mter describing
the original implementation of Dijkstra's algorithm, we examined several other im
plementations that either improve on its running time in practice or improve on its
worst-case complexity. We considered the following implementations: Dial's im
plementation, ~ d-heap implementation, a Fibonacci heap implementation, and a
radix heap implementation. Figure 4.14 summarizes the basic features of these im
plementations.

Sec. 4.9 Summary 121

Algorithm RUnning time Features

Original O(n2) 1. Selects a node with the minimum temporary
implementation distance label, designating it as permanent,

and examines arcs incident to it to modify other
distance labels.

2. Very easy to implement.
3. Achieves the best available running time for

dense networks.

Dial's implementation O(m + nC) 1. Stores the temporary labeled nodes in a sorted
order in unit length buckets and identifies the
minimum temporary distance label by sequen-
tially examining the buckets.

2. Easy to implement and has excellent empirical
behavior.

3. The algorithm's running time is pseudopoly-
nomial and hence is theoretically unattractive.

d-Heap implementation O(m logdn), 1. Uses the d-heap data structure to maintain tem-
where d = min porary labeled nodes.

2. Linear running time whenever m = 0'(n1 +<) for
any positive E > O.

Fibonacci heap O(m + n log n) 1. Uses the Fibonacci heap data structure to
implementation maintain temporary labeled nodes.

2. Achieves the best available strongly polynom-
ial running time for solving shortest paths
problems.

3. Intricate and difficult to implement.

Radix heap O(m + n 10g(nC)) 1. Uses a radix heap to implement Dijkstra's al-
implementation gorithm.

2. Improves Dial's algorithm by storing tempo-
rarily labeled nodes in buckets with varied
widths.

3. Achieves an excellent running time for prob-
lems that satisfy the similarity assumption.

Figure 4.14 Summary of different implementations of Dijkstra's algorithm.

REFERENCE NOTES

The shortest path problem and its generalizations have a voluminous research lit
erature. As a guide to these results before 1984, we refer the reader to the extensive
bibliography compiled by Deo and Pang [1984]. In this discussion we present some
selected references; additional references can be found in the survey papers of Ahuja,
Magnanti, and Orlin [1989, 1991].

The first label-setting algorithm was suggested by Dijkstra [1959] and, inde
pendently, by Dantzig [1960], and Whiting and Hillier [1960]. The original imple
mentation of Dijkstra's algorithm runs in O(n2) time, which is the optimal running
time for fully dense networks [those with m = O(n2)J because any algorithm must
examine every arc. However, the use of heaps permits us to obtain improved running
times for sparse networks. The d-heap implementation of Dijkstra's algorithm with

122 Shortest Paths: Label-Setting Algorithms Chap. 4

d = max{2, r min H runs in O(m logd n) time and is due to Johnson [1977a]. The
Fibonacci heap implementation, due to Fredman and TaIjan [1984], runs in O(m +
n log n) time. Johnson [1982] suggested the O(m log log C) implementation of Dijk
stra's algorithm, based on earlier work by Boas, Kaas, and Zijlstra [1977]. Gabow's
[1985] scaling algorithm, discussed in Exercise 5.51, is another efficient shortest path
algorithm.

Dial [1969] (and also, independently, Wagner [1976]) suggested the O(m + nC)
implementation of Dijkstra's algorithm that we discussed in Section 4.6. Dial, Glover,
Karney, and Klingman [1979] proposed an improved version of Dial's implemen
tation that runs better in practice. AlthQ,ugh Dial's implementation is only pseudo
polynomial time, it has led to algorithms with better worst-case behavior. Denardo
and Fox [1979] suggested several such improvements. The radix heap implemen
tation that we described in Section 4.8 is due to Ahuja, Mehlhorn, Orlin, and TaIjan
[1990]; we can view it as an improved version of Denardo and Fox's implementations.
Our description of the radix heap implementation runs in O(m + n 10g(nC» time.
Ahuja et al. [1990] also suggested several improved versions of the radix heap im
plementation that run in O(m + n log C), O(m + (n log C)/(log log C», O(m + n
\flog C) time.

Currently, the best time bound for solving the shortest path problem with non
negative arc lengths is O(min{m + n log n, m log log C, m + n \flog C}); this
expression contains three terms because different time bounds are better for different
values of n, m, and C. We refer to the overall time bound as S(n, m, C); Fredman
and TaIjan [1984], Johnson [1982], and Ahuja et al. [1990] have obtained the three
bounds it contains. The best strongly polynomial-time bound for solving the shortest
path problem with nonnegative arc lengths is O(m + n log n), which we subse
quently refer to as S(n, m).

Researchers have extensively tested label-setting algorithms empirically. Some
ofthe more recent computational results can be found in Gallo and Pallottino [1988],
Hung and Divoky [1988], and Divoky and Hung [1990]. These results suggest that
Dial's implementation is the fastest label-setting algorithm for most classes of net
works tested. Dial's implementation is, however, slower than some of the label
correcting algorithms that we discuss in Chapter 5.

The applications of the shortest path problem that we described in Section 4.2
are adapted from the following papers:

1. Approximating piecewise linear functions (Imai and Iri [1986])
2. Allocating inspection effort on a production line (White [1969])
3. Knapsack problem (Fulkerson [1966])
4. Tramp steamer problem (Lawler [1966])
5. System of difference constraints (Bellman [1958])
6. Telephone operator scheduling (Bartholdi, Orlin, and Ratliff [1980])

Elsewhere in this book we have described other applications of the shortest
path problem. These applications include (1) reallocation of housing (Application
1.1, Wright [1975]), (2) assortment of steel beams (Application 1.2, Frank [1965]),
(3) the paragraph problem (Exercise 1.7), (4) compact book storage in libraries (Ex-

Chap. 4 Reference Notes 123

ercise 4.3, Ravindran [1971]), (5) the money-changing problem (Exercise 4.5), (6)
cluster analysis (Exercise 4.6), (7) concentrator location on a line (Exercises 4.7 and
4.8, Balakrishnan, Magnanti, and Wong [1989b]), (8) the personnel planning problem
(Exercise 4.9, Clark and Hastings [1977]), (9) single-duty crew scheduling (Exercise
4.13, Veinott and Wagner [1962]), (10) equipment replacement (Application 9.6,
Veinott and Wagner [1962]), (11) asymmetric data scaling with lower and upper
bounds (Application 19.5, Orlin and Rothblum [1985]), (12) DNA sequence alignment
(Application 19.7, Waterman [1988]), (13) determining minimum project duration
(Application 19.9), (14) just-in-time scheduling (Application 19.10, Elmaghraby
[1978], Levner and Nemirovsky [1991]), (15) dynamic lot sizing (Applications 19.19,
Application 19.20, Application 19.21, Veinott and Wagner [1962], Zangwill [1969]),
and (16) dynamic facility location (Exercise 19.22).

The literature considers many other applications of shortest paths that we do
not cover in this book. These applications include (1) assembly line balancing
(Gutjahr and Nemhauser [1964]), (2) optimal improvement of transportation net
works (Goldman and Nemhauser [1967]), (3) machining process optimization (Szad
kowski [1970]), (4) capacity expansion (Luss [1979]), (5) routing in computer com
munication networks (Schwartz and Stern [1980]), (6) scaling of matrices (Golitschek
and Schneider [1984]), (7) city traffic congestion (Zawack and Thompson [1987]),
(8) molecular confirmation (Dress and Havel [1988]), (9) order picking in an isle
(GoetschaIckx and Ratliff [1988]), and (10) robot design (Haymond, Thornton, and
Warner [1988]).

Shortest path problems often arise as important subroutines within algorithms
for solving many different types of network optimization problems. These appli
cations are too numerous to mention. We do describe several such applications in
subsequent chapters, however, when we show that shortest path problems are key
subroutines in algorithms for the minimum cost flow problem (see Chapter 9), the
assignment problem (see Section 12.4), the constrained shortest path problem (see
Section 16.4), and the network design problem (see Application 16.4).

EXERCISES

4.1. Mr. Dow Jones, 50 years old, wishes to place his IRA (Individual Retirement Account)
funds in various investment opportunities so that at the age of 65 years, when he with
draws the funds, he has accrued maximum possible amount of money. Assume that
Mr. Jones knows the investment alternatives for the next 15 years: their maturity (in
years) and the appreciation they offer. How would you formulate this investment prob
lem as a shortest path problem, assuming that at any point in time, Mr. Jones invests
all his funds in a single investment alternative.

4.2. Beverly owns a vacation home in Cape Cod that she wishes to rent for the period May
1 to August 31. She has solicited a number of bids, each having the following form:
the day the rental starts (a rental day starts at 3 P.M.), the day the rental ends (checkout
time is noon), and the total amount of the bid (in dollars). Beverly wants to identify a
selection of bids that would maximize her total revenue. Can you help her find the best
bids to accept?

4.3. Compact book storage in libraries (Ravindran [1971]). A library can store books ac
cording to their subject or author classification, or by their size, or by any other method
that permits an orderly retrieval of the books. This exercise concerns an optimal storage
of books by their size to minimize the storage cost for a given collection of books.

124 Shortest Paths: Label-Setting Algorithms Chap. 4

Suppose that we know the heights and thicknesses of all the books in a collection
(assuming that all widths fit on the same shelving, we consider only a two-dimensional
problem and ignore book widths). Suppose that we have arranged the book heights in
ascending order of their n known heights HI. H2, ... , Hn; that is, HI < H2 < ... <
Hn. Since we know the thicknesses of the books, we can compute the required length
of shelving for each height class. Let Li denote the length of shelving for books of height
H;. If we order shelves of height Hi for length Xi, we incur cost equal to Fi + CiXi; Fi
is a fixed ordering cost (and is independent of the length ordered) and C; is the cost of
the shelf per unit length. Notice-thatin order to save the fixed cost of ordering, we
might not order shelves of every possible height because we can use a shelf of height
Hi to store books of smaller heights. We want to determine the length of shelving for
each height class that would minimize the total cost of the shelving. Formulate this
problem as a shortest path problem.

4.4. Consider the compact book storage problem discussed in Exercise 4.3. Show that the
storage problem is trivial if the fixed cost of ordering shelves is zero. Next, solve the
compact book storage problem with the following data.

i 1 2 3 4 5 6

Hi 5 in. 6 in. 7 in. 9 in. 12 in. 14 in.

Li 100 300 200 300 500 100

Ei 1000 1200 1100 1600 1800 2000

Ci 5 6 7 9 12 14

4.5. Money-changing problem. The money-changing problem requires that we determine
whether we can change a given number p into coins of known denominations aI,
a2, ... , ak. For example, if k = 3, al = 3, a2 = 5, a3 = q; we can change all the
numbers in the set {8, 12, 54}; on the other hand, we cannot change the number 4. In
general, the money-changing problem asks whether p = L7~ I aiXi for some nonnegative
integers XI, X2, ... , Xk.
(a) Describe a method for identifying all numbers in a given range of numbers [I, u]

that we can change.
(b) Describe a method that identifies whether we can change a given number p, and

if so, then identifies a denomination with the least number of coins.
4.6. Cluster analysis. Consider a set of n scalar numbers a), a2, ... , an arranged in non

decreasing order of their values. We wish to partition these numbers into clusters (or
groups) so that (1) each cluster contains at least p numbers; (2) each cluster contains
consecutive numbers from the list aI, a2, ... , an; and (3) the sum of the squared
deviation of the numbers from their cluster means is as small as possible. Let a(S) =
(LiES a;)/ISI denote the mean of a set S of numbers defining a cluster. If the number
ak belongs to cluster S, the squared deviation of the number ak from the cluster mean
is (ak - a(S»2. Show how to formulate this problem as a shortest path problem. Il
lustrate your formulation using the following data: p = 2, n = 6, al = 0.5, a2 = 0.8,
a3 = 1.1, a4 = 1.5, a5 = 1.6, and a6 = 2.0.

4.7. Concentrator location on a line (Balakrishnan, Magnanti, and Wong [1989]). In the
telecommunication industry, telephone companies typically connect each customer di
rectly to a switching center, which is a device that routes calls between the users in

Chap. 4 Exercises 125

the system. Alternatively, to use fewer cables for routing the telephone calls, a company
can combine the calls of several customers in a message compression device known
as a concentrator and then use a single cable to route all of the calls transmitted by
those users to the switching center. Constructing a concentrator at any node in the
telephone network incurs a node-specific cost and assigning each customer to any con
centrator incurs a "homing cost" that depends on the customer and the concentrator
location. Suppose that all of the customers lie on a path and that we wish to identify
the optimal location of concentrators to service these customers (assume that we must
assign each customer to one of the concentrators). Suppose further that the set of
customers allocated to any concentrator must be contiguous on the path (many tele
phone companies use this customer grouping policy). How would you find the optimal
location of a single concentrator that serves any contiguous set of customers? Show
how to use the solution of these single-location subproblems (one for each interval of
customers) to solve the concentrator location problem on the path as a shortest path
problem.

4.8. Modified concentrator location problem. Show how to formulate each of the following
variants of the concentrator location problem that we consider in Exercise 4.7 as a
shortest path problem. Assume in each case that all the customer lie on a path.
(a) The cost of connecting each customer to a concentrator is negligible, but each

concentrator can handle at most five customers.
(b) Several types of concentrators are available at each node; each type of concentr~tor

has its own cost and its own capacity (which is the maximum number of customers
it can accommodate).

(c) In the situations considered in Exercise 4.7 and in parts (a) and (b) of this exercise,
no customer can be assigned to a concentrator more that 1200 meters from the
concentrator (because of line degradation of transmitted signals).

4.9. Personnel planning problem (Clark and Hastings [1977]). A construction company's
work schedule on a certain site requires the following number of skilled personnel,
called steel erectors, in the months of March through August:

126

Month Mar. Apr. May June July Aug.

Personnel 4 6 7 4 6 2

Personnel work at the site on the monthly basis. Suppose that three steel erectors are
on the site in February and three steel erectors must be on site in September. The
problem is to determine how many workers to have on site in each month in order to
minimize costs, subject to the following conditions:

Transfer costs. Adding a worker to this site costs $100 per worker and redeploying a
worker to another site costs $160.
Transfer rules. The company can transfer no more than three workers at the start of
any month, and under a union agreement, it can redeploy no more than one-third of
the current workers in any trade from a site at the end of any month.
Shortage time and overtime. The company incurs a cost of $200 per worker per month
for having a surplus of steel erectors on site and a cost of $200 per worker per month
for having a shortage of workers at the site (which must be made up in overtime).
Overtime cannot exceed 25 percent of the regular work time.

Formulate this problem as a shortest path problem and solve it. (Hint: Give a dynamic
programming-based formulation and use as many nodes for each month as the maximum
possible number of steel erectors.)

Shortest Paths: Label-Setting Algorithms Chap. 4

4.10. Multiple-knapsack problem. In the shortest path formulation of the knapsack problem
discussed in Application 4.3, an item is either placed in the knapsack or not. Conse
quently, each Xj E {O, I}. Consider a situation in which the hiker can place multiple
copies of an item in her knapsack (i.e., Xj E {O, 1,2,3, ... }). How would you formulate
this problem as a shortest path problem? Illustrate your formulation on the example
given in Application 4.3.

4.11. Modified system of difference constraints. In discussing system of difference constraints
in Application 4.5, we assumed that each constraint is of the form X(jk) - X(ik) ~ b(k).
Suppose, instead, that some constraints are of the form X(jk) ~ b(k) or X(ik) ~ b(k).
Describe how you would solve this modified system of constraints using a shortest path
algorithm. .

4.12. Telephone operator scheduling. In our discussion of the telephone operator scheduling
problem in Application 4.6, we described a method for solving a restricted problem of
determining whether some feasible schedule uses at most p operators. Describe a
polynomial-time algorithm for determining a schedule with the fewest operators that
uses the restricted problem as a subproblem.

4.13. Single-dnty crew scheduling. The following table illustrates a number of possible duties
for the drivers of a bus company. We wish to ensure, at the lowest possible cost, that
at least one driver is on duty for each hour of the planning period (9 A.M. to 5 P.M.).

Formulate and solve this scheduling problem as a shortest path problem.

Duty hours 9-1 9-11 12-3 12-5 2-5 1-4 4-5

Cost 30 18 21 38 20 22 9

4.14. Solve the shortest path problems shown in Figure 4.15 using the original implementation
of Dijkstra's algorithm. Count the number of distance updates.

3

2 6

6 4
5

7

8 2
o

(a) (b)

Figure 4.15 Some shortest path networks.

4.15. Solve the shortest path problem shown in Figure 4. 15(a) using Dial's implementation
of Dijkstra's algorithm. Show all of the buckets along with their content after the al
gorithm has examined the most recent permanently labeled node at each step.

4.16. Solve the shortest path problem shown in Figure 4. 15(a) using the radix heap algorithm.

Chap. 4 Exercises 127

4.17. Consider the network shown in Figure 4.16. Assign integer lengths to the arcs in the
network so that for every k E [0, 2K - 1], the network contains a directed path of
length k from the source node to sink node.

source sink

Figure 4.16 Network for Exercise 4.17.

4.18. Suppose that all the arcs in a network G have length 1. Show that Dijkstra's algorithm
examines nodes for this network in the same order as the breadth-first search algorithm
described in Section 3.4. Consequently, show that it is possible to solve the shortest
path problem in this unit length network in Oem) time.

4.19. Construct an example of the shortest path problem with some negative arc lengths, but
no negative cycle, that Dijkstra's algorithm will solve correctly. Construct another
example that Dijkstra's algorithm will solve incorrectly.

4.20. (Malik, Mittal, and Gupta [1989]) Consider a network without any negative cost cycle.
For every node j E N, let dS(j) denote the length of a shortest path from node s to
node j and let d'(j) denote the length of a shortest path from node j to node t.
(a) Show that an arc (i, j) is on a shortest path from node s to node t if and only if

dS(t) = dS(i) + Cij + d'(j).
(b) Show that dS(t) = min{ds(i) + cij + d'(j) : (i, j) E A}.

4.21. Which of the following claims are true and which are false? Justify your answer by
giving a proof or by constructing a counterexample.
(a) If all arcs in a network have different costs, the network has a unique shortest path

tree.
(b) In a directed network with positive arc lengths, if we eliminate the direction on

every arc (i.e., make it undirected), the shortest path distances will not change.
(c) In a shortest path problem, if each arc length increases by k units, shortest path

distances increase by a mUltiple of k.
(d) In a shortest path problem, if each arc length decreases by k units, shortest path

distances decrease by a mUltiple of k.
(e) Among all shortest paths in a network, Dijkstra's algorithm always finds a shortest

path with the least number of arcs.
4.22. Suppose that you are given a shortest path problem in which all arc lengths are the

same. How will you solve this problem in the least possible time?
4.23. In our discussion of shortest path algorithms, we often assumed that the underlying

network has no parallel arcs (i.e., at most one arc has the same tail and head nodes).
How would you solve a problem with parallel arcs? (Hint: If the network contains k
parallel arcs directed from node i to node j, show that we can eliminate all but one of
these arcs.)

4.24. Suppose that you want to determine a path of shortest length that can start at either
of the nodes s) or S2 and can terminate at either of the nodes t) and t2. How would you /
solve this problem? l/

4.25. Show that in the shortest path problem if the length of some arc decreases by k units,
the shortest path distance between any pair of nodes decreases by at most k units.

4.26. Most vital arc problem. A vital arc of a network is an arc whose removal from the
network causes the shortest distance between two specified nodes, say node s and node
t, to increase. A most vital arc is a vital arc whose removal yields the greatest increase

128 Shortest Paths: Label-Setting Algorithms Chap. 4

in the shortest distance from node s to node t. Assume that the network is directed,
arc lengths are positive, and some arc is vital. Prove that the following statements are
true or show through counterexamples that they are false.
(a) A most vital arc is an arc with the maximum value of Cij.

(b) A most vital arc is an arc with the maximum value of cij on some shortest path
from node s to node t.

(c) An arc that does not belong to any shortest path from node s to node t cannot be
a most vital arc.

(d) A network might contain several most vital arcs.
4.27. Describe an algorithm for determining a most vital arc in a directed network. What is

the running time of your algorithm?
4.28. A longest path is a directed path from node s to node t with the maximum length.

Suggest an O(m) algorithm for determining a longest path in an acyclic network with
nonnegative arc lengths. Will your algorithm work if the network contains directed
cycles?

4.29. Dijkstra's algorithm, as stated in Figure 4.6, identifies a shortest directed path from
node s to every nodej E N - {s}. Modify this algorithm so that it identifies a shortest
directed path from each node j E N - {t} to node t.

4.30. Show that if we add a constant ex to the length of every arc emanating from the so'urce
node, the shortest path tree remains the same. What is the relationship between the
shortest path distances of the modified problem and those of the original problem?

4.31. Can adding a constant ex to the length of every arc emanating from a nonsource node
produce a change in the shortest path tree? Justify your answer.

4.32. Show that Dijkstra's algorithm runs correctly even when a network contains negative
cost arcs, provided that all such arcs emanate from the source node. (Hint: Use the
result of Exercise 4.30.)

4.33. Improved Dial's implementation (Denardo and Fox [1979]). This problem discusses a
practical speed-up of Dial's implementation. Let Cmin = min{cij: (i, j) E A} and w =
max{l, Cmin}. Consider a version of Dial's implementation in which we use buckets of
width w. Show that the algorithm will never decrease the distance label of any node
in the least index nonempty bucket; consequently, we can permanently label any node
in this bucket. What is the running time of this version of Dial's implementation?

4.34. Suppose that we arrange all directed paths from node s to node t in nondecreasing order
of their lengths, breaking ties arbitrarily. The kth shortes(path problem is to identify
a path that can be at the kth place in this order. Describe an algorithm to find the kth
shortest path for k = 2. (Hint: The second shortest path must differ from the first
shortest path by at least one arc.)

4.35. Suppose that every directed cycle in a graph G has a positive length. Show that a
shortest directed walk from node s to node t is always a path. Construct an example
for which the first shortest directed walk is a path, but the second shortest directed
walk is not a path.

4.36. Describe a method for identifying the first K shortest paths from node s to node t in
an acyclic directed network. The running time of your algorithm should be polynomial
in terms of n, m, and K. (Hint: For each node j, keep track of the first K shortest paths
from node s to node j. Also, use the results in Exercise 4.34.)

4.37. Maximum capacity path problem. Let Cij 2: 0 denote the capacity of an arc in a given
network. Define the capacity of a directed path P as the minimum arc capacity in P.
The maximum capacity path problem is to determine a maximum capacity path from
a specified source node s to every other node in the network. Modify Dijkstra's al
gorithm so that it solves the maximum capacity path problem. Justify your algorithm.

4.38. Let (ibjd, (i2,h), ... , (im,jm) denote the arcs ofa network in nondecreasing order
of their arc capacities. Show that the maximum capacity path from node s to any node
j remains unchanged if ·we modify some or all of the arc capacities but maintain the
same (capacity) order for the arcs. Use this result to show that if we already have a

Chap. 4 Exercises 129

sorted list of the arcs, we can solve the maximum capacity path problem in Oem) time.
(Hint: Modify arc capacities so that they are all between 1 and m. Then use a variation
of Dial's implementation.)

4.39. Maximum reliability path problems. In the network G we associate a reliability 0 <
J.1ij ~ 1 with every arc (i, j) E A; the reliability measures the probability that the arc
will be operational. We define the reliability of a directed path P as the product of the
reliability of arcs in the path [i.e., J.1(P) = IIu,j)EP J.1ij], The maximum reliability path
problem is to identify a directed path of maximum reliability from the source node s
to every other node in the network,
(a) Show that if we are allowed to. take logarithms, we can reduce the maximum re

liability path problem to a shortest path problem.
(b) Suppose that you are not allowed to take logarithms because they yield irrational

data, Specify an O(n2) algorithm for solving the maximum reliability path problem
and prove the correctness of this algorithm, (Hint: Modify Dijkstra's algorithm,)

(c) Will your algorithms in parts (a) and (b) work if some of the coefficients J.1ij are
strictly greater than I?

4.40. Shortest paths with turn penalties. Figure 4. 15(b) gives a road network in which all road
segments are parallel to either the x-axis or the y-axis, The figure also gives the traversal
costs of arcs. Suppose that we incur an additional cost (or penalty) of IX units every
time we make a left turn. Describe an algorithm for solving the shortest path problem
with these turn penalties and apply it to the shortest path example in Figure 4.15(b).
Assume that IX = 5. [Hint: Create a new graph G* with a node i - j corresponding to
each arc (i, j) E A and with each pair of nodes i - j andj - kin N joined by an arc.
Assign appropriate arc lengths to the new graph.]

4.41. Max-min result. We develop a max-min type of result for the maximum capacity path
problem that we defined in Exercise 4.37. As in that exercise, suppose that we ~ish
to find the maximum capacity path from node s to node t. We say that a cut [S, S] is
an s-t cut if s E Sand t E S. Define the bottleneck value of an s-t cut as the largest
arc capacity in the cut. Show that the capacity of the maximum capacity path from
node s to node t equals the minimum bottleneck value of a cut.

4.42. A farmer wishes to transport a truckload of eggs from one city to another city through
a given road network. The truck will incur a certain amount of breakage on each road
segment; let wij denote the fraction of the eggs broken if the truck traverses the road
segment (i, j). How should the truck be routed to minimize the total breakage? How
would you formulate this problem as a shortest path problem.

4.43. A * algorithm. Suppose that we want to identify a shortest path from node s to node t,
and not necessarily from s to any other node, in a network with nonnegative arc lengths.
In this case we can terminate Dijkstra's algorithm whenever we permanently label node
t. This exercise studies a modification of Dijkstra's algorithm that would speed up the
algorithm in practice by designating node t as a permanent labeled node more quickly.
Let h(i) be a lower bound on the length of the shortest path from node i to node
t and suppose that the lower bounds satisfy the conditions h(i) ~ h(j) + cij for all
(i, j) E A. For instance, if nodes are points in a two-dimensional plane with coordi
nates (Xi, Yi) and arc lengths equal Euclidean distances betwetn points, then h(i) =
[(Xi - X,)2 + (Yi - y,)2]1/2 (i.e., the Euclidean distance from I to t) is a valid lower
bound on the length of the shortest path from node i to node t.
(a) Let ct = cij + h(j) - h(i) for all (i, j) E A. Show that replacing the arc lengths

Cij by ct does not affect the shortest paths between any pair of nodes.
(b) If we apply Dijkstra's algorithm with ct as arc lengths, why should this modification

improve the empirical behavior of the algorithm? [Hint: What is its impact if each
h(i) represents actual shortest path distances from node i to node t?]

4.44. Arc tolerances. Let T be a shortest path tree of a network. Define the tolerances of an
arc (i, j) as the maximum increase, IXij, and the maximum decrease, !3ij, that the arc
can tolerate without changing the tree of shortest paths.

130 Shortest Paths: Label-Setting Algorithms Chap. 4

(a) Show that if the arc (i, j) eo T, then (Xij = + 00 and !3ij will be a finite number.
Describe an 0(1) method for computing !3ij.

(b) Show that if the arc (i, j) E T, then !3ij = + 00 and (Xij will be a finite number.
Describe an Oem) method for computing (Xij.

4.45. (a) Describe an algorithm that will determine a shortest walk from a source node s to
a sink node t subject to the additional condition that the walk must visit a specified
node p. Will this walk always be a path?

(b) Describe an algorithm for determining a shortest walk from node s to node t that
must visit a specified arc (p, q).

4.46. Constrained shortest path problem. Suppose that we associate two integer numbers with
each arc in a network G: the arc's length cij and its traversal time 'Tij > 0 (we assume
that the traversal times are integers). The constrained shortest path problem is to de
termine a shortest length path from a source node s to every other node with the ad
ditional constraint that the traversal time of the path does not exceed 'To. In this exercise
we describe a dynamic programming algorithm for solving the constrained shortest path
problem. Let dj('T) denote the length of a shortest path from node s to node j subject
to the condition that the traversal time of the path does not exceed 'T. Suppose that we
set di'T) = 00 for 'T < O. Justify the following equations:

ds(O) = 0,
dj('T) = min[dj('T - 1), minddk('T - 'T1g) + Ckj}].

Use these equations to design an algorithm for the constrained shortest path problem
and analyze its running time.

4.47. Generalized knapsack problem. In the knapsack problem discussed in Application 4.3,
suppose that each itemj has three associated numbers: value Vj, weight Wj, and volume
rj. We want to maximize the value of the items put in the knapsack subject to the
condition that the total weight of the items is at most Wand the total volume is at most
R. Formulate this problem as a shortest path problem with an additional constraint.

4.48. Consider the generalized knapsack problem studied in Exercise 4.47. Extend the for
mulation in Application 4.3 in order to transform this problem into a longest path prob
lem in an acyclic network.

4.49. Suppose that we associate two numbers with each arc (i, j) in a directed network G =
(N, A): the arc's length Cij and its reliability rij. We define t,!e reliability of a directed
path P as the product of the reliabilities of arcs in the path. Describe a method for
identifying a shortest length path from node s to node t whose reliability is at least r.

4.50. Resource-constrained shortest path problem. Suppose that the traversal time 'Tij of an
arc (i, j) in a network is a function fu(d) of the discrete amount of a resource d that
we consume while traversing the arc. Suppose that we want to identify the shortest
directed path from node s to node t subject to a budget D on the amount of the resource
we can consume. (For example, we might be able to reduce the traversal time of an
arc by using more fuel, and we want to travel from node s to node t before we run out
of fuel.) Show how to formulate this problem as a shortest path problem. Assume that
d = 3. (Hint: Give a dynamic programming-based formulation.)

4.51. Modified function approximation problem. In the function approximation problem that
we studied in Application 4.1, we approximated a given piecewise linear function fl(x)
by another piecewise linear function f2(X) in order to minimize a weighted function
of the two costs: (1) the cost required to store the data needed to represent the func
tion f2(X), and (2) the errors introduced by the approximating fl(x) by f2(X). Suppose
that, instead, we wish to identify a subset of at most p points so that the function
fz(x) defined by these points minimizes the errors of the approximation (i.e., Lk= I
[ft (Xk) - f2(Xk)f). That is, instead of imposing a cost on the use of any breakpoint
in the approximation, we impose a limit on the number of breakpoints we can use. How
would you solve this problem?

Chap. 4 Exercises 131

4.52. Bidirectional Dijkstra's algorithm (Helgason, Kennington, and Stewart [1988]). Show
that the bidirectional shortest path algorithm described in Section 4.5 correctly deter
mines a shortest path from node s to node t. [Hint: At the termination of the algorithm,
let Sand S' be the sets of nodes that the forward and reverse versions of Dijkstra's
algorithm have designated as permanently labeled. Let k E S n S I. Let p* be some
shortest path from node s to node t; suppose that the first q nodes of p* are in Sand
that the (q + l)st node of p* is not in S. Show first that some shortest path from node
s to node t has the same first q nodes as p* and has its (q + l)st node in S'. Next
show that some shortest path has the same first q nodes as p* and each subsequent
node in S'.]

4.53. Shortest paths in bipartite networks (Orlin [1988]). In this exercise we discuss an im
proved algorithm for solving shortest path problem in "unbalanced" bipartite networks
G = (Nt U N 2, A), that is, those satisfying the condition that nt = I Nt I ~ I N2 I ==
n2. Assume that the degree of any node in N2 is at most K for some constant K, and
that all arc costs are nonnegative. Shortest path problems with this structure arise in
the context of solving the minimum cost flow problem (see Section 10.6). Let us define
a graph G' = (Nt, A') whose arc set A' is defined as the following set of arcs: For
every pair of arcs (i, j) and (j, k) in A, A I has an arc (i, k) of cost equal to cij + Cjk.

(a) Show how to solve the shortest path problem in G by solving a shortest path problem

132

in G' . What is the resulting running time of solving the shortest path problem in
G in terms of the parameters n, m and K?

(b) A network G is semi-bipartite if we can partition its node set N into the subsets
Nt and N2 so that no arc has both of its endpoints in N 2. Assume again that I Nt I
~ I N21 and the degree of any node in N2 is at most K. Suggest an improved
algorithm for solving shortest path problems in semi-bipartite networks.

Shortest Paths: Label-Setting Algorithms Chap. 4

5

SHORTEST PATHS: LABEL-CORRECTING
ALGORITHMS

To get to heaven, turn right and keep straight ahead.
-Anonymous

Chapter Outline

5.1 Introduction
5.2 Optimality Conditions
5.3 Generic Label-Correcting Algorithms
5.4 Special Implementations of the Modified Label-Correcting Algorithm
5.5 Detecting Negative Cycles
5.6 All-Pairs Shortest Path Problem
5.7 Minimum Cost-to-Time Ratio Cycle Problem
5.8 Summary

5.1 INTRODUCTION

In Chapter 4 we saw how to solve shortest path problems very efficiently when they
have special structure: either a special network topology (acyclic networks) or a
special cost structure (nonnegative arc lengths). When networks have arbitrary costs
and arbitrary topology, the situation becomes more complicated. As we noted in
Chapter 4, for the most general situations-that is, general networks with negative
cycles-finding shortest paths appears to be very difficult. In the parlance of com
putational complexity theory, these problems are NP-complete, so they are equiv
alent to solving many of the most noted and elusive problems encountered in the
realm of combinatorial optimization and integer programming. Consequently, we
have little hope of devising polynomial-time algorithms for the most general problem
setting. Instead, we consider a tractable compromise somewhere between the special
cases we examined in Chapter 4 and the most general situations: namely, algorithms
that either identify a negative cycle, when one exists, or if the underlying network
contains no negative cycle, solves the shortest path problem.

Essentially, all shortest path algorithms rely on the same important concept:
distance labels. At any point during the execution of an algorithm, we associate a
numerical value, or distance label, with each node. If the label of any node is infinite,
we have yet to find a path joining the source node and that node. If the label is finite,
it is the distance from the source node to that node along some path. The most basic
algorithm that we consider in this chapter, the generic label-correcting algorithm,
reduces the distance label of one node at each iteration by considering only local

133

information, namely the length of the single arc and the current distance labels of
its incident nodes. Since we can bound the sum of the distance labels from above
and below in terms of the problem data, then under the assumption of integral costs,
the distance labels will be integral and so the generic algorithm will always be finite.
As is our penchant in this book, however, we wish to discover algorithms that are
not only finite but that require a number of computations that grow as a (small)
polynomial in the problem's size.

We begin the chapter by describing optimality conditions that permit us to
assess when a set of distance labels are optimal-that is, are the shortest path dis
tances from the source node. These conditions provide us with a termination cri
terion, or optimality certificate, for telling when a feasible solution to our problem
is optimal and so we need perform no further computations. The concept of opti
mality conditions is a central theme in the field of optimization and will be a recurring
theme throughout our treatment of network flows in this book. Typically, optimality
conditions provide us with much more than a termination condition; they often pro
vide considerable problem insight and also frequently suggest algorithms for solving
optimization problems. When a tentative solution does not satisfy the optimality
conditions, the conditions often suggest how we might modify the current solution
so that it becomes "closer" to an optimal solution, as measured by some underlying
metric. Our use of the shortest path optimality conditions in this chapter for de
veloping label-correcting algorithms demonstrates the power of optimality conditions
in guiding the design of solution algorithms.

Although the general label-correcting algorithm is finite, it requires O(n 2 C)L
computations to solve shortest path problems on networks with n nodes and with a
bound of C on the maximum absolute value of any arc length. This bound is not
very satisfactory because it depends linearly on the values of the arc costs. One of
the advantages of the generic label-correcting algorithm is its flexibility: It offers
considerable freedom in the tactics used for choosing arcs that will lead to improve
ments in the shortest path distances. To develop algorithms that are better in theory
and in practice, we consider specific strategies for examining the arcs. One "bal
ancing" strategy that considers arcs in a sequential wraparound fashion requires
only O(nm) computations. Another implementation that gives priority to arcs em
anating from nodes whose labels were changed most recently, the so-called dequeue
implementation, has performed very well in practice even though it has poor worst
case performance. In Section 5.4 we study both of these modified versions of the
generic label-correcting algorithm.

We next consider networks with negative cycles and show how to make several
types of modifications to the various label-correcting algorithms so that they can
detect the presence of negative cycles, if the underlying network contains any. One
nice feature of these methods is that they do not add to the worst-case computational
complexity of any of the label-correcting algorithms.

We conclude this chapter by considering algorithms for finding shortest paths
between all pairs of nodes in a network. We consider two approaches to this problem.
One approach repeatedly applies the label-setting algorithm that we considered in
Chapter 4, with each node serving as the source node. As the first step in this
procedure, we apply the label-correcting algorithm to find the shortest paths from
one arbitrary node, and use the results of this shortest path computation to redefine

134 Shortest Paths: Label-Correcting Algorithms Chap. 5

the costs so that they are all nonnegative and so that the subsequent n single-source
problems are all in a form so that we can apply more efficient label-setting algorithms.
The computational requirements for this algorithm is essentially the same as that
required to solve n shortest path problems with nonnegative arc lengths and depends
on which label-setting algorithm we adopt from those that we described in Chapter
4. The second approach is a label-correcting algorithm that simultaneously finds the
shortest path distances between all pairs of nodes. This algorithm is very easy to
implement; it uses a clever dynamic programming recursion and is able to solve the
all-pairs shortest path problem in O(n3) computations.

5.2 OPTIMALITY CONDITIONS

As noted previously, label-correcting algorithms maintain a distance label d(j) for
every node j E N. At intermediate stages of computation, the distance label d(j) is
an estimate of (an upper bound on) the shOrtest path distance from the source node
s to node j, and at termination it is the shortest path distance. In this section we
develop necessary and sufficient conditions for a set of distance labels to represent
shortest path distances. Let d(j) for j oF s denote the length of a shortest path from
the source node to the nodej [we set d(s) = 0]. If the distance labels are shortest
path distances, they must satisfy the following necessary optimality conditions:

d(j) :5 d(i) + cij, for all (i, j) EA. (5.1)

These inequalities state that for every arc (i, j) in the network, the length of
the shortest path to node j is no greater than the length of the shortest path to node
i plus the length of the arc (i, j). For, if not, some arc U, j) E A must satisfy the
condition d(j) > dU) + Cij; in this case, We could improve the length ofthe shortest
path to node j by passing through node i, thereby contradicting the optimality of
distance labels d(j).

These conditions also are sufficient for optimality, in the _.sense that if each d(j)
represents the length of some directed path from the source node to node j and this
solution satisfies the conditions (5.1), then it must be optimal. To establish this result,
consider any solution d(j) satisfying (5.1). Let s = i l - i2 - ... - ik = j be any
directed path P from the source to node j. The conditions (5.1) imply that

d(j) = d(h) :5 d(h-I) + Cik-lik,

The last equality follows from the fact that dUt) = d(s) = O. Adding these in
equalities, we find that

d(j) = d(ik) :5 Cik_lik + Cik-2ik-1 + Cik-3ik-2 + ... + Cil;' = L cij'
(i,j)EP

Thus d(j) is a lower bound on the length of any directed path from the source
to node j. Since d(j) is the length of some directed path from the source to node j,

Sec. 5.2 Optimality Conditions 135

it also is an upper bound on the shortest path length. Therefore, d(j) is the shortest
path length, and we have established the following result.

Theorem 5.1 (Shortest Path Optimality Conditions). For every node j E N, let
d(j) denote the length of some directed path from the source node to node j. Then
the numbers d(j) represent shortest path distances if and only if they satisfy the
following shortest path optimality conditions:

d(j) ::; d(i) + Cij for all (i, j) EA. (5.2) •

Let us define the reduced arc length ct of an arc (i, j) with respect to the
distance labels dO as ct = Cij + d(i) - d(j). The following properties about the
reduced arc lengths will prove to be useful in our later development.

Property 5.2
(a) For any directed cycle W, ~(iJ)EW ct = ~(iJ)EW Cij'

(b) For any directed path P from node k to node I, ~(iJ)EP ct = ~(iJ)EP Co +
d(k) - d(l).

(c) If dO represent shortest path distances, ct? ° for every arc (i, j) EA.

The proof of the first two results is similar to the proof of Property 2.5 in
Section 2.4. The third result follows directly from Theorem 5.1.

We next note that if the network contains a negative cycle, then no set
of distance labels d(·) satisfies (5.2). For suppose that W is a directed cycle in
G. Property 5.2(c) implies that L(i,j)EW ct ? 0. Property 5.2(a) implies that
~(i,j)EW ct = ~(i,j)EW cij ? 0, and therefore W cannot be a negative cycle.
Thus if the network were to contain a negative cycle, no distance labels could
satisfy (5.2). We show in the next section that if the network does not contain a
negative cycle, some shortest path distances do satisfy (5.2).

For those familiar with linear programming, we point out that the shortest path
optimality conditions can also be viewed as the linear programming optimality con
ditions. In the linear programming formulation of the shortest path problem, the
negative of the shortest path distances [i.e., - d(j)] define the optimal dual variables,
and the conditions (5.2) are equivalent to the fact that in the optimal solution, reduced
costs of all primal variables are nonnegative. The presence of a negative cycle implies
the unboundedness of the primal problem and hence the infeasibility of the dual
problem.

5.8 GENERIC LABEL-CORRECTING ALGORITHMS

In this section we study the generic label-correcting algorithm. We shall study several
special implementations of the generic algorithm in the next section. Our discussion
in this and the next section assumes that the network does not contain any negative
cycle; we consider the case of negative cycles in Section 5.5.

The generic label-correcting algorithm maintains a set of distance labels d(·)
at every stage. The label d(j) is either 00, indicating that we have yet to discover a
directed path from the source to node j, or it is the length of some directed path

136 Shortest Paths: Label-Correcting Algorithms Chap. 5

from the source to node j. For each node j we also maintain a predecessor index,
pred(j), which records the node prior to nodej in the current directed path oflength
d(j). At termination, the predecessor indices allow us to trace the shortest path from
the source node back to node j. The generic label-correcting algorithm is a general
procedure for successively updating the distance labels until they satisfy the shortest
path optimality conditions (5.2). Figure 5.1 gives a formal description of the generic
label-correcting algorithm.

algorithm label-correcting;
begin

d(s) : = 0 and pred(s) : = 0;
d(j) : = co for each j E N - {s};
while some arc (i, j) satisfies d(j) > d(/) + cijdo
begin

d(j) : = d(/) + cij;
pred(j) : = i;

end;
end;

Figure 5.1 Generic label-correcting
algorithm.

By definition of reduced costs, the distance labels dO satisfy the optimality
conditions if ct ? 0 for all (i, j) EA. The generic label-correcting algorithm selects
an arc (i, j) violating its optimality condition (i.e., ct < 0) and uses it to update the
distance label of node j. This operation decreases the distance label of node j and
makes the reduced arc length of arc (i, j) equal to zero.

We illustrate the generic label correcting algorithm on the network shown in
Figure 5.2(a). If the algorithm selects the arcs (1, 3), (1, 2), (2, 4), (4, 5), (2, 5), and
(3,5) in this sequence, we obtain the distance labels shown in Figure 5.2(b) through
(g). At this point, no arc violates its optimality condition and the algorithm termi
nates.

The algorithm maintains a predecessor index for every finitely labeled node.
We refer to the collection of arcs (pred(j),j) for every finitely labeled nodej (except
the source node) as the predecessor graph. The predecessor graph is a directed out
tree T rooted at the source that spans all nodes with finite distance labels. Each
distance update using the arc (i, j) produces a new predecessor graph by deleting
the arc (pred(j),j) and adding the arc (i, j). Consider, for example, the graph shown
in Figure 5.3(a): the arc (6, 5) enters, the arc (3, 5) leaves, and we obtain the graph
shown in Figure 5.3(b).

The label-correcting algorithm satisfies the invariant property that for every
arc (i, j) in the predecessor graph, ct :5 O. We establish this result by performing
induction on the number of iterations. Notice that the algorithm adds an arc (i, j)
to the predecessor graph during a distance update, which implies that after this update
d(j) = d(i) + cu, or Cu + d(i) - d(j) = ct = O. In subsequent iterations, d(i)
might decrease and so ct might become negative. Next observe that if d(j) decreases
during the algorithm, then for some arc (i, j) in the predecessor graph ct may become
positive, thereby contradicting the invariant property. But observe that in this case,
we immediately delete arc (i,j) from the graph and so maintain the invariant property.
For an illustration, see Figure 5.3: in this example, adding arc (6, 5) to the graph
decreases d(5), thereby making c'ts < O. This step increases C~5, but arc (3, 5) im
mediately leaves the tree.

Sec. 5.3 Generic Label-Correcting Algorithms 137

(a) (b)

2

(c) (d)

(0

3 3

(g)

138 Figure 5.2 Illustrating the generic label-correcting algorithm.

(a) (b)

Figure 5.3 Showing that the predecessor graph is a directed out-tree.

We note that the predecessor indices might not necessarily define a tree. To
illustrate this possibility, we use the situation shown in Figure 5 A(a). Suppose that
arc (6, 2) satisfies d(2) > d(6) + C62 (or d2 < 0) and we update the distance label
of node 2. This operation modifies the predecessor index of node 2 from 1 to 6 and
the graph defined by the predecessor indices is no longer a tree. Why has this hap
pened? The predecessor indices do not define a tree because the network contained
a negative cycle. To see that this is the case, notice from Property 5.1 that for the
cycle 2-3-6-2, C23 + C36 + C62 = CQ3 + d6 + Ct2 < 0, because CQ3 :5 0, C~6 :5 0,
and d2 < 0. Therefore, the cycle 2-3-6-2 is a negative cycle. This discussion shows
that in the absence of negative cycles, we will never encounter a situation shown
in Figure 5A(b) and the predecessor graph will always be a tree.

The predecessor graph contains a unique directed path from the source node
to every node k and the length of this path is at most d(k). To verify this result, let
P be the path from the source to node k. Since every arc in the predecessor graph
has a nonpositive reduced arc length, LU,j)EP ct :5 0. Property 5.2(b) implies that ° ;::= LU,j)EP ct = LU,j)EP Cij + d(s) - d(k) = LU,j)EP Cij - d(k). Alternatively,
LU,j)EPCij :5 d(k). When the label-correcting algorithm terminates, each arc in the
predecessor graph has a zero reduced arc length (why?), which implies that the length
of the path from the source to every node k equals d(k). Consequently, when the
algorithm terminates, the predecessor graph is a shortest path tree. Recall from
Section 4.3 that a shortest path tree is a directed out-tree rooted at the source with
the property that the unique path from the source to any node is a shortest path to
that node.

(a) (b)

Figure 5.4 Formation of a cycle in a predecessor graph.

Sec. 5.3 Generic Label-Correcting Algorithms 139

It is easy to show that the algorithm terminates in a finite number of iterations.
We prove this result when the data are integral; Exercise 5.8 discusses situations
when the data are nonintegral. Observe that each d(j) is bounded from above by
nC (because a path contains at most n - 1 arcs, each of length at most C) and is
bounded from below by - nCo Therefore, the algorithm updates any label d(j) at
most 2nC times because each update of d(j) decreases it by at least 1 unit. Con
sequently, the total number of distance label updates is at most 2n2 C. Each iteration
updates a distance label, so the algorithm performs O(n2C) iterations. The algorithm
also terminates in 0(2n) steps. (See Exercise 5.8.)

Modified Label-Correcting Algorithm

The generic label-correcting algorithm does not specify any method for selecting an
arc violating the optimality condition. One obvious approach is to scan the arc list
sequentially and identify any arc violating this condition. This procedure is very
time consuming because it requires Oem) time per iteration. We shall now describe
an improved approach tlli}.t reduces the workload to an average of O(m/n) time per
iteration.

Suppose that we maintain a list, LIST, of all arcs that might violate their op
timality conditions. If LIST is empty, clearly we have an optimal solution. Otherwise,
we examine this list to select an arc, say (i, j), violating its optimality condition. We
remove arc (i, j) from LIST, and if this arc violates its optimality condition we use
it to update the distance label of node j. Notice that any decrease in the distance
label of node j decreases the reduced lengths of all arcs emanating from node j and
some of these arcs might violate the optimality condition. Also notice that decreasing
d(j) maintains the optimality condition for all incoming arcs at node j. Therefore,
if d(j) decreases, we must add arcs in A(j) to the set LIST. Next, observe that
whenever we add arcs to LIST, we add all arcs emanating from a single node (whose
distance label decreases). This suggests that instead of maintaining a list of all arcs
that might violate their optimality conditions, we may maintain a list of nodes with
the property that if an arc (i, j) violates the optimality condition, LIST must contain
node i. Maintaining a node list rather than the arc list requires less work and leads
to faster algorithms in practice. This is the essential idea behind the modified label
correcting algorithm whose formal description is given in Figure 5.5.

We call this algorithm the modified label-correcting algorithm. The correctness
of the algorithm follows from the property that the set LIST contains every node i
that is incident to an arc (i, j) violating the optimality condition. By performing
induction on the number of iterations, it is easy to establish the fact that this property
remains valid throughout the algorithm. To analyze the complexity of the algorithm,
we make several observations. Notice that whenever the algorithm updates d(j), it
adds node j to LIST. The algorithm selects this node in a later iteration and scans
its arc list A(j). Since the algorithm can update the distance label d(j) at most 2nC
times, we obtain a bound of LiEN (2nC) I A(i) I = O(nmC) on the total number of
arc scannings. Therefore, this version of the generic label-correcting algorithm runs
in O(nmC) time. When C is exponentially large, the running time is 0(2n). (See
Exercise 5.8.)

140 Shortest Paths: Label-Correcting Algorithms Chap. 5

algorithm modified label-correcting;
begin

dIs) : = 0 and pred(s) : = 0;
d(j) : = 00 for each node j E N - {s};
LIST: = {s};
while LIST ~ £1 do
begin

remove an element i from LIST;
for each arc (i, j) E A(/) do
if d(j) > d(Q + cij then
begin

d(j) : = d(J) + cij;
pred(j) : = i;
if j E LIST then add node j to LIST;

end;
end;

end;
Figure 5.5 Modified label-correcting
algorithm.

5.4 SPECIAL IMPLEMENTATIONS OF THE MODIFIED
LABEL-CORRECTING ALGORITHM

One nice feature of the generic (or the modified) label-correcting algorithm is its
flexibility: We can select arcs that do not satisfy the optimality condition in any
order and still assure finite convergence of the algorithm. One drawback of this
general algorithmic strategy, however, is that without a further restriction on tlie
choice of arcs in the generic label-correcting algorithm (or nodes in the modified
label-correcting algorithm), the algorithm does not necessarily run in polynomial
time. Indeed, if we apply the algorithm to a pathological set of data and make a poor
choice at every iteration, the number of steps can grow exponentially with n. (Since
the algorithm is a pseudopolynomial-time algorithm, these instances must have ex
ponentially large values of C. See Exercises 5.27 and 5.28 for a family of such
instances.) These examples show that to obtain polynomially bounded label
correcting algorithms, we must organize the computations carefully. If we apply the
modified label-correcting algorithm to a problem with nonnegative arc lengths and
we always examine a node from LIST with the minimum distance label, the resulting
algorithm is the same as Dijkstra's algorithm discussed in Section 4.5. In this case
our selection rule guarantees that the algorithm examines at most n nodes, and the
algorithm can be implemented to run in O(n2) time. Similarly, when applying the
modified label-correcting algorithm to acyclic networks, if we examine nodes in LIST
in the topological order, shortest path algorithm becomes the one that we discussed
in Section 4.4, so it is a polynomial-time algorithm.

In this section we study two new implementations of the modified label
correcting algorithm. The first implementation runs in O(nm) time and is currently
the best strongly polynomial-time implementation for solving the shortest path prob
lem with negative arc lengths. The second implementation is not a polynomial-time
method, but is very efficient in practice.

Sec. 5.4 Special Implementations of the Modified Label-Correcting Algorithm 141

O(nm) Implementation

We first describe this implementation for the generic label-correcting algorithm. In
this implementation, we arrange arcs in A in some specified (possibly arbitrary)
order. We then make passes through A. In each pass we scan arcs in A, one by one,
and check the condition d(j) > d(i) + Cij. If the arc satisfies this condition, we
update d(j) = d(i) + Cij. We stop when no distance label changes during an entire
pass.

Let us show that this algorithm performs at most n - 1 passes through the arc
list. Since each pass requires 0(1) computations for each arc, this conclusion implies
the O(nm) time bound for the algorithm. We claim that at the end of the kth pass,
the algorithm will compute shortest path distances for all nodes that are connected
to the source node by a shortest path consisting of k or fewer arcs. We prove this
claim by performing induction on the number of passes. Our claim is surely true for
k = 1. Now suppose that the claim is true for the kth pass. Thus d(j) is the shortest
path length to node j provided that some shortest path to node j contains k or fewer
arcs, and is an upper boutW on the shortest path length otherwise.

Consider a node j that is connected to the source node by a shortest path s =
io - i] - i2 - ... - ik - ik +] = j consisting of k + 1 arcs, but has no shortest
path containing fewer than k + 1 arcs. Notice that the path io - it - ... - h must
be a shortest path from the source to node ik, and by the induction hypothesis, the
distance label of node ik at the end of the kth pass must be equal to the length of
this path. Consequently, when we examine arc Uk, ik+]) in the (k + l)th pass, we
set the distance label of node ik + 1 equal to the length of the path io - i1 - ••• -

ik ~ ik + 1. This observation establishes that our induction hypothesis will be true
for the (k + l)th pass as well.

We have shown that the label correcting algorithm requires O(nm) time as long
as at each pass we examine all the arcs. It is not necessary to examine the arcs in
any particular order.

The version of the label-correcting algorithm we have discussed considers
every arc in A during every pass. It need not do so. Suppose that we order the arcs
in the arc list by their tail nodes so that all arcs with the same tail node appear
consecutively on the list. Thus, while scanning arcs, we consider one node at a time,
say node i, scan arcs in A(i), and test the optimality condition. Now suppose that
during one pass through the arc list, the algorithm does not change the distance label
of node i. Then during the next pass, d(j) ::5 d(i) + cij for every (i, j) E A(i) and
the algorithm need not test these conditions. Consequently, we can store all nodes
whose distance labels change during a pass, and consider (or examine) only those
nodes in the next pass. One plausible way to implement this approach is to store
the nodes in a list whose distance labels change in a pass and examine this list in
the first-in, first-out (FIFO) order in the next pass. If we follow this strategy in every
pass, the resulting implementation is exactly the same as the modified label
correcting algorithm stated in Figure 5.5 provided that we maintain LIST as a queue
(i.e., select nodes from the front of LIST and add nodes to the rear of LIST). We
call this algorithm the FIFO label-correcting algorithm and summarize the preceding
discussion as the following theorem.

142 Shortest Paths: Label-Correcting Algorithms Chap. 5

Theorem 5.3. The FIFO label-correcting algorithm solves the shortest path
problem in O(nm) time.

Dequeue Implementation

The modification of the modified label-correcting algorithm we discuss next has a
pseudopolynomial worst-case behavior but is very efficient in practice. Indeed, this
version of the modified label-correcting algorithm has proven in practice to be one
of the fastest algorithms for solving the shortest path problems in sparse networks.
We refer to this implementation of the modified label-correcting algorithm as the
dequeue implementation.

This implementation maintains LIST as a dequeue. A dequeue is a data struc
ture that permits us to store a list so that we can add or delete elements from the
front as well as the rear of the list. A dequeue can easily be implemented using an
array or a linked list (see Appendix A). The dequeue implementation always selects
nodes from the front of the dequeue, but adds nodes either at the front or at the
rear. If the node has been in the LIST earlier, the algorithm adds it to the front;
otherwise, it adds the node to the rear. This heuristic rule has the following intuitive
justification. If a node i has appeared previously in LIST, some nodes, say ii, i2 ,

... , ik , might have node i as its predecessor. Suppose further that LIST contains
the nodes ii, i2 , ••• ,ik when the algorithm updates d(i) again. It is then advantageous
to update the distance labels of nodes ii, i2 , ••• , ik from node i as soon as possible
rather than first examining the nodes ii, i2 , ••• , ik and then reexamine them when
their distance labels eventually decrease due to decrease in d(i). Adding node i to
the front of LIST tends to correct the distance labels of nodes ii, i2 , ••• , ik quickly
and reduces the need to reexamine nodes. Empirical studies have observed similar
behavior and found that the dequeue implementation examines fewer nodes than do
most other label-correcting algorithms.

5.5 DETECTING NEGATIVE CYCLES

So far we have assumed that the network contains no negative cycle and described
algorithms that solve the shortest path problem. We now describe modifications
required in these algorithms that would permit us to detect the presence of a negative
cycle, if one exists.

We first study the modifications required in the generic label-correcting al
gorithm. We have observed in Section 5.2 that if the network contains a negative
cycle, no set of distance labels will satisfy the optimality condition. Therefore, the
label-correcting algorithm will keep decreasing distance labels indefinitely and will
never terminate. But notice that - nC is a lower bound on any distance label when
ever the network contains no negative cycle. Consequently, if we find that the dis
tance label of some node k has fallen below - nC, we can terminate any further
computation. We can obtain the negative cycle by tracing the predecessor indices
starting at node k.

Let us describe yet another negative cycle detection algorithm. This algorithm
checks at repeated intervals to see whether the predecessor graph contains a directed

Sec. 5.5 Detecting Negative Cycles 143

cycle. Recall from the illustration shown in Figure 5.4 how the predecessor graph
might contain a directed cycle. This algorithm works as follows. We first designate
the source node as marked and all other nodes as unmarked. Then, one by one, We
examine each unmarked node k and perform the following operation: We mark node
k, trace the predecessor indices starting at node k, and mark all the nodes encoun
tered until we reach the first already marked node, say node I. If k = I, the pre
decessor graph contains a cycle, which must be a negative cycle (why?). The reader
can verify that this algorithm requires O(n) time to check the presence of a directed
cycle in the predecessor graph. Consequently, if we apply this algorithm after every
an distance updates for some constant a, the computations it performs will not add
to the worst-case complexity of any label-correcting algorithm.

In general, at the time that the algorithm relabels nodej, d(j) = d(i) + Cij for
some node i which is the predecessor ofj. We refer to the arc (i, j) as a predecessor
arc. Subsequently, d(i) might decrease, and the labels will satisfy the condition
d(j) 2: d(i) + cij as long as pred(j) = i. Suppose that P is a path of predecessor
arcs from node 1 to node j. The inequalities d(k) 2: d(l) + Ckl for all arcs (k, l) on
this path imply that J(j) is at least the length of this path. Consequently, no node
j with d(j) ::5 - nC is connected to node 1 on a path consisting only of predecessor
arcs . We conclude that tracing back predecessor arcs from node j must lead to a
cycle, and by Exercise 5.56, any such cycle must be negative.

The FIFO label-correcting algorithm is also capable of easily detecting the
presence of a negative cycle. Recall that we can partition the node examinations in
the FIFO algorithm into several passes and that the algorithm examines any node
at most once within each pass. To implement this algorithm, we record the number
of times that the algorithm examines each node. If the network contains no negative
cycle, it examines any node at most (n - 1) times [because it makes at most (n -
1) passes]. Therefore, if it examines a node more than (n - 1) times, the network
must contain a negative cycle. We can also use the technique described in the pre
ceding paragraph to identify negative cycles.

The FIFO label-correcting algorithm detects the presence of negative cycles
or obtains shortest path distances in a network in O(nm) time, which is the fastest
available strongly polynomial-time algorithm for networks with nonnegative arc
lengths. However, for problems that satisfy the similarity assumption, other weakly
polynomial-time algorithms run faster than the FIFO algorithm. These approaches
formulate the shortest path problem as an assignment problem (as described in Sec
tion 12.7) and then use an O(n 1l2m 10g(nC)) time assignment algorithm to solve the
problem (Le., either finds a shortest path or detects a negative cycle).

5.6 ALL-PAIRS SHORTEST PATH PROBLEM

The all-pairs shortest path problem requires that we determine shortest path dis
tances between every pair of nodes in a network. In this section we suggest two
approaches for solving this problem. The first approach, called the repeated shortest
path algorithm, is well suited for sparse networks. The second approach is a gen
eralization of the label-correcting algorithm discussed in previous sections; we refer
to this procedure as the all-pairs label-correcting algorithm. It is especially well
suited for dense networks. In this section we describe the generic all-pairs label-

144 Shortest Paths: Label-Correcting Algorithms Chap. 5

correcting algorithm and then develop a special implementation of this generic al
gorithm, known as the Floyd-Warshall algorithm, that runs in O(n3

) time.
In this section we assume that the underlying network is strongly connected

(i.e., it contains a directed path from any node to every other node). We can easily
satisfy this assumption by selecting an arbitrary node, say node s, and adding arcs
(s, i) and (i, s) of sufficiently large cost for all i E N - {s}, if these arcs do not
already exist. For reasons explained earlier, we also assume that the network does
not contain a negative cycle. All the algorithms we discuss, however, are capable
of detecting the presence of a negative cycle. We discuss situations with negative
cycles at the end of this section.

Repeated Shortest Path Algorithm

If the network has nonnegative arc lengths, we can solve the all-pairs shortest path
problem by applying any single-source shortest path algorithm n times, considering
each node as the source node once. If Sen, m, C) denotes the time needed to solve
a shortest path problem with nonnegative arc lengths, this approach solves the all
pairs shortest path problem in O(n Sen, m, C» time.

If the network contains some negative arcs, we first transform the network to
one with nonnegative arc lengths. We select a node s and use the FIFO label
correcting algorithm, described in Section 5.4, to compute the shortest distances
from node s to all other nodes. The algorithm either detects the presence of a negative
cycle or terminates with the shortest path distances d(j). In the first case, the all
pairs shortest path problem has no solution, and in the second case, we consider
the shortest path problem with arc lengths equal to their reduced arc lengths with
respect to the distance labels d(j). Recall from Section 5.2 that the reduced arc
length of an arc (i, j) with respect to the distance labels d(j) is ct = Cij + d(i) -
d(j), and if the distance labels are shortest path distances, then ct ~ 0 for all arcs
(i, j) in A [see Property 5.2(c)]. Since this transformation produces nonnegative
reduced arc lengths, we can then apply the single-source shortest path algorithm for
problems with nonnegative arc lengths n times (by considering each node as a source
once) to determine shortest path distances between all pairs of nodes in the trans
formed network. We obtain the shortest path distance between nodes k and I in the
original network by adding d(l) - d(k) to the corresponding shortest path distance
in the transformed network [see Property 5.2(b)]. This approach requires O(nm)
time to solve the first shortest path problem, and if the network contains no negative
cycles, it requires an extra O(n Sen, m, C» time to compute the remaining shortest
path distances. Therefore, this approach determines all pairs shortest path distances
in O(nm + n Sen, m, C» = O(n Sen, m, C» time. We have established the following
result.

Theorem 5.4. The repeated shortest path algorithm solves the all-pairs short
est path problem in O(n Sen, m, C» time.

In the remainder of this section we study the generic all-pairs label-correcting
algorithm. Just as the generic label-correcting algorithm relies on shortest path op
timality conditions, the all-pairs label-correcting algorithm relies on all-pairs shortest
path optimality conditions, which we study next.

Sec. 5.6 All-Pairs Shortest Path Problem 145

All-Pairs Shortest Path Optimality Conditions

Let [i, j] denote a pair of nodes i andj in the network. The all-pairs label-correcting
algorithm maintains a distance label d[i, j] for every pair of nodes; this distance
label represents the length of some directed walk from node i to node j and hence
will be an upper bound on the shortest path length from node i to node j. The algorithm
updates the matri~ of distance labels until they represent shortest path distances. It
uses the following generalization of Theorem 5.1:

Theorem 5.5 (All-Pairs Shortest Path Optimality Conditions). For every pair of
nodes [i, j] E N x N, let d[i, j] represent the length of some directed path from
node i to node j. These distances represent all-pairs shortest path distances if and
only if they satisfy the following all-pairs shortest path optimality conditions:

d[i,j] ::; d[i, k] + d[k,j] for all nodes i,j, and k. (5.3)

Proof We use a contradiction argument to establish that the shortest path
distances d[i, j] must s~tisfy the conditions (5.3). Suppose that d[i, k] + d[k, j] <
d[i, j] for nodes i, j, and k. The union of the shortest paths from node i to node k
and node k to node j is a directed walk of length d[i, k] + d[k, j] from node i to
nodej. This directed walk decomposes into a directed path, say P, from node ito
node j and some directed cycles (see Exercise 3.51). Since each direCted cycle in
the network has nonnegative length, the length of the path P is at most d[i, k] +
d[k, j] < d[i, j], contradicting the optimality of d[i, j].

We now show that if the distance labels d[i, j] satisfy the conditions in (5.3),
they represent shortest path distances. We use an argument similar to the one we
used in proving Theorem 5.1. Let P be a directed path of length d[i, j] consisting
of the sequence of nodes i = i 1 - i2 - i3 - ... - ik = j. The condition (5.3) implies
that

d[ik - 1 , ik]::; Cik-lik'

These inequalities, in turn, imply that

d[i, j] ::; CiIi2 + Ci2 i3 + ... + Cik-l ik = L Cij.
(i,j)EP

Therefore, d[i, j] is a lower bound on the length of any directed path from node i
to node j. By assumption, d[i, j] is also an upper bound on the shortest path length
from node ito nodej. Consequently, d[i,j] must be the shortest path length between
these nodes which is the derived conclusion of the theorem. •

All-Pairs Generic Label Correcting Algorithm

The all-pairs shortest path optimality conditions (throughout the remainder of this
section we refer to these conditions simply as the optimality conditions) immediately
yield the following generic all-pairs label-correcting algorithm: Start with some dis-

146 Shortest Paths: Label-Correcting Algorithms Chap. 5

tance labels d[i, j] and successively update these until they satisfy the optimality
conditions. Figure 5.6 gives a formal statement of the algorithm. In the algorithm
we refer to the operation of checking whether d[i, j] > d[i, k] + d[k, j], and if so,
then setting d[i, j] = d[i, k] + d[k, j] as a triple operation.

algorithm all-pairs label-correcting;
begin

set d[i, 11 : = 00 for all [i, 11 E N x N;
set d[i, /] : = 0 for all i E N;
for each (i, j) E A do d[i, jj : = Cij;

while the network contains three nodes i, j, and k
satisfying d[i,11 > d[i, kj + d[k,11 do d[i, 11 : = d[i, kj + d[k, jj;

end;

Figure 5.6 Generic all-pairs label-correcting algorithm.

To establish the finiteness and correctness of the generic all-pairs label
correcting algorithm, we assume that the data are integral and that the network
contains no negative cycle. We first consider the correctness of the algorithm. At
every step the algorithm maintains the invariant property that whenever d[i, j] <
00, the network contains a directed walk of length d[i, j] from node i to node j. We
can lise induction on the number of iterations to show that this property holds at
every step. Now consider the directed walk of length d[i, j] from node i to node j
at the point when the algorithm terminates. This directed walk decomposes into a
directed path, say P, from node ito nodej, and possibly some directed cycles. None
of these cycles could have a positive length, for otherwise we would contradict the
optimality of d[i, j].

Therefore, all of these cycles must have length zero. Conseque!1tly, the path
P must have length d[i, j]. The distance labels d[i, j] also satisfy the optimality
conditions (5.3), for these conditions are the termination criteria of the algorithm.
This conclusion establishes the fact that when the algorithm terminates, the distance
labels represent shortest path distances.

Now consider the finiteness of the algorithm. Since all arc lengths are integer
and C is the largest magnitude of any arc length, the maximum (finite) distance label
is bounded from above by nC and the minimum distance label is bounded from below
by - nCo Each iteration of the generic all-pairs label-correcting algorithm decreases
some d[i, j]. Consequently, the algorithm terminates within O(n3C) iterations. This
bound on the algorithm's running time is pseudopolynomial and is not attractive
from the viewpoint of worst-case complexity. We next describe a specific imple
mentation of the generic algorithm, known as the Floyd-Warshall algorithm, that
solves the all-pairs shortest path problem in O(n3) time.

Floyd-Wa.rshall Algorithm

Notice that given a matrix of distances d[i, j], we need to perform O(n3) triple
operations in order to test the optimality of this solution. It is therefore surprising
that the Floyd-Warshall algorithm obtains a matrix of shortest path distances within
O(n3

) computations. The algorithm achieves this bound by applying the triple op-

Sec. 5.6 All-Pairs Shortest Path Problem 147

erations cleverly. The algorithm is based on inductive arguments developed by an
application of a dynamic programming technique.

Let dk[i, j] represent the length of a shortest path from node i to node j subject
to the condition that this path uses only the nodes 1, 2, ... ,k - 1 as internal nodes.
Clearly, dn + I [i, j] represents the actual shortest path distance from node i to node
j. The Floyd-Warshall algorithm first computes dl[i, j] for all node pairs i and j.
Using dl[i, j], it then computes d 2 [i, j] for all node pairs i and j. It repeats this
process until it obtains dn + I [i, j] for all node pairs i andj, when it terminates. Given
dk[i, j], the algorithm computes dk+ I [i, j] using the following property.

This property is valid for the following reason. A shortest path that uses only
the nodes 1,2, ... , k as internal nodes either (1) does not pass through node k, in
which case dk+ I [i, j] = dk[i, j], or (2) does pass through node k, in which case
dk+l[i, j] = dk[i, k] +:::ak[k, j]. Therefore, dk+l[i, j] = min{dk[i, j], dk[i, k] +
dk[k, j]}.

Figure 5.7 gives a formal description of the Floyd-Warshall algorithm.

algorithm Floyd-Warshall;
begin

for all node pairs [i, j] E N x N do
d[i, j] : = 00 and pred[i, j] : = 0;

for all nodes i E N do d[i, /1 : = 0;
for each arc (i, j) E A do d[i, j] : = cij and pred[i, j] : = i;
for each k: = 1 to n do

end;

for each [i, 11 E N x N do
if d[i, jj > d[i, kj + d[k, jj then
begin

d[i,11: = d[i, kj + d[k, 11;
pred[i, j] : = pred[k,11;

end;
Figure 5.7 Floyd-Warshall algorithm.

The Floyd-Warshall algorithm uses predecessor indices, pred[i, j], for each
node pair [i, j]. The index pred[i, j] denotes the last node prior to node j in the
tentative shortest path from node i to nodej. The algorithm maintains the invariant
property that when d[i, j] is finite, the network contains a path from node i to node
j of length d[i, j]. Using the predecessor indices, we can obtain this path, say
P, from node k to node I as follows. We backtrack along the path P starting at
node I. Let g = pred[k, 1]. Then g is the node prior to node I in P. Similarly, h =
pred[k, g] is the node prior to node g in P, and so on. We repeat this process until
we reach node k.

The Floyd-Warshall algorithm clearly performs n major iterations, one for each
k, and within each major iteration, it performs 0(1) computations for each node pair.
Consequently, it runs in 0(n3) time. We thus have established the following result.

Theorem 5.7. The Floyd-Warshall algorithm computes shortest path dis-
tances between all pairs of nodes in 0(n3

) time. •

148 Shortest Paths: Label-Correcting Algorithms Chap. 5

Detection of Negative Cycles

We now address the issue of detecting a negative cycle in the network if one exists.
In the generic all-pairs label-correcting algorithm, we incorporate the following two
tests whenever the algorithm updates a distance label d[i, j] during a triple iteration:

1. If i = j, check whether d[i, i] < O.
2. If i ¥- j, check whether d[i, j] < - nCo

If either of these two tests is true, the network contains a negative cycle. To
verify this claim, consider the first time during a triple iteration when dU, i] < 0 for
some node i. At this time d[i, i] = d[i, k] + d[k, i] for some node k ¥- i. This
condition implies that the network contains a directed walk from node i to node k,
and a directed walk from node k to node i, and that the sum of the lengths of these
two walks is d[i, i], which is negative. The union of these two walks is a closed
walk, which can be decomposed into a set of directed cycles (see Exercise 3.51).
Since d[i, i] < 0, at least one of these directed cycles must be negative.

We next consider the situation in which d[i, j] < - nC for some node pair i
and j. Consider the first time during a triple iteration when d[i, j] < - nCo At this
time the network contains a directed walk from node i to node j of length - nC. As
we observed previously, we can decompose this walk into a directed path P from
node i to node j and some directed cycles. Since the path P must have a length of
at least - (n - 1)C, at least one of these cycles must be a negative cycle.

Finally, we observe that if the network contains a negative cycle, then even
tually d[i, i] < 0 for some node i or d[i, j] < - nC for some node pair [t, j], because
the distance labels continue to decrease by an integer amount at every iteration.
Therefore, the generic label-correcting algorithm will always determine a negative
cycle if one exists.

In the Floyd-Warshall algorithm, we detect the presence of a negative cycle
simply by checking the condition d[i, i] < 0 whenever we update d[i, i] for some
node i. It is easy to see that whenever dU, i] < 0, we have detected the presence
of a negative cycle. In Exercise 5.37 we show that whenever the network contains
a negative cycle, then during the computations we will eventually satisfy the con
dition d[i, i] < 0 for some i.

We can also use an extension of the method described in Section 5.5, using
the predecessor graph, to identify a negative cycle in the Floyd-Warshall algorithm.
The Floyd-Warshall algorithm maintains a predecessor graph for each node k in the
network, which in the absence of a negative cycle is a directed out-tree rooted at
node k (see Section 5.3). If the network contains a negative cycle, eventually the
predecessor graph contains a cycle. For any node k, the predecessor graph consists
of the arcs {(pred[k, i], i) : i E N - {k}}. Using the method described in Section
5.5, we can determine whether or not any predecessor graph contains a cycle. Check
ing this condition for every node requires O(n2) time. Consequently, if we use this
method after every an 2 triple operations for some constant a, the computations will
not add to the worst-case complexity of the Floyd-Warshall algorithm.

Sec. 5.6 All-Pairs Shortest Path Problem 149

Comparison of the Two Methods

The generic all-pairs label-correcting algorithm and its specific implementation as
the Floyd-Warshall algorithm are matrix manipulation algorithms. They maintain a
matrix of tentative shortest path distances between all pairs of nodes and perform
repeated updates of this matrix. The major advantages of this approach, compared
to the repeated shortest path algorithm discussed at the beginning of this section,
are its simplicity, intuitive appeal, and ease of implementation. The major drawbacks
of this approach are its significant storage requirements and its poorer worst-case
complexity for all network densities except completely dense networks. The matrix
manipulation algorithms require fl(n 2

) intermediate storage space, which could pro
hibit its application in some situations. Despite these disadvantages, the matrix ma
nipulation algorithms have proven to be fairly popular computational methods for
solving all-pairs shortest path problems.

5.7 MINIMUM COST-TO-TIME RATIO CYCLE PROBLEM

The minimum cost-to-time ratio cycle problem is defined on a directed graph G with
both a cost and a travel time associated with each arc: we wish to find a directed
cycle in the graph with the smallest ratio of its cost to its travel time. The minimum
cost-to-time ratio cycle problem arises in an application known as the tramp steamer
problem, which we defined in Application 4.4. A tramp steamer travels from port
to port, carrying cargo and passengers. A voyage of the steamer from port i to port
j earns pij units of profit and requires time Tij. The captain of the steamer wants to
know what ports the steamer should visit, and in which order, in order to maximize
its mean daily profit. We can solve this problem by identifying a directed cycle with
the largest possible ratio of total profit to total travel time. The tramp steamer then
continues to sail indefinitely around this cycle.

In the tramp steamer problem, we wish to identify a directed cycle W of G
with the maximum ratio (L(i,j)EW Pij)/(L(i,j)EW Tij)' We can convert this problem
into a minimization problem by defining the cost cij of each arc (i, j) as Cij = - pij.

We then seek a directed cycle W with the minimum value for the ratio

fl.(W) =

L Cij
(i,j)EW

L Tij
(i,j)EW

We assume in this section that all data are integral, that Tij 2: 0 for every arc (i, j)
E A, and that L(i,j)EW Tij > 0 for every directed cycle Win G.

We can solve the minimum cost-to-time ratio cycle problem (or, simply, the
minimum ratio problem) by repeated applications of the negative cycle detection
algorithm. Let fl. * denote the optimal objective function value of the minimum cost
to-time ratio cycle problem. For any arbitrary value of fl., let us define the length
of each arc as lij = Cij - fl.Tij. With respect to these arc lengths, we could encounter
three situations:

150 Shortest Paths: Label-Correcting Algorithms Chap. 5

Case 1. G contains a negative (length) cycle W.

In this case, ~(i,j)EW (cij - j.LTij) < O. Alternatively,

~ Cij

j.L > (i,j)EW 2: j.L*.

~ Tij

(5.4)

(i,j)EW

Therefore, j.L is a strict upper bound on j.L *.

Case 2. G contains no negative cycle, but does contain a zero-length cycle W*.

The fact that G contains no negative 'cycle implies that ~(i,j)EW (cij - j.LTij) 2:

o for every directed cycle W. Alternatively,

~ Cij

j.L:S (i,~W
Tij

(i,j)EW

for every directed cycle W.

Similarly, the fact that G contains a zero-length cycle W* implies that

~ Cij
(i,j)EW*

j.L=
~ Tij

(i,j)EW·

(5.5)

(5.6)

The conditions (5.5) and (5.6) imply that j.L = j.L *, so W* is a minimum cost
to-time ratio cycle.

Case 3. Every directed cycle W in G has a positive length.

In this case ~(i,j)EW (Cij - j.LTij) > 0 for every directed cycle W. ~lternatively,

~ cij
< (i,j)EW

j.L ~ Tij
for every directed cycle W. (5.7)

(i,j)EW

Consequently, j.L is a strict lower bound on j.L *.

The preceding case analysis suggests the following search procedure for solving
the minimum cost-to-time ratio problem. We guess a value j.L for j.L *, define arc
lengths as (Cij - j.LTij), and apply any shortest path algorithm. If the algorithm iden
tifies a negative cycle, j.L exceeds j.L * and our next guess should be smaller. If the
algorithm terminates with shortest path distances, we look for a zero-length cycle
(as described in Exercise 5.19). If we do find a zero-length cycle W*, then we stop;
otherwise, j.L is smaller than j.L *, so our next guess should be larger. To implement
this general solution approach, we need to define what we mean by "smaller" and
"larger." The following two search algorithms provide us with two methods for
implementing this approach.

Sequential search algorithm. Let j.L ° be a known upper bound on j.L *. If
we solve the shortest path problem with (Cij - j.L°Tij) as arc lengths, we either find
a zero-length cycle W or find a negative cycle W. In the former case, W is a minimum

Sec. 5.7 Minimum Cost-to-Time Ratio Cycle Problem 151

ratio cycle and we terminate the search. In the latter case, we chose f.L I ==
(LU,j)EW Cij)/(Lu,j)EW Tij) as our next guess. Case 1 shows that f.L ° >. f.L I 2: f.L *.
Repeating this process, we obtain a sequence of values f.L0> f.LI > ... > f.Lk = f.L*.
In Exercise 5.48 we ask the reader to obtain a pseudopolynomial bound on the
number of iterations performed by this search procedure.

Binary search algorithm. In this algorithm we identify a minimum cost
to-time ratio cycle using the binary search technique described in Section 3.3. Let
[./!, Ii] be an interval that contains f.L*, that is, ./! ::; f.L* ::; Ii. If C = max {Cij:
(i, j) E A}, it is easy to verify that [- c, C] is one such interval. At every iteration
of the binary search algorithm, we consider f.L ° = c.!! + 1i)/2, and check whether the
network contains a negative cycle with arc lengths Cij - f.L°Tij. If it does, f.L0 > f.L*
(from Case 1) and we reset Ii = f.L 0, otherwise, f.L ° ::; f.L * (from Case 3) and we reset
./! = f.L 0. At every iteration, we half the length of the search interval. As shown by
the following result, after a sufficiently large number of iterations, the search interval
becomes so small that it h~ a unique solution.

Let c(W) and T(W) denote the cost and travel time of any directed cycle Wof
the network G, and let TO = max{Tij: (i, j) E A}. We claim that any interval£.!!, Ii]
of size at most Ihij contains at most one value from the sef {c(W)h(W) : W is a
directed cycle of the network G}. To establish this result, let WI and W2 be two
directed cycles with distinct ratios. Then

or
I

C(WI) - c(W2) I ~ 0
T(WI) T(W2) ,

I
C(WdT(W2) - c(W2)T(Wd I ~ o.

T(WI)T(W2)
(5.8)

Since the left-hand side of (5.8) is nonzero (and all data are integer), its nu
merator must be at least 1 in absolute value. The denominator of (5.8) is at most
Tij. Therefore, the smallest value of the left-hand side is Ihij. Consequently, when
(Ii - ./!) has become smaller than Ihij, the interval£.!!, Ii] must contain at most one
ratio of the form c(W)h(W).

Since initially (Ii - ./!) = 2C, after O(lOg(2CTij)) = O(lOg(TOC)) iterations, the
length of the interval£.!!, Ii] becomes less than Ihij, and we can terminate the binary
search. The network then must contain a zero-length cycle with respect to the arc
lengths (cij - IiTij); this cycle is a minimum cost-to-time ratio cycle.

Minimum Mean Cycle Problem

The minimum mean cycle problem is a special case of the minimum cost-to-time
ratio problem obtained by setting the traversal time Tij = 1 for every arc (i, j) E A.
In this case we wish to identify a directed cycle W with the smallest possible mean
cost (LU,j)EW Cij)/I W I from among all directed cycles in G. The minimum mean
cycle problem arises in a variety of situations, such as data scaling (see Application
19.6 in Chapter 19) and as a subroutine in certain minimum cost flow algorithms
(see Section 10.5), and its special structure permits us to develop algorithms that

152 Shortest Paths: Label-Correcting Algorithms Chap. 5

are faster than those available for the general minimum cost-to-time ratio cycle
problem. In this section we describe an O(nm)-time dynamic programming algorithm
for solving the minimum mean cycle problem.

In the subsequent discussion, we assume that the network is strongly connected
(i.e., contains a directed path between every pair of nodes). We can always satisfy
this assumption by adding arcs of sufficiently large cost; the minimum mean cycle
will contain no such arcs unless the network is acyclic.

Let dk(j) denote the length, with respect to the arc lengths Cij, of a shortest
directed walk containing exactly k arcs from a specially designated node s to node
j. We can choose any node s as the specially designated node. We emphasize that
dk(j) is the length of a directed walk to nodej; it might contain directed cycles. We
can compute dk(j) for every node j and for every k = 1, ... , n, by using the
following recursive relationship:

dk(j) = min {dk-1(i) + cu}.
{i:(i,j)EA}

(5.9)

We initialize the recursion by setting d°(j) = 00 for each nodej. Given dk-1(j)
for allj, using (5.9) we compute dk(j) for allj, which requires a total of Oem) time.
By repeating this process for all k = 1,2, ... , n, within O(nm) computations we
determine dk(j) for every node j and for every k. As the next result shows, we are
able to obtain a bound on the cost f.L * of the minimum mean cycle in terms of the
walk lengths dk(j).

Theorem 5.8

(5.10)

Proof We prove this theorem for two cases: when f.L * = 0 and,f.L * =F-. O.

Case 1. f.L * = O. In this case the network does not contain a negative cycle
(for otherwise, f.L * < 0), but does contain a zero cost cycleW. For each node j E
N, let d(j) denote the shortest path distance from node s to nodej. We next replace
each arc cost Cij by its reduced cost ct = Cij + d(i) - d(j). Property 5.2 implies
that as a result of this transformation, the network satisfies the following properties:

1. All arc costs are nonnegative.
2. All arc costs in Ware zero.

3. For each nodej, every arc in the shortest path from node s to nodej has zero
cost.

4. For each node j, the shortest path distances dk(j), for any 1 ::5 k ::5 n, differ
by a constant amount from their values before the transformation.

Let dk(j) denote the length of the shortest walk from node s to node j with
respect to the reduced costs ct. Condition 4 implies that the expression (5.10) re
mains valid even if we replace dn(j) by dn(j) and dk(j) by dk(j). Next, notice that
for each node j E N,

max [(fn(j) - dk(j)] ::::: 0, (5.11)
lS;kS;n-l

Sec. 5.7 Minimum Cost-to-Time Ratio Cycle Problem 153

because for some k, (lk(j) will equal the shortest path length (l(j), and (In(j) will be
at least as large. We now show that for some node p, the left-hand side of (5.11)
will be zero, which will establish the theorem. We choose some node j in the cycle
Wand construct a directed walk containing n arcs in the following manner. First,
we traverse the shortest path from node s to node j and then we traverse the arcs
in W from node j until the walk contains n arcs. Let node p be the node where this
walk ends. Conditions 2 and 3 imply that this walk from node s to node p has a zero
length. This walk must contain one or more directed cycle because it contains n
arcs. Removing the directed cycles from this walk gives a path, say of length k ::;
n - 1, from node s to node p of zero length. We have thus shown that (In(p) =
(lk(p) = O. For node p the left-hand side of (5.11) is zero, so this node satisfies the
condition

as required by the theorem.

Case 2. /-L * ;F- O. Suppose that .6 is a real number. We study the effect of
decreasing each arc cost Cij by an amount .6. Clearly, this change in the arc costs
reduces /-L* by .6, each d\j) by k.6, and therefore the ratio (dn(v) - dk(v))/
(n - k), and so the right-hand side of(5.1O), by an amount.6. Consequently, trans
lating the costs by a constant affects both sides of (5.10) equally. Choosing the trans
lation to make /-L * = 0 and then using the result of Case 1 provides a proof of the
theorem. •

We ask the reader to show in Exercise 5.55 that how to use the dk(j)'s to obtain
a minimum mean cycle.

5.B SUMMARY

In this chapter we developed several algorithms, known as the label-correcting al
gorithms, for solving shortest path problems with arbitrary arc lengths. The shortest
path optimality conditions, which provide necessary and sufficient conditions for a
set of distance labels to define shortest path lengths, playa central role in the de
velopment of label-correcting algorithms. The label-correcting algorithms maintain
a distance label with each node and iteratively update these labels until the distance
labels satisfy the optimality conditions. The generic label-correcting algorithm se
lects any arc violating its optimality condition and uses it to update the distance
labels. Typically, identifying an arc violating its optimality condition will be a time
consuming component of the generic label-correcting algorithm. To improve upon
this feature of the algorithm, we modified the algorithm so that we could quickly
select an arc violating its optimality condition. We presented two specific imple
mentations of this modified label-correcting algorithm: A FIFO implementation im
proves on its running time in theory and a dequeue implementation improves on its
running time in practice. Figure 5.8 summarizes the important features of all the
label-correcting algorithms that we have discussed.

The label-correcting algorithms determine shortest path distances only if the
network contains no negative cycle. These algorithms are, however, capable of de-

154 Shortest Paths: Label-Correcting Algorithms Chap. 5

Algorithm Running Time Features

Generic label-correcting O(min{n2mC, m2n}) 1. Selects arcs violating their optimality conditions
algorithm and updates distance labels.

2. Requires O(m) time to identify an arc violating its
optimality condition.

3. Very general: most shortest path algorithms can be
viewed as special cases of this algorithm.

4. The running time is pseudopolynomial and so is un-
attractive.

Modified label-correcting O(min{nmC, m2n}) 1. An improved implementation of the generic label-
algorithm correcting algorithm.

2. The algorithm maintains a set, LIST, of nodes:
whenever a distance label d(j) changes, we add
node j to LIST. The algorithm removes a node i
from LIST and examines arcs in A(i) to update dis-
tance labels.

3. Very flexible since we can maintain LIST in a va-
riety of ways.

4. The running time is still unattractive.

FIFO implementation O(nm) 1. A specific implementation of the modified label-
correcting algorithm.

2. Maintains the set LIST as a queue and hence ex-
amines nodes in LIST in first-in, first-out order.

3. Achieves the best strongly polynomial running time
for solving the shortest path problem with arbitrary
arc lengths.

4. Quite efficient in practice.
5. In O(nm) time, can also identify the presence of

negative cycles.

Dequeue implementation O(min{nmC, m2n}) 1. Another specific implementation of the modified
label-correcting algorithm.

2. Maintains the set LIST l!sa dequeue. Adds a node
to the front of dequeue if the algorithm has previ-
ously updated its distance label, and to the rear
otherwise.

3. Very efficient in practice (possibly, linear time).
4. The worst-case running time is unattractive.

Figure 5.S Summary of label-correcting algorithms.

tecting the presence of a negative cycle. We described two methods for identifying
such a situation: the more efficient method checks at repeated intervals whether the
predecessor graphs (i.e., the graph defined by the predecessor indices) contains a
directed cycle. This computation requires D(n) time.

To conclude this chapter we studied algorithms for the all-pairs shortest path
problem. We considered two basic approaches: a repeated shortest path algorithm
and an all-pairs label-correcting algorithm. We described two versions of the latter
approach: the generic version and a special implementation known as the Floyd
Warshall algorithm. Figure 5.9 summarizes the basic features of the all-pairs shortest
path algorithms that we studied.

Sec. 5.8 Summary 155

Algorithm Running Time Features

Repeated shortest path O(nS(n,m,C» 1. Preprocesses the network so that all (reduced) arc
algorithm lengths are nonnegative. Then applies Dijkstra's al-

gorithm n times with each node i E N as the source
node.

2. Flexible in the sense that we can use an implemen-
tation of Dijkstra's algorithm.

3. Achieves the best available running time for all net-
work densities.

4. Low intermediate storage.

Floyd-Wars hall algorithm O(n3) 1. Corrects distance labels in a systematic way until
they represent the shortest path distances.

2. Very easy to implement.
3. Achieves the best available running time for dense

networks.
4. Requires 'o(n2

) intermediate storage.
~

Figure 5.9 Summary of all pairs shortest path algorithms. [S(n, m, C) is the time
required to solve a shortest path problem with nonnegative arc lengths.]

REFERENCE NOTES

Researchers, especially those within the operations research community, have ac
tively studied label-correcting algorithms for many years; much of this development
has focused on designing computationally efficient algorithms. Ford [1956] outlined
the first label-correcting algorithm for the shortest path problem. Subsequently, sev
eral researchers, including Moore [1957] and Ford and Fulkerson [1962], studied
properties of the generic label-correcting algorithms. Bellman's [1958] dynamic pro
gramming algorithm for the shortest path problem can also be viewed as a label
correcting algorithm. The FIFO implementation of the generic label-correcting al
gorithm is also due to Bellman [1958]. Although Bellman developed this algorithm
more than three decades ago, it is still the best strongly polynomial-time algorithm
for solving shortest path problems with arbitrary arc lengths.

In Section 12.7 we show how to transform the shortest path problem into an
assignment problem and then solve it using any assignment algorithm. As we note
in the reference notes of Chapter 12, we can solve the assignment problem in
O(n 112m 10g(nC)) time using either the algorithms reported by Gabow and Tarjan
[1989a] or the algorithm developed by Orlin and Ahuja [1992]. These developments
show that we can solve shortest path problems with arbitrary arc lengths in
O(n 112m 10g(nC)) time. Thus the best available time bound for solving the shortest
path problem with arbitrary arc lengths is O(min{nm, n ll2 m 10g(nC)}): The first bound
is due to Bellman [1958], and the second bound is due to Gabow and Tarjan [1989a]
and Orlin and Ahuja [1992].

Researchers have exploited the inherent flexibility of the generic label
correcting algorithm to design algorithms that are very efficient in practice. Pape' s
implementation, described in Section 5.4, is based on an idea due to D'Esopo that

156 Shortest Paths: Label-Correcting Algorithms Chap. 5

was later refined and tested by Pape [1974]. Pape [1980] gave a FORTRAN listing
of this algorithm. Pape's algorithm runs in pseudopolynomial time. Gallo and Pal
lottino [1986] describe a two-queue implementation that retains the computational
efficiency of Pape's algorithm and still runs in polynomial time. The papers by
Glover, Klingman, and Phillips [1985] and Glover, Klingman, Phillips, and Schneider
[1985] have described a variety of specific implementations of the generic label
correcting algorithm and studied their theoretical and computational behavior. These
two papers, along with those by Hung and Divoky [1988], Divoky and Hung [1990],
and Gallo and Pallottino [1984, 1988], have presented extensive computational results
of label-setting and label-correcting algorithms. These studies conclude that for a
majority of shortest path problems with nonnegative or arbitrary arc lengths, the
label-correcting algorithms, known as Thresh Xl and Thresh X2, suggested by
Glover, Klingman, and Phillips [1985], are the fastest shortest path algorithms. The
reference notes of Chapter 11 provide references for simplex-based approaches for
the shortest path problem.

The generic all-pairs label-correcting algorithm, discussed in Section 5.3, is a
generalization of the single source shortest path problem. The Floyd-Warshall al
gorithm, which was published in Floyd [1962], was based on Warshall's [1962] al
gorithm for finding transitive closure of graphs.

Lawler [1966] and Dantzig, Blattner, and Rao [1966] are early and important
references on the minimum cost-to-time ratio cycle problem. The binary search
algorithm described by us in Section 5.7 is due to Lawler [1966]. Dantzig, Blattner,
and Rao [1966] presented a primal simplex approach that uses the linear programming
formulation of the minimum ratio problems; we discuss this approach in Exercise
5.47. Meggido [1979] describes a general approach for solving minimum ratio prob
lems, which as a special case yields a strongly polynomial-time algorithm for the
minimum cost-to-time ratio cycle problem.

The O(nm)-time minimum mean cycle algorithm, described in Section 5.7, is
due to Karp [1978]. Several other algorithms are available for solving the minimum
mean cycle problem: (1) an O(nm log n) parametric network simplex algorithm
proposed by Karp and Orlin [1981], (2) an O(n 112m 10g(nC)) algorithm developed
by arlin and Ahuja [1992], and (3) an O(nm + n 2 log n) algorithm designed by
Young, Taljan, and arlin [1990]. The best available time bound for solving the min
imum mean cycle problem is O(min{nm, n 1l2m 10g(nC)): The two bounds contained
in this expression are due to Karp [1978] and arlin and Ahuja [1992]. However, we
believe that the parametric network simplex algorithm by Karp and arlin [1981]
would prove to be the most efficient algorithm empirically. We describe an appli
cation of the minimum mean cycle problem in Application 19.6. The minimum mean
cycle problem also arises in solving minimum cost flow problems (see Goldberg and
Tarjan [1987, 1988]).

EXERCISES

5.1. Select a directed cycle in Figure 5.1O(a) and verify that it satisfies Property 5.2(a).
Similarly, select a directed path from node 1 to node 6 and verify that it satisfies Property
5.2(b). Does the network contain a zero-length cycle?

Chap. 5 Exercises 157

d(i) • '11m, ,: ~$. ~

-5

0

s

45

Gij

0

5

30
(a)

d{j)

(I "«iF '->''';"

25

-5
10

o

Figure 5.10 Examples for Exercises 5.1 to 5.5.

0 6

5.2. Consider the shortest path problems shown in Figure 5.10. Check whether or not the
distance label d(j) given next to each node j represents me length of some path. If your
answer is yes for every node, list all the arcs that do not satisfy the shortest path
optimality conditions.

5.3. Apply the modified label-correcting algorithm to the shortest path problem shown in
Figure 5.1O(a). Assume that the adjacency list of each node is arranged in increasing
order of the head node numbers. Always examine a node with the minimum number
in LIST. Specify the predecessor graph after examining each node and count the number
of distance updates.

5.4. Apply the FIFO label-correcting algorithm to the example shown in Figure 5.1O(b).
Perform two passes of the arc list and specify the distance labels and the predecessor
graph at the end of the second pass. '

5.5. Consider the shortest path problem given in Figure 5.10(a) with the modification that
the length of arc (4, 5) is -15 instead of - 5. Verify that the network contains a negative
cycle. Apply the dequeue implementation of the label-correcting algorithm; after every
three distance updates, check whether the predecessor graph contains a directed cycle.
How many distance updates did you perform before detecting a negative cycle?

5.6. Construct a shortest path problem whose shortest path tree contains a largest cost arc
in the network but does not contain the smallest cost arc.

5.7. Bellman's equations

158

(a) Show that the shortest path distances dO must satisfy the following equations,
known as Bellman's equations:

d(j) = min{d(i) + cij:U,j) E AU)} for allj E N.

(b) Show that if a set of\distance labels d(i)'s satisfy Bellman's equations and the
network contains no zero-length cycle, these distance labels are shortest path dis
tances.

(c) Verify that for the shortest path problem shown in Figure 5.11, the distance labels

Figure 5.11 Example for Exercise 5.7.

Shortest Paths: Label-Correcting Algorithms Chap. 5

d = (0, 0, 0, 0) satisfy Bellman's equations but do not represent shortest path
distances. This example shows that in the presence of a zero-length cycle, Bellman's
equations are not sufficient for characterizing the optimality of distance labels.

5.8. Our termination argument of the generic label-correcting algorithm relies on the fact
that the data are integral. Suppose that in the shortest path problem, some arc lengths
are irrational numbers.
(a) Prove that for this case too, the generic label-correcting algorithm will terminate
finitely. (Hint: Use arguments based on the predecessor graph.)
(b) (Gallo and Pallottino [1986]). Assuming that the network has no negative cost cycles,
show the total number of relabels is O(2n). (Hint: Show first that if the algorithms uses
the path 1-2-3-4 to label node 4, then it never uses the path 1-3-2-4 to label node 4.
Then generalize this observation.)
(c) Show that the generic label correcting algorithm requires O(2 n

) iterations.
5.9. In Dijkstra's algorithm for the shortest path problem, let S denote the set of permanently

labeled nodes at some stage. Show that for all node pairs [i, j] for which i E S, j E N
and (i,j) E A, d(j) :5 d(i) + cij' Use this result to give an alternative proof of correctness
for Dijkstra's algorithm.

5.10. We define an in-tree of shortest paths as a directed in-tree rooted at a sink node t for
which the tree path from any node i to node t is a shortest path. State a modification
of the generic label-correcting algorithm that produces an in-tree of shortest paths.

5.11. Let G = (Nt U N 2, A) be a bipartite network. Suppose that nt = 1 Nt I, n2 = 1 N21
and nt :5 n2. Show that the FIFO label-correcting algorithm solves the shortest path
problem in this network in O(ntm) time.

5.12. Let dk(j) denote the shortest path length from a source node s to nodej subject to the
condition that the path contains at most k arcs. Consider the O(nm) implementation
of the label-correcting algorithm discussed in Section 5.4; let Dk(j) denote the distance
label of node j at the end of the kth pass. Show that Dk(j) :5 dk(j) for every node j E
N. .

5.13. In the shortest path problem with nonnegative arc lengths, suppose that we know that
the shortest path distance of nodes it, i2 , ••• , in are in nondecreasing order. Can we
use this information to help us determine shortest path distances more efficiently than
the algorithms discussed in Chapter 4? If we allow arc lengths to be negative, can you
solve the shortest path problem faster than O(nm) time?

5.14. Show that in the FIFO label-correcting algorithm, if the kth pass of the arc list decreases
the distances of at least n - k + 1 nodes, the network must contain a negative cycle.
(Hint: Use the arguments required in the complexity proof of the FIFO algorithm.)

5.15. Modified FIFO algorithm (Goldfarb and Hao [1988]). This exercise describes a modi
fication of the FIFO label-correcting algorithm that is very efficient in practice. The
generic label-correcting algorithm described in Figure 5.1 maintains a predecessor
graph. Let f(j) denote the number of arcs in the predecessor graph from the source
node to node j. We can easily maintain these values by using the update formula
f(j) = f(i) + 1 whenever we make the distance label update d(j) = d(i) + cij' Suppose
that in the algorithm we always examine a node i in LIST with the minimum value of
f(i). Show that the algorithm examines the nodes with nondecreasing values of fO
and that it examines no node more than n - 1 times. Use this result to specify an
O(nm) implementation of this algorithm.

5.16. Suppose after solving a shortest path problem, you realize that you underestimated
each arc length by k units. Suggest an O(m) algorithm for solving the original problem
with the correct arc lengths. The running time of your algorithm should be independent
of the value of k(Hint: Use Dial's implementation described in Section 4.6 on a modified
problem.)

5.17. Suppose that after solving a shortest path problem, you realize that you underestimated
some arc lengths. The actual arc lengths were C;j ~ cij for all (i, j) E A. Let L =
~(i,j)EA(Cij - cij). Suggest an O(m + L) algorithm for reoptimizing the solution ob-

Chap. 5 Exercises 159

tained for the shortest path problem with arc lengths cij. (Hint: See the hint for Exercise
5.16.)

5.18. Suppose that after solving a shortest path problem, you realize that you underestimated
some arc lengths and overestimated some other arc lengths. The actual arc lengths are
C;j instead of Cij for all (i, j) E A. Let L = 2,U,j)EA \ cij - C;j \. Suggest an O(mL)
algorithm for reoptimizing the shortest path solution obtained with the arc lengths cij'
(Hint: Apply the label-correcting algorithm on a modified problem.)

5.19. Identifying zero-length cycles. In a directed network G with arc lengths cij, let d(j) denote
the shortest path distance from the source node s to nodej. Define reduced arc lengths
as ct = cij + d(i) - d(j) and define the zero-residual network GO as the subnetwork
of G consisting only of arcs with zero reduced arc lengths. Show that there is a one
to-one correspondence between zero-length cycles in G and directed cycles in GO.
Explain how you can identify a directed cycle in GO in Oem) time.

5.20. Enumerating all shortest paths. Define the zero-residual network GO as in Exercise 5.19,
and assume that GO is acyclic. Show that a directed path from node s to node t in G
is a shortest path if and only if it is a directed path from node s to node t in GO. Using
this result, describe an algorithm for enumerating all shortest paths in G from node s
to node t. (Hint: Use the algorithm in Exercise 3.44.)

5.21. Professor May B. Wright suggests the following method for solving the shortest path
problem with arbitrary arc lengths. Let Cmin = min{cij :;(i, j) E A}. If Cmin < 0, add
\ Cmin I to the length each arc in the network so that they all become nonnegative. Then
use Dijkstra's algorithm to solve the shortest path problem. Professor Wright claims
that the optimal solution of the transformed problem is also an optimal solution of the
original problem. Prove or disprove her claim.

5.22. Describe algorithms for updating the shortest path distances from node s to every other
node if we add a new node (n + 1) and some arcs incident to this node. Consider the
following three cases: (1) all arc lengths are nonnegative and node (n + 1) has only
incoming arcs; (2) all arc lengths are nonnegative and node (n + 1) has incoming as
well as outgoing arcs; and (3) arc lengths are arbitrary, but node (n + 1) has only
incoming arcs. Specify the time required for the reoptimization.

5.23. Maximum mnltiplier path problem. The maximum multiplier path problem is an exten
sion of the maximum reliability path problem that we discussed in Exercise 4.39, ob
tained by permitting the constants fLij to be arbitrary positive numbers. Suppose that
we are not allowed to use logarithms. State optimality conditions for the maximum
multiplier path problem and show that if the network contains a positive mUltiplier
directed cycle, no path can satisfy the optimality conditions. Specify an O(nm) algo
rithm for solving the maximum multiplier path problem for networks that contain no
positive mUltiplier directed cycles.

5.24. Sharp distance labels. The generic label-correcting algorithm maintains a predecessor
graph at every step. We say that a distance label d(i) is sharp if it equals the length of
the unique path from node s to node i in the predecessor graph. We refer to an algorithm
as sharp if every node examined by the algorithm has a sharp distance label. (A sharp
algorithm might have nodes with nonsharp distances, but the algorithm never examines
them.)
(a) Show by an example that the FIFO implementation of the generic label-correcting

algorithm is not a sharp algorithm.
(b) Show that the dequeue implementation of the generic label correcting is a sharp

algorithm. (Hint: Perform induction on the number of nodes the algorithm exam
ines. Use the fact that the distance label of a node becomes nonsharp only when
the distance label of one of its ancestors in the predecessor graph decreases.)

5.25. Partitioning algorithm (Glover, Klingman, and Phillips [1985]). The partitioning al
gorithm is a special case of the generic label-correcting algorithm which divides
the set LIST of nodes into two subsets: NOW and NEXT. Initially, NOW = {s} and
NEXT = 0. When examining nodes, the algorithm selects any node i in NOW and

160 Shortest Paths: Label-Correcting Algorithms Chap. 5

adds to NEXT any node whose distance label decreases, provided that the node is not
already in NOW or NEXT. When NOW becomes empty, the algorithm transfers all
the nodes from NEXT to NOW. The algorithm terminates when both NOW and
NEXT become empty.
(a) Show that the FIFO label-correcting algorithm is a special case of the partitioning

algorithm. (Hint: Specify rules for selecting the nodes in NOW, adding nodes to
NEXT, and transferring nodes from NEXT to NOW.) ~

(b) Show that the partitioning algorithm runs in O(nm) time. (Hint: Call the steps
between two consecutive replenishments of NOW a phase. Extend the proof of
the FIFO label-correcting algorithm to show that at the end of the kth phase, the
algorithm determines optimal distances for all nodes whose shortest paths have no
more than k arcs.)

5.26. Threshold algorithm (Glover, Klingman, and Phillips [1985]). The threshold algorithm
is a variation of the partitioning algorithm discussed in Exercise 5.25. When NOW
becomes empty, the threshold algorithm does not transfer all the nodes from NEXT
to NOW; instead, it transfers only those nodes i for which d(i) ~ t for some threshold
value t. At each iteration, the algorithm choses the threshold value t to be at least as
large as the minimum distance label in NEXT (before the transfer), so it transfers all
those nodes with the minimum distance label, and possibly other nodes as well, from
NEXT to NOW. (Note that we have considerable flexibility in choosing t at each step.)
(a) Show that if all arc lengths are nonnegative, the threshold algorithm runs in O(nm)

time. (Hint: Use the proof of Dijkstra's algorithm.)
(b) Show that if all arc lengths are nonnegative and the threshold algorithm transfers

at most five nodes from NEXT to NOW at each step, including a node with the
minimum distance label, then it runs in O(n 2

) time.
5.27. Pathological instances of the label-correcting algorithm (Pallottino [1991]). We noted in

Section 5.4 that the dequeue implementation of the generic label-correcting algorithm
has excellent empirical behavior. However, for some problem instances, the algorithm
performs an exponential number of iterations. In this exercise we describe a method
for constructing one such pathological instance for every n. Let G = (N, A) be an
acyclic graph with n nodes and an arc (i, j) for every node pair i and j satisfying i >
j. Let node n be the source node. We define the cost of each arc (i, j) as Cij = 2i

-
2 -

2j
-

1
;::: O. Assume that the adjacency list of each node i E N - {n} is arranged in

decreasing order of the head nodes and the adjacency list of the source node n is
arranged in the increasing order of the head nodes.
(a) Verify that for n = 6, the method generates the instance shown in Figure 5.12.
(b) Consider the instance shown in Figure 5.12. Show that every time the dequeue

implementation examines any node (other than node 1), it updates the distance
label of node 1. Show that the label of node 1 assumes all values between 15 and
O.

Figure 5.12 Pathological example of the label-correcting algorithm.

5.28. Using induction arguments, show that for an instance with n nodes constructed using
the method described in Exercise 5.27, the dequeue implementation of the label-

Chap. 5 Exercises 161

correcting algorithm assigns to node 1 all labels between 2n
-

2 - 1 to 0 and therefore
runs in exponential time.

5.29. Apply the first three iterations (i.e., k = 1, 2, 3) of the Floyd-Warshall algorithm to
the all-pairs shortest path problems shown in Figure 5.13(a). List four triplets (i, j, k)
that violate the all-pairs shortest path optimality conditions at the conclusion of these
iterations.

4

10

3

5 5

6
(a) (b)

Figure 5.13 Example for Exercises 5.29 to 5.31. \"

5.30. Solve the all-pairs shortest path problem shown in Figure 5.13(b).
5.31. Consider the shortest path problem shown in Figure 5. 13 (b) , except with C31 equal to

3. What is the least number of triple operations required in the Floyd-Warshall algo
rithm before the node pair distances dk[i,j] satisfy one of the negative cycle detection
conditions?

5.32. Show that if a network contains a negative cycle, the generic all-pairs label-correcting
algorithm will never terminate.

5.33. Suppose that the Floyd-Warshall algorithm terminates after detecting the presence of
a negative cycle. At this time, how would you detect a negative cycle using the pre
decessor indices?

5.34. In an all-pairs shortest path problem, suppose that several shortest paths connect node
i and nodej. If we use the Floyd-Warshall algorithm to solve this problem, which path
will the algorithm choose? Will this path be the one with the least number of arcs?

5.35. Consider the maximum capacity path problem defined in Exercise 4.37. Modify the
Floyd-Warshall algorithm so that it finds maximum capacity paths between all pairs
of nodes.

5.36. Modify the Floyd-Warshall all-pairs shortest path algorithm so that it determines max
imum multiplier paths between all pairs of nodes.

5.37. Show that if we use the Floyd-Warshall algorithm to solve the all-pairs shortest path
problem in a network containing a negative cycle, then at some stage dk[i, i] < 0 for
some node i. [Hint: Let i be the least indexed node satisfying the property that the
network contains a negative cycle using only nodes 1 through i (not necessarily all of
these nodes).]

5.38. Suppose that a network G contains no negative cycle. Let dn + I(i, j) denote the node
pair distances at the end of the Floyd-Warshall algorithm. Show that min{dn+l[i, i] :
1 ::s; i::s; n} is the minimum length of a directed cycle in G.

5.39. In this exercise we discuss another dynamic programming algorithm for solving the all
pairs shortest path problem. Let dt denote the length of a shortest path from node i
to nodej subject to the condition that the path contains no more than k arcs. Express
dt in terms of dt- I and the cijs and suggest an all-pairs shortest path algorithm that
uses this relationship. Analyze the running time of your algorithm.

162 Shortest Paths: Label-Correcting Algorithms Chap. 5

5.40. Sensitivity analysis. Let dij denote the shortest path distances between the pair [i, j] of
nodes in a directed network G = (N, A) with arc lengths cij' Suppose that the length
of one arc (p, q) changes to value C~q < cpqo Show that the following set of statements
finds the modified all-pairs shortest path distances:

if dqp + cpq < 0, then the network has a negative cycle
else

for each pair [i, 11 of nodes do
d1j : = min {dij, diP + Cpq + dqj};

5.41. In Exercise 5.40 we described an O(n 2
) method for updating shortest path distances

between all-pairs of nodes when we decrease the length of one arc (p, q). Suppose that
we increase the length of the arc (p, q). Can you modify the method so that it reoptimizes
the shortest path distances in O(n2

) time? If your answer is yes, specify an algorithm
for performing the reoptimization and provide a justification for it; and if your answer
is no, outline the difficulties encountered.

5.42. Arc addition. After solving an all-pairs shortest path problem, you realize that you
omitted five arcs from the network G. Can you reoptimize the shortest path distances
with the addition of these arcs in O(n2

) time? (Hint: Reduce this problem to the one
in Exercise 5.40.)

5.43. Consider the reallocation of housing problem that we discussed in Application 1.1.
(a) The housing authority prefers to use short cyclic changes since they are easier to

handle administratively. Suggest a method for identifying a cyclic change involving
the least number of changes. (Hint: Use the result of one of the preceding exercises.)

(b) Suppose that the person presently residing in a house of category i desperately
wants to move to his choice category and that the chair of the housing authority
wants to help him. Can the chair identify a cyclic change that allocates the person
to his choice category or prove that no such change is possible? (Hint: Use the
result of one of the preceding exercises.)

5.44. Let G = (N, A) denote the road network of the greater Boston area. Four people living
in the suburbs form a car pool. They drive in separate cars to a common meeting point
and drive from there in a van to a common point in downtown Boston. Suggest a method
for identifying the common meeting point that minimizes the total driving time of all
the participants. Also, suggest a method for identifying the common meeting point that
minimizes the maximum travel time of anyone person.

5.45. Location problems. In a directed G = (N, A) with arc lengths cij, we define the distance
between a pair of nodes i and j as the length of the shortest path from node i to node
j.
(a) Define the radial distance from node i as the length of the distance from node i to

the node farthest from it. We say that a node p is a center of the graph G if node
p has as small a radial distance as any node in the network. Suggest a straightforward
polynomial-time algorithm for identifying a center of G.

(b) Define the star distance of node i as the total distance from node i to all the nodes
in the network. We refer to a node q as a median of G if node q has as small a star
distance as any node in the network. Suggest a straightforward polynomial-time
algorithm for identifying a median of G.

5.46. Suppose that a network G = (N, A) contains no negative cycle. In this network, let
fij denote the maximum amount we can decrease the length of arc (i, j) without creating
any negative cycle, assuming that all other arc lengths remain intact. Design an efficient
algorithm for determining fu for each arc (i, j) EA. (Hint: Use the all-pairs shortest
path distances.)

5.47. Consider the following linear programming formulation' of the minimum cost-to-time
ratio cycle problem:

Chap. 5 Exercises 163

subject to

Minimize z = 2: cijxij
(i,j)EA

2: Xij - 2: Xji = 0
(j: (i,j)EA) {j: (j, i)EA)

2: 'rijXij = 1,
U,j)EA

for all i E N,

for all (i, j) E A.

(S.12a)

(S.12b)

(S.12c)

(S.12d)

Show that each directed cycle in G defines a feasible solution of (S.12) and that each
feasible solution of (S .12) defines a set of one or more directed cycles with the same
ratio. Use this result to show that we can obtain an optimal solution of the minimum
cost-to-time ratio problem from an optimal solution of the linear program (S.12).

5.48. Obtain a worst-case bound on the number of iterations performed by the sequential
search algorithm discussed in Section S.7 to solve the minimum cost-to-time ratio cycle
problem.

5.49. In Section S.7 we saw how to solve the minimum cost-to-time ratio cycle problem
efficiently. This development might lead us to believe that we could also determine
efficiently a minimum ratio directed path between two designate<tnodes sand t (i.e.,
a path P for which (2:(i,j)EP Cij)/(2:(i,j)EP 'rij) is minimum). This assertion is not valid.
Outline the difficulties you would encounter in adapting the algorithm so that it would
solve the minimum ratio path problem.

5.50. Use the minimum mean cycle algorithm to identify the minimum mean cycle in Figure
S.13(b).

5.51. Bit-scaling algorithm (Gabow [198S]). The bit-scaling algorithm for solving the shortest
path problem works as follows. Let K = rlog Cl. We represent each arc length as a
K-bit binary number, adding leading zeros if necessary to make each arc length K bits
long. The problem Pk considers the length of each arc as the k leading bits (see Section
3.3). Let dt denote the shortest path distances in problem Pk • The bit-scaling algorithm
solves a sequence of problems PI. P2 , ••• , Pk> using the solution of problem Pk - I as
the starting solution of problem Pk •

(a) Consider problem Pk and define reduced arc lengths with respect to the distances
2dt-I' Show that the network contains a path from the source node to every other
node whose reduced length is at most n. (Hint: Consider the shortest path tree of
problem Pk - I .)

(b) Show how to solve each problem Pk in O(m) time. Use this result to show that the
bit-scaling algorithm runs in O(m log C) time.

5.52. Modified bit-scaling algorithm. Consider Exercise S.S1 but using a base 13 representation
of arc cost Cij in place of the binary representation. In problem Pk we use the k leading
base 13 digits of the arc lengths as the lengths of the arcs. Let dt_1 denote the shortest
path distances in Problem Pk - I •

(a) Show that if we define reduced arc lengths in problem Pk with respect to the dis
tances I3dt-I' the network contains a path from the source to every other node
whose reduced length is at most 13 n.

(b) Show how to solve each problem Pk in O(m + I3n) time and, consequently, show
that the modified bit-scaling algorithm runs in O«m + I3n) 10g13 C) time. What value
of 13 achieves the least running time?

5.53. Parametric shortest path problem. In the parametric shortest path problem, the cost Cij

of each arc (i, j) is a linear function of a parameter A. (i.e., Cij = clj + A.ct) and we
want to obtain a tree of shortest paths for all values of A. from 0 to + 00. Let Th denote
a tree of shortest paths for a specific value of A..

164

(a) Consider Th for some A.. Show that if d°(j) and d*(j) are the distances in Th with
respect to the arc lengths cij and ct, respectively, then d°(j) + A.d*(j) are the

Shortest Paths: Label-Correcting Algorithms Chap. 5

distances with respect to the arc lengths cij + >..cij in T~. Use this result to describe
a method for determining the largest value of >.., say>.., for which Th is a shortest
path tree for all >.., 1 :5 >.. :5 };:. Show that at >.. = };:, the network contains an alternative
shortest path tree. (Hint: Use the shortest path optimality conditions.)

(b) Describe an algorithm for determining Th for all 0 :5 >.. :5 00. Show that 1 is shortest
path tree with the arc lengths as cij.

5.54. Consider a special case of the parametric shortest path problem in which each cij = 0
or 1. Show that as we vary>.. from 0 to +00, we obtain at most n2 trees of shortest
paths. How many trees of shortest paths do you think we can obtain for the general
case? Is it polynomial or exponential? [Hint: Let f(j) denote the number of arcs with
cij = 1 in the tree of shortest paths from node s to node j. Consider the effect on the
potential function <I> = kEN f(j) of the changes in the tree of shortest paths.]

5.55. Let dk(j) denote the length of the shortest path from node s to node j using at most k
arcs in a network G. Suppose that dk(j) are available for all nodes j E N and all k =
1, ... ,n. Show how to determine a minimum mean cycle in G. (Hint: Use some result
contained in Theorem 5.8.)

5.56. Show that if the predecessor graph at any point in the execution of the label-correcting
algorithm contains a directed cycle, then the network contains a negative cycle.

Chap. 5 Exercises 165

6

MAXIMUM FLOWS: BASIC IDEAS

Chapter Outline

6.1 Introduction
6.2 Applications
6.3 Flows and Cuts

You get the maxxfor the minimum at T. J. Maxx.*
-Advertisement for a clothing store.

6.4 Generic Augmenting Path Algorithm
6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem
6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem
6.7 Flows with Lower Bounds
6.8 Summary

6.1 INTRODUCTION

The maximum flow problem and the shortest path problem are complementary. They
are similar because they are both pervasive in practice and because they both arise
as subproblems in algorithms for the minimum cost flow problem. The two problems
differ, however, because they capture different aspects of the minimum cost flow
problem: Shortest path problems model arc costs but not arc capacities; maximum
flow problems model capacities but not costs. Taken together, the shortest path
problem and the maximum flow problem combine all the basic ingredients of network
flows. As such, they have become the nuclei of network optimization. Our study of
the shortest path problem in the preceding two chapters has introduced us to some
of the basic building blocks of network optimization, such as distance labels, opti
mality conditions, and some core strategies for designing iterative solution methods
and for improving the performance of these methods. Our discussion of maximum
flows, which we begin in this chapter, builds on these ideas and introduces several
other key ideas that reoccur often in the study of network flows.

The maximum flow problem is very easy to state: In a capacitated network,
we wish to send as much flow as possible between two special nodes, a source node
s and a sink node t, without exceeding the capacity of any arc. In this and the
following two chapters, we discuss a number of algorithms for solving the maximum
flow problem. These algorithms are of two types:

* © The TJX Operating Companies, Inc. 1985. Get the Maxx for the Minimum® and T. J. Maxx
are registered trademarks of the TJX Operating Companies, Inc.

166

1. Augmenting path algorithms that maintain mass balance constraints at every
node of the network other than the source and sink nodes. These algorithms
incrementally augment flow along paths from the source node to the sink node.

2. Preflow-push algorithms that flood the network so that some nodes have ex
cesses (or buildup of flow). These algorithms incrementally relieve flow from
nodes with excesses by sending flow from the node forward toward the sink
node or backward toward the source node.

We discuss the simplest version of the first type of algorithm in this chapter
and more elaborate algorithms of both types in Chapter 7. To help us to understand
the importance of the maximum flow problem, we begin by describing several ap
plications. This discussion shows how maximum flow problems arise in settings as
diverse as manufacturing, communication systems, distribution planning, matrix
rounding, and scheduling.

We begin our algorithmic discussion by considering a generic augmenting path
algorithm for solving the maximum flow problem and describing an important special
implementation of the generic approach, known as the labeling algorithm. The la
beling algorithm is a pseudopolynomial-time algorithm. In Chapter 7 we develop
improved versions of this generic approach with better theoretical behavior. The
correctness of these algorithms rests on the renowned max-flow min-cut theorem of
network flows (recall from Section 2.2 that a cut is a set of arcs whose deletion
disconnects the network into two parts). This central theorem in the study of network
flows (indeed, perhaps the most significant theorem in this problem domain) not only
provides us with an instrument for analyzing algorithms, but also permits us to model
a variety of applications in machine and vehicle scheduling, communication systems
planning, and several other settings, as maximum flow problems, even though on
the surface these problems do not appear to have a network flow structure. In Section
6.6 we describe several such applications.

The max-flow min-cut theorem establishes an important correspondence be
tween flows and cuts in networks. Indeed, as we will see, by solving a maximum
flow problem, we also solve a complementary minimum cut problem: From among
all cuts in the network that separate the source and sink nodes, find the cut with
the minimum capacity. The relationship between maximum flows and minimum cuts
is important for several reasons. First, it embodies a fundamental duality result that
arises in many problem settings in discrete mathematics and that underlies linear
programming as well as mathematical optimization in general. In fact, the max-flow
min-cut theorem, which shows the equivalence between the maximum flow and
minimum cut problems, is a special case of the well-known strong duality theorem
of linear programming. The fact that maximum flow problems and minimum cut
problems are equivalent has practical implications as well. It means that the theory
and algorithms that we develop for the maximum flow problem are also applicable
to many practical problems that are naturally cast as minimum cut problems. Our
discussion of combinatorial applications in the text and exercises of this chapter and
our discussion of applications in Chapter 19 features several applications of this
nature.

Sec. 6.1 Introduction 167

Notatioll-. and Assumptions

We consider a capacitated network G = (N, A) with a nonnegative capacity uij
associated with each arc (i,j) EA. Let V = max{uij:(i,j) E A}. As before, the arc
adjacency list A(i) = {(i, k):(i, k) E A} contains all the arcs emanating from node
i. To define the maximum flow problem, we distinguish two special nodes in the
network G: a source node s and a sink node t. We wish to find the maximum flow
from the source node s to the sink node t that satisfies ,!he arc capacities and mass
balance constraints at all nodes. We can state the problem formally as follows.

Maximize v

subject to

~ Xij - ~ Xji =
{j:(i,j)EA} {j:(j.i)EA}

for i = s,
for all i E N - {s and t}
for i = t

for each (i, j) E A.

(6.1a)

(6.1b)

(6.1c)

We refer to a vector x = {Xij} satisfying (6.1b) and (6.1c) as a flow and the
corresponding value of the scalar variable v as the value of the flow . We consider
the maximum flow problem subject to the following assumptions.

Assumption 6.1. The network is directed.

As explained in Section 2.4, we can always fulfill this assumption by trans
forming any undirected network into a directed network.

Assumption 6.2. All capacities are nonnegative integers.

Although it is possible to relax the integrality assumption on arc capacities for
some algorithms, this assumption is necessary for others. Algorithms whose com
plexity bounds involve V assume integrality of the data. In reality, the integrality
assumption is not a restrictive assumption because all modem computers store ca
pacities as rational numbers and we can always transform rational numbers to integer
numbers by multiplying them by a suitably large number.

Assumption 6.3. The network does not contain a directed path from node s
to node t composed only of infinite capacity arcs.

Whenever every arc on a directed path P from s to t has infinite capacity, we
can send an infinite amount of flow along this path, and therefore the maximum flow
value is unbounded. Notice that we can detect the presence of an infinite capacity
path using the search algorithm described in Section 3.4.

Assumption 6.4. Whenever an arc (i, j) belongs to A, arc (j, i) also belongs
toA.

This assumption is nonrestrictive because we allow arcs with zero capacity.

168 Maximum Flows: Basic Ideas Chap. 6

Assumption 6.5. The network does not contain parallel arcs (i.e., two or more
arcs with the same tail and head nodes).

This assumption is essentially a notational convenience. In Exercise 6.24 we
ask the reader to show that this assumption imposes no loss of generality.

Before considering the theory underlying the maximum flow problem and al
gorithms for solving it, and to provide some background and motivation for studying
the problem, we first describe some applications.

6.2 APPLICATIONS

The maximum flow problem, and the minimum cut problem, arise in a wide variety
of situations and in several forms. For example, sometimes the maximum flow prob
lem occurs as a subproblem in the solution of more difficult network problems, such
as the minimum cost flow problem or the generalized flow problem. As we will see
in Section 6.6, the maximum flow problem also arises in a number of combinatorial
applications that on the surface might not appear to be maximum flow problems at
all. The problem also arises directly in problems as far reaching as machine sched
uling, the assignment of computer modules to computer processors, the rounding of
census data to retain the confidentiality of individual households, and tanker sched
uling. In this section we describe a few such applications; in Chapter 19 we discuss
several other applications.

Application 6.1 Feasible Flow Problem

The feasible flow problem requires that we identify a flow x in a network G ""
(N, A) satisfying the following constraints:

~ Xij - ~ Xji "" b(i) for i EN, (6.2a)
{j:(i,j)EA} {j:(j,i)EA}

for all (i, j) EA.> (6.2b)

As before, we assume that ~iEN b(i) "" 0. The following distribution scenario il
lustrates how the feasible flow problem arises in practice. Suppose that merchandise
is available at some seaports and is desired by other ports. We know the stock of
merchandise available at the ports, the amount required at the other ports, and the
maximum quantity of merchandise that can be shipped on a particular sea route.
We wish to know whether we can satisfy all of the demands by using the available
supplies.

We can solve the feasible flow problem by solving a maximum flow problem
defined on an augmented network as follows. We introduce two new nodes, a source
node s and a sink node t. For each node i with b(i) > 0, we add an arc (s, i) with
capacity b(i), and for each node i with b(i) < 0, we add an arc (i, t) with capacity
- b(i). We refer to the new network as the transformed network. Then we solve a
maximum flow problem from node s to node t in the transformed network. If the
maximum flow saturates all the source and sink arcs, problem (6.2) has a feasible
solution; otherwise, it is infeasible. (In Section 6.7 we give necessary and sufficient
conditions for a feasible flow problem to have a feasible solution.)

It is easy to verify why this algorithm works. If x is a flow satisfying (6.2a)

Sec. 6.2 Applications 169

and (6.2b), the same flow with Xsi = b(i) for each source arc (s, i) and Xit == -b(i)
for each sink arc (i, t) is a maximum flow in the transformed network (since it
saturates all the source and the sink arcs). Similarly, if x is a maximum flow in the
transformed network that saturates all the source and the sink arcs, this flow in the
original network satisfies (6.2a) and (6.2b). Therefore, the original network contains
a feasible flow if and only if the transformed network contains a flow that saturates
all the source and sink arcs. This observation shows how the maximum flow problem
arises whenever we need to find a feasible solution in a network.

Application 6.2 Problem of Representatives

A town has r residents R I , R2 , ••• , Rr; q clubs CI , C2 , ••• , Cq ; and p political
parties PI, P2 , ••• , Pp • Each resident is a member of at least one club and can
belong to exactly one political party. Each club must nominate one of its members
to represent it on the town's governing council so that the number of council members
belonging to the political party Pk is at most Uk. Is it possible to find a council that
satisfies this "balancing" property?

We illustrate this formulation with an example. We consider a problem with
r == 7, q == 4, p == 3, and formulate it as a maximum flow problem in Figure 6.1.
The nodes R I , R2 , ••• , R7 represent the residents, the nodes CI , C2 , ••• , C4

represent the clubs, and the nodes PI, P 2 , ••• ,P3 represent the political parties.

170

Figure 6.1 System of distinct
representatives.

Maximum Flows: Basic Ideas Chap. 6

The network also contains a source node s and a sink node t. It contains an arc (s,

C) for each node Ci denoting a club, an arc (Ci , R.i) whenever the resident Rj is a
member of the club Ci , and an arc (Rj , P k) if the resident Rj belongs to the political
party Pk • Finally, we add an arc (Pk , t) for each k = 1, ... , 3 of capacity Uk; all
other arcs have unit capacity.

We next find a maximum flow in this network. If the maximum flow value
equals q, the town has a balanced council; otherwise, it does not. The proof of this
assertion is easy to establish by showing that (1) any flow of value q in the network
corresponds to a balanced council, and that (2) any balanced council implies a flow
of value q in the network.

This type of model has applications in several resource assignment settings.
For example, suppose that the residents are skilled craftsmen, the club Ci is the set
of craftsmen with a particular skill, and the political party Pk corresponds to a par
ticular seniori~y class. In this instance, a balanced town council corresponds to an
assignment of craftsmen to a union governing board so that every skill class has
representation on the board and no seniority class has a dominant representation.

Application 6.8 Matrix Rounding Problem

This application is concerned with consistent rounding of the elements, row sums,
and column sums of a matrix. We are given a p x q matrix of real numbers D =

{do}, with row sums CXi and column sums !3j. We can round any real number a to the
next smaller integer l a J or to the next larger integer r a 1 , and the decision to round
up or down is entirely up to us. The matrix rounding problem requires that we round
the matrix elements, and the row and column sums of the matrix so that the sum of
the rounded elements in each row equals the rounded row sum and the sum of the
rounded elements in each column equals the rounded column sum. Wf? refer to such
a rounding as a consistent rounding.

We shall show how we can discover such a rounding scheme, if it exists, by
solving a feasible flow problem for a network with nonnegatiVe lower bounds on arc
flows. (As shown in Section 6.7, we can solve this problem by solving two maximum
flow problems with zero lower bounds on arc flows.) We illustrate our method using
the matrix rounding problem shown in Figure 6.2. Figure 6.3 shows the maximum
flow network for this problem. This network contains a node i corresponding to each
row i and a node j' corresponding to each column j. Observe that this network

Row sum

3.1 6.8 7.3 17.2

9.6 2.4 0.7 12.7

3.6 1.2 6.5 11.3

Column sum 16.3 10.4 14.5

Figure 6.2 Matrix rounding problem.

Sec. 6.2 Applications 171

Figure 6.3 Network for the matrix
rounding problem.

contains an arc (i, j') for each matrix element dij, an arc (s, i) for each row sum,
and an arc (j', t) for each column sum. The lower and the upper bounds of each
arc (i, j') are ldijJ and r dijl, respectively. It is easy to establish a one-to-one cor
respondence between the consistent roundings of the matrix and feasible flows in
the corresponding network. Consequently, we can find a consistent rounding by
solving a maximum flow problem on the corresponding network.

This matrix rounding problem arises in several application contexts. For ex
ample, the U.S. Census Bureau uses census information to construct millions of
tables for a wide variety of purposes. By law, the bureau has an obligation to protect
the source of its information and not disclose statistics that could be attributed to
any particular person. We might disguise the information in a table as follows. We
round off each entry in the table, including the row and column sums, either up or
down to a multiple of a constant k (for some suitable value of k), so that the entries
in the table continue to add to the (rounded) row and column sums, and the overall
sum of the entries in the new table adds to a rounded version of the overall sums
in the original table. This Census Bureau problem is the same as the matrix rounding
problem discussed earlier except that we need to round each element to a multiple
of k ;::: 1 instead of rounding it to a multiple of 1. We solve this problem by defining
the associated network as before, but now defining the lower and upper bounds for
any arc with an associated real number a as the greatest multiple of k less than or
equal to a and the smallest multiple of k greater than or equal to a.

Application 6.4 Scheduling on Uniform Parallel
Machines

In this application we consider the problem of scheduling of a set J of jobs on M
uniform parallel machines. Each job j E J has a processing requirement Pj (denoting
the number of machine days required to complete the job), a release date rj (rep
resenting the beginning of the day whenjobj becomes available for processing), and
a due date dj ;::: rj + pj (representing the beginning of the day by which the job must
be completed). We assume that a machine can work on only one job at a time and
that each job can be processed by at most one machine at a time. However, we

172 Maximum Flows: Basic Ideas Chap. 6

allow preemptions (i.e., we can interrupt ajob and process it on different machines
on different days). The scheduling problem is to determine a feasible schedule that
completes all jobs before their due dates or to show that no such schedule exists.

Scheduling problems like this arise in batch processing systems involving
batches with a large number of units. The feasible scheduling problem, described
in the preceding paragraph, is a fundamental problem in this situation and can be
used as a subroutine for more general scheduling problems, such as the maximum
lateness problem, the (weighted) minimum completion time problem, and the
(weighted) maximum utilization problem.

Let us formulate the feasible scheduling problem as a maximum flow problem.
We illustrate the formulation using the scheduling problem described in Figure 6.4
with M = 3 machines. First, we rank all the release and due dates, rj and dj for all
j, in ascending order and determine P :::; 2 I J I - 1 mutually disjoint intervals of
dates between consecutive milestones. Let Tk,[denote the interval that starts at the
beginning of date k and ends at the beginning of date 1 + 1. For our example, this
order of release and due dates is 1,3,4,5,7,9. We have five intervals, represented
by T1,2, T3•3 , T4 ,4, T5•6 , and T7 ,8' Notice that within each interval Tk ,[, the set of
available jobs (i.e., those released but not yet due) does not change: we can process
all jobs j with rj :::; k and dj ;::: 1 + 1 in the interval.

Job (j) 1 2 3 4

Processing time (pj) 1.5 1.25 2.1 3.6

Release time (rj) 3 1 3 5

Due date (dj) 5 4 7 9

Figure 6.4 Scheduling problem.

We formulate the scheduling problem as a maximum flow problem on a bipartite
network G as follows. We introduce a source node s, a sink node t, a node corre
sponding to eachjobj, and a node corresponding to each interval h,[, as shown in
Figure 6.5. We connect the source node to every job node j with an arc with capacity
Pj, indicating that we need to assign Pj days of machine time to job j. We connect
each interval node h,[to the sink node t by an arc with capacity (l - k + I)M,
representing the total number of machine days available on the days from k to I.
Finally, we connect ajob nodej to every interval node h,[if rj :::; k and dj ;::: 1 + 1
by an arc with capacity (I - k + 1) which represents the maximum number of
machines days we can allot to job j on the days from k to I. We next solve a maximum
flow problem on this network: The scheduling problem has a feasible schedule if
and only if the maximum flow value equals ~EJ pj [alternatively, the flow on every
arc (s, j) is Pj]. The validity of this formulation is easy to establish by showing a
one-to-one correspondence between feasible schedules and flows of value ~EJ Pj
from the source to the sink.

Sec. 6.2 Applications 173

Figure 6.5 Network for scheduling
uniform parallel machines.

Application 6.5 Distributed Computing on a
Two-Processor Computer

This application concerns assigning different modules (subroutines) of a program to
two processors in a way that minimizes the collective costs of interprocessor com
munication and computation. We consider a computer system with two processors;
they need not be identical. We wish to execute a large program on this computer
system. Each program contains several modules that interact with each other during
the program's execution. The cost of executing each module on the two processes
is known in advance and might vary from one processor to the other because of
differences in the processors' memory, control, speed, and arithmetic capabilities.
Let Ui and f3i denote the cost of computation of module i on processors 1 and 2,
respectively. Assigning different modules to different processors incurs relatively
high overhead costs due to interprocessor communication. Let cij denote the inter
processor communication cost if modules i andj are assigned to different processors;
we do not incur this cost if we assign modules i and j to the same processor. The
cost structure might suggest that we allocate two jobs to different processors-we
need to balance this cost against the communication costs that we incur by allocating
the jobs to different processors. Therefore, we wish to allocate modules of the pro
gram on the two processors so that we minimize the total cost of processing and
interprocessor communication.

We formulate this problem as a minimum cut problem on an undirected network
as follows. We define a source node s representing processor 1, a sink node t rep
resenting processor 2, and a node for every module of the program. For every node
i, other than the source and sink nodes, we include an arc (s, i) of capacity f3i and
an arc (i, t) of capacity Ui. Finally, if module i interacts with module j during program
execution, we include the arc (i, j) with a capacity equal to Cij' Figures 6.6 and 6.7
give an example of this construction. Figure 6.6 gives the data for this problem, and
Figure 6.7 gives the corresponding network.

We now observe a one-to-one correspondence between s-t cuts in the network

174 Maximum Flows: Basic Ideas Chap. 6

i 1 2

rti 6 5

J3i 4 10

(a)

2

0 5

{Cij} = 2 5 0

3 0 6

4 0 2

(b)

Processor 1

3

10

3

3

0

6

0

1

4

4

8

4

0

2

1

0

Program
modules

Figure 6.6 Data for the distributed
computing model.

,

Processor 2

Figure 6.7 Network for the distributed computing model.

and assignments of modules to the two processors; moreover, the capacity of a cut
equals the cost of the corresponding assignment. To establish this result, let AI and
A2 be an assignment of modules to processors 1 and 2, respectively. The cost of this
assignment is LiEAI a; + LiEA213i + LUJ)EAIXA2 Cij' The s-t cut corresponding to
this assignment is ({s} U At. {t} U A2)' The approach we used to construct the
network implies that this cut contains an arc (i, t) for every i E AI of capacity ai,
an arc (s, i) for every i E A2 of capacity 13;, and all arcs (i, j) with i E A I and j E
A2 with capacity Cij' The cost of the assignment Al and A2 equals the capacity of
the cut ({s} U At. {t} U A2)' (We suggest that readers verify this conclusion using

Sec. 6.2 Applications 175

the example given in Figure 6.7 with Al = {I, 2} and A2 = {3, 4}.) Consequently,
the minimum s-t cut in the network gives the minimum cost assignment of the
modules to the two processors.

Application 6.6 Tanker Scheduling Problem

A steamship company has contracted to deliver perishable goods between several
different origin-destination pairs. Since the cargo is perishable, the customers have
specified precise dates (i.e., delivery dates) when the shipments must reach their
destinations. (The cargoes may not arrive early or late.) The steamship company
wants to determine the minimum number of ships needed to meet the delivery dates
of the shiploads.

To illustrate a modeling approach for this problem, we consider an example
with four shipments; each shipment is a full shipload with the characteristics shown
in Figure 6.8(a). For example, as specified by the first row in this figure, the company
must deliver one shipload available at port A and destined for port C on day 3. Figure
6.8(b) and (c) show the transit times for the shipments (including allowances for
loading and unloading the ships) and the return times (without a cargo) between the
ports.

Ship- Desti- Delivery
ment Origin nation date

1

2

3

4

PortA Port e
PortA Port e
Port B PortD

Port B Port e
(a)

3

8

3

6

e DAB

Am eGLJ
BGLJ DGQ

(b) (c)

Figure 6.S Data for the tanker
scheduling problem: (a) shipment
characteristics; (b) shipment transit
times; (c) return times.

We solve this problem by constructing a network shown in Figure 6.9(a). This
network contains a node for each shipment and an arc from node i to node j if it is
possible to deliver shipmentj after completing shipment i; that is, the start time of
shipmentj is no earlier than the delivery time of shipment i plus the travel time from
the destination of shipment i to the origin of shipment j. A directed path in this
network corresponds to a feasible sequence of shipment pickups and deliveries. The
tanker scheduling problem requires that we identify the minimum number of directed
paths that will contain each node in the network on exactly one path.

We can transform this problem to the framework of the maximum flow problem
as follows. We split each node i into two nodes if and i" and add the arc (if, i"). We
set the lower bound on each arc (if, i"), called the shipment arc, equal to I so that
at least one unit of flow passes through this arc. We also add a source node sand
connect it to the origin of each shipment (to represent putting a ship into service),

176 Maximum Flows: Basic Ideas Chap. 6

(a)

/

Shipment 1
~~~j; •.•.•.•.•.•.•.•.•.•.•................... 

/ --
/ --

~~:~------------
" " 3 

Shipment 2 

(b) 

Figure 6.9 Network formulation of the tanker scheduling problem: (a) network offeasible 
sequences of two consecutive shipments; (b) maximum flow model. 

and we add a sink node t and connect each destination node to it (to represent taking 
a ship out of service). We set the capacity of each arc in the network to value 1. 
Figure 6.9(b) shows the resulting network for our example. In this network, each 
directed path from the source s to the sink t corresponds to a feasible schedule for 
a single ship. As a result, a feasible flow of value v in this network decomposes into 
schedules of v ships and our problem reduces to identifying a feasible flow of min
imum value. We note that the zero flow is not feasible because shipment arcs have 
unit lower bounds. We can solve this problem, which is known as the minimum 
value problem, using any maximum flow algorithm (see Exercise 6.18). 

6.8 FLOWS AND CUTS 

In this section we discuss some elementary properties of flows and cuts. We use 
these properties to prove the max-flow min-cut theorem to establish tKe correctness 
of the generic augmenting path algorithm. We first review some of our previous 
notation and introduce a few new ideas. 

Residual network. The concept of residual network plays a central role in 
the development of all the maximum flow algorithms we consider. Earlier in Section 
2.4 we defined residual networks and discussed several of its properties. Given a 
flow x, the residual capacity rij of any arc (i, j) E A is the maximum additional flow 
that can be sent from node i to node j using the arcs (i, j) and (j, 0. [Recall our 
assumption from Section 6.1 that whenever the network contains arc (i, j), it also 
contains arc (j, i).] The residual capacity rij has two components: (1) Uij - Xij, the 
unused capacity of arc (i, j), and (2) the current flow Xji on arc (j, i), which we can 
cancel to increase the flow from node i to node j. Consequently, rij = Uij - Xij + 
Xji. We refer to the network G(x) consisting of the arcs with positive residual ca
pacities as the residual network (with respect to the flow x). Figure 6.10 gives an 
example of a residual network. 

s-t cut. We now review notation about cuts. Recall from Section 2.2 that a 
cut is a partition of the node set N into two subsets Sand S = N - S; we represent 
this cut using the notation [S, S]. Alternatively, we can define a cut as the set of 

Sec. 6.3 Flows and Cuts 177 



el-_(x...:..ij,_U-=-ij)_ .. ·W .I-__ T-=-ij_ .......... 

(3,4) 

Source (2,3) Sink 

(0,1) 

(a) (b) 

Figure 6.10 Illustrating a residual network: (a) original network G with a flow x; 
(b) residual network G(x). 

arcs whose endpoints belong to the different subsets Sand 8. We refer to a cut as 
an s-t cut if s E Sand t E 8. We also refer to an arc (i,j) with i E S andj E 8 as 
a forward arc of the cut, and an arc (i,j) with i E 8 andj E S as a b~ckward arc 
of the cut [S, 8]. Let (S, 8) denote the set offorward arcs in the cut, and let (8, S) 
denote the set of backward arcs. For example, in Figure 6.11, the dashed arcs con
stitute an s-t cut. For this cut, (S, 8) = {(1, 2), (3,4), (5, 6)}, and (8, S) = {(2, 3), 
(4, 5)}. 

Source Sink 

Figure 6.11 Example of an s-t cut. 

Capacity of an s-t cut. We define the capacity u [S, 8] of an s-t cut [S, 8] 
as the sum of the capacities of the forward arcs in the cut. That is, 

u[S,8] = L Uij. 
(i,j)E(S,S) 

Clearly, the capacity of a cut is an upper bound on the maximum amount of 
flow we can send from the nodes in S to the nodes in 8 while honoring arc flow 
bounds. 

Minimum cut. We refer to an s-t cut whose capacity is minimum among 
all s-t cuts as a minimum cut. 

Residual c~acity of an s-t cut. We define the residual capacity r[S, 8] 
of an s-t cut [S, S] as the sum of the residual capacities of forward arcs in the cut. 
That is, 

178 Maximum Flows: Basic Ideas Chap. 6 



r[S, S] = ~ rij. 
(iJ)E(S,S) 

Flow across an s-t cut. Let x be a flow in the network. Adding the mass 
balance constraint (6.1b) for the nodes in S, we see that 

v = ~ [ ~ Xij - ~ Xji] . 
iES {j:(i,j)EA} {j:(j,i)EA} 

We can simplify this expression by noting that whenever both the nodes p and 
q belong to Sand (p, q) E A, the variable Xpq in the first term within the brackets 
(for node i = p) cancels the variable - Xpq in the second term within the brackets 
(for node j = q). Moreover, if both the nodes p and q belong to S, then Xpq does 
not appear in the expression. This observation implies that 

v = ~ Xii - ~ Xii' 
(i,j)E(S,S) (i,j)E(S,S) 

(6.3) 

The first expression on the right-hand side of (6.3) denotes the amount of flow 
from the .nodes in S to nodes in S, and the second expression denotes the amount 
of flow returning from the nodes in S to the nodes in S. Therefore, the right-hand 
side denotes the total (net) flow across the cut, and (6.3) implies that the flow across 
any s-t cut [S, S] equals v. Substituting Xii S Uii in the first expression of (6.3) and 
Xij ?: 0 in the second expression shows that 

v S ~ Uij = u[S, S]. 
(i,j)E(S,S) 

(6.4) 

This expression indicates that the value of any flow is less than or equal to the 
capacity of any s-t cut in the network. This result is also quite intuitive. Any flow 
from node s to node t must pass through every s-t cut in the network "(because any 
cut divides the network into two disjoint components), and therefore the value of 
the flow can never exceed the capacity of the cut. Let us formally record this result. 

Property 6.1. The value of any flow is less than or equal to the capacity of 
any cut in the network. 

This property implies that if we discover a flow X whose value equals the 
capacity of some cut [S, S], then X is a maximum flow and the cut [S, S] is a minimum 
cut. The max-flow min-cut theorem, proved in the next section, states that some 
flow always has a flow value equal to the capacity of some cut. 

We next restate Property 6.1 in terms of the residual capacities. Suppose that 
x is a flow of value v. Moreover, suppose that that x' is a flow of value v + ilv for 
some ilv ?: O. The inequality (6.4) implies that 

v + ilv S ~ uii' 
(i,j)E(S,S) 

Subtracting (6.3) from (6.5) shows that 

ilv S ~ (uii - Xii) + ~ Xij' 
(iJ)E(S,S) (i,j)E(S,S) 

Sec. 6.3 Flows and Cuts 

(6.5) 

(6.6) 

179 



We now use Assumption 6.4 to note that we can rewrite LU,j)E(S,S) xij as 

LU,j)E(S,S) Xji. Consequently, 

6.v $ L (uij - Xij + Xji) = L rij. 
U,j)E(S,S) (S,S) 

The following property is now immediate. 

Property 6.2. For any flow x of value v in a network, the additional flow that 
can be sent from the source node s to the sink node t is less than or equal to the 
residual capacity of any s-t cut. 

6.4 GENERIC AUGMENTING PATH ALGORITHM 

In this section, we describe one of the simplest and most intuitive algorithms for 
solving the maximum flow problem. This algorithm is known as the augmenting path 
algorithm. 

We refer to a directed path from the source to the sink in the residual network 
as an augmenting path. We define the residual capacity of an augmenting path as 
the minimum residual capacity of any arc in the path. For example, the residual 
network in Figure 6. lO(b) , contains exactly one augmenting path 1-3-2-4, and the 
residual capacity of this path is 3 = min{r13, r32, r24} = min{l, 2, I} = 1. Observe 
that, by definition, the capacity 3 of an augmenting path is always positive. Con
sequently, whenever the network contains an augmenting path, we can send addi
tional flow from the source to the sink. The generic augmenting path algorithm is 
essentially based on this simple observation. The algorithm proceeds by identifying 
augmenting paths and augmenting flows on these paths until the network contains 
no such path. Figure 6.12 describes the generic augmenting path algorithm. 

algorithm augmenting path; 
begin 

x: = 0; 
while G(x) contains a directed path from node s to node t do 
begin 

identify an augmenting path P from node s to node t; 
l\ : = min{rlj : (i, j) E P}; 
augment l\ units of flow along P and update G(x); 

end; 
end; 

Figure 6.12 Generic augmenting path algorithm. 

We use the maximum flow problem given in Figure 6.13(a) to illustrate the 
algorithm. Suppose that the algorithm selects the path 1-3-4 for augmentation. The 
residual capacity of this path is 3 = min{r13, r34} = min{4, 5} = 4. This augmentation 
reduces the residual capacity of arc (1, 3) to zero (thus we delete it from the residual 
network) and increases the residual capacity of arc (3, 1) to 4 (so we add this arc 
to the residual network). The augmentation also decreases the residual capacity of 
arc (3, 4) from 5 to 1 and increases the residual capacity of arc (4, 3) from 0 to 4. 
Figure 6.13(b) shows the residual network at this stage. In the second iteration, 
suppose that the algorithm selects the path 1-2-3-4. The residual capacity of this 

180 Maximum Flows: Basic Ideas Chap. 6 



.I--__ '_ij -----..~. 

4 5 4 

4 

Source 3 Sink 3 

2 2 

(a) (b) 

5 4 5 

2 

2 

(c) (d) 

Figure 6.13 Illustrating the generic augmenting path algorithm: (a) residual network 
for the zero flow; (b) network after augmenting four units along the path 1-3-4; (c) 
network after augmenting one unit along the path 1-2-3-4; (d) network after aug
menting one unit along the path 1-2-4. 

path is 8 = min{2, 3, I} = 1. Augmenting 1 unit of flow along this path yields the 
residual network shown in Figure 6. 13(c). In the third iteration, the algorithm aug
ments 1 unit of flow along the path 1-2-4. Figure 6. 13(d) shows the corresponding 
residual network. Now the residual network contains no augmenting path, so the 
algorithm terminates. 

Relationship between the Original and Residual 
Networks 

In implementing any version of the generic augmenting path algorithm, we have the 
option of working directly on the original network with the flows Xij, or maintaining 
the residual network G(x) and keeping track of the residual capacities rij and, when 
the algorithm terminates, recovering the actual flow variables Xij' To see how we 
can use either alternative, it is helpful to understand the relationship between arc 
flows in the original network and residual capacities in the residual network. 

First, let us consider the concept of an augmenting path in the original network. 
An augmenting path in the original network G is a path P (not necessarily directed) 
from the source to the sink with Xij < Uij on every forward arc (i, j) and xij > 0 on 
every backward arc (i, j). It is easy to show that the original network G contains 

Sec. 6.4 Generic Augmenting Path Algorithm 181 



Source 

an augmenting path with respect to a flow x if and only if the residual network G(x) 
contains a directed path from the source to the sink. 

Now suppose that we update the residual capacities at some point in the al
gorithm. What is the effect on the arc flows Xij? The definition of the residual capacity 
(Le., rij = Uij - Xij + Xji) implies that an additional flow of 3 units on arc (i, j) in 
the residual network corresponds to (1) an increase in Xij by 3 units in the original 
network, or (2) a decrease in Xji by 3 units in the original network, or (3) a convex 
combination of (l) and (2). We use the example given in Figure 6.14(a) and the 
corresponding residual network in Figure 6.14(b) to illustrate these possibilities. 
Augmenting 1 unit of flow on the path 1-2-4-3-5-6 in the network produces the 
residual network in Figure 6. 14(c) with the corresponding arc flows shown in Figure 
6. 14(d). Comparing the solution in Figure 6. 14(d) with that in Figure 6. 14(a), we find 
that the flow augmentation increases the flow on arcs (1, 2), (2, 4), (3, 5), (5, 6) and 
decreases the flow on arc (3, 4). 

Finally, suppose that we are given values for the residual capacities. How 
should we determine the flows Xij? Observe that since rij = Uij - Xij + Xji, many 
combinations of Xij and Xji correspond to the same value of rij. We can determine 

(0,2) 

182 

(1,2) 

(1,2) Sink 

(0,2) 

(a) (b) 

(1,2) 

(1,2) 

Figure 6.14 The effect of augmentation on flow decomposition: (a) original network with 
a flow x; (b) residual network for flow x; (c) residual network after augmenting one unit 
along the path 1-2-4-3-5-6; (d) flow in the original network after the augmentation. 

Maximum Flows: Basic Ideas Chap. 6 



one such choice as follows. To highlight this choice, let us rewrite rij = Uij - Xij + 
Xji as Xij - Xji = uij - rij. Now, if uij 2:: rij, we set Xij = uij - rij and Xji = 0; otherwise, 
we set Xij = 0 and Xji = rij - Uij. 

Effect of Augmentation on Flow Decomposition 

To obtain better insight concerning the augmenting path algorithm, let us illustrate 
the effect of an augmentation on the flow decomposition on the preceding example. 
Figure 6.15(a) gives the decomposition of the initial flow and Figure 6.15(b) gives 
the decomposition of the flow after we have augmented 1 unit of flow on the path 
1-2-4-3-5-6. Although we augmented 1 unit of flow along the path 1-2-4-3-5-6, 
the flow decomposition contains no such path. Why? 

(a) (b) 

Figure 6.15 Flow decomposition of the solution in (a) Figure 6. 14(a) and (b) Figure 6. 14(d). 

The path 1-3-4-6 defining the flow in Figure 6. 14(a) contains three segments: 
the path up to node 3, arc (3, 4) as a forward arc, and the path up to node 6. We 
can view this path as an augmentation on the zero flow. Similarly, the path 1-2-4-
3-5-6 contains three segments: the path up to node 4, arc (~,4) as a backward arc, 
and the path up to node 6. We can view the augmentation on the path 1-2-4-3-5-
6 as linking the initial segment of the path 1-3-4-6 with the last segment of the 
augmentation, linking the last segment of the path 1-3-4-6 with the initial segment 
of the augmentation, and canceling the flow on arc (3, 4), which then drops from 
both the path 1-3-4-6 and the augmentation (see Figure 6.16). In general, we can 

Sec. 6.4 

(a) (b) 

Figure 6.16 The effect of augmentation on flow decomposition: (a) the two aug
mentations PI-P2-P3 and QI-Q2-Q3; (b) net effect of these augmentations. 

Generic Augmenting Path Algorithm 183 



view each augmentation as "pasting together" segments of the current flow decom
position to obtain a new flow decomposition. 

6.5 LABEUNG ALGORITHM AND THE MAX-FLOW 
MIN-CUT THEOREM 

In this section we discuss the augmenting path algorithm in more detail. In Our 
discussion of this algorithm in the preceding section, we did not discuss some im
portant details, such as (1) how to identify an augmenting path or show that the 
network contains no such path, and (2) whether the algorithm terminates in finite 
number of iterations, and when it terminates, whether it has obtained a maximum 
flow. In this section we consider these issues for a specific implementation of the 
generic augmenting path algorithm known as the labeling algorithm. The labeling 
algorithm is not a polynomial-time algorithm. In Chapter 7, building on the ideas 
established in this chapter, we describe two polynomial-time implementations of this 
algorithm. 

The labeling algorithm uses a search technique (as described in Section 3.4) to 
identify a directed path in G(x) from the source to the sink. The algorithmfans out 
from the source node to find all nodes that are reachable from the source along a 
directed path in the residual network. At any step the algorithm has partitioned the 
nodes in the network into two groups: labeled and unlabeled. Labeled nodes are 
those nodes that the algorithm has reached in the fanning out process and so the 
algorithm has determined a directed path from the source to these nodes in the 
residual network; the unlabeled nodes are those nodes that the algorithm has not 
reached as yet by the fanning-out process. The algorithm iteratively selects a labeled 
node and scans its arc adjacency list (in the residual network) to reach and label 
additional nodes. Eventually, the sink becomes labeled and the algorithm sends the 
maximum possible flow on the path from node s to node t. It then erases the labels 
and repeats this process. The algorithm terminates when it has scanned all the labeled 
nodes and the sink remains unlabeled, implying that the source node is not connected 
to the sink node in the residual network. Figure 6.17 gives an algorithmic description 
of the labeling algorithm. 

Correctness of the Labeling Algorithm and Related 
Results 

To study the correctness of the labeling algorithm, note that in each iteration (i.e., 
an execution of the whole loop), the algorithm either performs an augmentation or 
terminates because it cannot label the sink. In the latter case we must show that the 
current flow x is a maximum flow. Suppose at this stage that S is the set of labeled 
nodes and 8 =.N - S is the set of unlabeled nodes. Clearly, s E Sand t E 8. Since 
the algorithm cannot label any node in 8 from any node in S, rij = 0 for each 
(i,j) E (S, 8). Furthermore, since rij = (Uij - Xij) + Xji, Xij :5 Uij and Xji;::: 0, the con
dition rij = 0 implies that xij = Uij for every arc (i, j) E (S, 8) and xij = 0 for 
every arc (i, j) E (8, S). [Recall our assumption that for each arc (i, j) E A, 

184 Maximum Flows: Basic Ideas Chap. 6 



algorithm labeling; 
begin 

label node t; 
while t is labeled do 
begin 

unlabel all nodes; 
set pred(j) : = 0 for each j E N; 
label node s ~nd set LIST: = {s}; 
while LIST #00r t is unlabeled do 
begin 

remove a node i from LIST; 
for each' arc (i, j) in the residual network emanating from node i do 

if rij> 0 and node j is unlabeled then set pred( j): = i, label node j, and 
add j to LIST; 

end; 
if t is labeled then augment 

end; 
end; 

procedure augment; 
begin 

use the predecessor labels to trace back from the sink to the source to 
obtain an augmenting path P from node s to node t; 

I) : = min{rij : (i, j) E P}; 
augment I) units of flow along P and update the residual capacities; 

end; 

Figure 6.17 Labeling algorithm. 

(j, i) E A.] Substituting these flow values in (6.3), we find that 

v = L Xij

(ij)E(S,S) 
L_ Xij = 

(i.j)E(S,S) 

L uij = u[S, 8]. 
(i,j)E(S,S) 

This discussion shows that the value of the current flow x equals the capacity 
of the cut [S, 8]. But then Property 6.1 implies that x is ,fl. maximum flow and 
[S, 81 is a minimum cut. This conclusion establishes the correctness of the labeling 
algorithm and, as a by-product, proves the following max-flow min-cut theorem. 

Theorem 6.3 (Max-Flow Min-Cut Theorem). The maximum value of the flow 
from a source node s to a sink node t in a capacitated network equals the minimum 
capacity among all s-t cuts. • 

The proof of the max-flow min-cut theorem shows that when the labeling al
gorithm terminates, it has also discovered a minimum cut. The labeling algorithm 
also proves the following augmenting path theorem. 

Theorem 6.4 (Augmenting Path Theorem). A flow x* is a maximum flow if and 
only if the residual network G(x*) contains no augmenting path. 

Proof If the residual network G(x*) contains an augmenting path, clearly the 
flow x* is not a maximum flow. Conversely, if the residual network G(x*) contains 
no augmenting path, the set of nodes S labeled by the labeling algorithm defines an 

Sec. 6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem 185 



s-t cut [S, 8J whose capacity equals the flow value, thereby implying that the flow 
must be maximum. • 

The labeling algorithm establishes one more important result. 

Theorem 6.5 (Integrality Theorem). If all arc capacities are integer, the max
imum flow problem has an integer maximum flow. 

Proof This result follows from an induction argument applied to the number 
of augmentations. Since the labeling algorithm starts with a zero flow and all arc 
capacities are integer, the initial residual capacities are all integer. The flow aug
mented in any iteration equals the minimum residual capacity of some path, which 
by the induction hypothesis is integer. Consequently, the residual capacities in the 
next iteration will again be integer. Since the residual capacities rij and the arc ca
pacities Uij are all integer, when we convert the residual capacities into flows by the 
method described previously, the arc flows xij will be integer valued as well. Since 
the capacities are integer, each augmentation adds at least one unit to the flow value. 
Since the maximum flow cannot exceed the capacity of any cut, the algorithm will 
terminate in a finite number of iterations. • 

The integrality theorem does not imply that every optimal solution of the max
imum flow problem is integer. The maximum flow problem may have noninteger 
solutions and, most often, has such solutions. The integrality theorem shows that 
the problem always has at least one integer optimal solution. 

Complexity of the Labeling Algorithm 

To study the worst-case complexity of the labeling algorithm, recall that in each 
iteration, except the last, when the sink cannot be labeled, the algorithm performs 
an augmentation. It is easy to see that each augmentation requires Oem) time because 
the search method examines any arc or any node at most once. Therefore, the 
complexity of the labeling algorithm is Oem) times the number of augmentations. 
How many augmentations can the algorithm perform? If all arc capacities are integral 
and bounded by a finite number U, the capacity of the cut (s, N - {s}) is at most 
nU. Therefore, the maximum flow value is bounded by nU. The labeling algorithm 
increases the value of the flow by at least 1 unit in any augmentation. Consequently, 
it will terminate within nU augmentations, so O(nmU) is a bound on the running 
time of the labeling algorithm. Let us formally record this observation. 

Theorem 6.6. 
O(nmU) time. 

The labeling algorithm solves the maximum flow problem in 

• 
Throughout this section, we have assumed that each arc capacity is finite. In 

some applications, it will be convenient to model problems with infinite capacities 
on some arcs. If we assume that some s-t cut has a finite capacity and let U denote 
the maximum capacity across this cut, Theorem 6.6 and, indeed, all the other results 
in this section remain valid. Another approach for addressing situations with infinite 
capacity arcs would be to impose a capacity on these arcs, chosen sufficiently large 

186 Maximum Flows: Basic Ideas Chap. 6 



as to not affect the maximum flow value (see Exercise 6.23). In defining the residual 
capacities and developing algorithms to handle situations with infinite arc capacities, 
we adopt this approach rather than modifying the definitions of residual capacities. 

Drawbacks of the Labeling Algorithm 

The labeling algorithm is possibly the simplest algorithm for solving the maximum 
flow problem. Empirically, the algorithm performs reasonably well. However, the 
worst-case bound on the number of iterations is not entirely satisfactory for large 
values of U. For example, if U = 2n, the bound is exponential in the number of 
nodes. Moreover, the algorithm can indeed perform this many iterations, as the 
example given in Figure 6.18 illustrates. For this example, the algorithm can select 
the augmenting paths s-a-b-t and s-b-a-t alternatively 1()6 times, each time aug
menting unit flow along the path. This example illustrates one shortcoming of the 
algorithm. 

(a) (b) (c) 

Figure 6.18 Pathological example of the labeling algorithm: (a) residual network for the 
zero flow; (b) network after augmenting unit flow along the path s-a-b-t; (c) network after 
augmenting unit flow along the path s-b-a-t. 

A second drawback of the labeling algorithm is that if the capacities are irra
tional, the algorithm might not terminate. For some pathological instances of the 
maximum flow problem (see Exercise 6.48), the labeling algorithm does not ter
minate, and although the successive flow values converge, they converge to a value 
strictly less than the maximum flow value. (Note, however, that the max-flow min
cut theorem holds even if arc capacities are irrational.) Therefore, if the labeling 
algorithm is guaranteed to be effective, it must select augmenting paths carefully. 

A third drawback of the labeling algorithm is its "forgetfulness." In each it
eration, the algorithm generates node labels that contain information about aug
menting paths from the source to other nodes. The implementation we have described 
erases the labels as it moves from one iteration to the next, even though much of 
this information might be valid in the next iteration. Erasing the labels therefore 
destroys potentially useful information. Ideally, we should retain a label when we 
can use it profitably in later computations. 

In Chapter 7 we describe several improvements of the labeling algorithm that 
overcomes some or all of these drawbacks. Before discussing these improvements, 
we discuss some interesting implications of the max-flow min-cut theorem. 

Sec. 6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem 187 



6.6 COMBINATORIAL IMPLICATIONS OF THE MAX-FLOW 
MIN-CUT THEOREM 

As we noted in Section 6.2 when we discussed several applications of the maximum 
flow problem, in some applications we wish to find a minimum cut in a network, 
which we now know is equivalent to finding a maximum flow in the network. In 
fact, the relationship between maximum flows and minimum cuts permits us to view 
many problems from either of two dual perspectives: a flow perspective or a cut 
perspective. At times this dual perspective provides novel insight about an under
lying problem. In particular, when applied in various ways, the max-flow min-cut 
theorem reduces to a number of min-max duality relationships in combinatorial the
ory. In this section we illustrate this use of network flow theory by developing several 
results in combinatorics. We might note that these results are fairly deep and dem
onstrate the power of the max-flow min-cut theorem. To appreciate the power of 
the max-flow min-cut theorem, we would encourage the reader to try to prove the 
following results without using network flow theory. 

Network Connectivity 

We first study some connectivity issues about networks that arise, for example, in 
the design of communication networks. We first define some notation. We refer to 
two directed paths from node s to node t as arc disjoint if they do not have any arc 
in common. Similarly, we refer to two directed paths from node s to node t as node 
disjoint if they do not have any node in common, except the source and the sink 
nodes. Given a directed network G = (N, A) and two specified nodes sand t, we 
are interested in the following two questions: (1) What is the maximum number of 
arc-disjoint (directed) paths from node s to node t; and (2) what is the minimum 
number of arcs that we should remove from the network so that it contains no 
directed paths from node s to node t? The following theorem shows that these two 
questions are really alternative ways to address the same issue. 

Theorem 6.7. The maximum number of arc-disjoint paths from node s to node 
t equals the minimum number of arcs whose removal from the network disconnects 
all paths from node s to node t. 

Proof Define the qlpacity of each arc in the network as equal to 1. Consider 
any feasible flow x of value v in the resulting unit capacity network. The flow de
composition theorem (Theorem 3.5) implies that we can decompose the flow x into 
flows along paths and cycles. Since flows around cycles do not affect the flow value, 
the flows on the paths sum to v. Furthermore, since each arc capacity is 1, these 
paths are arc disjoint and each carries 1 unit of flow. Consequently, the network 
contains v arc-disjoint paths from s to t. 

Now consider any s-t cut [S, S] in the network. Since each arc capacity is 1, 
the capacity of this cut is I (S, S) I (i.e., it equals the number of forward arcs in the 
cut). Since each path from node s to node t contains at least one arc in (S, S), the 
removal of the arcs in (S, S) disconnects all the paths from node s to node t. Con
sequently, the network contains a disconnecting set of arcs of cardinality equal 

188 Maximum Flows: Basic Ideas Chap. 6 



to the capacity of any s-t cut [S, S]. The max-flow min-cut theorem immediately im
plies that the maximum number of arc-disjoint paths from s to t equals the 
minimum number of arcs whose removal will disconnect all paths from node s to 
node t. 

• 
We next discuss the node-disjoint version of the preceding theorem. 

Theorem 6.8. The maximum number of node-disjoint paths from node s to 
node t equals the minimum number of nodes whose removal from the network dis
connects all paths from nodes s to node t. 

Proof. Split each node i in G, other than sand t, into two nodes i' and i" and 
add a "node-splitting" arc (i', i") of unit capacity. All the arcs in G entering node 
i now enter node i' and all the arcs emanating from node i now emanate from node 
i". Let G' denote this transformed network. Assign a capacity of 00 to each arc in 
the network except the node-splitting arcs, which have unit capacity. It is easy to 
see that there is one-to-one correspondence between the arc-disjoint paths in G' and 
the node-disjoint paths in G. Therefore, the maximum number of arc-disjoint paths 
in G' equals the maximum number of node-disjoint paths in G. 

As in the proof of Theorem 6.7, flow decomposition implies that a flow of v 
units from node s to node t in G' decomposes into v arc-disjoint paths each carrying 
unit flow; and these v arc-disjoint paths in G' correspond to v node-disjoint paths 
in G. Moreover, note that any s-t cut with finite capacity contains only node-splitting 
arcs since all other arcs have infinite capacity. Therefore, any s-t cut in G' with 
capacity k corresponds to a set of k nodes whose removal from G destroys all paths 
from node s to node t. Applying the max-flow min-cut theorem to G' and using the 
preceding observations establishes that the maximum number of node~disjoint paths 
in G from node s to node t equals the minimum number of nodes whose removal 
from G disconnects nodes sand t. • 

Matchings and Covers 

We next state some results about matchings and node covers in a bipartite network. 
For a directed bipartite network G = (Nt U Nz, A) we refer to a subset A' ~ A as 
a matching if no two arcs in A' are incident to the same node (i.e., they do not have 
any common endpoint). We refer to a subset N' ~ N = NI U Nz as a node cover 
if every arc in A is incident to one of the nodes in N'. For illustrations of these 
definitions, consider the bipartite network shown in Figure 6.19. In this network the 
set of arcs {(1, I'), (3, 3'), (4, 5'), (5, 2')} is a matching but the set of arcs {(I, 2'), 
(3, I'), (3, 4')} is not because the arcs'(3, I') and (3, 4') are incident to the same 
node 3. In the same network the set of nodes {I, 2', 3, 5'} is a node cover, but the 
set of nodes {2', 3', 4, 5} is not because the arcs (1, I'), (3, 1');-and (3, 4') are not 
incident to any node in the set. 

Theorem 6.9. In a bipartite network G = (Nt U N z, A), the maximum car
dinality of any matching equals the minimum cardinality of any node cover of G. 

Sec. 6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem 189 



Figure 6.19 Bipartite network. 

Proof Augment the network by adding a source node s and an arc (s, i) of 
unit capacity for each i E Nt. Similarly, add a sink node t and an arc (j, t) of unit 
capacity for eachj E N 2 • Denote the resulting network by G'. We refer to the arcs 
in A as original arcs and the additional arcs as artificial arcs . We set the capacity 
of each artificial arc equal to 1 and the capacity of each original arc equal to 00. 

Now consider any flow x of value v from node s to node t in the network G'. 
We can decompose the flow x into v paths of the form s-i-j-t each carrying 1 unit 
of flow. Thus v arcs of the original network have a positive flow. Furthermore, these 
arcs constitute a matching, for otherwise the flow on some artificial arc would exceed 
1 unit. Consequently, a flow of value v corresponds to a matching of cardinality v. 
Similarly, a matching of cardinality v defines a flow of value v. 

We next show that any node cover H of G = (Nt U N 2 , A) defines an s-t cut 
of capacity 1 H 1 in G'. Given the node cover H, construct a set of arcs Q as follows: 
For each i E H, if i E Nt. add arc (s, i) to Q, and if i E N 2 , add arc (i, t) to Q. 
Since H is a node cover, each directed path from node s to node t in G' contains 
one arc in Q; therefore, Q is a valid s-t cut of capacity 1 HI. 

We now show the converse result; that is, for a given s-t cut Q of capacity k 
in G', the network G contains a node cover of cardinality k. We first note that the 
cut Q consists solely of artificial arcs because the original arcs have infinite capacity. 
From Q we construct a set H of nodes as follows: if (s, i) E Q and (i, t) E Q, we 
add ito H. Now observe that each original arc (i,j) defines a directed path s-i-j
tin G'. Since Q is an s-t cut, either (s, i) E Q or (j, t) E Q or both. By the preceding 
construction, either i E H or j E H or both. Consequently, H must be a node cover. 
We have thus established a one-to-one correspondence between node covers in G 
and s-t cuts in G'. 

The max-flow min-cut theorem implies that the maximum flow value equals 
the capacity of a minimum cut. In view of the max-flow min-cut theorem, the 
preceding observations imply that the maximum number of independent arcs in 
G equals the minimum number of nodes in a node cover of G. The theorem thus 
follows. • 

190 Maximum Flows: Basic Ideas Chap. 6 



Figure 6.20 gives a further illustration of Theorem 6.9. In this figure, we have 
transformed the matching problem of Figure 6.19 into a maximum flow problem, 
and we have identified the minimum cut. The minimum cut consists of the arcs 
(s, 1), (s, 3), (2', t) and (5', t). Correspondingly, the set {t, 3, 2', 5'} is a mini
mum cardinality node cover, and a maximum cardinality matching is (1, I'), (2, 2'), 
(3, 3') and (5, 5'). 

Figure 6.20 Minimum cut for the maximum flow problem defined in Figure 6.19. 

As we have seen in the discussion throughout this section, the max-flow min
cut theorem is a powerful tool for establishing a number of results in the field of 
combinatorics. Indeed, the range of applications of the max-flow min-cut theorem 
and the ability of this theorem to encapsulate so many subtle duality (Le., max-min) 
results as special cases is quite surprising, given the simplicity of the labeling al
gorithm and of the proof of the max-flow min-cut theorem. The wide range of ap
plications reflects the fact that flows and cuts, and the relationship between them, 
embody central combinatorial results in many problem domains within applied math
ematics. 

6.7 FLOWS WITH LOWER BOUNDS 

In this section we consider maximum flow problems with nonnegative lower bounds 
imposed on the arc flows; that is, the flow on any arc (i, j) E A must be at least 
lij ;::: O. The following formulation models this problem: 

Maximize v 

subject to 

Sec. 6.7 

L xij - L Xji = { ~ 
{j:(i,i)EA} {i:U,i)EA} - V 

-, 

for i = s, 
for all i E N - {s, t}, 
for i = t, 

lij :5 Xij :5 Uij for each (i, j) EA. 

Flows with Lower Bounds 191 



In previous sections we studied a special case of this problem with only zero 
lower bounds. Whereas the maximum flow problem with zero lower bounds always 
has a feasible solution (since the zero flow is feasible), the problem with nonnegative 
lower bounds could be infeasible. For example, consider the maximum flow problem 
given in Figure 6.21. This problem does not have a feasible solution because arc 
(1, 2) must carry at least 5 units of flow into node 2 and arc (2, 3) can remove at 
most 4 units of flow; therefore, we can never satisfy the mass balance constraint of 
node 2. 

Source ~.:.·.1.' •... c.:.Vr--_(_5_, 1_0_) _~~ (2, 4) (J!Jf;::. ~ .Vf!!jlr------•• ~ Sink 
Figure 6.21 Maximum flow problem 
with no feasible solution. 

As illustrated by this example, any maximum flow algorithm for problems with 
nonnegative lower bounds has two objectives: (1) to determine whether the problem 
is feasible, and (2) if so, to establish a maximum flow. It therefore comes as no 
surprise that most algorithms use a two-phase approach. The first phase determines 
a feasible flow if one exists, and the second phase converts a feasible flow into a 
maximum flow. We shall soon see that the problem in each phase essentially reduces 
to solving a maximum flow problem with zero lower bounds. Consequently, it is 
possible to solve the maximum flow problem with nonnegative lower bounds by 
solving two maximum flow problems, each with zero lower bounds. For conve
nience, we consider the second phase prior to the first phase. 

Determining a Maximum Flow 

Suppose that we have a feasible flow x in the network. We can then modify any 
maximum flow algorithm designed for the zero lower bound case to obtain a max
imum flow. In these algorithms, we make only one modification: We define the 
residual capacity of an arc (i,j) as rij = (Uij ---:- Xij) + (Xji - Iji ); the first term in this 
expression denotes the maximum increase in flow from node i to node j using the 
remaining capacity of arc (i, j), and the second term denotes the maximum increase 
in flow from node ito nodej by canceling the existing flow on arc (j, i). Notice that 
since each arc flow is within its lower and upper bounds, each residual capacity is 
nonnegative. Recall that the maximum flow algorithm described in this chapter (and 
the ones described in Chapter 7) works with only residual capacities and does not 
need arc flows, capacities, or lower bounds. Therefore we can use any of these 
algorithms to establish a maximum flow in the network. These algorithms terminate 
with optimal residual capacities. From these residual capacities we can construct 
maximum flow in a large number of ways. For example, through a change of variables 
we can reduce the computations to a situation we have considered before. For all 
arcs (i, j), let uij = Uij - lij, rij = rij' and xij = xij - lij. The residual capacity for 
arc (i,j) is rij = (uij - xij) + (Xji - Iji). Equivalently, rij = uij - xij + XJi. Similarly, 
rii = Uii - XJi + xij. If we compute the x' values in terms of r' and u ' , we obtain 
the same expression as before, i.e., xij max(uij - rij, 0) and Xii = max(uii -

192 Maximum Flows: Basic Ideas Chap. 6 



rij, 0). Converting back into the original variables, we obtain the following formulae: 

xij = lij + max(uij - rij - lij, 0), 

Xji = Iji + max(Uji - rji - Iji , 0). 

We now show that the solution determined by this modified procedure solves 
the maximum flow problem with nonnegative lower bounds. Let x denote a feasible 
flow in G with value equal to v. Moreover, let [S, S] denote an s-t cut. We define 
the capacity of an s-t cut [ S, S] as 

U[S, S] = L uij - L_ lij. 
(i,j)E(S,S) (i,j)E(S,S) 

(6.7) 

The capacity of the cut denotes the maximum amount of "net" flow that can be 
sent out of the node set S. We next use equality (6.3), which we restate for con
venience. 

v = L Xij - L_ xij. 
(i,j)E(S,S) (i,j)E(S,S) 

(6.8) 

Substituting xij :5 uij in the first summation and lij :5 xij in the second summation of 
this inequality shows that . 

V :5 L Uij - ~ lij = u[S, S]. 
(i,j)E(S,S) (iJ)E(S,S) 

(6.9) 

Inequality (6.9) indicates that the maximum flow value is less than or equal to the 
capacity of any s-t cut. At termination, the maximum flow algorithm obtains an 
s-t cut [S, S] with rij = 0 for every arc (i,j) E (S, S). Let x denote the corresponding 
flow with value equal to v. Since rij = (uij - xij) + (Xji - 0i), the conditions Xij :5 

Uij and Iji :5 5 i imply that Xij = uij and Xji = Iji . COEsequently, xij = Uij for every arc 
(i, j) E (S, S) and xij = lij for every arc (i, j) E (S, S). Substituting these values in 
(6.8), we find that 

v = u[S, S] = L uij - L-lij. 
(i,j)E(S,S) (i,j)E(S,S) 

(6.10) 

In view of inequality (6.9), equation (6.10)jmplies that [S, S] is a minimum s-t cut 
and x is a maximum flow. As a by-pro<jluct of this result, we have proved a gener
alization of the max-flow min-cut theorem for problems with nonnegative lower 
bounds. 

Theorem 6.10 (Generalized Max-Flow Min-Cut Theorem). If the capacity of an 
s-t cut [S, S] in a network with both lower and upper bounds on arc flows is defined 
by (6.7), the maximum value of flow from node s to node t equals the minimum 
capacity among all s-t cuts. • 

Establishing a Feasible Flow 

We now address the issue of determining a feasible flow in the network. We first 
transform the maximum flow problem into a circulation problem by adding an arc 
(t, s) of infinite capacity. This arc carries the flow sent from node s to node t back 
to node s. Consequently, in the circulation formulation of the problem, the outflow 

Sec. 6.7 Flows with Lower Bounds 193 



of each node, including nodes sand t, equals its flow. Clearly, the maximum flow 
problem admits a feasible flow if and only if the circulation problem admits a feasible 
flow. Given the possibility of making this transformation, we now focus our intention 
on finding a feasible circulation, and characterizing conditions when an arbitrary 
circulation problem, with lower and upper bounds of flows, possesses a feasible 
solution. 

The feasible circulation problem is to identify a flow x satisfying the following 
constraints: 

L xij - L Xji = 0 for all i E N, (6.11a) 
{j:(iJ)EA} {j:(j,i)EA} 

for all (i, j) EA. (6. 11 b) 

By replacing Xij = xij + Lij in constraints (6.11a) and (6.11b), we obtain the following 
transformed problem: 

L xij- L Xji = b(i) for all i E N, (6. 12a) 
{j:(i,j)EA} {j:(j,i)EA} 

o ~ xij ~ uij - lij for all (i, j) E A, (6. 12b) 

with supplies/demands b(·) at the nodes defined by 

b(i) = L 0i - L Lij. 
{j: (j, i)EA} {j: (i,j)EA} 

Observe that LiEN b(i) = 0 since each lij occurs twice in this expression, once with 
a positive sign and once with a negative sign. The feasible circulation problem is 
then equivalent to determining whether the transformed problem has a solution x' 
satisfying (6.12). ' 

Notice that this problem is essentially the same as the feasible flow problem 
discussed in Application 6.1. In discussing this application we showed that by solving 
a maximum flow problem we either determine a solution satisfying (6.12) or show 
that no solution satisfies (6.12). If xij is a feasible solution of (6.12), xij = xij + lij is 
a feasible solution of (6.11). 

Characterizing a Feasible Flow 

We next characterize feasible circulation problems (i.e., derive the necessary and 
sufficiency conditions for a circulation problem to possess a feasible solution). Let 
S be any set of nodes in the network. By summing the mass balance constraints of 
the nodes in S, we obtain the expression 

L Xij - L_ Xij = O. 
(i,j)E(S,S) (i,j)E(S,S) 

(6.13) 

U sing the inequalities Xij ~ Uij in the first term of (6.13) and the inequalities Xij ? lij 
in the second term, we find that 

L_ lij ~ L uij. 
(iJ)E(S,S) (i,j)E(S,S) 

(6.14) 

The expression in (6.14), which is a necessary condition for feasibility, states that 

194 Maximum Flows: Basic Ideas Chap. 6 



the maximum amount of flow that we can send out from a set S of nodes must be 
at least as large as the minimum amount of flow that the nodes in S must receive. 
Clearly, if a set of nodes must receive more than what the other nodes can send 
them, the network has no feasible circulation. As we will see, these conditions are 
also sufficient for ensuring feasibility [i.e., if the network data satisfies the conditions 
(6.14) for every set S of nodes, the network has a feasible circulation that satisfies 
the flow bounds on all its arcs]. 

We give an algorithmic proof for the sufficiency of condition (6.14). The al
gorithm starts with a circulation x that satisfies the mass balance and capacity con
straints, but might violate some of the lower bound constraints. The algorithm grad
ually converts this circulation into a feasible flow or identifies a node set S that 
violates condition (6.14). 

With respect to a flow x, we refer to an arc (i, j) as infeasible if xij < lij and 
feasible if lij :5 xij. The algorithm selects an infeasible arc (p, q) and attempts to 
make it feasible by increasing the flow on this arc. The mass balance constraints 
imply that in order to increase the flow on the arc, we must augment flow along one 
or more cycles in the residual network that contain arc (p, q) as a forward arc. We 
define the residual network G(x) with respect to a flow x the same way we defined 
it previously except that we set the residual capacity of any infeasible arc (i, j) to 
the value Uij - Xij' Any augmenting cycle containing arc (p, q) as a forward arc 
must consist of a directed path in the residual network G(x) from node q to node p 
plus the arc (p, q). We can use a labeling algorithm to identify a directed path from 
node q to node p. 

We apply this procedure to one infeasible arc at a time, at each step decreasing 
the infeasibility of the arcs until we either identify a feasible flow or the labeling 
algorithm is unable to identify a directed path from node q to node p for some 
infeasible arc (p, q). We show that in the latter case, the maximum flow problem 
must be infeasible. Let S be the set of nodes labeled by the last applicafion of the 
labeling algorithm. Clearly, q E Sand pES == N - S. Since the labeling algorithm 
cannot label any node not in S, every arc (i, j) from S to S has-a residual capacity 
of value zero. Therefore, Xij = Uij for every arc (i, j) E (S, S) and Xij :5 lij for every 
arc (i,j) E (S, S). Also observe that (p, q) E (S, S) and Xpq < lpq. Substituting these 
values in (6.13), we find that 

L_ lij> L Uij, 
(i,j)E(S,S) (i,j)E(S,S) 

contradicting condition (6.14), which we have already shown is necessary for fea
sibility. We have thus established the following fundamental theorem. 

Theorem 6.11 (Circulation Feasibility Conditions). A circulation problem with 
nonnegative lower bounds on arc flows is feasible if and only if for every set S of 
nodes 

k lij :5 L Uij. 
(iJ)E(S,S) (i,j)E(S,S) • 

Note that the proof ofthis theorem specifies a one pass algorithm, starting with 
the zero flow, for finding a feasible solution to any circulation problem whose arc 

Sec. 6.7 Flows with Lower Bounds 195 



upper bounds Uij are all nonnegative. In Exercise 6.7 we ask the reader to specify 
a one pass algorithm for any situation (i.e., even when some upper bounds are 
negative). 

A by-product of Theorem 6.11 is the following result, which states necessary 
and sufficiency conditions for the existence of a feasible solution for the feasible 
flow problem stated in (6.2). (Recall that a feasible flow problem is the feasibility 
version of the minimum cost flow problem.) We discuss the proof of this result in 
Exercise 6.43. 

Theorem 6.12. The feasible flow problem stated in (6.2) has a feasible 
solution if and only iffor every subset S ~ N, b(S) u[S, S] :5 0, where b(S) = 
LiES b(i). • 

6.B SUMMARY 

In this chapter we studied two closely related problems: the maximum flow problem 
and the minimum cut problem. Mter illustrating a variety of applications of these 
problems, we showed that the maximum flow and the minimum cut problems are 
closely related of each other (in fact, they are dual problems) and solving the max
imum flow problem also solves the minimum cut problem. We began by showing 
that the value of any flow is less than or equal to the capacity of any cut in the 
network (i.e., this is a "weak duality" result). The fact that the value of some flow 
equals the capacity of some cut in the network (i.e., the "strong duality" result) is 
a deeper result. This result is known as the max-flow min-cut theorem. We establish 
it by specifying a labeling algorithm that maintains a feasible flow x in the network 
and sends additional flow along directed paths from the source node to the sink node 
in the residual network G(x). Eventually, G(x) contains no directed path from the 
source to the sink. At this point, the value of the flow x equals the capacity of some 
cut [S, S] in the network. The weak duality result implies that x is a maximum flow 
and [S, S] is a minimum cut. Since the labeling algorithm maintains an integer flow 
at every step (assuming integral capacity data), the optimal flow that it finds is 
integral. This result is a special case of a more general network flow integrality result 
that we establish in Chapter 9. The labeling algorithm runs in O(nmU) time. This 
time bound is not attractive from the worst-case perspective. In Chapter 7 we develop 
two polynomial-time implementations of the labeling algorithm. 

The max-flow min-cut theorem has far-reaching implications. It allows us to 
prove several important results in combinatorics that appear difficult to prove using 
other means. We proved the following results: (1) the maximum number of arc
disjoint (or node-disjoint) paths connecting two nodes sand t in a network equals 
the minimum number of arcs (or nodes) whose removal from the network leaves no 
directed path from node s to node t; and (2) in a bipartite network, the maximum 
cardinality of any matching equals the minimum cardinality of any node cover. In 
the exercises we ask the reader to prove other implications of the max-flow min-cut 
theorem. 

To conclude this chapter we studied the maximum flow problem with non
negative lower bounds on arc flows. We can solve this problem using a two-phase 
approach. The first phase determines a feasible flow if one exists, and the second 
phase converts this flow into a maximum flow; in both phases we solve a maximum 

196 Maximum Flows: Basic Ideas Chap. 6 



flow problem with zero lower bounds. We also described a theoretical result for 
characterizing when a maximum flow problem with nonnegative lower bounds has 
a feasible solution. Roughly speaking, this characterization states that the maximum 
flow problem has a feasible solution if and only if the maximum possible outflow of 
every cut is at least as large as the minimum required inflow for that cut. 

REFERENCE NOTES 

The seminal paper of Ford and Fulkerson [1956a] on the maximum flow problem 
established the celebrated max-flow min-cut theorem. Fulkerson and Dantzig [1955], 
and Elias, Feinstein, and Shannon [1956] independently established this result. Ford 
and Fulkerson [1956a] and Elias et al. [1956] solved the maximum flow problem by 
augmenting path algorithms, whereas Fulkerson and Dantzig [1955] solved it by 
specializing the simplex method for linear programming. The labeling algorithm that 
we described in Section 6.5 is due to Ford and Fulkerson [1956a]; their classical 
book, Ford and Fulkerson [1962], offers an extensive treatment of this algorithm. 
Unfortunately, the labeling algorithm runs in pseudopolynomial time; moreover, as 
shown by Ford and Fulkerson [1956a], for networks with arbitrary irrational arc 
capacities, the algorithm can perform an infinite sequence of augmentations and 
might converge to a value different from the maximum flow value. Several improved 
versions of the labeling algorithm overcome this limitation. We provide citations to 
these algorithms and to their improvements in the reference notes of Chapter 7. In 
Chapter 7 we also discuss computational properties of maximum flow algorithms. 

In Section 6.6 we studied the combinatorial implications of the max-flow min
cut theorem. Theorems 6.7 and 6.8 are known as Menger's theorem. Theorem 6.9 
is known as the Konig-Egervary theorem. Ford and Fulkerson [1962] discuss these 
and several additional combinatorial results that are provable using the max-flow 
min-cut theorem. 

In Section 6.7 we studied the fe~sibility of a network flow problem with non
negative lower bounds imposed on tHe arc flows. Theorem 6.11 is due to Hoffman 
[1960], and Theorem 6.12 is due to Gale [1957]. The book by Ford and Fulkerson 
[1962] discusses these and some additional feasibility results extensively. The al
gorithm we have presented for identifying a feasible flow in a network with non
negative lower bounds is adapted from this book. 

The applications of the maximum flow problem that we described in Section 
6.2 are adapted from the following papers: 

1. Feasible flow problem (Berge and Ghouila-Houri [1962]) 
2. Problem of representatives (Hall [1956]) 
3. Matrix rounding problem (Bacharach [1966]) 
4. Scheduling on uniform parallel machines (Federgruen and Groenevelt [1986]) 
5. Distributed computing on a two-processor model (Stone [1977]) 
6. Tanker scheduling problem (Dantzig and Fulkerson [1954]) 

Elsewhere in this book we describe other applications of the maximum flow 
problem. These applications include: (1) the tournament problem (Application 1.3, 
Ford and Johnson [1959]), (2) the police patrol problem (Exercise 1.9, Khan [1979]), 

Chap. 6 Reference Notes 197 



(3) nurse staff scheduling (Exercise 6.2, Khan and Lewis [1987]), (4) solving a system 
of equations (Exercise 6.4, Lin [1986]), (5) statistical security of data (Exercises 6.5, 
Application 8.3, Gusfield [1988J, Kelly, Golden, and Assad [19901), (6) the minimax 
transportation problem (Exercise 6.6, Ahuja [1986J), (7) the baseball elimination 
problem (Application 8.1, Schwartz [1966]), (8) network reliability testing (Appli
cation 8.2, Van Slyke and Frank [1972]), (9) open pit mining (Application 19.1, 
Johnson (19681), (10) selecting freight handling terminals (Application 19.2, Rhys 
[1970J), (11) optimal destruction of military targets (Application 19.3, Orlin [1987J), 
(12) the flyaway kit problem (Application 19.4, Mamer and Smith [1982]), (13) max
imum dynamic flows (Application 19.12, Ford and Fulkerson [1958aJ), and (14) 
models for building evacuation (Application 19.13, Chalmet, Francis, and Saunders 
(19821). 

Two other interesting applications of the maximum flow problem are preemp
tive scheduling on machines with different speeds (Martel [1982]), and the multi
facility rectilinear distance location problem (Picard and Ratliff [1978]). The following 
papers describe additional applications or provide additional references: McGinnis 
and Nuttle [1978J, Picard and Queyranne [1982J, Abdallaoui [1987J, Gusfield, Martel, 
and Fernandez-Baca [1987J, Gusfield and Martel [1989], and Gallo, Grigoriadis, and 
TaIjan [1989J. 

EXERCISES 

6.1. Dining problem. Several families go out to dinner together. To increase their social 
interaction, they would like to sit at tables so that no two members of the same family 
are at the same table. Show how to formulate finding a seating arrangement that meets 
this objective as a maximum flow problem. Assume that the dinner contingent has p 
families and that the ith family has a(i) members. Also assume that q tables are available 
and that the jth table has a seating capacity of b(j). 

6.2. Nurse staff scheduling (Khan and Lewis [1987]). To provide adequate medical service 
to its constituents at a reasonable cost, hospital administrators must constantly seek 
ways to hold staff levels as low as possible while maintaining sufficient staffing to 
provide satisfactory levels of health care. An urban hospital has three departments: the 
emergency room (department 1), the neonatal intensive care nursery (department 2), 
and the orthopedics (department 3). The hospital has three work shifts, each with dif
ferent levels of necessary staffing for nurses. The hospital would like to identify the 
minimum number of nurses required to meet the following three constraints: (1) the 
hospital must allocate at least 13, 32, and 22 nurses to the three departments (over all 
shifts); (2) the hospital must assign at least 26, 24, and 19 nurses to the three shifts 
(over all departments); and (3) the minimum and maximum number of nurses allocated 
to each department in a specific shift must satisfy the following limits: 

Department 

2 3 

1 (6,8) (11, 12) (7, 12) 

Shift 2 (4,6) (11, 12) (7, 12) 

3 (2,4) (10, 12) (5, 7) 

198 Maximum Flows: Basic Ideas Chap. 6 



Suggest a method using maximum flows to identify the minimum number of nurses 
required to satisfy all the constraints. 

6.3. A commander is located at one node p in a communication network G and his sub
ordinates are located at nodes denoted by the set S. Let uij be the effort required to 
eliminate arc (i, j) from the network. The problem is to determine the minimal effort 
required to block all communications between the commander and his subordinates. 
How can you solve this problem in polynomial time? 

6.4. Solving a system of equations (Lin [1986]). Let F = {fij} be a given p x q matrix and 
consider the following system of p + q equations in the (possibly fractional) variables 
Y: 

q 

~ JuYij = Ui, 
j~l 

p 

~ fijYij = Vi> 
i=I 

1:5i:5p, (6. 15a) 

1:5j:5q. (6. 15b) 

In this system Ui 2: 0 and Vj 2: 0 are given constants satisfying the condition ~f~ 1 Ui = 
D~l Vj. 

(a) Define a matrix D = {dij} as follows: dij = 0 if fij = 0, and dij = 1 if Ju # O. Show 
that (6.15) has a feasible solution if and only if the following system of p + q 
equations has a feasible solution x: 

q 

~ dijxij = Ui, 
j~l 

p 

~ dijxij= Vj, 
;=1 

1 :5 i :5 p, (6.16a) 

1 :5 j :5 q. (6. 16b) 

(b) Show how to formulate the problem of identifying a feasible solution of the system 
(6.16) as a feasible circulation problem (i.e., identifying a circulation in some net
work with lower and upper boundsjmposed on the arc flows). [Hint: The network 
has a node i for the ith row in (&16a), a node] for thejth row in (6-:16b), and one 
extra node s.] ( 

6.5. Statistical security of data (Kelly, Golden, and Assad [1990]' and Gusfield [1988]). The 
U.S. Census Bureau produces a variety of tables from its census data. Suppose that it 
wishes to produce a p X q table D = {dij} of nonnegative integers. Let r(i) denote the 
sum of the matrix elements in the ith row and let c(j) denote the sum of the matrix 
elements in thejth column. Assume that each sum r(i) and c(j) is strictly positive. The 
Census Bureau often wishes to disclose all the row and column sums along with some 
matrix elements (denoted by a set Y) and yet suppress the remaining elements to ensure 
the confidentiality of privileged information. Unless it exercises care, by disclosing the 
elements in Y, the Bureau might permit someone to deduce the exact value of one or 
more of the suppressed elements. It is possible to deduce a suppressed element dij if 
only one value of dij is consistent with the row and column sums and the disclosed 
elements in Y. We say that any such suppressed element is unprotected. Describe a 
polynomial-time algorithm for identifying all the unprotected elements of the matrix 
and their values. 

6.6. Minimax transportation problem (Ahuja [1986]). Suppose that G = (N, A) is an un
capacitated transportation problem (as defined in Section 1.2) and that we want to find 
an integer flow x that minimizes the objective function max{cijxij:(i,j) E A} among all 
feasible integer flows. 
(a) Consider a relaxed version of the minimax transportation problem: Given a param

eter A, we want to know whether some feasible flow satisfies the condition 
max{cijxij:(i, j) E A} :5 A. Show how to solve this problem as a maximum flow 

Chap. 6 Exercises 199 



Source 

problem. [Hint: Use the condition max{cijxij:(i,j) E A} ~ A to formulate the prob
lem as a feasible flow problem.] 

(b) Use the result in part (a) to develqp a polynomial-time algorithm for solving the 
minimax transportation problem. What is the running time of your algorithm? 

6.7. Consider a generalization of the feasible flow problem discussed in Application 6.1. 
Suppose that the flow bounds constraints are lij ~ xij ~ uij instead of 0 ~ xij ~ Uij for 
some nonnegative lij. How would you solve this generalization of the feasible flow 
problem as a single maximum flow problem? 

6.8 Consider a generalization of the problem that we discussed in Application 6.2. Suppose 
that each club must nominate one of its members as a town representative so that the 
number of representatives belonging to the political party Pk is between Ik and Uk. 

Formulate this problem as a maximum flow problem with nonnegative lower bounds 
on arc flows. 

6.9. In the example concerning the scheduling of uniform parallel machines (Application 
6.4), we assumed that the same number of machines are available each day. How would 
you model a situation when the number of available machines varies from day to day? 
Illustrate your method on the example given in Application 6.4. Assume that three 
machines are available on days 1, 2,4, and 5; two machines on days 3 and 6; and four 
machines on the rest of the days. 

6.10. Can you solve the police patrol problem described in Exercise 1.9 using a maximum 
flow algorithm. If so, how? 

6.11. Suppose that we wish to partition an undirected graph into two components with the 
minimum number of arcs between the components. HoW, would you solve this problem? 

6.12. Consider the network shown in Figure 6.22(a) together with the feasible flow x (8iven 
in the figure. 
(a) Specify four s-t cuts in the network, each containing four forward arcs. List the 

capacity, residual capacity, and the flow across each cut. 
(b) Draw the residual network for the network given in Figure 6.22(a) and list four 

augmenting paths from node s to node t. 

Sink Source Sink 

(a) 

Figure 6.22 Examples for Exercises 6.12 and 6.13. 

6.13. Solve the maximum flow problem shown in Figure 6.22(b) by the labeling algorithm, 
augmenting flow along the longest path in the residual network (i.e., the path containing 
maximum number of arcs). Specify the residual network before each augmentation. 
After every augmentation, decompose the flow into flows along directed paths from 
node s to node t. Finally, specify the minimum cut in the network obtained by the 
labeling algorithm. 

200 Maximum Flows: Basic Ideas Chap. 6 



6.14. Use the labeling algorithm to establish a maximum flow in the undirected network shown 
in Figure 6.23. Show the residual network at the end of each augmentation and specify 
the minimum cut that the algorithm obtains when it terminates. 

3 4 

Source Sink 

3 2 
Figure 6.23 Example for Exercise 
6.14. 

6.15. Consider the network given in Figure 6.24; assume that each arc has capacity 1. 
(a) Compute the maximum number of arc-disjoint paths from the source node to the 

sink node. (You might do so by inspection.) 
(b) Enumerate all s-t cuts in the network. For each s-t cut [S, 3t list the node partition 

and the sets of forward and backward arcs. 
(c) Verify that the maximum number of arc-disjoint paths from node s to node t equals 

the minimum number of forward arcs in an s-t cut. 

Source 

Figure 6.24 Example for Exercise 
6.15. 

6.16. Consider the matrix rounding problem given below (see Application 6.3). We want to 
round each element in the matrix, and also the row and column sums, to the nearest 
multiple of 2 so that the sum of the rounded elements in each row equals the rounded 
row sum and the sum of the rounded elements in each column equals the rounded 
column sum. Formulate this problem as a maximum flow problem and solve it. 

Row sum 

7.5 6.3 15.4 29.2 

3.9 9.1 3.6 16.6 

15.0 5.5 21.5 42.0 

Column sum 26.4 20.9 40.5 

6.17. Formulate the following example of the scheduling problem on uniform parallel ma
chines that we discussed in Application 6.4 as a maximum flow problem. Solve the 
problem by the labeling algorithm, assuming that two machines are available each day. 

Chap. 6 Exercises 201 



Task 

1 

2 

3 

4 

5 

6 

7 

8 

Job (j) 1 2 3 4 

Processing time (pJ 2.5 3.1 5.0 1.8 
(in days) 

Release time (r) 1 5 0 2 

Due date (dj ) 3 7 6 5 

6.18. Minimum flow problem. The minimumjlow problem is a close relative of the maximum 
flow problem with nonnegative lower bounds on arc flows. In the minimum flow prob
lem, we wish to send the minimum amount of flow from the source to the sink, while 
satisfying given lower and upper bounds on arc flows. 
(a) Show how to solve the minimum flow problem by using two applications of any 

maximum flow algorithm that applies to problems with zero lower bounds on arc 
flows. (Hint: First construct a feasible flow and then convert it into a minimum 
flow.) 

(b) Prove the following min-jlow max-cut theorem. Let the jloor (or lower bound ibn 
the cut capacity) of an s-t cut (S, S] be defined as L(iJ)E(S,S) lij - L(i.j)E(S.S) Uij. 

Show that the minimum value of all the flows from node s to node t equals the 
maximum floor of all s-t cuts. 

6.19. Machine setup problem. A job shop needs to perform eight tasks on a particular day. 
Figure 6.25(a) shows the start and end times of each task. The workers must perform 

Start End 2 3 4 5 6 7 
time time 

1 :00 P.M. 1 :30 P.M. - 60 10 25 30 20 15 

6:00 P.M. 8:00 P.M. 2 10 - 40 55 40 5 30 

10:00 P.M. 11 :00 P.M. 3 65 30 - 0 45 30 20 

4:00 P.M. 5:00 P.M. 4 0 50 35 - 20 15 10 

4:00 P.M. 7:00 P.M. 5 20 24 40 50 - 15 5 

12:00 noon 1 :00 P.M. 6 10 8 9 35 12 - 30 

2:00 P.M. 5:00 P.M. 7 15 30 6 18 15 30 -

11 :00 P.M. 12:00 midnight 8 20 35 15 12 75 13 25 

(a) (b) 

Figure 6.25 Machine setup data: (a) task start and end times; (b) setup times in 
transforming between tasks. 

8 

40 

35 

5 

20 

23 

30 

10 

-

202 Maximum Flows: Basic Ideas Chap. 6 



these tasks according to this schedule so that exactly one worker performs each task. 
A worker cannot work on two jobs at the same time. Figure 6.25(b) shows the setup 
time (in minutes) required for a worker to go from one task to another. We wish to 
find the minimum number of workers to perform the tasks. Formulate this problem as 
a minimum flow problem (see Exercise 6.18). 

6.20. Show how to transform a maximum flow problem having several source nodes and 
several sink nodes to one with only one source node and one sink node. 

6.21. Show that if we add any number of incoming arcs, with any capacities, to the source 
node, the maximum flow value remains unchanged. Similarly, show that if we add any 
number of outgoing arcs, with any capacities, at the sink node, the maximum flow value 
remains unchanged. 

6.22. Show that the maximum flow problem with integral data has a finite optimal solution 
if and only if the network contains no infinite capacity directed path from the source 
node to the sink node. 

6.23. Suppose that a network has some infinite capacity arcs but no infinite capacity paths 
from the source to the sink. Let A 0 denote the set of arcs with finite capacities. Show 
that we can replace the capacity of each infinite capacity arc by a finite number M 2: 

L(iJ)EAO uij without affecting the maximum flow value. 

6.24. Suppose that you want to solve a maximum flow problem containing parallel arcs, but 
the maximum flow code you own cannot handle parallel arcs. How would you use the 
code to solve your maximum flow problem? 

6.25. Networks with node capacities. In some networks, in addition to arc capacities, each 
node i, other than the source and the sink, might have an upper bound, say wei), on 
the flow that can pass through it. For example, the nodes might be airports with limited 
runway capacity for takeoff and landings, or might be switches in a communication 
network with a limited number of ports. In these networks we are interested in deter
mining the maximum flow satisfying/150th the arc and node capacities. Transform this 
problem to the standard maximum flow problem. From the perspective of worst-case 
complexity, is the maximum flow problem with upper bounds on nodes more difficult 
to solve than the standard maximum flow problem? 

6.26. Suppose that a maximum flow network contains a node, other than the_source node, 
with no incoming arc. Can we delete this node without affecting the maximum flow 
value? Similarly, can we delete a node, other than the sink node, with no outgoing arc? 

6.27. Suppose that you are asked to solve a maximum flow problem In a directed network 
subject to the absolute value flow bound constraints - Uij 5 Xij 5 uij imposed on some 
arcs (i, j). How would you solve this problem? 

6.28. Suppose that a maximum flow is available. Show how you would find a minimum cut 
in Oem) additional time. Suppose, instead, that a minimum cut is available. Could you 
use this cut to obtain a maximum flow faster than applying a maximum flow algorithm? 

6.29. Painted network theorem. Let G be a directed network with a distinguished arc (s, t). 
Suppose that we paint each arc in the network as green, yellow, or red, with arc 
(s, t) painted yellow. Show that the painted network satisfies exactly one of the fol
lowing two cases: (1) arc (s, t) is contained in a cycle of yellow and green arcs in which 
all yellow arcs have the same direction but green arcs can have arbitrary directions; 
(2) arc (s, t) is contained in a cut of yellow and red arcs in which all yellow arcs have 
the same direction but red arcs can have arbitrary directions. 

6.30. Show that if Xij = Uij for some arc (i, j) in every maximum flow, this arc must be a 
forward arc in some minimum cut. 

6.31. An engineering department consisting of p faculty members, F\, Fz, ... ,Fp , will offer 
p courses, Cb Cz, ... , Cp , in the coming semester and each faculty member will teach 
exactly one course. Each faculty member ranks two courses he (or she) would like to 
teach, ranking them according to his (or her) preference. 
(a) We say that a course assignment is afeasible assignment if every faculty member 

Chap. 6 Exercises 203 



teaches a course within his (or her) preference list. How would you determine 
whether the department can find a feasible assignment? (For a related problem see 
Exercise 12.46.) 

(b) A feasible assignment is said to be k-feasible if it assigns at most k faculty members 
to their second most preferred courses. For a given k, suggest an algorithm for 
determining a k-feasible assignment. 

(c) We say that a feasible assignment is an optimal assignment if it maximizes the 
number of faculty members assigned to their most preferred course. Suggest an 
algorithm for determining an optimal assignment and analyze its complexity. [Hint: 
Use the algorithm in part (b) as a subroutine.] 

6.32. Airline scheduling problem. An airline has p flight legs that it wishes to service by the 
fewest possible planes. To do so, it must determine the most efficient way to combine 
these legs into flight schedules. The starting time for flight i is ai and the finishing time 
is bi. The plane requires rij hours to return from the point of destination of flight i to 
the point of origin of flight j. Suggest a method for solving this problem. 

6.33. A flow x is even if for every arc (i, j) E A, xij is an even number; it is odd if for every 
(i, j) E A, xij is an odd number. Either prove that each of the following claims are true 
or give a counterexample for them. 
(a) If all arc capacities are even, the network has an even maximum flow. 
(b) If all arc capacities are odd, the network has an odd maximum flow. 

6.34. Which of the following claims are true and which are false. Justify your answer eith&'r 
by giving a proof or by constructing a counterexample. 
(a) If Xij is a maximum flow, either xij = 0 or Xji = 0 for every arc (i, j) EA. 
(b) Any network always has a maximum flow x for which, for every arc (i, j) E A, 

either Xij = 0 or Xji = o. 
(c) If all arcs in a network have different capacities, the network has a unique minimum 

cut. 
(d) In a directed network, if we replace each directed arc by an undirected arc, the 

maximum flow value remains unchanged. 
(e) If we multiply each arc capacity by a positive number A, the minimum cut remains 

unchanged. 
(f) If we add a positive number A to each arc capacity, the minimum cut remains 

unchanged. 

6.35. (a) Suppose that after solving a maximum flow problem you realize that you have 
underestimated the capacity of an arc (p, q) by k units. Show that the labeling 
algorithm can reoptimize the problem in O(km) time. 

(b) Suppose that instead of underestimating the capacity of the arc (p, q), you had 
overestimated its capacity by k units. Can you reoptimize the problem in O(km) 
time? . 

6.36. (a) Construct a family of networks with the number of s-t cuts growing exponentially 
with n. 

(b) Construct a family of networks with the number of minimum cuts growing expo
nentially with n. 

6.37. (a) Given a maximum flow in a network, describe an algorithm for determining 
the minimum cut [S, S] with the property that for every other minimum cut [R, R], 
R~ S. _ 

(b) Describe an algorithm for determiningJ:he minimum cut [S, S] with the property 
that for every other minimum cut [R, R], S ~ R. 

(c) Describe an algorithm for determining whether the maximum flow problem has a 
unique minimum cut. 

6.38. Let [S, S] and [T, T] be two s-t cuts in the directed network G. Show that the cut 
capacity function u[. ,.] is submodular, that is, u[S, S] + u[T, n ~ u[SUT, Sun + 
u[SnT, SnT]. (Hint: Prove this result by case analysis.) 

6.39. Show that if [S, S] and [T, T] are both minimum cuts, so are [SUT, SUT] and [SnT, 
SnT]. 

204 Maximum Flows: Basic Ideas Chap. 6 



6.40. Suppose that we know a noninteger maximum flow in a directed network with integer 
arc capacities. Suggest an algorithm for converting this flow into an integer maximum 
flow. What is the running time of your algorithm? (Hint: Send flows along cycles.) 

6.41. Optimal coverage of sporting events. A group of reporters want to cover a set of sporting 
events in an olympiad. The sports events are held in several stadiums throughout a 
city. We known the starting time of each event, its duration, and the stadium where it 
is held. We are also given the travel times between different stadiums. We want to 
determine the least number of reporters required to cover the sporting events. How 
would you solve this problem? 

6.42. In Section 6.7 we showed how to solve the maximum flow problem in directed networks 
with nonnegative lower bounds by solving two maximum flow problems with zero lower 
flow bounds. Try to generalize this approach for undirected networks in which the flow 
on any arc (i, j) is permitted in either direction, but whichever direction is chosen the 
amount of flow is at least lij. If you succeed in developing an algorithm, state the 
algorithm along with a proof that it correctly solves the problem; if you do not succeed 
in developing an algorithm state reasons why the generalization does not work. 

6.43. Feasibility of the feasible flow problem (Gale [1957]). Show that the feasible flow problem, 
discussed in Application 6.1, has a feasible solution if and only if for every subset 
S ~ N, b(S) - u[S, S] ~ O. (Hint: Transform the feasible flow problem into a circulation 
problem with nonzero lower bounds and use the result of Theorem 6.11.) 

6.44. Prove Theorems 6.7 and 6.8 for undirected networks. 

6.45. Let N+ and N- be two nonempty disjoint node sets in G. Describe a method for 
determining the maximum number of arc-disjoint paths from N+ to N- (i.e., each path 
can start at any node in N+ and can end at any node in N-). What is the implication 
of the max-flow min-cut theorem in th;(case? (Hint: Generalize the statement of Theo-
rem 6.7.) \ 

6.46. Consider a 0-1 matrix H with n) rows and nz columns. We refer to a row or a column 
of the matrix H as a line. We say that a set of 1 's in the matrix H is independent if no 
two of them appear in the same line. We also say that a set of lines in the matrix is a 
cover of H if they include (Le., "cover") all the 1 's in the matrix. Show that the max
imum number of independent l' s equals the minimum number oflines in a cover. (Hint: 
Use the max-flow min-cut theorem on an appropriately defined network.) 

6.47. In a directed acyclic network G, certain arcs are colored blue, while others are colored 
red. Consider the problem of covering the blue arcs by directed paths, which can start 
and end at any node (these paths can contain arcs of any color). Show that the minimum 
number of directed paths needed to cover the blue arcs is equal to the maximum number 
of blue arcs that satisfy the property that no two of these arcs belong to the same path. 
Will this result be valid if G contains directed cycles? (Hint: Use the min-flow max
cut theorem stated in Exercise 6.18.) 

6.48. Pathological example for the labeling algorithm. In the residual network G(x) corre
sponding to a flow x, we define an augmenting walk as a directed walk from node s to 
node t that visits any arc at most once (it might visit nodes multiple times-in particular, 
an augmenting walk might visit nodes s and t multiple times.) 
(a) Consider the network shown in Figure 6.26(a) with the arcs labeled a, b, c and d; 

note that one arc capacity is irrational. Show that this network contains an infinite 
sequence of augmenting walks whose residual capacities sum to the maximum flow 
value. (Hint: Each augmenting walk of the sequence contains exactly two arcs from 
node s to node t with finite residual capacities.) 

(b) Now consider the network shown in Figure 6.26(b). Show that this network contains 
an infinite sequence of augmenting walks whose residual capacities sum to a value 
different than the maximum flow value. 

(c) Next consider the network shown in Figure 6.26(c); in addition to the arcs shown, 
the network contain an infinite capacity arc connecting each node pair in the set 

Chap. 6 Exercises 205 



• N· W 

206 

Uij • "0~{,:f 
a 

b 00 

c V2 00 

d 00 

(a) 

a 

b 00 

00 
c 

d 00 

e 
(b) (c) 

Figure 6.26 A subgraph of a pathological instance for labeling algorithm. The fall graph 
contains an infinite capacity are connecting each pair of nodes i and j as well as each pair 
of nodes i' and j'. 

{I, 2,3, 4} and each node pair in the set {I', 2' ,3', 4'}. Show that each augmenting 
walk in the solution of part (b) corresponds to an augmenting path in Figure 6.26(c). 
Conclude that the labeling algorithm, when applied to a maximum flow problem 
with irrational capacities, might perform an infinite sequence of augmentations and 
the terminal flow value might be different than the maximum flow value. 

Maximum Flows: Basic Ideas Chap. 6 



7 

MAXIMUM FLOWS: POLYNOMIAL 
ALGORITHMS 

Every day, in every way, I am getting better and better. 
-Emile Coue 

Chapter Outline 

7.1 Introduction 
7.2 Distance Labels 
7.3 Capacity Scaling Algorithm 
7.4 Shortest Augmenting Path Algorithm 
7.5 Distance Labels and Layered Networks 
7.6 Generic Preflow-Push Algorithm 
7.7 FIFO Preflow-Push Algoritqm 
7.8 Highest Label Preflow-Push A.igorithm 
7.9 Excess Scaling Algorithm 
7.10 Summary 

7.1 INTRODUCTION 

The generic augmenting path algorithm that we discussed in Chapter 6 is a powerful 
tool for solving maximum flow problems. Not only is it guaranteed to solve any 
maximum flow problem with integral capacity data, it also provides us with a con
structive tool for establishing the fundamental max-flow min-cut theorem and there
fore for developing many useful combinatorial applications of network flow theory. 

As we noted in Chapter 6, however, the generic augmenting path algorithm 
has two significant computational limitations: (1) its worst-case computational com
plexity of O(nmU) is quite unattractive for problems with large capacities; and (2) 
from a theoretical perspective, for problems with irrational capacity data, the al
gorithm might converge to a nonoptimal solution. These limitations suggest that the 
algorithm is not entirely satisfactory, in theory. Unfortunately, the algorithm is not 
very satisfactory in practice as well: On very large problems, it can require too much 
solution time. 

Motivated by a desire to develop methods with improved worst-case com
plexity and empirical behavior, in this chapter we study several refinements of the 
generic augmenting path algorithm. We also introduce and study another class of 
algorithms, known as pre flow-push algorithms, that have recently emerged as the 
most powerful techniques, both theoretically and computationally, for solving max
imum flow problems. 

207 



Before describing these algorithms and analyzing them in detail, let us pause 
to reflect briefly on the theoretical limits of maximum flow algorithms and to intro
duce the general solution strategies employed by the refined augmenting path al
gorithms that we consider in this chapter. Flow decomposition theory shows that, 
in principle, we might be able to design augmenting path algorithms that are capable 
of finding a maximum flow in no more than m augmentations. For suppose that x 
is an optimal flow and XO is any initial flow (possibly the zero flow). By the flow 
decomposition property (see Section 3.5), we can obtain x from XO by a sequence 
of (1) at most m augmentations on augmenting paths from node s to node t, plus (2) 
flows around augmenting cycles. If we define x' as the flow vector obtained from 
XO by sending flows along only the augmenting paths, x' is also a maximum flow 
(because flows around augmenting cycles do not change the flow value into the sink 
node). This observation demonstrates a theoretical possibility of finding a maximum 
flow using at most m augmentations. Unfortunately, to apply this flow decomposition 
argument, we need to know a· maximum flow. As a consequence, no algorithm 
developed in the literature achieves this theoretical bound of m augmentations. 
Nevertheless, it is possible to improve considerably on the O(nU) bound on the 
number of augmentations required by the generic augmenting path algorithm. 

How might we attempt to reduce the number of augmentations or even eliminate 
them altogether? In this chapter we consider three basic approaches: 

1. Augmenting in "large" increments of flow 
2. Using a combinatorial strategy that limits the type of augmenting paths we can 

use at each step 
3. Relaxing the mass balance constraint at intermediate steps of the algorithm, 

and thus not requiring that each flow change must be an augmentation that 
starts at the source node and terminates at the sink node 

Let us now consider each of these approaches. As we have seen in Chapter 
6, the generic augmenting path algorithm could be slow because it might perform a 
large number of augmentations, each carrying a small amount of flow. This obser
vation suggests one natural strategy for improving the augmenting path algorithm: 
Augment flow along a path with a large residual capacity so that the number of 
augmentations remains relatively small. The maximum capacity augmenting path 
algorithm uses this idea: It always augments flow along a path with the maximum 
residual capacity. In Section 7.3 we show that this algorithm performs O(m log U) 
augmentations. A variation of this algorithm that augments flows along a path with 
a sufficiently large, but not necessarily maximum residual capacity also performs 
O(m log U) augmentations and is easier to implement. We call this algorithm the 
capacity scaling algorithm and describe it in Section 7.3. 

Another possible strategy for implementing and improving the augmenting path 
algorithm would be to develop an approach whose implementation is entirely in
dependent of the arc capacity data and relies on a combinatorial argument for its 
convergence. One such approach would be somehow to restrict the choice of aug
menting paths in some way. In one such approach we might always augment flow 
along a "shortest path" from the source to the sink, defining a shortest path as a 
directed path in the residual network consisting of the fewest number of arcs. If we 

208 Maximum Flows: Polynomial Algorithms Chap. 7 



augment flow along a shortest path, the length of any shortest path either stays the 
same or increases. Moreover, within m augmentations, the length of the shortest 
path is guaranteed to increase. (We prove these assertions in Section 7.4.) Since no 
path contains more than n - 1 arcs, this result guarantees that the number of aug
mentations is at most (n - 1)m. We call this algorithm the shortest augmenting path 
algorithm and discuss it in Section 7.4. 

The preflow-push algorithms use the third strategy we have identified: They 
seek out "shortest paths" as in the shortest augmenting path algorithm, but do not 
send flow along paths from the source to the sink. Instead, they send flows on 
individual arcs. This "localized" strategy, together with clever rules for imple
menting this strategy, permits these algorithms to obtain a speed-up not obtained 
by any augmenting path algorithm. We study these preflow-push algorithms in Sec
tions 7.6 through 7.9. 

The concept of distance labels is an important construct used to implement the 
shortest augmenting path algorithm and the preflow-push algorithms that we consider 
in this chapter. So before describing the improved algorithms, we begin by discussing 
this topic. 

7.2 DISTANCE LABELS 

A distance function d: N ~ Z+ U {O} with respect to the residual capacities rij is a 
function from the set of nodes to the set of nonnegative integers. We say that a 
distance function is valid with respect to a flow x if it satisfies the following two 
conditions: 

d(t) = 0; (7.1) 

d(i) ~ d(j) + 1 for every arc (i, j) in the residual network G(x). (7.2) 

We refer to d(i) as the distance label of node i and conditions (7.1) and (7.2) 
as the validity conditions. The following properties show why the distance labels 
might be of use in designing network flow algorithms. 

Property 7.1. If the distance labels are valid, the distance label d(i) is a lower 
bound on the length of the shortest (directed) path from node i to node t in the 
residual network. 

To establish the validity of this observation, let i il i2 - ... - ik 
h+ 1 = t be any path of length k from node i to node t in the residual network. The 
validity conditions imply that 

Sec. 7.2 

d(ik) ~ d(ik+l) + 1 = d(t) + 1 = 1, 

d(ik-I) ~ d(ik) + 1 ~ 2, 

d(ik-2) ~ d(ik-I) + 1 ~ 3, 

Distance Labels 209 



Property 7.2. If d(s) 2: n, the residual network contains no directed path from 
the source node to the sink node. 

The correctness of this observation follows from the facts that d(s) is a lower 
bound on the length of the shortest path from s to t in the residual network, and 
therefore no directed path can contain more than (n - 1) arcs. Therefore, if 
d(s) 2: n, the residual network contains no directed path from node s to node t. 

We now introduce some additional notation. We say that the distance labels 
are exact if for each node i, d(i) equals the length of the shortest path from node i 
to node t in the residual network. For example, in Figure 7.1, if node 1 is the source 
node and node 4 is the sink node, then d = (0,0,0,0) is a valid vector of distance 
label, and d = (3, 1, 2, 0) is a vector of exact distance labels. We can determine 
exact distance labels for all nodes in O(m) time by performing a backward breadth
first search of the network starting at the sink node (see Section 3.4). 

Figure 7.1 Residual network. 

Admissible Arcs and Admissible Paths 

We say that an arc (i, j) in the residual network is admissible if it satisfies the 
condition that d(i) = d(j) + 1; we refer to all other arcs as inadmissible. We also 
refer to a path from node s to node t consisting entirely of admissible arcs as an 
admissible path. Later, we use the following property of admissible paths. 

Property 7.3. An admissible path is a shortest augmenting path from the 
source to the sink. 

Since every arc (i,j) in an admissible path P is admissible, the residual capacity 
of this arc and the distance labels of its end nodes satisfy the conditions (1) rij > 0, 
and (2) d(i) = d(j) + 1. Conditiori (1) implies that P is an augmenting path and 
condition (2) implies that if P contains k arcs, then d(s) = k. Since d(s) is a lower 
bound on the length of any path from the source to the sink in the residual network 
(from Property 7.1), the path P must be a shortest augmenting path. 

7.3 CAPACITY.SCALING ALGORITHM 

We begin by describing the maximum capacity augmenting path algorithm and noting 
its computational complexity. This algorithm always augments flow along a path 
with the maximum residual capacity. Let x be any flow and let v be its flow value. 

210 Maximum Flows: Polynomial Algorithms Chap. 7 



As before, let v* be the maximum flow value. The flow decomposition property (i.e., 
Theorem 3.5), as applied to the residual network G(x), implies that we can find m 
or fewer directed paths from the source to the sink whose residual capacities sum 
to (v* - v). Thus the maximum capacity augmenting path has residual capacity at 
least (v* - v)/m. Now consider a sequence of 2m consecutive maximum capacity 
augmentations starting with the flow x. If each of these augmentations augments at 
least (v* - v)/2m units of flow, then within 2m or fewer iterations we will establish 
a maximum flow. Note, however, that if one of these 2m consecutive augmentations 
carries less than (v* - v)/2m units of flow, then from the initial flow vector x, we 
have reduced the residual capacity of the maximum capacity augmenting path by a 
factor of at least 2. This argument shows that within 2m consecutive iterations, the 
algorithm either establishes a maximum flow or reduces the residual capacity of the 
maximum capacity augmenting path by a factor of at least 2. Since the residual 
capacity of any augmenting path is at most 2U and is at least 1, after O(m log U) 
iterations, the flow must be maximum. (Note that we are essentially repeating the 
argument used to establish the geometric improvement approach discussed in Sec
tion 3.3.) 

As we have seen, the maximum capacity augmentation algorithm reduces the 
number of augmentations in the generic labeling algorithm from O(nU) to 
O(m log U). However, the algorithm performs more computations per iteration, 
since it needs to identify an augmenting path with the maximum residual capacity, 
not just any augmenting path. We now suggest a variation of the maximum capacity 
augmentation algorithm that does not perform more computations per iteration and 
yet establishes a maximum flow within O(m log U). Since this algorithm scales the 
arc capacities implicitly, we refer to it as the capacity scaling algorithm. 

The essential idea underlying the capacity scaling algorithm is conceptually 
quite simple: We augment flow along a path with a sufficiently large residual ca
pacity, instead of a path with the maximum augmenting capacity because we can 
obtain a path with a sufficiently large residual capacity fairly easily-in O(m) time. 
To define the capacity scaling algorithm, let us introduce a parameter ~ and, with 
respect to a given flow x, define the ~-residual network as a network containing arcs 
whose residual capacity is at least ~. Let G(x, ~) denote the ~-residual network. 
Note that G(x, 1) = G(x) and G(x, ~) is a subgraph of G(x). Figure 7.2 illustrates 
this definition. Figure 7.2(a) gives the residual network G(x) and Figure 7.2(b) gives 
the ~-residual network G(x, ~) for ~ = 8. Figure 7.3 specifies the capacity scaling 
algorithm. 

Let us refer to a phase of the algorithm during which ~ remains constant as a 
scaling phase and a scaling phase with a specific value of ~ as a ~-scaling phase. 
Observe that in a ~-scaling phase, each augmentation carries at least ~ units of flow. 
The algorithm starts with ~ = 2l1og UJ and halves its value in every scaling phase 
until ~ = 1. Consequently, the algorithm performs 1 + Llog UJ = O(1og U) scaling 
phases. In the last scaling phase, ~ = 1, so G(x, ~) = G(x). This result shows that 
the algorithm terminates with a maximum flow. 

The efficiency of the algorithm depends on the fact that it performs at most 
2m augmentations per scaling phase. To establish this result, consider the flow at 
the end of the ~-scaling phase. Let x' be this flow and let v' denote its flow value. 
Furthermore, let S be the set of nodes reachable from node s in G(x', Ll). Since 

Sec. 7.3 Capacity Scaling Algorithm 211 



~ 
rij ~ .1,\; 

" '0 

12 12 

4 
lO 10 

7 8 

13 13 

15 15 

6 

(a) (b) 

Figure 7.2 Illustrating the a-residual network: (a) residual network G(x); (b) a-re
sidual network G(x, a) for a = 8. 

algorithm capacity scaling; 
begin 

x: = 0; 
a : = 2 Llog UJ ; 

while a;:;,: 1 do 
begin 

while G(x, a) contains a path from node s to node tdo 
begin 

identify a path Pin G(x, a); 
& : = min{r/j : (i. j) E P}; 
augment & units of flow along P and update G(x. a); 

end; 
a : = /)./2; 

end; 
end; 

Figure 7.3 Capacity scaling algorithm. 

8 

G(x' , a) contains no augmenting path from the source to the sink, t E S. Therefore, 
[S, S] forms an s-t cut. The definition of S implies that the residual capacity of 
every arc in [S, S] is strictly less than a, so the residual capacity of the cut [S, S] 
is at most m a. Consequently, v* - v' ~ ma (from Property 6.2). In the next scaling 
phase, each augmentation carries at least a/2 units of flow, so this scaling phase 
can perform at most 2m such augmentations. The labeling algorithm described in 
Section 6.5 requires O(m) time to identify an augmenting path, and updating the a
residual network also requires O(m) time. These arguments establish the following 
result. 

Theorem 7.4. The capacity scaling algorithm solves the maximum flow prob-
lem within O(m log U) augmentations and runs in O(m2 10g U) time. • 

It is possible to reduce the complexity of the capacity scaling algorithm even 
further-to O(nm log U)-using ideas of the shortest augmenting path algorithm, 
described in the next section. 

212 Maximum Flows: Polynomial Algorithms Chap. 7 



7.4 SHORTEST AUGMENTING PATH ALGORITHM 

The shortest augmenting path algorithm always augments flow along a shortest path 
from the source to the sink in the residual network. A natural approach for imple
menting this approach would be to look fOJ: shortest paths by performing a breadth 
first search in the residual network. If the labeling algorithm maintains the set L of 
labeled nodes as a queue, then by examining the labeled nodes in a first-in, first-out 
order, it would obtain a shortest path in the residual network (see Exercise 3.30). 
Each of these iterations would require O(m) steps in the worst case, and (by our 
subsequent observations) the resulting computation time would be O(nm 2

). Unfor
tunately, this computation time is excessive. We can improve it by exploiting the 
fact that the minimum distance from any node i to the sink node t is monotonically 
nondecreasing over all augmentations. By fully exploiting this property, we can 
reduce the average time per augmentation to O(n). 

The shortest augmenting path algorithm proceeds by augmenting flows along 
admissible paths. It constructs an admissible path incrementally by adding one arc 
at a time. The algorithm maintains a partial admissible path (i.e., a path from s to 
some node i consisting solely of admissible arcs) and iteratively performs advance 
or retreat operations from the last node (i.e., the tip) of the partial admissible path, 
which we refer to as the current node. If the current node i has (i.e., is incident to) 
an admissible arc (i, j), we perform an advance operation and add arc (i, j) to the 
partial admissible path; otherwise, we perform a retreat operation and backtrack 
one arc. We repeat these operations until the partial admissible path reaches the 
sink node at which time we perform an augmentation. We repeat this process until 
the flow is maximum. Before presenting a formal description of the algorithm, we 
illustrate it on the numerical example given in Figure 7.4(a). 

We first compute the initial distance labels by performing the backward 
breadth-first search of the residual network starting at the sink node. The numbers 
next to the nodes in Figure 7.4(a) specify these values of the distance labels. In this 
example we adopt the convention of selecting the arc (i, j) with the smallest value 
ofj whenever node i has several admissible arcs. We start at the source node with 
a null partial admissible path. The source node has several admissible arcs, so we 
perform an advance operation. This operation adds the arc (1, 2) to the partial ad
missible path. We store this path using predecessor indices, so we set pred(2) = 1. 
Now node 2 is the current node and the algorithm performs an advance operation 
at node 2. In doing so, it adds arc (2, 7) to the partial admissible path, which now 
becomes 1-2-7. We also set pred(7) = 2. In the next iteration, the algorithm adds 
arc (7, 12) to the partial admissible path obtaining 1-2-7-12, which is an admissible 
path to the sink node. We perform an augmentation of value min{rI2' r27, r7,12} = 
min{2, 1, 2} = 1, and thus saturate the arc (2, 7). Figure 7.4(b) specifies the residual 
network at this stage. 

We again start at the source node with a null partial admissible path. The 
algorithm adds the arc (1, 2) and node 2 becomes the new current node. Now we 
find that node 2 has no admissible arc. To create new admissible arcs, we must in
crease the distance label of node 2. We thus increase d(2) to the value min{d(j) + 
1 : (i, j) E A(i) and rij> O} = min{d(1) + I} = 4. We refer to this operation as 
a relabel operation. We will later show that a relabel operation preserves the validity 

Sec. 7.4 Shortest Augmenting Path Algorithm 213 



2 

d(i) d(j) 

~f-----_--,riJ,-· --:.~f) 

2 

2 2 

2 

(b) 

Figure 7.4 Illustrating the shortest augmenting path algorithm. 

conditions imposed upon the distance labels. Observe that the increase in d(2) causes 
arc (1, 2) to become inadmissible. Thus we delete arc (1, 2) from the partial admissible 
path which again becomes a null path. In the subsequent operations, the algorithm 
identifies the admissible paths 1-3-8-12,1-4-9-12, 1-5-10-12, and 1-6-11-12 and 
augments unit flows on these paths. We encourage the reader to carry out the details 
of these operations. Figures 7.5 and 7.6 specify the details of the algorithm. 

Correctness of the Algorithm 

In our analysis of the shortest augmenting path algorithm we first show that it cor
rectly solves the maximum flow problem. 

Lemma 7.5. The shortest augmenting path algorithm maintains valid distance 
labels at each step. Moreover, each relabel (or, retreat) operation strictly increases 
the distance label of a node. 

214 Maximum Flows: Polynomial Algorithms Chap. 7 



algorithm shortest augmenting path; 
begin 

x: = 0; 
obtain the exact distance labels d(/); 
i: = s; 
while d(s) < n do 
begin 

if i has an admissible arc then 
begin 

advance(i); 
if i = t then augment and set i = s 

end 
else retreat(i) 

end; 
end; 

procedure advance(i); 
begin 

Figure 7.5 Shortest augmenting path algorithm. 

let (i, j) be an admissible arc in A(i); 
pred(j) : = i and i: = j; 

end; 

(a) 

procedure retreat(i); 
begin 

d(i) : = min{d(j) + 1 : (i, j) E A(/) and rij> O}; 
if i ¥- s then i: = pred(/); 

end; 

(b) 

procedure augment; 
begin 

using the predecessor indices identify an augmenting 
path P from the source to the sink; 
& : = min{rjj : (i, j) E P}; 
augment & units of flow along path P; 

end; 

(c) 

Figure 7.6 Procedures of the shortest augmenting path algorithm. 

Proof We show that the algorithm maintains valid distance labels at every 
step by performing induction on the number of augment and relabel operations. (The 
advance operation does not affect the admissibility of any arc because it does not 
change any residual capacity or distance label.) Initially, the algorithm constructs 
valid distance labels. Assume, inductively, that the distance labels are valid prior 
to an operation (i.e., they satisfy the validity conditions). We need to check whether 
these conditions remain valid (a) after an augment operation, and (b) after a relabel 
operation. 

Sec. 7.4 Shortest Augmenting Path Algorithm 215 



(a) Although a flow augmentation on arc (i, j) might remove this arc from the 
residual network, this modification to the residual network does not affect the validity 
of the distance labels for this arc. An augmentation on arc (i, j) might, however, 
create an additional arc (j, i) with rji > 0 and therefore also create an additional 
inequality d(j) ~ d(i) + 1 that the distanceJabels must satisfy. The distance labels 
satisfy this validity condition, though, since d(i) = d(j) + 1 by the admissibility 
property of the augmenting path. 

(b) The relabel operation modifies d(i); therefore, we must show that each 
incoming and outgoing arc at node i satisfies the validity conditions with respect to 
the new distance labels, say d'(i). The algorithm performs a relabel operation at 
node i when it has no admissible arc; that is, no arc (i, j) E A(i) satisfies the conditions 
d(i) = d(j) + 1 and rij > O. This observation, in light of the validity condition 
d(i) ~ d(j) + 1, implies that d(i) < d(j) + 1 for all arcs (i, j) E A with a positive 
residual capacity. Therefore, d(i) < min{d(j) + 1 : (i, j) E A(i) and rij > O} = d'(i), 
which is the new distance label after the relabel operation. We have thus shown that 
relabeling preserves the validity condition for all arcs emanating from node i, and 
that each relabel operation strictly increases the value of d(i). Finally, note that 
every incoming arc (k, z) satisfies the inequality d(k) ~ d(i) + 1 (by the induction 
hypothesis). Since d(i) < d'(i), the relabel operation again preserves validity cone 
dition for arc (k, i). • 

The shortest augmenting path algorithm terminates when d(s) :2: n, indicating 
that the network contains no augmenting path from the source to the sink (from 
Property 7.2). Consequently, the flow obtained at the end of the algorithm is a 
maximum flow. We have thus proved the following theorem. 

Theorem 7.6. The shortest augmenting path algorithm correctly computes a 
maximum flow. • 

Complexity of the Algorithm 

We now show that the shortest augmenting path algorithm runs in O(n2m) time. We 
first describe a data structure used to select an admissible arc emanating from a 
given node. We call this data structure the current-arc data structure. Recall that 
we used this data structure in Section 3.4 in our discussion of search algorithms. 
We also use this data structure in almost all the maximum flow algorithms that we 
describe in subsequent sections. Therefore, we review this data structure before 
proceeding. 

Recall that we maintain the arc list A (i) which contains ali the arcs emanating 
from node i. We can arrange the arcs in these lists arbitrarily, but the order, once 
decided, remains unchanged throughout the algorithm. Each node i has a current 
arc, which is an arc in A (i) and is the next candidate for admissibility testing. Initially, 
the current arc of node i is the first arc in A(i). Whenever the algorithm attempts 
to find an admissible arc emanating from node i, it tests whether the node's current 
arc is admissible. If not, it designates the next arc in the arc list as the current arc. 
The algorithm repeats this process until either it finds an admissible arc or reaches 
the end of the arc list. 

216 Maximum Flows: Polynomial Algorithms Chap. 7 



Consider, for example, the arc list of node 1 in Figure 7.7. In this instance, 
A(1) = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}. Initially, the current arc of node 1 is arc 
(1,2). Suppose that the algorithm attempts to find an admissible arc emanating from 
node 1. It checks whether the node's current arc, arc (1, 2), is admissible. Since it 
is not, the algorithm designates arc (1, 3) as the current arc of node 1. The arc 
(1,3) is also inadmissible, so the current arc becomes arc (1, 4), which is admissible. 
From this point on, arc (1, 4) remains the current arc of node 1 until it becomes 
inadmissible because the algorithm has increased the value of d(4) or decreased the 
value of the residual capacity of arc (1, 4) to zero. 

d(i) d(j) 

~~--~~~. ---•. ~ 
2 

4 

a---------~2{4·)J 2 

2 

Figure 7.7 Selecting admissible arcs 
emanating from a node. 

Let us consider the situation when the algorithm reaches the €nd of the arc 
list without finding any admissible arc. Can we say that AU) has no admissible arc? 
We can, because it is possible to show that if an arc U,j) is iI;tadmissible in previous 
iterations, it remains inadmissible until dU) increases (see Exercise 7.13). So if we 
reach the end of the arc list, we perform a relabel operation and again set the current 
arc of node i to be the first arc in A(i). The relabel operation also examines each 
arc in AU) once to compute the new distance label, which is same as the time it 
spends in identifying admissible arcs at node i in one scan of the arc list. We have 
thus established the following result. 

Property 7.7. If the algorithm relabels any node at most k times, the 
total time spent in finding admissible arcs and relabeling the nodes is 
O(k LiEN 1 AU) I) = O(km). 

We shall be using this result several times in this and the following chapters. 
We also use the following result in several places. 

Lemma 7.8. If the algorithm relabels any node at most k times, the algorithm 
saturates arcs (i.e., reduces their residual capacity to zero) at most kml2 times. 

Sec. 7.4 Shortest Augmenting Path Algorithm 217 



Proof. We show that between two consecutive saturations of an arc (i,j), both 
d(i) and d(j) must increase by at least 2 units. Since, by our hypothesis, the algorithm 
increases each distance label at most k times, this result would imply that the al
gorithm could saturate any arc at most k/2 times. Therefore, the total number of arc 
saturations would be kml2, which is the assertion of the lemma. 

Suppose that an augmentation saturates an arc (i, j). Since the arc (i, j) is 
admissible, 

d(i) = d(j) + 1. (7.3) 

Before the algorithm saturates this arc again, it must send flow back from node 
j to node i. At this time, the distance lfibels d'(i) and d'(j) satisfy the equality 

d'(j) = d'(i) + 1. (7.4) 

In the next saturation of arc (i, j), we must have 

d"(i) = d"(j) + 1. (7.5) 

Using (7.3) and (7.4) in (7.5), we see that 

d"(i) = d"(j) + 1 2:: d'(j) + 1 = d'(i) + 2 2:: d(i) + 2. 

The inequalities in this expression follow from Lemma 7.5. Similarly, it is 
possible to show that d"(j) 2:: d(j) + 2. As a result, between two consecutive sat
urations of the arc (i, j), both d(i) and d(j) increase by at least 2 units, which is the 
conclusion of the lemma. • 

Lemma 7.9. 
(a) In the shortest augmenting path algorithm each distance label increases at most 

n times. Consequently, the total number of relabel operations is at most n2. 
(b) The number of augment operations is at most nml2. 

Proof Each relabel operation at node i increases the value of d(i) by at least 
1 unit. After the algorithm has relabeled node i at most n times, d(i) 2:: n. From this 
point on, the algorithm never again selects node i during an advance operation since 
for every node k in the partial admissible path, d(k) < d(s) < n. Thus the algorithm 
relabels a node at most n times and the total number of relabel operations is bounded 
by n2

• In view of Lemma 7.8, the preceding result implies that the algorithm saturates 
at most nml2 arcs. Since each augmentation saturates at least one arc, we imme-
diately obtain a bound of nml2 on the number of augmentations. • 

Theorem 7.10. The shortest augmenting path algorithm runs in O(n2m) time. 

Proof Using Lemmas 7.9 and 7.7 we find that the total effort spent in finding 
admissible arcs and in relabeling the nodes is O(nm). Lemma 7.9 implies that the 
total number of augmentations is O(nm). Since each augmentation requires O(n) 
time, the total effort for the augmentation operations is O(n2 m). Each retreat op
eration relabels a node, so the total number of retreat operations is O(n2). Each 
advance operation adds one arc to the partial admissible path, and each retreat 
operation deletes one arc from it. Since each partial admissible path has length at 
most n, the algorithm requires at most O(n2 + n2m) advance operations. The first 

218 Maximum Flows: Polynomial Algorithms Chap. 7 



term comes from the number of retreat (relabel) operations, and the second term 
from the number of augmentations. The combination of these bounds establishes 
the theorem. • 

A Practical Improvement 

The shortest augmenting path algorithm terminates when d(s) :2: n. This termination 
criteria is satisfactory for the worst-case analysis but might not be efficient in prac
tice. Empirical investigations have revealed that the algorithm spends too much time 
relabeling nodes and that a major portion of this effort is performed after the al
gorithm has established a maximum flow. This happens because the algorithm does 
not know that it has found a maximum flow. We next suggest a technique that is 
capable of detecting the presence of a minimum cut and so the existence of a max
imum flow much before the label of node s satisfies the condition des) :2: n. Incor
porating this technique in the shortest augmenting path algorithm improves its per
formance substantially in practice. 

We illustrate this technique by applying it to the numerical example we used 
earlier to illustrate the shortest augmenting path algorithm. Figure 7.8 gives the 
residual network immediately after the last augmentation. Although the flow is now 
a maximum flow, since the source is not connected to the sink in the residual net
work, the termination criteria of d(l) :2: 12 is far from being satisfied. The reader 
can verify that after the last augmentation, the algorithm would increase the distance 
labels of nodes 6, 1,2, 3,4,5, in the given order, each time by 2 units. Eventually, 
d(1) :2: 12 and the algorithm terminates. Observe that the node set S of the minimum 
cut [S, S] equals {6, 1, 2, 3,4, 5}, and the algorithm increases the distance labels of 
all the nodes in S without performing any augmentation. The technique we describe 
essentially detects a situation like this one. 

To implement this approach, we maintain an n-dimensional aoditional array, 

Sec. 7.4 

d(i) d(j) 

~f-----+l·tD 
4 

Figure 7.8 Bad example for the shortest augmenting path algorithm. 

Shortest Augmenting Path Algorithm 219 



numb, whose indices vary from 0 to (n - O. The value numb(k) is the number of 
nodes whose distance label equals k. The algorithm initializes this array while com
puting the initial distance labels using a breadth first search. At this point, the positive 
entries in the array numb are consecutive [i.e., the entries numb(O), numb(1), ... , 
numb(l) will be positive up to some index 1 and the remaining entries will all be 
zero]. For example, the numb array for the distance labels shown in Figure 7.8 is 
numb(O) = 1, numb(1) = 5, numb(2) = 1, numb(3) = 1, numb(4) = 4 and the 
remaining entries are zero. Subsequently, whenever the algorithm increases the dis
tance label of a node from k\ to k2' it subtracts 1 from numb(k\), adds 1 to numb(k2) 
and checks whether numb(k\) = O. If numb(kd does equal zero, the algorithm ter
minates. As seen earlier, the shortest augmenting path algorithm augments unit flow 
along the paths 1-2-7-12, 1-3-8-12, 1-4-9-12, 1-5-10-12, and 1-6-11-12. Atthe 
end of these augmentations, we obtain the residual network shown in Figure 7.8. 
When we continue the shortest augmenting path algorithm from this point, it con
structs the partial admissible path 1-6. Next it relabels node 6 and its distance label 
increases from 2 to 4. The algorithm finds that numb(2) = 0 and it terminates. 

To see why this termination criterion works, let S = {i E N:d(i) > k\} and 
S = {i E N:d(i) < k\}. It is easy to verify that s E Sand t E S. Now consider the 
s-t cut [S, S]. The definitions of the s~ts Sand S imply that d(i) > d(j) + 1 for all 
(i,j) E [S, S]. The validity condition (7.2) implies that rij = 0 for each arc (i,j) E 
[S, S]. Therefore, [S, S] is a minimum cut and the current flow is a maximum flow. 

Application to Capacity Scaling Algorithm 

In the preceding section we described an O(m2 log U) time capacity scaling algo
rithm for the maximum flow problem. We can improve the running time of this 
algorithm to O(nm log U) by using the shortest augmenting path as a subroutine in 
the capacity scaling algorithm. Recall that the capacity scaling algorithm performs 
a number of A-scaling phases and in the A-scaling phase sends the maximum possible 
flow in the A-residual network G(x, A), using the labeling algorithm as a subroutine. 
In the improved implementation, we use the shortest augmenting path algorithm to 
send the maximum possible flow from node s to node t. We accomplish this by 
defining the distance labels with respect to the network G(x, A) and augmenting 
flow along the shortest augmenting path in G(x, A). Recall from the preceding section 
that a scaling phase contains O(m) augmentations. The complexity analysis of the 
shortest augmenting path algorithm implies that if the algorithm is guaranteed to 
perform O(m) augmentations, it would run in O(nm) time because the time for 
augmentations reduces from O(n2m) to O(nm) and all other operations, as before, 
require O(nm) time. These observations immediately yield a bound of O(nm log U) 
on the running time of the capacity scaling algorithm. 

Further Worst-Case Improvements 

The idea of augmenting flows along shortest paths is intuitively appealing and easy 
to implement in practice. The resulting algorithms identify at most O(nm) augmenting 
paths and this bound is tight [i.e., on particular examples these algorithms perform 
o'(nm) augmentations]. The only way to improve the running time of the shortest 

220 Maximum Flows: Polynomial Algorithms Chap. 7 



augmenting path algorithm is to perform fewer computations per augmentation. The 
use of a sophisticated data structure, called dynamic trees, reduces the average time 
for each augmentation from O(n) to O(log n). This implementation of the shortest 
augmenting path algorithm runs in O(nm log n) time, and obtaining further improve
ments appears quite difficult except in very dense networks. We describe the dy
namic tree implementation of the shortest augmenting path algorithm in Section 8.5. 

7.5 DISTANCE LABELS AND LAYERED NETWORKS 

Like the shortest augmenting path algorithm, several other maximum flow algorithms 
send flow along shortest paths from the source to the sink. Dinic's algorithm is a 
popular algorithm in this class. This algorithm constructs shortest path networks, 
called layered networks, and establishes blocking flows (to be defined later) in these 
networks. In this section we point out the relationship between layered networks 
and distance labels. By developing a modification of the shortest augmenting path 
algorithm that reduces to Dinic' s algorithm, we show how to use distance labels to 
simulate layered networks. 

With respect to a given flow x, we define the layered network V as follows. 
We determine the exact distance labels din G(x). The layered network consists of 
those arcs (i, j) in G(x) satisfying the condition d(i) = d(j) + 1. For example, 
consider the residual network G(x) given in Figure 7.9(a). The number beside each 
node represents its exact distance label. Figure 7.9(b) shows the layered network 
of G(x). Observe that by definition every path from the source to the sink in the 
layered network V is a shortest path in G(x). Observe further that some arc in V 
might not be contained in any path from the source to the sink. For example, in 
Figure 7.9(b), arcs (5, 7) and (6, 7) do not lie on any path in V from the source to 
the sink. Since these arcs do not participate in any flow augmentation, we typically 
delete them from the layered network; doing so gives us Figure 7. 9( c). In"the resulting 
layered network, the nodes are partitioned into layers of nodes Yo, VI, V2 , ••• , 

VI; layer k contains the nodes whose distance labels equal k. Furthermore, for every 

1iJ-----.lmnr---~,J7:'1 Sink 

1 

(a) (c) 

Figure 7.9 Forming layered networks: (a) residual network; (b) corresponding layered net
work; (c) layered network after deleting redundant arcs. 

Sec. 7.5 Distance Labels and Layered Networks 221 



arc (i, j) in the layered network, i E Vk and j E Vk - I for some k. Let the source 
node have the distance labell. 

Dinie's algorithm proceeds by augmenting flows along directed paths from the 
source to the sink in the layered network. The augmentation of flow along an arc 
(i, j) reduces the residual capacity of arc (i, j) and increases the residual capacity 
of the reversal arc (j, i); however, each arc of the layered network is admissible, 
and therefore Dinie's algorithm does not add reversal arcs to the layered network. 
Consequently, the length of every augmenting path is des) and in an augmenting 
path every arc (i, j) has i E Vk and j E Vk - I for some k. The latter fact allows us 
to determine an augmenting path in the layered network, on average, in O(n) time. 
(The argument used to establish the O(n) time bound is the same as that used in our 
analysis of the shortest augmenting path algorithm.) Each augmentation saturates 
at least one arc in the layered network, and after at most m augmentations the layered 
network contains no augmenting path. We call the flow at this stage a blocking flow. 
We have shown that we can establish a blocking flow in a layered network in O(nm) 
time. 

When a blocking flow x has been established in a network, Dinie's algorithm 
recomputes the exact distance labels, forms a new layered network, and repeats 
these computations. The algorithm terminates when as it is forming the new layered 
networks, it finds that the source is not connected to the sink. It is possible to show 
that every time Dinie's algorithm forms a new layered network, the distance label 
of the source node strietly increases. Consequently, Dinie's algorithm forms at most 
n layered networks and runs in O(n2 m) time. 

We now show how to view Dinie's algorithm as a somewhat modified version 
of the shortest augmenting path algorithm. We make the following three modifica
tions to the shortest augmenting path algorithm. 

Modification 1. In operation retreat(i), we do not change the distance label of 
node i, but subsequently term node i as blocked. A blocked node has no ad
missible path to the sink node. 
Modification 2. We define an arc (i, j) to be admissible if d(i) = d(j) + 1, 
rij> 0, and node j is not blocked. 
Modification 3. When the source node is blocked, by performing a backward 
breadth-first search we recompute the distance labels of all nodes exactly. 

We term the computations within two successive recomputations of distance 
labels as occurring within a single phase. We note the following facts about the 
modified shortest augmenting path algorithm.-

1. At the beginning of a phase, when the algorithm recomputes the distance labels 
d('), the set of admissible arcs defines a layered network. 

2. Each arc (i, j) in the admissible path satisfies d(i) = d(j) + 1; therefore, arc 
(i, j) joins two successive layers of the layered network. As a result, every 
admissible path is an augmenting path in the layered network. 

3. Since we do not update distance labels within a phase, every admissible path 
has length equal to des). 

222 Maximum Flows: Polynomial Algorithms Chap. 7 



4. The algorithm performs at most m augmentations within a phase because each 
augmentation causes at least one arc to become inadmissible by reducing its 
residual capacity to zero, and the algorithm does not create new admissible 
arcs. 

5. A phase ends when the network contains no admissible path from node s to 
node t. Hence, when the algorithm recomputes distance labels at the beginning 
of the next phase, d(s) must increase (why?). 

The preceding facts show that the modified shortest augmenting path algorithm 
essentially reduces to Dinic's algorithm. They also show that the distance labels are 
sufficiently powerful to simulate layered networks. Further, they are simpler to 
understand than layered networks, easier to manipulate, and lead to more efficient 
algorithms in practice. Distance labels are also attractive because they are generic 
solution approaches that find applications in several different algorithms; for ex
ample, the generic preflow-push algorithm described next uses distance labels, as 
does many of its variants described later. 

tl 

7.6 GENERIC PREFLOW-PUSH ALGORITHM 

We now study a class of algorithms, known as pre flow-push algorithms, for solving 
the maximum flow problem. These algorithms are more general, more powerful, and 
more flexible than augmenting path algorithms. The best preflow-push algorithms 
currently outperform the best augmenting path algorithms in theory as well as in 
practice. In this section we study the generic preflow-push algorithm. In the following 
sections we describe special implementations of the generic approach with improved 
worst-case complexity. 

The inherent drawback of the augmenting path algorithms is the computation
ally expensive operation of sending flow along a path, which requires O(n) time in 
the worst case. Preflow-push algorithms do not suffer from this drawback and obtain 
dramatic improvements in the worst-case complexity. To understand this point bet
ter, consider the (artificially extreme) example shown in Figure 7.10. When applied 
to this problem, any augmenting path algorithm would discover 10 augmenting paths, 
each of length 10, and would augment 1 unit of flow along each of these paths. 
Observe, however, that although all of these paths share the same first eight arcs, 
each augmentation traverses all of these arcs. If we could have sent 10 units of flow 
from node 1 to node 9, and then sent 1 unit of flow along 10 different paths of length 
2, we would have saved the repetitive computations in traversing the common set 
of arcs. This is the essential idea underlying the preflow-push algorithms. 

Augmenting path algorithms send flow by augmenting along a path. This basic 
operation further decomposes into the more elementary operation of sending flow 
along individual arcs. Thus sending a flow of 8 units along a path of k arcs decomposes 
into k basic operations of sending a flow of 8 units along each of the arcs of the path. 
We shall refer to each of these basic operations as a push. The preflow-push algo
rithms push flows on individual arcs instead of augmenting paths. 

Because the preflow-push algorithms push flows along the individual arcs, these 
algorithms do not satisfy the mass balance constraints (6.1b) at intermediate stages. 
In fact, these algorithms permit the flow entering a node to exceed the flow leaving 

Sec. 7.6 Generic Pre flow-Push Algorithm 223 



er----r'-" ~~I. 

Figure 7.10 Drawback of the augmenting path algorithm. 

the node. We refer to any such solution as a preflow. More formally, a preflow is 
a function x: A ~ R that satisfies the flow bound constraint (6.tc) and the following 
relaxation of (6.tb). 

L Xji - L Xij ;::: 0 for all i E N - {s, t}. 
{j:(j,i)EA} {j:(i,j)E:A} 

The preflow-push algorithms maintain a preflow at each intermediate stage. 
For a given preflow x, we define the excess of each node i E N as 

e(i) = L Xji - L xij' 
U:(j,i)EA} U:(i,j)EA} 

In a preflow, e(i) ;::: 0 for each i E N - {s, t}. Moreover, because no arc emanates 
from node t in the preflow push algorithms, e(t) ;::: 0 as well. Therefore node s is 
the only node with negative excess. 

We refer to a node with a (strictly) positive excess as an active node and adopt 
the convention that the source and sink nodes are never active. The augmenting 
path algorithms always maintain feasibility of the solution and strive toward opti
mality. In contrast, preflow-push algorithms strive to achieve feasibility. In a 
preflow-push algorithm, the presence of active nodes indicates that the solution is 
infeasible. Consequently, the basic operation in this algorithm is to select an active 
node and try to remove its excess by pushing flow to its neighbors. But to which 
nodes should the flow be sent? Since ultimately we want to send flow to the sink, 
we push flow to the nodes that are closer to sink. As in the shortest augmenting 
path algorithm, we measure closeness with respect to the current distance labels, 
so sending flow closer to the sink is equivalent to pushing flow on admissible arcs. 
Thus we send flow only on admissible arcs. If the active node we are currently 
considering has no admissible arc, we increase its distance label so that we create 

224 Maximum Flows: Polynomial Algorithms Chap. 7 



at least one admissible arc. The algorithm terminates when the network contains no 
active node. The preflow-push algorithm uses the subroutines shown in Figure 7.11. 

procedure preprocess; 
begin 

x: = 0; 
compute the exact distance labels d(i); 
xsi: = usi for each arc (s, j) E A(s); 
drs) : = n; 

end; 

(a) 

procedure pushlrelabel(i); 
begin 

if the network contains an admissible arc (i, J) then 
push II : = min{e(i), fJi} units of flow from node i to node j 

else replace d(i) by min{d(j) + 1 : (i, J) E A(i) and rli> O}; 
end; 

(b) 

Figure 7.11 Subroutines of the preflow-push algorithm. 

A push of 8 units from node i to node j decreases both e(i) and rij by 8 units 
and increases both e(j) and rji by 8 units. We say that a push of 8 units of flow on 
an arc (i, j) is saturating if 8 = rij and is nonsaturating otherwise. A nonsaturating 
push at node i reduces e(i) to zero. We refer to the process of increasing the distance 
label of a node as a relabel operation. The purpose of the relabel operation is to 
create at least one admissible arc on which the algorithm can perform. further pushes. 

The generic version of the preflow-push algorithm (Figure 7.12) combines the 
subroutines just described. 

algorithm preflow-push; 
begin 

preprocess; 
while the network contains an active node do 
begin 

select an active node i; 
pushlrelabel(i); 

end; 
end; 

Figure 7.12 Generic preflow-push 
algorithm. 

It might be instructive to visualize the generic preflow-push algorithm in terms 
of a physical network: Arcs represent flexible water pipes, nodes represent joints, 
and the distance function measures how far nodes are above the ground. In this 
network we wish to send water from the source to the sink. In addition, we visualize 
flow in an admissible arc as water flowing downhill. Initially, we move the source 
node upward, and water flows to its neighbors. In general, water flows downhill 
towards the sink; however, occasionally flow becomes trapped locally at a node that 
has no downhill neighbors. At this point we move the node upward, and again water 

Sec. 7.6 Generic Pre flow-Push Algorithm 225 



flows downhill toward the sink. Eventually, no more flow can reach the sink. As 
we continue to move nodes upward, the remaining excess flow eventually flows back 
toward the source. The algorithm terminates when all the water flows either into 
the sink or flows back to the source. 

The preprocessing operation accomplishes several important tasks. First, it 
gives each node adjacent to node s a positive excess, so that the algorithm can begin 
by selecting some node with a positive excess. Second, since the preprocessing 
operation saturates all the arcs incident to node s, none of these arcs is admissible 
and setting d(s) = n will satisfy the validity condition (7.2). Third, since d(s) = n, 
Property 7.2 implies that the residual network contains no directed path from node 
s to node t. Since distance labels are nondecreasing, we also guarantee that in sub
sequent iterations the residual network will never contain a directed path from node 
s to node t, and so we will never need to push flow from node s again. 

To illustrate the generic preflow-push algorithm, consider the example given 
in Figure 7. 13 (a). Figure 7. 13 (b) specifies the preflow determined by the preprocess 
operation. 

Iteration 1. Suppose that the algorithm selects node 2 for the push/relabel 
operation. Arc (2, 4) is the only admissible arc and the algorithm performs a 
push of value 8 = min{e(2), r24} = min{2, 1} = 1. This push is saturating. 
Figure 7. 13 (c) gives the residual network at this stage. 
Iteration 2. Suppose that the algorithm again selects node 2. Since no admissible 
arc emanates from node 2, the algorithm performs a relabel operation and gives 
node 2 a new distance label d(2) = min{d(3) + 1, d(1) + I} = min{2, 5} = 
2. The new residual network is the same as the one shown in Figure 7.13(c) 
except that d(2) = 2 instead of 1. 
Iteration 3. Suppose that this time the algorithm selects node 3. Arc (3, 4) is 
the only admissible arc emanating from node 3, the algorithm performs a push 
of value 8 = min{e(3), r34} = min{4, 5} = 4. This push is nonsaturating. Figure 
7. 13 (d) gives the residual network at the end of this iteration. 
Iteration 4. The algorithm selects node 2 and performs a nonsaturating push 
of value 8 = min{l, 3} = 1, obtaining the residual network given in Figure 
7.13(e). 
Iteration 5. The algorithm selects node 3 and performs a saturating push of 
value 8 = min{l, 1} = Ion arc (3,4), obtaining the residual network given in 
Figure 7.13(0. 

Now the network contains no active node and the algorithm terminates. The 
maximum flow value in the network is e(4) = 6. 

Assuming that the generic preflow-push algorithm terminates, we can easily 
show that it finds a maximum flow. The algorithm terminates when the excess resides 
at the source or at thl! sink, implying that the current preflow is a flow. Since 
d(s) = n, the residual network contains no path from the source to the sink. This 
condition is the termination criterion of the augmenting path algorithm, and the 
excess residing at the sink is the maximum flow value. 

226 Maximum Flows: Polynomial Algorithms Chap. 7 



e(3) = 4 
d(3) = I 

5 4 5 

eel) = 0 
del) = 2 ", 

e(4) = 0 
d(4) = 0 

e(l) = 0 
d(l) = 4 3 

e(4) = 0 
d(4) = 0 

eel) = 0 
d(l) = 4 

eel) = 0 
d(l) = 4 

(a) 

3 

(c) 

(e) 

5 

e(4) = I 
d(4) = 0 

e(4) = 5 
d(4) = 0 

e(l) = 0 
d(l) = 4 

e(l) = 0 
d(l) = 4 

2 

(b) 

(d) 

(f) 

Figure 7.13 Illustrating the generic preflow-push algorithm. 

Complexity of the Algorithm 

e(2) = 2 
d(2) = I 

e(4) = 5 
d(4)=O 

e(4) = 6 
d(4)=O 

To analyze the complexity of the algorithm, we begin by establishing one important 
result: distance labels are always valid and do not increase "too many" times. The 
first of these conclusions follows from Lemma 7.5, because, as in the shortest aug
menting path algorithm, the preflow-push algorithm pushes flow only on admissible 
arcs and relabels a node only when no admissible arc emanates from it. The second 
conclusion follows from the following lemma. 

Lemma 7.11. At any stage of the pre flow-push algorithm, each node i with 
positive excess is connected to node s by a directed path from node i to node s in 
the residual network. 

Sec. 7.6 Generic Pre flow-Push Algorithm 227 



Proof. Notice that for a preflow x, e(s) :::; 0 and e(i) ;::: 0 for all i E N - is}. 
By the flow decomposition theorem (see Theorem 3.5), we can decompose any 
preflow x with respect to the original network G into nonnegative flows along (1) 
paths from node s to node t, (2) paths from node s to active nodes, and (3) flows 
around directed cycles. Let i be an active node relative to the preflow x in G. The 
flow decomposition of x must contain a path P from node s to node i, since the paths 
from node s to node t and the flows around cycles do not contribute to the excess 
at node i. The residual network contains the reversal of P (P with the orientation 
of each arc reversed), so a directed path from node i to node s. • 

This lemma implies that during a relabel operation, the algorithm does not 
minimize over an empty set. 

Lemma 7.12. For each node i E N, d(i) < 2n. 

Proof The last time the algorithm relabeled node i, the node had a positive 
excess, so the residual network contained a path P of length at most n - 2 from 
node i to node s. The fact that d(s) = n and that d(k) :::; d(l) + 1 for every arc 
(k, I) in the path P implies that d(i) :::; d(s) + I P I < 2n. • 

Since each time the algorithm relabels node i, d(i) increases by at least 1 unit, 
we have established the following result. 

Lemma 7.13. Each distance label increases at most 2n times. Consequently, 
the total number of relabel operations is at most 2n2

• • 

Lemma 7.14. The algorithm performs at most nm saturating pushes. 

Proof This result follows directly from Lemmas 7.12 and 7.8. • 

In view of Lemma 7.7, Lemma 7.13 implies that the total time needed to identify 
admissible arcs and to perform relabel operations is O(nm). We next count the 
number of non saturating pushes performed by the algorithm. 

Lemma 7.15. The generic prejlow-push algorithm performs O(n 2m) nonsat
urating pushes. 

Proof. We prove the lemma using an argument based on potential functions 
(see Section 3.2). Let] denote the set of active nodes. Consider the potential function 
<I> = ~iEI d(i). Since I ] I < n, and d(i) < 2n for all i E ], the initial value of <I> 
(after the preprocess operation) is at most 2n2

• At the termination of the algorithm, 
<I> is zero. During the pushlrelabel(i) operation, one of the following two cases must 
apply: 

Case 1. The algorithm is unable to find an admissible arc along which it can 
push flow. In this case the distance label of node i increases by E ;::: 1 units. This 
operation increases <I> by at most E units. Since the total increase in d(i) for each 
node i throughout the execution of the algorithm is bounded by 2n, the total increase 
in <I> due to increases in distance labels is bounded by 2n2

• 

228 Maximum Flows: Polynomial Algorithms Chap. 7 



Case 2. The algorithm is able to identify an arc on which it can push flow, so 
it performs a saturating push or a non saturating push. A saturating push on arc 
(i, j) might create a new excess at node j, thereby increasing the number of active 
nodes by 1, and increasing <I> by d(j), which could be as much as 2n per saturating 
push, and so 2n2 m over all saturating pushes. Next note that a nonsaturating push 
on arc (i, j) does not increase 1 I I. The nonsaturating push will decrease <I> by d(i) 
since i becomes inactive, but it simultaneously increases <I> by d(j) = d(i) - 1 if 
the push causes node j to become active, the total decrease in <I> being of value 1. 
ff node j was active before the push, <I> decreases by an amount d(i). Consequently, 
net decrease in <I> is at least 1 unit per non saturating push. 

We summarize these facts. The initial value of <I> is at most 2n2 and the max
imum possible increase in <I> is 2n2 + 2n2 m. Each nonsaturating push decreases <I> 
by at least 1 unit and <I> always remains nonnegative. Consequently, the algorithm 
can perform at most 2n2 + 2n 2 + 2n2 m = 0(n2m) non saturating pushes, proving 
the lemma. • 

Finally, we indicate how the algorithm keeps track of active nodes for the push/ 
relabel operations. The algorithm maintains a set LIST of active nodes. It adds to 
LIST those nodes that become active following a push and are not already in LIST, 
and deletes from LIST nodes that become inactive following a nonsaturating push. 
Several data structures (e.g., doubly linked lists) are available for storing LIST so 
that the algorithm can add, delete, or select elements from it in 0(1) time. Conse
quently, it is easy to implement the preflow-push algorithm in 0(n2 m) time. We 
have thus established the following theorem. 

Theorem 7.16. The generic preflow-push algorithm runs in 0(n2m) time . 

• 
Several modifications to the generic preflow-push algorithm might improve its 

empirical performance. We define a maximum preflow as a preflow with the max
imum possible flow into the sink. As stated, the generic preflow-push algorithm 
performs push/relabel operations at active nodes until all the excess reaches the sink 
node or returns to the source node. Typically, the algorithm establishes a maximum 
preflow long before it establishes a maximum flow; the subsequent push/relabel 
operations increase the distance labels of the active nodes until they are sufficiently 
higher than n so they can push their excesses back to the source node (whose distance 
label is n). One possible modification in the preflow-push algorithm is to maintain 
a set N' of nodes that satisfy the property that the residual network contains no 
path from a node in N' to the sink node t. Initially, N' = {s} and, subsequently, 
whenever the distance label of a node is greater than or equal to n, we add it to N'. 
Further, we do not perform push/relabel operations for nodes in N' and terminate 
the algorithm when all nodes in N - N' are inactive. At termination, the current 
preflow x is also an optimal preflow. At this point we convert the maximum preflow 
x into a maximum flow using any of the methods described in Exercise 7.11. Em
pirical tests have found that this two-phase approach often substantially reduces the 
running times of preflow push algorithms. 

One sufficient condition for adding a nodej to N' is d(j) ;::: n. Unfortunately, 

Sec. 7.6 Generic Pre flow-Push Algorithm 229 



this simple approach is not very effective and does not substantially reduce the 
running time of the algorithm. Another approach is to occasionally perform a reverse 
breadth-first search of the residual network to obtain exact distance labels and add 
all those nodes to N' that do not have any directed path to the sink. Performing this 
search occasionally, that is, after an relabel operations for some constant a, does 
not effect the worst-case complexity of the preflow-push algorithm (why?) but im
proves the empirical behavior of the algorithm substantially. 

A third approach is to letnumb(k) denote the number of nodes whose distance 
label is k. As discussed in Section 7.4, we can update the array numb(·) in 0(1) steps 
per relabel operation. Moreover, whenever numb(k') = 0 for some k', any node j 
with d(j) > k' is disconnected from the set of nodes i with d(i) < k' in the residual 
network. At this point, we can increase the distance labels of each of these nodes 
to n and the distance labels will still be valid (why?). Equivalently, we can add any 
node j with d(j) > k' to the set N'. The array numb(·) is easy to implement, and 
its use is quite effective in practice. 

Specific Implementations of Generic Prenow-Push 
Algorithm 

The running time of the generic preflow-push algorithm is comparable to the bound 
of the shortest augmenting path algorithm. However, the preflow-push algorithm 
has several nice features: in particular, its flexibility and its potential for further 
improvements. By specifying different rules for selecting active nodes for the push! 
relabel operations, we can derive many different algorithms, each with different 
worst-case complexity than the generic version of the algorithm. The bottleneck 
operation in the generic preflow-push algorithm is the number of nonsaturating 
pushes and many specific rules for examining active nodes can produce substantial 
reductions in the number of nonsaturating pushes. We consider the following three 
implementations. 

1. FIFO pre flow-push algorithm. This algorithm examines the active nodes in the 
first-in, first-out (FIFO) order. We shall show that this algorithm runs in 0(n 3

) 

time. 
2. Highest-label pre flow-push algorithm. This algorithm always pushes from an 

active node with the highest value of the distance label. We shall show that 
this algorithm runs in 0(n2 m 112) time. Observe that this time is better than 
0(n3) for all problem densities. 

3. Excess scaling algorithm. This algorithm pushes flow from a node with suf
ficiently large excess to a node with sufficiently small excess. We shall show 
that the excess scaling algorithm runs in O(nm + n2 log U) time. For problems 
that satisfy the similarity assumption (see Section 3.2), this time bound is better 
than that of the two preceding algorithms. 

We might note that the time bounds for all these preflow-push algorithms are 
tight (except the excess scaling algorithm); that is, for some classes of networks the 
generic preflow-push algorithm, the FIFO algorithm, and the highest-label preflow
push algorithms do perform as many computations as indicated by their worst-case 

230 Maximum Flows: Polynomial Algorithms Chap. 7 



time bounds. These examples show that we cannot improve the time bounds of these 
algorithms by a more clever analysis. 

7.7 FIFO PREFLOW-PUSH ALGORITHM 

eO) ;-20 
dO); 3 

Before we describe the FIFO implementation of the preflow-push algorithm, we 
define the concept of a node examination. In an iteration, the generic preflow-push 
algorithm selects a node, say node i, and performs a saturating push or a nonsatu
rating push, or relabels the node. If the algorithm performs a saturating push, then 
node i might still be active, but it is not mandatory for the algorithm to select this 
node again in the next iteration. The algorithm might select another node for the 
next push/relabel operation. However, it is easy to incorporate the rule that whenever 
the algorithm selects an active node, it keeps pushing flow from that node until either 
the node's excess becomes zero or the algorithm relabels the node. Consequently, 
the algorithm might perform several saturating pushes followed either by a non
saturating push or a relabel operation. We refer to this sequence of operations as a 
node examination. We shall henceforth assume that every preflow-push algorithm 
adopts this rule for selecting nodes for the push/relabel operation. 

The FIFO preflow-push algorithm examines active nodes in the FIFO order. 
The algorithm maintains the set LIST as a queue. It selects a node i from the front 
of LIST, performs pushes from this node, and adds newly active nodes to the rear 
of LIST. The algorithm examines node i until either it becomes inactive or it is 
relabeled. In the latter case, we add node i to the rear of the queue. The algorithm 
terminates when the queue of active nodes is empty. 

We illustrate the FIFO preflow-push algorithm using the example shown in 
Figure 7.14(a). The preprocess operation creates an excess of 10 units at each of 

Sec. 7.7 

(a) 

eO) ;-20 
d(1);6 

e(6);0 
d(6);0 

(c) 

eO) ;-20 
d(1);6 

e(6) ;0 
d(6);0 

(b) 

Figure 7.14 Illustrating the FIFO preflow-push algorithm. 

FIFO Pre flow-Push Algorithm 

e(6); 0 
d(6);0 

231 



the nodes 2 and 3. Suppose that the queue of active nodes at this stage is LIST = 
{2, 3}. The algorithm removes node 2 from the queue and examines it. Suppose that 
it performs a saturating push of 5 units on arc (2, 4) and a nonsaturating push of 5 
units on arc (2, 5) [see Figure 7.14(b)]. As a result of these pushes, nodes 4 and 
5 become active and we add these nodes to the queue in this order, obtaining 
LIST = {3, 4, 5}. The algorithm next removes node 3 from the queue. While ex
amining node 3, the algorithm performs a saturating push of 5 units on arc (3, 5), 
followed by a relabel operation of node 3 [see Figure 7.14(c)]. The algorithm adds 
node 3 to the queue, obtaining LIST = {4, 5, 3}. We encourage the reader to complete 
the solution of this example. 

To analyze the worst-case complexity of the FIFO preflow-push algorithm, we 
partition the total number of node examinations into different phases. The first phase 
consists of node examinations for those nodes that become active during the pre
process operation. The second phase consists of the node examinations of all the 
nodes that are in the queue after the algorithm has examined the nodes in the first 
phase. Similarly, the third phase consists of the node examinations of all the nodes 
that are in the queue after the algorithm has examined the nodes in the second phase, 
and so on. For example, in the preceding illustration, the first phase consists of the 
node examinations of the set {2, 3}, and the second phase consists of the node 
examinations of the set {4, 5, 3}. Observe that the algorithm examines any node at 
most once during a phase. 

We will now show that the algorithm performs at most 2n2 + n phases. Each 
phase examines any node at most once and each node examination performs at most 
one nonsaturating push. Therefore, a bound of2n2 + n on the total number of phases 
would imply a bound of O(n3

) on the number of non saturating pushes. This result 
would also imply that the FIFO preflow-push algorithm runs in O(n3) time because 
the bottleneck operation in the generic preflow-push algorithm is the number of 
nonsaturating pushes. 

To bound the number of phases in the algorithm, we consider the total change 
in the potential function <I> = max{d(i): i is active} over an entire phase. By the "total 
change" we mean the difference between the initial and final values of the potential 
function during a phase. We consider two cases. 

Case 1. The algorithm performs at least one relabel operation during a phase. 
Then <I> might increase by as much as the maximum increase in any distance label. 
Lemma 7.13 implies that the total increase in <I> over all the phases is at most 2n2 • 

Case 2. The algorithm performs no relabel operation during a phase. In this 
case the excess of every node that was active at the beginning of the phase moves 
to nodes with smaller distance labels. Consequently, <I> decreases by at least 1 unit. 

Combining Cases 1 and 2, we find that the total number of phases is at most 
2n2 + n; the second term corresponds to the initial value of <I>, which could be at 
most n. We have thus proved the following theorem. 

Theorem 7.17. The FIFO pre flow-push algorithm runs in O(n3 ) time .• 

232 Maximum Flows: Polynomial Algorithms Chap. 7 



7.8 HIGHEST-LABEL PREFLOW-PUSH ALGORITHM 

The highest-label preflow-push algorithm always pushes flow from an active node 
with the highest distance label. It is easy to develop an O(n 3

) bound on the number 
of nonsaturating pushes for this algorithm. Let h* = max{d(i):i is active}. The 
algorithm first examines nodes with distance labels equal to h * and pushes flow to 
nodes with distance labels equal to h* - 1, and these nodes, in tum, push flow to 
nodes with distance labels equal to h* - 2, and so on, until either the algorithm 
relabels a node or it has exhausted all the active nodes. When it has relabeled a 
node, the algorithm repeats the same process. Note that if the algorithm does not 
relabel any node during n consecutive node examinations, all the excess reaches the 
sink (or the source) and the algorithm terminates. Since the algorithm performs at 
most 2n2 relabel operations (by Lemma 7.13), we immediately obtain a bound of 
O(n3

) on the number of node examinations. Since each node examination entails at 
most one nonsaturating push, the highest-label preflow-push algorithm performs 
O(n3

) nonsaturating pushes. (In Exercise 7.20 we consider a potential function ar
gument that gives the same bound on the number of non saturating pushes.) 

The preceding discussion is missing one important detail: How do we select a 
node with the highest distance label without expending too much effort? We use the 
following data structure. For each k = 1, 2, ... , 2n - 1, we maintain the list 

LIST(k) = {i:i is active and d(i) = k}, 

in the form of either linked stacks or linked queues (see Appendix A). We define a 
variable level that is an upper bound on the highest value of k for which LIST(k) is 
nonempty. To determine a node with the highest distance label, we examine the lists 
LIST(level), LIST(level-l), ... , until we find a nonempty list, say LIST(p). We 
set level equal to p and select any node in LIST(p). Moreover, if the distance label 
of a node increases while the algorithm is examining it, we set level equal to the 
new distance label of the node. Observe that the total increase in level is at most 
2n2 (from Lemma 7.13), so the total decrease is at most 2n2 -+ n. Consequently, 
scanning the lists LISt(level), LIST(level-l), ... ,in order to find the first nonempty 
list is not a bottleneck operation. 

The highest-label preflow-push algorithm is currently the most efficient method 
for solving the maximum flow problem in practice because it performs the least 
number of non saturating pushes. To illustrate intuitively why the algorithm performs 
so well in practice, we consider the maximum flow problem given in Figure 7.1S(a). 
The preprocess operation creates an excess of 1 unit at each node 2,3, ... , n - 1 
[see Figure 7.1S(b»). The highest-label preflow-push algorithm examines nodes 2, 
3, ... , n - 1, in this order and pushes all the excess to the sink node. In contrast, 
the FIFO preflow-push algorithm might perform many more pushes. Suppose that 
at the end of the preprocess operation, the queue of active nodes is LIST = {n -
1, n - 2, ... , 3, 2}. Then the algorithm would examine each of these nodes in the 
first phase and would obtain the solution depicted in Figure 7.1S(c). At this point, 
LIST = {n - 1, n - 2, ... , 4, 3}. It is easy to show that overall the algorithm 
would perform n - 2 phases and use (n - 2) + (n - 3) + ... + 1 = n(rr) 
nonsaturating pushes. 

Sec. 7.8 Highest-Label Pre flow-Push Algorithm 233 



2 dU) d(j) 

® rij >@ 

Sink 

n-2 n-3 n-4 2 0 

o 

(a) 
-n+2 e(i) 

@ ,:1, . 

(b) 

-n+2 

(c) 

e(j) 
rij >(fjJ 

o 

Figure 7.15 Bad example for the FIFO 
preflow-push algorithm: (a) initial 
residual network; (b) network after the 
preprocess operation; (c) network after 
one phase of the FIFO preflow-push 
algorithm. 

Although the preceding example is rather extreme, it does illustrate the ad
vantage in pushing flows from active nodes with the highest distance label. In our 
example the FIFO algorithm selects an excess and pushes it all the way to the sink. 
Then it selects another excess and pushes it to the sink, and repeats this process 
until no node contains any more excess. On the other hand, the highest-label preflow
push algorithm starts at the highest level and pushes all the excess at this level to 
the next lower level and repeats this process. As the algorithm examines nodes with 
lower and lower distance labels, it accumulates the excesses and pushes this ac
cumulated excess toward the sink. Consequently, the highest-label preflow-push 
algorithm avoids repetitive pushes on arcs carrying a small amount of flow. 

This nice feature of the highest-label preflow-push algorithm also translates 
into a tighter bound on the number of non saturating pushes. The bound of O(n3) on 
the number of non saturating pushes performed by the algorithm is rather loose and 
can be improved by a more clever analysis. We now show that the algorithm in fact 
performs O(n2 m Il2) nonsaturating pushes. The proof of this theorem is somewhat 
complex and the reader can skip it without any loss of continuity. 

At every state of the preflow-push algorithm, each node other than the sink 
has at most one current arc which, by definition, must be admissible. We denote 
this collection of current arcs by the set F. The set F has at most n - 1 arcs, has 
at most one outgoing arc per node, and does not contain any cycle (why?). These 
results imply that F defines ajorest, which we subsequently refer to as the current 
forest. Figure 7.16 gives an example of a current forest. Notice that each tree in the 
forest is a rooted tree, the root being a node with no outgoing arc. 

Before continuing, let us introduce some additional notation. For any node 
i E N, we let D(i) denote the set of descendants of that node in F (we refer the 

234 Maximum Flows: Polynomial Algorithms Chap. 7 



e(i) e(j) 

@ .® 
4 o 

5 o 

5 

~ 

o 

Sink 

Figure 7.16 Example of a current
forest. 

reader to Section 2.2 for the definition of descendants in a rooted tree). For example, 
in Figure 7.16, D(1) = {I}, D(2) = {2}, D(3) = {I, 3, 4}, D(4) = {4}, and D(5) = 
{I, 2, 3, 4, 5}. Notice that distance label of the descendants of any node i will be 
higher than d(i). We refer to an active node with no active descendants (other than 
itself) as a maximal active node. In Figure 7.16 the nodes 2, 4, and 8 are the only 
maximal active nodes. Let H denote the set of maximal active nodes. Notice that 
two maximal active nodes have distinct descendants. Also notice that the highest
label preflow-push algorithm always pushes flow from a maximal active node. 

We obtain the time bound of O(n2m Il2) for the highest-label preflow-push al
gorithm using a potential function argument. The argument relies on a parameter K, 
whose optimal value we select later. Our potential function is <I> = LiEH <I>(i), with 
<I>(i) defined as <I>(i) = max{O, K + 1 - 1 D(i) I}. Observe that for any node i, <I>(i) 
is at most K [because 1 D(i) 1 ;::: 1]. Also observe that <I> changes whenever the set 
H of maximal active nodes changes or 1 D(i) 1 changes for a maximal active node i. 

We now study the effect of various operations performed by the preflow-push 
algorithm on the potential function <I>. As the algorithm proceeds, it changes the set 
of current arcs, performs saturating and non saturating pushes; and relabels nodes. 
All these operations have an effect on the value of <I>. By observing the consequence 
of all these operations on <I>, we will obtain a bound on the number of nonsaturating 
pushes. 

First, consider a nonsaturating push on an arc (i, j) emanating from a maximal 
active node i. Notice that a nonsaturating push takes place on a current arc and does 
not change the current forest; it simply moves the excess from node i to node j [see 
Figure 7. 17(a) for a nonsaturating push on the arc (3, 4)]. As a result of the push, 
node i becomes inactive and nodej might become a new maximal active node. Since 
1 D(j) 1 > 1 D(i) I, this push decreases <I>(i) + <I>(j) by at least 1 unit if 1 D(i) 1 :5 K 
and does not change <I>(i) + <I>(j) otherwise. 

Now consider a saturating push on the arc (i, j) emanating from a maximal 
active node i. As a result of the push, arc (i, j) becomes inadmissible and drops out 
of the current forest [see Figure 7. 17(b) for a saturating push on the arc (1,3)]. Node 
i remains a maximal active node and node j might also become a maximal active 
node. Consequently, this operation might increase <I> by upto K units. 

Next consider the relabeling of a maximal active node i. We relabel a node 
when it has no admissible arc; therefore, no current arc emanates from this node. 

Sec. 7.8 Highest-Label Pre flow-Push Algorithm 235 



o 

o o 

o 

o o 

o 

0 0 

(a) 

0 

-+-

~ ,..,,~ 

0 0 

(c) 

o 

4 

~ ',5'" ,<,:0 

o 

o 
(b) 

o 

o 
(d) 

o 

o 

Figure 7.17 (a) Nonsaturating push on arc (d, 4); (b) saturating push on arc (I, 3); (c) relabel 
of node 5; (d) addition of the arc (3, 5) to the forest. 

As a consequence, node i must be a root node in the current forest. Moreover, since 
node i is a maximal active node, none of its proper descendants can be active. After 
the algorithm has relabeled node i, all incoming arcs at node i become inadmissible; 
therefore, all the current arcs entering node i will no longer belong to the current 
forest [see Figure 7 .17( c)]. Clearly, this change cannot create any new maximal active 
nodes. The relabel operation, however, decreases the number of descendants of 
node i to one. Consequently, <p(i) can increase by at most K. 

Finally, consider the introduction of new current arcs in the current forest. 
The addition of new arcs to the forest does not create any new maximal active nodes. 
It might, in fact, remove some maximal active nodes and increase the number of 
descendants of some nodes [see Figure 7. 17(d)]. In both cases the potential <P does 
not increase. We summarize the preceding discussion in the form of the following 
property. 

Property 7.18 
(a) A nonsaturating push from a maximal active node i does not increase <P; it 

decreases <P by at least 1 unit if I D(i) I :5 K. 
(b) A saturating push from a maximal active node i can increase <P by at most K 

units. 
(c) The relabeling of a maximal active node i can increase <P by at most K units. 
(d) Introducing current arcs does not increase <P. 

For the purpose of worst-case analysis, we define the concept of phases. A 
phase consists of the sequence of pushes between two consecutive relabel opera
tions. Lemma 7.13 implies that the algorithm contains O(n2) phases. We call a phase 
cheap if it performs at most 2nlK non saturating pushes, and expensive otherwise. 

236 Maximum Flows: Polynomial Algorithms Chap. 7 



Clearly, the number of non saturating pushes in cheap phases is at most O(n2 . 
2n1K) = O(n3IK). To obtain a bound on the non saturating pushes in expensive 
phases, we use an argument based on the potential function <P. 

By definition, an expensive phase performs at least 2nlK nonsaturating pushes. 
Since the network can contain at most nlK nodes with K descendants or more, at 
least nlK non saturating pushes must be from nodes with fewer than K descendants. 
The highest-label preflow-push algorithm always performs push/relabel operation on 
a maximal active node; consequently, Property 7.18 applies. Property 7 .18( a) implies 
that each of these nonsaturating pushes produces a decrease in <P of at least 1. So 
Properties 7. 18(b) and (c) imply that the total increase in <P due to saturating pushes 
and relabels is at most O(nmK). Therefore, the algorithm can perform O(nmK) 
nonsaturating pushes in expensive phases. 

To summarize this discussion, we note that cheap phases perform O(n3IK) 
non saturating pushes and expensive phases perform O(nmK) nonsaturating pushes. 
We obtain the optimal value of K by balancing both terms (see Section 3.2), that is, 
when both the terms are equal: n31K = nmK or K = nlmll2. For this value of K, 
the number of nonsaturating pushes is O(n 2m 1f2

). We have thus established the 
following result. 

Theorem 7.19. The highest-label prejlow-push algorithm performs O(n2m 112) 
nonsaturating pushes and runs in the same time. • 

7.9 EXCESS SCALING ALGORITHM 

The generic preflow-push algorithm allows flow at each intermediate step to violate' 
the mass balance equations. By pushing flows from active nodes, the algorithm 
attempts to satisfy the mass balance equations. The function emax = max{ e(i): i is 
an active node} provides one measure of the infeasibility of a preflow:'Note that 
during the execution of the generic algorithm, we would observe no particular pattern 
in the values of emax , except that emax eventually decreases to value O. In this section 
we develop an excess scaling technique that systematically reduces the value of emax 

to o. 
The excess scaling algorithm is similar to the capacity scaling algorithm we 

discussed in Section 7.3. Recall that the generic augmenting path algorithm performs 
O(nU) augmentations and the capacity scaling algorithm reduces this number to 
O(m log U) by assuring that each augmentation carries a "sufficiently large" amount 
of flow. Similarly, in the generic preflow-push algorithm, non saturating pushes car
rying small amount of flow bottleneck the algorithm in theory. The excess scaling 
algorithm assures that each nonsaturating push carries a "sufficiently large" amount 
of flow and so the number of non saturating pushes is "sufficiently small." 

Let A denote an upper bound on emax ; we refer to this bound as the excess 
dominator. We refer to a node with e(i) ;::: A/2 ;::: emax/2 as a node with large excess, 
and as a node with small excess otherwise. The excess sc~ling algorithm always 
pushes flow from a node with a large excess. This choice assures that during non
saturating pushes, the algorithm sends relatively large excess closer to the sink. 

The excess scaling algorithm also does not allow the maximum excess to in
crease beyond A. This algorithmic strategy might prove to be useful for the following 

Sec. 7.9 Excess Scaling Algorithm 237 



reason. Suppose that several nodes send flow to a single nodej, creating a very large 
excess. It is likely that node j cannot send the accumulated flow closer to the sink, 
and thus the algorithm will need to increase its distance label and return much of 
its excess back to the nodes it came from. Thus pushing too much flow to any node 
is also likely to be a wasted effort. 

The two conditions we have discussed-that each non saturating push must 
carry at least A./2 units of flow and that no excess should exceed A.-imply that we 
need to select the active nodes for push/relabel operations carefully. The following 
selection rule is one that assures that we achieve these objectives. 

Node Selection Rule. Among all nodes with a large excess, select a node with 
the smallest distance label (breaking ties arbitrarily). 

We are now in a position to give, in Figure 7.18, a formal description of the 
excess scaling algorithm. 

The excess scaling algorithm uses the same push/relabel(i) operation as the 
generic preflow-push algorithm, but with one slight difference. Instead of pushing 
8 = min{e(i), rij} units of flow, it pushes 8 = min{e(i), rij, A. - e(j)} units. This 
change ensures that the algorithm permits no excess to exceed A. . 

The algorithm performs a number of scaling phases with the value of the excess 
dominator A. decreasing from phase to phase. We refer to a specific scaling phase 
with a particular value of A. as a A.-scaling phase. Initially, A. = 2 r1og u1. Since the 
logarithm is of base 2, V:5 A. :5 2V. During the A.-scaling phase, A./2 < emax :5 A.; 
the value of emax might increase or decrease during the phase. When emax :5 A./2, 
we begin a new scaling phase. After the algorithm has performed rlog V1 + 1 scaling 
phases, emax decreases to value 0 and we obtain the maximum flow. 

Lemma 7.20. The algorithm satisfies the following two conditions: 
(a) Each nonsaturating push sends at least A./2 units offlow. 
(b) No excess ever exceeds A.. 

Proof Consider a non saturating push on arc (i,j). Since arc (i,j) is admissible, 
d(j) < d(i). Moreover, since node i is a node with the smallest distance label among 
all nodes with a large excess, e(i) ~ A./2 and e(j) < A. 12. Since this push is non-

algorithm excess scaling; 
begin 

preprocess; 
a: = 2r109 u 1; 

while a ~ 1 do 
begin (a-scaling phase) 

while the network contains a node i with a large excess do 
begin 

among all nodes with a large excess, select a node i with 
the smallest distance label; 
perform push/relabel(i) while ensuring that no node excess exceeds a; 

end; 
a: = a/2; 

end; 
end; 

Figure 7.18 Excess scaling algorithm. 

238 Maximum Flows: Polynomial Algorithms Chap. 7 



saturating, it sends min{e (i) , A - e(j)} ;::: A/2 units of flow, proving the first part 
of the lemma. This push operation increases the excess of only node j. The new 
excess of node j is e(j) + min {e(i), A - e(j)} :5 e(j) + {A - e(j)} :5 A. So all 
the node excesses remain less than or equal to A. This proves the second part of 
the lemma. • 

Lemma 7.21. The excess scaling algorithm performs O(n2) nonsaturating 
pushes per scaling phase and O(n2 log U) pushes in total. 

Proof Consider the potential function <I> = LiEN e(i)d(i)1 A. Using this po

tential function, we will establish the first assertion ofthe lemma. Since the algorithm 
performs O(log U) scaling phases, the second assertion is a consequence of the first. 
The initial value of <I> at the beginning of the A-scaling phase is bounded by 2n2 

because e(i) is bounded by A and d(i) is bounded by 2n. During the push/relabel(i) 
operation, one of the following two cases must apply: 

Case 1. The algorithm is unable to find an admissible arc along which it can 
push flow. In this case the distance label of node i increases by E ;::: 1 units. This 
relabeling operation increases <I> by at most E units because e(i) :5 A. Since for each 
i the total increase in d(i) throughout the running of the algorithm is bounded by 2n 
(by Lemma 7.13), the total increase in <I> due to the relabeling of nodes is bounded 
by 2n2 in the A-scaling phase (actually, the increase in <I> due to node relabelings is 
at most 2n2 over all scaling phases). 

Case 2. The algorithm is able to identify an arc on which it can push flow, so 
it performs either a saturating or a nonsaturating push. In either case, <I> decreases. 
A nonsaturating push on arc (i, j) sends at least A/2 units of flow from node ito 
nodej and since d(j) = d(i) - 1, after this operation decreases <I> by at least l unit. 
Since the initial value of <I> at the beginning of a A-scaling phase is at most 2n 2 and 
the increases in <I> during this scaling phase sum to at most 2n 2 (from Case 1), the 
number of non saturating pushes is bounded by Sn2

• • 

This lemma implies a bound of O(nm + n2 log U) on the excess scaling al
gorithm since we have already seen that all the other operations-such as saturating 
pushes, relabel operations, and finding admissible arcs-require O(nm) time. Up to 
this point we have ignored the method needed to identify a node with the minimum 
distance label among nodes with excess more than A/2. Making this identification 
is easy if we use a scheme similar to the one used in the highest-label preflow-push 
algorithm in Section 7.S to find a node with the highest distance label. We maintain 
the lists LIST(k) = {i E N:e(i) > A/2 and d(i) = k}, and a variable level that is a 
lower bound on the smallest index k for which LIST(k) is nonempty. We identify 
the lowest-indexed nonempty list by starting at LIST(level) and sequentially scanning 
the higher-indexed lists. We leave as an exercise to show that the overall effort 
needed to scan the lists is bounded by the number of pushes performed by the 
algorithm plus O(n log U), so these computations are not a bottleneck operation. 
With this observation we can summarize our discussion as follows. 

Theorem 7.22. The excess scaling algorithm runs in O(nm + n2 log U) time . 

• 
Sec. 7.9 Excess Scaling Algorithm 239 



Algorithm Running time Features 

Labeling algorithm O(nmU) I. Maintains a feasible flow and augments flows along 
directed paths in the residual network from node s 
to node t. 

2. Easy to implement and very flexible. 
3. Running time is pseudopolynomial: the algorithm is 

not very efficient in practice. 

Capacity scaling algorithm O(nm log U) I. A special implementation of the labeling algorithm. 
2. Augments flows along paths from node s to node t 

with sufficiently large residual capacity. 
3. Unlikely to be efficient in practice. 

Successive shortest path O(n2m) I. Another special implementation of the labeling al-
algorithm gorithm. 

2. Augments flows along shortest directed paths from 
node s to node t in the residual network. 

3. Uses distance labels to identify shortest paths from 
node s to node t. 

4. Relatively easy to implement and very efficient in 
practice. 

Generic preflow-push O(n2m) I. Maintains a pseudoflow; performs push/relabel op-
algorithm erations at active nodes. 

2. Very flexible; can examine active nodes in any 
order. 

3. Relatively difficult to implement because an effi-
cient implementation requires the use of several 
heuristics. 

FIFO preflow-push O(n3) I. A special implementation of the generic preflow-
algorithm . push algorithm. 

2. Examines active nodes in the FIFO order. 
3. Very efficient in practice. 

Highest-label preflow-push O(n2Vm) I. Another special implementation of the generic 
algorithm preflow-push algorithm. 

2. Examines active nodes with the highest distance 
label. 

3. Possibly the most efficient maximum flow algorithm 
in practice. 

Excess scaling algorithm O(nm + n2 log U) I. A special implementation of the generic preflow-
push algorithm. 

2. Performs push/relabel operations at nodes with suf-
ficiently large excesses and, among these nodes, se-
lectsa node with the smallest distance label. 

3. Achieves an excellent running time without using 
sophisticated data structures. 

Figure 7.19 Summary of maximum flow algorithms. 

240 Maximum Flows: Polynomial Algorithms Chap. 7 



7.10 SUMMARY 

Building on the labeling algorithm described in Chapter 6, in this chapter we de
scribed several polynomial-time algorithms for the maximum flow problem. The 
labeling algorithm can perform as many as n U augmentations because each aug
mentation might carry a small amount of flow. We studied two natural strategies for 
reducing the number of augmentations and thus for improving the algorithm's running 
time; these strategies lead to the capacity scaling algorithm and the shortest aug
menting path algorithm. One inherent drawback ofthese augmenting path algorithms 
is the computationally expensive operation of sending flows along paths. These al
gorithms might repeatedly augment flows along common path segments. The 
preflow-push algorithms that we described next overcome this drawback; we can 
conceive of them as sending flows along several paths simultaneously. In our de
velopment we considered both a generic implementation and several specific im
plementations of the preflow-push algorithm. The FIFO and highest-label preflow
push algorithms choose the nodes for pushing/relabeling in a specific order. The 
excess scaling algorithm ensures that the push operations, and subsequent augmen
tations, do not carry small amounts of flow (with "small" defined dynamically 
throughout the algorithm). Figure 7.19 summarizes the running times and basic fea
tures of these algorithms. 

REFERENCE NOTES 

The maximum flow problem is distinguished by the long succession of research 
contributions that have improved on the worst-case complexity of the best known 
algorithms. Indeed, no other network flow problem has witnessed as many incre
mental improvements. The following discussion provides a brief survey of selective 
improvements; Ahuja, Magnanti, and Orlin [1989, 1991] give a more complete survey 
of the developments in this field. 

The labeling algorithm of Ford and Fulkerson [1956a] runs in pseudopolynomial 
time. Edmonds and Karp [1972] suggested two polynomial-time implementations of 
this algorithm. The first implementation, which augments flow along paths with the 
maximum residual capacity, performs Oem log U) iterations. The second imple
mentation, which augments flow along shortest paths, performs O(nm) iterations 
and runs in O(nm2) time. Independently, Dinic [1970] introduced a concept of short
est path networks (in number of arcs), called layered networks, and obtained an 
O(n 2 m)-time algorithm. Until this point all maximum flow algorithms were aug
menting path algorithms. Karzanov [1974] introduced the first preflow-push algo
rithm on layered networks; he obtained an O(n 3

) algorithm. Shiloach and Vishkin 
[1982] described another O(n 3

) preflow-push algorithm for the maximum flow prob
lem, which is a precursor of the FIFO preflow-push algorithm that we described in 
Section 7.7. 

The capacity scaling described in Section 7.3 is due to Ahuja and Orlin [1991]; 
this algorithm is similar to the bit-scaling algorithm due to Gabow [1985] that we 
describe in Exercise 7.19. The shortest augmenting path algorithm described in Sec
tion 7.4 is also due to Ahuja and Orlin [1991]; this algorithm can be regarded as a 
variant of Dinic's [1970] algorithm and uses distance labels instead of layered net
works. 

Chap. 7 Reference Notes 241 



Researchers obtained further improvements in the running times of the max
imum flow algorithms by using distance labels instead oflayered networks. Goldberg 
[1985] first introduced distance labels; by incorporating them in the algorithm of 
Shiloach and Vishkin [1982], he obtained the O(n3 )-time FIFO implementation that 
we described in Section 7.7. The generic preflow-push algorithm and its highest
label preflow-push implementation that we described in Sections 7.8 are due to 
Goldberg and Tarjan [1986]. Using a dynamic tree data structure developed by Slea
tor and Tarjan [1983], Goldberg and Tarjan [1986] improved the running time of the 
FIFO implementation to O(nm log(n 2Im)). Using a clever analysis, Cheriyan and 
Maheshwari [1989] show that the highest-label preflow-push algorithm in fad runs 
in O(n2 Vm) time. Our discussion in Section 7.7 presents a simplified proof of 
Cheriyan and Maheshwari approach. Ahuja and Orlin [1989] developed the excess 
scaling algorithm described in Section 7.9; this algorithm runs in O(nm + n210g V) 
time and obtains dramatic improvements over the FIFO and highest-label preflow
push algorithms without using sophisticated data structures. Ahuja, Orlin, and Tarjan 
[1989] further improved the excess scaling algorithm and obtained several algorithms: 
the best time bound of these algorithms is O(nm log(n Ylog Vim + 2)). 

Cheriyan and Hagerup [1989] proposed a randomized algorithm for the max
imum flow problem that has an expected running time of O(nm) for all m ;::: n log2n. 
Alon [1990] developed a nonrandomized version of this algorithm and obtained a 
(deterministic) maximum flow algorithm that runs in (1) O(nm) time for all m = 
!l(n S/3 log n), and (2) O(nm log n) time for all other values of nand m. Cheriyan, 
Hagerup, and Mehlhorn [1990] obtained an O(n 3/10g n) algorithm for the maximum 
flow problem. Currently, the best available time bounds for solving the maximum 
flow problem are due to Alon [1990], Ahuja, Orlin, and Tarjan [1989], and Cheriyan, 
Hagerup, and Mehlhorn [1990]. 

Researchers have also investigated whether the worst-case bounds of the max
imum flow algorithms are "tight" (i.e., whether algorithms achieve their worst-case 
bounds for some families of networks). Galil [1981] constructed a family of networks 
and showed that the algorithms of Edmonds and Karp [1972], Dinic [1970], Karzanov 
[1974], and a few other maximum flow algorithms achieve their worst-case bounds. 
Using this family of networks, it is possible to show that the shortest augmenting 
path algorithm also runs in !l(n 2m) time. Cheriyan and Maheshwari [1989] have 
shown that the generic preflow-push algorithm and its FIFO and the highest-label 
preflow-push implementations run in !l(n 2m), !l(n 3

), and !l(n 2 ym) times, respec
tively. Thus the worst-case time bounds of these algorithms are tight. 

Several computational studies have assessed the empirical behavior of maxi
mum flow algorithms. Among these, the studies by Imai [1983], Glover, Klingman, 
Mote, and Whitman [1984], Derigs and Meier [1989], and Ahuja, Kodialam, Mishra, 
and Orlin [1992] are noteworthy. These studies find that preflow-push algorithms 
are faster than augmenting path algorithms. Among the augmenting path algorithms, 
the shortest augmenting path algorithm is the fastest, and among the preflow-push 
algorithms, the performance of the highest-label preflow-push algorithm is the most 
attractive. 

242 Maximum Flows: Polynomial Algorithms Chap. 7 



Source 

EXERCISES 

7.1. Consider the network shown in Figure 7.20. The network depicts only those arcs with 
a positive capacity. Specify the residual network with respect to the current flow and 
compute exact distance labels in the residual network. Next change the arc flows (with
out changing the flow into the sink) so that the exact distance label of the source node 
(1) decreases by 1 unit; (2) increases by 1 unit. 

Source • Sink 

Figure 7.20 Example for Exercise 7.1. 

7.2. Using the capacity scaling algorithm described in Section 7.3, find a maximum flow in 
the network given in Figure 7.21(b). 

~ ______ U~ij_. __ ~.~~ 

Source Sink 
}-----------...... f1itflF) Sink 

3 

(a) (b) 

Figure 7.21 Examples for Exercises 7.2, 7.3, 7.5, and 7.6. 

7.3. Using the shortest augmenting path algorithm, solve the maximum flow problem shown 
in Figure 7.21(a). 

7.4. Solve the maximum flow problem shown in Figure 7.22 using the generic preflow-push 
algorithm. Incorporate the following rules to maintain uniformity of your computations: 
(1) Select an active node with the smallest index. [For example, if nodes 2 and 3 are 
active, select node 2.] (2) Examine the adjacency list of any node in the increasing 
order of the head node indices. [For example, if A(1) = {(1, 5), (1, 2), (1, 7)}, then 
examine arc (1, 2) first.] Show your computations on the residual networks encountered 
during the intermediate iterations of the algorithm. 

Chap. 7 Exercises 243 



10 

Source 

30 

Figure 7.22 Example for Exercise 7.4. 

7.5. Solve the maximum flow problem shown in Figure 7.21(a) using the FIFO preflow-push 
algorithm. Count the number of saturating and non saturating pushes and the number 
of relabel operations. Next, solve the same problem using the highest-label preflow
push algorithm. Compare the number of saturating pushes, nonsaturating pushes, and 
relabel operations with those of the FIFO preflow-push algorithm. 

7.6. Using the excess scaling algorithm, determine a maximum flow in the network given 
in Figure 7.21(b). 

7.7. Most vital arcs. We define a most vital arc of a network as an arc whose deletion causes 
the largest decrease in the maximum flow value. Either prove the following claims or 
show through counterexample that they are false. 
(a) A most vital arc is an arc with the maximum value of uij. 
(b) A most vital arc is an arc with the maximum value of Xij. 
(c) A most vital arc is an arc with the maximum value of xij among arcs belonging to 

some minimum cut. 
(d) An arc that does not belong to some minimum cut cannot be a most vital arc. 
(e) A network might contain several most vital arcs. 

7.S. Least vital arcs. A least vital arc in a network is an arc whose deletion causes the least 
decrease in the maximum flow value. Either prove the following claims or show that 
they are false. 
(a) Any arc with xij = 0 in any maximum flow is a least vital arc. 
(b) A least vital arc is an arc with the minimum value of xij in a maximum flow. 
(c) Any arc in a minimum cut cannot be a least vital arc. 

7.9. Indicate which of the following claims are true or false. Justify your answer by giving 
a proof or by constructing a counterexample. 

244 

(a) If the capacity of every arc in a network is a multiple of IX, then in every maximum 
flow, each arc flow will be a multiple of IX. 

(b) In a network G, if the capacity of every arc increases by IX units, the maximum 
flow value will increase by a multiple of IX. 

(c) Let v* denote the maximum flow value of a given maximum flow problem. Let v' 
denote the flow into the sink node t at some stage of the preflow-push algorithm. 
Then v* - v' S Li is active e(i). 

(d) By the flow decomposition theory, some sequence of at most m + n augmentations 
would always convert any preflow into a maximum flow. 

(e) In the excess scaling algorithm, emax = max{e(i): i is active} is a nonincreasing 
function of the number of push/relabel steps. 

(0 The capacity of the augmenting paths generated by the maximum capacity aug
menting path algorithm is nonincreasing. 

(g) If each distance label d(i) is a lower bound on the length of a shortest path from 
node i to node t in the residual network, the distance labels are valid. 

Maximum Flows: Polynomial Algorithms Chap. 7 



7.10. Suppose that the capacity of every arc in a network is a multiple of u and is in the 
range [0, uK] for some integer K. Does this information improve the worst-case com
plexity of the labeling algorithm, FIFO preflow-push algorithm, and the excess scaling 
algorithm? 

7.11. Converting a maximum preflow to a maximum flow. We define a maximum preflow X
O 

as a preflow with the maximum possible flow into the sink. 
(a) Show that for a given maximum preflow xo, some maximum flow x* with the same 

flow value as xo, satisfies the condition that Xu :::s x~ for all arcs (i, j) E A. (Hint: 
Use flow decomposition.) 

(b) Suggest a labeling algorithm that converts a maximum preflow into a maximum 
flow in at most n + m augmentations. 

(e) Suggest a variant of the shortest augmenting path algorithm that would convert a 
maximum preflow into a maximum flow in O(nm) time. (Hint: Define distance labels 
from the source node and show that the algorithm will create at most m arc sat
urations.) 

(d) Suggest a variant of the highest-label preflow-push algorithm that would convert a 
maximum preflow into a maximum flow. Show that the running time of this al
gorithm is O(nm). (Hint: Use the fact that we can delete an arc with zero flow 
from the network.) 

7.12. (a) An arc is upward critical if increasing the capacity ofthis arc increases the maximum 
flow value. Does every network have an upward critical arc? Describe an algorithm 
for identifying all upward critical arcs in a network. The worst-case complexity of 
your algorithm should be substantially better than that of solving m maximum flow 
problems. 

(b) An arc is downward critical if decreasing the capacity of this arc decreases the 
maximum flow value. Is the set of upward critical arcs the same as the set of 
downward critical arcs? If not, describe an algorithm for identifying all downward 
critical arcs; analyze your algorithm's worst-case complexity. 

7.13. Show that in the shortest augmenting path algorithm or in the preflow-push algorithm, 
if an arc (i, j) is inadmissible at some stage, it remains inadmissible until the algorithm 
relabels node i. 

7.14. Apply the generic preflow-push algorithm to the maximum flow problem shown in 
Figure 7.23. Always examine a node with the smallest distance label and break ties in 
favor of a node with the smallest node number. How many saturating and nonsaturating 
pushes does the algorithm perform? 

~ ______ U~ij ____ ~.~I~ 

Figure 7.23 Example for Exercise 7.14. 

Chap. 7 Exercises 245 



7.15. Apply the FIFO preflow-push algorithm to the network shown in Figure 7.24. Determine 
the number of pushes as a function of the parameters Wand L (correct within a constant 
factor). For a given value of n, what values of Wand L produce the largest number of 
pushes? 

L 

11 1-=L'----.:...1 ~@ L-2 • 
00 

L-2 
}----+ ..... . 

L 00 ® L-1 

Figure 7.24 Example for Exercise 7.15. 

7.16. Apply the highest-label preflow-push algorithm on the network shown in Figure 7.24. 
Determine the number of pushes as a function of the parameters W and L (correct 
within a constant factor). For a given n, what values of Wand L produce the largest 
number of pushes? 

7.17. Describe a more general version of the capacity scaling algorithm discussed in Section 
7.3, one that scales ~ at each scaling phase by a factor of some integer number [3 ~ 2. 
Initially, ~ == [3POg~ U1 and each scaling phase reduces ~ by a factor of [3. Analyze the 
worst-case complexity of this algorithm and determine the optimal value of [3. 

7.1S. Partially capacitated networks (Ahuja and Orlin (1991]). Suppose that we wish to speed 
up the capacity scaling algorithm discussed in Exercise 7.17 for networks with some, 
but not all, arcs capacitated. Suppose that the network G has p arcs with finite capacities 
and [3 == max{2, r m/p 1}. Consider a version of the capacity scaling algorithm that scales 
~ by a factor of [3 in each scaling phase. Show that the algorithm would perform at 
most 2m augmentations per scaling phase. (Hint: At the end of the ~-scaling phase, 
the s-t cut in G(~) contains only arcs with finite capacities.] Conclude that the capacity 
scaling algorithm would solve the maximum flow problem in O(mZ 10gJ3 U) time. Fi
nally, show that this algorithm would run in O(mZ) time if U == O(nk) for some k and 
m == O(nl+E) for some e > O. 

7.19. Bit-scaling algorithm (Gabow [1985]). Let K == rlog U1. In the bit-scaling algorithm for 
the maximum flow problem works, we represent each arc capacity as a K-bit binary 
number, adding leading zeros if necessary to make each capacity K bits long. The 
problem Pk considers the capacity of each arc as the k leading bits. Let xt denote a 
maximum flow and let vt denote the maximum flow value in the problem Pk • The 
algorithm solves a sequence of problems PI, Pz, P3 , ••• , PK , using 2xt-1 as a starting 
solution for the problem Pk • 

(a)· Show that 2xt-1 is feasible for Pk and that vt - 2vt-1 S m. 
(b) Show that the shortest augmenting path algorithm for solving problem Pk , starting 

with 2xt-1 as the initial solution, requires O(nm) time. Conclude that the bit-scaling 
algorithm solves the maximum flow problem in O(nm log U) time. 

7.20. Using the potential function <I> = max{d(i): i is active}, show that the highest-label 
preflow-push algorithm performs O(n3) non saturating pushes. 

7.21. The wave algorithm, which is a hybrid version of the highest-label and FIFO preflow
push algorithms, performs passes over active nodes. In each pass it examines all the 
active nodes in nonincreasing order of the distance labels. While examining a node, it 
pushes flow from a node until either its excess becomes zero or the node is relabeled. 
If during a pass, the algorithm relabels no node, it terminates; otherwise, in the next 
pass, it again examines active nodes in nonincreasing order of their new distance labels. 

246 Maximum Flows: Polynomial Algorithms Chap. 7 



Discuss the similarities and differences between the wave algorithm with the highest 
label and FIFO preflow-push algorithms. Show that the wave algorithm runs in 0(n3) 
time. 

7.22. Several rules listed below are possible options for selecting an active node to perform 
the push/relabel operation in the preflow-push algorithm. Describe the data structure 
and the implementation details for each rule. Obtain the tightest possible bound on the 
numbers of pushes performed by the algorithm and the resulting running time of the 
algorithm. 
(a) Select an active node with the minimum distance label. 
(b) Select an active node with the largest amount of excess. 
(c) Select an active node whose excess is at least 50 percent of the maximum excess 

at any node. 
(d) Select the active node that the algorithm had selected most recently. 
(e) Select the active node that the algorithm had selected least recently. 
(0 Select an active node randomly. (Assume that for any integer k, you can in 0(1) 

steps generate a random integer uniformly in the range [1, k].) 

7.23. In the excess scaling algorithm, suppose we require that each nonsaturating push pushes 
exactly fl/2 units of flow. Show how to modify the push/relabel step to meet this re
quirement. Does this modification change the worst-case running time of the algorithm? 

7.24. In our development in this chapter we showed that the excess scaling algorithm performs 
0(n2 log U*) nonsaturating pushes if u* is set equal to the largest arc capacity among 
the arcs emanating from the source node. However, we can often select smaller values 
of u* and still show that the number of non saturating pushes is 0(n2 log U*). Prove 
that we can also use the following values of u* without affecting the worst-case com
plexity of the algorithm: (1) U* = L(S,j)EA(S) us/I A(s) I; (2) U* = vub

/ 1 A(s) 1 for any 
upper bound vub on the maximum flow value. (Hint: In the first scaling phase, set 
fl = 2r1og V'l and forbid nodes except those adjacent to the source from having exces:; 
more than fl.) , 

7.25. The excess scaling algorithm described in Section 7.9 scales excesses by a factor of 2. 
It starts with the value of the excess dominator fl equal to the smallest p0wer of 2 that 
is greater than or equal to U; in every scaling phase, it reduces fl by a factor of 2. An 
alternative is to scale the excesses by a factor of some integer number 13 ~ 2. This 
algorithm would run as follows. It would start with fl = I3rlOg~ Cll; it would then reduce 
fl by a factor of 13 in every scaling phase. In the fl-scaling phase, we refer to a node 
with an excess of at least fl/13 as a node with a large excess. The algorithm pushes flow 
from a node with a large excess and among these nodes it chooses the node with the 
smallest distance label. The algorithm also ensures that no excess exceeds fl. Determine 
the number of nonsaturating pushes performed by the algorithm as a function of n, 13, 
and U. For what value of 13 would the algorithm perform the least number of non
saturating pushes? 

7.26. For any pair [i, j] E N x N, we define a[i, j] in the following manner: (1) if (i, j) E 
A, then a[i, j] is the increase in the maximum flow value obtained by setting uij = 00; 
and (2) if (i, j) E A, then a[i, j] is the increase in the maximum flow value obtained 
by introducing an infinite capacity arc (i, j) in the network. 
(a) Show that a[i,j]:S a[s,j] and a[i,j]:S a[i, t]. 
(b) Show that a[i, j] = min{a[s, j], a[i, tl}. 
(c) Show that we can compute a[i,j] for all node pairs by solving O(n) maximum flow 

problems. 

7.27. Minimum cut with the fewest number of arcs. Suppose that we wish to identify from 
among all minimum cuts, a minimum cut containing the least number of arcs. Show 
that if we replace Uij by uij = mUij + 1, the minimum cut with respect to the capacities 
uij is a minimum cut with respect to the capacities Uij containing the fewest number of 
arcs. 

Chap. 7 Exercises 247 



7.28. Parametric network feasibility problem. In a capacitated network G with arc capacities 
uij' suppose that the supply/demands of nodes are linear functions of time T. Let each 
b(i) = b°(i) + Tb*(i) and suppose that ~iEN b°(i) = 0 and ~iEN b*(i) = o. The 
network is currently (i.e., at time ,. = 0) able to fulfill the demands by the existing 
supplies but might not be able to do so at some point in future. You want to determine 
the largest integral value of T up to which the network will admit a feasible flow. How 
would you solve this problem? 

7.29. Source parametric maximum flow problem (Gallo, Grigoriadis, and TaIjan [1989]). In 
the source parametric maximum flow problem, the capacity of every source arc (s, j) 
is a nondecreasing linear function of a parameter h (i.e., Usj = U~j + hut for some 
constant ut <=: 0); the capacity of every other arc is fixed, and we wish to determine 
a maximum flow for p values 0 = hI. h2, . .. , hp of the parameter h. Assume that 
hi :S: h2 :S: ••• :S: hp and p :S: n. As an application of the source-parametric maximum 
flow problem, consider the following variation of Application 6.5. Suppose that pro
cessor 1 is a shared multiprogrammed system and processor 2 is a graphic processor 
dedicated to a single user. Suppose further that we can accurately determine the times 
'required for processing modules on processor 2, but the times for processing modules 
on processor 1 are affected by a general work load on the processor. As the work load 
on processor 1 changes, the optimal distribution of modules between processor 1 and 
2 changes. The source-parametric maximum flow problem determines these distribu
tions for different work loads on processor 1. 

Let MF(h) denote the maximum flow problem for a specific value of h. Let V(h) 
denote the maximum flow value of MF(h) and let [S(h), S(h)] denote an associated 
minimum cut. Clearly, the zero flow is optimal for MF(hl). Given an optimal flow X(hk) 
of MF(hk), we solve MF(hk+l) as follows: With X(hk) ,as the starting flow and the cor
responding distance labels as the initial distance labels, we perform a preprocess step 
by sending additional flow along the source arcs so that they all become saturated. 
Then we apply the FIFO preflow-push algorithm until the network contains no more 
active nodes. We repeat this process until we have solved MF(hp). 
(a) Show that the ending distance labels of MF(hk) are valid distances for MR(hk+ I) 

in the residual network G(X(hk) after the preprocess step. ' 
(b) Use the result in part (a) to show that overall [i.e., in solving all the problems 

MF(hl), MF(h2), ... , MF(hp)1, the algorithm performs O(n2) relabels, O(nm) sat
urating pushes, and O(n3) non saturating pushes. Conclude that the FIFO preflow
push algorithm solves the source parametric maximum flow problem in O(n3) time, 
which is the same time required to solve a single maximum flow problem. 

(c) Show that V(hl) :S: v(h2) :S: ..• :S: v(hp) and some associated minimum cuts satisfy 
the nesting condition SI ~ S2 k ... ~ Sp. 

7.30. Source-sink parametric maximum flow problem. In the source-sink parametric maxi
mum flow problem, the capacity of every source arc is a nondecrensing linear function 
of a parameter h and capacity of every sink arc is a nonincreasing linear function of 
h, and we want to determine a maximum flow for several values of parameter hi, 
h2' ... , hp, for p :S: n, that satisfy the condition 0 = hi < h2 < ... < hp. Show how 
to solve this problem in a total of O(n3) time. (Hint: The algorithm is same as the one 
considered in Exercise 7.29 except that in the preprocess step if some sink arc has flow 
greater than its new capacity, we decrease the flow.) 

7.31. Ryser's theorem. Let Q be a p x p matrix consisting of 0-1 elements. Let u denote 
the vector of row sums of Q and f3 denote the vector of column sums. Suppose that 
the rows and columns are ordered so that UI <=: U2 <=: ••• <=: Up, and f31 <=: f32 <=: ••• <=: f3p. 
(a) Show that the vectors u and f3 must satisfy the following conditions: (1) ~~= I Ui = 

248 

~~=I f3i and (2) ~~=I min(u;, k) :S: ~~=I f3;, for all k = 1, ... , p. [Hint: 
min(u;, k) is an upper bound on the sum of the first k components of row i.] 

Maximum Flows: Polynomial Algorithms Chap. 7 



(b) Given the nonnegative integer vector IX and [3, show how to formulate the problem 
of determining whether some 0-1 matrix Q has a row sum vector IX and a column 
sum vector [3 as a maximum flow problem. Use the max-flow min-cut theorem to 
show that the conditions stated in part (a) are sufficient for the existence of such 
a matrix Q. 

Chap. 7 Exercises 249 



8 

MAXIMUM FLOWS: ADDITIONAL TOPICS 

Chapter Outline 

8.1 Introduction 
8.2 Flows in Unit Capacity Networks 
8.3 Flows in Bipartite Networks 
8.4 Flows in Planar Undirected Networks 
8.5 Dynamic Tree Implementations 
8.6 Network Connectivity 
8.7 All-Pairs Minimum Value Cut Problem 
8.8 Summary 

8.1 INTRODUCTION 

This was the most unkindest cut of all. 
-Shakespeare in Julius Caeser Act III 

In all scientific disciplines, researchers are always making trade-offs between the 
generality and the specificity of their results. Network flows embodies these con
siderations. In studying minimum cost flow problems, we could consider optimi
zation models with varying degrees of generality: for example, in increasing order 
of specialization, (1) general constrained optimization problems, (2) linear programs, 
(3) network flows, (4) particular network flow models (e.g., shortest path and max
imum flow problems), and (5) the same models defined on problems with specific 
topologies and/or cost structures. The trade-offs in choosing where to study across 
the hierarchy of possible models is apparent. As models become broader, so does 
the range of their applications. As the models become more narrow, available results 
often become refined and more powerful. For example, as shown by our discussion 
in previous chapters, algorithms for shortest path and maximum flow problems have 
very attractive worst-case and empirical behavior. In particular, the computational 
complexity of these algorithms grows rather slowly in the number of underlying 
constraints (i.e., nodes) and decision variables (arcs). For more general linear pro
grams, or even for more general minimum cost flow problems, the best algorithms 
are not nearly as good. 

In considering what class of problems to study, we typically prefer models that 
are generic enough to be rich, both in applications and in theory. As evidenced by 
the coverage in this book, network flows is a topic that meets this criterion. Yet, 
through further specialization, we can develop a number of more refined results. 
Our study of shortest paths and maximum flow problems in the last four chapters 

250 



has illustrated this fact. Even within these more particular problem classes, we have 
seen the effect of further specialization, which has led to us to discover more efficient 
shortest path algorithms for models with nonnegative costs and for models defined 
on acyclic graphs. In this chapter we carry out a similar program for maximum flow 
problems. We consider maximum flow problems with both (1) specialized data, that 
is, networks with unit capacity arcs, and (2) specialized topologies, namely, bipartite 
and planar networks. 

For general maximum flow problems, the labeling algorithm requires O(nmU) 
computations and the shortest augmenting path algorithm requires O(n 2m) com
putations. When applied to unit capacity networks, these algorithms are guaranteed 
to perform even better. Both require O(nm) computations. We obtain this improve
ment simply because of the special nature of unit capacity networks. By designing 
specialized algorithms, however, we can improve even further on these results. 
Combining features of both the labeling algorithm and the shortest augmenting path 
algorithm, the unit capacity maximum flow algorithm that we consider in this chapter 
requires only O(min{n2/3 m, m3/2 }) computations. 

Network connectivity is an important application context for the unit capacity 
maximum flow problem. The arc connectivity between any two nodes of a network 
is the maximum number of arc-disjoint paths that connect these nodes; the arc con
nectivity of the network as a whole is the minimum arc connectivity between any 
pair of nodes. To determine this important reliability measure of a network, we could 
solve a unit capacity maximum flow problem between every pair of nodes, thus 
requiring O(min{n2/3 m, m3/2}) computations. As we will see in this chapter, by ex
ploiting the special structure of the arc connectivity problem, we can reduce this 
complexity bound considerably-to O(nm). 

For networks with specialized bipartite and planar topologies, we can also 
obtain more efficient algorithms. Recall that bipartite networks are composed oftwo 
node sets, Nl with nl nodes and N2 with n2 nodes. Assume that nl 5,: n2. For these 
problems we develop a specialization of the generic preflow-push algorithm that 
requires O(nT m) instead of O((nl + n2? m) time. Whenever the bipartite network 
is unbalanced in the sense that nl ~ (n! + n2) = n, the new implementation has a 
much better complexity than the general preflow-push algorithm. Planar networks 
are those that we can draw on the plane so that no two arcs intersect each other. 
For this class of networks, we develop a specialized maximum flow algorithm that 
requires only O(n log n) computations. 

In this chapter we also consider two other additional topics: a dynamic tree 
implementation and the all-pairs minimum value cut problem. Dynamic trees is a 
special type of data structure that permits us to implicitly send flow on paths of 
length n in O(log n) steps on average. By doing so we are able to reduce the com
putational requirement of the shortest augmenting path algorithm for maximum flows 
from O(n2m) to O(nm log n). 

In some application contexts, we need to find the maximum flow between every 
pair of nodes in a network. The max-flow min-cut theorem shows that this problem 
is equivalent to finding the minimum cut separating all pairs of nodes. The most 
naive way to solve this problem would be to solve the maximum flow problem 
n(n - 1) times, once between every pair of nodes. Can we do better? In Section 
8.7 we show that how to exploit the relationship of the cut problems between various 

Sec. 8.1 Introduction 251 



node pairs to reduce the computational complexity of the all-pairs minimum value 
cut problem considerably in undirected networks. This algorithm requires solving 
only (n - 1) minimum cut problems in undirected networks. Moreover, the tech
niques used in this development extend to a broader class of problems: they permit 
us to solve the all-pairs minimum cut problem for situations when the value of a cut 
might be different than the sum of the arc capacities across the cut. 

The algorithms we examine in this chapter demonstrate the advantage of ex
ploiting special structures to improve on the design of algorithms. This theme not 
only resurfaces on several other occasions in this book, but also is an important 
thread throughout the entire field of large-scale optimization. Indeed, we might view 
the field of large-scale optimization, and the field of network flows for that matter, 
as the study of theory and algorithms for exploiting special problem structure. In 
this sense this chapter is, in its orientation and overall approach, a microcosm of 
this entire book and of much of the field of optimization itself. 

B.2 FLOWS IN UNIT CAPACITY NETWORKS 

Certain combinatorial problems are naturally formulated as zero-one optimization 
models. When viewed as flow problems, these models yield networks whose arc 
capacities are alii. We will refer to these networks as unit capacity networks. 
Frequently, it is possible to solve flow problems on these networks more efficiently 
than those defined on general networks. In this section we describe an efficient 
algorithm for solving the maximum flow problem on unit capacity networks . We 
subsequently refer to this algorithm as the unit capacity maximum flow algorithm. 

In a unit capacity network, the maximum flow value is at most n, since the 
capacity of the s-t cut [{s}, S - {s}] is at most n. The labeling algorithm therefore 
determines a maximum flow within n augmentations and requires O(nm) effort. The 
shortest augmenting path algorithm also solves this problem in O(nm) time since its 
bottleneck operation, which is the augmentation step, requires O(nm) time instead 
of O(n 2m) time. The unit capacity maximum flow algorithm that we describe is a 
hybrid version of these two algorithms. This unit capacity maximum flow algorithm 
is noteworthy because by combining features of both algorithms, it requires only 
o (min{n 2/3 m, m 3/2 }) time, which is consistently better than the O(nm) bound of either 
algorithm by itself. 

The unit capacity maximum flow algorithm is a two-phase algorithm. In the 
first phase it applies the shortest augmenting path algorithm, although not until com
pletion: rather, this phase terminates whenever the distance label of the source node 
satisfies the condition d(s) 2: d* = min{ r2n2/3 1, r m1l21}. Although the algorithm 
might terminate with a nonoptimal solution, the solution is probably nearly-optimal 
(its value is within d* of the optimal flow value). In its second phase, the algorithm 
applies the labeling algorithm to convert this near-optimal flow into a maximum flow. 
As we will see, this two-phase approach works well for unit capacity networks 
because the shortest augmenting path algorithm obtains a near-optimal flow quickly 
(when augmenting paths are "short") but then takes a long time to convert this 
solution into a maximum flow (when augmenting paths become "long"). It so hap
pens that the labeling algorithm converts this near-optimal flow into a maximum 
flow far more quickly than the shortest augmenting path algorithm. 

252 Maximum Flows: Additional Topics Chap. 8 



Let us examine the behavior of the shortest augmenting path algorithm for 
d* = min{ f2n 2/3 1 , f m 1/21}. Suppose the algorithm terminates with a flow vector x' 

with a flow value equal to Vi. What can we say about v* - Vi? (Recall that v* denotes 
the maximum flow value.) We shall answer this question in two parts: (1) when 
d* = f2n 2/3

1 , and (2) when d* = fm 1l2
1. 

Suppose that d* = f2n 2/31. For each k = 0, 1, 2, ... , d*, let Vk denote the 
set of nodes with a distance label equal to k [Le., Vk = {i E N:d(i) = k}]. We refer 
to Vk as the set of nodes in the kth layer of the residual network. Consider the 
situation when each of the sets VI. V2 , ..• , Vd • is nonempty. It is possible to show 
that each arc (i, j) in the residual network G(x ' ) connects a node in the kth layer 
to a node in the (k + l)th layer for some k, for otherwise d(i) > d(j) + 1, which 
contradicts the distance label validity conditions (7.2). Therefore, for each k = 1, 
2, ... , d*, the set of arcs joining the node sets Vk to Vk - I form an s-t cut in the 
residual network. In case one of the sets, say Vk , is empty, our discussion in Section 
7.4 implies that the cut [S, S] defined by S = Vk + I U Vk+2 U ... U Vd • is a minimum 
cut. 

Note that I VI I + I V2 1 + ... + I vd'l :s; n - 1, because the sink node does 
not belong to any of these sets. We claim that the residual network contains at least 
two consecutive layers Vk and Vk - I , each with at most n ll3 nodes. For if not, every 
alternate layer (say, VI. V3 , Vs, ... ) must contain more than n ll3 nodes and the 
total number of nodes in these layers would be strictly greater than n ll3 d*/2 2: n, 
leading to a contradiction. Consequently, I Vk I :s; nll3 and I Vk - I I :s; n ll3 for some 
of the two layers Vk and Vk - I • The residual capacity of the s-t cut defined by the 
arcs connecting Vk to Vk- I is at most I Vk II Vk- I I :s; n2/3 (since at most one arc of 
unit residual capacity joins any pair of nodes). Therefore, by Property 6.2, v* ~ 
Vi :s; n2/3 :s; d*. 

Next consider the situation when d* = f m1l21. The layers of nodes VI, 
V2 , ••• , V d' define d* s-t cuts in the residual network and these cuts are arc disjoint 
in G(x). The sum of the residual capacities of these cuts is at most m since each arc 
contributes at most one to the residual capacity of any such cut. Thus some s-t cut 
must have residual capacity at most f m 1121. This conclusion proves that v* - v' :s; 
fm 1l21 = d*. 

In both cases, whenever d* = f2n 2/3
1 or d* = f m 1/2

1, we find that the first 
phase obtains a flow whose value differs from the maximum flow value by at most 
d* units. The second phase converts this flow into a maximum flow in O(d*m) time 
since each augmentation requires O(m) time and carries a unit flow. We now show 
that the first phase also requires O( d* m) time. 

In the first phase, whenever the distance label of a node k exceeds d*, this 
node never occurs as an intermediate node in any subsequent augmenting path since 
d(k) < d(s) < d*. So the algorithm relabels any node at most d* times. This ob
servation gives a bound of O(d*n) on the number of retreat operations and a bound 
of O(d*m) on the time to perform the retreat operations. Consider next the aug
mentation time. Since each arc capacity is 1, flow augmentation over an arc im
mediately saturates that arc. During two consecutive saturations of any arc (i, j), 
the distance labels of both the nodes i andj must increase by at least 2 units. Thus 
the algorithm can saturate any arc at most ld*/2J times, giving an O(d*m) bound 
on the total time needed for flow augmentations. The total number of advance op-

Sec. 8.2 Flows in Unit Capacity Networks 253 



erations is bounded by the augmentation time plus the number of retreat operations 
and is again O(d*m). We have established the following result. 

Theorem 8.1. The unit capacity maximum flow algorithm solves a maximum 
flow problem on unit capacity networks in O(min{n2/3 m , m3/2}) time. • 

The justification of this two-phase procedure should now be clear. If d* 
r2n2/31 :s; m 112, the preceding discussion shows that the shortest augmenting path 
algorithm requires O(n2/3m) computations to obtain a flow within n2/3 of the optimal. 
If we allow this algorithm to run until it achieves optimality [i.e., until d(s) 2: n), 
the algorithm could require an additional O«n - n2/3)m) time to convert this flow 
into an optimal flow. For n = 1000, these observations imply that if the algorithm 
achieves these bounds, it requires 10 percent of the time to send 90 percent of the 
maximum flow and the remaining 90 percent of the time to send 10 percent of the 
maximum flow. (Empirical investigations have observed a similar behavior in prac
tice as well.) On the other hand, the use of labeling algorithm in the second phase 
establishes a maximum flow in O(n2/3 m) time and substantially speeds up the overall 
performance of the algorithm. 

Another special case of unit capacity networks, called unit capacity simple 
networks, also arises in practice and is of interest to researchers. For this class of 
unit capacity networks, every node in the network, except the source and sink nodes, 
has at most one incoming arc or at most one outgoing arc. The unit capacity maximum 
flow algorithm runs even faster for this class of networks. We achieve this improve
ment by setting d* = r n1l21 in the algorithm. 

Theorem 8.2. The unit capacity maximum flow algorithm establishes a max
imumflow in unit capacity simple networks in O(nIl2m) time. 

Proof. Consider the layers of nodes VI, V2, ... , Vd • at the end of the first 
phase. Note first that des) > d* since otherwise we could find yet another aug
mentation in Phase 1. Suppose that layer Vh contains the smallest number of nodes. 
Then I V h I :s; n 112, since otherwise the number of nodes in all layers would be strictly 
greater than n. Let N' be the nodes in N with at most one outgoing arc. We define 
a cut [S, N-S) as follows: S = U:d(j) 2: h} U U:d(j) = hand j EN'}. Since 
des) > d* 2: hand d(t) = 0, [S, N-S) is an s-t cut. Each arc with residual capacity 
in the cut [S, N-S) is either directed into a node in Vh n (N-N') or else it is directed 
from a node in Vh n N'. Therefore, the residual capacity of the cut Q is at most 
I Vh I :s; n1l2. Consequently, at the termination of the first phase, the flow value 
differs from the maximum flow value by at most n1l2 units. Using arguments similar 
to those we have just used, we can now easily show that the algorithm would run 
in O(n l

/
2m) time. • 

The proof of the Theorem 8.2 relies on the fact that only 1 unit of flow can 
pass through each node in the network (except the source and sink nodes). If we 
satisfy this condition but allow some arc capacities to be larger than 1, the unit 
capacity maximum flow algorithm would still require only O(n Il2 m) time. Networks 
with this structure do arise on occasion; for example, we encountered this type of 

254 Maximum Flows: Additional Topics Chap. 8 



network when we computed the maximum number of node-disjoint paths from the 
source node to the sink node in the proof of Theorem 6.8. Theorem 8.2 has another 
by-product: It permits us to solve the maximum bipartite matching problem in 
O(n"2m) time since we can formulate this problem as a maximum flow problem on 
a unit capacity simple network. We study this transformation in Section 12.3. 

B.8 FLOWS IN BIPARTITE NETWORKS 

A bipartite network is a network G = (N, A) with a node set N partitioned into two 
subsets NJ and N2 so that for every arc (i,j) E A, either (1) i E NJ andj E N 2, or 
(2) i E N2 and j E N J. We often represent a bipartite network using the notation 
G = (NJ U N 2, A). Let nJ = \ NJ \ and n2 = \ N 2 \. Figure 8.1 gives an example 
of a bipartite network; in this case, we can let NJ = {t, 2, 3, 9} and N2 = {4, 5, 6, 
7,8}. 

Figure 8.1 Bipartite network. 

In this section we describe a specialization of the preflow-push algorithms that 
we considered in Chapter 7, but now adapt it to solve maximum flow problems on 
bipartite networks. The worst-case behavior of these special-purpose algorithms is 
similar to those of the original algorithms if the node sets NJ and N2 are of comparable 
size; the new algorithms are considerably faster than the original algorithms, how
ever, whenever one ofthe sets NJ or N2 is substantially larger than the other. Without 
any loss of generality, we assume that nl :::; n2. We also assume that the source node 
belongs to N 2 • [If the source node s belonged to Nt. then we could create a new 
source node s I E N 2, and we could add an arc (s I , s) with capacity M for sufficiently 
large M.] As one example of the type of results we will obtain, we show that the 
specialization ofthe generic preflow-push algorithm solves a maximum flow problem 
on bipartite networks in O(nrm) time. If nl ~ (nl + n2) = n, the new implementation 
is considerably faster than the original algorithm. 

In this section we examine only the generic preflow-push algorithm for bipartite 
networks; we refer to this algorithm as the bipartite pre flow-push algorithm. The 
ideas we consider also apply in a straightforward manner to the FIFO, highest-label 
preflow-push and excess-scaling algorithms and yield algorithms with improved 
worst-case complexity. We consider these improvements in the exercises. 

We first show that a slightly modified version of the generic preflow-push al
gorithm requires less than O(n 2m) time to solve problems defined on bipartite net
works. To establish this result, we change the preprocess operation by setting 
d(s) = 2nl + 1 instead of des) = n. The modification stems from the observation 

Sec. 8.3 Flows in Bipartite Networks 255 



that any path in the residual network can have at most 2nl arcs since every alternate 
node in the path must be in Nl (because the residual network is also bipartite) and 
no path can repeat a node in N 1 • Therefore, if we set d(s) = 2nl + 1, the residual 
network will never contain a directed path from node s to node t, and the algorithm 
will terminate with a maximum flow. 

Lemma 8.3. For each node i E N, d(i) < 4nl + 1. 

Proof The proof is similar to that of Lemma 7.12. 

The following result is a direct consequence of this lemma. 

Lemma 8.4. 

• 

(a) Each distance label increases at most O(nl) times. Consequently, the total num
ber of relabel operations is O(nl (nl + n2)) = O(nln2). 

(b) The number of saturating pushes is O(nlm). 

Proof The proofs are similar to those of Lemmas 7.13 and 7.14. • 

It is possible to show that the results of Lemma 8.4 yield a bound of O«nlm)n) 
on the number of nonsaturating pushes, as well as on the complexity of the generic 
preflow-push algorithm. Instead of considering the details of this approach, we next 
develop a modification of the generic algorithm that runs in O(nIm) time. 

This modification builds on the following idea. To bound the non saturating 
pushes of any preflow-push algorithm, we typically use a potential function defined 
in terms of all the active nodes in the network. If every node in the network can be 
active, the algorithm will perform a certain number of non saturating pushes. How
ever, if we permit only the nodes in Nl to be active, because nl :s; n we can obtain 
a tighter bound on the number of nonsaturating pushes. Fortunately, the special 
structure of bipartite networks permits us to devise an algorithm that always manages 
to keep the nodes in N2 inactive. We accomplish this objective by starting with a 
solution whose only active nodes are in NJ, and by performing pushes of length 2; 
that is, we push flow over two consecutive admissible arcs so that any excess always 
returns to a node in Nl and no node in N2 ever becomes active. 

Consider the residual network of a bipartite network given in Figure 8.2(a), 
with node excesses and distance labels displayed next to the nodes, and residual 
capacities displayed next to the arcs. The bipartite preflow-push algorithm first 
pushes flow from node 1 because it is the only active node in the network. The 
algorithm then identifies an admissible arc emanating from node 1. Suppose that it 
selects the arc (1, 3). Since we want to find a path of length 2, we now look for an 
admissible arc emanating from node 3. The arc (3, 2) is one such arc. We perform 
a push on this path, pushing 8 = min{e(1), r13, rd = min{6, 5, 4} = 4 units. 'This 
push saturates arc (3,2), and completes one iteration of the algorithm. Figure 8:2(b) 
gives the solution at this point. 

In the second iteration, suppose that the algorithm again selects node 1 as an 
active node and arc (1,3) as an admissible arc emanating from this node. We would 
also like to find an admissible arc emanating from node 3, but the network has none. 
So we relabel node 3. As a result of this relabel operation, arc (1, 3) becomes in-

256 Maximum Flows: Additional Topics Chap. 8 



e(l) = 6 
d(l) =2 

e(2) = 0 
d(2) =0 

., rij 
,6. bY C,(,m~ 

5 

4 

4 

I~o( 
3 

(a) 

(i • '/iii 

e(3) = 0 e(1) = 2 
d(3) = 1 d(1) = 2 

• e(4) = 0 e(2) = 4 
d(4) = 1 d(2) = 0 

e(l) = 0 e(3) = 0 
d(l) = 2 d(3) = 3 

e(2) = 6 t"~ji~=====~ilJ~ e(4) = 0 
d(2) = 0 Vi d(4) = 1 

4 

3 

(b) 

Figure 8.2 Illustrating the bipartite preflow-flow algorithm. 

e(3) = 0 
d(3) = 1 

4 

4 

e(4) = 0 
d(4) = 1 

admissible. This operation completes the second iteration and Figure 8.2(b) gives 
the solution at this stage except that d(3) is 3 instead of 1. 

Suppose that the algorithm again selects node 1 as an active node in the third 
iteration. Then it selects the two consecutive admissible arcs (1, 4) and (4, 2), and 
pushes 8 = min{e(1), r14, r42} = min{2, 4, 3} = 2 units of flow over these arcs. This 
push is non saturating and eliminates the excess at node 1. Figure 8.2(c) depicts the 
solution at this stage. 

As we have illustrated in this numerical example, the bipartite'preflow-push 
algorithm is a simple generalization of the generic preflow-push algorithm. The bi
partite algorithm is the same as the generic algorithm given in Figure 7.12 except 
that we replace the procedure pushlrelabel(i) by the procedure given in Figure 8.3. 

procedure bipartite pushlrelabel(i); 
begin 

if the residual network contains an admissible arc (i, j) then 
If the residual network contains an admissible arc (j, k) then 

push 1l = min{e(i), rij, rjk} units of flow over the path i-j-k 
• else replace d(j) by min{d(k) + 1 : (j, k) E A(j) and rjk> O} 

else replace d(i) by min{d(j) + 1 : (i, j) E A(i) and rij> O}; 
end; 

Figure 8.3 Push/relabel operation for bipartite networks. 

Lemma 8.5. The bipartite pre flow-push algorithm performs O(nrm) non
saturating pushes and runs in O(nrm) time. 

Proof. The proof is same as that of Lemma 7.15. We consider the potential 
function <I> = .LiEf d(i) whose index set I is the set of active nodes. Since we allow 
only the nodes in NI to be active, and d(i) :5 4nl for all i E N 1 , the initial value of 

Sec. 8.3 Flows in Bipartite Networks 257 



<I> is at most 4nI. Let us observe the effect of executing the procedure bipartite push! 
relabel(i) on the potential function <I>. The procedure produces one of the following 
four outcomes: (1) it increases the distance label of node i; (2) it increases the distance 
label of a node j E N 2 ; (3) it pushes flow over the arcs (i, j) and (j, k), saturating 
one of these two arcs; or (4) it performs a nonsaturating push. In case 1, the potential 
function <I> increases, but the total increase over all such iterations is only O(nI). 
In case 2, <I> remains unchanged. In case 3, <I> can increase by as much as 4n) + 1 
units since a new node might become active; Lemma 8.4 shows that the total increase 
over all iterations is O(nIm). Finally, a non saturating push decreases the potential 
function by at least 2 units since it makes node i inactive, can make node k newly 
active and d(k) = d(i) - 2. This fact, in view of the preceding arguments, implies 
that the algorithm performs O(nrm) non saturating pushes. Since all the other op
erations, such as the relabel operations and finding admissible arcs, require only 
O(n)m) time, we have established the theorem. • 

We complete this section by giving two applications of the maximum flow 
problem on bipartite networks with n) ~ n2. 

Application 8.1 Baseball Elimination Problem 

At a particular point in the baseball season, each of n + 1 teams in the American 
League, which we number as 0, 1, ... , n, has played several games. Suppose that 
team i has won Wi of the games that it has already played and that gij is the number 
of games that teams i andj have yet to play with each other. No game ends in a tie. 
An avid and optimistic fan of one of the teams, the Boston Red Sox, wishes to know 
if his team still has a chance to win the league title. We say that we can eliminate 
a specific team 0, the Red Sox, if for every possible outcome ofthe unplayed games, 
at least one team will have more wins than the Red Sox. Let Wmax denote Wo plus 
the total number of games team 0 has yet to play, which, in the best of all possible 
worlds, is the number of victories the Red Sox can achieve. Then we cannot eliminate 
team 0 if in some outcome of the remaining games to be played throughout the league, 
Wmax is at least as large as the possible victories of every other team. We want to 
determine whether we can or cannot eliminate team O. 

We can transform this baseball elimination problem into a feasible flow problem 
on a bipartite network with two sets with n) and n2 = O(nf). As discussed in Section 
6.2, we can represent the feasible flow problem as a maximum flow problem, as 
shown in Figure 8.4. The maximum flow network associated with this problem con
tains n team nodes 1 through n, n(n - 1)/2 game nodes of the type i-j for each 
1 :5 i:5 j:5 n, and source node s. Each game node i-j has two incoming arcs (i, i -
j) and (j, i - j), and the flows on these arcs represent the number of victories for 
team i and teamj, respectively, among the additional gij games that these two teams 
have yet to play against each other (which is the required flow into the game node 
i-j). The flow Xsi on the source arc (s, i) represents the total number of additional 
games that team i wins. We cannot eliminate team 0 if this network contains a feasible 
flow x satisfying the conditions 

for all i = 1, ... , n, 

258 Maximum Flows: Additional Topics Chap. 8 



which we can rewrite as 

b(i) 

Team 
nodes 

o 

Xsi :s; Wmax - Wi 

b(j} 

Game 
nodes 

Figure 8.4 Network formulation of the 
baseball elimination problem. 

for all i = 1, ... , n. 

This observation explains the capacities of arcs shown in the figure. We have 
thus shown that if the feasible flow problem shown in Figure 8.4 admits a feasible 
flow, we cannot eliminate team 0; otherwise, we can eliminate this team and our 
avid fan can turn his attention to other matters. 

Application B.2 Network Reliability Testing 

In many application contexts, we need to test or monitor the arcs ofa network (e.g., 
the tracks in a rail network) to ensure that the arcs are in good working condition. 
As a practical illustration, suppose that we wish to test each arc (i, j) E A in an 
undirected communication network G = (N, A) aijtimes; due to resource limitations, 
however, each day we can test at most [3j arcs incident to any communication node 
j E N. The problem is to find a schedule that completes the testing of all the arcs 
in the fewest number of days. 

We solve this problem on a bipartite network G' = ({s} U {t} U N\ U N 2 , A') 
defined as follows: The network contains a node i E N\ for every node i E N in the 
communication network and a node i-j E N2 for every arc (i, j) E A in the com
munication network. Each i-j node has two incoming arcs from the nodes in N\, 
one from node i and the other from nodej; all these arcs have infinite capacity. The 
source node s is connected to every node i E N\ with an arc of capacity A[3h and 
every node i-j E N2 is connected to the sink node t with an arc of capacity aij. The 
reliability testing problem is to determine the smallest integral value of the days A
so that the maximum flow in the network saturates all the sink arcs. We can solve 
this problem by performing binary search on A- and solving a maximum flow problem 
at each search point. In these maximum flow problem, I N\ I = n and I N2 I = m, 
and m can be as large as n(n - 1)/2. 

Sec. 8.3 Flows in Bipartite Networks 259 



8.4 FLOWS IN PLANAR UNDIRECTED NETWORKS 

(a) 

A network is said to be planar if we can draw it in a two-dimensional (Euclidean) 
plane so that no two arcs cross (or intersect each other); that is, we allow the arcs 
to touch one another only at the nodes. Planar networks are an important special 
class of networks that arise in several application contexts. Because of the special 
structure of planar networks, network flow algorithms often run faster on these 
networks than they do on more general networks. Indeed, several network optim
ization problems are NP-complete on general networks (e.g., the maximum cut prob
lem) but can be solved in polynomial time on planar networks. In this section we 
study some properties of planar networks and describe an algorithm that solves a 
maximum flow problem in planar networks in O(n log n) time. In this section we 
restrict our attention to undirected networks. We remind the reader that the undi
rected networks we consider contain at most one arc between any pair i and j of 
nodes. The capacity Uij of arc (i, j) denotes the maximum amount that can flow from 
node i to node j or from node j to node i. 

Figure 8.5 gives some examples of planar networks. The network shown in 
Figure 8.5(a) does not appear to be planar because arcs (1, 3) and (2, 4) cross one 

(b) 

Figure 8.5 Instances of planar networks. 

another at the point D, which is not a node. But, in fact, the network is planar 
because, as shown in Figure 8.5(b), we can redraw it, maintaining the network struc
ture (i.e., node, arc structure), so that the arcs do not cross. For some networks, 
however, no matter how we draw them, some arcs will always cross. We refer to 
such networks as nonplanar. Figure 8.6 gives two instances of non planar networks. 
In both instances we could draw all but one arc without any arcs intersecting; if we 
add the last arc, though, at least one intersection is essential. Needless to say, 
determining whether a network is planar or not a straightforward task. However, 

(a) (b) 

260 

Figure 8.6 Instances of two non planar 
graphs. 

Maximum Flows: Additional Topics Chap. 8 



researchers have developed very efficient algorithms (in fact, linear time algorithms) 
for testing the planarity of a network. Several theoretical characterizations of planar 
networks are also available. 

Let G = (N, A) be a planar network. A face z of G is a region of the (two
dimensional) plane bounded by arcs that satisfies the condition that any two points 
in the region can be connected by a continuous curve that meets no nodes and arcs. 
It is possible to draw a planar graph in several ways and each such representation 
might have a different set of faces. The boundary of a face z is the set of all arcs 
that enclose it. It is convenient to represent the boundary of a face by a cycle. 
Observe that each arc in the network belongs to the boundary of at most two faces. 
Faces z and z' are said to be adjacent if their boundaries contain a common arc. If 
two faces touch each other only at a node, we do not consider them to be adjacent. 
The network shown in Figure 8.5(b) illustrates these definitions. This network has 
four faces. The boundaries 1-2-3-1, 1-3-4-1, and 2-4-3-2 define the first three 
faces of the network. The fourth face is unbounded and consists of the remaining 
region; its boundary is 1-2-4-1. In Figure 8.5(b) each face is adjacent to every other 
face. The network shown in Figure 8.5(c) is a very special type of planar network. 
It has one unbounded face and its boundary includes all the arcs. 

Next we discuss two well-known properties of planar networks. 

Property 8.6 (Euler's Formula). If a connected planar network has n nodes, 
m arcs, and f faces, then f = m - n + 2. 

Proof. We prove this property by performing induction on the value of f. For 
f = 1, m = n - 1, because a connected graph with just one fa",e (which is the,' 
unbounded face) must be a spanning tree. Now assume, inductively, that Euler's 
formula is valid for every graph with k or fewer faces; we prove that the formula is 
valid for every graph with k + 1 faces. Consider a graph G with k + 1 faces and n 
nodes. We select any arc (i, j) that belongs to two faces, say Zl and Z2 (show that 
the network always contains such an arc!). If we delete this arc from G, the two 
faces Zl and Z2 merge into a single face. The resulting graph G' has m arcs, k faces, 
and n nodes, and by the induction hypothesis, k = m - n + 2. Therefore, if we 
reintroduce the arc (i,j) into G', we see that k + 1 = (m + 1) - n + 2, so Euler's 
formula remains valid. We have thus completed the inductive step and established 
Euler's formula in general. • 

Property 8.7. In a planar network, m < 3n. 

Proof We prove this property by contradiction. Suppose that m 2: 3n. Alter
natively, 

n 2: m/3. (8.1) 

We next obtain a relationship between f and m. Since the network contains 
no parallel arcs, the boundary of each face contains at least three arcs. Therefore, 
if we traverse the boundaries of all the faces one by one, we traverse at least 3f 
arcs. Now notice that we would have traversed each arc in the network at most 
twice because it belongs to the boundaries of at most two faces. These observations 

Sec. 8.4 Flows in Planar Undirected Networks 261 



show that 3f :5 2m. Alternatively, 

f:5 2m/3. 

Using (8.1) and (8.2) in the formula f = m - n + 2, we obtain 

2 = n - m + f :5 m/3 - m + 2m/3 = 0, 

which is a contradiction. 

(8.2) 

(8.3) 

• 
Property 8.7 shows that every planar graph is very sparse [i.e., m O(n)]. 

This result, by itself, improves the running times for most network flow algorithms. 
For instance, as shown in Section 8.5, the shortest augmenting path algorithm for 
the maximum flow problem, implemented using the dynamic tree data structure, 
runs in O(nm log n) time. For planar networks, this time bound becomes 
O(n2 10g n). We can, in fact, develop even better algorithms by using the special 
properties of planar networks. To illustrate this point, we prove some results that 
apply to planar networks, but not to nonplanar networks. We show that we can 
obtain a minimum cut and a maximum flow for any planar network in O(n log n) 
time by solving a shortest path problem. 

Finding Minimum Cuts Using Shortest Paths 

Planar networks have many special properties. In particular, every connected planar 
network G = (N, A) has an associated "twin" planar network G* = (N*, A *), 
which we refer to as the dual of G. We construct the dual G* for a given graph G 
as follows. We first place a node f* inside each face f of G. Each arc in G has a 
corresponding arc in G*. Every arc (i, j) in G belongs to the boundaries of either 
(1) two faces, say fl and f2; or (2) one face, say fl. In case 1, G* contains the arc 
(if, fn; in case 2, G* contains the loop (if, fn. Figure 8.7, which illustrates this 
construction, depicts the dual network by dashed lines. 

For notational convenience, we refer to the original network G as the primal 
network. The number of nodes in the dual network equals the number of faces in 
the primal network, and conversely, the number of faces in the dual network equals 
the number of nodes in the primal network. Both the primal and dual networks have 

262 

Figure 8.7 Constructing the dual of a 
planar network. 

Maximum Flows: Additional Topics Chap. 8 



Source 

the same number of arcs. Furthermore, the dual of the dual network is the primal 
network. It is easy to show that a cycle in the dual network defines a cut in the 
primal network, and vice versa. For example, the cycle 4*-1*-2*-4* in the dual 
network shown in Figure 8.7 [with (4*, 1 *) denoting the arc from 4* to 1 * that also 
passes through arc (1, 2)], defines the cut {(2, 1), (2, 3), (2, 4)} in the primal network. 

Our subsequent discussion in this section applies to a special class of planar 
networks known as s-t planar networks. A planar network with a source node s 
and a sink node t is called s-t planar if nodes sand t both lie on the boundary of 
the unbounded face. For example, the network shown in Figure 8.8(a) is s-t planar 
if s = 1 and t = 8; however, it is not s-t planar if (1) s = 1 and t = 6, or (2) s = 
3 and t = 8. 

t* 

-.

+c". /___ ;~§~1' ___ , 

/' "-
/ I ~ 

/ \ 
I \ 
I I 

I 

s* ------
(a) (b) 

Figure 8.8 Establishing a relationship between cuts and paths: (a) s-t planar network; 
(b) corresponding dual network. 

We now show how to transform a minimum cut problem on an s-t planar 
network into a shortest path problem. In the given s-t planar network, we first draw 
a new arc joining the nodes sand t so that the arc stays within the unbounded face 
of the network [see Figure 8.8(b)]; this construction creates a new face of the net
work, which we call the additional face, but maintains the network's planarity. We 
then construct the dual of this network; we designate the node corresponding to the 
additional face as the dual source s * and the node corresponding to the unbounded 
face as the dual sink t*. We set the cost of an arc in the dual network equal to the 
capacity of the corresponding arc in the primal network. The dual network contains 
the arc (s*, t*) which we delete from the network. Figure 8.8(b) shows this con
struction: the dashed lines are the arcs in the dual network. It is easy to establish 
a one-to-one correspondence between s-t cuts in the primal network and paths from 
node s~ to node t* in the dual network; moreover, the capacity of the cut equals 

Sec. 8.4 Flows in Planar Undirected Networks 263 



the cost of the corresponding path. Consequently, we can obtain a minimum s-t cut 
in the primal network by determining a shortest path from node s* to node t* in the 
dual network. 

In the preceding discussion we showed that by solving a shortest path problem 
in the dual network, we can identify a minimum cut in a primal s-t planar network. 
Since we can solve the shortest path problem in the dual network in O(m log n) = 
O(n log n) using the binary heap implementation of Dijkstra's algorithm (see Section 
4.7), this development provides us with an O(n log n) algorithm for identifying a 
minimum cut in a planar network. Notice that this bound is substantially better than 
the one we would obtain for a general network. We now give a generalization of 
this result, obtaining a rather surprising result that the shortest path distances in the 
dual network provide a maximum flow in the primal network. 

Let d(j*) denote the shortest path distance from node s* to nodej* in the dual 
network. Recall from Section 5.2 that the shortest path distances satisfy the following 
conditions: 

d(j*) :5 d(i*) + Ci*j* for each (i*, j*) E A *. (8.4) 

Each arc (i, j) in the primal network corresponds to an arc (i*, j*) in the dual 
network. Let us define a function Xii for each (i, j) E A in the following manner: 

Xii = d(j*) - d(i*). (8.5) 

Note that Xii = -Xji. Now notice that the network G is undirected so that the 
arc setA contains both the arc (i,j) and the arc (j, 0. Hence we can regard a negative 
flow on arc (j, 0 as a positive flow on arc (i, j). Consequently, the flow vector X 

will always nonnegative. 
The expressions (8.5) and (8.4) imply that 

Xii = d(j*) - d(i*) :5 Ci~j*. (8.6) 

Therefore, the flow X satisfies the arc capacity constraints. We next show that 
X also satisfies the mass balance constraints. Each node kin G, except node sand 
node t, defines a cut Q = [{k}, N - {k}] consisting of all of the arcs incident to that 
node. The arcs in G* corresponding to arcs in Q define a cycle, say W*. For example, 
in Figure 8.7, the cycle corresponding to the cut for k = 3 is 1*-2*-3*-4*-1*. 
Clearly, 

(d(j*) - d(i*» = 0, 
(i-,j-)EW· 

because the terms cancel each other. Using (8.5) in (8.7) shows that 

2: Xii = 0, 
(i,j)EQ 

(8.7) 

which implies that inflow equals outflow at node k. Finally, we show that the flow 
X is a maximum flow. Let p* be a shortest path from node s* to node t* in G*. The 
definition of P* implies that 

d(j*) - d(i*) = Ci+j* for each (i*, j*) E P*. (8.8) 

264 Maximum Flows: Additional Topics Chap. 8 



The arcs corresponding to P* define an s-t cut Q in the primal network. Using 
(8.5) in expression (8.8) and using the fact that Cj"r = Uij, we get 

Xij = Uij for each (i, j) E Q. (8.9) 

Consequently, the flow saturates all the arcs in an s-t cut and must be a maximum 
flow. The following theorem summarizes our discussion. 

Theorem 8.8. It is possible to determine a maximum flow in an s-t planar 
network in O(n log n) time. • 

8.5 DYNAMIC TREE IMPLEMENTATIONS 

A dynamic tree is an important data structure that researchers have used extensively 
to improve the worst-case complexity of several network algorithms. In this section 
we describe the use of this data structure for the shortest augmenting path algorithm. 
We do not describe how to actually implement the dynamic tree data structure; 
rather, we show how to use this data structure as a "black box" to improve the 
computational complexity of certain algorithms. Our objective is to familiarize read
ers with this important data structure and enable them to use it as a black box module 
in the design of network algorithms. 

The following observation serves as a motivation for the dynamic tree structure. 
The shortest augmenting path algoritllm repeatedly identifies a path consisting solely 
of admissible arcs and augments flows on these paths. Each augmentation saturates 
some arcs on this path, and by deleting all the saturated arcs from this path we obtain 
a set of path fragments: sets of partial paths of admissible arcs. The path fragments 
contain valuable information. If w,e reach a node in any of these path fragments 
using any augmenting path, we know that we can immediately extend the augmenting 
path along the path fragment. The standard implementation of the s"hortest aug
menting path algorithm discards this information and possibly regenerates it again 
at future steps. The dynamic tree data structure cleverly stores-these path fragments 
and uses them later to identify augmenting paths quickly. 

The dynamic tree data structure maintains a collection of node-disjoint rooted 
trees, each arc with an associated value, called val. See Figure 8.9(a) for an example 
of the node-disjoint rooted trees. Each rooted tree is a directed in-tree with a unique 
root. We refer to the nodes of the tree by using the terminology of a predecessor
successor (or parent-child) relationship. For example, node 5 is the predecessor 
(parent) of nodes 2 and 3, and nodes 9, 10, and 11 are successors (children) of node 
12. Similarly, we define the ancestors and descendants of a node (see Section 2.2 
for these definitions). For example, in Figure 8.9(a) node 6 has nodes 1,2,3,4,5, 
6 as its descendants, and nodes 2,5, and 6 are the ancestors of node 2. Notice that, 
according to our definitions, each node is its own ancestor and descendant. 

This data structure supports the following six operations: 

find-root(i). Find and return the root of the tree containing node i. 
find-value(i). Find and return the value of the tree arc leaving node i. If i is a 
root node, return the value 00. 

Sec. 8.5 Dynamic Tree Implementations 265 



N 
g: 

7 

6 

3 

4 

(a) 

3 

(c) 

8 

.. 
3 

~ -
i 1 

find-root(i) 6 

find-value(i) 3 

find-min(i) 4 
---

(d) 

2 3 4 5 

6 6 6 6 

6 4 2 6 

5 3 4 5 
----- ,---- ---- ,--

(b) 

3 

Figure 8.9 Illustrating various operations on dynamic trees: (a) collection of rooted trees; 
(b) results of the find-root, find-value, and find-min operations; (c) rooted trees after per
forming link (6, 7, 5); (d) rooted trees after performing cut (5), 

6 7 8 9 10 11 12 13 

6 8 8 12 12 12 12 13 

00 7 00 3 2 8 00 00 

6 7 8 9 10 11 12 13 
---- --- ---- '---L-_ ,- ,-

., 



find-min(i). Find and return the ancestor w of i with the minimum value of find
value(w). In case of a tie, chose the node w closest to the tree root. 

Figure 8.9(b) shows the results of the operations find-root(i), find-value(i), and 
find-min(i) performed for different nodes i. 

change-value(i, val). Add a real number val to the value of every arc along the 
path from node ito find-root(i). For example, if we execute change-value(1, 
3) for the dynamic tree shown in Figure 8.9(a), we add 3 to the values of arcs 
(1,4) and (4, 6) and these values become 6 and 5, respectively. 
link(i, j, val). This operation assumes that i is a tree root and that i andj belong 
to different trees. The operation combines the trees containing nodes i and j 
by making node j the parent of node i and giving arc (i, j) the value val. As an 
illustration, if we perform the operation link (6, 7, 5) on our example, we obtain 
the trees shown in Figure 8.9(c). 
cut(i). Break the tree containing node i into two trees by deleting the arc joining 
node i to its parent and returning the value of the deleted arc. We perform this 
operation when i is not a tree root. For example, if we execute cut(5) on trees 
in Figure 8.9(c), we delete arc (5, 6) and return its value 6. Figure 8.9(d) gives 
the new collection of trees. 

The following important result, which we state without proof, lies at the heart 
of the efficiency of the dynamic tree data structure. 

Lemma 8.9. If z is the maximum tree size (i.e., maximum number of nodes 
in any tree), a sequence of I tree operations, starting with an initial collection of 
singleton trees, requires a total of O(llog(z + l)) time. • 

The dynamic tree implementation stores the values of tree arcs only implicitly. 
If we were to store these values explicitly, the operation change-value on a tree of 
size z might require O(z) time (if this tree happens to be a path), which is compu
tationally excessive for most applications. Storing the values implicitly allows us to 
update the values in only O(log z) time. How the values are actually stored and 
manipulated is beyond the scope of this book. 

How might we use the dynamic tree data structure to improve the computa
tional performance of network flow algorithms. Let us use the shortest augmenting 
path algorithm as an illustration. The following basic idea underlies the algorithmic 
speed-up. In the dynamic tree implementation, each arc in the rooted tree is an 
admissible arc [recall that an arc (i, j) is admissible if rij > 0 and d(i) = d(j) + 1]. 
The value of an arc is its residual capacity. For example, consider the residual 
network given in Figure 8.10(a), which shows the distance labels next to the nodes 
and residual capacities next to the arcs. Observe that in this network, every arc, 
except the arc (12, 13), is admissible; moreover, the residual capacity of every arc 
is 2, except for the arc (12, 14) whose residual capacity is 1. Figure 8.10(b) shows 
one collection of rooted trees for this example. Notice that although every tree arc 
is admissible, every admissible arc need not be in some tree. Consequently, for a 
given set of admissible arcs, many collections of rooted trees are possible. 

Sec. 8.5 Dynamic Tree Implementations 267 



d(i) dO) 

7 6 5 

7 6 5 

4 

4 

(a) 

(b) 

(c) 

3 2 

3 2 

Figure 8.10 Finding an augmenting path in the dynamic tree implementations. 

o 

Sink 

Before describing this implementation formally, we first show how the algo
rithm works on our example. It maintains a rooted tree containing the source node 
and progressively expands this tree until it contains the sink node, at which point 
the algorithm performs an augmentation. To grow the tree containing the source, 
the algorithm repeatedly performs link operations. In our example, the algorithm 
starts with the singleton tree To containing only the source node 1 [see Figure 8.1O(b)]. 
It identifies an admissible arc emanating from node 1. Suppose that we select arc 
(1, 2). The algorithm performs the operation link(1, 2, 2), which joins two rooted 
trees, giving us a larger tree Tl containing node 1 [see Figure 8.10(c)]. The algorithm 
then identifies the root of T1 , by performing the operation find-root(1), which iden
tifies node 5. The algorithm tries to find an admissible arc emanating from node 5. 
Suppose that the algorithm selects the arc (5, 6). The algorithm performs the op
eration link(5, 6, 2) and obtains a larger tree T2 containing node 1 [see Figure 8.1.0(d)]. 
In the next iteration, the algorithm identifies node 8 as the root of T2 • Suppose that 

268 Maximum Flows: Additional Topics Chap. 8 



~ - ~ ~ 
T2/ 

/ 
/ 

/ 
/ 

(d) 

~ 
(e) 

(f) 

Figure 8.10 (Continued) 

"' 
. 

. .,/ ... 

&" ~~' 

the algorithm selects arc (8, 10) as the admissible arc emanating from node 8. The 
algorithm performs the operation link(8, 10, 2) and obtains a rooted tree T3 that 
contains both the source and sink nodes [see Figure 8.10(e)]. 

Observe that the unique path from the source to the sink in T3 is an admissible 
path since by construction every arc in a rooted tree is admissible. The residual 
capacity of this path is the minimum value of the arcs in this path. How can we 
determine this value? Recall that the operation find-min(1) would determine an ances
tor of node 1 with the minimum value of find-value, which is node 12 in our example. 
Performing find-value(12) will give us the residual capacity of this path, which is 1 
in this case. We have thus discovered the possibility of augmenting 1 unit of flow 
along the admissible path and that arc (12, 14) is the blocking arc. We perform the 
augmentation by executing change-value(1, -1). This augmentation reduces the re
sidual capacity of arc (12, 14) to zero. The arc (12, 14) now becomes inadmissible 
and we must drop it from the collection of rooted trees. We do so by performing 
cut(12). This operation gives us the collection of rooted trees shown in Figure 8.10(0. 

To better understand other situations that might occur, let us execute the al
gorithm for one more iteration. We apply the dynamic tree algorithm starting with 
the collection of rooted trees given in Figure 8.10(0. Node 12 is the root of the tree 

Sec. 8.5 Dynamic Tree Implementations 269 



containing node 1. But node 12 has no outgoing admissible arc; so we relabel node 
12. This relabeling increases the distance label of node 12 to 3. Consequently, arcs 
(10, 12) and (11, 12) become inadmissible and we must drop them from the collection 
of rooted trees. We do so by performing cut(10) and cut(ll), giving us the rooted 
trees shown in Figure 8.11(a). The algorithm again executes find-root(1) and finds 
node 10 as the root of the tree containing node 1. In the next two operations, the 
algorithm adds arcs (10, 13) and (15, 16); Figure 8.11(b) and 8.11(c) shows the cor
responding trees. 

(a) 

• (b) 

(c) 

~ ,)1"'" 
. \~ 

til' 
m 

• 
"

" " , 

, , 
'\<, 

Figure 8.11 Another augmentation using dynamic trees. 

Figures 8.12 and 8.13 give a formal statement of the algorithm. After offering 
explanatory comments, we consider a worst-case analysis of the algorithm. The 
algorithm is same as the one we presented in Section 7.4 except that it performs the 
procedures advance, retreat, and augment differently using trees. The first two pro
cedures, tree-advance and tree-retreat, are straightforward, but the tree-augment 
procedure requires some explanation. If node p is an ancestor of node s with the 
minimum value of find-value(p) and, among such nodes in the path, it is Closest to 
the sink, then find-value(p) gives the residual capacity of the augmenting path. The 
operation change(s, -8) implicitly updates the residual capacities of all the arcs in 

270 Maximum Flows: Additional Topics Chap. 8 



algorithm tree-augmenting-path; 
begin 

x: = 0; 
perform a reverse breadth-first search of the residual network 

from node t to obtain the distance labels d(i); 
let T be the collection of all singleton nodes; 
i: = s; 
while d(s) < n do 
begin 

if i has an admissible arc then tree-advance(i) 
else tree-retreat(t); 
if i = t then tree-augment; 

end; 
end; 

Figure 8.12 Dynamic tree implementa
tion of the shortest augmenting path al
gorithm. 

the augmenting path. This augmentation might cause the capacity of more than one 
arc in the path to become zero. The while loop identifies all such arcs, one by one, 
and deletes them from the collection of rooted trees. 

We now consider the worst-case comp!exity of the algorithm. Why is the dy
namic tree implementation more efficient than the original implementation of the 
shortest augmenting path algorithm? The bottleneck operations in the original short
est augmenting path algorithm are the advance and augment operations, which re
quire O(n2 m) time. Each advance operation in the original algorithm adds one arc; 

procedure tree-advance(t); 
begin 

let (i, j) be an admissible arc in A(i); 
Iink(i, j, rij); 
i: = find-root(}); 

end; 

(a) 

procedure tree-retreat(t); 
begin 

d(i) : = min{d(j) + 1 : (i, j) E A(i) and {;j> O}; 
for each tree arc (k, i) do cut(k); 
i: = find-root(s); 

end; 

(b) 

procedure tree-augment; 
begin 

p: = find-min(s); 
8 : = find-va/ue(p); 
change-va/ue(s, -8); 
while find-va/ue(p) = 0 do cut(p) and set p : = find-min(s); 
i: = find-root(s); 

end; 

(c) 

Sec. 8.5 Dynamic Tree Implementations 

Figure 8.13 Procedures of the tree-aug
menting-path algorithm. 

271 



in contrast, the tree implementation adds a collection of arcs using the link operation. 
Thus the dynamic tree implementation substantially reduces the number of execu
tions of the link operation. Similarly, while augmenting flow, the tree implementation 
augments flow over a collection of arcs by performing the operation change-value, 
thus again substantially reducing the number of required updates. 

We now obtain a bound on the number of times the algorithm performs various 
tree operations. We will show that the algorithm performs each of the tree operations 
O(nm) times. In deriving these bounds, we make use of the results of Lemma 7.9, 
proved in Section 7.4. 

cut(j). The algorithm performs this operation during the tree-retreat and 
tree-augment operations. During the tree-retreat(i) operation, the algorithm might 
perform this operation as many times as the number of incoming arcs at node i. 
Since this operation relabels node i, and we can relabel a node at most n times, these 
operations sum to O(n2

) over all nodes. Furthermore, during the tree-augment op
eration, we perform the cut operation for each arc saturated during an augmentation. 
Since the total number of arc saturations is O(nm), the number of these operations 
sums to O(nm). 

link(i, j, val). Each link operation adds an arc to the collection of rooted 
trees. Observe that if an arc enters a rooted tree, it remains there until a cut operation 
deletes it from the tree. Therefore, the number of link operations is at most (n -1) 
plus the number of cut operations. The term (n - 1) arises because initially the 
collection might contain no arc, and finally, it might contain as many as (n - 1) 
arcs. Consequently, the total number of link operations is also O(nm). Since each 
tree-advance operation performs a link operation, the previous result also implies 
an O(nm) bound on the total number of tree-advance operations. 

change-value(i, val). The algorithm performs this operation once per aug
mentation. Since the number of augmentations is at most nml2, we immediately 
obtain a bound of O(nm) on the number of change-value operations. 

find-value(i) and find-min(i). The algorithm performs each of these two 
operations once per augmentation and once for each arc saturated during the aug
mentation. These observations imply a bound of O(nm) on the number of executions 
of these two operations. 

find-root(i). The algorithm performs this operation once during each exe
cution of the tree-advance, tree-augment, and tree-retreat operations. Since the al
gorithm executes the first two operations O(nm) times and the third operation O(n2) 
times, it executes the find-root operation O(nm) times. 

Using simple arguments, we have now shown that the algorithm performs each 
of the six tree operations O(nm) times. It performs each tree operation on a tree of 
maximum size n. The use of Lemma 8.9 establishes the following important result. 

272 Maximum Flows: Additional Topics Chap. 8 



Theorem 8.10. The dynamic tree implementation of the shortest augmenting 
path algorithm solves the maximum flow problem in O(nm log n) time. • 

Although this result establishes the theoretical utility of the dynamic tree data 
structure for improving the worst-case complexity of the shortest augmenting path 
algorithm, the practical value of this data structure is doubtful. The dynamic tree 
implementation reduces the time for performing advance and augment operations 
from O(n2 m) to O(nm log n), but simultaneously increases the time of performing 
retreat operations from O(nm) to O(nm log n). Empirical experience shows that the 
retreat operation is one of the bottleneck operations in practice. Since the dynamic 
tree data structure increases the running time of a bottleneck operation, the use of 
this data structure actually slows down the algorithm in practice. Furthermore, this 
data structure introduces substantial overhead (i.e., a large-constant factor of work 
is associated with each tree operation), thus making it of limited practical utility. 

8.6 NETWORK CONNECTIVITY 

The connectivity of a network is an important measure of the network's reliability 
or stability. The arc connectivity of a connected network is the minimum number 
of arcs whose removal from the network disconnects it into two or more components. 
In this section we suggest algorithms for solving the arc connectivity problem on 
undirected networks. The algorithms for solving connectivity problems on directed 
networks are different from those we will be discussing; we consider these algorithms 
in the exercises for this chapter. To conform with this choice of coverage, in this 
section by the term "network" we will invariably mean an undirected (connected) 
network. 

The node connectivity of a network equals the minimum number of nodes whose 
deletion from the network disconnects it into two or more components: We discuss 
issues related to node connectivity in Exercise 8.35. We begin by defining several 
terms. A disconnecting set is a set of arcs whose deletion from the network dis
connects it into two or more components. Therefore, the arc connectivity of a net
work equals the minimum cardinality of any disconnecting set; we refer to this set 
of arcs as a minimum disconnecting set. 

The arc connectivity of a pair of nodes i and j is the minimum number of arcs 
whose removal from the network disconnects these two nodes. We represent the 
pair of nodes i andj by [i, j] and the arc connectivity of this pair by aU, j]. We also 
let a(G) denote the arc connectivity of the network G. Consequently, 

a(G) = min{a[i,j]:[i,j] E N x N}. (8.10) 

We first bring together some elementary facts concerning the arc connectivity 
of a network; we ask the reader to prove these properties in Exercise 8.29. 

Property 8.11. 
(a) a[i, j] = aU, i] for every pair of nodes [i, j]. 
(b) The arc connectivity of a network cannot exceed the minimum degree of nodes 

in the network. Therefore, a(G) :::; LmlnJ. 

Sec. 8.6 Network Connectivity 273 



(c) Any minimum disconnecting set partitions the network into exactly two com
ponents. 

(d) The arc connectivity of a spanning tree equals 1. 
(e) The arc connectivity of a cycle equals 2. 

Let 8 denote the minimum degree of a node in the network and let node p be 
a node with degree equal to 8. Property S.l1(b) implies that a.(G) :5 8 :5 lmlnJ. 
Since a minimum disconnecting set partitions the node set into exactly two com
ponents S* C Nand S* = N - S*, we can represent this cut by the notation 
[S*, S*]. We assume, without any loss of generality, that node p E S*. 

Our development in Chapter 6 provides us with a means for determining the 
arc connectivity of a network. Theorem 6.7 states that the minimum number of arcs 
in a network whose removal disconnects a specified pair of source and sink nodes 
equals the maximum number of arc-disjoint paths from the source to the sink. Fur
thermore, the proof of this theorem shows that we can obtain the maximum number 
of arc-disjoint paths from the source to the sink by solving a maximum flow problem 
in a network G whose arcs all have capacity equal to 1. Thus, to determine the arc 
connectivity of a network, we need to solve a unit capacity maximum flow problem 
between every pair of nodes (by varying the source and sink nodes); the minimum 
value among such flows is a.( G). Since solving a unit capacity maximum flow problem 
requires O(min{n2/3m, m 3/2}) time (see Section S.2), this approach produces an al
gorithm running in time O(n2 min{n2/3m, m3/2}). 

We can easily improve on this approach by a factor of n using the following 
idea. Consider a node k E S* and recall that node p E S*. Since the cut [S*, S*] 
disconnects nodes p and k, the minimum cardinality of a set of arcs that will dis-
connect these two nodes is at most / [S*, S*] /. That is, > 

a.[p, k] :5 / [S*, S*] /. (S.l1) 

Next observe that [S*, S*] is a minimum disconnecting set of the network. 
The definition (S.lO) of a.( G) implies that 

a.[p, k] ;::: / [S*, S*] I. (S.12) 

Using (S.l1) and (S.12), we see that 

a.[p, k] 1 [S*, S*] I. (S.13) 

The preceding observations imply that if we compute a.[p,j] for allj, the min
imum among these numbers equals a.(G). To summarize the discussion, we can write 

a.(G) = min{a.[p,j]:j EN - {pH. 

The preceding approach permits us to determine the arc connectivity of 
a network by solving (n - 1) unit capacity maximum flow problems, requiring 
O(min{n5/3m , nm312}) time. We can improve this time bound for sparse networks by 
solving these maximum flow problems using the labeling algorithm described in 
Section 6.5 instead of the specialized unit capacity algorithms described in Section 
S.2. The labeling algorithm will perform at most lmlnJ augmentations to solve each 
maximum flow problem (because the degree of node p is 8 :5 lmlnJ) and would 
require O(m2In) time. This approach requires O(m2) time to solve all the maximum 

274 Maximum Flows: Additional Topics Chap. 8 



flow problems. Since nm3/2
;::: m 2

, we can determine the arc connectivity ofanetwork 
in O(min{n5/3 m, m 2

}) time. This algorithm is by no means the best algorithm for 
determining the arc connectivity of a network. We next describe an algorithm that 
computes arc connectivity in only O(nm) time. 

Just as the preceding algorithm determines the minimum cardinality of a set 
of arcs between pairs of nodes, the improved algorithm determines the minimum 
cardinality of a set of arcs that disconnects every node in a set S from some node 
k E S; we denote this number by a[S, k]. We can compute a[S, k] using the labeling 
algorithm as follows: We allow the augmentation to start at any node in S but end 
only at node k. When the labeling algorithm terminates, the network contains no 
directed path from any node in S to node k. At this point the set of labeled nodes 
defines a cut in the network and the number of forward arcs in the cut is a[S, k]. 

Our preceding algorithm determines the arc connectivity of a network by com
puting a[p,j] for each nodej E N - {p} and taking the minimum of these numbers. 
The correctness of this approach uses the fact that a( G) equals a[p, j] for some 
choice of the nodes p andj. Our improvea algorithm determines the arc connectivity 
of a network by computing a[S, k] for at most (n - 1) combinations of Sand k and 
taking the minimum of these numbers. The algorithm selects the combinations Sand 
k quite cleverly so that (1) for at least one combination of Sand k, a[S, k] = a(G); 
and (2) the labeling algorithm can compute a[S, k] for every combination in an 
average of O(m) time because most augmentations involve only two arcs. Therefore 
this algorithm determines the arc connectivity of a network in O(nm) time. 

Before describing the algorithm, we first introduce some notation. For any set 
S of nodes, we let neighbor(S) denote the set of nodes in S that are adjacent to some 
node in S, and nonneighbor(S) as the set of nodes in S that are not adjacent to any 
node in S. Consequently, N = S U neighbor(S) U nonneighbor(S). Our improved 
arc connectivity algorithm depends on the following crucial result. 

Lemma 8.12. Let 8 be the minimum node degree of a network G and let 
[S*, S*] denote a minimum disconnecting set of the network. .. Suppose that a( G) :5 

8 - 1. Then for any set S ~ S*, nonneighbor(S) is nonempty. 

Proof We first notice that the maximum number of arcs emanating from nodes 
in S* is 1 S* 1 (I S* 1 - 1) + a(G) because any such arc either has both its endpoints 
in S* or belongs to the minimum disconnecting set. Next notice that the minimum 
number of arcs emanating from the nodes in S* is 8 1 S* 1 because 8 is the minimum 
node degree. Therefore, 

1 S* 1 (I S* 1 - 1) + a(G) ;::: 1 S* 1 8. 

Adding 8 to both the sides of this inequality and simplifying the expression gives 

(I S* 1 - 1)(1 S* 1 - 8) ;::: 8 - a(G) ;::: 1. 

The last inequality in this expression follows from the fact a( G) :5 8 - 1. Notice 
that the inequality (I S* 1 - 1)(1 S* 1 - 8) ;::: 1 implies that both the terms to the left 
are at least one. Thus 1 S* 1 ;::: 8 + 1; that is, the set S* contains at least 8 + 1 
nodes. Since the cut [S*, S*] contains fewer than 8 arcs, at least one of the nodes 
in S* is not adjacent to any node in S*. Consequently, the set nonneighbor(S) must 
be nonempty, which establishes the lemma. • 

Sec. 8.6 Network Connectivity 275 



The improved arc connectivity algorithm works as follows. It starts with S = 
{p}, selects a node k E nonneighbor(S), and computes a[S, k]. It then adds node k 
to S, updates the sets neighbor(S) and nonneighbor(S), selects another node k E 
nonneighbor(S) and computes a[S, k]. It repeats this operation until the set non
neighbor(S) is empty. The minimum value of a[S, k], obtained over all the iterations, 
is a( G). Figure 8.14 gives a formal description of this algorithm. 

algorithm arc connectivity; 
begin 

let p be a minimum degree node in the network and 8 be its degree; 
set S* : = {p} and ex' : = 8; 
set S: = {p}; 
initialize neighbor(S) and nonneighbor(S); 
while nonneighbor(S) is nonempty do 
begin 

select a node k E nonneighbor(S); 
compute ex[S, k] using the labeling algorithm for the maximum flow 

problem and let [R, Rj be the corresponding disconnecting cut; 
if ex' > ex[S, k] then set ex' : = ex[S, k] and [S*, 81 : = [R, Rj; 
add node kto S and update neighbor(S), nonneighbor(S); 

end; 
end; 

Figure 8.14 Arc connectivity algorithm. 

To establish the correctness of the arc connectivity algorithm, let [S*, S*] 
denote the minimum disconnecting set. We consider two cases: when a(G) = 8 and 
when a(G) :5 8 - 1. If a(G) = 8, the algorithmic description in Figure 8.14 implies 
that the algorithm would terminate with [p, N - {p}] as the minimum disconnecting 
set. Now suppose a(G):5 8 - 1. During its execution, the arc connectivity algorithm 
determines a[S, k] for different combinations of Sand k; we need to show that at 
some iteration, a(S, k) would equal a(G). We establish this result by proving that 
at some iteration, S ~ S* and k E S*, in which case a[S, k] = a(G) because the 
cut [S*, S*] disconnects every node in S from node k. Notice that initially S* contains 
S (because both start with p as their only element), and finally it does not because, 
from Lemma 8.9, as long as S* contains S, nonneighbor(S) is nonempty and the 
algorithm can add nodes to S. Now consider the last iteration for which S ~ S*. 
At this iteration, the algorithm selects a node k that must be in S* because S U 
{k} Cl. S*. But then a[S, k] = a(G) because the cut [S*, S*] disconnects S from 
node k. This conclusion shows that the arc connectivity algorithm correctly solves 
the connectivity problem. 

We next analyze the complexity of the arc connectivity algorithm. The algo
rithm uses the labeling algorithm described in Section 6.5 to compute a[S, k]; sup
pose that the labeling algorithm examines labeled nodes in the first-in, first-out order 
so that it augments flow along shortest paths in the residual network. Each aug
menting path starts at a node in S, terminates at the node k, and is one of two types: 
Its last internal node is in neighbor(S) or it is in nonneighbor(S). All augmenting 
paths of the first type are of length 2; within an iteration, we can find any such path 
in a total of O(n) time (why?), so augmentations of the first type require a total of 
O(n2

) time in all iterations. Detecting an augmenting path of the second type requires 

276 Maximum Flows: Additional Topics Chap. 8 



O(m) time; it is possible to show, however, that in all the applications of the labeling 
algorithm in various iterations, we never encounter more than n such augmenting 
paths. To see this, consider an augmenting path of the second type which contains 
node I E nonneighbor(S) as the last internal node in the path. At the end of this 
iteration, the algorithm will add node k to S; as a result, it adds node I to neighbor(S); 
the node will stay there until the algorithm terminates. So each time the algorithm 
performs an augmentation of the second type, it moves a node from the set non
neighbor(S) to neighbor(S). Consequently, the algorithm performs at most n aug
mentations of the second type and the total time for these augmentations will be 
O(nm). The following theorem summarizes this discussion. 

Theorem 8.13. In O(nm) time the arc connectivity algorithm correctly de-
termines the arc connectivity of a network. • 

8.7 ALL-PAIRS MINIMUM VALUE CUT PROBLEM 

In this section we study the all-pairs minimum value cut problem in undirected 
network, which is defined in the following manner. For a specific pair of nodes i 
and j, we define an [i, j] cut as a set of arcs whose deletion from the network 
disconnects the network into two components Sij and Sij so that nodes i andj belong 
to different components (i.e., if i E Sij, thenj E Sij; and if i E Sij, thenj E Sij). We 
refer to this [i, j] cut as [Sij, Sij] and say that this cut separates nodes i and j. We 
associate with a cut [Sij, Sij], a value that is a function of arcs in the cut. A minimum 
[i, j] cut is a cut whose value is minimum among all [i, j] cuts. We let [st, St] 
denote a minimum value [i, j] cut and let v[i, j] denote its value. The all-pairs niin
imum value cut problem requires us to determine for all pairs of nodes i and j, a 
minimum value [i, j] cut [S t, S t] and its value v[i, j]., 

The definition of a cut implies that if [Sij, Sij] is an [i,j] cut, it is also a [j, i] 
cut. Therefore, v[i,j] = v[j, i] for all pairs i andj of nodes. This observation implies 
that we can solve the all-pairs minimum value cut problem by invoking n(n - 1)/2 
applications of any algorithm for the single pair minimum value cut problem. We 
can, however, do better. In this section we show that we can solve the all-pairs 
minimum value cut problem by invoking only (n - 1) applications of the single-pair 
minimum value cut problem. 

We first mention some specializations of the all-pairs minimum value cut prob
lem on undirected networks. If we define the value of a cut as its capacity (i.e., the 
sum of capacities of arcs in the cut), the all-pairs minimum value cut problem would 
identify minimum cuts (as defined in Chapter 6) between all pairs of nodes. Since 
the minimum cut capacity equals the maximum flow value, we also obtain the max
imum flow values between all pairs of nodes. Several other functions defined on a 
cut [Sij, Sij] are plausible, including (1) the number of arcs in the cut, (2) the capacity 
of the cut divided by the number of arcs in the cut, and (3) the capacity of the cut 
divided by I Sij II Sij I· 

We first state and prove an elementary lemma concerning minimum value cuts. 

Lemma 8.14. Let iJ, i2 , ••. , ik be an (arbitrary) sequence of nodes. Then 
v[iJ, h] ;::: min{v[il, i2 ], V[i2, i3 ], ••• , v[ik - J, ik ]}. 

Sec. 8.7 All-Pairs Minimum Value Cut Problem 277 



Proof Let i = i l ,j = ik , and [st, st] be the minimum value [i,j] cut. Consider 
the sequence of nodes ii, i2 , ••• , ik in order and identify the smallest index r 
satisfying the property that ir and ir+ I are in different components of the cut 
cst, st]· Such an index must exist because, by definition, i l = i E Sij and ik == 
JESt. Therefore, cst, st] is also an [in ir+d cut, which implies that the value of 
the minimum value [in ir+ d cut will be no more than the value of the cut 
[st, st]. In other words, 

V[ih ik] ;::: v[ir, ir+ d ;::: min{v[ih i2], V[i2, i3], •.. , V[ik-I, ik]}, (8.14) 

which is the desired conclusion of the lemma. • 

Lemma 8.14 has several interesting implications. Select any three nodes i, j, 
and k of the network and consider the minimum cut values v[i, j], v[j, k], and v[k, i] 
between them. The inequality (8.14) implies that at least two of the values must be 
equal. For if these three values are distinct, then placing the smallest value on 
the left-hand side of (8.14) would contradict this inequality. Furthermore, it is pos
sible to show that one of these values that is not equal to the other two must be the 
largest. Since for every three nodes, two of the three minimum cut values must be 
equal, it is conceivable that many of the n(n - 1)/2 cut values will be equal. Indeed, 
it is possible to show that the number of distinct minimum cut values is at most 
(n - 1). This result is the subject of our next lemma. This lemma requires some 
background concerning the maximum spanning tree problem that we discuss in 
Chapter 13. In an undirected network G, with an associated value (or, profit) for 
each arc, the maximum spanning tree problem seeks a spanning tree T*, from among 
all spanning trees, with the largest sum of the values of its arcs. In Theorem 13.4 
we state the following optimality condition for the maximum spanning tree problem: 
A spanning tree T* is a maximum spanning tree if and only if for every nontree arc 
(k, I), the value of the arc (k, I) is less than or equal to the value of every arc in the 
unique tree path from node k to node I. 

Lemma8.IS. In the n(n - 1)/2 minimum cut values between allpairs of nodes , 
at most (n - 1) values are distinct. 

Proof. We construct a complete undirected graph G ' == (N, A ') with n nodes. 
We set the value of each arc (i, j) E A 1 equal to v[i, j] and associate the cut 
cst, st] with this arc. Let T* be a maximum spanning tree of G' . Clearly, I T* I = 
n - 1. We shall prove that the value of every nontree arc is equal to the value of 
some tree arc in T* and this result would imply the conclusion of the lemma. 

Consider a nontree arc (k, l) of value v[k, I]. Let P denote the unique path in 
T* between nodes k and l. The fact that T* is a maximum spanning tree implies that 
the value of arc (k, I) is less than or equal to the value of every arc (i, j) E P. 
Therefore, 

v[k, I] :5 min[v[i, j]: (i, j) E Pl. (8.15) 

Now consider the sequence of nodes in P that starts at node k and ends at 
node I. Lemma 8.14 implies that 

v[k, I] ;::: min[v[i, j]: (i, j) E Pl. (8.16) 

278 Maximum Flows: Additional Topics Chap. 8 



The inequalities (8.15) and (8.16) together imply that 

v[k, l] = min[v[i, j]:(i, j) E Pl. 

Consequently, the value of arc (k, I) equals the minimum value of an arc in P, 
which completes the proof of the lemma. • 

The preceding lemma implies that we can store the n(n - 1)/2 minimum cut 
values in the form of a spanning tree T* with a cut value associated with every arc 
in the tree. To determine the minimum cut values v[k, l] between a pair k and I of 
nodes, we simply traverse the tree path from node k to node I; the cut value v[k, I] 
equals the minimum value of any arc encountered in this path. Note that the pre
ceding lemma only establishes the fact that there are at most (n - 1) distinct minimum 
cut values and shows how to store them compactly in the form of a spanning tree. 
It does not, however, tell us whether we can determine these distinct cut values by 
solving (n - 1) minimum cut problems, because the proof of the lemma requires 
the availability of minimum cut values between all node pairs which we do not have. 

Now, we ask a related question. Just as we can concisely store the minimum 
cut values between all pairs of nodes by storing only (n - 1) values, can we also 
store the minimum value cuts between all pairs of nodes concisely by storing only 
(n - 1) cuts? Because the network has at most (n - 1) distinct minimum cut values 
between n(n - 1)/2 pairs of nodes, does it have at most (n - 1) distinct cuts that 
define the minimum cuts between all node pairs? In the following discussion we 
provide an affirmative answer to this question. Consider a pair k and I of nodes. 
Suppose that arc (i, j) is a minimum value arc in the path from node k to node I in 
T*. Our preceding observations imply that v[k, I] = v[i, j]. Also notice that we have 
associated a cut [st, st] of value v[i,j] = v[k, I] with the arc (i,j); this cut separates 
nodes i and j. Is [st, st] a minimum [k, I] cut? It is if [st, st] sepl:).rates nodes k 
and I, and it is not otherwise. If, indeed, [st, St] separates nodes k and I, and if 
the same result is true for every pair of nodes in the network, the cuts associated 
with arcs in T* concisely store minimum value cuts betweeri"aIl pairs of nodes. We 
refer to such a tree T* as a separator tree. In this section we show that every network 
G has a separator tree and that we can construct the separator tree by evaluating 
(n - 1) single-pair minimum cut values. Before we describe this method, we restate 
the definition of the separator tree for easy future reference. 

Separator tree. An undirected spanning tree T*, with a minimum [i, j] cut 
[st, st] of value v[i,j] associated with each arc (i,j), is a separator tree ifit satisfies 
the following property for every nontree arc (k, I): If arc (i, j) is the minimum value 
arc from node k to node I in T* (breaking ties in a manner to be described later), 
[st, st] separates nodes k and l. 

Our preceding discussion shows that we have reduced the all-pairs minimum 
value cut problem to a problem of obtaining a separator tree. Given the separator 
tree T*, we determine the minimum [k, l] cut as follows: We traverse the tree path 
from node k to node I; the cut corresponding to the minimum value in the path 
(breaking ties appropriately) is a minimum [k, I] cut. 

We call a subtree of a separator tree a separator subtree. Our algorithm for 

Sec. 8.7 All-Pairs Minimum Value Cut Problem 279 



constructing a separator tree proceeds by constructing a separator subtree that spans 
an expanding set for nodes. It starts with a singleton node, adds one additional node 
to the separator subtree at every iteration, and terminates when the separator tree 
spans all the nodes. We add nodes to the separator subtree in the order 1, 2, 3, ... , 
n. Let TP -) denote the separator subtree for the node set {I, 2; ... ,p - I} and 
TP denote the separator subtree for the node set {I, 2, ... ,p}. We obtain TP from 
TP -) by adding an arc, say (p, k). The essential problem is to locate the node k 
incident to node p in TP. Once we have located the node k, we identify a minimum 
value cut [S;k, S;k] between nodes p and k, and associate it with the arc (p, k). We 
set the value of the arc (p, k) equal to v[p, k]. ,; 

As already mentioned, our algorithm for constructing the separator tree adds 
arcs to the separator subtree one by one. We associate an index, called an order 
index, with every arc in the separator subtree. The first arc added to the separator 
subtree has order index 1, the second arc added has order in4ex 2, and so on. We 
use the order index to resolve ties while finding a minimum value arc between a 
pair of nodes. As a rule, whether we specify so or not in the subsequent discussion, 
we always resolve any tie in favor of the arc with the least order index (i.e., the arc 
that we added first to the separator subtree). 

Figure 8.15 describes the procedure we use to locate the node k E TP -Ion 
which the arc (p, k) will be incident in TP. 

Note that in every iteration of the locate procedure, Ta ~ Na and T[3 ~ N[3. 
This fact follows from the observation that for every k E T~ and [ E T[3, the arc 
(a., (3) is the minimum value arc in the path from node k to node [ in the separator 
subtree T and, by its definition, the cut must separate node k and node [. 

We illustrate the procedure locate using a numerical example. Consider a nine
node network with nodes numbered 1, 2, 3, ... ,9. Suppose that after five iterations, 
the separator subtree TP -) = r is as shown in Figure 8.16(a). The figure also shows 
the cut associated with each arc in the separator subtree (here we specify only 
S~f3' because we can compute S~f3 by using S~f3 = N - S~f3)' We next consider 
adding node 7 to the subtree. At this point, T = r and the minimum value arc in 
Tis (4, 5). Examining S~5 reveals that node 7 is on die same side of the cut as node 

280 

procedure /ocate(TP-1, p, k); 
begin 

T: = TP-1; 
while T is not a singleton node do 
begin 

let (n, 13) be the minimum value arc in T (we break ties in favor of the arc with the 
smal~st order index); 

let [~J3' ~J31 be the cut associated with the arc (ix, 13); 
let the arc (n, 13) partition the tree T into the subtrees Ta 

and T~ so th!!.t n E Ta and 13 E T~; 
let the cut [~J3' S*ap] partition the node set N into the 

subsets Na and N~ so that n E Na and 13 E N~; 
If P E Na then set T: = Ta else set T: = T~; 

end; 
set k equal to the Singleton node in T; 

end; 

Figure 8.15 Locate procedure. 

Maximum Flows: Additional Topics Chap. 8 



6 

4 

4; therefore, we updat~ T to be the subtree containing node 4. Figure 8.16(b) shows 
the tree T. Now arc (2, 3) is the minimum value arc in T. Examining S~3 reveals 
that node 7 is on the same side of the cut as node 2; so we update T so that it is the 
subtree containihg ll.pde 2. At this point, the tree T is a singleton, node 2. We set 
k = 2 and terminate the procedure. We next add arc (2, 7) to the separator subtree, 
obtain a minimum value cut between the nodes 7 and 2, and associate this cut with 
the arc (2,7). Let v[7, 2] = 5 and S~2 = {7}. Figure 8.16(c) shows the separator 
subtree spanning the nodes 1 through 7. 

3 

7 

(a) 

\ 

6 

4 

S~3= {l, 8} 

S~3= {2, 7} 

S~4= {l, 2, 3,7, 8} 

S~5= {5} 

S~6= {6, 9} 

(c) 

6 

4 

\ 

3 

7 

Figure 8.16 Illustrating the procedure locate. 

7 

(b) 

S~2= P} 

We are now in a position to prove that the subtree TP is a separator subtree 
spanning the nodes {1, 2, ... , p}. Since, by our inductive hypothesis, TP - I is a 
separator subtree on the nodes {1, 2, ... ,p - 1}, our proof amounts to establishing 
the following result for every node IE {1, 2, ... ,p - 1}: If (i,j) is the minimum 
value arc in TP in the path from node p to node I (with ties broken appropriately), 
the cut [st, st] separates the nodes p and l. We prove this result in the following 
lemma. 

Lemma 8.16. For any node I E TP-I, If(i,j) is the minimum value arc in TP 
in the path from node p to node I (when we break ties in favor of the arc with the 
least order index), [st, st] separates nodes p and I. 

Proof. We consider two possipilities for the arc (i, j). 

Case 1: (i, j) = (p, k). Let P denote the tree path in TP from node k to node 
I. The situation (i,j) = (p, k) can occur only when arc (p, k) is the unique minimum 
value arc in TP in P, for otherwise, the tie will be broken in favor of an arc other 
than the arc (p, k) (why?). Thus 

v[p, k] < v[g, h] for every arc (g, h) E P. (8.17) 

Sec. 8.7 All-Pairs Minimum Value Cut Problem 281 



Next consider any arc (g, h) E P. We claim that both the nodes g and h must 
belong to the same component of the cut [S;k' S;k]; for otherwise, [S;k' S;k] will 
also separate nodes g and h, so v[p, k] ;::: v[g, h], contradicting (8.17). Using this 
argument inductively for all arcs in P, we see that all the nodes in the path P (that 
starts at node k and ends at node l) must belong to the same component of the cut 
[S;k> S;k]. Since the cut [S;k' S;k] separates nodes p and k, it also separates nodes 
p and l. 

Case 2: (i, j) ¥= (p, k). We examine this case using the locate procedure. At 
the beginning of the locate procedure, T = TP - I , and at every iteration the size of 
the tree becomes smaller, until finally, T = {k}. Consider the iteration when T 
contains both the nodes k and I, but in the next iteration the tree does not contain 
node I. Let P denote the path in T from node k to node I in this iteration. It is easy 
to see that the arc (a., (3) selected by the locate procedure in this iteration must belong 
to the path P. By definition, (a., (3) is the minimum value arc in T, with ties broken 
appropriately. Since T contains the path P, (a., (3) is also a minimum value arc in P. 
Now notice from the statement ofthe lemma that arc (i,j) is defined as the minimum 
value arc in P, and since we break the tie in precisely the same manner, (i, j) = 
(a., (3). 

We next show that the cut [S~.B' S~.B] separates node p and node I. We rec
ommend that the reader refers to Figure 8.17 while reading the remainder of the 
proof. Consider the same iteration of the locate procedure considered in the pre
ceding paragraph, and let Trx , N rx , TI3 , NI3 be defined as in Figure 8.15. We have 
observed previously that Trx ~ Nrx and TI3 ~ N 13 • We assume that p E Nrx; a similar 
argument applies when pEN 13' The procedure implies that when pEN rx, we 
set T = Trx , implying that k E Trx ~ N rx . Since the cut [S~.B' S~.B] separates node k 
from node I it also separates node p from node l. The proof of the lemma is 
complete. • 

------/....---- -- ......... , 
,/ , 

./ ----- , 
/ -- ......... "-/ , , 

/ '\ 
I '\ 

I '\ 
I \~ 

/ '\ 
I 

I N" 
I 
\ 
\ 
\ 
\ 
\ 

\ 
\ , 

"-
"-, 

'
'---

282 

T" 

-----

;I 
II 

/I 
/1 

.// 
.// 

---'" / - ./ 
,/ 

-'" ---
Figure 8.17 Proving Lemma 8.16. 

Maximum Flows: Additional Topics Chap. 8 



Having proved the correctness of the all-pairs minimum cut algorithm, we next 
analyze its running time. The algorithm performs (n - 1) iterations. In each iteration 
it executes the locate procedure and identifies the arc (p, k) to be added to the 
separator subtree. The reader can easily verify that an execution of the locate pro
cedure requires O(n2) time. The algorithm then solves a minimum value cut problem 
and associates this cut and its value with the arc (p, k). The following theorem is 
immediate. 

Theorem 8.17. Solving the all-pairs mmlmum value cut problem requires 
O(n3) time plus the time required to solve (n - 1) instances of the single-pair min-
imum value cut problem. • 

To summarize, we have shown that the all-pairs minimum cut algorithm finds 
the minimum capacity cut separating node i and node j (i.e., with node i on one side 
of the cut and nodej on the other side) for every node pair [i,j]. The max-flow min
cut theorem shows that this algorithm also determines the maximum flow values 
between every pair of nodes. 

Suppose, instead, that we are given a directed graph. Let f[i, j] denote the 
value of the minimum cut from node i to nodej. We cannot use the all-pairs minimum 
cut algorithm to determine f[i, j] for all node pairs [i, j] for the following simple 
reason: The algorithm would determine the minimum value of a cut separating node 
i from node j, and this value is min{f[i, j], fU, i]} because the minimum cut from 
node i to node j separates nodes i and j and so does the minimum cut from node j 
to node i. (We did not face this problem for undirected networks because the min
imum cut from node i to node j is also a minimum cut from node j to node i.) If we 
let v[i, j] = min{f[i, j], fU, i]}, we can use the all-pairs minimum cut algorithm to 
determine v[i, j] for each node pair [i, j]. Moreover, this algorithm relies on eval
uating v[i,j] for only (n - 1) pairs of nodes. Since we can determine v[i,j] by finding 
a maximum flow from node i to nodej and from nodej to node i, we can compute 
v[i, j] for all node pairs by solving (2n - 2) maximum flow problems. 

We complete this section by describing an application of the all-pairs minimum 
value cut problem. 

Application B.3 Maximum and Minimum Arc Flows in 
a Feasible Flow 

Consider the feasible flow problem that we discussed in Application 6.1. Assume 
that the network is uncapacitated and that it admits a feasible flow. For each arc 
(i, j) E A, let Cl..ij denote the minimum arc flow that (i, j) can have in some feasible 
flow, and let J3ij denote the maximum arc flow that (i, j) can have in some feasible 
flow. We will show that we can determine Cl..ij for all node pairs [i, j] by solving at 
most n maximum flow problems, and we can determine l3ij for all node pairs [i, j] 
by an application of the all-pairs minimum value cut problem. 

The problem of determining the maximum and minimum values of the arc flows 
in a feasible flow arises in the context of determining the statistical security of data 
(e.g., census data). Given a two-dimensional table A of size p x q, suppose that we 
want to disclose the row sums r;, the column sums Cj, and a subset of the matrix 

Sec. 8.7 All-Pairs Minimum Value Cut Problem 283 



elements. For security reasons (or to ensure confidentiality of the data), we would 
like to ensure that we have "disguised" the remaining matrix elements (or "hidden" 
entries). We wish to address the following question: Once we have disclosed the 
row and column sums and some matrix elements, how secure are the hidden entries? 
We address a related question: For each hidden element aij, what are the minimum 
and maximum values that aij can assume consistent with the data we have disclosed? 
If these two bounds are quite close, the element aij is not secure. 

We assume that each revealed matrix element has value O. We incur no loss 
of generality in making this assumption since we can replace a nonzero element aij 
by 0, replace ri by ri - aij, and replace Cj by Cj - aij' To conduct our analysis, we 
begin by constructing the bipartite network shown in Figure 8.18; in this network, 
each unrevealed matrix element aij corresponds to an arc from node i to node J. It 
is easy to see that every feasible flow in this network gives values of the matrix 
elements that are consistent with the row and column sums. 

How might we compute the aij values? Let x* be any feasible flow in the 
network (which we can determine by solving a maximum flow problem). In Section 
11.2 we show how to convert each feasible flow into a feasible ~panning tree solution; 
in this solution at most (n - 1) arcs have positive flow. As a consequence, if x* is a 
spanning tree solution, at least (m - n + 1) arcs have zero flow; and therefore, 
aij = 0 for each of these arcs. So we need to find the aij values for only the remaining 
(n - 1) arcs. We claim that we can accomplish this task by solving at most (n -
1) maximum flow problems. Let us consider a specific arc (i, j). To determine the 
minimum flow on arc (i,j), we find the maximum flow from node ito nodej in G(x*) 
when we have deleted arc (i, j). If the maximum flow from node i to node j has 
value k, we can reroute up to k units of flow from node i to node j and reduce the 
flow an arc (i, j) by the same amount. As a result, aij = max{O, xU - k}. 

To determine the maximum possible flow on arc (i, j), we determine the max
imum flow from node j to node i in G(x*). If we can send k units from node j to 
node i in G(x*), then l3ij = k. To establish this result, suppose that the k units consist 
of xij units on arc (j, i) [which is the reversal of arc (i, j)], and k - xij units that 
do not use arc (i,j). Then, to determine the maximum flow on the arc (i,j), we can 

284 

p 
!r; 
i=l 

b(i) 

o 

b(j) 

o 

\ 

Figure 8.18 Feasible flow network for ensuring the statistical security of data. 

Maximum Flows: Additional Topics Chap. 8 



send k - xij units of flow from node j to node i and increase the flow in arc (i, j) 
by k - xij, leading to a total of k units. 

Thus, to find 131h we need to compute the maximum flow from node j to node 
i in G(x*) for each arc (i,j) EA. Equivalently, we want to find the minimum capacity 
cut fU, i] from node j to node i in G(x*). As stated previously, we cannot find 
f[i,j] for all node pairs [i,j] in a directed network; but we can determine min{f[i,j], 
fU, i]}. We now use the fact that we need to compute fU, i] when (i, j) E A, in 
which case f[i, j] = 00 (because the network is uncapacitated). Therefore, for each 
arc (i, j) E A, f[i, j] = min{f[i, j], fU, i]}, and we can use the all-pairs minimum 
value cut algorithm to determine all of the l3ij values by solving (2n - 2) maximum 
flow problems. 

B.B SUMMARY 

As we have noted in our study of shortest path problems in our earlier chapters, we 
can sometimes develop more efficient algorithms by restricting the class of networks 
that we wish to consider (e.g., networks with nonnegative costs, or acyclic net
works). In this chapter we have developed efficient special purpose algorithms for 
several maximum flow problems with specialized structure: (1) unit capacity net
works, in which all arcs have unit capacities; (2) unit capacity simple networks, in 
which each node has a single incoming or outgoing arc; (3) bipartite networks; and 
(4) planar networks. We also considered one specialization of the maximum flow 
problem, the problem of finding the maximum number of arc-disjoint paths between 
two nodes in a network, and one generalization of the minimum cut problem, finding 
minimum value cuts between all pairs of nodes. For this last problem we permitted 
ourselves to measure the value of any cut by a function that is more general than 
the sum of the capacities of the arcs in the cut. Finally, we considered one other 
advanced topic: the use of the dynamic trees data structure to efficiently implement 
the shortest augmenting path algorithm for the maximum flow problem. 

Figure 8.19, which summarizes the basic features of the~,e various algorithms, 

Algorithm Ruuning time Features 

Maximum flow O(min{n2/3m, m3/2}) 1. Fastest available algorithm for solving the maxi-
algorithm for unit mum flow problem in unit capacity networks. 
capacity networks 2. Uses two phases: first applies the shortest 

augmenting path algorithm until the distance 
label of node s satisfies the condition des) 2: d* = 

min{ r2n2l31 , r m 1/21 }. At this point, uses the labeling 
algorithm until it establishes a maximum flow. 

3. Easy to implement and is likely to be efficient in 
practice. 

Maximum flow O(nIl2m) 1. Fastest available algorithm for solving the maxi-
algorithm for unit mum flow problem in unit capacity simple net-
capacity simple works. 
networks 2. Same two phase approach as the preceding algo-

rithm, except d* = r n1l21. 

Figure 8.19 Summary of algorithms discussed in this chapter. 

Sec. 8.8 Summary 285 



Algorithm Running time Features 

Bipartite preflow-push O(n~m) 1. Faster approach for solving maximum flow prob-
algorithm lems in bipartite networks satisfying the condition 

nl < n2. 
2. Improved implementation of the generic preflow-

push algorithm discussed in Section 7.6. 
3. Uses "two-arc" push rule in which we always push 

flow from an active node over two consecutive ad-
missible arcs. 

4. As discussed in the exercises, significant further im-
provements are possible if we examine active nodes 
in some specific order. 

Planar maximum flow O(n log n) 1. Highly efficient algorithm for solving the maximum 
algorithm flow problem in s-t planar networks. 

2. Constructs the dual network and solves a shortest 
path problem over it. The shortest path in the dual 
network yields a minimum cut in the original net-
work and the shortest path distances yield a max-
imum flow. 

3. Applicable only to undirected s-t planar networks. 

Dynamic tree O(nm log n) 1. Uses the dynamic tree data structure to implement 
algorithm the shortest augmenting path algorithm for the max-

imum flow problem. 
2. Improves the running time of the shortest augment-

ing path algorithm from O(n2m) to O(nm log n). 
3. Similar, though not as dramatic, improvements can 

be obtained by using this data structure in preflow-
push algorithms. 

4. The dynamic tree data structure is quite sophisti-
cated, has substantial overhead and its practical 
usefulness has not yet been established. 

Arc connectivity O(nm) 1. Fastest available algorithm for obtaining the arc 
algorithm connectivity of a network. 

2. Uses the labeling algorithm for the maximum flow 
problem as a subroutine. 

3. Likely to be very efficient in practice. 
4. Applicable only to undirected networks. 

All-pairs minimum cut O(nM(n. m. U) + n3
) 1. Fastest available algorithm for solving the all-pairs 

algorithm minimum cut problem. (M(n, m, U) is the time 
needed for solving the maximum flow problem on 
a network with n nodes, m arcs, and U as the largest 
arc capacity.) 

2. Determines minimum cuts between all pairs of 
nodes in the network by solving (n - 1) maximum 
flow problems. 

3. Can be used to determine the minimum value cuts 
between all pairs of nodes in the case in which we 
define the value of a cut differently than the capacity 
of the cut. 

4. The O(n3
) term in the worst-case bound can be re-

duced to O(n2) using different data structures. 
5. Applicable to undirected networks only. 

Figure 8.19 (Continued) 



shows that by exploiting specialized structures or advanced data structures, we can 
improve on the running time of maximum flow computations, sometimes dramati
cally. 

REFERENCE NOTES 

We present the reference notes in this chapter separately for each of the several 
topics related to maximum flows that we have studied in this chapter. 

Flows in unit capacity networks. Even and TaIjan [1975] showed that 
Dinic's algorithm solves the maximum flow problem in unit capacity and unit ca
pacity simple networks in O(min{n2J3m, m312 }) and O(nll2m) time, respectively. The 
algorithms we presented in Section 8.2 are due to Ahuja and Orlin [1991]; they use 
similar ideas and have the same running times. Fernandez-Baca and Martel [1989] 
presented and analyzed algorithms for solving more general maximum flow problems 
with "small" integer capacities. 

Flows in bipartite networks. By improving on the running times of Dinic's 
[1970] and Karzanov's [1974] algorithms, Gusfield, Martel, and Fernandez-Baca 
[1987] developed the first specializations of maximum flow algorithms for bipartite 
networks. Ahuja, Orlin, Stein, and TaIjan [1990] provided further improvements and 
showed that it is possible to substitute n) for n in the time bounds of almost all 
preflow-push algorithms to obtain new time bounds for bipartite networks (recall 
that n) is the number of nodes on the smaller side of the bipartite network). This 
result implies that the generic preflow-push algorithm, the FIFO implementation, 
the highest-label implementation, and the excess scaling algorithm can solve the 
maximum flow problem in bipartite networks in O(nrm), O(n)m + nD, O(n)m + 
nrYm), and O(n)m + nr log U) time. Our discussion of the bipartite preflow-push 
algorithm in Section 8.3 is adapted from this paper. We have adapted the baseball 
elimination application from Schwartz [1966], and the network reliability application 
from Van Slyke and Frank [1972]. The paper by Gusfield, Martel, and Fernandez
Baca [1987] describes additional applications of bipartite maximum flow problems. 

Flows in planar networks. In Section 8.4 we discussed the relationship 
between minimum s-t cuts in a network and shortest paths in its dual. Given a planar 
network G, the algorithm of Hopcroft and TaIjan [1974] constructs a planar repre
sentation in O(n) time; from this representation, we can construct the dual network 
in O(n) time. Berge [1957] showed that augmenting flow along certain paths, called 
superior paths, provides an algorithm that finds a maximum flow within n augmen
tations. Itai and Shiloach [1979] described an O(n log n) implementation of this al
gorithm. Hassin [1981] showed how to compute a maximum flow from the shortest 
path distances in the dual network. We have presented this method in our discussion 
in Section 8.4. For faster maximum flow algorithms in planar (but not necessarily 
s-t planar) undirected and directed networks, see Johnson and Venkatesan [1982] 
and Hassin and Johnson [1985]. 

Chap. 8 Reference Notes 287 



Dynamic tree implementation. Sleator and TaIjan [1983] developed the 
dynamic tree data structure and used it to improve the worst-case complexity of 
Dinic's algorithm from O(n 2m) to O(nm log n). Since then, researchers have used 
this data structure on many occasions to improve the performance of a range of 
network flow algorithms. Using the dynamic tree data structure, Goldberg and Tarjan 
[1986] improved the complexity of the FIFO preflow-push algorithm (described in 
Section 7.7) from O(n3) to O(nm log (n2/m», and Ahuja, Orlin, and TaIjan [1989] 
improved the complexity of the excess scaling algorithm (described in Section 7.9) 
and several of its variants. 

Network connectivity. Even and TaIjan [1975] offered an early discussion 
of arc connectivity of networks. Some of our discussion in Section 8.6 uses their 
results. The book by Even [1979] also contains a good discussion on node connec
tivity of a network. The O(nm) time arc connectivity algorithm (for undirected net
works) that we presented in Section 8.6 is due to Matula [1987] and is currently the 
fastest available algorithm. Mansour and Schieber [1988] presented an O(nm) al
gorithm for determining the arc connectivity of a directed network. 

All-pairs minimum value cut problem. Gomory and Hu [1961] developed 
the first algorithm for solving the all-pairs minimum cut problem on undirected net
works that solves a sequence of (n - 1) maximum flow problems. Gusfield [1990] 
presented an alternate all-pairs minimum cut algorithm that is very easy to implement 
using a code for the maximum flow problem. Talluri [1991] described yet a third 
approach. The algorithm we described in Section 8.7, which is due to Cheng and 
Hu [1990], is more general since it can handle cases when the value of a cut is defined 
differently than its capacity. Unfortunately, no one yet knows how to solve the all
pairs minimum value cut problem in directed networks as efficiently. No available 
algorithm is more efficient than solving O(n2) maximum flow problems. The appli
cation of the all-pairs minimum value cut problem that we described at the end of 
Section 8.7 is due to Gusfield [1988]. Hu [1974] describes an additional application 
of the all-pairs minimum value cut problem that arises in network design. 

EXERCISES 

8.1 (a) Show that it is always possible to decompose a circulation in a unit capacity network 
into unit flows along arc-disjoint directed cycles. 

(b) Show that it is always possible to decompose a circulation in a simple network into 
unit flows along node-disjoint directed cycles. 

8.2. Let G = (N, A) be a directed network. Show that it is possible to decompose the arc 
set A into an arc-disjoint union of directed cycles if and only if G has a circulation x 
with xij = 1 for every arc (i, j) E A. Moreover, show that we can find such a solution 
if and only if the indegree of each node equals its outdegree. 

8.3. An undirected network is biconnected if it contains two node disjoint paths between 
every pair of nodes (except, of course, at the starting and terminal points). Show that 
a biconnected network must satisfy the following three properties: (1) for every two 
nodes p and q, and any arc (k, I), some path from p to q contains arc (k, I); (2) for 
every three nodes p, q, and r, some path from p to r contains node q; (3) for every 
three nodes p, q, and r, some path from p to r does not contain q. 

8.4. Suppose that you are given a maximum flow problem in which all arc capacities are 

288 Maximum Flows: Additional Topics Chap. 8 



the same. What is the most efficient method (from the worst-case complexity point of 
view) to solve this problem? 

8.5. Using the unit capacity maximum flow algorithm, establish a maximum flow in the 
network shown in Figure 8.20. 

Figure 8.20 Example for Exercise 8.5. 

8.6. Adapt the unit capacity maximum flow algorithm for unit capacity simple bipartite networks. In 
doing so, try to obtain the best possible running time. Describe your algorithm and analyze its 
worst-case complexity. 

8.7. Consider a generalization of unit capacity networks in which arcs incident to the source 
and the sink nodes can have arbitrary capacities, but the remainder of the arcs have 
unit capacities. Will the unit capacity maximum flow algorithm still solve the problem 
in O(min{n2/3 m, m3/2

}) time, or might the algorithm require more time? Consider a 
further generalization of the problem in which arcs incident to the source, the sink, 
and one other node have arbitrary capacities. What will be the complexity of the unit 
capacity maximum flow algorithm when applied to this problem? 

8.8. We define a class of networks to be small-capacity networks if each arc capacity 
is between 1 and 4. Describe a generalization of the unit capacity maximum flow al
gorithm that would solve the maximum flow problems on small-capacity networks in 
O(min{n2/3 m, m 312

}) time. 
8.9. What is the best possible bound you can obtain on the running time of the generic 

preflow-push algorithm applied to unit capacity networks? 
8.10. Suppose we apply the preflow-push algorithm on a unit capacity simple network with 

the modification that we do not perform push/relabel operations on any node whose 
distance label exceeds n

1/2
. 

(a) Show that the modified preflow-push algorithm terminates within O(n I/2 m) time. 
(b) Show that at the termination of the algorithm, the maximum additional flow that 

can reach the sink is at most n 1/2. 

(e) Can you convert this preflow into a maximum flow in O(n1/2m) time? If yes, then 
how? 

8.11. Let x be a flow in a directed network. Assume that x is not a maximum flow. Let P 
and P' denote two successive shortest paths (i.e., P' is the shortest path after augmenta
tion on path P) and suppose that P' contains at least one arc whose reversal lies in P. 
Show that I P' I ~ I P I + 2. 

8.12. This exercise concerns the baseball elimination problem discussed in Application 8.1. 
Show that we can eliminate team 0 if and only if some nonempty set S of nodes satisfies 
the condition that 

W
max 

<_iE_s ____ ~I-s~Ji~i<~J-~~n----~i~~s~a=nd~J~·~~s~--

(Hint: Use the max-flow min-cut theorem.) 
8.13. Given two n-element arrays (X and ~, we want to know whether we can construct an 

n-node directed graph so that node i has outdegree equal to (X(i) and an indegree equal 

Chap. 8 Exercises 289 



to ~(i). Show how to solve this problem by solving a maximum flow problem. [Hint: 
Transform this problem to a feasible flow problem, as described in Application 6.1, on 
a complete bipartite graph G = (N1 U N 2, A) with NI = {I, 2, ... , n}, N2 = {l', 
2', ... , n'}, and A = NIx N 2 .] 

8.14. Given an n-node graph G and two n-element arrays (X and ~, we wish to determine 
whether some subgraph G' of G satisfies the property that for each node i, (X(i) and 
~(i) are the outdegree and indegree of node i. Formulate this problem as a maximum 
flow problem. (Hint: The transformation is similar to the one used in Exercise 8.13.) 

8.15. Apply the bipartite preflow-push algorithm to the maximum flow problem given in 
Figure 8.21. Among all the active nodes, push flow from a node with the smallest 
distance label. 

Source " .•• :J'.:'l--...::..::..~,.t ... q ..• ) Sink 
-~-. ... ,.;, 

Figure 8.21 Example for Exercise 8.15. 

8.16. Consider a bipartite network G = (N1 U N 2, A) with nl = I N. I ~ I N21 = n2. Show 
that when applied to this network, the shortest augmenting path algorithm performs 
O(n.(n. + n2» = O(n.n2) relabel steps and O(nlm) augmentations, and runs in 
O(nim) time. 

8.17. Suppose that we wish to find the maximum flow between two nodes in a bipartite 
network G = (N. U N 2, A) with nl = I NI I and n2 = I N21. This exercise considers 
the development of faster special implementations of the generic bipartite preflow-push 
algorithms. 
(8) Show that if the algorithm always pushes flow from an active node with the highest 

distance label, it runs in O(n~ + n.m) time. 
(b) Show that if the algorithm examines active nodes in a FIFO order, it runs in 

O(n~ + nlm) time. 
(c) Develop an excess scaling version of the generic bipartite flow algorithm and show 

that it runs in O(nlm + ni log U) time. 
8.1S. A semi-bipartite network is defined as a network G = (N, A) whose node set N can 

be partitioned into two subsets NI and N2 so that no arc has both of its endpoints in 
N 2 (i. e., we allow arcs with both of their endpoints in N I). Let n. = IN. I. n2 = I N2 1. 
and nl :s n2 . Show how to modify the generic bipartite preflow-push algorithm so that 
it solves the maximum flow problem on semi-bipartite networks in O(nim) time. 

8.19. (8) Prove that the graph shown in Figure 8.6(a) cannot be planar. (Hint: Use Euler's 
formula.) 

(b) Prove that the graph shown in Figure 8.6(b) cannot be planar. (Hint: Use Euler'S 
formula.) 

S.20. Show that an undirected planar network always contains a node with degree at most 
5. 

8.21. Apply the planar maximum flow algorithm to identify a maximum flow in the network 
shown in Figure 8.22. 

290 Maximum Flows: Additional Topics Chap. 8 



Source 

Figure 8.22 Example for Exercise 8.21. 

8.22. Duals of directed a-t planar networks. We define the dual graph of a directed s-I planar 
network G = (N, A) as follows. We first draw an arc (I, s) of zero capacity, which 
divides the unbounded face into two faces: a new unbounded face and a new bounded 
face. We then place a node f* inside each face f of the primal network G. Let s* and 
1*, respectively, denote the nodes in the dual network corresponding to the new 
bounded face and the new unbounded face. Each arc (i, j) E A lies on the boundary 
of the two faces f I and i2; corresponding to this arc, the dual graph contains two 
oppositely directed arcs (f., f2) and (f2, fd. If arc (i,j) is a clockwise arc in the face 
fJ, we define the cost of arc (fJ, f2) as uij and the cost of (f2, fl) as zero. We define 
arc costs in the opposite manner if arc (i, j) is a counterclockwise arc in the face fl. 
Construct the dual of the s-I planar network shown in Figure 8.20. Next show that 
there is a one-to-one correspondence between s-I cuts in the primal network and di
rected paths from node s· to node t* in the dual network; moreover, show that the 
capacity of the cut equals the cost of the corresponding path. 

8.ll. Show that if G is an s-t planar directed network, the minimum number of arcs in a 
directed path from s to t is equal to the maximum number of arc-disjoint s-I cuts. (Hin/: 
Apply Theorem 6.7 to the dual of G.) 

8.24. Node coloring algorithm. In the node coloring problem, we wish to color the nodes of 
a network so that the endpoints of each arc have a different color. In this exercise we 
discuss an algorithm for coloring a planar undirected graph using at most six colors. 
The algorithm first orders the nodes of the network using the following iterative loop: 
It selects a node with degree at most 5 (from Exercise 8.20, we can always find such 
a node), deletes this node and its incident arcs from the network, and updates the 
degrees of all the nodes affected. The algorithm then examines nodes in the reverse 
order and assigns colors to them. 
(a) Explain how to assign colors to the nodes to create a valid 6-coloring (i.e., the 

endpoints of every arc have a different color). Justify your method. 
(b) Show how to implement the node coloring algorithm so that it runs in O(m) time. 

8.25. Consider the numerical example used in Section 8.5 to illustrate the dynamic tree im
plementation of the shortest augmenting path algorithm. Perform further iterations of 
the algorithm starting from Figure 8.11(c) until you find a maximum flow that has a 
value of 3. 

8.26. Solve the maximum flow problem given in Figure 8.23 by the dynamic tree implemen
tation of the shortest augmenting path algorithm. 

Chap. 8 Exercises 291 



Source Sink 

Figure 8.23 Example for Exercise 8.26. 

8.27. Show how to use the dynamic tree data structure to implement in O(m log n) time the 
algorithm described in Exercise 7.11 for converting a maximum preflow into a maximum 
flow. 

8.28. In Section 3.5 we showed how we can determine the flow decomposition of any flow 
in O(nm) time. Show how to use the dynamic tree data structure to determine the flow 
decomposition in O(m log n) time. 

8.29. Prove Property 8.11. 
8.30. Compute the arc connectivity for the networks shown in Figure 8.24. Feel free to 

determine the maximum number of arc-disjoint paths between any pairs of nodes by 
inspection. 

(a) (b) 

Figure 8.24 Example for Exercises 8.30 and 8.36. 

8.31. Construct an undirected network whose nodes all have degree at least 3, but whose 
arc connectivity is 2. 

8.32. An undirected network is said to be k-connected if every pair of nodes are connected 
by at least k arc-disjoint paths. Describe an O(m) algorithm for determining whether 
a network is I-connected. Use this algorithm to describe a simple O(knm) algorithm 
for determining whether a network is k-connected. This algorithm should be different 
than those described in Section 8.6. 

8.33. In a directed graph G, we define the arc connectivity, ali, j), of an ordered pair [i, j) 
of nodes as the minimum number of arcs whose deletion from the network eliminates 
all the directed path from node ito nodej. We define the arc connectivity of a network 
Gas a(G) = min{a[i,j):[i,j) EN x N}. Describe an algorithm for determining a(G) 
in O(min{n513 m, m 2

}) time and prove that this algorithm correctly determines the arc 
connectivity of any directed network. (Hint: Let p be a node in G of minimum degree. 
Determine a[p,j] and a[j, p) for allj, and take the minimum of these numbers.) 

292 Maximum Flows: Additional Topics Chap. 8 



8.34. Arc connectivity of directed networks (Schnorr [1979]). In Exercise 8.33 we showed how 
to determine the arc connectivity a( G) of a directed network G by solving at most 2n 
maximum flow problems. Prove the following result, which would enable us to deter
mine the arc connectivity by solving n maximum flow problems. Let 1, 2, ... , n be 
any ordering of the nodes in the network, and let node (n + 1) = l. Show that 
a(G) = min{a[i, ; + 1]:; = 1, ... , n}. 

8.35. Node connectivity of undirected networks. We define the node connectivity, ~[i, j], of 
a pair [i, j] of nodes in an undirected graph G = (N, A) as the minimum number of 
nodes whose deletion from the network eliminates all directed paths from node i to 
nodej. 
(8) Show that if (i, j) E A, then ~[i, j] is not defined. 
(b) Let H = ([i,j] EN x N:(i,j) e A} and let ~(G) = min{~[i,j]:[i,j] E H} denote 

the node connectivity of a network G. Show that ~(G) :s 2lmlnJ. 
(c) Show that the node connectivity of a network is no more than its arc connectivity. 
(d) A natural strategy for determining the node connectivity of a network would be to 

generalize an arc connectivity algorithm described in Section 8.6. We fix a node p 
and determine ~[P. j] for eachj for which (P. j) ~ A. Using Figure 8.25 show that 
the minimum of these values will not be equal to ~(G). Explain why this approach 
fails for finding node connectivity even though it works for finding arc connectivity. 

Figure 8.25 Example for Exercise 8.35. 

8.36. Solve the all-pairs minimum cut problems given in Figure 8.24. Obtain the separator 
tree for each problem. 

Chap. 8 Exercises 293 



9 

MINIMUM COST FLOWS: BASIC 
ALGORITHMS 

Chapter OutlbJe 

9.1 Introduction 
9.2 Applications 
9.3 Optimality Conditions 
9.4 Minimum Cost Flow Duality 

... men must walk, at least, before they dance. 
-Alexander Pope 

9.5 Relating Optimal Flows to Optimal Node Potentials 
9.6 Cycle-Canceling Algorithm and the Integrality Property 
9.7 Successive Shortest Path Algorithm 
9.8 Primal-Dual Algorithm 
9.9 Out -of-Kilter Algorithm 
9. 10 Relaxation Algorithm 
9.11 Sensitivity Analysis 
9.12 Summary 

9.1 INTRODUCTION 

The minimum cost flow problem is the central object of study in this book. In the 
last five chapters, we have considered two special cases of this problem: the shortest 
path problem and the maximum flow problem. Our discussion has been multifaceted: 
(1) We have seen how these problems arise in application settings as diverse as 
equipment replacement, project planning, production scheduling, census rounding, 
and analyzing round-robin tournaments; (2) we have developed a number of algo
rithmic approaches for solving these problems and studied their computational com
plexity; and (3) we have shown connections between these problems and more gen
eral problems in combinatorial optimization such as the minimum cut problem and 
a variety of min-max duality results. As we have seen, it is easy to understand the 
basic nature of shortest path and maximum flow problems and to develop core 
algorithms for solving them; nevertheless, designing and analyzing efficient algo
rithms is a very challenging task, requiring considerable ingenuity and considerable 
insight concerning both basic algorithmic strategies and their implementations. 

As we begin to study more general minimum cost flow problems, we might ask 
ourselves a number of questions. 

294 



1. How much more difficult is it to solve the minimum cost flow problem than 
its shortest path and maximum flow specializations? 

2. Can we use some of the same basic algorithmic strategies, such as label-setting 
and label-correcting methods, and the many variants of the augmenting path 
methods (e.g., shortest augmenting paths, scaling methods) for solving mini
mum cost flow problems? 

3. The shortest path problem and the maximum flow problem address different 
components of the overall minimum cost flow problem: Shortest path problems 
consider arc flow costs but no flow capacities; maximum flow problems con
sider capacities but only the simplest cost structure. Since the minimum cost 
flow problem combines these problem ingredients, can we somehow combine 
the material that we have examined for shortest path and maximum flow prob
lems to develop optimality conditions, algorithms, and underlying theory for 
the minimum cost flow problem? 

In this and the next two chapters, we provide (partial) answers to these ques
tions. We develop a number of algorithms for solving the minimum cost flow prob
lem. Although these algorithms are not as efficient as those for the shortest path 
and maximum flow problems, they still are quite efficient, and indeed, are among 
the most efficient algorithms known in applied mathematics, computer science, and 
operations research for solving large-scale optimization problems. 

We also show that we can develop considerable insight and useful tools and 
methods of analysis by drawing on the material that we have developed already. 
For example, in order to give us a firm foundation for developing algorithms for 
solving minimum cost flow problems, in Section 9.3 we establish optimality con
ditions for minimum cost flow problems based on the notion of node potentials 
associated with the nodes in the underlying network. These node potentials are 
generalizations of the concept of distance labels that we used in our study of shortest 
path problems. Recall that we were able to use distance labels to characterize optimal 
shortest paths; in addition, we used the distance label optimality conditions as a 
starting point for developing the basic iterative label-setting and label-correcting 
algorithms for solving shortest path problems. We use the node potential in a similar 
fashion for minimum cost flow problems. The connection with shortest paths is much 
deeper, however, than this simple analogy between node potentials and distance 
labels. For example, we show how to interpret and find the optimal node potentials 
for a minimum cost flow problem by solving an appropriate shortest path problem: 
The optimal node potentials are equal to the negative of the optimal distance labels 
from this shortest path problem. 

In addition, many algorithms for solving the minimum cost flow problem com
bine ingredients of both shortest path and maximum flow algorithms. Many of these 
algorithms solve a sequence of shortest path problems with respect to maximum 
flow-like residual networks and augmenting paths. (Actually, to define the residual 
network, we consider both cost and capacity considerations.) We consider four such 
algorithms in this chapter. The cycle-canceling algorithm uses shortest path com
putations to find augmenting cycles with negative flow costs; it then augments flows 
along these cycles and iteratively repeats these computations for detecting negative 

Sec. 9.1 Introduction 295 



cost cycles and augmenting flows. The successive shortest path algorithm incre
mentally loads flow on the network from some source node to some sink node, each 
time selecting an appropriately defined shortest path. The primal-dual and out-of
kilter algorithms use a similar algorithmic strategy: at every iteration, they solve a 
shortest path problem and augment flow along one or more shortest paths. They 
vary, however, in their tactics. The primal-dual algorithm uses a maximum flow 
computation to augment flow simultaneously along several shortest paths. Unlike 
all the other algorithms, the out-of-kilter algorithm permits arc flows to violate their 
flow bounds. It uses shortest path computations to find flows that satisfy both the 
flow bounds and the cost and capacity based optimality conditions. 

The fact that we can implement iterative shortest path algorithms in so many 
ways demonstrates the versatility that we have in solving minimum cost flow prob
lems. Indeed, as we shall see in the next two chapters, we have even more versatility. 
Each of the algorithms that we discuss in this chapter is pseudopolynomial for prob
lems with integer data. As we shall see in Chapter to, by using ideas such as scaling 
of the problem data, we can also develop polynomial-time algorithms. 

Since minimum cost flow problems are linear programs, it is not surprising to 
discover that we can also use linear programming methodologies to solve minimum 
cost flow problems. Indeed, many of the various optimality conditions that we have 
introduced in previous chapters and that we consider in this chapter are special cases 
of the more general optimality conditions of linear programming. Moreover, we can 
interpret many of these results in the context of a general theory of duality for linear 
programs. In this chapter we devel()p these duality results for minimum cost flow 
problems. In Chapter 11 we study the application of the key algorithmic approach 
from linear programming, the simplex method, for the minimum cost flow problem. 
In this chapter we consider one other algorithm, known as the relaxation algorithm, 
for solving the minimum cost flow problem. 

To begin our discussion of the minimum cost flow problem, we first consider 
some additional applications, which help to show the importance of this problem in 
practice. Before doing so, however, let us set our notation and some underlying 
definitions that we use throughout our discussion. 

Notation and Assumptions 

Let G == (N, A) be a directed network with a cost Cu and a capacity Uu associated 
with every arc (i, j) E A. We associate with each node i E N a number b(i) which 
indicates its supply or demand depending on whether b(i) > 0 or b(i) < O. The 
minimum cost flow problem can be stated as follows: 

subject to 

Minimize z(x) L cijxij (9.ta) 

L Xu
{j: (i.j)EA} 

(i.j)EA 

L Xji = b(i) for all i E N, 
{j:(j.i)EA} 

for all (i, j) E A. 

(9.tb) 

(9.1c) 

Let C denote the largest magnitude of any arc cost. Further, let U denote the 

296 Minimum Cost Flows: Basic Algorithms Chap. 9 



largest magnitude of any supply/demand or finite arc capacity. We assume that the 
lower bounds lij on arc flows are all zero. We further make the following assumptions: 

Assumption 9.1. All data (cost, supply/demand. and capacity) are integral. 

As noted previously, this assumption is not really restrictive in practice because 
computers work with rational numbers which we can convert to integer numbers 
by mUltiplying by a suitably large number. 

Assumption 9.2. The network is directed. 

We have shown in Section 2.4 that we can always fulfill this assumption by 
transforming any undirected network into a directed network. 

Assumption 9.3. The supplies/demands at the nodes satisfy the condition 
LiEN b(i) = ° and the minimum cost flow problem has a feasible solution. 

We can determine whether the minimum cost flow problem has a feasible so
lution by solving a maximum flow problem as follows. Introduce a source node s* 
and a sink node t*. For each node i with b(i) > 0, add a "source" arc (s*, i) with 
capacity b(i), and for each node i with b(i) < 0, add a "sink" arc (i, t*) with capacity 
- b(i). Now solve a maximum flow problem from s* to t*. If the maximum flow 
saturates all the source arcs, the minimum cost flow problem is feasible; otherwise. 
it is infeasible. For the justification of this method, see Application 6.1 in Section 
6.2. 

Assumption 9.4. We assume that the network G contains an uncapacitated 
directed path (i.e., each arc in the path has infinite capacity) between every pair 
of nodes. 

We impose this condition, if necessary, by adding artificial arcs (l, j) and 
(j, 1) for eachj E N and assigning a large cost and infinite capacity to each of these 
arcs. No such arc would appear in a minimum cost solution unless the problem 
contains no feasible solution without artificial arcs. 

Assumption 9.5. All arc costs are nonnegative. 

This assumption imposes no loss ·of generality since the arc reversal transfor
mation described in Section 2.4 converts a minimum cost flow problem with negative 
arc lengths to those with nonnegative arc lengths. This transformation, however, 
requires that all arcs have finite capacities. When some arcs are uncapacitated, we 
assume that the network contains no directed negative cost cycle of infinite capacity. 
If the network contains any such cycles, the optimal value of the minimum cost flow 
problem is unbounded; moreover, we can detect such a situation by using the search 
algorithm described in Section 3.4. In the absence of a negative cycle with infinite 
capacity, we can make each uncapacitated arc capacitated by setting its capacity 
equal to B, where B is the sum of all arc capacities and the supplies of all supply 
nodes; we justify this transformation in Exercise 9.36. 

Sec. 9.1 Introduction 297 



Residual Network 

Our algorithms rely on the concept of residual networks. The residual network G(x) 
corresponding to a flow x is defined as follows. We replace each arc (i, j) E A by 
two arcs (i, j) and (j, 0. The arc (i, j) has cost Cij and residual capacity rij = Uij -
xv' and the arc (j, i) has cost Cji = - cij and residual capacity rji = Xij. The residual 
network consists only of arcs with positive residual capacity. 

9.2 APPLICATIONS 

Minimum cost flow problems arise in almost all industries, including agriculture, 
communications, defense, education, energy, health care, manufacturing, medicine, 
retailing, and transportation. Indeed, minimum cost flow problems are pervasive in 
practice. In this section, by considering a few selected applications that arise in 
distribution systems planning, medical diagnosis, public policy, transportation, man
ufacturing, capacity planning, and human resource management, we give a passing 
glimpse of these applications. This discussion is intended merely to introduce several 
important applications and to illustrate some of the possible uses of minimum cost 
flow problems in practice. Taken together, the exercises in this chapter and in Chap
ter 11 and the problem descriptions in Chapter 19 give a much more complete picture 
of the full range of applications of minimum cost flows. 

Application 9.1 Distribution Problems 

A large class of network flow problems centers around shipping and distribution 
applications. One core model might be best described in terms of shipments from 
plants to warehouses (or, alternatively, from warehouses to retailers). Suppose that 
a firm has p plants with known supplies and q warehouses with known demands. It 
wishes to identify a flow that satisfies the demands at the warehouses from the 
available supplies at the plants and that minimizes its shipping costs. This problem 
is a well-known special case of the minimum cost flow problem, known as the trans
portation problem. We next describe in more detail a slight generalization of this 
model that also incorporates manufacturing costs at the plants. 

A car manufacturer has several manufacturing plants and produces several car 
models at each plant that it then ships to geographically dispersed retail centers 
throughout the country. Each retail center requests a specific number of cars of each 
model. The firm must determine the production plan of each model at each plant 
and a shipping pattern that satisfies the demands of each retail center and minimizes 
the overall cost of production and transportation. 

We describe this formulation through an example. Figure 9.1 illustrates a sit
uation with two manufacturing plants, two retailers, and three car models. This model 
has four types of nodes: (1) plant nodes, representing various plants; (2) plant/model 
nodes, corresponding to each model made at a plant; (3) retailer/model nodes, cor
responding to the models required by each retailer; and (4) retailer nodes corre
sponding to each retailer. The network contains three types of arcs. 

1. Production arcs. These arcs connect a plant node to a plant/model node; the 
cost of this arc is the cost of producing the model at that plant. We might place 

298 Minimum Cost Flows: Basic Algorithms Chap. 9 



Plant 
lOdes 

Plant/model 
nodes 

Retailer/model 
nodes 

Retailer Figure 9.1 Production-distribution 
nodes model. 

lower and upper bounds on these arcs to control for the minimum and maximum 
production of each particular car model at the plants. 

2. Transportation arcs. These arcs connect plant/model nodes to retailer/model 
nodes; the cost of such an arc is the total cost of shipping one car from the 
manufacturing plant to the retail center. Any such arc might correspond to a 
complex distribution channel with, for example, three legs: (a) a delivery from 
a plant (by truck) to a rail system; (b) a delivery from the rail station to another 
rail station elsewhere in the system; and (c) a delivery from the rail station to 
a retailer (by a local delivery truck). The transportation arcs might have lower 
or upper bounds imposed on their flows to model contractual agreements with 
shippers or capacities imposed on any distribution channel. 

3. Demand arcs. These arcs connect retailer/model nodes to the retailer nodes. 
These arcs have zero costs and positive lower bounds which equal the demand 
of that model at that retail center. 

Clearly, the production and shipping schedules for the automobile company 
correspond in a one-to-one fashion with the feasible flows in this network model. 
Consequently, a minimum cost flow would yield an optimal production and shipping 
schedule. 

Application 9.B Reconstruoting the Left Ventriole from 
X-ray Projections 

This application describes a network flow model for reconstructing the three
dimensional shape of the left ventricle from biplane angiocardiograms that the medical 
profession uses to diagnose heart diseases. To conduct this analysis, we first reduce 
the three-dimensional reconstruction problem into several two-dimensional prob
lems by dividing the ventricle into a stack of parallel cross sections. Each two
dimensional cross section consists of one connected region of the left ventricle. 

SIC. 9.2 Applications 299 



During a cardiac catheterization, doctors inject a dye known as Roentgen contrast 
agent into the ventricle; by taking x-rays of the dye, they would like to determine 
what portion of the left ventricle is functioning properly (Le., permitting the flow of 
blood). Conventional biplane x-ray installations do not permit doctors to obtain a 
complete picture of the left ventricle; rather, these x-rays provide one-dimensional 
projections that record the total intensity of the dye along two axes (see Figure 9.2). 
The problem is to determine the distribution of the cloud of dye within the left 
ventricle and thus the shape of the functioning portion of the ventricle, assuming 
that the dye mixes completely with the blood and fills the portions that are functioning 
properly. 

X-ray ---. 
projection 

X-ray 
projection 

~ 

Cumulative 
intensity 

(a) 

CumuLative 
intensity 

Observable 

Observable 
intensities ~ 

0000000000000000 
000000 111 0004 
00000 006 

o 0 8 
8 
8 

o 0 8 
o 0 9 

1111111 0008 
0000000000000000 
0000000000000000 

intensities ---. 0 0 0 2 2 6 7 8 8 8 8 6 4 0 0 

(b) 

Figure 9.2 Using x-ray projections to measure a left ventricle. 

We can conceive of a cross section of the ventricle as a p x r binary matrix: 
a 1 in a position indicates that the corresponding segment allows blood to flow and 
a 0 indicates that it does not permit blood to flow. The angiocardiograms give the 
cumulative intensity of the contrast agent in two planes which we can translate into 
row and column sums of the binary matrix. The problem is then to construct the 
binary matrix given its row and column sums. This problem is a special case of the 
feasible flow problem that we discussed in Section 6.2. 

Typically, the number of feasible solutions for such problems are quite large; 
and these solutions might differ substantially. To constrain the feasible solutions, 
we might use certain facts from our experience that indicate that a solution is more 
likely to contain certain segments rather than others. Alternatively, we can use a 
priori information: for example, after some small time interval, the cross sections 
might resemble cross sections determined in a previous examination. Consequently, 
we might attach a probability pij that a solution will contain an element (i, j) of the 
binary matrix and might want to find a feasible solution with the largest possible 
cumulative probability. This problem is equivalent to a minimum cost flow problem. 

300 Minimum Cost Flows: Basic Algorithms Chap. 9 



Application 9.3 Racial Balancing of Schools 

In Application 1.10 in Section 1.3 we formulated the racial balancing of schools as 
a multicommodity flow problem. We now consider a related, yet important situation: 
seeking a racial balance of two ethnic communities (blacks and whites). In this case 
we show how to formulate the problem as a minimum cost flow problem. 

As in Application 1.10, suppose that a school district has S schools. For the 
purpose of this formulation, we divide the school district into L district locations 
and let hi and Wi denote the number of black and white students at location i. These 
locations might, for example, be census tracts, bus stops, or city blocks. The only 
restrictions on the locations is that they be finite in number and that there be a single 
distance measure dij that reasonably approximates the distance any student at lo
cation i must travel if he or she is assigned to school j. We make the reasonable 
assumption that we can compute the distances dij before assigning students to 
schools. School j can enroll Uj students. Finally, let p denote a lower bound and p 
denote an upper bound on the percentage of black students assigned to each school 
(we choose these numbers so that school j has same percentage of blacks as does 
the school district). The objective is to assign students to schools in a manner that 
maintains the stated racial balance and minimizes the total distance traveled by the 
students. 

We model this problem as a minimum cost flow problem. Figure 9.3 shows the 
minimum cost flow network for a three-location, two-school problem. Rather than 
describe the general model formally, we merely describe the model ingredients for 
this figure. In this formulation we model each location i as two nodes Ii and Ii and 
each school j as two nodes s; and sJ. rhe decision variables for this problem are 

Sec. 9.2 

Arc costs Arc lower and 
upper bounds 

~ 
Arc capacities 

1 

Figure 9.3 Network for the racial balancing of schools. 

Applications 301 



the number of black students assigned from location ito schoolj (which we represent 
by an arc from node Ii to node sJ) and the number of white students assigned from 
location ito schoolj (which we represent by an arc from node l'/ to node sJ). These 
arcs are uncapacitated and we set their per unit flow cost equal to dij. For each j, 
we connect the nodes sJ and sJ to the school node Sj. The flow on the arcs (sJ, Sj) 

and (sJ, Sj) denotes the total number of black and white students assigned to school 
j. Since each school must satisfy lower and upper bounds on the number of black 
students it enrolls, we set the lower and upper bounds of the arc (sJ, Sj) equal to 
(pujt jjUj). Finally, we must satisfy the constraint that school j enrolls at most Uj 

students. We incorporate this constraint in the model by introducing a sink node t 
and joining each school node j to node t by an arc of capacity Uj. As is easy to verify, 
this minimum cost flow problem correctly models the racial balancing application. 

Application 9.4 Optimal Loading of a Hopping 
Airplane 

A small commuter airline uses a plane, with a capacity to carry at most p passengers, 
on a "hopping flight," as shown in Figure 9.4(a). The hopping flight visits the cities 
1, 2, 3, ... , n, in a fixed sequence. The plane can pick up passengers at any node 
and drop them off at any other node. Let bij denote the number of passengers avail
able at node i who want to go to node j, and let f ij denote the fare per passenger 
from node ito nodej. The airline would like to determine the number of passengers 
that the plane should carry between the various origins to destinations in order to 
maximize the total fare per trip while never exceeding the plane capacity. 

302 

CD-..... ·0r----+·~ ......... ~ 
be;) b(j) 

(a) 

~I--_C-,<-ij _or_U~jj--.,;.~(j) 

o P~j7 
Capacity 

(b) 

Figure 9.4 Formulating the hopping plane flight problem as a minimum cost flow 
problem. 

Minimum Cost Flows: Basic Algorithms Chap. 9 



Figure 9.4(b) shows a minimum cost flow formulation of this hopping plane 
flight problem. The network contains data for only those arcs with nonzero costs 
and with finite capacities: Any arc without an associated cost has a zero cost; any 
arc without an associated capacity has an infinite capacity. Consider, for example, 
node I. Three types of passengers are available at node I, those whose destination 
is node 2, node 3, or node 4. We represent these three types of passengers by the 
nodes 1-2, 1-3, and 1-4 with supplies b 12 , b 13 , and b 14 • A passenger available at 
any such node, say 1-3, either boards the plane at its origin node by flowing through 
the arc 0-3, I), and thus incurring a cost of - f13 units, or never boards the plane 
which we represent by the flow through the arc (1-3, 3). In Exercise 9.13 we ask 
the reader to show that this formulation correctly models the hopping plane appli
cation. 

Application 9.~ Scheduling with Deferral Costs 

In some scheduling applications. jobs do not have any fixed completion times, but 
instead incur a deferral cost for delaying their completion. Some of these scheduling 
problems have the following characteristics: one of q identical processors (machines) 
needs to process each of p jobs. Each job j has a fixed processing time o.j that does 
not depend on which machine processes the job, or which jobs precede or follow 
the job. Job j also has a deferral cost Cj(T) , which we assume is a monotonically 
nondecreasing function of T, the completion time of the job. Figure 9.5(a) illustrates 
one such deferral cost function. We wish to find a schedule for the jobs, with com
pletion times denoted by Tl, T2 •••• , Tp , that minimizes the total deferral cost 
~-l Cj(Tj)' This scheduling problem is difficult if the jobs have different processing 
times, but can be modeled as a minimum cost flow problem for situations with 
uniform processing times (i.e., o.j = 0. for each j = I, ... ,p). 

i 
Deferral 
cost c, (T) 

Sec. 9.2 

Completion time T -.. 

(a) 

b(j) b(j) 

(Z)~--~S~;--~.~~ 

Figure 9.5 Formulating the scheduling problem with deferral costs. 

Applications 

-q 

-q 

-q 

303 



Since the deferral costs are monotonically nondecreasing with time, in some 
optimal schedule the machines will process the jobs one immediately after another 
(i.e., the machines incur no idle time). As a consequence, in some optimal schedule 
the completion of each job will be ko. for some constant k. The first job assigned to 
every machine will have a completion time of a units, the second job assigned to 
every machine will have a completion time of 20. units, and so on. This observation 
allows us to formulate the scheduling as a minimum cost flow problem in the network 
shown in Figure 9.5(b). 

Assume, for simplicity, that r = plq is an integer. This assumption implies that 
we will assign exactly r jobs to each machine. (There is no loss of generality in 
imposing this assumption because we can add dummy jobs so that plq becomes an 
'integer.) The network has p job nodes, 1, 2, ... , p, each with 1 unit of supply; it 
also has r position nodes, T, 2, ... , r, each with a demand of q units, indicating 
that the position has the capability to process q jobs. The flow on each arc (j, i) is 
1 or 0, depending on whether the schedule does or does not assign job j to the ith 
position of some machine. If we assign job j to the ith position on any machine, its 
completion time is io. and its deferral cost is ciio.). Therefore, arc (j, i) has a cost 
of cj(io.). Feasible schedules' correspond, in a one-to-one fashion, with feasible flows 
in the network and both have the same cost. Consequently, a minimum cost flow 
will prescribe a schedule with the least possible deferral cost. 

Application 9.6 Linear Programs with Consecutive 1 's 
in Columns 

Many linear programming problems of the form 

Minimize ex 

subject to 

.:Ax ~ b, 

x ~ 0, 

have a special structure that permits us to solve the problem more efficiently than 
general-purpose linear programs. Suppose that the p x q matrix constraint matrix 
.:A is a 0-1 matrix satisfying the property that all of the l' s in each column appear 
consecutively (i.e., with no intervening zeros). We show how to transform this prob
lem into a minimum cost flow problem. We illustrate our transformation using the 
following linear programming example: 

Minimize cx (9.2a) 

subject to 

(9.2b) 

x ~ o. (9.2c) 

304 Minimum Cost Flows: Basic Algorithms Chap. 9 



We first bring each constraint in (9.2b) into an equality form by introducing a 
"surplus" variable Yi for each row i in (9.2b). We then add a redundant row 0 . x + 
o . Y = 0 to the set of constraints. These changes produce the following equivalent 
formulation of the linear program: 

Minimize ex (9.3a) 

subject to 

[1 
1 0 1 1 -1 0 0 

-Il[: 1 [:!J 
1 0 0 1 0 -1 0 
1 1 0 0 0 0 -1 
1 1 0 0 0 0 0 
0 0 0 0 0 0 0 

(9.3b) 

x ~ O. (9.3c) 

We next perform the following elementary row operation for each i = p, p -
1, ... , 1, in the stated order: We subtract the ith constraint in (9.3b) from the 
(i + l)th constraint. These operations create the following equivalent linear program: 

Minimize ex (9.4a) 

subject to 

[J 
1 0 1 1 -1 0 0 

-!l[: 1 [=l} 
0 0 -1 0 1 -1 0 
0 1 0 -1 0 1 -1 
0 0 0 0 0 0 1 

-1 -1 0 0 0 0 0 

(9.4b) 

x ~ O. (9.4c) 

Notice that in this form the constraints (9.4b) clearly define the mass balance 
constraints of a minimum cost flow problem because each column contains one + 1 
and one - 1. Also notice that the entries in the right-hand-side vector sum to zero, 
which is a necessary condition for feasibility. Figure 9.6 gives the minimum cost 
flow problem corresponding to this linear program. 

Figure 9.6 Formulating a linear 
program with consecutive ones as a 
minimum cost flow problem. 

We have used a specific numerical example to illustrate the transformation of 
a linear program with consecutive l's into a minimum cost flow problem. It is easy 
to show that this transformation is valid in general as well. For a linear program 
with p rows and q columns, the corresponding network has p + 1 nodes, one cor
responding to each row, as well as one extra node that corresponds to an additional 

Sec. 9.2 Applications 305 



"null row." Each column .st1.k in the linear program that has consecutive l' s in rows 
ito j becomes an arc (i, j + 1) of cost Ck. Each surplus variable Yi becomes an arc 
(i + 1, i) of zero cost. Finally, the supply/demand of a node i is b(i) - b(i - 1). 

Despite the fact that linear programs with consecutive 1 's might appear to be 
very special, and even contrived, this class of problems arises in a surprising number 
of applications. We illustrate the range of applications with three practical examples. 
We leave the formulations of these applications as minimum cost flow problems as 
exercises to the reader. 

Optimal capacity scheduling. A vice-president of logistics of a large man
ufacturing firm must contract for d(i) units of warehousing capacity for the time 
periods i = 1, 2, ... , n. Let Cij denote the cost of acquiring 1 unit of capacity at 
the beginning of period i, which is available for possible use throughout periods i, 
i + 1, ... , j - 1 (assume that we relinquish this warehousing capacity at the 
beginning of period j). The vice~president wants to know how much capacity to 
acquire, at what times, and for how many subsequent periods, to meet the firm's 
requirements at the lowest possible cost. This optimization problem arises because 
of possible savings that the firm might accrue by undertaking long-term leasing con
tracts at favorable times, even though these commitments might create excess ca
pacity during some periods. 

Employment scheduling. The vice-president of human resources ofa large 
retail company must determine an employment policy that properly balances the 
cost of hiring, training, and releasing short-term employees, with the expense of 
having idle employees on the payroll for time periods when demand is low. Suppose 
that the company knows the minimum labor requirement dj for each period j = 
1, ... , n. Let Cij denote the cost of hiring someone at the beginning of period i and 
releasing him at the end of period j - 1. The vice-president would like to identify 
an employment policy that meets the labor requirements and minimizes the cost of 
hiring, training, and releasing employees. 

Equipment replacement. A job shop must periodically replace its capital 
equipment because of machine wear. As a machine ages, it breaks down more fre
quently and so becomes more expensive to operate. Furthermore, as a machine 
ages, its salvage value decreases. Let Cij denote the cost of buying a particularly 
important machine at the beginning of period i, plus the cost of operating the machine 
over the periods i, i + 1, ... ,j - 1, minus the salvage cost of the machine at the 
beginning of period j. The equipment replacement problem attempts to obtain a 
replacement plan that minimizes the total cost of buying, selling, and operating the 
machine over a planning horizon of n years, assuming that the job shop must have 
at least 1 unit of this machine in service at all times. 

9.3 OPT1MALITY CONDITIONS 

In our discussion of shortest path problems in Section 5.2, we saw that a set of 
distance labels d(i) defines shortest path distances from a specified node s to every 
other node in the network if and only if they represent distances along some paths 

306 Minimum Cost Flows: Basic Algorithms Chap. 9 



from node s and satisfy the following shortest path optimality conditions: 

d(j) :s d(i) + Cij for all (i, j) E A. (9.5) 

These optimality conditions are useful in several respects. First, they give us 
a simple validity check to see whether a given set of distance labels does indeed 
define shortest paths. Similarly, the optimality conditions provide us with a method 
for determining whether or not a given set of paths, one from node s to every other 
node in the network, constitutes a set of shortest paths from node s. We simply 
compute the lengths of these paths and see if these distances satisfy the optimality 
conditions. In both cases, the optimality conditions provide us with a "certificate" 
of optimality, that is, an assurance that a set of distance labels or a set of paths is 
optimal. One nice feature of the cettificate is its ease of use. We need not invoke 
any complex algorithm to certify that a solution is optimal; we simply check the 
optimality conditions. The optimality conditions are also valuable for other reasons; 
as we saw in Chapter 5, they can suggest algorithms for solving a shortest path 
problem: For example, the generic label-correcting algorithm uses the simple idea 
of repeatedly replacing d(j) by d(i) + Cij if d(j) > d(i) + cij for some arc (i, j). 
Finally, the optimality conditions provide us with a mechanism for establishing the 
validity of algorithms for the shortest path problem. To show that an algorithm 
correctly finds the desired shortest paths, we verify that the solutions they generate 
satisfy the optimality conditions. 

These various uses of the shortest path optimality conditions suggest that sim
ilar sets of conditions might be valuable for designing and analyzing algorithms for 
the minimum cost flow problem. Accordingly, rather than launching immediately 
into a discussion of algorithms for solving the minimum cost flow problem, we first 
pause to describe a few different optimality conditions for this problem. All the 
optimality conditions that we state have an intuitive network interpretation and are 
rather direct extensions of their shortest path counterparts. We will consider three 
different (but equivalent) optimality conditions: (1) negative cycle optimality con
ditions, (2) reduced cost optimality conditions, and (3) complementary slackness 
optimality conditions. 

Negative Cyole Optimality Conditions 

The negative cycle optimality conditions stated next are a direct consequence of the 
flow decomposition property stated in Theorem 3.5 and our definition of residual 
networks given at the end of Section 9.1. 

Theorem 9.1 (Negative Cycle Optimality Conditions). A feasible solution x* is 
an optimal solution of the minimum cost flow problem if and only if it satisfies the 
negative cycle optimality conditions: namely, the residual network G(x*) contains 
no negative cost (directed) cycle. 

Proof. Suppose that x is a feasible flow and that G(x) contains a negative cycle. 
Then x cannot be an optimal flow, since by augmenting positive flow along the cycle 
we can improve the objective function value. Therefore, if x* is an optimal flow, 
then G(x*) cannot contain a negative cycle. Now suppose that x* is a feasible flow 

Sec. 9.3 Optimality Conditions 307 



and that G(x*) contains no negative cycle. Let XO be an optimal flow and x* oF- xO. 
The augmenting cycle property stated in Theorem 3.7 shows that we can decompose 
the difference vector XO - x* into at most m augmenting cycles with respect to the 
flow x* and the sum of the costs of flows on these cycles equals CXO - cx*. Since 
the lengths of all the cycles in G(x*) are nonnegative, CXO - cx* 2: 0, or CXO 2: cx*. 
Moreover, since XO is an optimal flow, CXO ::; cx*. Thus cxo = cX*, and x* is also 
an optimal flow. This argument shows that if G(x*) contains no negative cycle, then 
x* must be optimal, and this conclusion completes the proof of the theorem .• 

Reduced Cost Optimality Conditions 

To develop our second and third optimality conditions, let us make one observation. 
First, note that we can write the shortest path optimality conditions in the following 
equivalent form: 

ci = cij + d(i) - d(j) 2: 0 for all arcs (i, j) E A. (9.6) 

This expression has the following interpretation: ci is an optimal "reduced cost" 
for arc (i, j) in the sense that it measures the cost of this arc relative to the shortest 
path distances d(i) and d(j). Notice that with respect to the optimal distances, every 
arc in the network has a nonnegative reduced cost. Moreover, since d(j) = d(i) + 
Cij, if arc (i, j) is on a shortest path connecting the source node s to any other node, 
the shortest path uses only zero reduced cost arcs. Consequently, once we know 
the optimal distances, the problem is very easy to solve: We simply find a path from 
node s to every other node that uses only arcs with zero reduced costs. This inter
pretation raises a natural question: Is there a similar set of conditions for more general 
minimum cost flow problems? 

Suppose that we associate a real number 7T(i), unrestricted in sign, with each 
node i E N. We refer to 7T(i) as the potential of node i. We show in Section 9.4 that 
7T(i) is the linear programming dual variable corresponding to the mass balance con
straint of node i. For a given set of node potentials 7T, we define the reduced cost 
of an arc (i, j) as clJ = cij - 7T(i) + 7T(j). These reduced costs are applicable to the 
residual network as well as the original network. We define the reduced costs in the 
residual network just as we did the costs, but now using clJ in place of cij' The 
following properties will prove to be useful in our subsequent developments in this 
and later chapters. 

Property 9.2 
(a) For any directed path P from node k to node I, LU,j)EP clJ = LU,j)EP cij -

7T(k) + 7T(l). 
(b) For any directed cycle W, LU,j)EW clJ = LU,j)EW Cij' 

The proof of this property is similar to that of Property 2.5. Notice that this 
property implies that the node potentials do not change the shortest path between 
any pair of nodes k and I, since the potentials increase the length of every path by 
a constant amount 7T(l) - 7T(k). This property also implies that if W is a negative 
cycle with respect to cij as arc costs, it is also a negative cycle with respect to clJ 

308 Minimum Cost Flows: Basic Algorithms Chap. 9 



as arc costs. We can now provide an alternative form of the negative cycle optimality 
conditions, stated in terms of the reduced costs of the arcs. 

Theorem 9.3 (Reduced Cost Optimality Conditions). A feasible solution x* is an 
optimal solution of the minimum cost flow problem if and only if some set of node 
potentials 'IT satisfy the following reduced cost optimality conditions: 

cij ;::: 0 for every arc (i, j) in G(x*). (9.7) 

Proof. We shall prove this result using Theorem 9.1. To show that the negative 
cycle optimality conditions is equivalent to the reduced cost optimality conditions, 
suppose that the. solution x* satisfies the latter conditions. Therefore, L(i,j)EW 

cij ;::: 0 for every directed cycle W in G(x*). Consequently, by Property 9.2(b), 
L(i,j)EW cij = LU,j)EW Cij ;::: 0, so G(x*) contains no negative cycle. 

To show the converse, assume that for the solution x*, G(x*) contains no 
negative cycle. Let dO denote the shortest path distances from node 1 to all other 
nodes in G(x*). Recall from Section 5.2 that if the network contains no negative 
cycle, the distance labels d(·) are well defined and satisfy the conditions d(j) :S 

dU) + cij for all U, j) in G(x*). We can restate these inequalities as cij - (- dU» + 
( - d(j» ;::: 0, or cij ;::: 0 if we define 'IT = - d. Consequently, the solution x* satisfies 
the reduced cost optimality conditions. • 

In the preceding theorem we characterized an optimal flow x as a flow that 
satisfied the conditions cij ;::: for all U, j) in G(x) for some set of node potentials 'IT. 
In the same fashion, we could define "optimal node potentials" as a set of node 
potentials 'IT that satisfy the conditions cij ;::: 0 for all (i, j) in G(x) for some feasible 
flow x. 

We might note that the reduced cost optimality conditions have a convenient 
economic interpretation. Suppose that we interpret Cij as the cost of transporting 1 
unit of a commodity from node i to node j through the arc U, j), and we interpret 
flU) = - 'IT(i) as the cost of obtaining a unit of this commodity at node i. Then 
c ij + fl( i) is the cost of the commodity at node j if we obtain it at node i and transport 
it to nodej. The reduced cost optimality condition, Cij - 'lTU) + 'IT(j) ;::: 0, or equiv
alently, fl(j) :S Cij + fl(i), states that the cost of obtaining the commodity at node 
j is no more than the cost of the commodity if we obtain it at node i and incur the 
transportation cost in sending it from node i toj. The cost at nodej might be smaller 
than Cij + flU) because there might be a more cost-effective way to transport the 
commodity to node j via other nodes. 

Complementary Slackness Optimality Conditions 

Both Theorems 9.1 and 9.3 provide means for establishing optimality of solutions 
to the minimum cost flow problem by formulating conditions imposed on the residual 
network; we shall now restate these conditions in terms of the original network. 

Theorem 9.4 (Complementary Slackness Optimality Conditions). A feasible so
lution x* is an optimal solution of the minimum cost flow problem if and only if for 
some set of node potentials 'IT, the reduced costs andflow values satisfy thefollowing 
complementary slackness optimality conditions for every arc U, j) E A: 

Sec. 9.3 Optimality Conditions 309 



If eij > 0, then xt = o. 
If 0 < Xu < Uij, then eij = o. 
If eij < 0, then xt = Uij. 

(9.8a) 

(9.8b) 

(9.8c) 

Proof. We show that the reduced cost optimality conditions are equivalent to 
(9.8). To establish this result, we first prove that if the node potentials 1T and the 
flow vector X satisfy the reduced cost optimality conditions, then they must satisfy 
(9.8). Consider three possibilities for any arc (i, j) EA. 

Case 1. If e'{f > 0, the residual network cannot contain the arc (j, i) because 
eX = -eij < 0 for that arc, contradicting (9.7). Therefore, Xu = O. 

Case 2. If 0 < xt < Uij, the residual network contains both the arcs (i, j) and 
(j, i). The reduced cost optimality conditions imply that eij ;::: 0 and eX ;::: O. But 
since eX = - eij, these inequalities imply that eij = eX = o. 

Case 3. If eij < 0, the residual network cannot contain the arc (i, j) because 
eij < 0 for that arc, contradicting (9.7). Therefore, xt = Uij. 

We have thus shown that if the node potentials 1T and the flow vector X satisfy 
the reduced cost optimality conditions, they also satisfy the complementary slack
ness optimality conditions. In Exercise 9.28 we ask the reader to prove the converse 
result: If the pair (x, 1T) satisfies the complementary slackness optimality conditions, 
it also satisfies the reduced cost optimality conditions. . • 

Those readers familiar with linear programming might notice that these con
ditions are the complementary slackness conditions for a linear programming prob
lem whose variables have upper bounds; this association explains the choice of the 
name complementary slackness. 

9.4 MINIMUM COST FLOW DUALITY 

When we were introducing shortest path problems with nonnegative arc costs in 
Chapter 4, we considered a string model with knots representing the nodes of the 
network and with a string of length eij connecting the ith and jth knots. To solve 
the shortest path problem between a designated source node s and sink node t, we 
hold the string at the knots sand t and pull them as far apart as possible. As we 
noted in our previous discussion, if d(i) denotes the distance from the so.urce node 
s to node i along the shortest path and nodes i andj are any two nodes on this path, 
then d(i) + eij;::: d(j). The shortest path distances might satisfy this inequality as 
a strict inequality if the string from node i to node j is not taut. In this string solution, 
since we are pulling the string apart as far as possible, we are obtaining the optimal 
shortest path distance between nodes sand t by solving a maximization problem. 
We could cast this problem formally as the following maximization problem: 

Maximize d(t) - d(s) (9.9a) 

subject to 

d(j) - d(i) ::5 eij for all (i, j) EA. (9.9b) 

310 Minimum Cost Flows: Basic Algorithms Chap. 9 



In this formulation, d(s) = O. As we have noted in Chapter 4, if d is any vector 
of distance labels satisfying the constraints of this problem and the path P defined 
ass - i1 - i2 - ... ik - t is any path from node s to node t, then 

dUl) - des) ::S Csi) 

d(i2) - d(il) ::S Cili2 

d(t) - dUk) ::S Cikt, 

so by adding these inequalities and using the fact that des) = 0, we see that 

This result shows that if d is any feasible vector to the optimization problem 
(9.9), then d(t) is a lower bound on the length of any path from node s to node t 
and therefore is a lower bound on the shortest distance between these nodes. As 
we see from the string solution, if we choose the distance labels d(·) appropriately 
(as the distances obtained from the string solution), d(t) equals the shortest path 
distance. 

This discussion shows the connection between the shortest path problem and 
a related maximization problem (9.9). In our discussion of the maximum flow prob
lem, we saw a similar relationship, namely, the max-flow min-cut theorem, which 
tells us that associated with every maximum flow problem is an associated min
imization problem. Moreover, since the maximum flow equals the minimum cut, the 
optimal value of these two associated problems is the same. These two results'are 
special cases of a more general property that applies to any minimum cost flow 
problem, and that we now establish. 

For every linear programming problem, which we subsequently refer to as a 
primal problem, we can associate another intimately related linear programming 
problem, called its dual. For example, the objective function value of any feasible 
solution of the dual is less than or equal to the objective function of any feasible 
solution of the primal. Furthermore, the maximum objective function value of the 
dual equals the minimum objective function of the primaL This duality theory is 
fundamental to an understanding of the theory of linear programming. In this section 
we state and prove these duality theory results for the minimum cost flow problem. 

While forming the dual of a (primal) linear programming problem, we associate 
a dual variable with every constraint of the primal except for the nonnegativity 
restriction on arc flows. For the minimum cost flow problem stated in (9.1), we 
associate the variable 7r(i) with the mass balance constraint of node i and the variable 
aij with the capacity constraint of arc (i, j). In terms of these variables, the dual 
minimum cost flow problem can be stated as follows: 

Maximize w(7r, a) = 2: b(i)7r(i) - 2: uijaij (9. lOa) 
iEN (i,j)EA 

subject to 
7r( i) - 7r(j) - aij ::S C ij for all (i, j) E A, (9. lOb) 

for all (i,j) E A and 7r(j) unrestricted for allj E N. (9.10c) 

Sec. 9.4 Minimum Cost Flow Duality 311 



Note that the shortest path dual problem (9.9) is a special case ofthis model: 
For the shortest path problem, b(s) = 1, b(t) = -1, and b(i) = 0 otherwise. Also, 
since the shortest path problem contains no arc capacities, we can eliminate the aij 
variables. Therefore, if we let d(i) = - 7T(i), the dual minimum cost flow problem 
(9.10) becomes the shortest path dual problem (9.9). 

Our first duality result for the general minimum cost flow problem is known 
as the wedk duality theorem. 

Theorem 9.5 (Weak Duality Theorem). Let z(x) denote the objective function 
value of some feasible solution x of the minimum cost flow problem and let w( 7T, a) 
denote the objective function value of some feasible solution (7T, a) of its dual. Then 
W(7T, a) ::5 z(x). 

Proof We multiply both sides of (9 . lOb ) by Xij and sum these weighted in
equalities for all (i, j) E A, obtaining 

L (7T(i) - 7T(j))Xij - L aijxij::5 L cijxij. (9.11) 
(i,j)EA (i,j)EA (i,j)EA 

Notice that cx - c"'x = L(i,j)EA (7T(i) - 7T(j))Xij [because cij = Cij - 7T(i) + 
7T(j)]. Next notice that Property 2.4 in Section 2.4 implies that cx - c"'x equals 
LiEN b(i)7T(i). Therefore, the first term on the left-hand side of (9.11) equals 
LiEN b(i)7T(i). Next notice that replacing Xij in the second term on the left-hand side 
of (9.11) by Uij preserves the inequality because Xij ::5 Uij and au ;::: O. Consequently, 

L b(i)7T(i) - L aijuij::5 L CijXij. (9.12) 
iEn (i,j)EA (i,j)EA 

Now notice that the left-hand side of (9.12) is the dual objective W(7T, a) 
and the right-hand side is the primal objective, so we have established the 
lemma. • 

The weak duality theorem implies that the objective function value of any dual 
feasible solution is a lower bound on the 6bjectiv~ function value of any primal 
feasible solution. One consequence of this result is immediate: If some dual solution 
(7T, a) and a primal solution x have the same objective function value, (7T, a) must 
be an optimal solution of the dual problem and x must b.¢ al}. qptimal solution of the 
primal problem (why?). Can we always find such solutions? The strong duality theo-
rem, to be proved next, answers this question in the affirmative. • 

We first eliminate the dual variables aij's from ~!1e dual formation (9.10) using 
some properties of the optimal solution. Defining the reduced cost, as before, as 
cij = Cij - 7T(i) + 7T(j), we can rewrite the constraint (9. lOb) as 

aij;::: -cij. (9.13) 

The coefficient associated with the variable aij in the dual objective (9. lOa) is 
-Uij, and we wish to maximize the objective function value. Consequently, in any 
optimal solution we would assign the smallest possible value to aij. This observation, 
in view of (9.lOc) and (9.13), implies that 

aij = max{O, - cij}. (9.14) 

312 Minimum Cost Flows: Basic Algorithms Chap. 9 



We have thus shown that if we know optimal values for the dual variables 7r(i), 
we can compute the optimal values of the variables aij using (9.14). This construction 
permits us to eliminate the variables aij from the dual formulation. Substituting (9.14) 
in (9. lOa) yields . 

Maximize w( 7r) = L b(i)'Tr(i) - L max{O, - cij}Uij. (9.15) 
iEN (i,j)EA 

The dual problem reduces to finding a vector 7r that optimizes (9.15). Weare 
now in a position to prove the strong duality theorem. (Recall that our blanket 
assumption, Assumption 9.3, implies that the minimum cost flow problem always 
has a solution.) , 

Theorem 9.6 (Strong Duality Theorem). For any choice of problem data, the 
minimum cost flow problem always has a solution x* and the dual minimum cost 
flow problem has a solution 7r satisfying the property that z(x*) = w(7r). 

Proof. We prove this theorem using the complementary slackness optimality 
conditions (9.8). Let x* be an optimal solution of the minimum cost flow problem. 
Theorem 9.4 implies that x* together with some vector 7r of node potentials satisfy 
the complementary slackness optimality conditions. We claim that this solution sat
isfies the condition 

- cijxij = max{O, - cij}Uij for every arc (i, j) EA. (9.16) 

To establish this result, consider the following three cases: (1) cij > 0, (2) 
cij = 0, and (3) cij < 0. The complementary slackness conditions (9.8) imply that 
in the first two cases, both the left -hand side and right -hand side of (9.16) are zero, 
and in the third case both sides equal - cijUij. 

Next consider the dual objective (9.15). Substituting (9.16) in (9.15) yields 

w(7r) = L b(i)7r(i) + L cijxt = L Cijxt = z(x*). 
iEN (i,j)EA (i,j)EA 

The second last inequality follows from Property 2.4. This result is the conclusion 
of the theorem. • 

The proof of this theorem shows that any optimal solution x* of the minimum 
cost flow problem always· has an associated dual solution 7r satisfying the condition 
z(x*) = w(7r). Needless to say, the solution 7r is an optimal solution of the dual 
minimum cost flow problem since any larger value of the dual objective would con
tradict the weak duality theorem stated in Theorem 9.5. 

In Theorem 9.6 we showed that the complementary slackness optimality con
ditions implies strong duality. We next prove the converse result: namely, that strong 
duality implies Jhe complementary slackness optimality conditions. 

Theorem 9.7. If x is a feasible flow and 7r is an (arbitrary) vector satisfying 
the property that z(x) = w(7r), then the pair (x, 7r) satisfies the complementary 
slackness opti;nality conditions. 

Sec. 9.4 Minimum Cost Flow Duality 313 



Proof. Since z(x) = W(1T), 

L CijXij = L b(i)1T(i) 
(i,j)EA iEN 

L max{O, - cij}Uij. 
(i,j)EA 

(9.17) 

Substituting the result of Property 2.4 in (9.17) shows that 

L max{O, - cij}Uij = L - cijxij. (9.18) 
(i,j)EA (i,j)EA 

Now observe that both the sides have m terms, and each term on the left-hand 
side is nonnegative and its value is an upper bound on the corresponding term on 
the right-hand side (because max{O, -cij} 2:: -cij and Uij 2:: xij)' Therefore, the two 
sides can be equal only when 

max{O, - cij}Uij = - cijXij for every arc (i, j) EA. (9.19) 

Now we consider three cases. 

(a) cij> O. In this case, the left-hand side of (9.19) is zero, and the right-hand 
side can be zero only if Xij = O. This conclusion establishes (9.8a). 

(b) 0 < Xij < Uij. In this case, cij = 0; otherwise, the right-hand side of (9.19) 
is negative. This conclusion establishes (9.8b). 

(c) c; < O. In this case, the left-hand side of (9.19) is - cijUij and therefore, 
Xij = Uij. This conclusion establishes (9.8c). 

These results complete the proof of the theorem. • 
The following result is an easy consequence of Theorems 9.6 and 9.7. 

Property 9.S. If X* is an optimal solution of the minimum cost flow problem, 
and 1T is an optimal solution of the dual minimum cost flow problem, the pair 
(x*, 1T) satisfies the complementary slackness optimality conditions (9.8). 

Proof Theorem 9.6 implies that z(x*) 
the pair (x*, 1T) satisfies (9.8). 

W(1T) and Theorem 9.7 implies that 

• 
One important implication of the minimum cost flow duality is that it permits 

us to solve linear programs that have at most one + 1 and at most one - 1 in each 
row as minimum cost flow problems. Linear programs with this special structure 
arise in a variety of situations; Applications 19.10, 19.11, 19.18, and Exlercises 9.9 
and 19.18 provide a few examples. 

Before examining the situation with at most one + 1 and at most one - 1 in 
each row, let us consider a linear program that has at most one + 1 and at most one 
- 1 in each column. We assume, without any loss of generality, that each constraint 
in the linear program is in equality form, because we can always bring the linear 
program into this form by introducing slack or surplus variables. (Observe that col
umn corresponding the slack or surplus variables will also have one + 1 or one -1.) 
If each column has exactly one + 1 and exactly one - 1, clearly the linear program 
is a minimum cost flow problem. Otherwise, we can augment this linear program 
by adding a redundant equality constraint which is the negative of the sum of all the 

314 Minimum Cost Flows: Basic Algorithms Chap. 9 



original constraints. (The new constraint corresponds to a new node that acts as a 
repository to deposit any excess supply or a source to fulfill any deficit demand from 
the other nodes.) The augmented linear program contains exactly one + 1 and exactly 
one -1 in each column and the right-hand side values sum to zero. This model is 
clearly an instance of the minimum cost flow problem. 

We now return to linear programs (in maximization form) that have at most 
one + 1 and at most one - 1 in each row. We allow a constraint in this linear program 
to be in any form: equality or inequality. The dual of this linear program contains 
at most one + 1 and at most one - 1 in each column, which we have already shown 
to be equivalent to a minimum cost flow problem. The variables in the dual problem 
will be nonnegative, nonpositive, or unrestricted, depending on whether they cor
respond to a less than or equal to, a greater than or equal to, or an equality constraint 
in the primal. A nonnegative variable xij defines a directed arc (i, j) in the resulting 
minimum cost flow formulation. To model any unrestricted variable xij, we replace 
it with two nonnegative variables, which is equivalent to introducing two arcs (i, j) 
and (j, i) of the same cost and capacity as this variable. The following theorem 
summarizes the preceding discussion. 

Theorem 9.9. Any linear program that contains (a) at most one + 1 and at 
most one -1 in each column, or (b) at most one + 1 and at most one -1 in each 
row, can be transformed into a minimum cost flow problem. • 

Minimum cost flow duality has several important implications. Since almost 
all algorithms for solving the primal problem also generate optimal node potentials 
7T(i) and the variables aij, solving the primal problem almost always solves both the 
primal and dual problems. Similarly, solving the dual problem typically solves the 
primal problem as well. Most algorithms for solving network flow problems explicitly 
or implicitly use properties of dual variables (since they are the node potentials that 
we have used at every turn) and of the dual linear program. In particular, the dual 
problem provides us with a certificate that if we can find a feasible dual solution 
that has the same objective function value as a given primal soiution, we know from 
the strong duality theorem that the primal solution must be optimal, without making 
additional calculations and without considering other potentially optimal primal so
lutions. This certification procedure is a very powerful idea in network optimization, 
and in optimization in general. We have used it at many points in our previous 
developments and will see it many times again. 

. For network flow problems, the primal and dual problems are closely related 
via the basic shortest path and maximum flow problems that we have studied in 
previous chapters. In fact, these relationships help us to understand the fundamental 
importance of these two core problems to network flow theory and algorithms. We 
develop these relationships in the next section. 

9.5 RELATING OPTIMAL FLOWS TO OPTIMAL NODE 
POTENTIALS 

We next address the following questions: (1) Given an optimal flow, how might we 
obtain optimal node potentials? Conversely, (2) given optimal node potentials, how 
might we obtain an optimal flow? We show how to solve these problems by solving 

Sec. 9.5 Relating Optimal Flows to Optiinal Node Potentials 315 



either a shortest path problem or a maximum flow problem. These results point out 
an interesting relationship between the minimum cost flow problem and the maxi
mum flow and shortest path problems. 

Computing Optimal Node Potentials 

We show that given an optimal flow x*, we can obtain optimal node potentials by 
solving a shortest path problem (with possibly negative arc lengths). Let G(x*) 
denote the residual network with respect to the flow x*. Clearly, G(x*) does not 
contain any negative cost cycle, for otherwise we would contradict the optimality 
of the solution x*. Let d(·) denote the shortest path distances from node 1 to the 
rest of the nodes in the residual network if we use Cij as arc lengths. The distances 
dO are well defined because the residual network does not contain a negative cycle. 
The shortest path optimality conditions (5.2) imply that 

d(j) ::5 d(i) + Cij for all (i, j) in G(x*). 

Let 1T = - d. Then we can restate (9.20) as 

cij = Cij - 1T(i) + 1T(j) 2:: 0 for all (i, j) in G(x*). 

Theorem 9.3 shows that 1T constitutes an optimal set of node potentials. 

Obtaining Optimal Flows 

(9.20) 

. We now show that given a set of optimal node potentials 1T, we can obtain an optimal 
solution x* by solving a maximum flow problem. First, we compute the reduced 
cost cij of every arc (i, j) E A and then we examine all arcs one by one. We classify 
each arc (i, j) in one of the following ways and use these categorizations of the arcs 
to define a maximum flow problem. 

Case 1: cij > 0 
The condition (9.8a) implies that xt must be zero. We enforce this constraint 

by setting xt = 0 and deleting arc (i, j) from the network. 

Case 2: cij < 0 
The condition (9.8c) implies that xu = uij. We enforce this constraint by setting 

xt = Uij and deleting arc (i, j) from the network. Since we sent uij units of flow on 
arc (i, j), we must decrease b(i) by Uij and increase b(j) by uij. 

Case 3: cij = 0 
In this case we allow the flow on arc (i, j) to assume any value between 0 and 

Uij. 

Let G' = (N, A') denote the resulting network and let b' denote the modified 
supplies/demands of the nodes. Now the problem reduces to finding a feasible flow 
in the network G' that meets the modified supplies/demands of the nodes. As noted 
in Section 6.2, we can find such a flow by solving a maximum flow problem defined 
as follows. We introduce a source node s, and a sink node t. For each node i with 

316 Minimum Cost Flows: Basic Algorithms Chap. 9 



b'U) > 0, we add an arc (s, i) with capacity b'U) and for each node i with b'U) < 
0, we add an arc U, t) with capacity - b' U). We now solve a maximum flow problem 
from node s to t in the transformed network obtaining a maximum flow x*. The 
solution xt for all (i, j) E A is an optimal flow for the minimum cost flow problem 
in G. 

9.6 CYCLE-CANCELING ALGORITHM AND THE 
INTEGRALITY PROPERTY 

The negative cycle optimality conditions suggests one simple algorithmic approach 
for solving the minimum cost flow problem, which we call the cycle-canceling al
gorithm. This algorithm maintains a feasible solution and at every iteration attempts 
to improve its objective function value. The algorithm first establishes a feasible 
flow x in the network by solving a maximum flow problem (see Section 6.2). Then 
it iteratively finds negative cost-directed cycles in the residual network and augments 
flows on these cycles. The algorithm terminates when the residual network contains 
no negative cost-directed cycle. Theorem 9.1 implies that when the algorithm ter
minates, it has found a minimum cost flow. Figure 9.7 specifies this generic version 
of the cycle-canceling algorithm. 

algorithm cycle-canceling; 
begin 

establish a feasible flow x in the network; 
while G(x) contain!> a negative cycle do 
begin 

use some algorithm to identify a negative cycle W; 
8 : = min{rij : (i, j) E W}; 
augment 8 units of flow in the cycle Wand update G(x); 

end; 
end; Figure 9.7 Cycle canceling algorithm. 

We use the example shown in Figure 9.8(a) to illustrate the cycle-canceling 
algorithm. (The reader might notice that our example does not satisfy Assumption 
9.4; we violate this assumption so that the network is simpler to analyze.) Figure 
9.8(a) depicts a feasible flow in the network and Figure 9.8(b) gives the corresponding 
residual network. Suppose that the algorithm first selects the cycle 4-2-3-4 whose 
cost is - 1. The residual capacity of this cycle is 2. The algorithm augments 2 units 
of flow along this cycle. Figure 9.8(c) shows the modified residual network. In the 
next iteration, suppose that the algorithm selects the cycle 4-2-1-3-4 whose cost 
is -2. The algorithm sends 1 unit of flow along this cycle. Figure 9.8(d) depicts the 
updated residual network. Since this residual network contains no negative cycle, 
the algorithm terminates. 

In Chapter 5 we discussed several algorithms for identifying a negative cycle 
if one exists. One algorithm for identifying a negative cycle is the FIFO label
correcting algorithm for the shortest path problem described in Section 5.4; this 
algorithm requires O(nm) time. We describe other algorithms for detecting negative 
cycles in Sections 11.7 and 12.7. 

A by-product of the cycle-canceling algorithm is the following important result. 

Sec. 9.6 Cycle-Canceling Algorithm and the Integrality Property 317 



b(l) = 4 

b(2) =0 

b(3) = 0 

(a) 

(c) 

b(4) =-4 

(b) 

(d) 

Figure 9.8 Illustrating the cycle canceling algorithm: (a) network example with a 
feasible flow x; (b) residual network G(x); (c) residual network after augmenting 2 
units along the cycle 4-2-3-4; (d) residual network after augmenting I unit along the 
cycle 4-2-1-3-4. 

Theorem 9.10 (Integrality Property). If all arc capacities and supplies/demands 
of nodes are integer, the minimum costflow problem always has an integer minimum 
cost flow. 

Proof. We show this result by performing induction on the number of iterations. 
The algorithm first establishes a feasible flow in the network by solving a maximum 
flow problem. By Theorem 6.5 the problem has an integer feasible flow and we 
assume that the maximum flow algorithm finds an integer solution since all arc 
capacities in the network are integer and the initial residual capacities are also in
teger. The flow augmented by the cycle-canceling algorithm in any iteration equals 
the minimum residual capacity in the cycle canceled, which by the inductive hy
pothesis is integer. Therefore the modified residual capacities in the next iteration 
will again be integer. This conclusion implies the assertion of the theorem. • 

Let us now consider the number of iterations that the algorithm performs. For 
the minimum cost flow problem, mCU is an upper bound on the initial flow cost 

318 Minimum Cost Flows: Basic Algorithms Chap. 9 



[since Cij ::5 C and Xij ::5 U for all (i, j) E A] and - mCU is a lower bound on the 
optimal flow cost [since Cij ;::: - C and Xij ::5 U for all (i, j) E A]. Each iteration of 
the cycle-canceling algorithm changes the objective function value by an amount 
(L(i,j)EW cij)8, which is strictly negative. Since we are assuming that all the data of 
the problem are integral, the algorithm terminates within O(mCU) iterations and 
runs in O(nm2 CU) time. 

The generic version of the cycle-canceling algorithm does not specify the order 
for selecting negative cycles from the network. Different rules for selecting negative 
cycles produce different versions of the algorithm, each with different worse-case 
and theoretical behavior. The network simplex algorithm, which is widely considered 
to be one of the fastest algorithms for solving the minimum cost flow problem in 
practice, is a particular version of the cycle-canceling algorithm. The network sim
plex algorithm maintains information (a spanning tree solution and node potentials) 
that enables it to identify a negative cost cycle in O(m) time. However, due to 
degeneracy, the algorithm cannot necessarily send a positive amount of flow along 
this cycle. We discuss these issues in Chapter 11, where we consider the network 
simplex algorithm in more detail. The most general implementation of the network 
simplex algorithm does not run in polynomial time. The following two versions of 
the cycle-canceling algorithm are, however, polynomial-time implementations. 

Augmenting flow in a negative cycle with maximum improvement. 
Let x be any feasible flow and let X* be an optimal flow. The improvement in the 

objective function value due to an augmentation along a cycle W is 
-(L(i,j)EW cd (min{rij : (i, j) E W}). We observed in the proof of Theorem).7 
in Section 3.5 that X* equals x plus the flow on at most m augmenting cycles with 
respect to x, and improvements in cost due to flow augmentations on these aug
menting cycles sum to cx - cx*. Consequently, at least one of these augmenting 
cycles with respect to x must decrease the objective function value by at least 
(cx - cx*)/m. Consequently, if the algorithm always augments flow along a cycle 
giving the maximum possible improvement, then Theorem 3.1 implies that the 
method would obtain an optimal flow within O(m 10g(mCU)) iterations. Finding a 
maximum improvement cycle is difficult (i.e., it is a XQ/l-complete problem), but a 
modest variation of this approach yields a polynomial-time algorithm for the mini
mum cost flow problem. We provide a reference for this algorithm in the reference 
notes. 

Augmenting flow along a negative cycle with minimum mean cost. 
We define the mean cost of a cycle as its cost divided by the number of arcs it 

contains. A minimum mean cycle is a cycle whose mean cost is as small as possible. 
It is possible to identify a minimum mean cycle in O(nm) or O(Vn m 10g(nC)) time 
(see the reference notes of Chapter 5). Researchers have shown that if the cycle
canceling algorithm always augments flow along a minimum mean cycle, it performs 
O(min{nm 10g(nC), nm2 log n}) iterations. We describe this algorithm in Section 
10.5. 

Sec. 9.6 Cycle-Canceling Algorithm and the Integrality Property 319 



9.7 SUCCESSIVE SHORTEST PATH ALGORITHM 

The cycle-canceling algorithm maintains feasibility of the solution at every step and 
attempts to achieve optimality. In contrast, the successive shortest path algorithm 
maintains optimality of the solution (as defined in Theorem 9.3) at every step and 
strives to attain feasibility. It maintains a solution x that satisfies the nonnegativity 
and capacity constraints, but violates the mass balance constraints of the nodes. At 
each step, the algorithm selects a node s with excess supply (Le., supply not yet 
sent to some demand node) and a node t with unfulfilled demand and sends flow 
from s to t along a shortest path in the residual network. The algorithm terminates 
when the current solution satisfies all the mass balance constraints. 

To describe this algorithm as well as several later developments, we first in
troduce the concept of pse udo./low s. A pseudo./low is a function x: A -i> R + satisfying 
only the capacity and nonnegativity constraints; it need not satisfy the mass balance 
constraints. For any pseudoflow x, we define the imbalance of node i as 

e(i) = b(i) + ~ Xji - ~ xij for all i E N. 
{j:(j.i)EA} {j:(i.j)EA} 

If e(i) > 0 for some node i, we refer to e(i) as the excess of node i; if e(i) < 
0, we call - e(i) the node's deficit. We refer to a node i with e(i) = 0 as balanced. 
Let E and D denote the sets of excess and deficit nodes in the network. Notice that 
~iEN e(i) = ~iEN b(i) = 0, and hence ~iEE e(i) = - ~iED e(i). Consequently, 
if the network contains an excess node, it must also contain a deficit node. The 
residual network corresponding to a pseudoflow is defined in the same way that we 
define the residual network for a flow. 

U sing the concept of pseudoflow and the reduced cost optimality conditions 
specified in Theorem 9.3, we next prove some results that we will use extensively 
in this and the following chapters. 

Lemma 9.11. Suppose that a pseudo./low (or a./low) x satisfies the reduced 
cost optimality conditions with respect to some node potentials 1T. Let the vector d 
represent the shortest path distances from some node s to all other nodes in the 
residual network G(x) with cij as the length of an arc (i, j). Then the following 
properties are valid: 

(a) The pseudo./low x also satisfies the reduced cost optimality condi~ions with re
spect to the node potentials 1T' = 1T - d. 

(b) The reduced costs clY are zero for all arcs (i, j) in a shortest path from node s 
to every other node. 

Proof Since x satisfies the reduced cost optimality conditions with respect to 
1T, cij 2:: 0 for every arc (i, j) in G(x). Furthermore, since the vector d represents 
shortest path distances with cij as arc lengths, it satisfies the shortest path optimality 
conditions, that is, 

d(j) :5 d(i) + cij for all (i, j) in G(x). (9.21) 

Substituting cij = cij - 1T(i) + 1T(j) in (9.21), we obtain d(j) :5 d(i) + Cij 
:- 1T(i) + 1T(j). Alternatively, Cij - (1T(i) - d(i» + (1T(j) - d(j» 2:: 0, or cij' 2:: O. 
This conclusion establishes part (a) of the lemma. 

320 Minimum Cost Flows: Basic Algorithms Chap. 9 



Consider next a shortest path from node s to some node I. For each arc (i, j) 
in this path, d(j) = d(i) + c7J. Substituting c7J = Clf - 7r(i) + 7r(j) in this equation, 
we obtain c7J' = o. This conclusion establishes part (b) of the lemma. • 

The following result is an immediate corollary of the preceding lemma. 

Lemma 9.12. Suppose that a pseudoflow (or a flow) x satisfies the reduced 
cost optimality conditions and we obtain x' from x by sending flow along a shortest 
path from node s to some other node k; then x' also satisfies the reduced cost 
optimality conditions. 

Proof Define the potentials 7r and 7r ' as in Lem~a 9.11. The proof of Lemma 
9.11 implies that for every arc (i, j) in the shortest path P from node s to the node 
k, c7J' = o. Augmenting flow on any such arc might add its reversal (j, i) to the 
residual network. But since cij'= 0 for each arc (i, jY E P, cJf' = 0 and the arc 
(j, i) also satisfies the reduced cost optimality conditions. These results establish 
the lemma. • 

We are now in a position to describe the successive shortest path algorithm. 
The node potentials playa very important role in this algorithm. Besides using them 
to prove the correctness of the algorithm, we use them to maintain nonnegative arc 
lengths so that we can solve the shortest path problem more efficiently. Figure 9.9 
gives a formal statement of the successive shortest path atgorithm. 

We illustrate the successive shortest path algorithm on the same numerical 
example we used to illustrate the cycle canceling algorithm. Figure 9.1O(a) shows 
the initial residual network. Initially, E = {I} and D = {4}. Therefore, in the'first 
iteration, s = 1 and t = 4. The shortest path distances d (with respect to the reduced 
costs) are d = (0, 2, 2, 3) and the shortest path from node 1 to node 4 is 1-3-4. 
Figure 9.10(b) shows the updated node potentials and reduced costs, and Figure 
9.10(c) shows the solution after we have augmented min{e(1),-e(4), r13, r34} = 
min{4, 4, 2, 5} = 2 units of flow along the path 1-3-4. In the second iteration, k = 

Sec. 9.7 

algorithm successive shortest path; 
begin 

x: = 0 and 'IT : = 0; 
e(i) : = b(i) for all i E N; 
initialize the sets E: = {i : e(i) > O} and D : = {i : e(i) < O}; 
while E¥ 8do 
begin 

select a node k E E and a node 1 E D; 
determine shortest path distances d(j) from node s to all 

other nodes in G(x) with respect to the reduced costs c1J; 
let P denote a shortest path from node k to node I; 
update 'IT : = 'IT- d; 
1) : = min[e(k). - e(l). min{rij : (i, j) E P}]; 
augment 1) units of flow along the path P; 
update x, G(x), E, D, and the reduced costs; 

end; 
end; 

Figure 9.9 Successive shortest path algorithm, 

Successive Shortest Path Algorithm 321 



e(l) = 4 
'!T(l) = 0 

e(l) = 2 
'!T(l) = 0 

e(2) = 0 
'!T(2) =-2 

e(3) =0 
'!T(3) =-2 

eel) =4 
'!T(l) = 0 

(b) 

e(2) = 0 
'!T(2) =-2 

e(3) = 0 
'!T(3) =-3 

(d) 

~~ ____ ~_~_r_ij) ____ •• I~ 

e(2) =0 
'!T(2) = 0 

e(3) = 0 
'!T(3) = 0 

(a) 

e(4) =-4 
'!T(4) =-3 

e(4) =-2 
'!T(4) =-4 

e(l) = 2 
'!T(l) = 0 

eel) = 0 
'!T(l) = 0 

e(4) =-4 
'!T(4) = 0 

e(2) = 0 
'!T(2) =-2 

e(3) = 0 
'!T(3) =-2 

(c) 

e(2) = 0 
'!T(2) =-2 

e(3) = 0 
'!T(3) =-3 

(e) 

Figure 9.10 Illustrating the successive shortest path algorithm: (a) initial residual 
network for x = 0 and '!T = 0; (b) network after updating the potentials '!T; (c) network 
after augmenting 2 units along the path 1-3-4; (d) network after updating the poten
tials '!T; (e) network after augmenting 2 units along the path 1-2-3-4. 

e(4) =-2 
'!T(4) =-3 

e(4) = 0 
'!T(4) =-4 

1, I = 4, d = (0, 0, 1, 1) and the shortest path from node 1 to node 4 is 1-2-3-4. 
Figure 9.1O(d) shows the updated node potentials and reduced costs, and Figure 
9.1O(e) shows the solution after we have augmented min{e(1), - e(4), Y12, Y23, Y34} = 

min{2, 2, 4, 2, 3} = 2 units offlow. At the end of this iteration, all imbalances become 
zero and the algorithm terminates. 

322 Minimum Cost Flows: Basic Algorithms Chap. 9 



We now justify the successive shortest path algorithm. To initialize the algo
rithm, we set x = 0, which is a feasible pseudoflow. For the zero pseudoflow x, 
G(x) = G. Note that this solution together with 1T = 0 satisfies the reduced cost 
optimality conditions because cij = cij;::: 0 for every arc (i,j) in the residual network 
G(x) (recall Assumption 9.5, which states that all arc costs are nonnegative). Observe 
that as long as any node has a nonzero imbalance, both E and D must be nonempty 
since the total sum of excesses equals the total sum of deficits. Thus until all nodes 
are balanced, the algorithm always succeeds in identifying an excess node k and a 
deficit node I. Assumption 9.4 implies that the residual network contains a directed 
path from node k to every other node, including node I. Therefore, the shortest path 
distances d(·) are well defined. Each iteration ofthe algorithm solves a shortest path 
problem with nonnegative arc lengths and strictly decreases the excess of some node 
(and, also, the deficit of some other node). Consequently, if U is an upper bound 
on the largest supply of any node, the algorithm would terminate in at most nU 
iterations. If S(n, m, C) denotes the time taken to solve a shortest path problem 
with nonnegative arc lengths, the overall complexity of this algorithm is O(nUS(n, 
m, nC)). [Note that we have used nC rather than C in this expression, since the 
costs in the residual network are bounded by nC.] We refer the reader to the reference 
notes of Chapter 4 for the best available value of S(n, m, C). 

The successive shortest path algorithm requires pseudopolynomial time to 
solve the minimum cost flow problem since it is polynomial in n, m and the largest 
supply U. This algorithm is, however, polynomial time for the assignment problem, 
a special case of the minimum cost flow problem, for which U = 1. In Chapter 10, 
using scaling techniques, we develop weakly and strongly polynomial-time versions 
of the successive shortest path algorithm. In Section 14.5 we generalize this approach 
even further, developing a polynomial-time algorithm for the convex cost flow prob
lem. 

We now suggest some practical improvements to the successive'shortest path 
algorithm. As stated, this algorithm selects an excess node k, uses Dijkstra's algo
rithm to identify shortest paths from node k to all other nodes, and augments flow 
along a shortest path from node k to some deficit node I. In fact, it is not necessary 
to determine a shortest path from node k to all nodes; a shortest path from node k 
to one deficit node 1 is sufficient. Consequently, we could terminate Dijkstra's al
gorithm whenever it permanently labels the first deficit node I. At this point we might 
modify the node potentials in the following manner: 

( .) = {1T(i) - d(i) 
1T I 1T(i) - d(l) 

if node i is permanently labeled 
if node i is temporarily labeled. 

In Exercise 9.47 we ask the reader to show that with this choice of the modified 
node potentials, the reduced costs of all the arcs in the residual network remain 
nonnegative and the reduced costs of the arcs along the shortest path from node k 
to node 1 are zero. Observe that we can alternatively modify the node potentials in 
the following manner: 

Sec. 9.7 

( .) = {1T(i) - d(i) + d(l) 
1T I 1T(i) 

if node i is permanently labeled 
if node i is temporarily labeled. 

Successive Shortest Path Algorithm 323 



This scheme for updating node potentials is the same as the previous scheme 
except that we add d(l) to all of the node potentials (which does not affect the reduced 
cost of any arc). An advantage of this scheme is that the algorithm spends no time 
updating the potentials of the temporarily labeled nodes. 

9.8 PRIMAL-DUAL ALGORITHM 

The primal-dual algorithm for the minimum cost flow problem is similar to the 
successive shortest path algorithm in the sense that it also maintains a pseudoflow 
that satisfies the reduced cost optimality conditions and gradually converts it into 
a flow by augmenting flows along shortest paths. In contrast, instead of sending flow 
along one shortest path at a time, it solves a maximum flow problem that sends flow 
along all shortest paths. 

The primal-dual algorithm generally transforms the minimum cost flow prob
lem into a problem with a single excess node and a single deficit node. We transform 
the problem into this form by introducing a source node s and a sink node t. For 
each node i with b(i) > 0, we add a zero cost arc (s, i) with capacity b(i), and for 
each node i with b(i) < 0, we add a zero cost arc (i, t) with capacity - b(i). Finally, 
we set b(s) = L{iEN:b(i}>O} b(i), bet) = -b(s), and b(i) = 0 for all i E N. It is 
easy to see that a minimum cost flow in the transformed network gives a minimum 
cost flow in the original network. For simplicity of notation, we shall represent the 
transformed network as G = (N, A), which is the same representation that we used 
for the original network. 

The primal-dual algorithm solves a maximum flow problem on a subgraph of 
the residual network G(x), called the admissible network, which we represent as 
Gt(x). We define the admissible network GO(x) with respect to a pseudoflow x that 
satisfies the reduced cost optimality conditions for some node potentials 'iT; the ad
missible network contains only those arcs in G(x) with a zero reduced cost. The 
residual capacity of an arc in GO(x) is the same as that in G(x). Observe that every 
directed path from node s to node tin GO(x) is a shortest path in G(x) between the 
same pair of nodes (see Exercise 5.20). Figure 9.11 formally describes the primal
dual algorithm on the transformed network. 

324 

algorithm primal-dual; 
begin 

x: = 0 and 'IT : = 0; 
e(s) : = b(s) and e(t) : = b(t); 
while e(s) > 0 do 
begin 

determine shortest path distances d(·) from node s to all other nodes in G(x) with 
respect to the reduced costs c1J; 

update 'IT : = 'IT - d; 
define the admissible network GO(x); 
establish a maximum flow from node s to node tin GO(x); 
update e(s) , e(t), and G(x); 

end; 
end; 

Figure 9.11 Primal-dual algorithm. 

Minimum Cost Flows: Basic Algorithms Chap. 9 



To illustrate the primal-dual algorithm, we consider the numerical example 
shown in Figure 9. 12(a). Figure 9. 12(b) shows the transformed network. The shortest 
path computation yields the vector d = (0, 0, 0, 1, 2, 1) whose components are in 

2 -2 o o 

4 

2 -2 o o 
(a) (b) 

'IT(2) = 0 'IT(4) = 1 

e(s) =4 
'IT(s) = 0 

e(t) =-4 
'IT(t) = 1 

Sec. 9.8 

'IT(3) = 0 'IT(5) = 2 

(c) 

e(s) = 4 e(t) =-4 

(d) 

Figure 9.12 Illustrating the primal-dual algorithm: (a) example network; (b) trans
formed network; (c) residual network after updating the node potentials; (d) admis
sible network. 

Primal-Dual Algorithm 

-4 

325 



the order s, 1, 2, 3, 4, t. Figure 9.12(c) shows the modified node potentials and 
reduced costs and Figure 9. 12(d) shows the admissible network at this stage in the 
computations. When we apply the maximum flow algorithm to the admissible net
work, it is able to send 2 units of flow from node s to node t. Observe that the 
admissible network contained two paths from node s to node t and the maximum 
flow computation saturates both the paths. The successive shortest path algorithm 
would have taken two iterations to send the 2 units offlow. As the reader can verify, 
the second iteration of the primal-dual algorithm also sends 2 units of flow from 
node s to node t, at which point it converts the pseudoflow into a flow and terminates. 

The primal-dual algorithm guarantees that the excess of node s strictly de
creases at each iteration, and also assures that the node potential of the sink strictly 
decreases from one iteration to the next. The second observation follows from the 
fact that once we have established a maximum flow in GO(x), the residual network 
G(x) contains no directed path from node s to node t consisting entirely of arcs with 
zero reduced costs. Consequently, in the next iteration, when we solve the shortest 
path problem, d(t) 2: 1. These observations give a bound of min{nU, nC} on the 
number of iterations since initially e(s) ::5 nU, and the value of no node potential 
can fall below - nC (see Exercise 9.25). This bound on the number of iterations is 
better than that of the successive shortest path algorithm, but, of course, the al
gorithm incurs the additional expense of solving a maximum flow problem at every 
iteration. If S(n, m, C) and M(n, m, U) denote the solution times of shortest path 
and the maximum flow algorithms, the primal-dual algorithm has an overall com
plexity of O(min{nU, nCHS(n, m, nC) + M(n, m, U)}). 

In concluding this discussion, we might comment on why this algorithm is 
known as the primal-dual algorithm. This name stems from linear programming 
duality theory. In the linear programming literature, the primal-dual algorithm al
ways maintains a dual feasible solution 1T and a primal solution that might violate 
some supply/demand constraints (i.e., is primal infeasible), so that the pair satisfies 
the complementary slackness conditions. For a given dual feasible solution, the 
algorithm attempts to decrease the degree of primal infeasibility to the minimum 
possible level. [Recall that the algorithm solves a maximum flow problem to reduce 
e(s) by the maximum amount.] When no further reduction in the primal infeasibility 
is possible, the algorithm modifies the dual solution (i.e., node potentials in the 
network flow context) and again tries to minimize primal infeasibility. ;rhis primal
dual approach is applicable to several combinatorial optimization problems and also 
to the general linear programming problem. Indeed, this primal-dual solution strat
egy is one of the most popular approaches for solving specially structured problems 
and has often yielded fairly efficient and intuitively appealing algorithms. 

9.9 OUT-OF-KILTER ALGORITHM 

The successive shortest path and primal-dual algorithms maintain a solution that 
satisfies the reduced cost optimality conditions and the flow bound constraints but 
violates the mass balance constraints. These algorithms iteratively modify arc flows 
and node potentials so that the flow at each step comes closer to satisfying the mass 
balance constraints. However, we could just as well have developed other solution 
strategies by violating other constraints at intermediate steps. The out-of-kilter al-

326 Minimum Cost Flows: Basic Algorithms Chap. 9 



gorithm, which we discuss in this section, satisfies only the mass balance constraints, 
so intermediate solutions might violate both the optimality conditions and the flow 
bound restrictions. The algorithm iteratively modifies flows and potentials in a way 
that decreases the infeasibility of the solution (in a way to be specified) and, si
multaneously, moves it closer to optimality. In essence, the out-of-kilter algorithm 
is similar to the successive shortest path and primal-dual algorithms because its 
fundamental step at every iteration is solving a shortest path problem and augmenting 
flow along a shortest path. 

To describe the out-of-kilter algorithm, we refer to the complementary slack
ness optimality conditions stated in Theorem 9.4. For ease of reference, let us restate 
these conditions. 

If Xij = 0, then elJ 2: O. 

If 0 < xij < Uij, then elJ = O. 

If xij = Uij, then elJ ::5 0, 

(9.22a) 

(9.22b) 

(9.22c) 

The name out-of-kilter algorithm reflects the fact that arcs in the network either 
satisfy the complementary slackness optimality conditions (are in-kilter) or do not 
(are out-oj-kilter). The so-called kilter diagram is a convenient way to represent 
these conditions. As shown in Figure 9.13, the kilter diagram of an arc (i, j) is the 
collection of all points (Xij, elJ) in the two-dimensional plane that satisfy the optimality 
conditions (9.22). The condition 9.22(a) implies that elJ 2: 0 if xij = 0; therefore, the 
kilter diagram contains all points with zero xij-coordinates and nonnegative 
elJ-coordinates. Similarly, the condition 9.22(b) yields the horizontal segment of the 
diagram, and condition 9.22(c) yields the other vertical segment of the diagram. Each 
arc has its own kilter diagram. 

i 
cij 

o 

Figure 9.13 Kilter diagram for arc (i, j). 

Notice that for every arc (i, j), the flow Xij and reduced cost elJ define a point 
(xij' elJ) in the two-dimensional plane. If the point (Xij, elJ) lies on the thick lines in 
the kilter diagram, the arc is in-kilter; otherwise, it is out-of-kilter. For instance, the 
points B, D, and E in Figure 9.14 are in-kilter, whereas the points A and Care out
of-kilter. We define the kilter number kij of each arc (i, j) in A as the magnitude of 
the change in Xij required to make the arc an in-kilter arc while keeping elJ fixed. 

Sec. 9.9 Out-oj-Kilter Algorithm 327 



E 

0 

c1 
uij 

D 

xij~ 

Figure 9.14 Examples of in-kilter and 
out-of-kilter arcs. 

Therefore, in accordance with conditions (9.22a) and (9.22c), if elJ > 0, then k = 
1 Xij I. and if elJ < 0, then kij = 1 Uij - Xij I. If elJ = 0 and Xij > Uij, then kij = Xij -
Uij. If elJ = 0 and xij < 0, then kij = - Xij' The kilter number of any in-kilter arc is 
zero. The sum K = ~(i,j)EA kij of all kilter numbers provides us with a measure of 
how far the current solution is from optimality; the smaller the value of K, the closer 
the current solution is to being an optimal solution. 

In describing the out-of-kilter algorithm, we begin by making a simplifying 
assumption that the algorithm starts with a feasible flow. At the end of this section 
we show how to extend the algorithm so that it applies to situations when the initial 
flow does not satisfy the arc flow bounds (we also consider situations with nonzero 
lower bounds on arc flows). 

To describe the out-of-kilter algorithm, we will work on the residual network; 
in this setting, the algorithm iteratively decreases the kilter number of one or more 
arcs in the residual network. To do so, we must be able to define the kilter number 
of the arcs in the residual network G(x). We set the kilter number kij of an arc 
(i, j) in the following manner: 

kij = {O 
rij 

if elJ ~ O. 
if elJ < O. 

(9.23) 

This definition of the kilter number of an arc in the residual network is con
sistent with our previous definition: It is the change in flow (or, equivalently, the 
residual capacity) required so that the arc satisfies its optimality condition [which, 
in the case of residual networks, is the reduced cost optimality condition (9.7)]. An 
arc (i, j) in the residual network with elJ ~ 0 satisfies its optimality condition (9.7), 
but an arc (i, j) with elJ < 0 does not. In the latter case, we must send rij units of 
flow on the arc (i, j) so that it drops out of the residual network and thus satisfies 
its optimality condition .. 

The out-of-kilter algorithm maintains a feasible flow x and a set of node po
tentials 'IT. We could obtain a feasible flow by solving a maximum flow problem (as 
described in Section 6.2) and start with 'IT = O. Subsequently, the algorithm maintains 
all of the in-kilter arcs as in-kilter arcs and successively transforms the out-of-kilter 
arcs into in-kilter arcs. The algorithm terminates when all arcs in the residual network 
become in-kiiter. Figure 9.15 gives a formal description of the out-of-kilter algorithm. 

328 Minimum Cost Flows: Basic Algorithms Chap. 9 



algorithm out-ot-kilter; 
begin 

71": = 0; 
establish a feasible flow x in the network; 
define the residual network G(x) and compute the kilter numbers of arcs; 
while the network contains an out-of-kilter arc do 
begin 

select an out-of-kilter arc (p, q) in G(x); 
define the length of each arc (i, J) in G(x) as max{O, cJJ}; 
let d(·) denote the shortest path distances from node qto all other nodes in 

G(x) - {( q, p)} and let P denote a shortest path from node q to node p; 
update 7I"'(i) : = 7I"(i) - d(i) for all i E N; 
if cp~ < 0 then 
begin 

end; 
end; 

end; 

W: = P U {(p, q)}; 
/) : = min{rij : (i, j) E W}; 
augment /) units of flow along W; 
update x, G(x) , and the reduced costs; 

Figure 9.15 Out-of-kilter algorithm. 

We now discuss the correctness and complexity of the out-of-kilter algorithm. 
The correctness argument of the algorithm uses the fact that kilter numbers of arcs 
are nonincreasirig. Two operations in the algorithm affect the kilter numbers of arcs: 
updating node potentials and augmenting flow along the cycle W. In the next two 
lemmas we show that these operations do not increase the kilter number of any arc. 

Lemma 9.13. Updating the node potentials does not inerease the kilter num
ber of any are in the residual network. 

Proof Let 'IT and .'IT' denote the node potentials in the out-of-kilter algorithm 
before and after the update. The definition of the kilter numbers from (9.23) implies 
that the kilter number of an arc (i, j) can increase only if eij ~ 0 and eij' < O. We 
show that this cannot ,happen. Consider any arc (i,j) with eij ~ o. We wish to show 
that eij' ~ o. Since e;q < 0, (i, j) ¥- (p, q). Since the distances dO represent the 
shortest path distances with max{O, eij} as the length of arc (i, j), the shortest path 
distances satisfy the following shortest path optimality condition (see Section 5.2): 

d(j) ~ d(i) + max{O, eij} = d(i) + eij. 

The equality in this expression is valid because, by assumption, eij ~ o. The pre
ceding expression shows that 

eij + d(i) - d(j) ~ eij' ~ 0, 

so each arc in the residual network with a nonnegative reduced cost has a nonnega
tive reduced cost after the potentials update, which implies the conclusion of the 
lemma. • 

Sec. 9.9 Out-of-Kilter Algorithm 329 



Lemma 9.14. Augmenting flow along the directed cycle W = P U {(p, q)} 
does not increase the kilter number of any arc in the residual network and strictly 
decreases the kilter number of the arc (p, q). 

Proof Notice that the flow augmentation can change the kilter number of only 
the arcs in W = P U {(p, q)} and their reversals. Since P is a shortest path in the 
residual network with max{O, cij} as the length of arc (i, j), 

d(j) = d(i) + max{O, cij} 2": d(i) + cij for each arc (i, j) E P, 

which, using 'IT' = 'IT - d and the definition cij = Cij - 'IT(i) + 'IT(j), implies that 

cij' ::; 0 for each arc (i, j) E P. 

Since the reduced cost of each arc (i, j) in P with respect to 'IT' is nonpositive, 
the condition (9.23) shows that sending additional flow does not increase the arc's 
kilter number, but might decrease it. The flow augmentation might add the reversals 
of arcs in P, but since cij' ::; 0, the reversal of this arc (j, i) has eft' 2": 0, and therefore 
arc (j, i) is an in-kilter arc. 

Finally, we consider arc (p, q). Recall from the algorithm description in Figure 
9.15 that we augment flow along the arc (p, q) only if it is an out-of-kilter arc (i.e., 
c;~ < 0). Since augmenting flow along the arc (p, q) decreases its residual capacity, 
the augmentation decreases this arc's kilter number. Since c;;; > 0, arc (q, p) remains 
an in-kilter arc. These conclusions complete the proof of the lemma. • 

The preceding two lemmas allow us to obtain a pseudopolynomial bound on 
the running time of the out-of-kilter algorithm. Initially, the kilter number of an arc 
is at most U; therefore, the sum of the kilter numbers is at most mU. At each 
iteration, the algorithm selects an arc, say (p, q), with a positive kilter number and 
either makes it an in-kilter arc during the potential update step or decreases its kilter 
number by the siIbsequent flow augmentation. Therefore, the sum of kilter numbers 
decreases by at least 1 unit at every iteration. Consequently, the algorithm terminates 
within O(mU) iterations. The dominant computation within each iteration is solving 
a shortest path problem. Therefore, if S(n, m, C) is the time requireq to solve a 
shortest path problem with nonnegative arc lengths, the out-of-kilter algorithm runs 
in O(mU S(n, m, nC» time. 

How might we modify the algorithm to handle situations when the arc flows 
do not necessarily satisfy their flow bounds? In examining this case we consider the 
more general problem setting by allowing the arcs to have nonzero lower bounds. 
Let lij denote the lower bound on the flow on arc (i, j) EA. In this case, the com
plementary slackness optimality conditions become: 

If xij = lij, then cij 2": O. 

If lij < Xij < Uij, then cij = o. 
If Xij = Uij, then cij ::; O. 

(9. 24a) 

(9.24b) 

(9.24c) 

The thick lines in Figure 9.16 define the kilter diagram for this case. Consider 
arc (i, j). If the point (Xij, clJ) lies on the thick line in Figure 9.16, the arc is an in
kilter arc; otherwise it is an out-of-kilter arc. As earlier, we define the kilter number 

330 Minimum Cost Flows: Basic Algorithms Chap. 9 



i 
A 

B 

c 

.F 

E 

Figure 9.16 Kilter diagram for an arc 
(i, j) with a nonzero lower bound. 

of an arc (i, j) in A as the magnitude of the change in Xij required to make the arc 
an in-kilter arc while keeping cij fixed. Since arcs might violate their flow bounds, 
six types of out-of-kilter arcs are possible, which we depict by points A, B, C, D, 
E, and F in Figure 9.16. For example, the kilter numbers of arcs with coordinates 
depicted by the points A and Dare (lij - Xij) and (Xij - Uij), respectively. 

To describe the algorithm for handling these situations, we need to determine 
how to form the residual network G(x) for a flow x violating its lower and upper 
bounds. We consider each arc (i, j) in A one by one and add arcs to the residual 
network G(x) in the following manner: 

1. lij S Xij S Uij. If Xij < Uij, we add the arc (i, j) with a residual capacity Uij - Xij 
and with a cost Cij. If Xij > lij, we add the arc (j, i) with a residual capacity 
Xij - lij and with a cost - Cij. We call these arcs feasible arcs. 

2. xij < lij. In this case we add the arc (i,j) with a residual capacity Oij - Xij) and 
with a cost Cij. We refer to this arc as a lower-infeasible arc. 

3. Xij > uij. In this case we add the arc (j, i) with a residual capacity (Xij - uij) 
and with a cost -Cij. We refer to this arc as an upper-infeasible arc. 

We next define the kilter numbers of arcs in the residual network. For feasible 
arcs in the residual network, we define their kilter numbers using (9.23). We define 
the kilter number kij of a lower-infeasible or an upper-infeasible arc (i, j) as the 
change in its residual capacity required to restore its feasibility as well as its opti
mality. For instance, for a lower-infeasible arc (i, j) (1) if cij 2': 0, then kij = (lij -
Xij); and (2) if cij < 0, then kij = (uij - Xij). Note that 

1. Lower-infeasible and upper-infeasible arcs have positive kilter numbers. 
2. Sending additional flow on lower-infeasible and upper-infeasible arcs in the 

residual network decreases their kilter numbers. 

The out-of-kilter algorithm for this case is same as that for the earlier case. 
The algorithmic description given in Figure 9.15 applies to this case as well except 
that at the beginning of the algorithm we need not establish a feasible flow in the 
network. We can initiate the algorithm with x ° as the starting flow. We leave 

Sec. 9.9 Out-of-Kilter Algorithm 331 



the justification of the out -of-kilter algorithm for this case as an exercise to the reader 
(see Exercise 9.26). 

9.10 RELAXATION ALGORITHM 

All the minimum cost flow algorithms we have discussed so far-the cycle-canceling 
algorithm, the successive shortest path algorithm, the primal-dual algorithm, and 
the out-of-kilter algorithm-are classical in the sense that researchers developed 
them in the 1950s and 1960s as network flow area was emerging as an independent 
field of scientific investigation. These algorithms have several common features: (1) 
they repeatedly apply shortest path algorithms, (2) they run in pseudopolynomial 
time, and (3) their empirical running times have proven to be inferior to those of the 
network simplex algorithm tailored for the minimum cost flow problem (we discuss 
this algorithm in Chapter 11). The relaxation algorithm we examine in this section 
is a more recent vintage minimum cost flow algorithm; it is competitive or better 
than the network simplex algorithm for some classes of networks. Interestingly, the 
relaxation algorithm is also a variation of the successive shortest path algorithm. 
Even though the algorithm has proven to be efficient in practice for many classes 
of problems, its worst-case running time is much poorer than that of every minimum 
cost flow algorithm discussed in this chapter. 

The relaxation algorithm uses ideas from Lagrangian relaxation, a well-known 
technique used for solving integer programming problems. We discuss the Lagran
gian relaxation technique in more detail in Chapter 16. In the Lagrangian relaxation 
technique, we identify a set of constraints to be relaxed, multiply each such constraint 
by a scalar, and subtract the product from the objective function. The relaxation 
algorithm relaxes the mass balance constraints of the nodes, mUltiplying the mass 
balance constraint for node i by an (unrestricted) variable 7r(i) (called, as usual, a 
node potential) and subtracts the resulting product from the objective function. These 
operations yield the following relaxed problem: 

w(7r) = minimize [ ~ CijXij + 
x (ij)EA (9.25a) 

~ 7r(i) {- ~ Xij + ~ Xji + b(i)}] 
iEN {j:(i,j)EA} {j:(j,i)EA} 

subject to 

for all (i, j) EA. (9.25b) 

For a specific value of the vector 7r of node potentials, we refer to the relaxed 
problem as LR(7r) and denote its objective function value by w(7r). Note that the 
optimal solution of LR(7r) is a pseudoflow for the minimum cost flow problem since 
it might violate the mass balance constraints. We can restate the objective function 
of LR(1T) in the following equivalent way: 

w(7r) = minimize [ ~ CijXij + ~ 7r(i)e(i)]. 
x (iJ)EA iEN 

(9.26) 

332 Minimum Cost Flows: Basic Algorithms Chap. 9 



In this expression, as in our earlier discussion, e(i) denotes the imbalance of 
node i. Let us restate the objective function (9.25a) of the relaxed problem in another 
way. Notice that in the second term of (9.25a), each flow variable Xij appears twice: 
once with a coefficient of -7r(i) and the second time with a coefficient of 7r(j). 
Therefore, we can write (9.25a) as follows: 

w(7r) = minimize [ L (Cij - 7r(i) + 7r(j»xij + L 7r(i)b(i)] , 
x (i,j)EA iEN 

or, equivalently, 

W(7r) = minimize [ L cijxij + ,.L
EN 

7r(Ob(i)]. 
x (i,j)EA 

(9.27) 

In the subsequent discussion, we refer to the objective function of LR(7r) as 
(9.26) or (9.27), whichever is more convenient. For a given vector 7r of node po
tentials, it is very easy to obtain an optimal solution x of LR(7r): In light of the 
formulation (9.27) of the objective function, (1) if cij > 0, we set Xij = 0; (2) if 
cij < 0, we set Xij = uij; and (3) if cij = 0, we can set xij to any value between ° 
and Uij. The reSUlting solution is a pseudoflow for the minimum cost flow problem 
and satisfies the reduced cost optimality conditions. We have therefore established 
the following result. 

Property 9.15. If a pseudo flow x of the minimum cost flow problem satisfies 
the reduced cost optimality conditions for some 7r, then x is an optimal solution of 
LR(7r). 

Let z* denote the optimal objective function value of the minimum cost flow 
problem. As shown by the next lemma, the value z* is intimately.related to the 
optimal objective value w(7r) of the relaxed problem LR(7r). 

Lemma 9.16 
(a) For any node potentials 7r, w( 7r) :5 z*. 
(b) For some choice of node potentials 7r*, w(7r*) = z*. 

Proof Let x* be an optimal solution of the minimum cost flow problem with 
objective function value z*. Clearly, for any vector 7r of node potentials, X* is a 
feasible solution ofLR(7r) and its objective function value in LR(7r) is also z*. There
fore, the minimum objective function value of LR(7r) will be less than or equal to 
z*. We have thus established the first part of the lemma. 

To prove the second part, let 7r* be a vector of node potentials that together 
with X* satisfies the complementary slackness optimality conditions (9.8). Property 
9.15 implies that X* is an optimal solution of LR(7r*) and w( 7r*) = cx* = z*. This 
conclusion completes the proof of the lemma. • 

Notice the similarity between this result and the weak duality theorem (i.e., 
Theorem 9.5) for the minimum cost flow problem that we have stated earlier in this 
chapter. The similarity is more than incidental, since we can view the Lagrangian 
relaxation solution strategy as a dual linear programming approach that combines 

Sec. 9.10 Relaxation Algorithm 333 



some key features of both the primal and dual linear programs. Moreover, we can 
view the dual linear program itself as being generated by applying Lagrangian re
laxation. 

The relaxation algorithm always maintains a vector of node potentials 'IT and 
a pseudoflow x that is an optimal solution of LR('IT). In other words, the pair (x, 'IT) 
satisfies the reduced cost optimality conditions. The algorithm repeatedly performs 
one of the following two operations: 

1. Keeping 'IT unchanged, it modifies x to x' so that x' is also an optimal solution 
of LR('IT) and the excess of at least one node decreases. 

2. It modifies 'IT to 'IT' and x to x' so that x' is an optimal solution of LR('IT') and 
w('IT') > w('IT). 

If the algorithm can perform either of the two operations, it gives priority to 
the second operation. Consequently, the primary objective in the relaxation algo
rithm is to increase w('IT) and the secondary objective is to reduce the infeasibility 
of the pseudoflow x while keeping w('IT) unchanged. We point out that the excesses 
at the nodes might increase when the algorithm performs the second operation. As 
we show at the end of this section, these two operations are sufficient to guarantee 
finite convergence of the algorithm. For a fixed value of w('IT), the algorithm con
sistently reduces the excesses of the nodes by at least one unit, and from Lemma 
9.16 the number of increases in w('IT), each of which is at least 1 unit, is finite. 

We now describe the relaxation algorithm in more detail. The algorithm per
forms major iterations and, within a major iteration, it performs several minor it
erations. Within a major iteration, the algorithm selects an excess node s and grows 
a tree rooted at node s so that every tree node has a nonnegative imbalance and 
every tree arc has zero reduced cost. Each minor iteration adds an additional node 
to the tree. A major iteration ends when the algorithm performs either an augmen
tation or increases w('IT). 

Let S denote the set of nodes spanned by the tree at some stage.and let 8 = 
N - S. The set S defines a cut which we denote by [S, 8]. As in earlier chapters, 
we let (S, 8) denote the set offorward arcs in the cut and (8, S) the set of backward 
arcs [all in G(x)]. The algorithm maintains two variables e(S) and r('IT, S), defined 
as follows: 

e(S) = L e(i), 
iES 

r('IT, S) = L rij. 
(i,j)E(S,S) and cij ~O 

Given the set S, the algorithm first checks the condition e(S) > r('IT, S). If the 
current solution satisfies this condition, the algorithm can increase w('IT) in the fol
lowing manner. [We illustrate this method using the example shown in Figure 
9.17(a).] The algorithm first increases the flow on zero reduced cost arcs in (S, 8) 
so that they become saturated (i.e., drop out of the residual network). The flow 
change does not alter the value of w('IT) because the change takes place on arcs with 
zero reduced costs. However, the flow change decreases the total imbalance of the 

334 Minimum Cost Flows: Basic Algorithms Chap. 9 



s 

e(i) e(j) 
~I--_(c,"--;;,---,rij,-.)~.~ 

(0, 2) 

(0,3) 

(2,4) 

(3,2) 

(a) 

(3,2) 

(b) 

(c) 

s 
-1 

4 

-2 

0 

o 

o 

Figure 9.17 Illustrating the relaxation algorithm: (a) solution at some stage; 
(b) solution after modifying the flow; (c) solution after modifying the potentials. 

nodes by the amount r(1T, S); but since e(S) > r(1T, S), the remaining imbalance 
e(S) - r(1T, S) is still positive [see Figure 9.17(b)]. 

At this point all the arcs in (S, S) have (strictly) positive reduced cost. The 
algorithm next computes the minimum reduced cost of an arc in (S, S), say a, and 
increases the potential of every node i E S by a> 0 units [see Figure 9. 17(c)]. The 

Sec. 9.10 Relaxation Algorithm 335 



formulation (9.26) of the Lagrangian relaxation objective function implies that this 
updating of the node potentials does not change its first term but increases the second 
term by (e(S) - r(-rr, S»ex units. Therefore, this operation increases w('lT) by 
(e(S) - r( 'IT, S»ex units, which is strictly positive. Increasing the potentials of nodes in 
S by ex decreases the reduced costs of all the arcs in (S, 8) by ex units, increases the 
reduced costs of all arcs in (8, S) by ex units, and does not change the remaining 
reduced costs. Although increasing the reduced costs does not change the reduced 
cost optimality conditions, decreasing the reduced costs might. Notice, however, 
that before we change the node potentials, cij 2: ex for all (i,j) E (S, 8); therefore, 
after the change, cij' 2: 0, so the algorithm preserves the optimality conditions. This 
completes one major iteration. 

We next study situations in which e(S) ::; r('lT, S). Since r('lT, S) 2: e(S) > 0, 
at least one arc (i, j) E (S, 8) must have a zero reduced cost. If e(j) 2: 0, the 
algorithm adds nodej to S, completes one minor iteration, and repeats this process. 
If e(j) < 0, the algorithm augmertts the maximum possible flow along the tree path 
from node s to node j. Notice that since we augment flow along zero residual cost 
arcs, we do not change the objective function value of LR('lT). The augmentation 
reduces the total excess of the nodes and completes one major iteration of the al
gorithm. 

Figures 9.18 and 9.19 give a formal description of the relaxation algorithm. 
It is easy to see that the algorithm terminates with a minimum cost flow. The 

algorithm terminates when all of the node. imbalances have become zero (i.e., the 
solution is a flow). Because the algorithm maintains the reduced cost optimality 
conditions at every iteration, the terminal solution is a minimum cost flow. 

We now prove that for problems with integral data, the algorithm terminates 
in a finite number of iterations. Since each minor iteration adds a node to the set S, 
within n minor iterations the algorithm either executes adjust-flow or executes adjust
potentials. Each call of the procedure adjust-flow decreases the excess of at least 
one node by at least 1 unit; therefore, the algorithm can perform a finite number of 
executions of the adjust-flow procedure within two consecutive calls of the adjust
potential procedure. To bound the executions of the adjust-potential procedure, we 
notice that (1) initially, w('lT) = 0; (2) each call of this procedure strictly increases 

336 

algorithm relaxation; 
begin 

x ; = 0 and 71" ; = 0; 
while the network contains a node s with e(s) > 0 do 
begin 

S; = {s}; 
if e(S) > r(7I", S) then adjust-potential; 
repeat 

select an arc (i, j) E (S, Si in the residual network with clJ = 0; 
if e( j) ;;;,; 0 then set pred( j) : = i and add node j to S; 

until e(j) < 0 or e(S) > r(7I", S); 
if e(S) > r(7I", S) then adjust-potential 
else adjust-flow; 

end; 
end; 

Figure 9.18 Relaxation algorithm. 

Minimum Cost Flows: Basic Algorithms Chap. 9 



procedure adjust-potential; 
begin 

for every arc (i, j) E (S, S) with cij = 0 do send rij units of flow on the arc (i, j); 
compute a : = min{cij : (i, j) E (S, Si and rij> O}; 
for every node i E S do -rr(i) : = -rr(i) + a; 

end; 

(8) 

procedure adjust-flow; 
begin 

trace the predecessor indices to identify the directed path P from node s to node j; 
/) : = min[e(s), - e(j), min{rlj : (i, j) E P}j; 
augment /) units of flow along P, update imbalances and residual capacities; 

end; 

(b) 

Figure 9.19 Procedures of the relaxation algorithm. 

w('lT) by at least 1 unit; and (3) the maximum possible value of w('lT) is mCU. The 
preceding arguments establish that the algorithm performs finite number of itera
tions. In Exercise 9.27 we ask the reader to obtain a worst-case bound on the total 
number of iterations; this time bound is much worse than those of the other minimum 
cost flow algorithms discussed in earlier sections. 

Notice that the relaxation algorithm is a type of shortest augmenting path al
gorithm; indeed, it bears some resemblance to the successive shortest path algorithm 
that we considered in Section 9.7. Since the reduced cost of every arc in the residual 
network is nonnegative, and since every arc in the tree connecting the nodes in S 
has a zero reduced cost, the path P that we find in the adjust-flow procedure of the 
relaxation algorithm is a shortest path in the residual network. Therefore, the se
quence of flow adjustments that the algorithm makes is a set of flow augmentations 
along shortest augmenting paths. The relaxation algorithm differs from the succes
sive shortest augmenting path algorithm, however, because it uses "intermediate" 
information to make changes to the node potentials as it fans out and constructs the 
tree containing the nodes S. This use of intermediate information might explain why 
the relaxation algorithm has performed much better empirically than the successive 
shortest path algorithm. 

9.11 SENSITIVITY ANALYSIS 

The purpose of sensitivity analysis is to determine changes in the optimal solution 
of a minimum cost flow problem resulting from changes in the data (supply/demand 
vector or the capacity or cost of any arc). There are two different ways of performing 
sensitivity analysis: (1) using combinatorial methods, and (2) using simplex-based 
methods from linear programming. Each method has its advantages. For example, 
although combinatorial methods obtain better worst-case time bounds for performing 
sensitivity analysis, simplex-based methods might be more efficient in practice. In 
this section we describe sensitivity analysis using combinatorial methods; in Section 

Sec. 9.11 Sensitivity Analysis 337 



11.10 we consider a simplex-based approach. For simplicity, we limit our discussion 
. to a unit change of only a particular type. In a sense, however, this discussion is 

quite general: It is possible to reduce more complex changes to a sequence of the 
simple changes we consider. We show that sensitivity analysis for the minimum cost 
flow problem essentially reduces to applying shortest path or maximum flow algo
rithms. 

Let x* denote an optimal solution of a minimum cost flow problem. Let 1T be 
the corresponding node potentials and cij = Cij - 1T(i) + 1T(j) denote the reduced 
costs. Further, let d(k, I) denote the shortest distance from node k to node I in the 
residual network with respect to the original arc lengths Cij' Since for any directed 
path P from node k to node I, Lu,j)EP cij = Lu,j)EP Cij - 1T(k) + 1T(l), d(k, l) equals 
the shortest distance from node k to node I with respect to the arc lengths cij plus 
[1T(k) - 1T(I)]. At optimality, the reduced costs cij of all arcs in the residual network 
are nonnegative. Therefore, we can compute d(k, l) for all pairs of nodes k and I by 
solving n single-source shortest path problems with nonnegative arc lengths. 

Supply/Demand Sensitivity An8Jysis 

We first study changes in the supply/demand vector. Suppose that the supply/demand 
of a node k becomes b(k) + 1 and the supply/demand of another node I becomes 
b (I) - 1. [Recall from Section 9.1 that feasibility of the minimum cost flow problem 
dictates that LiEN b(i) = 0; therefore, we must change the supply/demand values 
of two nodes by equal magnitudes, and must increase one value and decrease the 
other.] The vector x* is a pseudoflow for the modified problem; moreover, this vector 
satisfies the reduced cost optimality conditions. Augmenting 1 unit of flow from node 
k to node I along the shortest path in the residual network G(x*) converts this 
pseudoflow into a flow. This augmentation changes the objective function value by 
d(k, I) units. Lemma 9.12 implies that this flow is optimal for the modified minimum 
cost flow problem. We point out that the residual network G(x*) might not contain 
any directed path from node k to node I, in which case the modified minimum cost 
flow problem is infeasible. 

Arc Capacity Sensitivity Analysis 

We next consider a change in an arc capacity. Suppose that the capacity of an arc 
(p, q) increases by 1 unit. The flow x* is feasible for the modified problem. In 
addition, if C;q 2:: 0, it satisfies the reduced cost optimality conditions; therefore, it 
is an optimal flow for the modified problem. If C;q < 0, the optimality conditions 
dictate that the flow on the arc must equal its capacity . We satisfy this requirement 
by increasing the flow on the arc (p, q) by 1 unit, which produces a pseudoflow 
with an excess of 1 unit at node q and a deficit of 1 unit at node p. We convert the 
pseudoflow into a flow by augmenting 1 unit of flow from node q to node p along 
the shortest path in the residual network G(x*), which changes the objective function 
value by an amount Cpq + d(q, p). This flow is optimal from our observations 
concerning supply/demand sensitivity analysis. 

When the capacity of the arc (p, q) decreases by 1 unit and the flow on the 
arc is strictly less than its capacity, x* remains feasible, and therefore optimal, for 
the modified problem. However, if the flow on the arc is at its capacity, we decrease 

338 Minimum Cost Flows: Basic Algorithms Chap. 9 



the flow by 1 unit and augment 1 unit of flow from node p to node q along the shortest 
path in the residual network. This augmentation changes the objective function value 
by an amount -cpq + d(p, q). Observed that the residual network G(x*) might not 
contain any directed path from node p to node q, indicating the infeasibility of the 
modified problem. 

Cost Sensitivity Analysis 

Finally, we discuss changes in arc costs, which we assume are integral. We discuss 
the case when the cost of an arc (p, q) increases by 1 unit; the case when the cost 
of an arc decreases is left as an exercise to the reader (see Exercise 9.50). This 
change increases the reduced cost of arc (p, q) by 1 unit as well. If C;q < 0 before 
the change, then after the change, the modified reduced cost is nonpositive. Simi
larly, if C;q > 0 before the change, the modified reduced cost is nonnegative after 
the change. In both cases we preserve the optimality conditions. However, if 
C;q = 0 before the change and Xpq > 0, then after the change the modified reduced 
cost is positive and the solution violates the reduced-cost optimality conditions. To 
restore the optimality conditions of the arc, we must either reduce the flow on arc 
(p, q) to zero or change the potentials so that the reduced cost of arc (p, q) becomes 
zero. 

We first try to reroute the flow X;q from node p to node q without violating 
any of the optimality conditions. We do so by solving a maximum flow problem 
defined as follows: (1) set the flow on the arc (p, q) to zero, thus creating an excess 
of X;q at node p and a deficit of X;q at node q; (2) designate node p as the source 
node and node q as the sink node; and (3) send a maximum of X;q units from the 
source to the sink. We permit the maximum flow algorithm, however, to change 
flows only on arcs with zero reduced costs since otherwise it would generate a 
solution that might violate (9.8). Let VO denote the flow sent from nodep to node q 
and XO denote the resulting arc flow. If VO = X;q, then XO denotes a minimum cost 
flow of the modified problem. In this case the optimal objective function values of 
the original and modified problems are the same. 

On the other hand, if VO < X;q, the maximum flow algorithm yields an s-t cut 
[S, S] with the properties that pES, q E S, and every forward arc in the cut with 
zero reduced cost has flow equal to its capacity and every backward arc in the cut 
with zero reduced cost has zero flow . We then decrease the node potential of every 
node in S by 1 unit. It is easy to verify by case analysis that this change in node 
potentials maintains the complementary slackness optimality conditions and, fur
thermore, decreases the reduced cost of arc (p, q) to zero. Consequently, we can 
set the flow on arc (p, q) equal to X;q - VO and obtain a feasible minimum cost flow. 
In this case the objective function value of the modified problem is X;q - VO units 
more than that of the original problem. 

9.12 SUMMARY 

The minimum cost flow problem is the central object of study in this book. In this 
chapter we began our study of this important class of problems by showing how 
minimum cost flow problems arise in several application settings and by considering 

Sec. 9.12 Summary 339 



Number of 
Algorithm iterations Features 

Cycle-canceling O(mCU) I. Maintains a feasible flow x at every iteration and augments 
algorithm flows along negative cycles in G(x). 

2. At each iteration, solves a shortest path problem with ar-
bitrary arc lengths to identify a negative cycle. 

3. Very flexible: some rules for selecting negative cycles 
leads to polynomial-time algorithms. 

Successive shortest O(nU) 1. Maintains a pseudoflow x satisfying the optimality con-
path algorithm ditions and augments flow along shortest paths from excess 

nodes to deficit nodes in G(x). 
2. At each iteration, solves a shortest path problem with non-

negative arc lengths. 
3. Very flexible: by selecting augmentations carefully, we can 

obtain several polynomial-time algorithms. 

Primal-dual O(min{nU, nC}) 1. Maintains a pseudo flow x satisfying the optimality con-
algorithm ditions. Solves a shortest path problem to update node 

potentials and attempts to reduce primal infeasibility by 
the maximum amount by solving a maximum flow prob-
lem. 

2. At each iteration, solves both a shortest path problem with 
nonnegative arc lengths and a maximum flow problem. 

3. Closely related to the successive shortest path algorithm: 
instead of sending flow along one shortest path, sends flow 
along all shortest paths. 

Out-of-kilter O(nU) 1. Maintains a feasible flow x at each iteration and attempts 
algorithm to satisfy the optimality conditions by augmenting flows 

along shortest paths. 
2. At each iteration, solves a shortest path problem with non-

negative arc lengths. 
3. Can be generalized to solve situations in which the flow x 

maintained by the algorithm might not satisfy the flow 
bounds on the arcs. 

Relaxation See Exercise 9.27 1. Somewhat different from other minimum cost flow algo-
algorithm rithms. 

2. Maintains a pseudoflow x satisfying the optimality con-
ditions and modifies arc flows and node potentials so that 
a Lagrangian objective function does not decrease and oc-
casionally increllses. 

3. With the incorporation of some heuristics, the algorithm 
is very efficient in practice and yields the fastest available 
algorithm for some classes of minimum cost flow prob-
lems. 

Figure 9.20 Summary of pseudopolynomial-time algorithms for the minimum cost 
flow problem. 

340 Minimum Cost Flows: Basic Algorithms Chap. 9 



the simplest pseudopolynomial-time algorithms for solving these problems. These 
pseudopolynomial-time algorithms include classical algorithms that are important 
because of both their historical significance and because they provide the essential 
building blocks and core ideas used in more efficient algorithms. Our algorithmic 
development relies heavily upon optimality conditions for the minimum cost flow 
problem that we developed and proved in the following equivalent frameworks: 
negative cycle optimality conditions, reduced cost optimality conditions, and com
plementary slackness optimality conditions. The negative cycle optimality conditions 
state that a feasible flow x is an optimal flow if and only if the residual network G(x) 
contains no negative cycle. The reduced cost optimality conditions state that a fea
sible flow x is an optimal flow if and only if the reduced cost of each arc in the 
residual network is nonnegative. The complementary slackness optimality conditions 
are adaptations of the linear programming optimality conditions for network flows. 
As part of this general discussion in this chapter, we also examined minimum cost 
flow duality. 

We developed several minimum cost flow algorithms: the cycle-canceling, suc
cessive shortest path, primal-dual, out-of-kilter, and relaxation algorithms. These 
algorithms represent a good spectrum of approaches for solving the same problem: 
Some of these algorithms maintain primal feasible solutions and strive toward op
timality; others maintain primal infeasible solutions that satisfy the optimality con
ditions and strive toward feasibility. These algorithms have some commonalties as 
well-they all repeatedly solve shortest path problems. In fact, in Exercises 9.57 
and 9.58 we establish a very strong result by showing that the cycle-canceling, suc
cessive shortest path, primal-dual, and out-of-kilter algorithms are all equivalent in 
the sense that if initialized properly, they perform the same sequence of augmen
tations. Figure 9.20 summarizes the basic features of the algorithms discussed in 
this chapter. 

Finally, we discussed sensitivity analysis for the minimum cost flow problem. 
We showed how to reoptimize the minimum cost flow problem, after we have made 
unit changes in the supply/demand vector or the arc capacities-; by solving a shortest 
path problem, and how to handle unit changes in the cost vector by solving a max
imum flow problem. Needless to say, these reoptimization procedures are substan
tially faster than solving the problem afresh if the changes in the problem data are 
sufficiently small. 

REFERENCE NOTES 

In this chapter and in these reference notes we focus on pseudopolynomial-time 
nonsimplex algorithms for solving minimum cost flow problems. In Chapter 10 we 
provide references for polynomial-time minimum cost flow algorithms, and in Chap
ter 11 we give references for simplex-based algorithms. 

Ford and Fulkerson [1957] developed the primal-dual algorithms for the ca
pacitated transportation problem; Ford and Fulkerson [1962] later generalized this 
approach for solving the minimum cost flow problem. Jewell [1958], Iri [1960], and 
Busaker and Gowen [1961] independently developed the successive shortest path 
algorithm. These researchers showed how to solve the minimum cost flow problem 
as a sequence of shortest path problems with arbitrary arc lengths. Tomizava [1972] 

Chap. 9 Reference Notes 341 



and Edmonds and Karp [1972] independently observed that if the computations use 
node potentials, it is possible to implement these algorithms so that the shortest path 
problems have nonnegative arc lengths. 

Minty [1960] and Fulkerson [1961b] independently developed the out-of-kilter 
algorithm. Aashtiani and Magnanti [1976] have described an efficient implementation 
of this algorithm. The description of the out-of-kilter algorithm presented in Section 
9.9 differs substantially from the development found in other textbooks. Our de
scription is substantially shorter and simpler because it avoids tedious case analyses. 
Moreover, our description explicitly highlights the use of Dijkstra's algorithm; be
cause other descriptions do not focus on the shortest path computations, they find 
an accurate worst-case analysis of the algorithm much more difficult to conduct. 

The cycle-canceling algorithm is credited to Klein [1967]. Three special im
plementations of the cycle-canceling algorithms run in polynomial time: the first, 
due to Barahona and Tardos [1989] (which, in turn, modifies an algorithm by Wein
traub [1974]), augments flow along (negative) cycles with the maximum possible 
improvement; the second, due to Goldberg and Trujan [1988], augments flow along 
minimum mean cost (negative) cycles; and the third, due to Wallacher and Zim
merman [1991], augments flow along minimum ratio cycles. 

Zadeh [1973a,1973b] described families of minimum cost flow problems on 
which each of several algorithms-the cycle-canceling algorithm, successive short
est path algorithm, primal-dual algorithm, and out-of-kilter algorithm-perform an 
exponential number of iterations. The fact that the same families of networks are 
bad for many network algorithms suggests an interrelationship among the algorithms. 
The insightful paper by Zadeh [1979] points out that each of the algorithms we have 
just mentioned are indeed equivalent in the sense that they perform the same se
quence of augmentations, which they obtained through shortest path computations, 
provided that we initialize them properly and break ties using the same rule. 

Bertsekas and Tseng [1988b] developed the relaxation algorithm and conducted 
extensive computational investigations of it. A FORTRAN code of the relaxation , 
algorithm appears in Bertsekas and Tseng [1988a]. Their study and those conducted 
by Grigoriadis [1986] and Kennington and Wang [1990] indicate that the relaxation 
algorithm and the network simplex algorithm (described in Chapter 11) are the two 
fastest available algorithms for solving the minimum cost flow problem in practice. 
When the supplies/demands at nodes are relatively small, the successive shortest 
path algorithm is the fastest algorithm. Previous computational studies conducted 
by Glover, Karney, and Klingman [1974] and Bradley, Brown, and Graves [1977] 
have indicated that the network simplex algorithm is consistently superior to the 
primal-dual and out-of-kilter algorithms. Most of these computational testings have 
been done on random network flow problems generated by the well-known computer 
program NETGEN, suggested by Klingman, Napier, and Stutz [1974]. 

The applications of the minimum cost flow problem that we discussed Section 
9.2 have been adapted from the following papers: 

1. Distribution problems (Glover and Klingman [1976]) 
2. Reconstructing the left ventricle from x-ray projections (Slump and Gerbrands 

[1982]) 
3. Racial balancing of schools (Belford and Ratliff [1972]) 

342 Minimum Cost Flows: Basic Algorithms Chap. 9 



4. Optimal loading of a hopping airplane (Gupta [1985] and Lawania [1990]) 
5. Scheduling with deferral costs (Lawler [1964]) 
6. Linear programming with consecutive l's in columns (Veinott and Wagner 

[1962]) 

Elsewhere in this book we describe other applications of the minimum cost 
flow problem. These applications include (1) leveling mountainous terrain (Appli
cation 1.4, Farley [1980]), (2) the forest scheduling problem (Exercise 1.10), (3) the 
entrepreneur's problem (Exercise 9.1, Prager [1957]), (4) vehicle fleet planning (Ex
ercise 9.2), (5) optimal storage policy for libraries (Exercise 9.3, Evans [1984]), (6) 
zoned warehousing (Exercise 9.4, Evans [1984]), (7) allocation of contractors to 
public works (Exercise 9.5, Cheshire, McKinnon, and Williams [1984]), (8) phasing 
out capital equipment (Exercise 9.6, Daniel [1973]), (9) the terminal assignment prob
lem (Exercise 9.7, Esau and Williams [1966]), (10) linear programs with consecutive 
or circular 1 's in rows (Exercises 9.8 and 9.9, Bartholdi, Orlin, and Ratliff [1980]), 
(11) capacitated maximum spanning trees (Exercise 9.54, Garey and Johnson [1979]), 
(12) fractional b-matching (Exercise 9.55), (13) the nurse scheduling problem (Ex
ercise 11.1), (14) the caterer problem (Exercise 11.2, Jacobs [1954]), (15) project 
assignment (Exercise 11.3), (16) passenger routing (Exercise 11.4), (17) allocating 
receivers to transmitters (Exercise 11.5, Dantzig [1962]), (18) faculty-course as
signment (Exercise 11.6, Mulvey [1979]), (19) optimal rounding of a matrix (Exercise 
11. 7, Bacharach [1966]' Cox and Ernst [1982]), (20) automatic karotyping of chro
mosomes (Application 19.8, Tso, Kleinschmidt, Mitterreiter, and Graham [1991]), 
(21) just-in-time scheduling (Application 19.10, Elmaghraby [1978], Levner and Nem
irovsky [1991]), (22) time-cost trade.!off in project management (Application 19'.11, 
Fulkerson [1961a] and Kelly [1961]), (23) models for building evacuation (Application 
19.13, Chalmet, Francis and Saunders [1982]), (24) the directed Cqinese postman 
problem (Application 19.14, Edmonds and Johnson [1973]), (25) warehouse layout 
(Application 19.17, Francis and White [1976]), (26) rectilinear distance facility lo
cation (Application 19.18, Cabot, Francis, and Stary [1970]f,'(27) dynamic lot sizing 
(Application 19.19, Zangwill [1969]), (28) multistage production-inventory planning 
(Application 19.23, Evans [1977]), (29) mold allocation (Application 19.24, Love and 
Vemuganti [1978]), (30) a parking model (Exercise 19.17, Dirickx and Jennergren 
[1975]), (31) the network interdiction problem (Exercise 19.18, Fulkerson and Hard
ing [1977]), (32) truck scheduling (Exercises 19.19 and 19.20, Gavish and Schweitzer 
[1974]), and (33) optimal deployment of firefighting companies (Exercise 19.21, De
nardo, Rothblum, and Swersey [1988]). 

The applications of the minimum cost flow problems are so vast that we have 
not been able to describe many other applications in this book. The following list 
provides a set of references to some other applications: (1) warehousing and distri
bution of a seasonal product (Jewell [1957]), (2) economic distribution of coal supplies 
in the gas industry (Berrisford [1960]), (3) upsets in round-robin tournaments (Fulk
erson [1965]), (4) optimal container inventory and routing (Horn [1971]), (5) distri
bution of empty rail containers (White [1972]), (6) optimal defense of a network 
(Picard and Ratliff [1973]), (7) telephone operator scheduling (Segal [1974]), (8) mul
tifacility minimax location problem with rectilinear distances (Dearing and Francis 
[1974]), (9) cash management problems (Srinivasan [1974]), (10) multiproduct mul-

Chap. 9 Reference Notes 343 



tifacility production-inventory planning (Dorsey, Hodgson, and Ratliff [1975]), (l1) 
"hub" and "wheel" scheduling problems (Arisawa and Elmaghraby [1977]), (12) 
the warehouse leasing problem (Lowe, Francis, and Reinhardt [1979]), (13) mul
tiattribute marketing models (Srinivasan [1979]), (14) material handling systems 
(Maxwell and Wilson [1981]), (15) microdata file merging (Barr and Turner [1981]), 
(16) determining service districts (Larson and Odoni [1981]), (17) control of forest 
fires (Kourtz [1984]), (18) allocating blood to hospitals from a central blood bank 
(Sapountzis [1984]), (19) market equilibrium problems (Dafetmos and Nagurney 
[1984]), (20) automatic chromosome classifications (Tso [1986]), (21) the city traffic 
congestion problem (Zawack and Thompson [1987]), (22) satellite scheduling (Servi 
[1989]), and (23) determining k disjoint cuts in a network (Wagner [1990]). 

EXERCISES 

9.1. Enterpreneur's problem (Prager [1957]). An entrepreneur faces the following problem. 
In each of T periods, he can buy, sell, or hold for later sale some commodity, subject 
to the following constraints. In each period i he can buy at most (Xi units of the com
modity, can holdover at most f3i units of the commodity for the next period, and must 
sell at least "Yi units (perhaps due to prior agreements). The enterpreneur cannot sell 
the commodity in the same period in which he buys it. Assuming that Pi, Wi, and Si 

denote the purchase cost, inventory carrying cost, and selling price per unit in period 
i, what buy-sell policy should the entreprenuer adopt to maximize total profit in the 
T periods? Formulate this problem as a minimum cost flow problem for T = 4. 

9.2. Vehicle fleet planning. The Millersburg Supply Company uses a large fleet of vehicles 
which it leases from manufacturers. The company has forecast the following pattern 
of vehicle requirements for the next 6 months: 

Month Jan. Feb. Mar. ApI· May June 

Vehicles 430 410 440 390 425 450 
required 

Millersburg can lease vehicles from several manufacturers at various costs and for 
various lengths of time. Three of the platts appear to be the best available: a 3-month 
lease for $1700; a 4-month lease for $2200; and a 5-month lease for $2600. The company 
can undertake a lease beginning in any month. On January 1 the company has 200 cars 
on lease, all of which go off lease at the end of February. Formulate the problem of 
determining the most economical leasing policy as a minimum cost flow problem. (Hint: 
Observe that the linear (integer) programming formulation of this problem has consec
utive l's in each column. Then use the result in Application 9.6.) 

9.3. Optimal storage poJicy for libraries (Evans [1984]). A library facing insufficient primary 
storage space for its collection is considering the possibility of using secondary facilities, 
such as closed stacks or remote locations, to store portions of its collection. These 
options are preferred to an expensive expansion of primary storage. Each secondary 
storage facility has limited capacity and a particular access costs for retrieving infor
mation. Through appropriate data collection, we can determine the usage rates for the 
information needs of the users. Let bj denote the capacity of storage facility j and Vj 

344 Minimum Cost Flows: Basic Algorithms Chap. 9 



denote the access cost per unit item from this facility. In addition, let aj denote the 
number of items of a particular class i requiring storage and let Uj denote the expected 
rate (per unit time) that we will need to retrieve books from this class. Our goal is to 
store the books in"a way that will minimize the expected retrieval cost. 
(a) Show how to formulate the problem of determining an optimal policy as a trans

portation problem. What is the special structure of this problem? Transportation 
problems wit,p this structure have become known as factored transportation prob
lems. 

(b) Show that the simple rule that repeatedly assigns items with the greatest retrievel 
rate to the storage facility with lowest access cost specifies an optimal solution of 
this library storage problem. 

9.4. Zoned warehousing (Evans [1984]). In the storage of multiple, say p, items in a zoned 
warehouse, we need to extract (pick) items in large quantities (perhaps by pallet loads). 
Suppose that the warehouse is partitioned into q zones, each with a different distance 
to the shipping area. Let Bj denote the storage capacity of zone j and let dj denote the 
average distance from zone j to the shipping area. For each item i, we know (1) the 
space requirement per unit (rj), (2) the average order size in some common volume unit 
(Sj), and (3) the average number of orders per day (fj). The problem is to determine 
the quaritity of each item to allocate to each zone in order to minimize the average 
daily handling 'costs. Assume that the handling cost is linearly proportional to the dis
tance and to the volume moved. 
(a) Formulate this problem as a factored transportation problem (as defined in Exercise 

9.3). 
(b) Specify a simple rule that yields an optimal solution of the zoned warehousing 

problem. 

9.5. AUocation of contractors to public works (Cheshire, McKinnon, and Williams [1984]). 
A large publicly owned corporation has 12 divisions in Great Britain. Each division 
faces a similar problem. Each year the division subcontracts work to private contrac
tors. The work is of several different types and is done by teams, each of which is 
capable of doing all types of work. One of these divisions is divided into several districts: 
the jth district requires rj teams. The contractors are of two types: eXiperienced and 
inexperienced. Each contractor i quotes a price cij to have a team conduct the work in 
districtj. The objective is to allocate the work in the districts to the various contractors, 
satisfying the following conditions: (1) each district j has rrassigned teams; (2) the 
division contracts with contractor i for no more than Uj teams, the maximum number 
of teams it can supply; and (3) each district has at least one experienced contractor 
assigned to it. Formulate this problem as a minimum cost flow problem for a division 
with three districts, and with two experienced and two iriexperienced contractors. 
(Hint: Split each district node into two nodes, one of which requires an experienced 
contractor. ) 

9.6. Phasing out capital equipment (Daniel [1973]). A shipping company wants to phase out 
a fleet of (homogeneous) general cargo ships over a period of p years. Its objective is 
to maximize its cash assets at the end of the p years by considering the possibility of 
prematurely selling ships and temporary replacing them by charter ships. The company 
faces a known nonincreasing demand for ships. Let d(i) denote the demand of ships in 
year i. Each ship earns a revenue of rk units in period k. At the beginning of year k, 
the company can sell any ship that it owns, accruing a cash inflow of Sk dollars. If the 
company does not own sufficiently many ships to meet its demand, it must hire ad
ditional charter ships. Let hk denote the cost of hiring a ship for the kth year. The 
shipping company wants to meet its commitments and at the same time maximize the 
cash assets at the end of the pth year. Formulate this problem as a minimum cost flow 
problem. 

Chap. 9 Exercises 345 



9.7. Terminal assignment problem (Esau and Williams [1966]). Centralized teleprocessing 
networks often contain many (as many as tens of thousands) relatively unsophisticated 
geographically dispersed terminals. These terminals need to be connected to a central 
processor unit (CPU) either by direct lines or though concentrators. Each concentrator 
is connected to the CPU through a high-speed, cost-effective line that is capable of 
merging data flow streams from different terminals and sending them to the CPU. Sup
pose that the concentrators are in place and that each concentrator can handle at most 
K terminals. For each terminal j, let Coj denote the cost of laying down a direct line 
from the CPU to the terminal and let cij denote the line construction cost for connecting 
concentrator i to terminal j. The decision problem is to construct the minimum cost 
network for connecting the terminals to the CPU. Formulate this problem as a minimum 
cost flow problem. 

9.8. Linear programs with consecutive l's in rows. In Application 9.6 we considered linear 
programs with consecutive 1 's in each column and showed how to transform them into 
minimum cost flow problems. In this and the next exercise we study several related 
linear programming problems and show how we can solve them by solving minimum 
cost flow problems. In this exercise we study linear programs with consecutive 1 's in 
the rows. Consider the following (integer) linear program with consecutive l's in the 
rows: 

subject to 

X2 + X3 + X4 ? 20 

XI + X2 + X3. + X4 ? 30 

X2 + X3 ? 15 

? 0 and integer. 

Transform this problem to a minimum cost flow problem. (Hint: Use the same trans
formation of variables that we used in Application 4.6.) 

9.9. Linear programs with circular l's in rows (Bartholdi, Orlin, and Ratliff [l~80]). In this 
exercise we consider a generalization of Exercise 9.8 with the I 's in each row arranged 
consecutively when we view columns in the wraparound fashion (i.e., we consider the 
first column as next to the last column). A special case of this problem is the telephone 
operator scheduling problem that we discussed in Application 4.6. In this exercise we 
focus on the telephone operator scheduling problem; nevertheless, the approach easily 
extends to any general linear program with circular l's in the rows. We consider a 
version of the telephone operator scheduling in which we incur a cost Ci whenever an 
operator works in the ith shift, and we wish to satisfy the minimum operator requirement 
for each hour of the day at the least possible cost. We can formulate this "cyclic staff 
scheduling problem" as the following (integer) linear program. 

subject to 

346 

23 

Minimize L Yi 
;=0 

Yi-7 + Yi-6 + 

YI7+i + ... + Y23 + Yo + 

+ Yi? b(i) 

+ Yi ? b(i) 

Yi? 0 

for all i = 7 to 23, 

for all i = 0 to 6, 

for all i = 1 to 23. 

Minimum Cost Flows: Basic Algorithms Chap. 9 



(a) For a parameter p, let !!P(p) denote the cyclic staff scheduling problem when we 
impose the additional constraint L7!o Yi = p, and let z(p) denote the optimal ob
jective value of this problem. Show how to transform !!P(p), for a fixed value of p, 
into a minimum cost flow problem. (Hint: Use the same transformation of variables 
that we used in Application 4.6 and observe that each row has one + 1 and one 
-1. Then use the result of Theorem 9.9.) 

(b) Show that z(p) is a (piecewise linear) convex function ofp. (Hint: Show that ify' 
is an optimal solution of !!P(p') and y" is an optimal solution of !!P(p"), then for any 
weighting parameter A, 0 ::; A ::; I, the point AY' + (1 - A)Y" is a feasible solution 
of !!P(Ap' + (1 - A)p").) 

(c) In the cyclic staff scheduling problem, we wish to determine a value of p, say p*, 
satisfying the property that z(p*) ::; z(p) for all feasible p. Show how to solve the 
cyclic staff scheduling problem in polynomial time by performing binary search on 
the values of p. (Hint: For any integer p, show how to determine whether p ::; p* 
by solving problems !!P(p) and !!P(p + 1).) 

9.10. Racial balancing of schools. In this exercise we discuss some generalizations of the 
problem of racial balancing of schools that we described in Application 9.3. Describe 
how would you modify the formulation to include the following additional restrictions 
(consider each restriction separately). 
(a) We prohibit the assignment of a student from location i to school j if the travel 

distance dij between these location exceeds some specified distance D. 
(b) We include the distance traveled between location i and schoolj in the objective 

function only if dij is greater than some specified distance D' (e.g., we account for 
the distance traveled only if a student needs to be bussed). 

(c) We impose lower and upper bounds on the number of black students from location 
i who are assigned to school j. 

9.11. Show how to transform the equipment replacement problem described in Application 
9.6 into a shortest path problem. Give the resulting formulation for n = 4. 

9.12. This exercise is based on the equipment replacement problem that we discussed in 
Application 9.6. 
(a) The problem as described allows us to buy and sell the equipment only yearly. 

How would you model the situation if you could make decisions every half year? 
(b) How sensitive do you think the optimal solution would be to the length T of planning 

period? Can you anticipate a situation in which the optimal replacement plan would 
change drastically if we were to increase the length of the'planning period to T + 
I? 

9.13. Justify the minimum cost flow formulation that we described in Application 9.4 for the 
problem of optimally loading a hopping airplane. Establish a one-to-one correspondence 
between feasible passenger routings and feasible flows in the minimum cost flow for
mulation of the problem. 

9.14. In this exercise we consider one generalization of the tanker scheduling problem dis
cussed in Application 6.6. Suppose that we can compute the profit associated with each 
available shipment (depending on the revenues and the operating cost directly attrib
utable to that shipment). Let the profits associated with the shipments 1, 2, 3, and 4 
be 10, 10, 3, and 4, respectively. In addition to the operating cost, we incur a fixed 
charge of 5 units to bring a ship into service. We want to determine the shipments we 
should make and the number of ships to use to maximize net profits. (Note that it is 
not necessary to honor all possible shipping commitments.) Formulate this problem as 
a minimum cost flow problem. 

9.15. Consider the following data, with n = 4, for the employment scheduling problem that 
we discussed in Application 9.6. Formulate this problem as a minimum cost flow prob
lem and solve it by the successive shortest path algorithm. 

Chap. 9 Exercises 347 



2 3 4 5 

- 20 35 50 55 

{Cij} = 2 - - 15 30 40 i 1 2 3 4 

3 - - - 25 35 d(i) 20 15 30 25 

4 - - - - 10 

9.16. Figure 9.21(b) shows the optimal solution of the minimum cost flow problem shown in 
Figure 9.21(a). First, verify that x* is a feasible flow. 

348 

(a) Draw the residual network G(x*) and show that it contains no negative cycle. 
(b) Specify a set of node potentials 'IT that together with x* satisfy the reduced cost 

optimality conditions. List each arc in the residual network and its reduced cost. ., (cij, uij) 
~. "~~ 

20 0 
(6,10) 

(1, 10) (0,10) 

10 -10 

(7, 15) 
(2, 15) (9, 15) 

-5 
(5,10) 

-15 

(a) ., xij • • kilW ;\$k~~' <"k' 

10 

0 
10 0 10 

5 

10 5 

10 

(b) 

Figure 9.21 Minimum cost flow problem: (a) problem data; (b) optimal solution. 

Minimum Cost Flows: Basic Algorithms Chap. 9 



(c) Verify that the solution x* satisfies the complementary slackness optimality con
ditions. To do so, specify a set of optimal node potentials and list the reduced cost 
of each arc in A. 

9.17. (a) Figure 9.22(a) gives the data and an optimal solution for a minimum cost flow 
problem. Assume that all arcs are uncapacitated. Determine optimal node poten
tials. 

(b) Consider the uncapacitated minimum cost flow problem shown in Figure 9.22(b). 
For this problem the vector 'IT = (0, -6, -9, -12, -5, -8, -15) is an optimal 
set of node potentials. Determine an optimal flow in the network. 

bCi) 
(eii, xij) 

b(j) • • )0 ., 

10 -5 
(3,20) 

(2,30) (5, 15) 

(4,0) 

30 (1,20) (3,0) -25 

(0,0) 
(3,0) (6,10) 

-20 
(7,0) 

10 

(3) 

b(i) b(j) • Cij • .. f~:' 

0 -50 

4 2 9 

100 

6 5 4 
7 

2 
-10 20 

(b) 

Figure 9.22 Example for Exercise 9.17. 

9.18. Solve the problem shown in Figure 9.23 by the cycle-canceling algorithm. Use the zero 
flow as the starting solution. 

Chap. 9 Exercises 349 



(-2,5) 

(-1,2) 

(-1,7) 

(-1,4) 

(-1,2) 

(-1,3) 

(-1, 1) 

Figure 9.23 Example for Exercise 
9.18. 

9.19. Show that if we apply the cycle-canceling algorithm to the minimum cost flow problem 
shown in Figure 9.24, some sequence of augmentations requires 2 x 106 iterations to 
solve the problem. 

Figure 9.24 Network where cycle 
canceling algorithm performs 2 x 106 

iterations. 

9.20. Apply the successive shortest path algorithm to the minimum cost flow problem shown 
in Figure 9.25. Show that the algorithm performs eight augmentations, each of unit 
flow, and that the cost of these augmentations (Le., sum of the arc costs in the path 

b(l) = 8 b(8) =-8 

Figure 9.25 Example for Exercise 9.20. 

350 Minimum Cost Flows: Basic Algorithms Chap. 9 



in the residual network) is 0, I, 2, 3, 3, 4, 5, and 6. How many iterations does the 
primal-dual algorithm require to solve this problem? 

9.21. Construct a class of minimum cost flow problems for which the number of iterations 
performed by the successive shortest path algorithm might grow exponentially in log U. 
(Hint: Consider the example shown in Figure 9.24.) 

9.22. Figure 9.26 specifies the data and a feasible solution for a minimum cost flow problem. 

25 

With respect to zero node potentials, list the in-kilter and out-of-kilter arcs. Apply the 
out-of-kilter algorithm to find an optimal flow in the network. 

b(i) b(j) .. (cij, uij) • ~~~;; .. Xij • ~ ;;?iN 
0 

(4,10) 
0 

10 

(7,30) 25 

(2,20) 
(1,20) 15 

10 
20 

(6,20) 

~ 
0 -25 

(a) (b) 

Figure 9.26 Example for Exercises 9.22 and 9.23: (a) problem data; (b) feasible flow. 

9.23. Consider the minimum cost flow problem shown in Figure 9.26. Starting with zero 
pseudoflow and zero node potentials, apply the relaxation algorithm to establish an 
optimal flow. 

9.24. Figure 9.21(b) specifies an optimal solution for the minimum cost flow problem shown 
in Figure 9.21(a). Reoptimize the solution with respect to the following changes in the 
problem data: (1) when C23 increases from 0 to 6; (2) when c78~decreases from 9 to 2; 
(3) when b(2) decreases to 15 and b(S) increases to -5; and (4) when U23 increases to 
20. Treat these changes individually. 

9.25. Assuming that we set one node potential to value zero, show that nC is an upper bound 
and that - nC is a lower bound on the optimal value of any node potential. 

9.26. Justify the out-of-kilter algorithm described in Section 9.9 for the case when arcs can 
violate their flow bounds. Show that in the execution of the algorithm, the kilter number 
of arcs are nonincreasing and at least one kilter number strictly decreases at every 
iteration. 

9.27. Obtain a worst-case bound on the total number of iterations performed by the relaxation 
algorithm. Compare this bound with the number of iterations performed by the cycle
canceling, successive shortest path, and primal-dual algorithms. 

9.28. Show that if the pair (x, 'IT) satisfies the complementary slackness optimality conditions 
(9.S), it also satisfies the reduced cost optimality conditions (9.7). 

9.29. Prove that if x* is an optimal flow and 'IT is an optimal set of node potentials, the pair 
(x*, 'IT) satisfies the complementary slackness optimality conditions. In your proof, do 
not use the strong duality theorem. (Hint: Suppose that the pair (x, 'IT) satisfies the 
optimality conditions for some flow x. Show that c"'(x* - x) = 0 and use this fact to 
prove the desired result.) 

Chap. 9 Exercises 351 



9.30. With respect to an optimal solution x* of a minimum cost flow problem, suppose that 
we redefine arc capacities u' as follows: 

U~. = {Uij 
lJ 00 

if xt = Uij 

if xt < Uij. 

Show that x* is also an optimal solution of the minimum cost flow problem with the 
arc capacities as u'. 

9.31. With respect to an optimal solution x* of a minimum cost flow problem, suppose that 
we redefine arc capacities u' = x*. Show that x* is also an optimal solution of the 
minimum cost flow problem with arc capacities u'. 

9.32. In Section 2.4 we showed how to transform a minimum cost flow problem in an un
directed network in which all lower bounds are zero into a minimum cost flow problem 
in a directed network. Explain why this approach does not work when some lower 
bounds on arc flows exceed zero. 

9.33. In the minimum cost flow problem, suppose that one specified arc (p, q) has no lower 
and upper flow bounds. How would you transform this problem into the standard min
imum cost flow problem? 

9.34. As we have seen in Section 2.4, the uncapacitated transportation problem is equivalent 
to the minimum cost flow problem in the sense that we can always transform either 
problem into a version of another problem. If we can solve the uncapacitated trans
portation problem in O(g(n, m» time, can we also solve the minimum cost flow problem 
in O(g(n, m» time? 

9.35. In the min-cost max-flow problem defined on a directed network G = (N, A), we wish 
to send the maximum amount of flow from a node s to a node t at the minimum possible 
total cost. That is, among all maximum flows, find the one with the smallest cost. 
(a) Show how to formulate any minimum cost flow problem as a min-cost max-flow 

problem. 
(b) Show how to convert any min-cost max-flow problem into a circulation problem. 

9.36. Suppose that in a minimum cost flow problem, some arcs have infinite capacities and 
some arc costs are negative. (Assume that the lower bounds on all arc flows are zero.) 
(a) Show that the minimum cost flow problem has a finite optimal solution if and only 

if the uncapacitated arcs do not contain a negative cost-directed cycle. 
(b) Let B denote the sum of the finite arc capacities and the supplies b(·) of all the 

supply nodes. Show that the minimum cost flow problem always has an optimal 
solution in which each arc flow is at most B. Conclude that without any loss of 
generality, we can assume that in the minimum cost flow problem (with a bounded 
optimal solution value) every arc is capacitated. (Hint: Use the flow decomposition 
property.) 

9.37. Suppose that in a minimum cost flow problem, some arcs have infinite capacities and 
some arc costs are negative. Let B denote the sum of the finite arc capacities and the 
right-hand-side coefficients bU) for all the supply nodes. Let z and z' denote the ob
jective function values of the minimum cost flow problem when we set the capacity of 
each infinite capacity arc to the value Band B + 1, respectively. Show that the objective 
function of the minimum cost flow problem is unbounded if and only if z' < z. 

9.38. In a minimum cost flow network, suppose that in addition to arc capacities, nodes have 
upper bounds imposed upon the entering flow. Let wU) be the maximum flow that can 
enter node i E N. How would you solve this generalization of the minimum cost flow 
problem? 

9.39. Let (k, l) and (p, q) denote a minimum cost arc and a maximum cost arc in a network. 
Is it possible that no minimum cost flow have a positive flow on arc (k, I)? Is it possible 
that every minimum cost flow have a positive flow on arc (p, q)? Justify your answers. 

9.40. Prove or disprove the following claims. 
(a) Suppose that all supply/demands and arc capacities in a minimum cost flow problem 

352 Minimum Cost Flows: Basic Algorithms Chap. 9 



are all even integers. Then for some optimal flow x*, each arc flow xt is an even 
number. 

(b) Suppose that all supply/demands and arc capacities in a minimum cost circulation 
problem are all even integers. Then for some optimal flow x*, each arc flow xt is 
an even number. 

9.41. Let x* be an optimal solution of the minimum cost flow problem. Define GO as a 
subgraph of the residual network G(x*) consisting of all arcs with zero reduced cost. 
Show that the minimum cost flow problem has an alternative optimal solution if and 
only if GO contains a directed cycle. 

9.42. Suppose that you are given a nonintegral optimal solution to a minimum cost flow 
problem with integral data. Suggest a method for converting this solution into an integer 
optimal solution. Your method should maintain optimality ofthe solution at every step. 

9.43. Suppose that the pair (x, 'IT), for some pseudoflow x and some node potentials 'IT, satisfies 
the reduced cost optimality conditions. Define GO(x) as a subgraph of the residual 
network G(x) consisting of only those arcs with zero residual capacity. Define the cost 
of an arc (i, j) in GO(x) as cij if (i, j) E A, and as -CiJ otherwise. Show that every 
directed path in GO(x) between any pair of nodes is a shortest path in G(x) between 
the same pair of nodes with respect to the arc costs cij. 

9.44. Let Xl and x2 be two distinct (alternate) minimum cost flows in a network. Suppose 
that for some arc (k, I), xli = p, X~I = q, and p < q. Show that for every 0 :5 X. :5 1, 
the minimum cost flow problem has an optimal solution x (possibly, noninteger) with 
Xkl = (l - x.)p + x.q. 

9.45. Let 'lT1 and 'lT2 be two distinct (alternate) optimal node potentials of a minimum cost 
flow problem. Suppose that for some node k, 'lT1(k) = p, 'lT2(k) = q, and p < q. Show 
that for every 0 :5 X. :5 1, the minimum cost flow problem has an optimal set of node 
potentials 'IT (possibly, noninteger) with 'IT(k) = (1 - x.)p + x.q. 

9.46. (a) In the transportation problem, does adding a constant k to the cost of every outgoing 
arc from a specified supply node affect the optimality of a given optimal solution? 
Would adding a constant k to the cost of every incoming arc to a specified demand 
node affect the optimality of a given optimal solution? 

(b) Would your answers to the questions in part (a) be the same if they were posed 
for the minimum cost flow problem instead of the transportation pr.oblem? 

9.47. In Section 9.7 we described the following practical improvement of the successive 
shortest path algorithm: (1) terminate the execution of Dijkstra's algorithm whenever 
it permanently labels a deficit node I, and (2) modify the node-potentials by setting 'IT(i) 
to 'IT(i) - d(i) if node i is permanently labeled; and by setting 'IT(i) to 'IT(i) - d(l) if 
node i is temporarily labeled. Show that after the algorithm has updated the node po
tentials in this manner, all the arcs in the residual network have nonnegative reduced 
costs and all the arcs in the shortest path from node k to node I have zero reduced 
costs. (Hint: Use the result in Exercise 5.9.) 

9.48. Would multiplying each arc cost in a network by a constant k change the set of optimal 
solutions of the minimum cost flow problem? Would adding a constant k to each arc 
cost change the set of optimal solutions? 

9.49. In Section 9.11 we described a method for performing sensitivity analysis when we 
increase the capacity of an arc (p, q) by 1 unit. Modify the method to perform the 
analysis when we decrease the capacity of the arc (p, q) by 1 unit. 

9.50. In Section 9.11 we described a method for performing sensitivity analysis when we 
increase the cost of an arc (p, q) by 1 unit. Modify the method to perform the analysis 
when we decrease the cost of the arc (p, q) by 1 unit. 

9.51. Suppose that we have to solve a minimum cost flow problem in which the sum of the 
supplies exceeds the sum of the demands, so we need to retain some of the supply at 
some nodes. We refer to this problem as the minimum cost flow problem with surplus. 
Specify a linear programming formulation of this problem~ Also show how to transform 
this problem into an (ordinary) minimum cost flow problem. 

Chap. 9 Exercises 353 



9.52. This exercise concerns the minimum cost flow problem with surplus, as defined in 
Exercise 9.51. Suppose that we have an optimal solution of a minimum cost flow prob
lem with surplus and we increase the supply of some node by 1 unit, holding the other 
data fixed. Show that the optimal objective function value cannot increase, but it might 
decrease. Show that if we increase the demand of a node by 1 unit, holding the other 
data fixed, the optimal objective function value cannot decrease, but it might increase. 

9.53. More-for-less paradox (Chames and Klingman [1971]). The more-for-less paradox shows 
that it is possible to send more flow from the supply nodes to the demand nodes of a 
minimum cost flow problem at lower cost even if all arc costs are nonnegative. To 
establish this more-for-less paradox, consider the minimum cost flow problem shown 
in Figure 9.27. Assume that all arc capacities are infinite. 
(a) Show that the solution given by X14 = 11, X16 = 9, X25 = 2, X26 = 8, X35 = 11, and 

X37 = 14, is an optimal flow for this minimum cost flow problem. What is the total 
cost of flow? 

(b) Suppose that we increase the supply of node 2 by 2 units, increase the demand of 
node 4 by 2 units, and reoptimize the solution using the method described in Section 
9.11. Show that the total cost of flow decreases. 

20 10 25 b(i) 

~ 
-11 -13 -17 -14 b(j) 

Figure 9.27 More-for-less paradox. 

9.54. Capacitated minimum spanning tree problem (Garey and Johnson [1979]). In a complete 
undirected network with arc lengths Cij and a specially designated node s, called the 
central site, we associate an integer requirement rj with every node i E N - {s}. In 
the capacitated minimum spanning tree problem, we want to identify a minimum cost 
spanning tree so that when we send flow on this tree from the central site to the other 
nodes to satisfy their flow requirements, no tree arc has a flow of more than a given 
arc capacity R, which is the same for all arcs. Show that when each rj is 0 or 1, and 
R = 1, we can solve this problem as a minimum cost flow problem. (Hint: Model this 
problem as a minimum cost flow problem with node capacities, as discussed in Exercise 
9.38.) 

9.55. Fractional b-matching problem. Let G = (N, A) be an undirected graph in which each 
node i E N has an associated supply b(i) and each arc (i,j) E A has an associated cost 
cij and capacity uij. In the b-matching problem, we wish to find a minimum cost subgraph 
of G with exactly b arcs incident to every node. The fractional b-matching problem is 
a relaxation of the b-matching problem and can be stated as the following linear pro
gram: 

subject to 

354 

Minimize L cijxij 
(i.j)EA 

L xij = b(i) for all i E N, 
jEA(i) 

for all (i, j) E A. 

Minimum Cost Flows: Basic Algorithms Chap. 9 



We assume that xi} = Xji for every arc (i, j) EA. We can define a related minimum 
cost flow problem as follows. Construct a bipartite network G' = (N' U Nil, A') with 
N' = {I', 2', ... , n'}, Nil = {I", 2", ... , nil}, b(i') = b(i), and b(i") = - b(i). For 
each arc (i, j) E A, the network G' contains two associated arcs (i', j") and (j', i"), 
each with cost Cij and capacity uij. 
(a) Show how to transform every solution x of the fractional b-matching problem with 

cost z into a solution x' of the minimum cost flow problem with cost 2z. Similarly, 
show that if x' is a solution of the minimum cost flow problem with cost z', then 
xij = (xi; + xj;)/2 is a feasible solution of the fractional b-matching problem with 
cost z' /2. Use these results to show how to solve the fractional b-matching problem. 

(b) Show that the fractional b-matching problem always has an optimal solution in 
which each arc flow Xij is a mUltiple of !. Also show that if all the supplies and the 
capacities are even integers, the fractional b-matching problem always has an in
teger optimal solution. 

9.56. Bottleneck transportation problem. Consider a transportation problem with a traversal 
time Ti} instead of a cost Cij' associated with each arc (i, j). In the bottleneck transpor
tation problem we wish to satisfy the requirements of the demand nodes from the supply 
nodes in the least time possible [i.e., we wish to find a flow x that minimizes the quantity 
max{Tij:(i,j) E A and Xij > O}]. 
(a) Suggest an application of the bottleneck transportation problem. 
(b) Suppose that we arrange the arc traversal times in the nondecreasing order of their 

values. Let TI < T2 < ... < T/ be the distinct values of the arc traversal times (thus 
1:$ m). Let FS(k, found) denote a subroutine that finds whether the transportation 
problem has a feasible solution using only those the arcs with traversal times less 
than or equal to Tk; assume that the subroutine assigns a value true/false to found. 
Suggest a method for implementing the subroutine FS(k, found). 

(c) Using the subroutine FS(k, found), write a pseudocode for solving the bottleneck 
transportation problem. 

9.57. Equivalence of minimum cost flow algorithms (Zadeh [1979]) 
(a) Apply the successive shortest path algorithm to the minimum cost flow problem 

shown in Figure 9.28. Show that it performs four augmentations from node 1 to 
node 6, each of unit flow. 

(b) Add the arc (1, 6) with sufficiently large cost and with Ul6 = 4 to the example in 
part (a). Observe that setting XI6 = 4 and Xi} = 0 for all other arcs gives a feasible 
flow in the network. With this flow as the initial flow, apply the cycle-canceling 
algorithm and always augment flow along a negative cycle with minimum cost. Show 
that this algorithm also performs four unit flow augmentations from node 1 to node 
6 along the same paths as in part (a) and in the same order, except that the flow 
returns to node 1 through the arc (6, 1) in the residual network. 

~ _____ (C~ij'_U~ij_) __ ~.~.~ 

(0, (0) 

(0,1) 
(1,00) 

(0,2) 

b(l) = 4 b(6) =-4 

(0,3) (1,00) (0,2) 

(3, (0) 

Figure 9.28 Equivalence of minimum cost flow algorithms. 

Chap. 9 Exercises 355 



(c) Using parts (a) and (b) as background, prove the general result that if initialized 
properly, the successive shortest path algorithm and the cycle-canceling algorithm 
(with augmentation along a most negative cycle) are equivalent in the sense that 
they perform the same augmentations and in the same order. 

9.58. Modify and initialize the minimum cost flow problem in Figure 9.28 appropriately so 
that when we apply the out-of-kilter algorithm to this problem, it also performs four 
augmentation in the same order as the successive shortest path algorithm. Then prove 
the equivalence ofthe out-of-kilter algorithm with the successive shortest path algorithm 
in general. 

356 Minimum Cost Flows: Basic Algorithms Chap. 9 



10 

MINIMUM COST FLOWS: POLYNOMIAL 
ALGORITHMS 

Success generally depends upon knowing how long it 
takes to succeed. 

-Montesquieu 

Cbapter Outline 

10.1 Introduction 
10.2 Capacity Scaling Algorithm 
10.3 Cost Scaling Algorithm 
10.4 Double Scaling Algorithm 
10.5 Minimum Mean Cycle-Canceling Algorithm 
10.6 Repeated Capacity Scaling Algorithm 
10.7 Enhanced Capacity Scaling Algorithm 
10.8 Summary 

10.1 INTRODUCTION 

In Chapter 9 we studied several different algorithms for solving minimum cost prob
lems. Although these algorithms guarantee finite convergence whenever the problem 
data are integral, the computations are not bounded by any"polynomial in the un
derlying problem specification. In the spirit of computational complexity theory, this 
situation is not completely satisfactory: It does not provide us with any good theo
retical assurance that the algorithms will perform well on all problems that we might 
encounter. The circumstances are quite analogous to our previous development of 
maximum flow algorithms; we started by first developing straightforward, but not 
necessarily polynomial, algorithms for solving those problems, and then enhanced 
these algorithms by changing the algorithmic strategy and/or by using clever data 
structures and implementations. This situation raises the following natural questions: 
(1) Can we devise algorithms that are polynomial in the usual problem parameters: 
number n of nodes, number m of arcs, log U (the log of the largest supply/demand 
or arc capacity), and log C (the log of the largest cost coefficient), and (2) can we 
develop strongly polynomial-time algorithms (i.e., algorithms whose running time 
depends upon only on nand m)? A strongly polynomial-time algorithm has one 
important theoretical advantage: It will solve problems with irrational data. 

In this chapter we provide affirmative answers to these questions. To develop 
polynomial-time algorithms, we use ideas that are similar to those we have used 
before: namely, scaling of the capacity data and/or of the cost data. We consider 

357 



three polynomial-time algorithms: (1) a capacity scaling algorithm that is a scaled 
version of the successive shortest path algorithm that we discussed in Chapter 9, 
(2) a cost scaling algorithm that is a generalization of the preflow-push algorithm for 
the maximum flow problem, and (3) a double scaling algorithm that simultaneously 
scales both the arc capacities and the costs. 

Scaling is a powerful idea that has produced algorithmic improvements to many 
problems in combinatorial optimization. We might view scaling algorithms as fol
lows. We start with the optimality conditions for the network flow problem we are 
examining, but instead of enforcing these conditions exactly, we generate an "ap
proximate" solution that is permitted to violate one (or more) of the conditions by 
an amount Ll. Initially, by choosing Ll quite large, for example as Cor U, we will 
easily be able to find a starting solution that satisfies the relaxed optimality condi
tions. We then reset the parameter Ll to Ll/2 and reoptimize so that the approximate 
solution now violates the optimality conditions by an amount of at most Ll/2. We 
then repeat the procedure, reoptimizing again until the approximate solution violates 
the conditions by an amount of at most Ll/4, and so on. This solution strategy is 
quite flexible and leads to different algorithms depending on which of the optimality 
conditions we relax and how we perform the reoptimizations. 

Our discussion of the capacity scaling algorithm for the maximum flow problem 
in Section 7.3 provides one example. A feasible flow to the maximum flow problem 
is optimal if the residual network contains no augmenting path. In the capacity scaling 
algorithm, we relaxed this condition so that after the Ll-scaling phase, the residual 
network can contain an augmenting path, but only if its capacity were less than Ll. 
The excess scaling algorithm for the maximum flow problem provides us with another 
example. In this case the residual network again contains no path from the source 
node s to the sink node t; however, at the end of the Ll-scaling phase, we relaxed a 
feasibility requirement requiring that the flow into every node other than the source 
and sink equals the flow out of that node. Instead, we permitted the excess at each 
node to be as large as Ll during the Ll-scaling phase. 

In this chapter, by applyip.g a scaling approach to the algorithms that we con
sidered in Chapter 9, we develop polynomial-time versions of these algorithms. We 
begin by developing a modified version of the successive shortest path algorithm in 
which we relax two optimality conditions in the Ll-scaling phase: (1) We permit the 
solution to violate supply/demand constraints by an amount Ll, and (2) we permit 
the residual network to contain negative cost cycles. The resulting algorithm reduces 
the number of shortest path computations from nU to m log U. 

We next describe a cost-scaling algorithm that uses another concept of ap
proximate optimality; at the end of each E-scaling phase (E plays the role of Ll) we 
obtain a feasible flow that satisfies the property that the reduced cost of each arc 
in the residual network is greater than or equal to - E (instead of zero). To find the 
optimal solution during the E-scaling phase, this algorithm carries out a sequence of 
push and relabel operations that are similar to the preflow-push algorithm for max
imum flows. The generic cost scaling algorithm runs in O(n 2 m 10g(nC» time. We 
also describe a special "wave implementation" of this algorithm that chooses nodes 
for the push/relabel operations in a specific order. This specialization requires O(n3 
10g(nC» time. 

358 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



We then describe a double scaling algorithm that combines the features of both 
cost and capacity scaling. This algorithm works with two nested loops. In the outer 
loop we scale the costs, and in the inner loop we scale the capacities. Introducing 
capacity scaling as an inner loop within a cost scaling approach permits us to find 
augmenting paths very efficiently. This resulting double scaling algorithm solves the 
minimum cost flow problem in O(nm log U 10g(nC» time. 

All of these algorithms require polynomial time; they are not, however, strongly 
polynomial time because their time bounds depend on log U and/or log C. Developing 
strongly polynomial-time algorithms seems to require a somewhat different ap
proach. Although most strongly polynomial-time algorithms use ideas of data scaling, 
they also use another idea: By invoking the optimality conditions, they are able to 
show that at intermediate steps of the algorithm, they have already discovered part 
of the optimal solution (e.g., optimal flow), so that they are able to reduce the problem 
size. In Sections 10.5, 10.6, and 10.7 we consider three different strongly polynomial
time algorithms whose analysis invokes this "problem reduction argument." 

In Section 10.5 we analyze the minimum mean cycle-canceling algorithm that 
we described in Section 9.6. Recall that this algorithm augments flow at each step 
on a cycle with the smallest average cost, averaged over the number of arcs in the 
cycle, until the residual network contains no negative cost cycle; at this point, the 
current flow is optimal. As we show in this section, we can view this algorithm as 
finding a sequence of improved approximately optimal solutions (in the sense that 
the reduced cost of every arc is greater than or equal to - E, with E decreasing 
throughout the algorithm). This algorithm has the property that if the magnitude of 
the reduced cost of any arc is sufficiently large (as a function of E), the flow on that 
arc remains fixed at its upper or lower bound throughout the remainder of the al
gorithm and so has this value in the optimal solution~ This property permits us to 
show that the algorithm fixes the flow on an arc and does so sufficiently often so 
that we obtain an O(n2m 3 log n) time algorithm for the capacitated minimum cost 
flow problem. One interesting characteristic of this algorithm is that it does not 
explicitly monitor E or explicitly fix the flow variables. Thes~Jeatures of the algo
rithm are by-products of the analysis. 

The strongly polynomial-time algorithm that we consider in Section 10.6 solves 
the linear programming dual of the minimum cost flow problem. This repeated ca
pacity scaling algorithm is a variant of the capacity scaling algorithm that we discuss 
in Section 10.2. This algorithm uses a scaling parameter A as in the capacity scaling 
algorithm, but shows that periodically the flow on some arc (i,j) becomes sufficiently 
large (as a function of A), at which point we are able to reduce the size of the dual 
linear program by one, which is equivalent to contraction in the primal network. 
This observation permits us to reduce the size of the problem successively by con
tracting nodes. The end result is an algorithm requiring O((m2 log n)(m + n log n» 
time for the minimum cost flow problem. 

In Section 10.7 we consider an enhanced scaling algorithm that is a hybrid 
version of the capacity scaling algorithm and the repeated capacity scaling algorithm. 
By choosing a scaling parameter A carefully and by permitting a somewhat broader 
choice of the augmenting paths at each step, this algorithm is able to fix variables 
more quickly than the repeated capacity scaling algorithm. As a consequence, it 

Sec. 10.1 Introduction 359 



solves fewer shortest path problems and solves capacitated minimum cost flow prob
lems in O((m log n)(m + n log n»time, which is currently the best known polynomial
time bound for solving the capacitated minimum cost flow problem. 

10.2 CAPACITY SCALING ALGORITHM 

In Chapter 9 we considered the successive shortest path algorithm, one of the fun
damental algorithms for solving the minimum cost flow problem. An inherent draw
back of this algorithm is that its augmentations might carry relatively small amounts 
of flow, resulting in a fairly large number of augmentations in the worst case. By 
incorporating a scaling technique, the capacity algorithm described in this section 
guarantees that each augmentation carries sufficiently large flow and thereby reduces 
the number of augmentations substantially. This method 'permits us to improve the 
worst-case algorithmic performance from O(nU . Sen, m, nC» to oem log U . sen, 
m, nC». [Recall that U is an upper bound on the largest supply/demand and larg
est capacity in the network, and Sen, m, C) is the time required to solve a shortest 
path problem with n nodes, m arcs, and nonnegative costs whose values are no 
more than C. The reason that the running time involves Sen, m, nC) rather than 
Sen, m, C) is that the costs in the residual network are reduced costs, and the re-
duced cost of an arc could be as large as nC.] . 

The capacity scaling algorithm is a variant of the successive shortest path 
algorithm. It is related to the successive shortest path algorithm, just as the capacity 
scaling algorithm for the maximum flow problem (discussed in Section 7.3) is related 
to the labeling algorithm (discussed in Section 6.5). Recall that the labeling algorithm 
performs'O(nU) augmentations; by sending flows along paths with sufficiently large 

-;'residual capacities, the capacity scaling algorithm reduces the number of augmen
tations to Oem log U). In a similar fashion, the capacity scaling algorithm for the 
minimum cost flow problem ensures that each shortest path augmentation carries a 
sufficiently large amount of flow; this modification to the algorithm reduces the 
number of successive shortest path iterations from O(nU) to Oem log U). This 
algorithm not only improves on the algorithmic performance of the successive short
est path algorithm, but also illustrates how small changes in an algorithm can produce 
significant algorithmic improvements (at least in the worst case). 

The capacity scaling algorithm applies to the general capacitated minimum cost 
flow problem. It uses a pseudoflow x and the imbalances e(i) as defined in Section 
9.7. The algorithm maintains a pseudoflow satisfying the reduced cost optimality 
condition and gradually converts this pseudoflow into a flow by identifying shortest 
paths from nodes with excesses to nodes with deficits and augmenting flows along 
these paths. It performs a number of scaling phases for different values of a parameter 
.1. We refer to a scaling phase with a specific value of .1 as the .1-scaling phase. 
Initially, .1 = 2l1og 

U J. The algorithm ensures that in the .1-scaling phase each aug
mentation carries exactly .1 units of flow. When it is not possible to do so because 
no node has an excess of at least .1, or no node has a deficit of at least .1, the 
algorithm reduces the value of.1 by a factor of2 and repeats the process. Eventually, 
.1 = 1 and at the end of this scaling phase, the solution becomes a flow. This flow 
must be an optimal flow because it satisfies the reduced cost optimality condition. 

360 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



For a given value of Ll, we define two sets SeLl) and T(Ll) as follows: 

SeLl) = {i : e(i) 2:: Ll}, 

T(Ll) = {i : e(i) :5 - Ll}. 

In the Ll-scaling phase, each augmentation must start at a node in SeLl) and 
end at a node in T(Ll). Moreover, the augmentation ~ust take place on a path along 
which every arc has residual capacity of at least Ll. Therefore, we introduce another 
definition: The Ll-residual network G(x, Ll) is defined as the subgraph of G(x) con
sisting of those arcs whose residual capacity is at least Ll. In the Ll-scaling phase, 
the algorithm augments flow from a node in S (Ll) to a node in T( Ll) along a shortest 
path in G(x, Ll). The algorithm satisfies the property that every arc in G(x, Ll) satisfies 
the reduced cost optimality condition; however, arcs in G(x) but not in G(x, Ll) 
might violate the reduced cost optimality condition. Figure 10.1 presents an algo
rithmic description of the capacity scaling algorithm. 

Notice that the capacity scaling algorithm augments exactly Ll units of flow in 
the Ll-scaling phase, even though it could augment more. For uncapacitated prob
lems, this tactic leads to the useful property that all arc flows are always an integral 
multiple of Ll. (Why might capacitated networks not satisfy this property?) Several 
variations of the capacity scaling algorithm discussed in Sections 10.5 and 14.5 adopt 
the same tactic. 

To establish the correctness of the capacity scaling algorithm, observe that the 
2Ll-scaling phase ends when S(2Ll) = <I> or T(2Ll) = <1>. At that point, either e(i) < 
2Ll for all i E Nor e(i) > - 2Ll for all i E N. These conditions imply that the sum 
of the excesses (whose magnitude equals the sum of deficits) is bounded by 2n Ll .. > 

algorithm capacity scaling; 
begin 

x: = 0 and 'IT : = 0; 
Ll : = 21109 uJ; 

while Ll 2: 1 
begin {Ll-scaling phase} 

for every arc (i, j) in the residual network G(x) do 
if 'Ij 2: Ll and c]J < 0 then send 'Ij units of flow along arc (i, j), 

update x and the imbalances e(·); 
S(Ll) : = {i EN: e(i) 2: Ll}; 
T(Ll) : = {i EN: e(i) s: - Ll}; 
while S(Ll) ;6.0and T(Ll) ;6.0do 
begin 

select a node k E S(Ll) and a node IE T(Ll); 
determine shortest path distances d(·) from node k to all other nodes in the 

Ll-residual network G(x, Ll) with respect to the reduced costs c1J; 
let P denote shortest path from node k to node I in G(x, Ll); 
update 'IT : = 'IT - d; 
augment Ll units of flow along the path P; 
update x, S(Ll), T(Ll), and G(x, Ll); 

end; 
Ll : = Ll/2; 

end; 
end; 

Figure 10.1 Capacity scaling algorithm. 

Sec. 10.2 Capacity Scaling Algorithm 361 



At the beginning of the A-scaling phase, the algorithm first checks whether every 
arc (i, j) in A-residual network satisfies the reduced cost optimality condition ciJ ::::: 
O. The arcs introduced in the A-residual network at the beginning of the A-scaling 
phase [i.e., those arcs (i, j) for which .:l :::; rij < 2A] might not satisfy the optimality 
condition (since, conceivably, ciJ < 0). Therefore, the algorithm immediately sat
urates those arcs (i, j) so that they drop out of the residual network; since the reversal 
of these arcs (j, i) satisfy the condition cJ'i = - ciJ > 0, they satisfy the optimality 
condition. Notice that because rij < 2A, saturating any such arc (i, j) changes the 
imbalance of its endpoints by at most 2A. As a result, after we have saturated all 
the arcs violating the reduced cost optimality condition, the sum of the excesses is 
bounded by 2nA + 2mA = 2(n + m)A. 

In the A-scaling phase, each augmentation starts at a node k E SeA), terminates 
at a node I E T(A), and carries at least A units of flow. Note that Assumption 9.4 
implies that the A-residual network contains a directed path from node k to node I, 
so we always succeed in identifying a shortest path from node k to node I. Augmenting 
flow along a shortest path in G(x, A) preserves the property that every arc satisfies 
the reduced cost optimality condition (see Section 9.3). When either SeA) or T(A) 
is empty, the A-scaling phase ends. At this point we divide A by a factor of 2 and 
start a new scaling phase. Within O(log U) scaling phases, A = 1, and by the in
tegrality of data, every node imbalance will be zero at the end of this phase. In this 
phase G(x, A) == G(x) and every arc in the residual network satisfies the reduced 
cost optimality condition. Consequently, the algorithm will obtain a minimum cost 
flow at the end of this scaling phase. 

As we have seen, the capacity scaling algorithm is easy to state. Similarly, its 
running time is easy to analyze. We have noted previously that in the A-scaling phase 
the sum of the excesses is bounded by 2(n + m)A. Since each augmentation in this 
phase carries at least A units of flow from a node in SeA) to a node in T(A), each 
augmentation reduces the sum of the excesses by at least A units. Therefore, a scaling 
phase can perform at most 2(n + m) augmentations. Since we need to solve a shortest 
path problem to identify each augmenting path, we have established the following 
result. 

Theorem 10.1. The capacity scaling algorithm solves the minimum cost flow 
problem in Oem log U Sen, m, nC» time. • 

10.8 COST SCALING ALGORITHM 

In this section we describe a cost scaling algorithm for the minimum cost flow prob
lem. This algorithm can be viewed as a generalization of the preflow-push algorithm 
for the maximum flow problem; in fact, the algorithm reveals an interesting rela
tionship between the maximum flow and minimum cost flow problems. This algo
rithm relies on the concept of approximate optimality. 

Approximate Optimality 

A flow x or a pseudoflow x is said to be E-optimal for some E > 0 if for some node 
potentials 1T, the pair (x, 1T) satisfies the following E-optimality conditions: 

362 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



If clJ > E, then Xij = O. 

If - E :5 clJ :5 E, then 0 :5 Xij :5 Uij. 

If clJ < - E, then Xij = Uij. 

(10.Ia) 

(to.lb) 

(to.lc) 

These conditions are relaxations of the (exact) complementary slackness op
timality conditions (9.8) that we discussed in Section 9.3; note that these conditions 
reduce to the complementary slackness optimality conditions when E = O. The exact 
optimality conditions (9.8) imply that any combination of (Xij, clJ) lying on the thick 
lines shown in Figure IO.2(a) is optimal. The E-optimality conditions (10.1) imply 
that any combination of (Xij, clJ) lying on the thick lines or in the hatched region in 
Figure 1O.2(b) is E-optimal. 

t 
cij 

o 

t 
eij 

(a) (b) 

Figure 10.2 Illustrating the optimality condition for arc (i, j): (a) exact optimality 
condition for arc (i, j); (b) EO-optimality condition for arc (i, j). 

The E-optimality conditions assume the following simpler form when stated in 
terms of the residual network G(x): A flow x or a pseudoflow x is said to be E-optimal 
for some E > 0 if x, together with some node potential vector 1T, satisfies the following 
E-optimality conditions (we leave the proof as an exercise for the reader): 

clf 2: -E for every arc (i, j) in the residual network G(x). (10.2) 

Lemma 10.2. For a minimum cost flow problem with integer costs, any fea
sible flow is E-optimal whenever E 2: C. Moreover, if E < lin, then any E-optimal 
feasible flow is an optimal flow. 

Proof. Let x be any feasible flow and let 1T = O. Then clJ = cij 2: - C for every 
arc (i, j) in the residual network G(x). Therefore, x is E-optimal for E = C. 

Now consider an E-optimal flow x with E < lin. Suppose that x is E-optimal 
with respect to the node potentials 1T and that W is a directed cycle in G(x). The con
dition (10'2) implies that LU,j)EW cij 2: -En> -1, because E < lin. The integrality 
of the costs implies that LU,j)EW clJ is nonnegative. But notice that LU,j)EW cIi = 

LU,j)EW (Cij - 1T(i) + 1T(j» = LU,j)EW Cij' Therefore, W cannot be a negative cost 

Sec. 10.3 Cost Scaling Algorithm 363 



cycle. Since G(x) cannot contain any negative cycle, x must be optimal (from 
Theorem 9.1). • 

Algorithm 

The cost scaling algorithm treats E as a parameter and iteratively obtains E-optimal 
flows for successively smaller values of E. Initially, E = C and any feasible flow is 
E-optimal. The algorithm then performs cost scaling phases by repeatedly applying 
an improve-approximation procedure that transforms an E-optimal flow into a 
4 E-optimal flow. Mter 1 + pog(nC)l cost scaling phases, E < lin and the algorithm 
terminates with an optimal flow. Figure 10.3 provides a more formal statement of 
the cost scaling algorithm. 

algorithm cost scaling; 
begin 

'IT : = 0 and E : = C; 
let x be any feasible flow; 
while E 2: 1/n do 
begin 

improve-approximation(E, x, 'IT); 
E : = El2; 

end; 
x is an optimal flow for the minimum cost flow problem; 

end; Figure 10.3 Cost scaling algorithm. 

The improve-approximation procedure transforms an E-optimal flow into a 
4 E-optimal flow. It does so by (1) converting the E-optimal flow into arE-optimal 
pseudoflow, and (2) then gradually converting the pseudoflow into a flow while 
always maintaining 4 E-optimality of the solution. We refer to a node i with e(i) > 0 
as active and say that an arc (i, j) in the residual network is admissible if - 4 E :5 

cij < O. The basic operation in the procedure is to select an active node i and perform 
pushes on admissible arcs (i, j) emanating from node i. When the network contains 
no admissible arc, the algorithm updates the node potential 7r(i). Figure 10.4 sum
marizes the essential steps of the generic version of the improve-approximation 
procedure. 

Recall that rij denotes the residual capacity of an arc (i, j) in G(x). As in our 
earlier discussion of preflow-push algorithms for the maximum flow problem, if 
8 = rij, we refer to the push as saturating; otherwise, it is nonsaturating. We also 
refer to the updating of the potential of a node as a relabel operation. The purpose 
of a relabel operation at node i is to create new admissible arcs emanating from this 
node. 

We illustrate the basic operations of the improve-approximation procedure on 
a small numerical example. Consider the residual network shown in Figure 10.5(a). 
Let E = 8. The current pseudoflow is 4-optimal. Node 2 is the only active node in 
the network, so the algorithm selects it for push/relabel. Suppose that arc (2, 4) is 
the first admissible arc found. The algorithm pushes min{e(2), r24} = min{30, 5} = 

5 units of flow on arc (2, 4); this push saturates the arc. Next the algorithm identifies 
arc (2, 3) as admissible and pushes min{e(2), r23} = min{25, 30} = 25 units on this 
arc. This push is nonsaturating; after the algorithm has performed this push, node 

364 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



procedure improve-approximation(E, x, 'IT); 
begin 

for every arc (i, j) E A do 
if clJ > 0 then Xlj : = 0 
else if clJ < 0 then Xlj : = Ulj; 

compute node imbalances; 
while the network contains an active node do 
begin 

select an active node i; 
pushlre/abe/( i); 

end; 
end; 

(a) 

procedure pushlre/abe/(i); 
begin 

if G(x) contains an admissible arc (i, j) then 
push 1) : = min{e(i), rlj} units of flow from node i to node j; 

else 'IT(i) : = 'IT(i) + El2; 
end; 

(b) 

Figure 10.4 Procedures of the cost scaling algorithm. 

2 is inactive and node 3 is active. Figure 1O.5(b) shows the residual network at this 
point. 

In the next iteration, the algorithm selects node 3 for push/relabel. Since no 
admissible arc emanates from this node, we perform a relabel operation and increase 
the node's potential by E/2 = 4 units. This potential change decreases die reduced 
costs of the outgoing arcs, namely, (3, 4) and (3, 2), by 4 units and increases the 
reduced costs of the incoming arcs, namely (1, 3) and (2, 3), by-4 units [see Figure 
10.5(c)]. The relabel operation creates an admissible arc, namely arc (3, 4), and we 
next perform a push of 15 units on this arc [see Figure 10.5(d)]. Since the current 
solution is a flow, the improve-approximation procedure terminates. 

To identify admissible arcs emanating from node i, we use the same data struc
ture used in the maximum flow algorithms described in Section 7.4. For each node 
i, we maintain a current-arc (i, j) which is the current candidate to test for admis
sibility. Initially, the current-arc of node i is the first arc in its arc list A(i). To 
determine an admissible arc emanating from node i, the algorithm checks whether 
the node's current-arc is admissible, and if not, chooses the next arc in the arc list 
as the current-arc. Thus the algorithm passes through the arc list starting with the 
current-arc until it finds an admissible arc. If the algorithm reaches the end of the 
arc list without finding an admissible arc, it declares that the node has no admissible 
arc. At this point it relabels node i and again sets its current-arc to the first arc in 
A(i). 

We might comment on two practical improvements of the improve-approxi
mation procedure. The algorithm, as stated, starts with E = C and reduces E by a 
factor of 2 in every scaling phase until E lin. As a consequence, E could become 

Sec. 10.3 Cost Scaling Algorithm 365 



e(i) 
(cij, r i} 

e(j) • ·0 
30 0 

,,0 
\(",' 

~ 
'-!J 

,,0 
\(",' 

C? 
'-!J 

0 (-1,30) -20 0 (-1,5) (1,25) -15 

C? ~ 
C? ",0 '<0 0' 
'<0 0' 

-10 15 

(a) (b) 

0 0 

,,\.')1 
C? 

\(",' '-!J 
(3,5) 

0 (-3,25) -15 0 0 

(is ",0 (is 

'<0 
\("" 

'<0 

15 0 

(c) (d) 

Figure 10.5 Illustration of push/relabel steps. 

nonintegral during the execution of the algorithm. By slightly modifying the algo
rithm, however, we can ensure that E remains integral. We do so by multiplying all 
the arc costs by n, by setting the initial value of E equal to 2 f1og(nC)1, and by terminating 
the algorithm when E < 1. It is possible t<;> show (see Exercise 10.7) that the modified 
algorithm would yield an optimal flow for the minimum cost flow problem in the 
same computational time. Furthermore, as stated, the algorithm increases a node 
potential by E/2 during a relabel operation. As described in Exercise 10.8, we can 
often increase the node potential by an amount larger than E/2. 

Analysis of the Algorithm 

We show that the cost scaling algorithm correctly solves the minimum cost flow 
problem. In the proof, we rely on the fact that the improve-approximation procedure 
converts an E-optimal flow into an E/2-optimal flow. We esta:blish this result in the 
following lemma. 

Lemma 10.3. The improve-approximation procedure always maintains! E

optimality of the pseudo flow , and at termination yields a ! E-optimal flow. 

366 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



Proof. We use induction on the number of pushes and relabels. At the beginning 
of the procedure, the algorithm sets the flows on arcs with negative reduced costs 
to their capacities, sets the flow on arcs with positive reduced costs to zero, and 
leaves the flow on arcs with zero reduced costs unchanged. The resulting pseudoflow 
satisfies (10.1) for E = 0 and thus is O-optimal. Since a O-optimal pseudoflow is 
E-optimal for every E, the resulting flow is also ! E-optimal. 

We next study the effect of a push on the! E-optimality of the solution. Pushing 
flow on arc (i, j) might add its reversal (j, i) to the residual network. But since 
- E/2 :5 cij < 0 (by the criteria of admissibility), c J'i = - cij > 0, and so this arc 
satisfies the! E-optimality condition (10.2). 

What is the effect of a relabel operation? The algorithm relabels a node i when 
cij 2: 0 for every arc (i, j) emanating from node i in the residual network. Increasing 
the potential of node i by E/2 units decreases the reduced cost of all arcs emanating 
from node i by E/2 units. But since cij 2: 0 before the increase in 1T, cij 2: - E/2 after 
the increase, and the arc satisfies the ! E-optimality condition. Furthermore, in
creasing the potential of node i by E/2 units increases the reduced costs of the in
coming arcs at node i but maintains the! E-optimality condition for these arcs. These 
results establish the lemma. • 

We next analyze the complexity of the improve-approximation procedure. We 
show that the number of relabel operations is O(n2

), the number of saturating pushes 
is O(nm), and the number of non saturating pushes for the generic version is O(n 2m). 
These time bounds are comparable to those of the preflow-push algorithms for the 
maximum flow problem and the proof techniques are also similar. We first prove 
the most significant result, which bounds the number of relabel operations. 

Lemma 10.4. No node potential increases more than 3n times during an ex
ecution of the improve-approximation procedure. 

Proof. Let x be the current ! E-optimal pseudoflow and x I be the E-optimal 
flow at the end of the previous cost scaling phase. Let 1T and 1T' be the node potentials 
corresponding to the pseudoflow x and the flow x'. It is possible to show (see Ex
ercise 10.9) that for every node v with an excess there exists a node w with a deficit 
and a sequence of nodes v = VO, VI, V2, ••• , VI = w that satisfies the property that 
the path P = Vo - VI - V2 - ••• - VI is a directed path in G(x) and its reversal 
P = VI - VI_I - .,. - VI - Vo is a directed path in G(x ' ). Applying the! E-optimality 
condition to the arcs on the path P in G(x), we see that 

~ cij 2: -1(E/2). 
(i,j)EP 

Substituting cij = Cij - 1T(i) + 1T(j) in this expression gives 

~ Cij - 1T(V) + 1T(W) 2: -1(E/2). 
(i,j)EP 

Alternatively, 

1T(V) :5 1T(W) + I(E/2) + ~ Cij' 
(i,j)EP 

Sec. 10.3 Cost Scaling Algorithm 

(10.3) 

367 



Applying the E-optimality conditions to the arcs on the path P in G(x'), we 
obtain L(j,i)EP cJf ;;:: -IE. Substituting Cft' = Cji - 'IT'(j) + 'IT'(i) in this expression 
gives 

L _ Cji - 'IT'(w) + 'IT'(v) ;;:: -IE. (10.4) 
(j,i)EP 

Notice that L(j,i)EP Cji = - LUJ)EP Cij since P is a reversal of P. In view of this 
fact, we can restate (10.4) as 

L Cij::; IE - 'IT'(w) + 'IT' (v). (10.5) 
U,j)EP 

Substituting (10.5) in (10.3), we see that 

('IT (v) - 'IT'(v)) ::; ('IT(w) - 'IT'(w)) + 31E/2. (10.6) 

Now we use the facts that (1) 'IT(w) = 'IT'(w) (the potential of a node with 
negative imbalance does not change because the algorithm never selects it for push! 
relabel), (2) I ::; n, and (3) each increase in the potential increases 'IT(v) by at least 
E/2 units. These facts and expression (10.6) establish the lemma. • 

Lemma 10.5. The improve-approximation procedure performs O(nm) satu
rating pushes. 

Proof We show that between two consecutive saturations of an arc (i, j), the 
procedure must increase both the potentials 'IT(i) and 'IT(j) at least once. Consider a 
saturating push on arc (i, j). Since arc (i, j) is admissible at the time of the push, 
cij < O. Before the algorithm can saturate this arc again, it must send some flow 
back from node j to node i. At that time Cft < 0 or cij > O. These conditions are 
possible only if the algorithm has relabeled node j. In the subsequent saturation of 
arc (i, j), cij < 0, which is possible only if the algorithm has relabeled node i. But 
by the previous lemma the improve-approximation procedure can relabel any node 
O(n) times, so it can saturate any arc O(n) times. Consequently, the number of 
saturating pushes is O(nm). • 

To bound the number of nonsaturating pushes, we need one more result. We 
define the admissible network of a given residual network as the network consisting 
solely of admissible arcs. For example, Figure 10.6(b) specifies the admissible net
work for the residual network given in Figure 10.6(a). 

Lemma 10.6. The admissible network is acyclic throughout the improve
approximation proceaure. 

Proof We show that the algorithm satisfies this property at every step. The 
result is true at the beginning of the improve-approximation procedure because the 
initial pseudoflow is O-optimal and the residual network contains no admissible arc. 
We show that the result remains valid throughout the procedure. We always push 
flow on arc (i, j) with cij < 0; therefore, if the algorithm adds the reversal (j, i) of 
this arc to the residual network, then cJI > 0 and so the reversal arc is nonadmissible. 
Thus pushes do not create new ad.mi.ssible arcs and the admissible network remains 
acyclic. The relabel operation at node i decreases the reduced costs of all outgoing 

368 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



-5 

-2 

-3 

(b) 

Figure 10.6 Illustration of an admissible network: (a) residual network; 
(b) admissible network. 

-1 

-2 

arcs at node i by E/2 units and might create new admissible arcs. This relabel operation 
increases the reduced costs of all incoming arcs at node i by E/2 units, so all such 
arcs become inadmissible. Consequently, the relabel operation cannot create any 
directed cycle passing through node i. Thus neither of the two operations, pushes 
and relabels, of the algorithm can create a directed cycle, which establishes the 
lemma. • 

Lemma 10.7. The improve-approximation procedure performs O(n 2 m) non
saturating pushes. 

Proof We use a potential function argument to prove the lemma. Let g(i) be 
the number of nodes that are reachable from node i in the admissible network and 
let <I> = Li is active g(i) be the potential function. We assume that every node is 
reachable from itself. For example, in the admissible network shown in Figure 10.7, 
nodes 1 and 4 are the only active nodes. In this network, nodes. 1 , 2, 3, 4, and 5 are 
reachable from node 1, and nodes 4 and 5 are reachable from node 4. Therefore, 
g(1) = 5, g(4) = 2, and <I> = 7. 

At the beginning of the procedure, <I> ::; n since the admissible network contains 

-1 

40 

Sec. 10.3 Cost Scaling Algorithm 

Figure 10.7 Admissible network for 
E = 8. 

369 



no arc and each g(i) = 1. After a saturating push on arc (i, j), nodej might change 
its state from inactive to active, which would increase <I> by g(j) :5 n. Therefore, 
Lemma 10.5 implies that the total increase due to saturating pushes is 0(n2 m). A 
relabel operation of node i might create new admissible arcs (i, j) and will increase 
g(i) by at most n units. But this relabel operation does not increase g(k) for any 
other node k because it makes all incoming arcs at node k inadmissible (see the proof 
of Lemma 10.6). Thus the total increase due to all relabel operations is 0(n3 ). 

Finally, consider the effect on <I> of a nonsaturating push on arc (i, j). As a 
result of the push, node i becomes inactive and node j might change its ~tatus from 
inactive to active. Thus the push decreases <I> by g(i) units and might increase it by 
another g(j) units. Now notice that g(i) 2: g(j) + 1 because every node that is 
reachable from node j is also reachable from node i but node i is not reachable from 
nodej (because the admissible network is acyclic). Therefore, a nonsaturating push 
decreases <I> by at least 1 unit. Consequently, the total number of nonsaturating 
pushes is bounded by the initial value of <I> plus the total increase in <I> throughout 
the algorithm, which is O(n) + 0(n2 m) + 0(n3

) = 0(n2 m). This result establishes 
the lemma. • 

Let us summarize our discussion. The improve-approximation procedure re
quires 0(n2 m) time to perform nonsaturating pushes and O(nm) time to perform 
saturating pushes. The amount of time needed to identify admissible arcs is 
O(LiEN I A(i) I n) = O(nm), since between two consecutive potential increases of 
a node i, the algorithm will examine I A(i) I arcs for testing admissibility. The al
gorithm could store all the active nodes in a list. Doing so would permit it to identify 
an active node in 0(1) time, so this operation would not be a bottleneck step. Con
sequently, the improve-approximation procedure runs in 0(n2 m) time. Since the 
cost scaling algorithm calls this procedure 1 + pog(nC)l times, we obtain the fol
lowing result. 

Theorem 10.8. The generic cost scaling algorithm runs in 0(n2 m 10g(nC)) 
time. • 

The cost scaling algorithm illustrates an important connection between 
the maximum flow and the minimum cost flow problems. Solving an improve
approximation problem is very similar to solving a maximum flow problem by the 
preflow-push method. Just as in the preflow-push algorithm, the bottleneck opera
tion in the procedure is the number of nonsaturating pushes. In Chapter 7 we have 
seen how to reduce the number of nonsaturating pushes for the preflow-push 
algorithm by examining active nodes in some specific order. Similar ideas permit us 
to streamline the improve-approximation procedure as well. We describe one such 
improvement, called the wave implementation, that reduces the number of nonsat
urating pushes from 0(n 2 m) to 0(n3

). 

Wave Implementation 

Before we describe the wave implementation, we introduce the concept of node 
examination. In an iteration of the improve-approximation procedure, the algorithm 
selects a node, say node i, and either performs a saturating push or a nonsaturating 

370 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



push from this node, or relabels the node. If the algorithm performs a saturating 
push, node i might still be active, but the algorithm might select another node in the 
next iteration. We shall henceforth assume that whenever the algorithm selects a 
node, it keeps pushing flow from that node until either its excess becomes zero or 
the node becomes relabeled. If we adopt this node selection strategy, the algorithm 
will perform several saturating pushes from a particular node followed either by a 
nonsaturating push or a relabel operation; we refer to this sequence of operations 
as a node examination. 

The wave implementation is a special implementation of the improve-approx
imation procedure that selects active nodes for push/relabel steps in a specific order. 
The algorithm uses the fact that the admissible network is acyclic. In Section 3.4 
we showed that it is always possible to order nodes of an acyclic network so that 
for every arc (i, j) in the network, node i occurs prior to node j. Such an ordering 
of nodes is called a topological ordering. For example, for the admissible network 
shown in Figure 10.6, one possible topological ordering of nodes is 1-2-5-4-3-6. 
In Section 3.4 we showed how to arrange the nodes of a network in a topological 
order in Oem) time. For a given topological order, we define the rank of a node as 
n minus its number in the topological sequence. For example, in the preceding 
example, rank(1) = 6, rank(6) = 1 and rank(5) = 4. 

Observe that each push carries flow from a node with higher rank to a node 
with lower rank. Also observe that pushes do not change the topological ordering 
of nodes since they do not create new admissible arcs. The relabel operations, how
ever, might create new admissible arcs and consequently, might affect the topological 
ordering of nodes. 

The wave implementation sequentially examines nodes in the topological order 
and if the node being examined is active, it performs push/relabel steps at the node 
until either the node becomes inactive or it becomes relabeled. When examined in 
this order, the active nodes push their excesses to nodes with lower rank, which in 
turn push their excesses to nodes with even lower rank, and so on. A relabel op
eration changes the topological order; so after each relabel operation the algorithm 
modifies the topological order and again starts to examine nodes according to the 
topological order. If within n consecutive node examinations, the algorithm performs 
no relabel operation, then at this point all the active nodes have discharged their 
excesses and the algorithm has obtained a flow. Since the algorithm performs O(n2

) 

relabel operations, we immediately obtain a bound of O(n3) on the number of node 
examinations. Each node examination entails at most one nonsaturating push. Con
sequently, the wave algorithm performs O(n3) nonsaturating pushes per execution 
of improve-approximation. 

To illustrate the wave implementation, we consider the pseudoflow shown in 
Figure 10.8. One topological order of nodes is 2-3-4-1-5-6. The algorithm first 
examines node 2 and pushes 20 units of flow on arc (2, 1). Then it examines node 
3 and pushes 5 units of flow on arc (3,1) and 10 units of flow on arc (3, 4). The push 
creates an excess of 10 units at node 4. Next the algorithm examines node 4 and 
sends 5 units on the arc (4, 6). Since node 4 has an excess of 5 units but has no 
outgoing admissible arc, we need to relabel node 4 and reexamine all nodes in the 
topological order starting with the first node in the order. 

To complete the description of the algorithm, we need to describe a procedure 

Sec. 10.3 Cost Scaling Algorithm 371 



e(i) e(j) 

G rij 

»0 
0 -25 

30 
»5. CD 

/ 10 

20 2 5 

5 

3 4 
15 Figure 10.8 Example to illustrate the 

10 0 wave implementation. 

for obtaining a topological order of nodes after each relabel operation. We can use 
an O(m) algorithm to determine an initial topological ordering of the nodes (see 
Section 3.4). Suppose that while examining node i, the algorithm relabels this node. 
At this point, the network contains no incoming admissible arc at node i. We claim 
that if we move node i from its present position to the first position in the previous 
topological order leaving all other nodes intact, we obtain a topological order of the 
new admissible network. For example, for the admissible network given in Figure 
10.8, one topological order of the nodes is 2-3-4-1-5-6. If we examine nodes in 
this order, the algorithm relabels node 4. Mter the algorithm has performed this 
relabel operation, the modified topological order of nodes is 4-2-3-1-5-6. This 
method works because (1) after the relabeling, node i has no incoming admissible 
arc, so assigning it to the first place in the topological order is justified; (2) the 
relabeling of node i might create some new outgoing admissible arcs (i, j) but since 
node i is first in the topological order, any such arc satisfies the conditions of a 
topological ordering; and (3) the rest of the admissible network does not change, so 
the previous order remains valid. Therefore, the algorithm maintains an ordered set 
of nodes (possibly as a doubly linked list) and examines nodes in this order. Whenever 
it relabels a node i, the algorithm moves this node to the first place in the order and 
again examines nodes in order starting from node i. 

We have established the following result. 

Theorem 10.9. The wave implementation of the cost scaling algorithm solves 
the minimum cost flow problem in O(n 3 10g(nC)) time. • 

By examining the active nodes carefully and thereby reducing the number of 
nonsaturating pushes, the wave implementation improves the running time of the 
generic implementation of the improve-approximation procedure from O(n 2 m) to 
O(n 3

). A complementary approach for improving the running time is to use cleverer 
data structure to reduce the time per nonsaturating push. Using the dynamic tree 
data structures described in Section 8.5, we can improve the running time of the 
generic implementation to O(nm log n) and of the wave implementation to O(nm 
log(n 2/m)). The references cited at the end ofthe chapter contain the details ofthese 
implementations. 

372 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



10.4 DOUBLE SCALING ALGORITHM 

As we have seen in the preceding two sections, by scaling either the arc capacities 
or the cost coefficients of a minimum cost flow problem, we can devise algorithms 
with improved worst-case performance. This development raises a natural question: 
Can we combine ideas from these algorithms to obtain even further improvements 
that are not obtained by either technique alone? In this section we provide an af
firmative answer to this question. The double scaling algorithm we describe solves 
the capacitated minimum cost flow problem in O(nm log U 10g(nC)) time. When 
implemented using a dynamic tree data structure, this approach produces one of the 
best polynomial time algorithms for solving the minimum cost flow problem. 

In this discussion we assume that the reader is familiar with the capacity scaling 
algorithm and the cost scaling algorithm that we examined in the preceding two 
sections. To solve the capacitated minimum cost flow problem, we first transform 
it into an uncapacitated transportation problem using the transformation described 
in Section 2.4. We assume that every arc in the minimum cost flow problem is 
capacitated. Consequently, the transformed network will be a bipartite network 
G = (N1 U N 2 ,A) withN1 andN2 as the sets of supply and demand nodes. Moreover, 
I NI I = n and I N2 I = m. 

The double scaling algorithm is the same as the cost scaling algorithm described 
in the preceding section except that it uses a more efficient version of the improve
approximation procedure. The improve-approximation procedure in the preceding 
section relied on a "pseudoflow-push" method to push flow out of active nodes. A 
natural alternative would be to try an augmenting path based method. This approach 
would send flow from a node with excess to a node with deficit over an admissible 
path (i.e., a path in which each arc is admissible). A straightforward implementation 
of this approach would require O(nm) augmentations since each augmeptation would 
saturate at least one arc and, by Lemma 10.5, the algorithm requires O(nm) arc 
saturations. Since each augmentation requires O(n) time, this approach does not 
appear to improve the O(n 2 m) bound of the generic improve-approximation pro
cedure. 

We can, however, use ideas from the capacity scaling algorithm to reduce the 
number of augmentations to O(m log U) by ensuring that each augmentation carries 
sufficiently large flow. The resulting algorithm performs cost scaling in an "outer 
loop" to obtain E.-optimal flows for successively smaller values of E.. Within each 
cost scaling phase, we start with a pseudoflow and perform a number of capacity 
scaling phases, called a-scaling phases, for successively smaller values of a. In the 
a-scaling phase, the algorithm identifies admissible paths from a node with an excess 
of at least a to a node with a deficit and augments a units of flow over these paths. 
When all node excesses are less than a, we reduce a by a factor of 2 and initiate 
a new a-scaling phase. At the end of the I-scaling phase, we obtain a flow. 

The algorithmic description of the double scaling algorithm is same as that of 
the cost scaling algorithm except that we replace the improve-approximation pro
cedure by the procedure given in Figure 10.9. 

The capacity scaling within the improve-approximation procedure is somewhat 
different from the capacity scaling algorithm described in Section 10.2. The new 
algorithm differs from the one we considered previously in the following respects: 

Sec. 10.4 Double Scaling Algorithm 373 



procedure improve-approximation(E, x, 'IT); 
begin 

set x : = 0 and compute node imbalances; 
'IT(j) : = 'IT(j) + E, for all j E N2 ; 

a: = 2[109 uJ; 
while the network contains an active node do 
begin 

5(.1.) : = {i E N1 U N2 : e(i) ;0,: a}; 
while 5(.1.) ¥.0do 
begin {a-scaling phase} 

select a node k from 5(.1.); 
determine an admissible path P from node k to some node I with e(l) < 0; 
augment a units of flow on path P and update x and 5(.1.); 

end; 
a: = .1./2; 

end; 
end; 

Figure 10.9 Improve-approximation procedure in the double scaling algorithm. 

(1) the augmentation terminates at a node I with e(l) < 0 but whose deficit may not 
be as large as Ll; (2) each residual capacity is an integral mUltiple of Ll because each 
arc flow is an integral mUltiple of Ll and each arc capacity is 00; and (3) the algorithm 
does not change flow on some arcs at the beginning of the Ll-scaling phase to ensure 
that the solution satisfies the optimality conditions. We point out that the algorithm 
feature (3) is a consequence of feature (2) because each rij is a mUltiple of Ll, so 
G(x, Ll) == G(x). 

The double scaling algorithm improves on the capacity scaling algorithm by 
identifying an admissible path in only O(n) time, on average, rather than the time 
O(S(n, m, nC)) required to identify an augmentation path in the capacity scaling 
algorithm. The savings in identifying augmenting paths more than offsets the extra 
requirement of performing O(log(nC)) cost scaling phases in the double scaling al
gorithm. 

We next describe a method for identifying admissible paths efficiently. The 
algorithm identifies an admissible path by starting at node k and gradually building 
up the path. It maintains a partial admissible path P, which is initially null, and 
keeps enlarging it until it includes a node with deficit. We maintain the partial ad
missible path P using predecessor indices [i.e., if (u, v) E P then pred(v) = u]. At 
any point in the algorithm, we perform one of the following two steps, whichever 
is applicable, from the tip of P (say, node i): 

advance(i). If the residual network contains an admissible arc (i, j), add (i, j) 
to P and set pred(j): = i. If e(j) < 0, stop. 
retreat(i). If the residual network does not contain an admissible arc (i, j), 
update 7r(i) to 7r(i) + E/2. If i =? k, remove the arc (pred(i), i) from P so that 
pred(i) becomes its new tip. 

The retreat step relabels (increases the potential of) node i for the purpose of 
creating new admissible arcs emanating from this node. However, increasing the 
potential of node i increases the reduced costs of all the incoming arcs at the node 

374 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



i by E/2. Consequently, the arc (pred(i), i) becomes inadmissible, so we delete this 
arc from P (provided that P is nonempty). 

We illustrate the method for identifying admissible paths on the example shown 
in Figure 10.10. Let E = 4 and Ll = 4. Since node 1 is the only node with an excess 
of at least 4, we begin to develop the admissible path starting from this node. We 
perform the step advance(1) and add the arc (1, 2) to P. Next, we perform the step 
advance(2) and add the arc (2, 4) to P. Now node 4 has no admissible arc. So we 
perform a retreat step. We increase the potential of node 4 by E/2 = 2 units, thus 
changing the reduced cost of arc (2, 4) to 1; so we eliminate this arc from P. In the 
next two steps, the algorithm performs the steps advance(2) and advance(5), adding 
arcs (2, 5) and (5, 6) to P. Since the path now contains node 6, which is a node with 
a deficit, the method terminates. It has found the admissible path 1-2-5-6. 

e(i) e(j) 

0) cij ·0 
0 0 

-1 

~_1 
2 

-1 

-2 
4 

2 -1 

3 5 
-2 

-3 0 
(a) Figure 10.10 Residual network. 

It is easy to show that the double scaling algorithm correctly sol~es the min
imum cost flow problem. At the beginning of the improve-approximation procedure, 
we set x = 0 and the corresponding residual network is the-same as the original 
network. The E-optimality of the solution at the end of the previous scaling phase 
implies that cij ~ - E for all arcs (i, j) E A. Therefore, by adding E to 'IT(j) for each 
j E N 2 , we obtain an ! E-optimal pseudoflow (in fact, it is a O-optimal pseudoflow). 
Like the improve-approximation procedure described in the preceding section, the 
algorithm always augments flow on admissible arcs and relabels a node when it has 
no outgoing admissible arc. Consequently, the algorithm preserves! E-optimality of 
the pseudoflow and at termination yields a ! E-optimal flow. 

We next consider the complexity of the improve-approximation procedure. 
Each execution of the procedure performs (1 + llog U J) capacity scaling phases. 
At the end of the 2Ll-scaling phase, S(2Ll) = <1>. Therefore, at the beginning of the 
Ll-scaling phase, Ll ::; e(i) < 2Ll for each node i E S(Ll). Duringthe Ll-scaling phase, 
the algorithm augments Ll units of flow from a node k in S(Ll) to a node I with 
e(l) < O. The augmentation reduces the excess of node k to a value less than Ll 
and ensures that the imbalance at node I is strictly less than Ll. Consequently, each 
augmentation deletes a node from S(Ll) and after at most I Nt I + I N21 = O(m) 
augmentations, S(Ll) becomes empty and the algorithm begins a new capacity scaling 
phase. The algorithm thus performs a total of O(m log U) augmentations. 

Sec. lOA Double Scaling Algorithm 375 



We next focus on the time needed to identify admissible paths. We first count 
the number of advance steps. Each advance step adds an arc to the partial admissible 
path, and each retreat step deletes an arc from the partial admissible path. Thus we 
can distinguish between two types of advance steps: (1) those that add arcs to an 
admissible path on which the algorithm later performs an augmentation, and (2) those 
that are later canceled by a retreat step. Since the set of admissible arcs is acyclic 
(by Lemma 10.6), after at most 2n advance steps of the first type, the algorithm 
will discover an admissible path and will perform an augmentation (because the 
longest path in the network has 2n nodes). Since the algorithm performs a total of 
O(m log U) augmentations, the number of advance steps of the first type is at 
most O(nm log U). The algorithm performs O(nm) advance steps of the second 
type because each retreat step increases a node potential, and by Lemma lOA, 
node potentials increase O(n(n + m)) = O(nm) times. Therefore, the total number 
of advance steps is O(nm log U). 

The amount of time needed to relabel node~ in Nl is O(n LiEN I AU) D = 
O(nm). The time needed to relabel nodes in N2 is also O(nm) since I N21 = m and 
the degree of each node in N2 is constant (i.e., it is 2). The same arguments show 
that the algorithm requires O(nm) time to identify admissible arcs. We have, there
fore, established the following result. 

Theorem 10.10. The double scaling algorithm solves the minimum cost flow 
problem in O(nm log U 10g(nC)) time. • 

One nice feature of the double scaling algorithm is that it achieves an excellent 
worst-case running time for solving the minimum cost flow problem and yet is fairly 
simple, both conceptually and computationally. 

10.5 MINIMUM MEAN CYCLE-CANCELING ALGORITHM 

The three minimum cost flow algorithms we have discussed in this chapter-the 
capacity scaling algorithm, the cost scaling algorithm, and the double scaling al
gorithm-are weakly polynomial-time algorithms because their running times de
pend on log U and/or log C. Although these algorithms are capable of solving any 
problem with integer or rational data, they are not applicable to problems with ir
rational data. In contrast, the running times of strongly polynomial-time algorithms 
depend only on nand m; consequently, these algorithms are capable of solving 
problems with irrational data, assuming that a computer can perform additions and 
subtractions on irrational data. In this and the next two sections, we discuss several 
strongly polynomial time algorithms for solving any class of minimum cost flow 
problems, including those with irrational data. 

The algorithm discussed in this section is a special case of the cycle-canceling 
algorithm that we discussed in Section 9.6. Because this algorithm iteratively cancels 
cycles (i.e., augments flows along cycles) with the minimum mean cost in the res
idential network, it is known as the (minimum) mean cycle-canceling algorithm. 
Recall from Section 5.7 that the mean cost of a directed cycle W is (Lu,j)EW Cij)/ 
I wi, and that the minimum mean cycle is a cycle with the smallest mean cost in 

376 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



the network. In Section 5.7 we showed how to use dynamic programming algorithm 
to find the minimum mean cycle in O(nm) time. 

The minimum mean cycle-canceling algorithm starts with a feasible flow x in 
the network. At every iteration, the algorithm identifies a minimum mean cycle W 
in G(x). If the mean cost of the cycle W is negative, the algorithm augments the 
maximum possible flow along W, updates G(x), and repeats this process. If the mean 
cost of"W is nonnegative, G(x) contains no negative cycle and x is a minimum cost 
flow, so the algorithm terminates. This algorithm is surprisingly simple to state; even 
more surprisingly, the algorithm runs in strongly polynomial time. 

To establish the wprst-case complexity of the minimum mean cycle-canceling 
algorithm, w~ recall a few facts. In our subsequent discussion, we often use Property 
9.2(b), which states that for any set of node potentials 7T and any directed cycle W, 
the sum of the. cqsts of the arcs in W equals the sum of the reduced costs of the arcs 
in W. We will aIsous\hhe following property concerning sequences of real numbers, 
which is a variant of the geometric improvement argument (see Section 3.3). 

Property 10.11. Let a be a positive integer and let YI, Y2, Y3, ... be a sequence 
of real numbers satisfying the condition Yk+ 1 :5 (1 - lIo.)Yk for every k. Then for 
every value of k, Yk+", :5 Yk12. 

Proof We first rewrite the expression Yk+ 1 :5 (1 - lIo.)Yk as Yk;:::: Yk+ 1 + Yk+ II 
(a - 1). We now use this last expression repeatedly to replace the first term on the 
right-hand side, giving 

Yk ;:::: Yk+ 1 + Yk+ 1/(0. - 1) ;:::: Yk+2 + Yk+ 2/(o. + 1) + Yk+ 1/(0. - 1) 

;:::: Yk+2 + 2Yk+2/(o. - 1) ;:::: Yk+3 + 3Yk+3/(o. - 1) 

;:::: Yk+", + o.Yk+",/(o. - 1) ;:::: 2Yk+"" 

which is the assertion of the property. • 
We divide the worst-case analysis of the minimum mean cycle algorithm into 

two parts: First, we show that the algorithm is weakly polynomial-time; then 
we establish its strong polynomiality. Although the description of the algorithm 
does not use scaling techniques, the worst-cast analysis borrows ideas from the cost 
scaling algorithm that we discussed in Section 10.3. In particular, the notion of 
E-optimality discussed in that section plays a crucial role in its analysis. We 
will show that the flows maintained by the minimum mean cycle-canceling algo
rithm are 'E-optimal flows satisfying the conditions that (1) between any two 
consecutive iterations the value of E either stays the same or decreases; (2) oc
casionally, the value of E strictly decreases; and (3) eventually, E < lin and the 
algorithm terminates (see Lemma 10.2). As we observed in Section 10.3, the cost 
scaling algorithm's explicit strategy is to reduce E from iteration to iteration. Al
though the minimum mean cycle-canceling algorithm also reduces the value of E 
(although periodically, rather than at every iteration), the reduction is very much an 
implicit by-product of the algorithm. 

We first establish a connection between the E-optimality of a flow x and the 

Sec. 10.5 Minimum Mean Cycle-Canceling Algorithm 377 



mean cost of a minimum mean cycle in G(x). Recall that a flow x is E-optimal if for 
some set of node potentials, the reduced cost of every arc is at least - E. Notice 
that any flow x will be E-optimal for many values of E, because a flow that is 
E-optimal is also E'-optimal for all E' 2: E. For any particular set of node potentials 1T, 
we let E"'(X) be the negative of the minimum value of any reduced cost [i.e., 
E"'(X) = -min[cij: (i,j) in G(x)]. Thus cij 2: -E"'(X) and cij = -E'lT(X) for some 
arc (i, j). Thus x is E-optimal for E = E'lT(X). Potentially, we could find a smaller 
value of E by using other values of the node potentials. With this thought in mind, 
we let E(X) = min'lTE"'(x). Note that E(X) is the smallest value of E for which the 
flow x is E-optimal. As additional notation, we let j.1(x) denote the mean cost of 
the minimum mean cycle in G(x). 

Note that since x is E(x)-optimal, conditions (10.2) imply that LU,j)EW cij = 
LU,j)EW cij 2: -E'lT(X) 1 W I. Choosing Was the minimum mean cycle and dividing 
this expression by 1 W I, we see that j.1(x) 2: -E(X). As we have seen, this inequality 
is a simple consequence of the definitions of E-optimality and of the minimum mean 
cycle cost; it uses the fact that if we can bound the reduced cost of every arc around 
a cycle, this same bound applies to the average cost around the cycle. Perhaps 
surprisingly, however, we can obtain a converse result: that is, we can always find 
a set of node potentials so that every arc around the minimum mean cycle has the 
same reduced cost and that this cost equals - E(X). Our next two results establish 
this property. 

Lemma 10.12. Let x be a nonoptimal jlow. Then E(X) = - j.1(x). 

Proof Since our observation in the preceding paragraph shows that E(X) 2: 

- j.1(X) , we only need to show that E(X) ::; - j.1(x). 
Let W be a minimum mean cycle in the residual network G(x), and let j.1(x) 

be the mean cost of this cycle. Suppose that we replace each arc cost Cij by cij = 

Cij - j.1(x). This transformation reduces the mean cost of every directed cycle in 
G(x) by j.1(x) units. Consequently, the minimum mean cost of the cycle W becomes 
zero, which implies that the residual network contains no negative cost cycle. Let 
d' (.) denote the shortest path distances in G(x) from a specified node s to all other 
nodes with cijas the arc lengths. The shortest path optimality conditions imply that 

d' (j) ::; d' (i) + cij = d' (i) + Cij - j.1(x) 

If we let 1TU) = d'U), then (10.7) becomes 

for each arc (i, j) in G(x). (10.7) 

cij 2: j.1(x) for each arc (i, j) in G(x), (10.8) 

which implies that x is ( - j.1(x))-optimal. Therefore, E(X) ::; - j.1(X) , completing the 
proof of the lemma. • 

Lemma 10.13. Let x be any nonoptimaljlow. Then for some set of node po
tentials 1T, cij = j.1(x) = -E(X) for every arc (i,j) in the minimum mean cycle Wof 
G(x). 

Proof Let 1T be defined as in the proof of the preceding lemma; with these 
set of node potentials, the reduced costs satisfy (10.8). The cost of the cycle W 
equals LU,j)EW Cij, which also equals its reduced cost LU,j)EW cij. Con-

378 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



sequently, LU,j)EW clf = lJ.(x) 1 W I· This equation and (10.8) imply that clf = 
lJ.(x) for each arc (i, j) in W. Lemma 10.12 establishes that clf - E(X) for every 
arc in W. • 

We next show that during the execution of the minimum mean cycle-canceling 
algorithm, E(X) never increases; moreover, within m consecutive iterations E(X) de
creases by a factor of at least (1 - lin). 

Lemma 10.14. For a nonoptimaljlow x, ifwe cancel a minimum mean cycle 
in G(x), E(X) cannot increase [alternatively, lJ.(x) cannot decrease]. 

Proof Let W denote the minimum mean cycle in G(x). Lemma 10.13 implies 
that for some set of node potentials 7T, cli = -E(X) for each arc (i, j) E W. Let x' 
denote the flow obtained after we have canceled the cycle W. This flow augmentation 
deletes some arcs in W from the residual network and adds some other arcs, which 
are reversals of the arcs in W. Consider any arc (i, j) in G(x'). If (i, j) is in G(x), 
then, by hypothesis, cij 2: -E(X). If (i, j) is not in G(x), then (i, j) is a reversal of 
some arc (j, i) in G(x) for which Cft = -E(X). Therefore, cij = -cft = E(X) > O. 
In either case, cij 2: -E(X) for each arc (i, j) in G(x'). Consequently, the minimum 
mean cost of any cycle in G(x') will be at least -E(X), since the mean cost around 
a cycle, which equals the mean reduced cost, must be at least as large as the minimum 
value of the reduced costs. Therefore, in light of Lemma 10.12, as asserted, 
E(X') = lJ.(x') 2: -E(X) = lJ.(x). • 

Lemma 10.15. After a sequence ofm minimum mean cycle cancelations start
ing with a flow x, the value of the optimality parameter E(X) deceases to a value 'at 
most (1 - lin) E(X) [i.e., to at most (1 - lin) times its original value]. 

Proof. Let 7T denote a set of node potentials satisfying the con.ditions cij 2: 

- E(X) for each arc (i, j) in G(x). For convenience, we designate those arcs in G(x) 
with (strictly) negative reduced costs as negative arcs (with respect to the reduced 
costs). We now classify the subsequent cycle cancelation~ into two types: (1) all the 
arcs in the canceled cycle are negative (a type 1 cancelation), and (2) at least one 
arc in the canceled cycle has a nonnegative reduced cost (a type 2 cancelation). We 
claim that the algorithm will perform at most m type 1 cancelations before it either 
terminates or performs a type 2 cancelation. This claim follows from the observations 
that each type 1 cancelation deletes at least one negative arc from the (current) 
residual network and all the arcs that the cancelation adds to the residual network 
have positive reduced cost with respect to 7T (as shown in the proof of Lemma 10.14). 
Consequently, if within m iterations, the algorithm performs no type 2 cancelations, 
all the arcs in the residual network will have nonnegative reduced costs with respect 
to 7T and the algorithm will terminate with an optimal flow. 

Now consider the first time the algorithm performs a type 2 cancelation. Sup
pose that the algorithm cancels the cycle W, which contains at least one arc with a 
nonnegative reduced cost; let x' and x" denote the flows just before and after the 
cancelation. Then cij 2: - E(X') for each arc (i, j) E Wand Crt 2: 0 for some arc 
(k, l) E W. As a result, since c(W) = LU,j)EW cij, the cost c(W) of Wwith respect to 
the flow x' satisfies the condition c(W) 2: [(I WI - 1)( -E(X'))]. By Lemma 10.14, 

Sec, 10.5 Minimum Mean Cycle-Canceling Algorithm 379 



the cancelation cannot increase the minimum mean cost and, therefore, J.1(x") ::::: 
J.1(x'). But since J.1(x') is the mean cost of W with respect to x', J.1(x") ::::: J.1(x') ::::: 
(1 - 111 W 1)( - E(X')) 2: (1 - lIn)( - E(X')). This inequality implies that - J.1(x") :s: 
(1 - lIn)E(x'). Using the factthat J.1(x") = - E(X"), we see that E(X") ::; (1 - lIn)E(x'). 
This result establishes the lemma. • 

As indicated by the next theorem, the preceding two lemmas imply that the 
minimum mean cycle-canceling algorithm performs a polynomial number of itera
tions. 

Theorem 10.16. If all arc costs are integer, the minimum mean cycle-can
celing algorithm performs O(nm 10g(nC)) iterations and runs in O(n 2 m 2 10g(nC)) 
time. 

Proof Let x denote the flow at any point during the execution of the algorithm. 
Initially, E(X) ::; C because every flow is C-optimal (see Lemma 10.2). In every m 
consecutive iterations, the algorithm decreases E(X) by a factor of (1 - lin). When 
E(X) < lin, the algorithm terminates with an optimal flow (see Lemma 10.2). There
fore, the algorithm needs to decrease E(X) by a factor of nC over all iterations. By 
Lemma 10.15, the mean cost of a cycle becomes smaller by a factor of at least 
(1 - lin) in every m iterations. Property 10.11 implies that the minimum mean cycle 
cost decreases by a factor of 2 every nm iterations, so that within nm 10g(nC) 
iterations, the minimum mean cycle cost decreases from C to lin. At this point the 
algorithm terminates with an optimal flow. This conclusion establishes the first part 
of the theorem. Since the bottleneck operation in each iteration is identifying a 
minimum mean cycle, which requires O(nm) time (see Section 5.7), we also have 
established the second part of the theorem. 

Having proved that the minimum mean cycle-canceling algorithm runs in 
polynomial time, we next obtain a strongly polynomial bound on the number of 
iterations the algorithm performs. Our analysis rests upon the following rather useful 
result: If the absolute value of the reduced cost of an arc (k, l) is "significantly 
greater than" the current value of the parameter E(X), the flow on the arc (k, l) in 
any optimal solution is the same as the current flow on this arc. In other words, the 
flow on the arc (k, I) becomes "fixed." As we will show, in every O(nm log n) 
iterations, the algorithm will fix at least one additional arc at its lower bound or at 
its upper bound. As a result, within O(nm 2 10g n) iterations, the algorithm will have 
fixed all the arcs and will terminate with an optimal flow. 

We define an arc to be E-fixed if the flow on this arc is the same for all 
E'-optimal flows whenever E' ::; E. Since the value of E(X) of the E(x)-optimal flows, 
that the minimum mean cycle-canceling algorithm maintains, is nonincreasing, the 
flow on an E(X )-fixed arc will not change during the execution of the algorithm and 
will be the same in every optimal flow. We next establish a condition that will permit 
us to fix an arc. 

Lemma 10.17. Suppose that x is an E(x)-optimal flow with respect to the 
potentials 7T, and suppose that for some arc (k, l) E A, I Crt I 2: 2nE(x). Then arc 
(k, I) is an E(x)-fixed arc. 

380 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



Proof Let E = E(X). We first prove the lemma when Crl 2: 2nE. The E-optimality 
condition (lO.la) implies that Xkl = O. Suppose that some E(x')-optimal flow x', with 
E(X ' ) :5 E(X), satisfies the condition that Xkl > O. The flow decomposition theorem 
(i.e., Theorem 3.5) implies that we can express x' as x plus the flow along at most 
m augmenting cycles in G(x). Since Xkl = 0 and Xkl > 0, one of these cycles, say 
W, must contain the arc (k, l) as a forward arc. Since each arc (i, j) E W is in the 
residual network G(x), and so satisfies the condition cij 2: - E, the reduced cost (or, 
cost) of the cycle W is at least Crl - E(I W I - 1) 2: 2nE - E(n - 1) > nE. 

Now consider the cycle wr obtained by reversing the arcs in W. The cycle wr 
must be a directed cycle in the residual network G(x ' ) (see Exercise 10.6). The cost 
of the cycle wr is the negative of the cost of the cycle Wand so must be less than 
-nE:5 -nE(x'). Therefore, the mean cost of wr is less than _E(X'). Lemma 10.12 
implies that x' is not E(x')-optimal, which is a contradiction. 

We next consider the case when Crl :5 - 2nE. In this case the E-optimality 
condition (lO.lc) implies that Xkl = Ukl. Using an analysis similar to the one used in 
the preceding case, we can show that no E-optimal flow x' can satisfy the condition 
Xkl < Ukl. • 

We are now in a position to obtain a strongly polynomial bound on the number 
of iterations performed by the minimum mean cycle-canceling algorithm. 

Theorem 10.18. For arbitrary real-valued arc costs, the minimum mean cycle
canceling algorithm peiforms O(nm2 log n) iterations and runs in O(n2m 3 log n) 
time. 

Proof Let K = nm( flog n 1 + 1). We divide the iterations performed by the 
algorithm into groups of K consecutive iterations. We claim that each group of 
iterations fixes the flow on an additional arc (k, l) (i.e., the iterations after those in 
the group do not change the value of Xki). The theorem follows immediately from 
this claim, since the algorithm can fix at most m arcs, and each iteration requires 
O(nm) time. 

Consider any group of iterations. Let x be the flow before the first iteration of 
the group and let x' be the flow after the last iteration of the group. Let E = E(X), 
E' = E(X ' ), and let 1T' be the node potentials for which x' satisfies the E'-optimality 
conditions. Since every nm iterations reduce E by a factor of at least 2, the nm (flog 
n 1 + 1) iterations between x and x I reduce E by a factor of at least 2 [log n 1 + 1. 

Therefore, E' :5 (E/2flognl+l):5 E/2n. Alternatively, -E:5 -2nE'. 
Let W be the cycle canceled when the flow has value x. Lemma 10.12 and the 

fact that the sum of the costs and reduced costs around every cycle are the same, 
imply that for any values of the node potentials, the average reduced cost around 
the cycle Wequals fL(X) = - E. Therefore, with respect to the potentials 1T', at least 
one arc (k, l) in W must have a reduced cost as small as - E, so cr; = - E :5 - 2nE' 
for some arc (k, I) in W. By Lemma 10.17, the flow on arc (k, l) will not change in 
any subsequent iteration. Next notice that in the first iteration in the group, the 
algorithm changed the value of Xkl. Thus each group fixes the flow on at least one 
additional arc, completing the proof of the theorem. • 

Sec. 10.5 Minimum Mean Cycle-Canceling Algorithm 381 



We might conclude this section with a few observations. First, note that we 
need not formally compute the value of E(X) at each iteration, nor do we need to 
identify the E-fixed arcs at any stage in the algorithm. Indeed, we can use any method 
to find the minimum mean cost cycle at each step; in principle, we need not maintain 
or ever compute any reduced costs. As we noted earlier in this section, the minimum 
mean cycle-canceling algorithm implicitly reduces E(X) and fixes some arcs as it 
proceeds-we need not keep track of the algorithm's progress concerning these 
features. 

We also might note that the ideas presented in this section would also permit 
us to develop a strongly polynomial-time version of the cost scaling algorithm that 
we discussed in Section 10.3. In Exercise 10.12 we consider this modification of the 
cost scaling algorithm and analyze its running time. 

10.6 REPEATED CAPACITY SCALING ALGORITHM 

The minimum cost flow problem described in Section 10.5 uses the idea that when
ever the reduced cost of an arc is sufficiently large, we can "fix" the flow on the 
arc. By incorporating a similar idea in the capacity scaling algorithm, we can develop 
another strongly polynomial time algorithm. As we will see, when the flow on an 
arc (i, j) is sufficiently large, the potentials of nodes i and j become "fixed" with 
respect to each other. In this section we discuss the details of this algorithm, which 
we call the repeated capacity scaling algorithm. 

The repeated capacity scaling algorithm to be discussed in this section is dif
ferent from all the other minimum cost flow algorithms discussed in this book. All 
ofthe other algorithms solve the primal minimum cost flow problem (9.1) and obtain 
an optimal flow; the repeated capacity scaling algorithm solves the dual minimum 
cost flow problem (9.10). This algorithm obtains an optimal set of node potentials 
for (9.10) and then uses it to determine an optimal flow. 

The repeated capacity scaling algorithm is a modified version of the capacity 
scaling algorithm discussed in Section 10.2. For simplicity, we describe the algorithm 
for the uncapacitated minimum cost flow problem; we could solve the capacitated 
problem by converting it to the uncapacitated problem using the transformation 
described in Section 2.4. Recall that in the capacity scaling algorithm, each arc flow 
is an integral mUltiple of the scale factor Ll. For uncapacitated networks, each re
sidual capacity rij is also an integral mUltiple of Ll, because either rij = Uij = 00, or 
rij = Xji = kLl for some integer k. This observation implies that the Ll-residual network 
G(x, Ll) is the same as the residual network G(x). As a result, the algorithm for the 
uncapacitated problem does not require the preprocessing (i.e., saturating the arcs 
violating the optimality conditions) at the beginning of each scaling phase. The fol
lowing property is an immediate consequence of this result. 

Property 10.19. The capacity scaling algorithm for the un capacitated mini
mum cost flow problem satisfies the following properties: (a) the excesses at the 
nodes are monotonically decreasing; (b) the sum of the excesses at the beginning 
of the Ll-scaling phase is at most 2n Ll; and (c) the algorithm performs at most 2n 
augmentations per scaling phase. 

382 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



The repeated capacity scaling algorithm is based on the three simple results 
stated in the following lemmas. 

Lemma 10.20. Suppose that at the beginning of the fl-scaling phase, b(k) > 
6n2 fl for some node kEN. Then some arc (k, l) with Xkl > 4nfl emanates from 
node k. 

Proof Property 10.19 implies that at the beginning of the fl-scaling phase, the 
sum of the excesses is at most 2nfl. Therefore, e(k):5 2nfl. Since b(k) > 6n2 fl and 
e(k) :5 2nfl, the net outflow of node k [i.e., b(k) - e(k)] is strictly greater than 
(6n 2A - 2nfl). Since fewer than n arcs emanate from node k, the flow on at least 
one of these arcs must be strictly more than (6n 2 fl - 2nfl)ln 2: (4n 2 fl)ln = 4nfl, 
which concludes the lemma. • 

Lemma 10.21. If at the beginning of the fl-scaling phase Xkl > 4n fl, then for 
some optimal solution Xkl > O. 

Proof Property 10.19 implies that the algorithm performs at most 2n aug
mentations in each scaling phase. The fact that the algorithm augments exactly 
fl units of flow in every augmentation in the fl-scaling phase implies that the total 
flow change due to all augmentations in the subsequent scaling phases is at most 
2n(fl + fl/2 + fll4 + ... + 1) < 4nfl. Consequently, if Xkl > 4nfl at the beginning 
of the fl-scaling phase, then Xkl > 0 when the algorithm terminates. • 

Lemma 10.22. Suppose that Xkl > 0 in an optimal solution of the minimum 
cost flow problem. Then with respect to every set of optimal node potentials, the 
reduced cost of arc (k, l) is zero. 

Proof. Suppose that x satisfies the complementary slackness optimality con
dition (9.8) with respect to the node potential 7T. The condition (9.8b) implies that 
Crl = O. Property 9.8 implies that if x satisfies the complem~mtary slackness opti
mality condition (9.8b) with respect to some node potential, it satisfies this condition 
with respect to every optimal node potential. Consequently, the reduced cost of arc 
(k, l) is zero with respect to every set of optimal node potentials. • 

We are now in a position to discuss the essential ideas ofthe repeated capacity 
scaling algorithm. Let P denote the minimum cost flow problem stated in (9.1). The 
algorithm applies the capacity scaling algorithm stated in Figure 10.1 to the problem 
P. We will show that within O(log n) scaling phases, b(k) > 6n2 fl for some node k 
and, by Lemma 10.20, some arc (k, l) satisfies the condition Xkl > 4n fl. Lemmas 
10.21 and 10.22 imply that for any set of optimal node potentials, the reduced cost 
of arc (k, l) will be zero. This result allows us to show, as described next, that we 
can contract the nodes k and I into a single node, thereby- obtaining a new minimum 
cost flow problem defined on a network with one fewer node. 

Suppose that we are using the capacity scaling algorithm to solve a minimum 
cost flow problem P with arc costs Cij and at some stage we realize that for an arc 
(k, l), Xkl > 4n fl. Let 7T denote the node potentials at this point. The optimality 
condition (9.8b) implies that 

Sec. 10.6 Repeated Capacity Scaling Algorithm 383 



Ckl - 'IT(k) + 'IT(I) = O. (10.9) 

Now consider the same minimum cost flow problem, but with the cost of each 
arc (i,j) equal to Clj = clJ = Cij - 'IT(i) + 'IT(j). Let P' denote the modified minimum 
cost flow problem. Condition (10.9) implies that 

Ckl = O. (10.10) 

We next observe that the problems P and P' have the same optimal solutions 
(see Property 2.4 in Section 2.4). Since Xkl > 4nLl, Lemmas 10.21 and 10.22 imply 
that in problem P' the reduced cost of arc (k, I) will be zero. If 'IT' denotes an optimal 
set of node potentials for pI, then 

Ckl - 'IT'(k) + 'IT'(I) = o. (10.11) 

Substituting (10.10) in (10.11) implies that 'IT' (k) = 'IT' (I). 
The preceding discussion shows that if Xkl > 4nLl for some arc (k, I), we can 

"fix" one node potential with respect to the other. The discussion also shows that 
if we solve the problem pI with the additional constraint that the potentials of nodes 
k and I are same, this constraint will not eliminate the optimal solution of P'. But 
how can we solve a minimum cost flow problem when two node potentials must be 
the same? 

Consider the dual minimum cost flow problem stated in (9.10). In this problem 
we replace both 'IT(k) and 'IT(I) by 'IT(p). This substitution gives us a linear program
ming problem with one less dual variable (or, node potential). The reader can easily 
verify that the resulting problem is a dual minimum cost flow problem on the network 
with nodes k and I contracted into a single node p. The contraction operation consists 
of (1) letting b(p) = b(k) + b(l), (2) replacing each arc (i, k) or (i, l) by the arc 
(i, p), (3) replacing each arc (k, i) or (I, i) by the arc (p, i), and (4) letting the cost of 
an arc in the contracted network equal that of the arc it replaces. We point out that 
the contraction might produce multiarcs (i.e., more than one arc with the same tail 
and head nodes). The purpose of contraction operations should be clear; since each 
contraction operation reduces the size of the network by one node, we can apply 
at most n of these operations. 

We can now describe th~ repeated capacity scaling algorithm. We first compute 
U = max{b(i) : i E Nand b(i) > O} and initialize Ll = 2L1og uJ. Let node k be a 
node with b(k) = U. We then apply the capacity scaling algorithm as described in 
Figure 10.1. Each scaling phase of the capacity scaling algorithm decreases Ll by a 
factor of 2; therefore, since the initial value of Ll is b(k), after at most q = log 
(6n 2

) =: O(logn)phases,Ll = b(k)/2Q::S;b(k)/6n2
• The algorithm might obtain a feasible 

flow before Ll ::s; b(k)/6n 2 (in which case it terminates); if not, then by Lemma 10.20, 
some arc (k, I) will satisfy the condition that Xkl > 4nLl. The algorithm then defines 
a new minimum cost flow problem with nodes k and I contracted into a new node 
p, and the cost of each arc is the reduced cost of the corresponding arc before the 
contraction. We solve the new minimum cost flow problem afresh by redefining U 
as the largest supply in the contracted network and reapplying the capacity scaling 
algorithm described in Figure 10.1. We repeat these steps until the algorithm ter
minates. The algorithm terminates in one of the two ways: (1) while applying the 
capacity scaling algorithm, it obtains a flow; or (2) it contracts the network into a 

384 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



single node p [with b(p) = 0], which is trivially solvable by a zero flow. At this 
point we expand the contracted nodes and obtain an optimal flow in the expanded 
network. We show how to expand the contracted nodes a little later. The preceding 
discussion shows that the algorithm performs O(n log n) scaling phases, and since 
each scaling phase solves at most 2n shortest path problems, the running time of 
the algorithm is O(n 2 log n S(n, m)). In this expression, S(n, m) is the minimum 
time required by a strongly polynomial-time algorithm for solving a shortest path 
problem with nonnegative arc lengths. [Recall from Chapter 4 that O(m + n log n) 
is currently the best known such bound.] 

We illustrate the repeated capacity scaling algorithm on the example shown in 
Figure 10.11(a). When applied to this example, the capacity scaling algorithm per
forms 100 scaling phases with A = 299, 298-1, ... , 20. The strongly polynomial 
version, however, terminates within five phases, as shown next. 

Phase 1. In this phase, A = 299, S(A) = {I, 2}, and T(A) = {3, 4}. The algorithm 
augments A units of flow along the two paths 1-3 and 2-1-3-4. Figure 10.11(b) 
shows the solution at the end of this phase. 
Phase 2. In this phase, A = 298. The algorithm augments A units of flow along 
the path 1-3. 
Phase 3. In this phase, A = 297. The algorithm augments A units of flow along 
the path 1-3. 
Phase 4. In this phase, A = 296. The algorithm finds that the flow on the arc 
(1, 3) is 2100 + 299 + 298 , which is more than 4n A = 2100. Therefore, the 
algorithm contracts the nodes 1 and 3 into a new node 5 and obtains the min
imum cost flow problem shown in Figure 10.11(c), which it then proceeds to 
solve. 
Phase 5. In this phase, A = 295 . The algorithm augments A units of.flow along 
the path 2-5-4. The solution is a flow now; consequently, the algorithm ter
minates. The corresponding flow in the original network is X21 = 299, XI3 = 
2100 - 1, and X34 = 299. 

b(i) b(j) 

~ 
Cij • ~ 

ioo_l 299 

r ~ ~";l;;o 0( 
<i,:x/ 0 

0 

~ 
0 
.~ 

_ioo+l _299 

(a) 

e(i) 

~ 
Xij 

299_1 
299 

~l!J~ 

i oo 

~ 
299 

~:~·/:fr 

_299+1 

(b) 

e(j) 

• ® 
0 

~:~9 

• ~ 
0 

o 

b(i) b(j) 

~ __ C-=-ij----:.~~ 

o 

(c) 

Figure 10.11 Illustrating the repeated capacity scaling algorithm: (a) minimum cost 
flow problem; (b) solution after the first phase; (c) minimum cost flow problem after 
contracting the nodes 1 and 3 into a new node 5. 

Sec. 10.6 Repeated Capacity Scaling Algorithm 385 



We now explain how we expand the contracted network, and in the process 
we prove that the algorithm determines an optimal solution of the minimum cost 
flow problem. The algorithm, in fact, first determines an optimal set of node poten
tials of the problem, and then by solving a maximum flow problem (as described in 
Section 9.5) determines an optimal flow. The algorithm obtains an optimal set of 
node potentials for the original problem by repeated use of the following result. 

Property 10.23. Let P be a problem with arc costs Cij and pI be the {lame 
problem with arc costs Cij - 'IT(i) + 'IT(j). If'lT' is an optimal se(of node potentials 
for problem pI, then'lT + 'IT' is an optimal set of node potentials for P. 

Proof This property easily follows from the observation that if a solution x 
satisfies the reduced cost optimality condition (9.7) with respect to the arc costs 
Cij - 'IT(i) + 'IT(j) and node potentials 'IT', the same solution satisfies these conditions 
with arc costs Cij and node potentials 'IT + 'IT'. • 

We expand (or uncontract) the nodes in the reverse order in which we con
tracted them in the strongly polynomial algorithm and obtain optimal node potentials 
of the successive problems. In earlier stages, between two successive problems, we 
performed two transformations in the following order: (1) we replaced the arc cost 
Cij by its reduced cost Cij - 'IT(i) + 'IT(j), and (2) we contracted two nodes k and I 
into a single new node p. We undo these transformations in the reverse order. To 
undo the contracted node p, for case (2) we set the potentials of nodes k and I equal 
to that of node p, and for case (1) we add 'IT to the existing node potentials. When we 
have expanded all the contracted nodes, the resulting node potentials are an optimal 
set of node potentials for the minimum cost flow problem. Then, as described in 
Section 9.5, we can use these node potentials to obtain an optimal flow by solving 
a maximum flow problem. The following theorem summarizes the preceding dis
cussion. 

Theorem 10.24. The repeated capacity scaling algorithm solves the unca-
pacitated minimum cost flow problem in O(n 2 10g n S(n, m» time. • 

Since the best known strongly polynomial-time algorithm for solving the short
est path problem with nonnegative arc lengths runs in O(m + n log n) time, the 
best current bound for the uncapacitated minimum cost flow problem is O(n log 
n(m + n log n». We can solve the capacitated minimum cost flow problem by the re
peated capacity scaling algorithm by first transforming it to an uncapacitated problem 
(see Section 2.4). The uncapacitated network will have n' = n + m nodes and 
m' = 2m arcs. When applied to this network, the repeated capacity scaling algorithm 
will perform O(n' log n') = O(m log.n) scaling phases and solve O(m') = O(m) 
shortest path problems in each scaling phase. Thus the running time ofthe algorithm 
is the time needed to solve O(m 2 log n) shortest path problems. Each shortest path 
problem in the uncapacitated network requires O(2m + (m + n) log (m + n» = 
O(m + m log n) time, but using a clever approach for solving the resulting shortest 
path problem (as discussed in Exercise 4.53) we can obtain a better bound of O(m 
+ n log n). Consequently, the repeated capacity scaling algorithm requires O(m 2 

log n(m + n log n» time to solve a capacitated minimum cost flow problem. 

386 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



10.7 ENHANCED CAPACITY SCALING ALGORITHM 

In this section we discuss yet another strongly polynomial-time algorithm for the 
minimum cost flow problem. This algorithm is a variant of the capacity scaling 
algorithm that we discussed in Section 10.2 and draws on some ideas from the re
peated capacity scaling algorithm discussed in Section 10.6. We refer to this algo
rithm as the enhanced capacity scaling algorithm. This algorithm runs in O«m log 
n)(m + log n)) time for the capacitated minimum cost flow problem and is currently 
the fastest strongly polynomial-time algorithm for solving the minimum cost flow 
problem. In this section we first show how to solve the enhanced capacity scaling 
algorithm for the uncapacitated minimum cost flow problem; we can solve the ca
pacitated problem by transforming it to an uncapacitated problem (see Section 2.4). 

Recall from Section 10.6 that the essential idea in the repeated capacity scaling 
algorithm is to identify arcs with sufficiently large flow. The repeated capacity scaling 
algorithm identifies such an arc (k, I) within O(log n) scaling phases, contracts the 
nodes k and I into a single node, and solves the resulting minimum cost flow problem 
afresh. For the uncapacitated minimum cost flow problem, this algorithm performs 
a total of O(n log n) scaling phases and O(n 2 log n) shortest path augmentations. 
The enhanced capacity scaling algorithm adopts a similar approach but it differs in 
the following two ways: (1) the algorithm does not explicitly perform the contraction 
operation; and (2) the algorithm does not solve the minimum cost flow problem 
afresh, but continues from where it left off in its earlier computations. By avoiding 
contractions, the algorithm achieves ease of coding (because contractions change 
the network structure and so its computer representation) and maintains a pseu
doflow satisfying the dual optimality conditions at every step until the end, at which 
point it becomes an optimal flow. Moreover, the total number of scaling phases is 
O(n log n) and the total number of shortest path augmentations in these scalings 
phases is also O(n log n). Consequently, if Sen, m) is the time requited to solve a 
shortest path problem with nonnegative arc lengths, the running time of the enhanced 
capacity scaling algorithm for uncapacitated problems is Otn log n Sen, m)). For 
capacitated minimum cost flow problems, this time bound becomes Oem log n 
sen, m)). [By Exercise 4.53 the time bound for the shortest path problem in the 
transformed network is O(S(n, m)) rather than O(S(n + m, 2m)) even though the 
transformed network has n + m nodes and 2m arcs.] 

The enhanced capacity scaling algorithm proceeds by performing scaling 
phases for different values of the scale factor Ll. In the Ll-scaling phase, we say that 
an arc (i, j) has a sufficiently large flow if Xu ;::= 8n Ll. [We later show that if Xu ;::= 

8n Ll, then arc (i, j) will have positive flow during the entire execution of the algo
rithm.] We refer to an arc with sufficiently large flow as an abundant arc; otherwise, 
we call it a nonabundant arc. We refer to the subgraph consisting of the node set 
N and abundant arcs as the abundant subgraph. The abundant subgraph typically 
contains several components, which we call abundant components. If the network 
contains no abundant arc, the abundant subgraph contains n components, each con
sisting of a singleton node. For simplicity, we will designate an abundant component 
by the set S of nodes it spans. We let b(S) = LiES b(i) and e(S) = LiES e(i). 

We designate an (arbitrary) node in each abundant component as its root and 
refer to all the other nodes as nonroot nodes. By convention we assume that the 

Sec. 10.7 Enhanced Capacity Scaling Algorithm 387 



minimum index node in an abundant component is its root. For example, if S = {3, 
5, 9}, then node 3 is the root node of the abundant component S. Throughout its 
execution, the enhanced capacity scaling algorithm satisfies the following properties. 

Property 10.25 (Flow Property). In the a-scaling phase, the flow on each non
abundant arc is an integral multiple of a; an abundant arc can have any nonnegative 
flow value. 

Property 10.26 (Imbalance Property). Each nonroot node has a zero imbalance; 
a root node can have an excess or a deficit. 

At the beginning of the enhanced capacity scaling algorithm, the network has 
no abundant arc and the abundant subgraph contains n components, each consisting 
of a singleton node. As the algorithm proceeds, it identifies abundant arcs and adds 
them to the abundant sub graph. Suppose that the algorithm adds a new abundant 
arc (i, j) at some stage. Let Si and Sj, respectively, denote the abundant components 
containing the nodes i and j. If Si = Sj [i.e., the arc (i, j) has both of its endpoints 
in the same component], this addition does not create any new abundant component; 
otherwise,' the addition creates a new abundant component consisting of the union 
of Si and Sj. We refer to this operation as a merge operation because it merges the 
components Si and Sj into a single abundant component. Notice that since each 
merge operation reduces the number of abundant components by one, the algorithm 
can perform at most n merge operations. 

Whenever the algorithm merges the components Si and Sj, we need to ensure 
that the solution satisfies the imbalance property. Suppose that ir and jr denote the 
root nodes of the components Si and Sj before the merge operation. Suppose further 
that ir < jr' If e(jr) = 0, after the merge operation the abundant subgraph satisfies 
the imbalance property. However, if e(jr) is nonzero, we satisfy the imbalance prop
erty by sending e(M units of flow from node jr to node ir using any path in the 
merged component. [Notice that if e(jr) < 0, we should view this augmentation as 
augmenting I e(jr) I units of flow from node ir to jr so we eliminate the imbalance at 
node jr'] Observe that this augmentation changes the flow on some abundant arcs 
by I e(M I units. We refer to this augmentation as an imbalance-property augmen
tation. In Exercise 10.26 we ask the reader to show how to perform merge operations 
and the subsequent imbalance-property augmentations in O(m) time. 

We are now in a position to describe the enhanced capacity scaling algorithm. 
Figure 10.12 gives an algorithmic description of this algorithm. 

The enhanced capacity scaling algorithm performs two types of augmentations. 
The first type of augmentation enforces the imbalance property when the algorithm 
identifies new abundant arcs; we have earlier defined these augmentations as the 
imbalance-property augmentations. The second type of augmentation takes place 
from excess nodes to deficit nodes along shortest paths. We refer to these augmen
tations as shortest-path augmentations. 

As we have already mentioned, the enhanced capacity scaling algorithm is a 
variant of the capacity scaling algorithm. These two algorithms differ in the following 
respects: 

388 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



algorithm enhanced capacity scaling; 
begin 

set x : = 0, 'IT : = 0, and e: = b; 
set !:J. : = max{le(i)1 : i E N}; 
while the residual network G(x) contains a node i with eU) > ° do 
begin 

if max{e(i) : i E N} :s: !:J./(8n) then !:J. : = max{e(i) : i E N}; 
{the !:J.-scaling phase begins here} 
for each nonabundant arc (i, j) do 
if xij ;0:: 8n!:J. then designate arc (i, j) as an abundant arc; 
update abundant components and reinstate the imbalance property; 
while the residual network G(x) contains a node k with I e(k) I ;0:: (n - 1)D./n do 
begin 

select a pair of nodes k and / satisfying the property that (i) either e(k) > (n - 1)!:J./n 
and e(l) < -D./n, or (ii) e(k) > !:J./n and e(l) < -(n - 1)!:J./n; 

considering reduced costs as arc lengths, compute shortest path distance d(·) in 
G(x) from node k to all other nodes; 

'IT(i) : = 'IT(i) - d(i) for all i E N; 
augment !:J. units of flow along the shortest path in G(x) from node k to node /; 

end; 
{the !:J.-scaling phase ends here} 
!:J. : = !:J./2; 

end; 
end; 

Figure 10.12 Enhanced capacity scaling algorithm. 

1. In the capacity scaling algorithm, we set the initial value of Ll = 2 Llog uJ, that 
is, the largest power of 2 less than or equal to U = max{1 b(i) I : i EN}. In a 
strongly polynomial algorithm, we cannot take logarithms because we cannot 
determine log U in 0(1) elementary arithmetic operations. Therefore, in the 
enhanced capacity scaling algorithm, we set Ll = max{1 b(i) I : i..E N}. 

2. The capacity scaling algorithm decreases Ll by a factor of 2 in every scaling 
phase. In the enhanced capacity scaling algorithm, we~.also decrease Ll by a 
factor of 2, but if max{J e(i) I : i E N} :::; Ll/8n, then we reset Ll = 
max{1 e(i) I : i EN}. Consequently, the enhanced capacity scaling algorithm 
generally decreases Ll by a factor of 2, but sometimes by a larger factor when 
imbalances are too small compared to the current scale factor. Without resetting 
Ll in this way, the capacity scaling algorithm might perform O(log U) scaling 
phases, many of which will not perform any augmentations. The resulting 
algorithm would contain O(log U) in its running time and would not be strongly 
polynomial-time. 

3. In the capacity scaling algorithm, each arc flow is an integral multiple of Ll. 
This property is essential for its correctness because it ensures that each pos
itive residual capacity is a multiple of Ll, and consequently, any augmentation 
can carry Ll units offlow. In the enhanced capacity scaling algorithm, although 
the flows on nonabundant arcs are integral multiples of Ll, the flows on the 
abundant arcs can be arbitrary. Since the flows on abundant arcs are sufficiently 
large, their arbitrary values do not prohibit sending Ll units of flow on them. 

4. The capacity scaling algorithm sends Ll units of flow from a node k with 
e(k) 2: Ll to a node I with e(l):::; - Ll. As a result, the excess nodes do not become 

Sec. 10.7 Enhanced Capacity Scaling Algorithm 389 



deficit nodes, and vice versa. In the enhanced capacity scaling algorithm, aug
mentations carry .1 units of flow and are (a) either from a node k with e(k) > 
(n - l).1ln to a node I with e(l) < -.1ln, (b) or from a node k with e(k) > 
.1ln to a node I with e(l) < -(n - 1).1ln. Notice that due to these choices 
excess nodes might become deficit nodes and deficit nodes might become ex~ 
cess nodes. Although these choices might seem a bit odd when compared to 
the capacity scaling algorithm, they ensure several nice theoretical properties 
that we describe in the following discussion. 

We establish the correctness of the enhanced capacity scaling algorithm as 
follows. In the .1-scaling phase, we refer to a node i as a large excess node if 
e(i) > (n - l).1ln and as a medium excess node if e(i) > .1ln. (Observe that a large 
excess node is also a medium excess node.) Similarly, we refer to a node i as a large 
deficit node if e(i) < - (n - l).1ln and as a medium deficit node if e(i) < - .1ln. 
In the .1-scaling phase, each shortest path augmentation either starts at a large excess 
node k and ends at a medium deficit node I, or starts at a medium excess node k 
and ends at a large deficit node I. To establish the correctness of the algorithm, we 
need to show that whenever (1) the network contains a large excess node k, it must 
also contain a medium deficit node I, or when (2) the network contains a large deficit 
node I, it must also contain a medium excess node k. We establish this result in the 
following lemma. 

Lemma 10.27. If the network contains a large excess node k, it must also 
contain a medium deficit node I. Similarly, if the network contains a large deficit 
node I, it must also contain a medium excess node k. 

Proof We prove the first part of the lemma; the proof of the second part is 
similar. Note that LiEN e(i) = 0 because the total excess ofthe excess nodes equals 
the total deficit of the deficit nodes. If e(k) > (n - 1).1ln for some excess node k, 
the total deficit of deficit nodes is also greater than (n - 1).1ln. Since the network 
contains at most (n - 1) deficit nodes, at least one of these nodes, say node I, must 
have a deficit greater than .1ln, or equivalently e(l) < - .1 In. • 

In the proofs, we use the following lemma several times. 

Lemma 10.28. At the end of the .1-scaling phase, I e(i) I :s (n - 1).1ln for 
each node i. At the beginning of the .1-scaling phase, I e(i) I :s 2(n - 1).1 In for each 
node i. 

Proof Suppose that during some scaling phase the network contains some 
large excess node. Then by Lemma 10.27, it also contains some medium deficit 
node, so the scaling phase would not yet end. Similarly, if the network contains 
some large deficit node, it would also contain some medium excess node, and the 
scaling phase would not end. Therefore, at the end of the scaling phase, I e(i) I :s 
(n - 1).1ln for each node i. 

If at the next scaling phase the algorithm halves the value of .1, then I e(i) I :s 
2(n - l).1ln for each node i. On the other hand, if the algorithm sets .1 equal to 
emax , then I e(i) I :s .1 for each node i. In either case, the lemma is true. • 

390 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



The enhanced capacity scaling algorithm also relies on the fact that in the A
scaling phase, we can send A units of flow along the shortest path P from node k to 
node I. To prove this result, we need to show that the residual capacity of every 
arc in the path P is at least A. We establish this property in two parts. First, we 
show that the flow on each nonabundant arc is a mUltiple of A; this would imply 
that residual capacities of nonabundant arcs and their reversals in the residual net
work are mUltiples of A (because all the arcs in A are un capacitated) . We next show 
that the flow on each abundant arc is always greater than or equal to 4n A ; therefore, 
we can send A units of flow in either direction. These two results would complete 
the correctness proof of the enhanced capacity scaling algorithm. 

Lemma 10.29. Throughout the execution of the enhanced capacity scaling 
algorithm, the solution satisfies the flow and imbalance properties (i.e., Properties 
10.25 and 10 .26) . 

Proof We prove this lemma by performing induction on the number of flow 
augmentations and changes in the scale factor A . We first consider the flow property. 
Each augmentation sends A units offlow and thus preserves the property. The scale 
factor A changes in one of the two following ways: (1) when we replace A by A' "" 
A/2, or (2) after replacing A' "" A/2, we reset A" "" max{1 e(i) I : i EN}. In case (1), 
the flows on the nonabundant arcs continue to be multiples of A'. In case (2), A" "" 
max{e(i) : i E N} :5 A'/Sn, or A' 2:: SnAil. Since each positive arc flow Xij on a 
nonabundant arc is a mUltiple of A', Xij 2:: A' 2:: SnAil. Consequently, each positive 
flow arc becomes an abundant arc (with respect to the new scale factor) and vac
uously satisfies the flow property. 

We next establish the imbalance property by performing induction on the num
ber of augmentations and the creation of new abundant arcs. Each augmentation 
carries flow from a nonroot node to another nonroot node and preserves the property. 
Moreover, each time the algorithm creates a new abundant arc, it rriight create a 
nonroot node i with nonzero imbalance; however, it immediately performs an 
imbalance-property augmentation to reduce its imbalance to -zero. The lemma now 
follows. • 

Theorem 10.30. In the A-scaling phase, the algorithm changes the flow on 
any arc by at most 4nA units. 

Proof The flow on an arc changes through either imbalance-property aug
mentations or shortest path augmentations. We first consider changes caused by 
imbalance-property augmentations. At the beginning of the A-scaling phase, e(i) :5 

2(n - 1)Aln for each node i (from Lemma 10.2S). Consequently, an imbalance
property augmentation changes the flow on any arc by at most 2(n - 1)Aln. Since 
the algorithm can perform at most n imbalance-property augmentations at the be
ginning of a scaling phase, the change in the flow on an arc due to all imbalance
property augmentations is at most 2(n - 1)A:5 2nA. 

Next consider the changes in the flow on an arc caused by shortest path aug
mentations. At the beginning of the A-scaling phase, each root node i satisfies the 
condition I e(i) I :5 2(n - 1) Aln (by Lemma 10.29). Consider the case when the A
scaling phase performs no imbalance-property augmentations. In this case, at most 

Sec. 10.7 Enhanced Capacity Scaling Algorithm 391 



one shortest path augmentation will begin at a large excess node i, because after 
this augmentation, the new excess e' (i) satisfies the inequality e' (i) ::; 2(n -
1) Ll/n - Ll = (n - 2)Ll/n ::; (n _.1) Llln, and node i is no longer a large excess 
node. Similarly, at most one shortest patr augmentation will end at a large deficit 
node. 

Now suppose that the algorithm does perform some imbalance-property aug
mentations. In this case the algorithm sends e(j) units of flow from each nonroot 
node j to the root of its abundant component. The subsequent imbalance-property 
augmentation from node j to the root node i can increase I e(i) I by at most 2(n -
1) Ll In units, so node i can be the start or end node of at most two additional shortest 
path augmentations in the Ll-scaling phase. We "charge" these two augmentations 
to node j, which becomes a nonroot node and remains a nonroot node in the sub-
sequent scaling phases. . 

To summarize, we have shown that in the Ll-scaling phase, we can charge each 
root node at most one shortest path augmentation and each nonroot node at most 
two shortest path augmentations. Each such augmentation changes the flow on any 
arc by 0 or Ll units. Consequently, the total flow change on any arc due to all shortest 
path augmentations is at most 2nLl. We have earlier shown the total flow change 
due to imbalance-property augmentations is at most 2n Ll. These results establish 
the theorem. • 

The preceding theorem immediately implies the foll~wing result. 

Lemma 10.31. If the algorithm designates an arc (i, j) as an abundant arc in 
the Ll-scaling phase, then in all subsequent Ll'-scaling phas~s Xu 2:: 4nLl'. 

Proof. We prove this result by performing induction on the number of scaling 
phases. Since the algorithm designates arc (i, j) as an abundant arc at the beginning 
of the Ll-scaling phase, the flow on this arc satisfies the condition Xij 2:: 8n Ll. The 
Lemma 10.31 implies that the flow change on any arc in the Ll-scaling phase is at 
most 4n Ll. Therefore, throughout the Ll-scaling phase and, also, at the end of this 
scaling phase, the arc (i, j) satisfies the condition Xu 2:: 4n Ll. In the next scaling 
phase, the scale factor Ll' ::; Ll/2; so at the beginning of the Ll'-scaling phase, Xij 2:: 

8n Ll'. This conclusion establishes the lemma. • 

We next consider the worst-case complexity of the enhanced capacity scaling 
algorithm. We show that the algorithm performs O(n log n) scaling phases, requiring 
a total of O(n log n) shortest path augmentations. These proofs rely on the result, 
stated in Theorem 10.33, that any abundant component whose root node has a me
dium excess or a medium deficit merges into a larger abundant component within 
O(log n) scaling phases. Theorem 10.33, in turn, depends on the following lemma. 

Lemma 10.32. Let S be the set afnodes spanned by an abundant component, 
and let e(S) = ~iES e(i) and b(S) = ~iES b(i). Then b(S) - e(S) is an integral 
multiple of Ll. 

Proof. Summing the mass balance constraints (9.1b) of nodes in S, we see that 

b(S) - e(S) = ~ Xij - ~ xu. 
{(i,j)E(S,S)} {(i,j)E(S,S)} 

(10.12) 

392 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



In this expression, (S, S) and (S, S) denote the sets of forward and backward arcs 
in the cut [S, S]. Since the flow on each arc in the cut is an integral mUltiple of Ll 
(by the flow property), b(S) - e(S) is also an integral multiple of Ll. • 

Theorem 10.33. Let S be the set of nodes spanned by an abundant component 
and suppose that at the end of the Ll-scaling phase, I e(S) I > Llln. Then within O(log 
n) additional scaling phases, the algorithm will merge the abundant component S 
into a larger abundant component. 

Proof. We first claim that at the end of the Ll-scaling phase, I b(S) I ~ Llln. 
We prove this result by contradiction. Suppose that I b(S) I < Llln. Let node i be 
the root node of the component S. Lemma 10.28 implies that at the end of the 
Ll-scaling phase, I e(i) I = I e(S) I ::.; (n - 1) Sin. Therefore, I b(S) I + I e(S) I < Ll, 
which from Lemma 10.32 is possible only if I b(S) I = I e(S) I. This condition, 
however, contradicts the facts that I e(S) I > Llln and I b(S) I < Llln. Therefore, 
I b(S) I ~ Llln whenever I e(S) I > Llln. Consequently, at the end of the Ll-scaling 
phase, I b(S) I ~ Llln. 

Since the enhanced capacity scaling algorithrri decreases Ll by a factor of at 
least 2 in each scaling phase, within log (9n 2m) ::.; log (9n4) = O(log n) scaling 
phases, the scale factor will be Ll' ::.; Ll/2Iog

(9n
2
m) = Ll/(9n 2 m), or Llln ~ 9nmLl'. Since 

I b(S) I ~ Llln, I b(S) I ~ 9nmLl'. We consider the situation when b(S) > O. [The 
analysis of the situation with b(S) < 0 is similar.] Since e(S) ::.; Ll' (n - l)ln ::.; Ll' 
(by Lemma 10.28), the flow across the cut [S, S] (i.e., the right-hand side of (10.12» 
is at least 9nmLl' - Ll' ~ 8nmLl'. This cut contains at most m arcs; at least one of 
these arcs, say arc (i, j), must have a flow at least 8nLl'. Thus the algorithm will 
designate the arc (i, j) as an abundant arc and merge the component S into a larger 
abundant component. • 

We are now ready to complete the proof of the main result of this section. 

Theorem 10.34. The enhanced capacity scaling algorithm solves the unca
pacitated minimum costjlow problem within O(n log n) scaling phases and performs 
a total of O(n log n) shortest path augmentations. If S(n, m) is the time required 
to solve a shortest path problem with nonnegative arc lengths, the running time of 
the enhanced capacity scaling algorithm is O(n log n S(n, m». 

Proof. We first show that the algorithm performs O(n log n) scaling phases. 
Consider a scaling phase with scale factor equal to Ll. At the end of this scaling 
phase, we will encounter one of the following two outcomes: 

Case 1. For some node i, I e(i) I > Ll/16n. Let node i be the root node of an 
abundant component S. Clearly, within four scaling phases, either the com
ponent S merges into a larger component or I e(i) I > Llln. In the latter case, 
Theorem 10.33 implies that within O(log n) scaling phases, the component S 
merges into a larger component. 
Case 2. For every node i,1 e(i) I ::.; Ll/16n. At the beginning of the next scaling 
phase, the new scale factor Ll' = Ll/2, so I e(i) I ::.; Ll'/8n for each node i. We 
then reset Ll' = max{1 e(i) I : i EN}. As a result, for some node i, I e(i) I = 

Sec. 10.7 Enhanced Capacity Scaling Algorithm 393 



Ll' > Ll'/16n and, as in Case 1, within O(log n) scaling phases, the abundant 
component containing node i merges into a larger component. 

This discussion shows that within O(log n) scaling phases the algorithm per
forms one merge operation. Since each merge operation decreases the number of 
abundant components by one, the algorithm can perform at most n merge operations. 
Consequently, the number of scaling phases is bounded by O(n log n). The algo
rithmic description of the enhanced capacity scaling algorithm implies that the al
gorithm requires O(m) time per scaling phase plus the time required for the aug
mentations. 

We now obtain a bound on the number of augmentations and the time that they 
require. The algorithm performs at most n imbalance-property augmentations; it can 
easily execute each augmentation in Oem) time; thus these augmentations are not 
a bottleneck step in the algorithm. Next consider the shortest path augmentations. 
Recall from the proof of Theorem 10.30 that in a scaling phase, we can charge each 
shortest path augmentation to a root node (which is a large excess or a large-deficit 
node) or to a nonroot node. Since we can charge each nonroot at most two aug
mentations over the entire execution of the algorithm, we charge at most 2n aug
mentations to nonroots. Moreover, when we charge an augmentation to a root node 
i, this node satisfies the condition I e(i) r 2: (n - l)Ll/n. Theorem 10.33 implies that 
we will charge at most one augmentation to node i in the following O(log n) scaling 
phases before the algorithm performs a merge operation and the component con
taining node i merges into a larger component. Since the algorithm encounters at 
most 2n different abundant components (n to begin with and n due to merge oper
ations), the total number of shortest path augmentations we can charge to root nodes 
is at most O(n log n). Since each shortest path augmentation requires the solution 
of a shortest path problem with nonnegative arc lengths and requires Sen, m) time, 
all the shortest path augmentations require a total of O(n log n Sen, m» time. This 
time dominates the time taken by all other operations performed by the algorithm. 
Therefore, we have established the assertion of the theorem. • 

To solve the capacitated minimum cost flow problem, we transform it to the 
uncapacitated version using the transformation described in Section 2.4. The re
sulting uncapacitated network has n' = n + m nodes and m' = 2m arcs. The 
enhanced capacity scaling algorithm will solve the minimum cost flow problem in 
the transformed network in O(n' log n') = Oem log m) = Oem log n2

) = Oem 
log n) scaling phases and will solve a total of O(n' log n') = Oem log n) shortest 
path problems. Each shortest path problem in the uncapacitated network requires 
S(n', m') time, but using the ideas described in Exercise 4.53 we can improve this 
time bound to Sen, m). Therefore, the enhanced capacity scaling algorithm can solve 
the capacitated minimum cost flow problem in Oem log n sen, m» time. We state 
this important result as a theorem. 

Theorem 10.35. The enhanced capacity scaling algorithm solves a capaci-
tated minimum cost flow problem in Oem log n sen, m» time. • 

394 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



10.8 SUMMARY 

In this chapter we continued our study of the minimum cost flow problem by de
veloping several polynomial-time algorithms. The scaling technique is a central 
theme in almost all the algorithms we have discussed. The algorithms discussed use 
capacity scaling, cost scaling, or both, or use scaling concepts in their proofs. We 
discussed six polynomial-time algorithms: (1) the capacity scaling algorithm, (2) the 
cost scaling algorithm, (3) the double scaling algorithm, (4) the minimum mean cycle
canceling algorithm, (5) the repeated capacity scaling algorithm, and (6) the enhanced 
capacity scaling algorithm. The first three of these algorithms are weakly polynomial; 
the other three are strongly polynomial. Figure 10.13 specifies the running times of 
these algorithms. 

The capacity scaling algorithm is possibly the simplest of all the polynomial
time algorithms we have discussed. This algorithm is an improved version of the 
successive shortest path algorithm discussed in Section 9.7; by augmenting flows 
along paths with sufficiently large residual capacities, this algorithm is able to de
crease the number of augmentations from O(nU) to Oem log U). 

Whereas the capacity scaling algorithm scales the capacities, the cost scaling 
algorithm scales costs. The algorithm maintains E-optimal flows for decreasing values 
of E and repeatedly executes an improve-approximation procedure that converts an 
E-optimal flow into an E/2-optimal flow. The computations performed by the improve
approximation procedure are similar to those performed by the preflow-push algo
rithm for the maximum flow problem. The double scaling algorithm is the same as 
the cost scaling algorithm except that it uses a different version of the improve
approximation procedure. The improve-approximation procedure in the cost scaling 
algorithm performs push/relabel steps; in the double scaling algorithm, this procedure 
augments flow along paths of sufficiently large residual capacity. Justifying its name, 
within a cost scaling phase, the double scaling algorithm performs' a number of 
capacity scaling phases. 

The minimum mean cycle-canceling algorithm for the minimum cost flow prob
lem is different from all the other algorithms discussed in this chapter. The algorithm 
is startlingly simple to describe and does not make explicit use of the scaling tech
nique; the proof of the algorithm, however, uses arguments from scaling techniques. 

Algorithm Running time 

Capacity scaling algorithm O«m log U)(m + n log n» 

Cost scaling algorithm O(n3 log(nC» 

Double scaling algorithm O(nm log U log(nC» 

Minimum mean cycle-canceling algorithm O(n2m3 log n) 

Repeated capacity scaling algorithm O«m2 log n)(m + n log n» 

Enhanced capacity scaling algorithm O«m log n)(m + n log n» 

Figure 10.13 Running times of polynomial-time minimum cost flow algorithms. 

Sec. 10.8 Summary 395 



This algorithm is a special implementation of the cycle canceling algorithm that we 
described in Section 9.6; it always augments flow along a minimum mean (negative) 
cycle in the residual network. To establish that this algorithm is strongly polynomial, 
we show that (1) when the reduced cost of an arc is sufficiently large, the flow on 
the arc becomes "fixed" (i.e., does not change any more); and (2) within O(nm log 
n) iterations, at least one additional arc has a sufficiently large reduced cost so that 
its value becomes fixed. 

If we adopt a similar idea in the capacity scaling algorithm, it also becomes 
strongly polynomial. We showed that whenever the flow on an arc (i,j) is sufficiently 
large, we can fix the potentials of nodes i and j with respect to each other. The 
repeated capacity scaling algorithm applies the capacity scaling algorithm and within 
O(log n) scaling phases, it identifies an arc (i, j) with a sufficiently large flow. The 
algorithm then merges the nodes i and j into a single node and starts from scratch 
again on the modified minimum cost flow problem. The enhanced capacity scaling 
algorithm, described next, dramatically improves on the repeated capacity scaling 
algorithm by observing that whenever we contract an arc, we need not start all over 
again, .but can continue the computations and stilI contract an additional arc within 
every O(log n) scaling phases and use only Oem log n) augmentations in total. This 
algorithm does not perform contractions explicitly, but does so implicitly by main
taining zero excesses at the contracted nodes (i.e., nonroot nodes). 

REFERENCE NOTES 

The following account of polynomial-time minimum cost flow algorithms is fairly 
brief. The surveys by Ahuja, Magnanti, and Orlin [1989, 1991] and by Goldberg, 
Tardos, and TaIjan [1989] provide more details concerning the development of this 
field. 

Most of the available (combinatorial) polynomial-time algorithms for the min
imum cost flow problems use scaling techniques. Edmonds and Karp [1972] intro
duced the scaling approach and obtained the first weakly polynomial-time algorithm 
for the minimum cost flow problem. This algorithm used the capacity scaling tech
nique. The algorithm we presented in Section lO.2, which is a variant of Edmonds 
and Karp's algorithm, is due to Orlin [1988]. From 1972 to 1984, there was little 
research on scaling techniques. Since 1985, research employing scaling techniques 
has been extensive. Researchers now recognize that scaling techniques have great 
theoretical value as well as potential practical significance. Scaling techniques now 
yield many of the best (in the worst-case sense) available minimum cost flow al
gorithms. 

Rock [19801 and, independently, Bland and Jensen [1985] suggested a cost 
scaling technique for the minimum cost flow problem. This approach solves the 
minimum cost flow problem as a sequence of O(n log C) maximum flow problems. 
Goldberg and TaIjan [1987] improved on the running time of Rock's algorithm and 
solved the minimum cost flow problem by solving "almost" O(log(nC» maximum 
flow problems. This approach is based on the concept of E-optimality, which is, 
independently, due to Bertsekas [1979] and Tardos [19851. We describe this approach 
in Section lO.3. Goldberg and TaIjan [1987] have developed several improved im
plementations of this approach, including the wave implementation presented in 

396 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



Section 10.3. Their best implementation, which runs in O(nm log(n 2/m) 10g(nC)) 
time, uses Fibonacci heaps and finger search trees. Bertsekas and Eckstein [1988], 
independently, discovered the wave implementation. 

Ahuja, Goldberg, Orlin, and TaIjan [1992] developed the double scaling al
gorithm described in Section 10.4, which combines capacity and cost scaling. This 
paper also describes several improved implementations, the best of which runs in 
O(nm log log U 10g(nC)) time and uses the Fibonacci heap data structure. 

When Edmonds and Karp [1972] suggested the first (weakly) polynomial-time 
algorithm for the minimum cost flow problem, they posed the development of a 
strongly polynomial-time algorithm as an open challenging problem. Tardos [1985] 
first settled this problem. Subsequently, Orlin [1984], Fujishige [1986], Galil and 
Tardos [1986], Goldberg and TaIjan [1987, 1988], Orlin [1988], and Ervolina and 
McCormick [1990b] developed other strongly polynomial-time algorithms. Cur
rently, the best strongly polynomial-time algorithm is due to Orlin [1988]; it runs in 
O((m log n)(m + n log n)) time. 

Most of the strongly polynomial-time minimum cost flow algorithm use the 
ideas of "fixing arc flows" or "fixing node potentials." Tardos [1985] was the first 
investigator to propose the use of either ofthese ideas (her algorithm fixes arc flows). 
The minimum mean cycle-canceling algorithm that we presented in Section 10.5 
fixes arc flows; it is due to Goldberg and TaIjan [1988]. Goldberg and TaIjan [1988] 
also presented several variants of the minimum mean cycle-canceling algorithm with 
improved worst-case complexity. Orlin [1984] and Fujishige [1986] independently 
developed the idea of fixing node potentials, which is the "dual" of fixing arc flows. 
Using this idea, Goldberg, Tardos, and TaIjan [1989] obtained the repeated capacity 
scaling algorithm that we examined in Section 10.6. The enhanced capacity scaling 
algorithm, which is due to Orlin [1988], achieves the best strongly polynomial-time 
for solving the minimum cost flow problem. However, our presentation of the en
hanced capacity scaling algorithm in Section 10.7 is based on Plotkin and Tardos' 
[1990] simplification of Orlin's original algorithm. 

Some additional polynomial-time minimum cost flow algorithms include (1) a 
triple scaling algorithm due to Gabow and TaIjan [1989a], (2) a special implemen
tation of the cycle canceling algorithm developed by Barahona and Tardos [1989], 
and (3) (its dual approach) a cut canceling algorithm proposed by Ervolina and 
McCormick [1990a]. 

Interior point linear programming algorithms are another source of polynomial
time algorithms for the minimum cost flow problem. Among these, the fastest avail
able algorithm, due to Vaidya [1989], solves the minimum cost flow problem in 
O(n2

.
sVfii K) time, with K = log n + log C + log U. 
Currently, the best available time bound for the minimum cost flow problem 

is O(min{nm log(n 2/m) 10g(nC)), nm (log log U) 10g(nC), (m log n)(m + n log n)}); 
the three bounds in this expression are, respectively, due to Goldberg and TaIjan 
[1987], Ahuja, Goldberg, Orlin, and TaIjan [1992], and Orlin [1988]. 

EXERCISES 

10.1. Suppose that we want to solve the minimum cost flow problem shown in Figure 
1O.14(a) by the capacity scaling algorithm. Show the computations for two scaling 
phases. You may identify the shortest path distances by inspection. 

Chap. 10 Exercises 397 



b(j) 

.@ 
15 13 -2 
~I (10,4), 

(10, 101 ~ '(W,S) (~'S)'i;15'6) 
® (5, 1O).~ (0,8)· ;iW;~ 
-7 -5 -14 

(a) (b) 

Figure 10.14 Examples for Exercises 10.1 and 10.4. 

10.2. In every iteration of the capacity scaling algorithm, we augment flow along a shortest 
path from a node k with e(k) ;::: ~ to a node I with e(l) ::S - ~. Suppose that we modify 
the algorithm as follows: We let node 1 be any deficit node; that is, we do not necessarily 
assume that e(l) ::S - ~. Will this modification affect the worst-case complexity of the 
capacity scaling algorithm? 

10.3. Prove or disprove the following statements. 
(a) During the ~-scaling phase of the capacity scaling algorithm, I e(i) I ::S 2 ~ for each 

node i E N. 
(b) While solving a specific instance of the minimum cost flow problem, the capacity 

scaling algorithm might perform more augmentations than the successive shortest 
path algorithm. 

10.4. Consider the minimum cost flow problem given in Figure 1O.14(a) and the feasible 
flow x shown in Figure 1O.14(b). Starting with e = 0, apply two phases of the cost 
scaling algorithm. 

10.5. Show that if the cost-scaling algorithm finds that arc (i, j) is inadmissible at some stage, 
this arc remains inadmissible until the algorithm relabels node i. 

10.6. Let x and x' be two distinct (feasible) flows in a network. The flow decomposition 
theorem implies that we can always express x' as x plus the flow along at most m 
directed cycles WI> W2 , ••• , Wp in G(x). For every 1 ::S i ::S p, let Wi denote the 
directed cycle obtained by reversing each arc in Wi' Show that we can express x as 
x' plus the flow along the cycles Wi, Wz, ... , W;. 

10.7. For the cost scaling algorithm, we showed that whenever e < lin, any e-optimal flow 
is O-optimal. Show that if we multiply all arc costs by n + 1, then any flow that is 
e-optimal flow for the modified problem when e ::S 1 is O-optimal for the original prob
lem. 

10.8. In the cost scaling algorithm, during a relabel operation we increase node potentials 
by e/2 units. Show that we can increase node potentials by as much as e/2 + 
min{cij : (i, j) in G(x) and rij > O} and still maintain e/2-optimality of the pseudoflow. 

10.9. Let x' be a feasible flow of the minimum cost flow problem and let x be a pseudoflow. 
Show that in the pseudoflow x, for every node v with an excess, there exists a node 
w with a deficit and a sequence of nodes v = VO, VI> V2, ••• , VI = w that satisfies 
the property that the path P = Vo - VI - V2 - ... - VI is a directed path in G(x) and 
its reversal P = VI - VI-I - ... - Vo is a directed path in G(X'). (Hint: This exercise 
is similar to Exercise 10.6.) 

10.10. In this exercise we study the non scaled version of the cost scaling algorithm. 
(a) Modify the algorithm described in Section 10.3 so that it starts with a O-optimal 

398 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



pseudoflow, maintains an l/(n + 1)-optimal pseudoflow at every step, and ter
minates with an lI(n + 1)-optimal flow. 

(b) Determine the number of relabel operations, the number of saturating and non
saturating pushes, and the running time of the algorithm. Compare these numbers 
with those of the cost scaling algorithm. 

10.11. In the wave implementation of the cost scaling algorithm described in Section 10.3, 
we scaled costs by a factor of 2. Suppose, instead, that we scaled costs by a factor 
of k 2 2. In that case we start with 11 = k l10g CJ and decrease e by a factor of k between 
two consecutive scaling phases. Outline the changes required in the algorithm and 
determine the number of scaling phases, relabel operations, and saturating and non
saturating pushes within a scaling phase. For what value of k is the running time 
minimum? 

10.12. Generalized cost scaling algorithm (Goldberg and Tarjan [1987]). As we noted in the 
text, by using some of the ideas of the minimum mean cycle-canceling algorithm (de
scribed in Section 10.5), we can devise a strongly polynomial-time version of the cost 
scaling algorithm that we described in Section 10.3. The modified algorithm, which 
we call the generalized cost scaling algorithm, is the same as the cost scaling algorithm 
except that it performs the following additional step after it has called the procedure 
improve-approximation, but before resetting e : = e/2 (see Figure 10.3). 

Additional step: Solve a minimum mean cycle problem to determine the minimum 
mean cycle cost /L(x), set e = -/L(x), and then determine a set of potential 'IT so that 
the flow x is e-optimal with respect to 'IT (as described in the proof of Lemma 10.12). 

Show that the generalized cost scaling fixes a distinct arc after O(log n) scaling 
phases. What is the resulting running time of the algorithm? 

10.13. In the double scaling algorithm described in Section lOA, we scaled costs by a factor 
of 2. Suppose that as described in Exercise 10.2, we scale costs by a factor of k instead 
of 2. Show that within a cost scaling phase, the algorithm performs O(knm) retreat 
steps. How many advance steps does the algorithm perform within a scaling phase? 
How many scaling phases does it require? For what value of k does the algorithm run 
in the least time? What is the time bound for this value of k? 

10.14. An arc (i, j) in the network G = (N, A) is critical if increasing Cij causes the cost of 
the optimal flow to increase and decreasing Cij causes the cost of the optimal flow to 
decrease. Does a network always contain a critical arc? Show that we can identify all 
critical arcs by solving O(m) maximum flow problems. (Hint: Use' the fact that an arc 
is critical if it carries a positive flow in every optimal flow.) 

10.15. In some minimum cost flow problem, each arc capacity and each supply/demand is a 
mUltiple of ex and lies in the range [0, exK] for some constant K. Will the algorithms 
discussed in this chapter run any faster when applied to minimum cost flow problems 
with this special structure? 

10.16. Suppose that in some minimum cost flow problem, each arc cost is a mUltiple of ex 
and lies in the range [0, exK] for some constant K. Will this special structure permit 
us to solve the minimum cost flow problem any faster by the cost scaling and double 
scaling algorithms? 

10.17. Minimum cost flows in unit capacity networks. A network is a unit capacity network 
if each arc has a capacity of 1. 
(a) What is the running time of the capacity scaling algorithm for unit capacity net

works? 
(b) What is the running time of the cost scaling algorithm for unit capacity networks? 

(Hint: Will the algorithm make any non saturating pushes?) 
10.lS. Minimum cost flows in bipartite networks. Let G = (N1 U N 2 , A) be a bipartite network. 

Let nl = I NI I :5 I N2 I = n2' 
(a) Show that when applied to a bipartite network, the cost scaling algorithm relabels 

any node O(nl) times during a scaling phase. 

Chap. 10 Exercises 399 



(b) Develop an implementation of the generic cost scaling algorithm that runs in 
O(nrm log(nC)) time for bipartite networks. (Hint: Generalize the bipartite 
preflow-push algorithm for the maximum flow problem discussed in Section 8.3.) 

10.19. What is the running time of the double scaling algorithm for bipartite networks G == 
(Nt U N 2, A), assuming that nt == I Nt I :5 I N2 I = n2? 

10.20. Two minimum cost flow problems pI and P" are capacity adjacent if P" differs from 
P' only in one arc capacity and by 1 unit. Given an optimal solution of pI, describe 
an efficient method for solving P". (Hint: Reoptimize by solving a shortest path prob
lem.) 

10.21. Two minimum cost flow problems pI arid P" are cost adjacent if P" differs from pI 
only in one arc cost, and by 1 unit. Given an optimal solution of pI, describe an efficient 
method for solving P". (Hint: Reoptimize by solving a maximum flow problem.) 

10.22. Bit scaling of capacities (Rock [1980]). In this capacity scaling algorithm, we consider 
binary representations of the arc capacities (as described in Section 3.3) and define 
problem p k to be the minimum cost flow problem with each arc capacity equal to the 
k leading bits of the actual capacity. Given an optimal solution of pk, how would you 
obtain an optimal solution of pk+ t by solving at most m capacity adjacent problems 
(as defined in Exercise 10.20). Write a pseudocode for the minimum cost flow problem 
assuming the availability of a subroutine for solving capacity adjacent problems (Le., 
solving one from the solution to the other). What is the running time of your algorithm? 

10.23. Bit scaling of costs (Rock [1980]). In this cost scaling algorithm, we consider binary 
representations of the arc costs and define problem p k to be the minimum cost flow 
problem with each arc cost equal to the k leading bits of the actual cost. Given an 
optimal solution of Pk, how would you obtain an optimal solution of p k + 1 by solving 
at most m cost adjacent problems (as defined in Exercise 1O.21)? Write a pseudocode 
for the minimum cost flow problem assuming the availability of a subroutine for solving 
cost adjacerit-problems (Le., solving one from the solution to the other). What is the 
running time of your algorithm? 

10.24. Suppose that we define the contraction of an arc as in Section 10.5. Let GC denote 
the network of G = (N, A) we obtain when we contract the endpoints of an arc 
(k, l) E A into a single node p. In addition, let G' = (N, A - {(k, I)}). Show that if 
a(G) denotes the number of (distinct) spanning trees of G, then a(G) = a(GC

) + 
a(G' ). 

10.25. Constrahwd maximum flow problem. In the constrained maximum flow problem, we 
wish to maximize the flow from the source node s to the sink node t subject to an 
additional linear constraint. Consider the following linear programming formulation 
of this problem: 

400 

subject to 

Maximize v 

~ xij - ~ Xji = { ~ 
{j:(i,j)EA} {j:(j,i)EA} -v 

o :5 xij :5 uij, 

~ cijXij:5 D. 
(ij)EA 

for i = s 
for all i E N - {s,t} 
for i = t, 

(a) Let v* be any integer and let x* be an optimal solution of a minimum cost flow 
problem with the objective function ~(i,j)EA cijxij and with the supply/demand 
data b(s) = v*, b(t) = -v*, and b(i) = 0 for all other nodes. Let z* = 
~(iJ)EA CijXt· Show that x* solves the constrained maximum flow problem when 
D = z*. Assume that cij ;:::: 0 for each arc (i, j) E A. 

(b) Assume that all of the data in the constrained maximum flow problem are integer. 
Use the result in part (a) to develop an algorithm for the constrained maximum 

Minimum Cost Flows: Polynomial Algorithms Chap. 10 



flow problem that uses a minimum cost flow algorithm as a subroutine. What is 
the running time of your algorithm? (Hint: Perform binary search on v.) 

10.26. In the enhanced capacity scaling algorithm, suppose we maintain an index with each 
arc that stores whether the arc is an abundant or a nonabundant arc. Suppose further 
that at some stage the algorithm adds an arc (i, j) to the abundant subgraph. Show 
how you would perform each of the following operations in Oem) time: (i) identifying 
the root nodes, ir and jn of the abundant components containing the nodes i and j; 
(ii) determining whether the nodes i and j belong to the same abundant component; 
and (iii) identifying a path from node i to j, or vice versa. Using these operations, 
explain how you would perform a merge operation and the subsequent imbalance
property augmentation in Oem) time. (Hint: Observe that each abundant arc can be 
traversed in either direction because it has sufficient residual capacity in both the 
directions. Then use the search algorithm described in Section 3.4.) 

Chap. 10 Exercises 401 



11 

MINIMUM COST FLOWS: NETWORK 
SIMPLEX ALGORITHMS 

Chapter Outline 

11.1 Introduction 
11.2 Cycle Free and Spanning Tree Solutions 
11.3 Maintaining a Spanning Tree Structure 
11.4 Computing Node Potentials and Flows 
11.5 Network Simplex Algorithm 
11.6 Strongly Feasible Spanning Trees 

... seek, and ye shall find. 
-The Book of Matthew 

11.7 Network Simplex Algorithm for the Shortest Path Problem 
11.8 Network Simplex Algorithm for the Maximum Flow Problem 
11.9 Related Network Simplex Algorithms 
11.10 Sensitivity Analysis 
11 .11 Relationship to Simplex Method 
11.12 U nimodularity Property 
11.13 Summary 

11.1 INTRODUCTION 

The simplex method for solving linear programming problems is perhaps the most 
powerful algorithm ever devised for solving constrained optimization problems. In
deed, many members of the academic community view the simplex method as not 
only one of the principal computational engines of applied mathematic,s, computer 
science, and operations research, but also as one of the landmark contributi6ns to 
computational mathematics of this century. The algorithm has achieved this lofty 
status because of the pervasiveness of its applications throughout many problem 
domains, because of its extraordinary efficiency, and because it pertp.its ~s to not 
only solve problems numerically, but also to gain considerable practical and theo-
retical insight through the use of sensitivity analysis and duality theory. ", 

Since minimum cost flow problems define a special class of linear programs, 
we might expect the simplex method to be an attractive solution procedure for solving 
many of the problems that we consider in this text. Then again, because network 
flow problems have considerable special structure, we might also ask whether the 
simplex method could possibly compete with other "combinatorial" methods, such 
as the many variants of the successive shortest path algorithm, that exploit the 
underlying network structure. The general simplex method, when implemented in 

402 



a way that does not exploit underlying network structure, is not a competitive so
lution procedure for solving minimum cost flow problems. Fortunately, however, if 
we interpret the core concepts of the simplex method appropriately as network 
operations, we can adapt and streamline the method to exploit the network structure 
of the minimum cost flow problem, producing an algorithm that is very efficient. 
Our purpose in this chapter is to develop this network-based implementation of the 
simplex method and show how to apply it to the minimum cost flow problem, the 
shortest path problem, and the maximum flow problem. 

We could adopt several different approaches for presenting this material, and 
each has its own merits. For example, we could start by describing the simplex 
method for general linear programming problems and then show how to adapt the 
method for minimum cost flow problems. This approach has the advantage of placing 
our development in the broader context of more general linear programs. Alterna
tively, we could develop the network simplex method directly in the context of 
network flow problems as a particular type of augmenting cycle algorithm. This 
approach has the advantage of not requiring any background in linear programming 
and of building more directly on the concepts that we have developed already. We 
discuss both points of view. Throughout most of this chapter we adopt the network 
approach and derive the network simplex algorithm from the first principles, avoiding 
the use of linear programming in any direct way. Later, in Section 11.11, we show 
that the network simplex algorithm is an adaptation of the simplex method. 

The central concept underlying the network simplex algorithm is the notion of 
spanning tree solutions, which are solutions that we obtain by fixing the flow of 
every arc not in a spanning tree either at value zero or at the arc's flow capacity. 
As we show in this chapter, we can then solve uniquely for the flow on all the arcs .. 
in the spanning tree. We also show that the minimum cost flow problem always has 
at least one optimal spanning tree solution and that it is possible to find an optimal 
spanning tree solution by "moving" from one such solution to another, at each step 
introducing one new nontree arc into the spanning tree in place of one tree arc. This 
method is known as the network simplex algorithm because spanning trees corre
spond to the so-called basic feasible solutions of linear programming, and the move
ment from one spanning tree solution to another corresponds to a so-called pivot 
operation of the general simplex method; In Section 11.11 we make these connec
tions. 

In the first three sections of this chapter we examine several fundamental ideas 
that either motivate the network simplex method or underlie its development. In 
Section 11.2 we show that the minimum cost flow problem always has at least one 
spanning tree solution. We also show how the network optimality conditions that 
we have used repeatedly in previous chapters specialize when applied to any span
ning tree solution. In keeping with our practice in previous chapters, we use these 
conditions to assess whether a candidate solution is optimal and, ifnot, how to modify 
it to construct a better spanning tree solution. 

To implement the network simplex algorithm efficiently we need to develop a 
method for representing spanning trees conveniently in a computer so that we can 
perform the basic operations of the algorithm efficiently and so that we can efficiently 
manipUlate the computer representation of a spanning tree structure from step to 
step. We describe one such approach in Section 11.3. 

Sec. 11.1 Introduction 403 



In Section 11.4 we show how to compute the arc flows corresponding to any 
spanning tree and associated node potentials so that we can assess whether the 
particular spanning tree is optimal. These operations are essential to the network 
simplex algorithm, and since we need to make these computations repeatedly as we 
move from one spanning tree to another, we need to be able to implement these 
operations very efficiently. Section 11.5 brings all these pieces together and describes 
the network simplex algorithm . 

. In the context of applying the network simplex algorithm and establishing that 
the algorithm properly solves any given minimum cost flow problem, we need to 
address a technical issue known as degeneracy (which occurs when one of the arcs 
in a spanning tree, like the nontree arcs, has a flow value equal to zero or the arc's 
flow capacity). In Section 11.6 we describe a very appealing and simple way to 
modify the basic network simplex algorithm so that it overcomes the difficulties 
associated with degeneracy. 

Since the shortest path and maximum flow problems are special cases of the 
minimum cost flow problem, the network simplex algorithm applies to these prob
lems as well. In Sections 11.7 and 11.8 we describe these specialized implementa
tions. When applied to the shortest path problem, the network simplex algorithm 
closely resembles the label-correcting algorithms that we discussed in Chapter 5. 
When applied to the maximum flow problem, the algorithm is essentially an aug
menting path algorithm. 

The network simplex algorithm maintains a feasible solution at each step; by 
moving from one spanning tree solution to another, it eventually finds a spanning 
tree solution that satisfies the network optimality conditions. Are there other span
ning tree algorithms that iteratively move from one infeasible spanning tree solution 
to another and yet eventually find an optimal solution? In Section 11. 9 we describe 
two such algorithms: a parametric network simplex algorithm that satisfies all of the 
optimality conditions except the mass balance constraints at two nodes, and a dual 
network simplex algorithm that satisfies the mass balance constraints at all the nodes 
but might violate the arc flow bounds. These algorithms are important because they 
provide alternative solution strategies for solving minimum cost flow problems; they 
also illustrate the versatility of spanning tree manipUlation algorithms for solving 
network flow problems. 

We next consider a key feature of the optimal spanning tree solutions generated 
by the network simplex algorithm. In Section 11.10 we show that it is easy to use 
these solutions to conduct sensitivity analysis: that is, to determine a new solution 
if we change any cost coefficient or change the capacity of any arc. This type of 
information is invaluable in practice because problem data are often only approxi
mate and/or because we would like to understand how robust a solution is to changes 
in the underlying data. 

To conclude this chapter we delineate connections between the network sim
plex algorithm and more general concepts in linear and integer programming. In 
Section 11.11 we show that the network simplex algorithm is a special case of the 
simplex method for general linear programs, although streamlined to exploit the 
special structure of network flow problems. In particular, we show that spanning 
trees for the network flow problem correspond in a one-to-one fashion with bases 
of the linear programming formulation of the problem. We also show that each of 

404 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



the essential steps of the network simplex algorithm, for example, determining node 
potentials or moving from one spanning tree to another, are specializations of the 
usual steps of the simplex method for solving linear programs. 

As we have noted in Section 9.6, network flow problems satisfy one very 
remarkable property: They have optimal integral flows whenever the underlying data 
are integral. In Section 11.12 we show that this integrality result is a special case of 
a more general result in linear and integer programming. We define a set of linear 
programming problems with special constraint matrices, known as unimodular ma
trices, and show that these linear programs also satisfy the integrality property. That 
is, when solved as linear programs with integral data, problems with these specialized 
constraint matrices always have integer solutions. Since node-arc incidence ma
trices satisfy the unimodularity property, this integrality property for linear pro
gramming is a strict generalization of the integrality property of network flows. This 
result provides us with another way to view the integrality property of network flows; 
it is also suggestive of more general results in integer programming and shows how 
network flow results have stimulated more general investigations in combinatorial 
optimization and integer programming. 

11.2 CYCLE FREE AND SPANNING TREE SOLUTIONS 

Much of our development in previous chapters has relied on a simple but powerful 
algorithmic idea: To generate an improving sequence of solutions to the minimum 
cost flow problem, we iteratively augment flows along a series of negative cycles 
and shortest paths. As one of these variants, the network simplex algorithm uses a 
particular strategy for generating negative cycles. In this-section, as a prelude to 
our discussion of the method, we introduce some basic background material. We 
begin by examining two important concepts known as cycle free solutions and span
ning tree solutions." 

For any feasible solution, x, we say that an arc (i, j) is afree arc if 0 < Xij < 
Uu and is a restricted arc if Xu = 0 or Xu = uu. Note that we can both increase and 
decrease flow on a free arc while honoring the bounds on arc flows. However, in a 
restricted arc (i, j) at its lower bound (i.e., Xu = 0) we can only increase the flow. 
Similarly, for flow on a restricted arc (i, j) at its upper bound (i.e., Xij = Uij) we can 
only decrease the flow. We refer to a solution X as a cycle free solution if the network 
contains no cycle composed only of free arcs. Note that in a cycle free solution, we 
can augment flow on any augmenting cycle in only a single direction since some arc 
in any cycle will restrict us from either increasing or decreasing that arc's flow. We 
also refer to a feasible solution X and an associated spanning tree of the network as 
a spanning tree solution if every nontree arc is a restricted arc. Notice that in a 
spanning tree solution, the tree arcs can be free or restricted. Frequently, when we 
refer to a spanning tree solution, we do not explicitly identify the associated tree; 
rather, it will be understood from the context of our discussion. 

In this section we establish a fundamental result of network flows: minimum 
cost flow problems always have optimal cycle free and spanning tree solutions. The 
network simplex algorithm will exploit this result by restricting its search for an 
optimal solution to only spanning tree solutions. To illustrate the argument used to 
prove these results, we use the network example shown in Figure 11.1. 

Sec. 11.2 Cycle Free and Spanning Tree Solutions 405 



(3,4) 3-9 

(5,2) 5+9 

(2,1) 

4-9 
(4,3) 

4+9 
(a) (b) 

Figure 11.1 Improving flow around a cycle: (a) feasible solution; (b) solution after aug
menting 9 amount of flow along a cycle. 

2+9 

For the time being let us assume that all arcs are uncapacitated [i.e., Uij = 00 

for each (i,j) E AJ. The network shown in Figure 11.1 contains positive flow around 
a cycle. We define the orientation of the cycle as the same as that of arc (4, 5). Let 
us augment 6 units of flow along the cycle in the direction of its orientation. As 
shown in Figure 11.1, this augmentation increases the flow on arcs along the ori
entation of the cycle (i.e., forward arcs) by 6 units and decreases the flow on arcs 
opposite to the orientation of the cycle (i.e., backward arcs) by 6 units. Also note 

. that the per unit incremental cost for this flow change is the sum of the costs of 
forward arcs minus the sum of the costs of backward arcs in the cycle, that is, 

per unit change in cost Ll = 2 + 1 + 3 - 4 - 3 = - 1. 

Since augmenting flow in the cycle decreases the cost, we set 6 as large as 
possible while preserving nonnegativity of all arc flows. Therefore, we must satisfy 
the inequalities 3 - 6 2:: ° and 4 - 6 2:: 0, and hence we set 6 = 3. Note that in the 
new solution (at e = 3), some arc in the cycle has a flow at value zero, and moreover, 
the objective function value of this solution is strictly less than the value ofthe initial 
solution. 

In our example, if we change C12 from 2 to 5, the per unit cost of the cycle is 
Ll = 2. Consequently, to improve the cost by the greatest amount, we would decrease 
6 as much as possible (i.e., satisfy the restrictions 5 + 6 2:: 0, 2 + 6 2:: 0, and 4 + 
6 2:: 0, or e 2:: - 2) and again find a lower cost solution with the flow on at least one 
arc in the cycle at value zero. We can restate this observation in another way: To 
preserve nonnegativity of all the arc flows, we must select e in the interval - 2 ::; 
e ::; 3. Since the objective function depends linearly on e, we optimize it by selecting 
6 = 3 or 6 = - 2, at which point one arc in the cycle has a flow value of zero. 

We can extend this observation in several ways: 

1. If the per unit cycle cost Ll = 0, we are indifferent to all solutions in the interval 
- 2 ::; e ::; 3 and therefore can again choose a solution as good as the original 
one, but with the flow of at least one arc in the cycle at value zero. 

2. If we impose upper bounds on the flow (e.g., such as 6 units on all arcs), the 

406 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



range offlow that preserves feasibility (i.e., the mass balance constraints, lower 
and upper bounds on flows) is again an interval, in this case -2::.; 6 ::.; 1, and 
we can find a solution as good as the original one by choosing 6 = - 2 or 
6 = 1. At these values of 6, the solution is cycle free; that is, some arc on the 
cycle has a flow either at value zero (at the lower bound) or at its upper bound. 

In general, our prior observations apply to any cycle in a network. Therefore, 
given any initial flow we can apply our previous argument repeatedly, one cycle at 
a time, and establish the following fundamental result. 

Theorem 11.1 (Cycle Free Property). If the objective function of a minimum 
cost flow problem is bounded from below over the feasible region, the problem 
always has an optimal cycle free solution. • 

It is easy to convert a cycle free solution into a spanning tree solution. Our 
results in Section 2.2 show that the free arcs in a cycle free solution define a forest 
(i.e., a collection of node-disjoint trees). If this forest is a spanning tree, the cycle 
free solution is already a spanning tree solution. However, if this forest is not a 
spanning tree, we can add some restricted arcs and produce a spanning tree. 

Figure 11.2 illustrates a spanning tree corresponding to a cycle free solution. 

(2,3) 

(1,2) 

Sec. 11.2 

(fj) (xU'ui) .(]) 
". 

(4,4) 

(3,3) (1, 1) (1,6) 

(0,5) 

(a) (b) 

@ .~ ~, ~ 

(c) 

Figure 11.2 Converting a cycle free solution into a spanning tree solution: 
(a) example network; (b) set of free arcs; (c) 2 spanning tree solutions. 

Cycle Free and Spanning Tree Solutions 407 



The solution in Figure 11.2(a) is cycle free. Figure 11.2(b) represents the set of free 
arcs, and Figure 11.2(c) shows two spanning tree solutions corresponding to the 
cycle free solution. As shown by this example, it might be possible (and often is) to 
complete the set of free arcs into a spanning tree in several ways. Adding the arc 
(3, 4) instead of the arc (2, 4) or (3, 5) would produce yet another spanning tree 
solution. Therefore, a given cycle free solution can correspond to several spanning 
trees. Nevertheless, since we assume that the underlying network is connected, we 
can always add some restricted arcs to the free arcs of a cycle free solution to produce 
a spanning tree, so we have established the following fundamental result: 

Theorem 11.2 (Spanning Tree Property). If the objective function of a minimum 
cost flow problem is bounded from below over the feasible region, the problem 
always has an optimal spanning tree solution. • 

A spanning tree solution partitions the arc set A into three subsets: (1) T, the 
arcs in the spanning tree; (2) L, the nontree arcs whose flow is restricted to value 
zero; and (3) U, the nontree arcs whose flow is restricted in value to the arcs' flow 
capacities. We refer to the triple (T, L, U) as a spanning tree structure. 

Just as we can associate a spanning tree structure with a spanning tree solution, 
we can also obtain a unique spanning tree solution corresponding to a given spanning 
tree structure (T, L, U). To do so, we set Xij = 0 for all arcs (i, j) E L, Xij = Uij for 
all arcs (i, j) E U, and then solve the mass balance equations to determine the flow 
values for arcs in T. In Section 11.4 we show that the flows on the spanning tree 
arcs are unique. We say that a spanning tree structure is feasible if its associated 

. spanning tree solution satisfies all of the arcs' flow bounds. In the special case in 
which every tree arc in a spanning tree solution is a free arc, we say that the spanning 
tree is nondegenerate; otherwise, we refer to it as a degenerate spanning tree. We 
refer to a spanning tree structure as optimal if its associated spanning tree solution 
is an optimal solution of the minimum cost flow problem. The following theorem 
states a sufficient condition for a spanning tree structure to be an optimal structure. 
As shown by ?ur disc~ssion in pr~vious chap~e.rs, th~Fredu~~ed .costs de~n~d as 
cIl = Cij - 'TI'(I) + 'TI'(j) are useful m charactenzmg optimal solutlOns to mllllmum 
cost flow problems. 

Theorem 11.3 (Minimum Cost Flow Optimality Conditions). A spanning tree 
structure (T, L, U) is an optimal spanning tree structure of the minimum cost flow 
problem if it is feasible and for some choice of node potentials 'TI', the arc reduced 
costs cIl satisfy the following conditions: 

(a) cIl = 0 for all (i, j) E T. 

(b) cij ~ 0 for all (i, j) E L. 

(c) cij:5 0 for all (i, j) E U. 

(11.1a) 

(l1.1b) 

(11.1c) 

Proof Let X* be the solution associated with the spanning tree structure (T, 
L, U). We know that some set of node potentials 'TI', together with the spanning tree 
structure (T, L, U), satisfies (11.1). 

We need to show that X* is an optimal solution of the minimum cost flow 

408 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



problem. In Section 2.4 we showed that minimizing LU,j)EA CijXij is equivalent to 
minimizing LU,j)EA cijxij. The conditions stated in (11.1) imply that for the given 
node potential 'IT , minimizing LU,j)EA cijxij is equivalent to minimizing the following 
expression: 

Minimize L cijxij - L I cij I Xij. (11.2) 
U,j)EL U,j)EU 

The definition of the solution x* implies that for any arbitrary solution x, 
Xij ;:::: xt for all (i, j) ELand xij :5 Xu for all (i, j) E U. The expression (11.2) implies 
that the objective function value of the solution X will be greater than or equal to 
that of x*. • 

These optimality conditions have a nice economic interpretation. As we shall 
see later in Section 11.4, if'IT(1) = 0, the equations in (11.1a) imply that -'IT(k) 
denotes the length of the tree path from node 1 to node k. The reduced cost cij = 

Cij - 'IT(i) + 'IT(j) for a nontree arc (i, j) E L denotes the change in the cost of the 
flow that we realize by sending 1 unit of flow through the tree path from node 1 to 
node i through the arc (i, j), and then back to node 1 along the tree path from node 
j to node 1. The condition ( 11.1 b) implies that this circulation of flow is not profitable 
(i.e., does not decrease cost) for any nontree arc in L. The condition (11.1c) has a 
similar interpretation. 

The network simplex algorithm maintains a feasible spanning tree structure 
and moves from one spanning tree structure to another until it finds an optimal 
structure. At each iteration, the algorithm adds one arc to the spanning tree in place 
of one of its current arcs. The entering arc is a nontree arc violating its optimality 
condition. The algorithm (1) adds this arc to the spanning tree, creating a negative 
cycle (which might have zero residual capacity), (2) sends the maximum possible 
flow in this cycle until the flow on at least one arc in the cycle reaches its lower or 
upper bound, and (3) drops an arC whose flow has reached its lower or upper bound, 
giving us a new spanning tree structure. Because of its relationship to the primal 
simplex algorithm for the linear programming problem (see Appendix C), this op
eration of moving from one spanning tree structure to another is known as a pivot 
operation, and the two spruming trees structures obtained in consecutive iterations 
are called adjacent spdhning tree structures. In Section 11.5 we give a detailed 
description of this algorithm. 

11.8 MAINTAINING A SPANNING TREE STRUCTURE 

Since the network simplex algorithm generates a sequence of spanning tree solutions, 
to implement th~ algorithm effectively, we need to be able to represent spanning 
trees conveniently in a computer so that the algorithm can perform its basic oper
ations efficiently and can update the representation quickly when it changes the 
spanning tree. Over the years, researchers have suggested several procedures for 
maintaining and manipulating a spanning tree structure. In this section we describe 
one of the more popular representations. 

We consider the tree as "hanging" from a specially designated node, called 
the root. Throughout this chapter we assume that node 1 is the root node. Figure 

Sec. 11.3 Maintaining a Spanning Tree Structure 409 



/ 

"-

/ 

11.3 gives an example of a tree. We associate three indices with each node i in the 
tree: a predecessor index, pred(i) , a depth index depth(O, and a thread index, 
thread(i). 

/'~ 

/' 

./ 
/' 

/' 

I 
/ 

/ 

" " " "-
"-

"-
\ 

\ 
\ 

I 

\ 
\ 
I 
I 
I 

/ 

i 1 

pred (i) 0 

depth (i) 0 

thread (i) 2 

2 3 4 5 6 7 8 9 

1 2 3 2 5 5 6 6 

1 2 3 2 3 3 4 4 

5 4 1 6 8 3 9 7 

'-.. ----
(a) (b) 

Figure 11.3 Example of a tree indices: (a) rooted tree; (b) corresponding tree indices. 

Predecessor index. Each node i has a unique path connecting it to the root. 
The index pred(i) stores the first node in that path (other than node 0. For example, 
the path 9-6-5-2-1 connects node 9 to the root; therefore, pred(9) = 6. By con
vention, we set the predecessor node of the root node, node 1, equal to zero. Figure 
11.3 specifies these indices for the other nodes. Observe that by iteratively using 
the predecessor indices, we can enumerate the path from any node to the root. 

A node j is called a successor of node i if pred(j) = i. For example, node 5 
has two successors: nodes 6 and 7. A leaf node is a node with no successors. In 
Figure 11.3, nodes 4, 7, 8, and 9 are leaf nodes. The descendants of a node i are 
the node i itself, its successors, successors of its successors, and so on. For example, 
in Figure 11.3, the elements of node set {5, 6, 7, 8, 9} are the descendants of node 
5. 

Depth index. We observed earlier that each node i has a unique path con
necting it to the root. The index depth(i) stores the number of arcs in that path. For 
example, since the path 9-6-5-2-1 connects node 9 to the root, depth(9) = 4. Figure 
11.3 gives depth indices for all of the nodes in the network. 

Thread index. The thread indices define a traversal of a tree, that is, a 
sequence of nodes that walks or threads its way through the nodes of a tree, starting 
at the root node, and visiting nodes in a "top-to-bottom" order, and finally returning 
to the root. We can find thread indices by performing a depth-first search of the tree 

Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



as described in Section 3.4 and setting the thread of a node to be the node in the 
depth-first search encountered just after the node itself. For our example, the depth
first traversal would read 1-2-5-6-8-9-7-3-4-1, so thread(1) = 2, thread(2) = 5, 
thread(5) = 6, and so on (see the dashed lines in Figure 11.3). 

The thread indices provide a particularly convenient means for visiting (or 
finding) all descendants of a node i. We simply follow the thread starting at that 
node and record the nodes visited, until the depth of the visited node becomes at 
least as large as that of node i. For example, starting at node 5, we visit nodes 6, 
8, 9, and 7 in order, which are the descendants of node 5 and then visit node 3. 
Since the depth of node 3 equals that of node 5, we know that we have left the 
"descendant tree" lying below node 5. We shall see later that finding the descendant 
tree of a node efficiently is an important step in developing an efficient implemen
tation of the network simplex algorithm. 

In the next section we show how the tree indices permit us to compute the 
feasible solution and the set of node potentials associated with a tree. 

11.4 COMPUTING NODE POTENTIALS AND FLOWS 

As we noted in Section 11.2, as the network simplex algorithm moves from one 
spanning tree to the next, it always maintains the condition that the reduced cost of 
every arc (i, j) in the current spanning tree is zero (i.e. cij = 0). Given the current 
spanning tree structure (T, L, U), the method first detennines values for the node 
potentials 'IT that will satisfy this condition for the tree arcs. In this section we show 
how to find these values of the node potentials. _-

Note that we can set the value of one node potential arbitrarily because adding 
a constant k to each node potential does not alter the reduced cost of any arc; that 
is, for any constant k, Cil = Cij - 'IT(i) + 'IT(j) = Cij - ['IT(i) + k]:r- ['IT(j) + k]. 
So for convenience, we henceforth assume that 'IT(1) = O. We compute the remaining 
node potentials using the fact that the reduced cost of every spanning tree arc is 
zero; that is, 

Cij = Cij - 'IT(i) + 'IT(j) = 0 for every arc (i, j) E T. (11.3) 

In equation (11.3), if we know one of the node potentials 'IT(i) or 'IT(j), we can 
easily compute the other one. Consequently, the basic idea in the procedure is to 
start at node 1 and fan out along the tree arcs using the thread indices to compute 
other node potentials. By traversing the nodes using the thread indices, we ensure 
that whenever the procedure visits a node k, it has already evaluated the potential 
of its predecessor, so it can compute 'IT(k) using (11.3). Figure 11.4 gives a formal 
statement of the procedure compute-potentials. 

The numerical example shown in Figure 11.5 illustrates the procedure. We first 
set 'IT(1) = O. The thread of node 1 is 2, so we next examine node 2. Since arc 
(1, 2) connects node 2 to its predecessor, using (11.3) we find that 'IT(2) = 'IT(1) -
C12 = - 5. We next examine node 5, which is connected to its parent by arc (5, 2). 
Using (11.3) we obtain 'IT(5) = 'IT(2) + C52 = -5 + 2 = -3. In the same fashion 
we compute the rest of the node potentials; the numbers shown next to each node 
in Figure 11.5 specify these values. 

Sec. 11.4 Computing Node Potentials and Flows 411 



-7 

"- ' ...... ----

procedure compute-potentials; 
begin 

7T(1) : = 0; 
j: = thread(1); 
while j ~ 1 do 
begin 

i : = pred( j); 
if (i, j) E A then 7r(j) : = 7r(i) - Cij; 

if (j, t) E A then 7r(j) : = 7r(t) + Cji; 

j: = thread(j); 
end; 

end; 
Figure 11.4 Procedure compute
potentials. 

Figure 11.5 Computing node 
potentials for a spanning tree. 

Let P be the tree path in T from the root node 1 to some node k. Moreover, 
let P and r., respectively, denote the sets of forward and backward arcs in P. Now 
let us examine arcs in P starting at node 1. The procedure compute-potentials implies 
that 'IT(j) = 'IT(i) - Cij whenever arc (i, j) is a forward arc in the path, and that 
'IT(j) = 'IT(i) + Cji whenever arc (j, i) is a backward arc in the path. This observation 
implies that 'IT(k) = 'IT(k) - 'IT(1) = - LU,j)EP Cij + L(i,j)Et: cij' In other words, 
'IT(k) is the negative of the cost of sending 1 unit of flow from node 1 to node k along 
the tree path. Alternatively, 'IT(k) is the cost of sending 1 unit of flow from mode k 
to node 1 along the tree path. The procedure compute-potentials requires 0(1) time 
per iteration and performs (n - 1) iterations to evaluate the node potential of each 
node. Therefore, the procedure runs in O(n) time. 

One important consequence of the procedure compute-potentials is that the 
minimum cost flow problem always has integer optimal node potentials whenever 
all the arc costs are integer. To see this result, recall from Theorem 11.2 that the 
minimum cost flow problem always has an optimal spanning tree solution. The po
tentials associated with this tree constitute optimal node potentials, which we can 
determine using the procedure compute-potentials. The description ofthe procedure 
compute-potentials implies that if all arc costs are integer, node potentials are integer 
as well (because the procedure performs only additions and subtractions). We refer 
to this integrality property of optimal node potentials as the dual integrality property 

412 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



5 

since node potentials are the dual linear programming variables associated with the 
minimum cost flow problem. 

Theorem 11.4 (Dual Integrality Property). If all arc costs are integer, the min-
imum cost flow problem always has optimal integer node potentials. • 

Computing Arc Flows 

We next consider the problem of determining the flows on the tree arcs of a given 
spanning tree structure. To ease our discussion, for the moment let us first consider 
the uncapacitated version of the minimum cost flow problem. We can then assume 
that all nontree arcs carry zero flow. 

If we delete a tree arc, say arc (i,j), from the spanning tree, the tree decomposes 
into two subtrees. Let T, be the subtree containing node i and let T2 be the subtree 
containing node j. Note that LkETJ b(k) denotes the cumulative supply/demand 
of nodes in T, [which must be equal to - LkET2 b(k) because LkETJ b(k) + 
LkET2 b(k) = 0]. In the spanning tree, arc (i, j) is the only arc that connects the 
subtree T, to the subtree T2 , so it must carry LkETJ b(k) units of flow, for this is 
the only way to satisfy the mass balance constraints. For example, in Figure 11.6, 
if we delete arc (1, 2) from the tree, then T, = {I, 3, 6, 7}, T2 = {2, 4, 5}, and 
LkETJ b(k) = 10. Consequently, arc (1, 2) carries 10 units of flow. 

15 

5 10 

(a) 

-15 5 

15 

1nA c 
~ ~ 

5 10 

(b) 

Figure 11.6 Computing flows for a spanning tree. 

o. 

crbCi
) 

fij 
@b(j) 

-15 

U sing this observation we can devise an efficient method for computing the 
flows on all the tree arcs. Suppose that (i, j) is a tree arc and that node j is a leaf 
node [the treatment of the case when (i, j) is a tree arc and node i is a leaf node is 
similar]. Our observations imply that arc (i, j) must carry - b(j) units of flow. For 
our example, arc (3, 7) must carry 15 units of flow to satisfy the demand of node 7. 
Setting the flow on this arc to this value has an effect on the mass balance of its 
incident nodes: we must subtract 15 units from b(3) and add 15 units to b(7) [which 
reduces b(7) to zero]. Having determined X37, we can delete arc (3, 7) from the tree 
and repeat the method on the smaller tree. Notice that we can identify a leaf node 
in every iteration because every tree has at least two leaf nodes (see Exercise 2.13). 
Figure 11.7 gives a formal description of this procedure. 

Sec. 11.4 Computing Node Potentials and Flows 413 



procedure compute-flows; 
begin 

b'(i) : = b(i), for all i E N; 
for each (i, j) E L do set xli: = 0; 
T': = T; 
while T' ¥o {1} do 
begin 

select a leaf node j (other than node 1) in the subtree T'; 
i: = pred( j); 
if (i, j) E T' then Xif : = - b' (j) 
else xii: = b'(j); 
add b'(j) to b'(i); 
delete node j and the arc incident to it from T'; 

end; 
end; 

Figure 11.7 Procedure compute-flows. 

This method for computing the flow values assumes that the minimum cost 
flow problem is uncapacitated. For the capacitated version of the problem, we add 
the following statement immediately after the first statement [i.e., b' (i): = b(i) for 
all i E N] in the procedure compute-jlows. We leave the justification of this modi
fication as an exercise (see Exercise 11.19). 

for each (i, j) E U do 
set xif: = Uij. subtract Uli from b'U) and add Ulf to b'(j); 

The running time of the procedure compute-jlows is easy to determine. Clearly, 
the initialization of flows and modification of supplies/demands b(i) and b(j) for 
arcs (i, j) in U requires O(m) time. If we set aside the time to select leaf nodes of 
T, then each iteration requires 0(1) time, resulting in a total of O(n) time. One way 
of identifying leaf nodes in T is to select nodes in the reverse order of the thread 
indices. Note that in the thread traversal, each node appears prior to its descendants 
(see Property 3.4). We identify the reverse thread traversal of the nodes by examining 
the nodes in the order dictated by the thread indices, putting all the nodes into a 
stack in the order of their appearance and then taking them out from the top of the 
stack one at a time. Therefore, the reverse thread traversal examines each node only 
after it has examined all of the node's descendants. We have thus established that 
for the uncapacitated minimum cost flow problem, the procedure compute-flows 
runs in O(m) time. For the capacitated version of the problem, the procedure also 
requires O(m) time. 

We can use the procedure compute-jlows to obtain an alternative proof of the 
(primal) integrality property that we stated in Theorem 9.10. Recall from Theorem 
11.2 that the minimum cost flow problem always has an optimal spanning tree so
lution. The flow associated with this tree is an optimal flow and we can determine 
it using the procedure compute-flows. The description of the procedure compute
flows implies that if the capacities of all the arcs and the supplies/demands of all the 
nodes are integer, arc flows are integer as well (because the procedure performs 
only additions and subtractions). We state this result again because of its importance 
in network flow theory. 

414 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



Theorem 11.5 (Primal Integrality Property). If capacities of all the arcs and 
supplies/demands of all the nodes are integer, the minimum cost flow problem always 
has an integer optimal flow. • 

In closing this section we observe that every spanning tree structure (T, L, U) 
defines a unique flow x. If this flow satisfies the flow bounds 0 :5 Xij :5 Uij for every 
arc (i, j) E A, the spanning tree structure is feasible; otherwise, it is infeasible. We 
refer to the spanning tree T as degenerate if xij = 0 or Xij = Uij for some arc (i, j) 
E T, and nondegenerate otherwise. In a nondegenerate spanning tree, 0 < Xij < Uij 

for every tree arc (i, j). 

11.5 NETWORK SIMPLEX ALGORITHM 

The network simplex algorithm maintains a feasible spanning tree structure at each 
iteration and successively transforms it into an improved spanning tree structure 
until it becomes optimal. The algorithmic description in Figure 11.8 specifies the 
essential steps of the method. 

algorithm network simplex; 
begin 

determine an initial feasible tree structure (T, L, U); 
let x be the flow and 11" be the node potentials associated with this tree structure; 
while some nontree arc violates the optimality conditions do 
begin 

select an entering arc (k, I) violating its optimality condition; 
add arc (k, I) to the tree and determine the leaving arc (p, q); 
perform a tree update and update the solutions x and 11"; 

end; 
end; 

Figure 11.8 Network simplex algorithm. 

In the following discussion we describe in greater detail how the network sim
plex algorithm uses tree indices to perform these various steps. This discussion 
highlights the value of the tree indices in designing an effident implementation of 
the algorithm. 

Obtaining an Initial Spanning Tree Structure 

Our connectedness assumption (i.e., Assumption 9.4 in Section 9.1) provides one 
way of obtaining an initial spanning tree structure. We have assumed that for every 
nodej EN - {I}, the network contains arcs (1,j) and (j, 1), with sufficiently large 
costs and capacities. We construct the initial tree T as follows. We examine each 
node j, other than node 1, one by one. If b(j) ;:::: 0, we include arc (1, j) in T with 
a flow value of b(j). If b(j) < 0, we include arc (j, 1) in T with a flow value of 
-b(j). The set L consists of the remaining arcs, and the set U is empty. As shown 
in Section 11.4, we can easily compute the node potentials for this tree using the 
equations Cij - 7r(i) + 7r(j) = 0 for all (i, j) E T. Recall that we set 7r(1) = o. 

If the network does not contain the arcs (1, j) and (j, 1) for each node j E 

Sec. 11.5 Network Simplex Algorithm 415 



N - {I} (or, we do not wish to add these arcs for some reason), we could construct 
an initial spanning tree structure by first establishing a feasible flow in the network 
by solving a maximum flow problem (as described in Application 6.1), and then by 
converting this solution into a spanning tree solution using the method described in 
Section 11.2. 

Optimality Testing and the Entering Arc 

Let (T, L, U) be a feasible spanning tree structure of the minimum cost flow problem, 
and let 'IT be the corresponding node potentials. To determine whether the spanning 
tree structure is optimal, we check to see whether the spanning tree structure satisfies 
the following conditions: 

cij 2: 0 for every arc (i, j) E L, 

cij :5 0 for every arc (i, j) E U. 

If the spanning tree structure satisfies these conditions, it is optimal and the 
algorithm terminates. Otherwise, the algorithm selects a nontree arc violating the 
optimality condition to be introduced into the tree. Two types of arcs are eligible 
to enter the tree: 

1. Any arc (i, j) E L with cij < 0 

2. Any arc (i, j) E U with cij > 0 

For any eligible arc (i, j), we refer to I cij I as its violation. The network simplex 
algorithm can select any eligible arc to enter the tree and still would terminate finitely 
(with some provisions for dealing with degeneracy, as discussed in Section 11.6). 
However, different rules for selecting the entering arc produce algorithms with dif
ferent empirical and theoretical behavior. Many different rules, called pivot rules, 
are possible for choosing the entering arc. The following rules are most widely 
adopted. 

Dantzig's pivot rule. This rule was suggested by George B. Dantzig, the 
father of linear programming. At each iteration this rule selects an arc with the 
maximum violation to enter the tree. The motivation for this rule is that the arc with 
the maximum violation causes the maximum decrease in the objective function per 
unit change in the value of flow on the selected arc, and hence the introduction of 
this arc into the spanning tree would cause the maximum decrease per pivot if the 
average increase in the value of the selected arc were the same for all arcs. Com
putational results confirm that this choice of the entering arc tends to produce rel
atively large decreases in the objective function per iteration and, as a result, the 
algorithm performs fewer iterations than other choices for the pivot rule. However, 
this rule does have a major drawback: The algorithm must consider every nontree 
arc to identify the arc with the maximum violation and doing so is very time con
suming. Therefore, even though this algorithm generally performs fewer iterations 
than other implementations, the running time of the algorithm is not attractive. 

416 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



First eligible arc pivot rule. To implement this rule, we scan the arc list 
sequentially and select the first eligible arc to enter the tree. In a popular version 
of this rule, we examine the arc list in a wraparound fashion. For example, in an 
iteration if we find that the fifth arc in the arc list is the first eligible arc, then in the 
next iteration we start scanning the arc list from the sixth arc. If we reach the end 
of the arc list while we are performing some iteration, we continue by examining 
the arc list from the beginning. One nice feature of this pivot rule is that it quickly 
identifies the entering arc. The pivot rule does have a counterbalancing drawback: 
with it, the algorithm generally performs more iterations than it would with other 
pivot rules because each pivot operation produces a relatively small decrease in the 
objective function value. The overall effect of this pivot rule on the running time of 
the algorithm is not very attractive, although the rule does produce a more efficient 
implementation than Dantzig's pivot nile. 

Dantzig's pivot rule and the first pivot ruie represent two extreme choices of 
a pivot rule. The candidate list pivot rule, which we discuss next, strikes an effective 
compromise between these two extremes and has proven to be one of the most 
successful pivot rules in practice. This rule also offers ·sufficient flexibility for fine 
tuning to special circumstances. 

Candidate list pivot rule. When implemented with this rule, the algorithm 
selects the entering arc using a two-phase pr9cedure consisting of major iterations 
and minor iterations. In a major iteration we construct a candidate list of eligible 
arcs. Having constructed this list, we then perform a number of minor iterations; 
in each of these iterations, we select an eligible arc from the candidate list with the 
maximum violation. 

In a major iteration we construct the candidate list as follows. We first examine 
arcs emanating from node 1 and add eligible arcs to the candidate list. We repeat 
this process for nodes 2, 3, ... , until either the list has reached its maximum 
allowable size or we have examined all the nodes. The next major iteration begins 
with the node where the previous major iteration ended and examines nodes in a 
wraparound fashion. 

Once the algorithm has formed the candidate list in a major iteration, it performs 
a number of minor iterations. In a minor iteration, the algorithm scans all the arcs 
in the candidate list and selects an arc with the maximum violation to enter the tree. 
As we scan the arcs, we update the candidate list by removing those arcs that are 
no longer eligible (due to changes in the node potentials). Once the candidate list 
becomes empty or we have reached a specified limit on the number of minor iter
ations to be performed within each major iteration, we rebuild the candidate list by 
performing another major iteration. 

Notice that the candidate list approach offers considerable flexibility for fine 
tuning to special problem classes. By setting the maximum allowable size of the 
candidate list appropriately and by specifying the number of minor iterations to be 
performed within a major iteration, we can obtain numerous different pivot rules. 
In fact, Dantzig's pivot rule and the first eligible pivot rule are special cases of the 
candidate list pivot rule (see Exercise 11.20). . 

In the preceding discussion, we described several important pivot rules. In the 
reference notes, we supply references for other pivot rules. Our next topic of study 

Sec. 11.5 Network Simplex Algorithm 417 



is deciding how to choose the arc that leaves the spanning tree structure at each 
step of the network simplex algorithm. 

Leaving Arc 

Suppose that we select arc (k, l) as the entering arc. The addition of this arc to the 
tree T creates exactly one cycle W, which we refer to as the pivot cycle. The pivot 
cycle consists of the unique path in the tree T from node k to node I, together with 
arc (k, I). We define the orientation of the cycle Was the same as that of (k, l) if 
(k, I) ELand opposite the orientation of (k, l) if (k, I) E U. Let Wand W denote 
the sets of forward arcs (i.e., those along the orientation of W) and backward arcs 
(those opposite to the orientation of W) in the pivot cycle. Sending additional flow 
around the pivot cycle W in the direction of its orientation strictly decreases the 
cost of the current solution at the per unit rate of 1 Crt I. We augment the flow as 
much as possible until one of the arcs in the pivot cycle reaches its lower or upper 
bound. Notice that augmenting flow along W increases the flow on forward arcs and 
decreases the flow on backward arcs. Consequently, the maximum flow change &ij 

on an arc (i, j) E W that satisfies the flow bound constraints is 

if (i, j) E W 
if (i, j) E W 

To maintain feasibility, we can augment & = min{&ij : (i, j) E W} units of flow 
along W. We refer to any arc (i, j) E W that defines & (Le., for which & = &ij) as a 
blocking arc. We then augment & units of flow and select an arc (p, q) with &pq = 
& as the leaving arc, breaking ties arbitrarily. We say that a pivot iteration is a 
nondegenerate iteration if & > 0 and is a degenerate iteration if & == O. A degenerate 
iteration occurs only if T is a degenerate spanning tree. Observe that if two arcs tie 
while determining the value of &, the next spanning tree will be degenerate. 

The crucial step in identifying the leaving arc is to identify the pivot cycle. If 
P(i) denotes the unique path in the tree from any node i to the root node, this cycle 
consists of the arcs {(k, I)} U P(k) U P(l) - (P(k) n P(l». In other words, W 
consists of the arc (k, I) and the disjoint portions of P(k) and P(l). Using the pre
decessor indices alone permits us to identify the cycle Was follows. First, we des
ignate all the nodes in the network as unmarked. We then start at node k and, using 
the predecessor indices, trace the path from this node to the root and mark all the 
nodes in this path. Next we start at node I and trace the predecessor indices until 
we encounter a marked node, say w. The node w is the first common ancestor of 
nodes k and I; we refer to it as the apex of cycle W. The cycle W contains the portions 
of the paths P(k) and P(l) up to node w, together with the arc (k, I). This method 
identifies the cycle Win O(n) time and so is efficient. However, it has the drawback 
of backtracking along those arcs of P(k) that are not in W. If the pivot cycle lies 
"deep in the tree," farfrqm its root, then tracing the nodes back to the root will be 
inefficient. Ideally, we would like to identify the cycle W in time proportional to 
1 W I. The simultaneous use of depth and predecessor indices, as indicated in Figure 
11.9, permits us to achieve this goal. 

This method scans the arcsin the pivot cycle W twice. During the first scan, 
we identify the apex of the cycle and also identify the maximum possible flow that 

418 Minil11:um Cost Flows: Network Simplex Algorithms Chap. 11 



procedure identify-cycle; 
begin· 

i: = k and j : = I; 
while i ¥o j do 
begin 

if depth(i) > depth( j) then i: = pred(i) 
else if depth (j) > depth (i) then j : = pred( j) 

else i: = pred(i) and j: = pred(j); 
end; 

end; 
Figure 11.9 Procedure for identifying 
the pivot cycle. 

can be augmented along W. In the second scan, we augment the flow. The entire 
flow change operation requires O(n) time in the worst case, but typically it examines 
only a small subset of nodes (and arcs). 

Updating the Tree 

When the network simplex algorithm has determined a leaving arc (p, q) for a given 
entering arc (k, I), it updates the tree structure. If the leaving arc is the same as the 
entering arc, which would happen when 8 = 8kt = Uk/, the tree does not change. In 
this instance the arc (k, I) merely moves from the set L to the set U, or vice versa. 
If the leaving arc differs from the entering arc, the algorithm must perform more 
extensive changes. In this instance the arc (p, q) becomes a nontree arc at its lower 
or upper bound, depending on whether (in the updated flow) Xpq = 0 or Xpq = U pq • 

Adding arc (k, I) to the current spanning tree and deleting arc (p, q) creates a new 
spanning tree. , 

For the new spanning tree, the node potentials also change; we can update 
them as follows. The deletion of the arc (p, q) from the previous tree partitions the 
set of nodes into two subtrees, one, TI, containing the root node, and the other, T2 , 

not containing the root node. Note that the subtree T2 hangs from node p or node 
q. The arc (k, I) has one endpoint in TJ and the other inT2 • As is easy to verify, 
the conditions 71'(1) == 0 and Cij - 71'(i) + 71'(j) = 0 for all arcs in the new tree imply 
that the potentials of nodes in the subtree TJ remain unchanged, and the potentials 
of nodes in the subtree T2 change by a constant amount. If k E TJ and I E T2, all 
the node potentials in T2 increase by - Crt; if I E TJ and k E T2, they increase by 
the amount Crt. Using the thread and depth indices, the method described in Figure 
11.10 updates the node potentials quickly. 

procedure update-potentials; 
begin 

if q E T2 then y: = q else y: = p; 
if k E T1 then change: = - cJ:, else change: = cJ:,; 
1T(Y) : = 1T(Y) + change; 
z: = thread(y); 
while depth(z) > depth(y) do 
begin 

1T(Z) : = 1T(Z) + change; 
z: = thread(z); 

end; 
end; 

Sec. 1J.5 Network Simplex Algorithm 

Figure 11.10 Updating node potentials 
in a pivot operation. 

419 



The final step in the updating of the tree is to recompute the various tree indices. 
This step is rather involved and we refer the reader to the references given in ref
erence notes for the details. We do point out, however, that it is possible to update 
the tree indices in O(n) time. In fact, the time required to update the tree indices 
is 0(1 WI + min{1 TI I, I T2 1}), which is typically much less than n. 

Termination 

The network simplex algorithm, as just described, moves from one feasible spanning 
tree structure to another until it obtains a spanning tree structure that satisfies the 
optimality condition (11.1). If each pivot operation in the algorithm is nondegenerate, 
it is easy to show that the algorithm terminates finitely. Recall that 1 ci:z 1 is the net 
decrease in the cost per unit flow sent around the pivot cycle W. Mter a nonde
generate pivot (for which & > 0), the cost of the new spanning tree structure is 
&1 ci:z 1 units less than the cost of the previous spanning tree structure. Since any 
network has a finite number of spanning tree structures and every spanning tree 
structure has a unique associated cost, the network simplex algorithm will encounter 
any spanning tree structure at most once and hence will terminate finitely. Degen
erate pivots, however, pose a theoretical difficulty: The algorithm might not ter
minate finitely unless we perform pivots carefully. In the next section we discuss a 
special implementation, called the strongly feasible spanning tree implementation, 
that guarantees finite convergence of the network simplex algorithm even for prob
lems that are degenerate. 

We use the example in Figure l1.11(a) to illustrate the network simplex al
gorithm. Figure l1.11(b) shows a feasible spanning tree solution for the problem. 
For this solution, T = {(1, 2), (1, 3), (2,4), (2, 5), (5, 6)}, L = {(2, 3), (5, 4)}, and 
U = {(3, 5), (4, 6)}. In this solution, arc (3, 5) has a positive violation, which is 1 
unit. We introduce this arc into the tree creating a cycle whose apex is node 1. Since 
arc (3, 5) is at its upper bound, the orientation of the cycle is opposite to that of arc 
(3, 5). The arcs (1, 2) and (2, 5) are forward arcs in the cycle and arcs (3, 5) and 
(1, 3) are backward arcs. The maximum increase in flow permitted by the arcs 
(3, 5), (1, 3), (1, 2), and (2, 5) is, respectively, 3, 3, 2, and 1 units. Consequently, 
& = 1 and we augment 1 unit of flow along the cycle. The augmentation increases 
the flow on arcs (1, 2) and (2, 5) by one unit and decreases the flow on arcs (1, 3) 
and (3, 5) by one unit. Arc (2, 5) is the unique blocking arc and so we select it to 
leave the tree. Dropping arc (2, 5) from the tree produces two subtrees: Tl consisting 
of nodes 1, 2, 3, 4 and T2 consisting of nodes 5 and 6. Introducing arc (3, 5), we 
again obtain a spanning tree, as shown in Figure 11.11 (c). Notice that in this spanning 
tree, the node potentials of nodes 5 and 6 are 1 unit less than that in the previous 
spanning tree. 

In the feasible spanning tree solution shown in Figure l1.l1(c), L = {(2, 3), 
(5, 4)} and U = {(2, 5), (4, 6)}. In this solution, arc (4, 6) is the only eligible arc: its 
violation equals 1 unit. Therefore, we introduce arc (4,6) into the tree. Figure 11.11(c) 
shows the resulting cycle and its orientation. We can augment 1 unit of additional 
flow along the orientation of this cycle. Sending this flow, we find that arc (3, 5) is 
a blocking arc, so we drop this arc from the current spanning tree. Figure 11.11(d) 

420 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



b(i) b(j) 

.f--_(,-,C;J,--.,U2;}_~·e 

o o 
(5,7) 

'Tr(i) 'Tr(j) .f---__ x...::.ij __ ~.@ 

-3 -8 

g;'~1) __ 5_~~ 

9 (2,3) (2,2) (5,4) -9 o ~-9 

o ' 

o 

-3 

-2 

(4,3) 

(a) 

5 

C 
2 

(c) 

o 

-8 

~ ~~~t'" , 
,J' , 
)j 14)'0'-10 

/~ 
-6 

---3----..ii~~ 
-2 -5 

(b) 

-3 -8 
4 

0 

,y 

-2 -7 
(d) 

Figure 11.11 Numerical example for the network simplex algorithm. 

'il' 

-11 

" 

shows the new spanning tree. As the reader can verify, this solution-has no eligible 
arc, and thus the network simplex algorithm terminates with this solution. 

11.6 STRONGLY FEASIBLE SPANNING TREES 

The network simplex algorithm does not necessarily terminate in a finite number of 
iterations unless we impose some additional restriction on the choice of the entering 
and leaving arcs. Very small network examples show that a poor choice leads to 
cycling (i.e., an infinite repetitive sequence of degenerate pivots). Degeneracy in 
network problems is not only a theoretical issue, but also a practical one. Compu
tational studies have shown that as many as 90% of the pivot operations in com
monplace networks can be degenerate. As we show next, by maintaining a special 
type of spanning tree, called a strongly feasible spanning tree, the network simplex 
algorithm terminates finitely; moreover, it runs faster in practice as well. 

Let (T, L, U) be a spanning tree structure for a minimum cost flow problem 
with integral data. As before, we conceive of a spanning tree as a tree hanging from 
the root node. The tree arcs are either upward pointing (toward the root) or are 
downward pointing (away from the root). We now state two alternate definitions of 
a strongly feasible spanning tree. 

Sec. 11.6 Strongly Feasible Spanning Trees 421 



1. Strongly feasible spanning tree. A spanning tree T is strongly feasible if every 
tree arc with zero flow is upward pointing and every tree arc whose flow equals 
its capacity is downward pointing. 

2. Strongly feasible spanning tree. A spanning tree T is strongly feasible if we 
can send a positive amount of flow from any node to the root along the tree 
path without violating any flow bound. 

If a spanning tree T is strongly feasible, we also say that the spanning tree 
structure (T, L, U) is strongly feasible. 

It is easy to show that the two definitions of the strongly feasible spanning 
trees are equivalent (see Exercise 11.24). Figure 11.12(a) gives an example of a 
strongly feasible spanning tree, and Figure 11.12(b) illustrates a feasible spanning 
tree that is not strongly feasible. The spanning tree shown in Figure 11.12(b) fails 
to be strongly feasible because arc (3, 5) carries zero flow and is downward pointing. 
Observe that in this spanning tree, we cannot send any additional flow from nodes 
5 and 7 to the root along the tree path. 

To implement the network simplex algorithm so that it always maintains a 
strongly feasible spanning tree, we must first find an initial strongly feasible spanning 
tree. The method described in Section 11.5 for constructing the initial spanning tree 
structure always gives such a spanning tree. Note that a nondegenerate spanning 
tree is always strongly feasible; a degenerate spanning tree might or might not be 
strongly feasible. The network simplex algorithm creates a degenerate spanning tree 
from a nondegenerate spanning tree whenever two or more arcs are qualified as 

, 
l(x""
~ 

422 

(6,6) 

(3,3) (0,3) 

(a) (b) 

Figure 11.12 Feasible spanning trees: (a) strongly feasible; (b) nonstrongly feasible. 

Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



leaving arcs and we drop only one of these. Therefore, the algorithm needs to select 
the leaving arc carefully so that the next spanning tree is strongly feasible. 

Suppose that we have a strongly feasible spanning tree and, during a pivot 
operation, arc (k, I) enters the spanning tree. We first consider the case when (k, I) 
is a nontree arc at its lower bound. Suppose that W is the pivot cycle formed by 
adding arc (k, I) to the spanning tree and that node w is the apex of the cycle W; 
that is, w is the first common ancestor of nodes k and I. We define the orientation 
of the cycle Was compatible with that of arc (k, I). After augmenting 8 units of flow 
along the pivot cycle, the algorithm identifies the blocking arcs [i.e., those arcs 
(i, j) in the cycle that satisfy 8ij = 8]. If the blocking arc is unique, we select it to 
leave the spanning tree. If the cycle contains more than one blocking arc, the next 
spanning tree will be degenerate (i.e., some tree arcs will be at their lower or upper 
bounds). In this case the algorithm selects the leaving arc in accordance with the 
following rule. 

Leaving Arc Rule. Select the leaving arc as the last blocking arc encountered 
in traversing the pivot cycle W along its orientation starting at the apex w. 

To illustrate the leaving arc rule, we consider a numerical example. Figure 
11.13 shows a strongly feasible spanning tree for this example. Let (9, 10) be the 
entering arc. The pivot cycle is 10-8-6-4-2-3-5-7-9-10 and the apex is node 2. 
This pivot is degenerate because arcs (2, 3) and (7, 5) block any additional flow in 
the pivot cycle. Traversing the pivot cycle starting at node 2, we encounter arc 
(7, 5) later than arc (2, 3); so we select arc (7, 5) as the leaving arc. 

We show that the leaving arc rule guarantees that in the next spanning tree 
every node in the cycle W can send a positive amount of flow to the root node. Let 

Entering arc Figure 11.13 Selecting the leaving arc. 

Sec. 1J.6 Strongly Feasible Spanning Trees 423 



(p, q) be the arc selected by the leaving arc rule. Let WI be the segment of the cycle 
W between the apex wand arc (p, q) when we traverse the cycle along its orientation. 
Let W2 = W - WI - {(p, q)}. Define the orientation of segments WI and W2 as 
compatible with the orientation of W. See Figure 11.13 for an illustration of the 
segments WI and W2 • We use the following property about the nodes in the segment 
W2 • 

Property 11.6. Each node in the segment W2 can send a positive amount of 
flow to the root in the next spanning tree. 

This observation follows from the fact that arc (p, q) is the last blocking arc 
in W; consequently, no arc in W2 is blocking and every node in this segment can 
send a positive amount of flow to the root via node w along the orientation of W2 • 

Note that if the leaving arc does not satisfy the leaving arc rule, no node in the 
segment W2 can send a positive amount of flow to the root; therefore, the next 
spanning tree will not be strongly feasible. 

We next focus on the nodes contained in the segment WI. 

Property 11.7. Each node in the segment WI can send a positive amount of 
flow to the root in the next spanning tree. 

We prove this observation by considering two cases. If the previous pivot was 
a nondegenerate pivot, the pivot augmented a positive amount of flow 8 along the 
arcs in WI; consequently, after the augmentation, every node in the segment WI can 
send a positive amount of flow back to the root opposite to the orientation of WI 
via the apex node w (each node can send at least 8 units to the apex and then at 
least some of this flow to the root since the previous spanning tree was strongly 
feasible). If the previous pivot was a degenerate pivot, WI must be contained in the 
segment of W between node w and node k because the property of strong feasibility 
implies that every node on the path from node I to node w can send a positive amount 
of flow to the root before the pivot, and thus no arc on this path can be a blocking 
arc in a degenerate pivot. Now observe that before the pivot, every node in WI 
could send a positive amount of flow to the root, and therefore since the pivot does 
not change flow values, every node in WI must be able to send a positive amount 
of flow to the root after the pivot as well. This conclusion completes the proof that 
in the next spanning tree every node in the cycle W can send a positive amount of 
flow to the root node. 

We next show that in the next spanning tree, nodes not belonging to the cycle 
W can also send a positive amount of flow to the root. In the previous spanning tree 
(before the augmentation), every node j could send a positive amount of flow to the 
root and if the tree path from node j does not pass through the cycle W, the same 
path is available to carry a positive amount of flow in the next spanning tree. If the 
tree path from node j does pass through the cycle W, the segment of this tree path 
to the cycle W is available to carry a positive amount of flow in the next spanning 
tree and once a positive amount of flow reaches the cycle W, then, as shown earlier, 
we can send it (or some of it) to the root node. This conclusion completes the proof 
that the next spanning tree is strongly feasible. 

424 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



We now establish the finiteness of the network simplex algorithm. Since we 
have previously shown that each nondegenerate pivot strictly decreases the objective 
function value, the number of nondegenerate pivots is finite. The algorithm can, 
however, also perform degenerate pivots. We will show that the number of succes
sive degenerate pivots between any two nondegenerate pivots is finitely bounded. 
Suppose that arc (k, l) enters the spanning tree at its lower bound and in doing so 
it defines a degenerate pivot. In this case, the leaving arc belongs to the tree path 
from node k to the apex w. Now observe from Section 11.5 that node k lies in the 
subtree T2 and the potentials of all nodes in T2 change by an amount Ckt. Since 
Ckt < 0, this degenerate pivot strictly decreases the sum of all node potentials (which 
by our prior assumption is integral). Since no node potential can fall below - nC, 
the number of successive degenerate pivots is finite. 

So far we have assumed that the entering arcs are always at their lower bounds. 
If the entering arc (k, l) is at its upper bound, we define the orientation of the cycle 
Was opposite to the orientation of arc (k, I). The criteria for selecting the leaving 
arc remains unchanged-the leaving arc is the last blocking arc encountered in tra
versing W along its orientation starting at the apex w. In this case node I is contained 
in the subtree T 2 , and thus after the pivot, the potentials of all the nodes T2 decrease 
by the amount Ckt > 0; consequently, the pivot again decreases the sum of the node 
potentials. 

11.7 NETWORK SIMPLEX ALGORITHM FOR THE 
SHORTEST PATH PROBLEM 

In this section we see how the network simplex algorithm specializes when applied 
to the shortest path problem. The resulting algorithm bears a close resemblance to 
the label-correcting algorithms discussed in Chapter 5. In this section we study the 
version of the shortest path problem in which we wish to determine shortest paths 
from a given source node s to all other nodes in a network. In other words, the 
problem is to send 1 unit of flow from the source to every other node along minimum 
cost paths. We can formulate this version of the shortest path problem as the fol
lowing minimum cost flow model: 

subject to 

Minimize .L CijXij 
(i,j)EA 

.L Xij - .L Xji = {n - 1 
{j:(i,j)EA} {j:(j,i)EA} - 1 

for i == s 
for all i E N - {s} 

for all (i, j) E A. 

If the network contains a negative (cost)-directed cycle, this linear program
ming formulation would have an unbounded so~ution since we could send an infinite 
amount of flow along this cycle without violating any of the constraints (because 
the arc flows have no upper bounds). The network simplex algorithm we describe 
is capable of detecting the presence of a negative cycle, and if the network contains 
no such cycle, it determines the shortest path distances. 

Sec. 11.7 Network Simplex Algorithm/or the Shortest Path Problem 425 



Like other minimum cost flow problems, the shortest path problem has a span
ning tree solution. Because node s is the only source node and all the other nodes 
are demand nodes, the tree path from the source node to every other node is a 
directed path. This observation implies that the spanning tree must be a directed 
out-tree rooted at node s (see Figure 11.14 and the discussion in Section 4.3). As 
before, we store this tree using predecessor, depth, and thread indices. In a directed 
out-tree, every node other than the source has exactly one incoming arc but could 
have several outgoing arcs. Since each node except node s has unit demand, the 
flow of arc (i, j) is 1 D(j) I. [Recall that D(j) is the set of descendants of node j in 
the spanning tree and, by definition, this set includes nodej.] Therefore, every tree 
of the shortest path problem is nondegenerate, and consequently, the network sim
plex algorithm will never perform degenerate pivots. 

5 

2 Figure 11.14 Directed out-tree rooted 
at the source. 

Any spanning tree· for the shortest path problem contains a unique directed 
path from node s to every other node. Let P(k) denote the path from node s to node 
k. We obtain the node potentials corresponding to the tree T by setting'IT(s) = 0 
and then using the equation Cij - 'IT(i) + Ti(j) = 0 for each arc (i, j) E T by fanning 
out from node s (see Figure 11.15). The directed out-tree property of the spanning 
tree implies that Ti(k) = - LUJ)EP(k) Cij. Thus Ti(k) is the negative of the length of 
the path P(k). 

Since the variables in the minimum cost flow formulation of the shortest path 
problem have no upper bounds, every nontree arc is at its lower bound. The algorithm 
selects a nontree arc (k, l) with a negative reduced cost to introduce into the spanning 
tree. The addition of arc (k, 1) to the tree creates a cycle which we orient in the 
same direction as arc (k, I). Let w be the apex of this cycle. (See Figure 11.16 for 
an illustration.) In this cycle, every arc from node I to node w is a backward arc 
and every arc from node w to node k is a forward arc. Consequently, the leaving 
arc would lie in the segment from node I to node w. In fact, the leaving arc would 
be the arc (pred(l), l) because this arc has the smallest flow value among all arcs in 
the segment from node I to node w. The algorithm would then increase the potentials 
of nodes in the subtree rooted at the node I by an amount 1 Crt I, update the tree 

426 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



-8 -15 

3 

-10 

4 

-15 

6 

11 
4 

2 

-17 

2 

-23 

-24 
Figure 11.15 Computing node 
potentials. 

Figure 11.16 Selecting the leaving arc. 

indices, and repeat the computations until all nontree arcs have nonnegative reduced 
costs. When the algorithm terminates, the final tree would be a shortest path tree 
(i.e., a tree in which the directed path from node s to every other node is a shortest 
path). 

Recall that in implementing the network simplex algorithm for the minimum 
cost flow problem, we maintained flow values for all the arcs because we needed 
these values to identify the leaving arc. For the shortest path problem, however, 
we can determine the leaving arc without considering the flow values. If (k, l) is the 
entering arc, then (pred(l), I) is the leaving arc. Thus the network simplex algorithm 
for the shortest path problem need not maintain arc flows. Moreover, updating of 
the tree indices is simpler for the shortest path problem. 

The network simplex algorithm for the shortest path problem is similar to the 
label-correcting algorithms discussed in Section 5.3. Recall that a label-correcting 
algorithm maintains distance labels d(i), searches for an arc satisfying the condition 
d(j) > d(i) + Cij, and sets the distance label of node j equal to d(i) + cu. In the 

Sec. 1J.7 Network Simplex Algorithm for the Shortest Path Problem 427 



network simplex algorithm, if we define d(i) = - 'IT(i), then d(i) are the valid distance 
labels (i.e., they represent the length of some directed path from source to node i). 
At each iteration the network simplex algorithm selects an arc (i, j) with cij < O. 
Observe that cij = Cij - 'IT(i) + 'IT(j) = Cij + d(i) - d(j). Therefore, like a label
correcting algorithm, the network simplex algorithm selects an arc that satisfies the 
condition d(j) > d(i) + Cij. The algorithm then increases the potential of every node 
in the subtree rooted at nodej by an amount I cijl which amounts to decreasing the 
distance label of all the nodes in the subtree rooted at node j by an amount I cij I. 
In this regard the network simplex algorithm differs from the label correcting al
gorithm: instead of updating one distance label at each step, it updates several of 
them. 

Ifthe network contains no negative cycle, the network simplex algorithm would 
terminate with a shortest path tree. When the network does contain a negative cycle, 
the algorithm would eventually encounter a situation like that depicted in Figure 
11.17. This type of situation will occur only when the tail of the entering arc (k, I) 
belongs to D(l), the set of descendants of node l. The network simplex algorithm 
can detect this situation easily without any significant increase in its computational 
effort: Mter introducing an arc (k, I), the algorithm updates the potentials of all 
nodes in D(l); at that time, it can check to see whether k E D(l), and if so, then 
terminate. In this case, tracing the predecessor indices would yield a negative cycle. 

Figure 11.17 Detecting a negative 
cycle in the network. 

The generic version of the network simplex algorithm for the shortest path 
problem runs in pseudopolynomial time. This result follows from the facts that (1) 
for each node i, - nC ~ 'IT(i) ~ nC (because the length of every directed path from 
s to node i lies between - nC to nC), and (2) each iteration increases the value of 
at least one node potential. We can, however, develop special implementations that 
run in polynomial time. In the remainder of this section, in the exercises, and in the 
reference notes at the end of this chapter, we describe several polynomial-time 
implementations of the network simplex algorithm for the shortest path problem. 
These algorithms will solve the shortest path problem in O(n 2m), O(n3

), and O(nm 
log C) time. We obtain these polynomial-time algorithms by carefully selecting the 
entering arcs. 

First eligible arc pivot rule. We have described this pivot rule in Section 
11.5. The network simplex algorithm with this pivot rule bears a strong resemblance 
with the FIFO label-correcting algorithm that we described in Section 5.4. Recall 

428 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



that the FIFO label-correcting algorithm examines the arc list in a wraparound fash
ion: If an arc (i, j) violates its optimality condition (i.e., it is eligible), the algorithm 
updates the distance label of nodej. This orderfor examining the arcs ensures that 
after the kth pass, the algorithm has computed the shortest path distances to all 
those nodes that have a shortest path with k or fewer arcs. The network simplex 
algorithm with the first eligible arc pivot rule also examines the arc list in a wrap
around fashion, and if an arc (i, j) is eligible (i.e., violates its optimality condition), 
it updates the distances label of every node in D(j), which also includes j. Conse
quently, this pivot rule will also, within k passes, determine shortest path distances 
to all those nodes that are connected to the source node s by a shortest path with 
k or fewer arcs. Consequently, the network simplex algorithm will perform at most 
n passes over the arc list. As a result, the algorithm will perform at most nm pivots 
and run in O(n2 m) time. In Exercise 11.30 we discuss a modification ofthis algorithm 
that runs in O(n3) time. 

Dantzig's pivot rule. This pivot rule selects the entering arc as an arc with 
the maximum violation. Let C denote the largest arc cost. We will show that the 
network simplex algorithm with this pivot rule performs O(n2 10g(nC)) pivots and 
so runs in O(n2m 10g(nC)) time. 

Scaled pivot rule. This pivot is a scaled variant of Dantzig's pivot nile. In 
this pivot rule we perform a number of scaling phases with varying values of a scaling 
parameter Ll. Initially, we let Ll = 2PogCl (i.e., we set Ll equal to the smallest power 
of 2 greater than or equal to C) and pivot in any nontree arc with a violation of at 
least Ll/2. When no arc has a violation of at least Ll/2, we replace Ll by Ll/2.. and 
repeat the steps. We terminate the algorithm when Ll < 1. 

We now show that the network simplex algorithm with the scaled pivot rule 
solves the shortest path problem in polynomial time. It is easy to verify that Dantzig's 
pivot rule is a special case of scaled pivot rule, so this result also shows that when 
implemented with Dantzig's pivot rule, the network simplex algorithm requires 
polynomial time. 

We call the sequence of iterations for which Ll remains unchanged as the 
Ll-scaling phase. Let 'iT denote the set of node potentials at the beginning of a 
Ll-scaling phase. Moreover, let P*(p) denote a shortest path from node s to node 
p and let 'iT* (p) = - ~(i,j)EP* Cij denote the optimal node potential of node p. Our 
analysis of the scaled pivot rule uses the following lemma: 

Lemma 11.8. If'iT denotes the current node potentials at the beginning of the 
Ll-scaling phase, then 'iT*(p) - 'iT(p) :5 2nLlfor each node p. 

Proof In the first scaling phase, Ll ;::: C and the lemma follows from the facts 
that - nC and nC are the lower and upper bounds on any node potentials (why?). 
Consider next any subsequent scaling phase. Property 9.2 implies that 

clf = cij - 'iT(s) + 'iT(p) = 'iT(p) - 'iT*(p). (11.4) 
(i,j)EP*(k) (i,j)EP*(k) 

Since Ll is an upper bound on the maximum arc violation at the beginning of 
the Ll-scaling phase (except the first one), clf ;::: - Ll for every arc (i, j) E A. Sub-

Sec. 11.7 Network Simplex Algorithm for the Shortest Path Problem 429 



stituting this inequality in (11.4), we obtain 

'IT(p) - 'IT*(p);;;:: -ill P*(p) I ;;;:: -nil, 

which implies the conclusion of the lemma. 

N ow consider the potential function <I> = ~PEN ('1'1'* (p) - 'IT(p)). The preceding 
lemma shows that at the beginning of each scaling phase, <I> is at most 2n2il. Now, 
recall from our previous discussion in this section that in each iteration, the network 
simplex algorithm increases at least one node potential by· an amount equal to the 
violation of the entering arc. Since the entering arc has violation at least 
il/2, at least one node potential increases by il/2 units, causing <I> to decrease by at 
least il/2 units. Since no node potential ever decreases, the algorithm can perform 
at most 4n2 iterations in this scaling phase. So, after at most 4n2 iterations, either 
the algorithm will obtain an optimal solution or will complete the scaling phase. 
Since the algorithm performs O(log C) scaling phases, it will perform O(n2 log C) 
iterations and so require O(n2 m log C) time. It is, however, possible to implement 
this algorithm in O(nm log C) time; the reference notes provide a reference for this 
result. 

11.8 NETWORK SIMPLEX ALGORITHM FOR THE 
MAXIMUM FLOW PROBLEM 

In this section we describe another specialization of the network simplex algorithm: 
its implementation for solving the maximum flow problem. The resulting algorithm 
is essentially an augmenting path algorithm, so it provides an alternative proof of 
the max-flow min-cut theorem we discussed in Section 6.5. 

As we have noted before, we can view the maximum flow problem as a par
ticular version of the minimum cost flow problem, obtained by introducing an ad
ditional arc (t, s) with cost coefficient Cts == -1 and an upper bound Uts == 00, and 
by setting Cu == 0 for all the original arcs (i, j) in A. To simplify our notation, we 
henceforth assume that A represents the set A U {(t, s)}. The resulting formulation 
is to 

Minimize - Xts 

subject to 

~ Xu - 2: Xji == 0 for all i E lV, 
{j:(i,j)EA} {j:(j,i)EA} 

for all (i, j) E A. 

Observe that minimizing - Xts is equivalent to maximizing Xts, which is equiv
alent to maximizing the net flow sent from the source to the sink, since this flow 
returns to the source via arc (t, s). This observation explains why the inflow equals 
the outflow for every node in the network, including the source and the sink nodes. 

Note that in any feasible spanning tree solution that carries a positive amount 
of flow from the source to the sink (i.e., Xts > 0), arc (t, s) must be in the spanning 
tree. Consequently, the spanning tree for the maximum flow problem consists of 

430 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



two subtrees of G joined by the arc (t, s) (see Figure 11.18). Let Ts and Tt denote 
the subtrees containing nodes sand t. 

Figure 11.18 Spanning tree for the 
maximum flow problem. 

We obtain node potentials corresponding to a feasible spanning tree of the 
maximum flow problem as follows. Since we can set one node potential arbitrarily, 
let'lT(t) = O. Furthermore, since the reduced cost of arc (t, s) must be zero, 0 = 
cYs = Cts - 'IT(t) + 'IT(s) = -1 + 'IT(s), which implies that 'IT(s) = 1. Since (1) the 
reduced cost of every arc in Ts and Tt must be zero, and (2) the costs of these arcs 
are also zero, the node potentials have the following values: 'IT(i) = 1 for every node 
i E Ts , and 'IT(i) = 0 for every node i E Tt • 

Notice that every spanning tree solution of the maximum flow problem defines 
an s-t cut [S, S] in the original network obtained by setting S =; Ts and S = Tt • 

Each arc in this cut is a nontree arc; its flow has value zero or equals the arc's 
capacity. For every forward arc (i,j) in the cut, cij = -1, and for every backward 
arc (i, j) in the cut, cij = 1. Moreover, for every arc (i,-j) not in the cut, cij = o. 
Consequently, if every forward arc in the cut has a flow value equal to the arc's 
capacity and every backward arc has zero flow, this spanning tree solution satisfies 
the optimality conditions (11.1), and therefore it must be optimal. On the other hand, 
if in the current spanning tree solution, some forward arc in the cut has a flow of 
value zero or the flow on some backward arc equals the arc's capacity, all these 
arcs have a violation of 1 unit. Therefore, we can select any of these arcs to enter 
the spanning tree. Suppose that we select arc (k, I). Introducing this arc into the 
tree creates a cycle that contains arc (t, s) as a forward arc (see Figure 11.19). The 
algorithm augments the maximum possible flow in this cycle and identifies a blocking 
arc. Dropping this arc again creates two subtrees joined by the arc (t, s). This new 
tree constitutes a spanning tree for the next iteration. 

Notice that this algorithm is an augmenting path algorithm: The tree structure 
permits us to determine the path from the source to the sink very easily. In this 
sense the network simplex algorithm has an advantage over other types of aug
menting path algorithms for the maximum flow problem. As a compensating factor, 
however, due to degeneracy, the network simplex algorithm might not send a positive 
amount of flow from the source to the sink in every iteration. 

Sec. 11.8 Network Simplex Algorithm for the Maximum Flow Problem 431 



\ 
\ 

\ 
\ 
\ 

\ 
\ 

\ 
\ 
~ 

~ 

Figure 11.19 Forming a cycle. 

The network simplex algorithm for the maximum flow problem gives another 
proof of the max-flow min-cut theorem. The algorithm terminates when every for
ward arc in the cut is capacitated and every backward arc has a flow of value zero. 
This termination condition implies that the current maximum flow value equals the 
capacity of the s-t cut defined by the subtrees Ts and Tt , and thus the value of a 
maximum flow from node s to node t equals the capacity of the minimum s-t cut. 

Just as the mechanics of the network simplex algorithm becomes simpler in 
the context of the maximum flow problem, so does the concept of a strongly feasible 
spanning tree. If we designate the sink as the root node, the definition of a strongly 
feasible spanning tree implies that we can send a positive amount of flow from every 
node in Tt to the sink node t without violating any of the flow bounds. Therefore, 
every arc in Tt whose flow value is zero must point toward the sink node t and every 
arc in Tt whose flow value equals the arc's upper bound must point away from node 
t. Moreover, the leaving arc criterion reduces to selecting a blocking arc in the pivot 
cycle that is farthest from the sink node when we traverse the cycle in the direction 
of arc (t, s) starting from node t. Each degenerate pivot selects an entering arc that 
is incident to some node in Tt • The preceding observation implies that each blocking 
arc must be an arc in Ts. Consequently, each degenerate pivot increases the size of 
Tt " so the algorithm can perform at most n consecutive degenerate pivots. We might 
note that the minimum cost flow problem does not satisfy this property: For the 
more general problem, the number of consecutive degenerate pivots can be expo
nentially large. 

The preceding discussion shows that when implemented to maintain a strongly 
feasible spanning tree, the network simplex algorithm performs O(n2 U) iterations 
for the maximum flow problem. This result follows from the fact that the number 
of nondegenerate pivots is at most nU, an upper bound on the maximum flow value. 
This bound on the number of iterations is Iionpolynomial, so is not satisfactory from 
a theoretical perspective. Developing a polynomial-time network simplex algorithm 
for the maximum flow problem remained an open problem for quite some time. 
However, researchers have recently suggested an entering arc rule that performs 
only O(nm) iterations and can be implemented to run in O(n2m) time. This rule 

432 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



selects entering arcs so that the algorithm augments flow along shortest paths from 
the source to the sink. We provide a reference for this result in the reference notes. 

11.9 RELATED NETWORK SIMPLEX ALGORITHMS 

In this section we study two additional algorithms for the minimum cost flow prob
lem-the parametric network simplex algorithm and the dual network simplex al
gorithm-that are close relatives of the network simplex algorithm. In contrast to 
the network simplex algorithm, which maintains a feasible solution at each inter
mediate step, both of these algorithms maintain an infeasible solution that satisfies 
the optimality conditions; they iteratively attempt to transform this solution into a 
feasible solution. The solution maintained by the parametric network simplex al
gorithm satisfies all of the problem constraints except the mass balance constraints 
at two specially designated nodes, sand t. The solution maintained by the dual 
network simplex algorithm satisfies all of the mass balance constraints but might 
violate the lower and upper bound constraints on some arc flows. Like the network 
simplex algorithm, both algorithms maintain a spanning tree at every step and per
form all computations using the spanning tree. 

Parametric Network Simplex Algorithm 

For the sake of simplicity, we assume that the network has one supply node (the 
source s) and one demand node (the sink t). We incur no loss of generality in imposing 
this assumption because we can always transform a network with several supply 
and demand nodes into one with a single supply and a single demand nod~. 
The parametric network simplex algorithm starts with a solution for which b'(s) = 
-b'(t) = 0, and gradually increases b'(s) and -b'(t) until b'(s) = b(s) and b'(t) 
= b(t). Let T be a shortest path tree rooted at the source node s in the underlying 
network. The parametric network simplex algorithm starts with zero flow and with 
(T, L, U) with L = A - T and U = 0 as the initial spanning.tree structure. Since, 
by Assumption 9.5, all the arc costs are nonnegative, the zero flow is an optimal 
flow provided that b(s) = b(t) = O. Moreover, since T is a shortest path tree, the 
shortest path distances d(·) to the nodes satisfy the condition d(j) = d(i) + Cij for 
each (i, j) E T, and d(j) :5 d(i) + Cij for each (i, j) ~ T. By setting 'IT(j) = - d(j) 
for each node j, these shortest path optimality conditions become the optimality 
conditions (11.1) of the initial spanning tree structure (T, L, U). 

Thus the parametric network simplex algorithm starts with an optimal solution 
of a minimum cost flow problem that violates the mass balance constraints only at 
the source and sink nodes. In the subsequent steps, the algorithm maintains opti
mality of the solution and attempts to satisfy the violated constraints by sending 
flow from node s to node t along tree arcs. The algorithm stops when it has sent the 
desired amount (b(s) = -b(t)) of flow. 

In each iteration the algorithm performs the following computations. Let (T, 
L, U) be the spanning tree structure at some iteration. The spanning tree T contains 
a unique path P from node s to node t. The algorithm first determines the maximum 
amount of flow 3 that can be sent from s to 1 along P while honoring the flow bounds 

Sec. 11.9 Related Network Simplex Algorithms 433 



on the arcs. Let P and f.. denote the sets offorward and backward arcs in P. Then 

3 = min[min{uij - Xij: (i, j) E P}, min{xij: (i, j) E f..}]. 

The algorithm either sends 3 units of flow along P, or a smaller amount if it 
would be sufficient to satisfy the mass balance constraints at nodes sand t. As in 
the network simplex algorithm, all the tree arcs have zero reduced costs; therefore, 
sending additional flow along the tree path from node s to node t preserves the 
optimality of the solution. If the solution becomes feasible after the augmentation, 
the algorithm terminates. If the solution is still infeasible, the augmentation creates 
at least one blocking arc (Le., an arc that prohibits us from sending additional flow 
from node s to node t). We select one such blocking arc, say (p, q), as the leaving 
arc and replace it by some nontree arc (k, I), called the entering are, so that the 
next spanning tree both (1) satisfies the optimality condition, and (2) permits addi
tional flow to be sent from node s to node t . We accomplish this transition from one 
tree to another by performing a dual pivot. Recall from Section 11.5 that a (primal) 
pivot first identifies an entering arc and then the leaving arc. In contrast, a dual 
pivot first selects the leaving arc and then identifies the entering arc. 

We perform a dual pivot in the following manner. We first drop the leaving 
arc from the spanning tree. Doing so gives us two subtrees Ts and Tt , with sETs 
and t E Tt • Let Sand 8 be the subsets of nodes spanned by these two subtrees. 
Clearly, the cut [S, 8] is an s-t cut and the entering arc (k, I) must belong to [S, 8] 
if the next solution is to be a spanning tree solution. As earlier, we let (S, 8) denote 
the set of forward arcs and (8, S) the set of backward arcs in the cut [S, 8]. Each 
arc in the cut [S, 8] is at its lower bound or at its upper bound. We define the set 
Q of eligible arcs as the set 

Q = «S, S) n L) U «S, S) n U), 

that is, the set of forward arcs at their lower bound and the set of backward arcs at 
their upper bound. Note that if we add a noneligible arc to the subtrees Ts and Tt , 

we cannot increase the flow from node s to node t along the new tree path joining 
these nodes (since the arc lies on the path and would be a forward arc at its upper 
bound or a backward arc at its lower bound). If we introduce an eligible arc, the 
new path from node s to node t might be able to carry a positive amount of flow. 
Next, notice that if Q = 0, we can send no additional flow from node s to node t. 
In fact, the cut [S, 8] has zero residual capacity and the current flow from node s 
to node t equals the maximum flow. If b(s) is larger than this flow vahle, the minimum 
cost flow problem is infeasible. We now focus on situations in which Q #- 0. Notice 
that we cannot select an arbitrary eligible arc as the entering arc, because the new 
spanning tree must also satisfy the optimality condition. For each eligible arc (i, j), 
we define a number eu in the following manner: 

e .. = { cij 
IJ - cij 

if (i, j) E L, 
if(i,j)EU. 

Since the spanning tree structure (T, L, U) satisfies the optimality condition 
(11.1), eu ;::: 0 for every eligible arc (i, j). Suppose that we select some eligible arc 
(k, I) as the entering arc. It is easy to see that adding the arc (k, I) to Ts U Tt decreases 
the potential of each node in 8 by ekl units (throughout the computations, we maintain 

434 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



that the node potential of the source node s has value zero). This change in node 
potentials decreases the reduced cost of each arc in (S, S) by fJ kl units and increases 
the reduced cost of each arc in (S, S) by fJ kl units. We have four cases to consider. 

Case 1. (i, j) E (S, S) n L 

The reduced cost of the arc (i, j) becomes eij - fJkl • The arc will satisfy the 
optimality condition (11.1b) if fJ kl $ eij = fJij. 

Case 2. (t, j) E (S, S) n u 
The reduced cost of the arc (i, j) becomes elf - fJ kl • The arc will satisfy the 
optimality condition (11.1c) regardless of the value of fJ kl because elf $ O. 

Case 3. (i, j) E (S, S) n L 

The reduced cost of the arc (i, j) becomes elf + fJ kl • The arc will satisfy the 
optimality condition (11.1b) regardless of the value of fJ kl because elf;::: O. 

Case 4. (t, j) E (S, S) n u 
The reduced cost of the arc (i, j) becomes elf + fJ kl . The arc will satisfy the 
optimality condition (11.1c) provided that fJ kl $ - elf = fJij. 

The preceding discussion implies that the new spanning tree structure will 
satisfy the optimality conditions provided that 

fJ kl $ fJij for each (i, j) E ((S, S) n L) U ((S, S) n U) == Q. 

Consequently, we select the entering arc (k, I) to be an eligible arc for whi,ch 
fJ kl = min{fJij: (i, j) E Q}. Adding the arc (k, l) to the subtrees Ts and Tt gives us a 
new spanning tree structure and completes an iteration. We refer to this dual pivot 
as degenerate if fJ kl = 0, and as nondegenerate otherwise. We repeat this process 
until we have sent the desired amount of flow from node s to node t. 

It is easy to implement the parametric network simplex algorithm so that it 
runs in pseudopolynomial time. In this implementation, if an augmentation creates 
several blocking arcs, we select the one closest to the source as the leaving arc. 
Using inductive arguments, it is possible to show that in this implementation, the 
subtree Ts will permit us to augment a positive amount of flow from node s to every 
other node in Ts along the tree path. Moreover, in each iteration, when the algorithm 
sends no additional flow from node s to node t, it adds at least one new node to Ts. 
Consequently, after at most n iterations, the algorithm will send a positive amount 
of flow from node s to node t. Therefore, the parametric network simplex algorithm 
will perform O(nb(s)) iterations. 

To illustrate the parametric network simplex algorithm, let us consider the same 
example we used to illustrate the network simplex algorithm. Figure 11.20(a) gives 
the minimum cost flow problem if we choose s = 1 and t = 6. Figure 11.20(b) shows· 
the tree of shortest paths. All the nontree arcs are at their lower bounds. In the first 
iteration, the algorithm augments the maximum possible flow from node 1 to node 
6 along the tree path 1-2-5-6. This path permits us to send a maximum of 3 = 
min{u12' U25, U56} = min{8, 2, 6} = 2 units of flow. Augmenting 2 units along the 
path creates the unique blocking arc (2, 5). We drop arc (2, 5) from the tree, creating 

Sec. 11.9 Related Network Simplex Algorithms 435 



o 

o 

'" 
0 

-7 

9 

'frU) 'fr(j) 

@ ___ X--,-ij __ .~@ 

-3 -8 

"'".,\l-__ O_-----.I~ 

2 

-2 -5 
(b) 

'frU) 'fr(j) 

@ xij .® <v',,; 

-3 -8 
0 

~ ';4\ i ~ ", 

bU) b(j) 
@f--_(---,Cij,---"'U-,,-ij)_--,.@ 

o 

®-9 

(5,7) 

(2,2) 

(4,3) 

(a) 

o 

0 

o 

o 

o 

®-lO 

~ ,5 
3 

'''>:;,;, 

-2 -6 
(d) 

-9 

'frU) 'fr(j) 

@--6,,---ij--..Vlf[) 

-2 -5 
(c) 

'frU) 'fr(}) 

GI-__ -'6ij __ •• @ .•. ~.j{ 
\:J3 '<:3J;J 
-3 -8 

o 

-2 -6 
(e) 

Figure 11.20 Illustrating the parametric network simplex algorithm. 

the s-t cut [S, S] with S = {I, 2, 3, 4} [see Figure 11.20(c)]. This cut contains two 
eligible arcs: arcs (3, 5) and (4, 6) with 835 = 1 and 846 = 2. We select arc (3, 5) as 
the entering arc, creating the spanning tree shown in Figure 11.20(d). Notice that 
the potentials of the nodes 5 and 6 increase by 1 unit. In the new spanning tree, 1-

436 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



3-5-6 is the tree path from node 1 to node 6. We augment 3 = min{u13, U35, U56 -

X56} = min{3, 3, 6 - 2} = 3 units of flow along the path, creating two blocking arcs, 
(1,3) and (3,5). The arc (1, 3) is closer to the source and we select it as the leaving 
arc. As shown in Figure 11.20(e), the resulting s-t cut contains two eligible arcs, 
(2,3) and (4, 6). Since 846 < 823 , we select (4,6) as the entering arc. We leave the 
remaining steps of the algorithm as an exercise for the reader. 

Notice the resemblance between the parametric network simplex algorithm 
and the successive shortest path algorithm that we discussed in Section 9.7. Both 
algorithms maintain the optimality conditions and gradually satisfy the mass balance 
constraints at the source and sink nodes. Both algorithms send flow along shortest 
paths from node s to node t. Whereas the successive shortest path algorithm does 
so by explicitly solving a shortest path problem, the parametric network simplex 
algorithm implicitly solves a shortest path problem. Indeed, the sequence of itera
tions that the parametric network simplex algorithm performs between two consec
utive positive-flow iterations are essentially the steps of Dijkstra's algorithm for the 
shortest path problem. 

Dual Network Simplex Algorithm 

The dual network simplex algorithm maintains a solution that satisfies the mass 
balance constraints at all nodes, but that violates some of the lower and upper bounds 
imposed on the arc flows. The algorithm maintains a spanning tree structure (T, L, 
U) that satisfies the optimality conditions (11.1); the flow on the arcs in Land U are 
at their lower and upper bounds, but the flow on the tree arcs might not satisfy their 
flow bounds. We refer to a tree arc (i, j) as feasible if 0 :s Xu :s uij and as infeasible 
otherwise. The algorithm attempts to make infeasible arcs feasible by sending flow 
along cycles; it terminates when the network contains no infeasible arc. 

The dual network simplex algorithm performs a dual pivot at every iteration. 
Let (T, L, U) be the spanning tree structure at some iteration. In this solution some 
tree arcs might be infeasible. The algorithm selects anyone of these arcs as the 
leaving arc. (Empirical evidence suggests that choosing an infeasible arc with the 
maximum violation of its flow bound generally results in a fewer number of itera
tions.) Suppose that we select the arc (p, q) as the leaving arc and Xpq > upq • We 
later address the casexpq < O. To make the flow on the arc (p, q) feasible, we must 
decrease the flow on this arc. We decrease the flow by introducing some nontree 
arc (k, l) that creates a unique cycle W containing arc (p, q) and augment enough 
flow along this cycle. Let us see which entering arc (k, I) would permit us to ac
complish this objective. 

If we drop the arc (p, q) from the spanning tree, we create two subtrees TJ 
and T2 , with p E TJ and q E T2 • Let Sand 8 be the sets of nodes spanned by TJ 
and T2 • In addition, let (S, 8) and (8, S) denote the sets of forward and backward 
arcs in the cut [S, 8]. Each arc in the cut [S, 8], except the arc (p, q), is at its lower 
or upper bound. Adding any arc (i, j) in [S, 8] to T creates a unique cycle W that 
contains the arc (p, q). Suppose that we define the orientation of the cycle W along 
the arc (i, j) if (i, j) ELand opposite to the arc (i, j) if (i, j) E U. Each nontree arc 
in the cut [8, S] is (1) either a forward arc or a backward arc, and (2) either belongs 
to L or belongs to U. Consider any arc (i,j) E (S, 8) n L. In this case, the orientation 

Sec. 11.9 Related Network Simplex Algorithms 437 



of the cycle is along arc (i, j); consequently, arc (p, q) will be a backward arc in 
the cycle Wand sending additional flow along the orientation of the cycle will de
c.!.ease flow on the arc (p, q) [see Figure 11.21(a»). Next, consider any arc (i, j) E 
(8,8) n U. In this case the orientation of the cycle is opposite to arc (i,j); therefore, 
sending additional flow along the orientation of the cycle again decreases flow on 
the arc (p, q) [see Figure 11.21(b»). The reader can easily verify that in the other 
two cases when (i, j) E (8, 8) n U or (i, j) E (8, 8) n L, increasing flow along the 
orientation of the cycle does not decrease flow on the arc (p, q). Consequently, we 
define the set of eligible arcs as 

Q = «8, 8) n L) U «8, 8) n U). 

s s s s 

(a) (a) 

Figure 11.21 Identifying eligible arcs in the dual network simplex algorithm. 

If Q = 0, we cannot reduce the flow on arc (p, q) and the minimum cost flow 
problem is infeasible (see Exercise 11.37). If Q # 0, we must select as the entering 
arc an eligible arc that would create a new spanning tree structure satisfying the 
optimality conditions. This step is similar to the same step in the parametric network 
simplex algorithm. We define a number Su for each eligible arc (i, j) in the following 
manner: 

S .. = { cij 
IJ - cij 

if (i, j) E L, 
if (i,j) E u, 

and select an arc (k, l) as the entering arc for which Ski = min{Sij: (i, j) E Q}. As 
before, we say this dual pivot is degenerate if Ski = 0 and is nondegenerate otherwise. 
We augment Xpq - Upq units of flow along the cycle created by the arc (k, /); doing 
so decreases the flow on the arc (p, q) to value upq • Note that as a result of the 
augmentation, the arc (p, q) becomes feasible; other feasible arcs, however, might 
become infeasible. In the next spanning tree structure, the arc (k, I) replaces the 
arc (p, q), and (p, q) becomes a nontree arc at its upper bound. Replacing the arc 
(p, q) by the arc (k, l) in the spanning tree decreases the potential of each node in 
8 by Ski units. (In the dual network simplex algorithm, the potential of node 1 might 
not always be zero.) As in our discussion of the parametric network simplex algo
rithm, it is possible to show that the new spanning tree structure satisfies the op
timality conditions. 

So far we have addressed situations in which the leaving arc (p, q) is infeasible 
because Xpq > Upq • We now consider the case when Xpq < O. In this instance, to 
make this arc feasible, we will increase its flow. The computations in this case are 
exactly the same as in the previous case except that we define the subtrees TJ and 

438 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



T2 so that p E T2 and q E T1 • We define the set of eligible arcs as Q = «S, S) n 
L) U «S, S) n U) and select an eligible arc (k, I) with the minimum value of Skt as 
the entering arc. We augment I Xpq I units of flow along the cycle created by the arc 
(k, I); doing so increases the flow on arc (p, q) to value zero. In the next spanning 
tree structure, arc (k, I) becomes a tree arc and (p, q) becomes a nontree arc at its 
lower bound. 

Proving the finiteness of the dual network simplex algorithm is easy if each 
dual pivot is nondegenerate. As before, we assume that Xpq > u pq (a similar proof 
applies when Xpq < 0). In this case the entering arc (k, I) belongs to (S, S) n L or 
belongs to (S, S) n U. In the former case, cft > 0 and the flow on the arc (k, I) 
increases by (xpq - u pq ) > 0 units. In the latter case, cft < 0 and the flow on the 
arc decreases by (xpq - u pq ) > 0 units. In either case, the cost of the flow increases 
by cft(xpq - u pq ) > O. Since mCU is an upper bound on the objective function value 
of the minimum cost flow problem and each nondegenerate pivot increases the cost 
by at least 1 unit, the dual network simplex algorithm will terminate finitely whenever 
every pivot is nondegenerate. In a degenerate pivot, the objective function value 
does not change because the entering arc (k, I) satisfies the condition cft = O. In 
Exercise 11.38 we describe a dual perturbation technique that avoids the degenerate 
dual pivots altogether and yields a finite dual network simplex algorithm. 

11.10 SENSITIVITY ANALYSIS 

The purpose of sensitivity analysis is to determine changes in the optimal solution 
of the minimum cost flow problem resulting from changes in the data (supply/demand 
vector, capacity, or cost of any arc)~ In Section 9.11 we described methods for 
conducting sensitivity analysis llSingilOnsimplex algorithms. In this section we de
scribe network simplex based algorithms for performing sensitivity analysis. 

Sensitivity analysis adopts the following basic approach. We first determine 
the effect of a given change in the data on the feasibility and optimality of the solution 
assuming that the spanning tree structure remains unchanged~If the change affects 
the optimality of the spanning tree structure, we perform (primal) pivots to achieve 
optimality. Whenever the change destroys the feasibility of the spanning tree struc
ture, we perform dual pivots to achieve feasibility. 

Let x* denote an optimal solution of the minimum cost flow problem. Let (T*, 
L*, U*) denote the corresponding spanning tree structure and 'IT* denote the cor
responding node potentials. We first consider sensitivity analysis with respect to 
changes in the cost coefficients. 

Cost Sensitivity Analysis 

Suppose that the cost of an arc (p, q) increases by A units. The analysis would be 
different when arc (p, q) is a tree or a nontree arc. 

Case 1. Arc (p, q) is a nontree arc. 

In this case, changing the cost of arc (p, q) does not change the node potentials 
of the current spanning tree structure. The modified reduced cost of arc (p, 
q) is c;; + A. If the modified reduced cost satisfies condition (1l.lb) or (Il.1c), 

Sec. 11.10 Sensitivity Analysis 439 



whichever is appropriate, the current spanning tree structure remains optimal. 
Otherwise, we reoptimize the solution using the network simplex algorithm 
with (T*, L*, U*) as the starting spanning tree structure. 

Case 2. Arc (p, q) is a tree arc. 

In this case, changing the cost of arc (p, q) changes some node potentials. If 
arc (p, q) is an upward-pointing arc in the current spanning tree, potentials of 
all the nodes in D(p) increase by l\, and if (p, q) is a downward-pointing arc, 
potentials of all the nodes in D(q) decrease by l\. Note that these changes alter 
the reduced costs of those nontree arcs that belong to the cut [D(q), D(q)]. If 
all nontree arcs still satisfy the optimality condition, the current spanning tree 
structure remains optimal; otherwise, we reoptimize the solution using the 
network simplex algorithm. 

Supply/Demand Sensitivity Analysis 

To study changes in the supply/demand vector, suppose that the supply/demand b(k) 
of node k increases by l\ and the supply/demand bel) of another node I decreases by 
l\. [Recall that since :LiEN b(i) = 0, the supplies of two nodes must change simul
taneously, by equal magnitudes and in opposite directions.] The mass balance con
straints require that we must ship l\ units of flow from node k to node t. Let P be 
the unique tree path from node k to node t. Let P and l!., respectively, denote the 
sets of arcs in P that are along and opposite to the direction ofthe path. The maximum 
flow change &ij on an arc (i, j) E P that preserves the flow bounds is 

Let 

if (i,j) E P, 
if (i, j) E f.. 

& = min{&ij:(i,j) E Pl. 
If l\ ~ &, we send l\ units of flow from node k to node t along the path P. The 

modified solution is feasible to the modified problem and since the modification in 
b(i) does not affect the optimality of the solution, the resulting solution must be an 
optimal solution of the modified problem. 

If l\ > &, we cannot send l\ units of flow from node k to node t along the arcs 
of the current spanning tree and preserve feasibility. In this case we send & units of 
flow along P and reduce l\ to l\ - &. Let x 1 denote the updated flow . We next perform 
a dual pivot (as described in the preceding section) to obtain a new spanning tree 
that might allow additional flow to be sent from node k to node I along the tree path. 
In a dual pivot, we first decide on the leaving variable and then identify an entering 
variable. Let (p, q) be an arc in P that blocks us from sending additional flow from 
node k to node t. If (p, q) E P, then X;q = upq and if (p, q) E f., then X~q = O. We 
drop arc (p, q) from the spanning tree. Doing so partitions the set of nodes into two 
subtrees. Let S denote the subtree containing node k and S denote the subtree 
containing node t. Now consider the cut [S, S]. Since we wish to send additional 
flow through the cut [S, S]' the arcs eligible to enter the tree would be the forward 
arcs in the cut at their lower bound or backward arcs at their upper bounds. If the 

440 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



· network contains no eligible arc, we can send no additional flow from node k to 
node I and the modified problem is infeasible. If the network does contain qualified 
arcs, then among these arcs, we select an arc, say (g, h), whose reduced cost has 
the smallest magnitude. We introduce the arc (g, h) into the spanning tree and update 
the node potentials. 

We then again try to send A' = A - 3 units of flow from node k to node I on 
the tree path. If we succeed, we terminate; otherwise, we send the maximum possible 
flow and perform another dual pivot to obtain a new spanning tree structure. We 
repeat these computations until either we establish a feasible flow in the network 
or discover that the modified problem is infeasible. 

Capacity Sensitivity Analysis 

Finally, we consider sensitivity analysis with respect to arc capacities. Consider the 
analysis when the capacity of an arc (p, q) increases by A units. (Exercise 11.40 
considers the situation when an arc capacity decreases by A units.) Whenever we 
increase the capacity of any arc, the previous optimal solution always remains fea
sible; to determine whether this solution remains optimal, we check the optimality 
conditions (11.1). If arc (p, q) is a tr..ee..llrC or is a nontree arc at its lower bound, 
increasing uPC!. py A does not affect the optimality condition for that arc. If, however, 
arc (p, q) is a nontree arc at its upper bound and its capacity increases by A units, 
the optimality condition (11.1 c) dictates that we must increase the flow on the arc 
by A units. Doing so creates an excess of A units at node q and a deficit of A units 
at node p. To achieve feasibility, we must send A units from node q to node p. We 
accomplish'this objective by using the method described earlier in our discussion 
of supply/demand sensitivity analysis. 

11.11 RELATIONSHIP TO SIMPLEX METHOD 

So far in this chapter, we have described the network simplex algorithm as a com
binatorial algorithm and used combinatorial arguments to show that the algorithm 
correctly solves the minimum cost flow problem. This development has the advan
tage of highlighting the inherent combinatorial structure of the minimum cost flow 
problem and of the network simplex algorithm. The approach has the disadvantage, 
however, of not placing the network simplex method in the broader context of linear 
programming. To help to rectify this shortcoming, in this section we offer a linear 
programming interpretation of the network simplex algorithm. We show that the 
network simplex algorithm is indeed an adaptation ofthe well-known simplex method 
for general linear prQgrams. Because the minimum cost flow problem is a highly 
structured linear programming problem, when we apply the simplex method to it, 
the resulting computations become considerably streamlined. In fact, we need not 
explicitly maitititn the matrix representation (known as the simplex tableau) of the 
linear program and can perform all the computations directly on the network. As 
we will see, the resulting computations are exactly the same as those performed by 
the network simplex algorithm. Consequently, the network simplex algorithm is not 
a new minimum cost flow algorithm; instead, it is a special implementation of the 

Sec. 11.11 Relationship to Simplex Method 441 



well-known simplex method that exploits the special structure of the minimum cost 
flow problem. 

Our discussion in this section requires a basic understanding of the simplex 
method; Appendix C provides a brief review of this method. As we have noted 
before, the minimum cost flow problem is the following linear program: 

Minimize cx 

subject to 

Xx = b, 

0:5 X :5 U. 

The bounded variable simplex method for linear programming (or, simply, the 
simplex method) maintains a basis structure (B, L, U) at every iteration and moves 
from one basis structure to another until it obtains an optimal basis structure. The 
set B is the set of basic variables, and the sets Land U are the nonbasic variables 
at their lower and upper bounds. Following traditions in linear programming, we 
also refer to the variables in B as a basis. Let (%, X, and au denote the sets of columns 
in X corresponding to the variables in B, L, and U. We refer to (% as a basis matrix. 
Our first result is a graph-theoretic characterization of the basis matrix. 

Bases and Spanning Trees 

We begin by establishing a one-to-one correspondence between bases of the mini
mum cost flow problem and spanning trees of G. One implication of this result is 
that the basis matrix is always lower triangular. The triangularity of the basis matrix 
is a key in achieving the efficiency of the network simplex algorithm. 

We define the jth unit vector ej as a column vector of size n consisting of all 
zeros except a 1 in thejth row. We let Xij denote the column of X associated with 
the arc (i, j). In Section 1.2 we show that Xu = ei - ej. The rows of X are linearly 
dependent since summing all the rows yields the redundant constraint 

o = ~ b(i), 
iEN 

which is our assumption that the supplies/demands of all the nodes sum to zero. For 
convenience we henceforth assume that we have deleted the first row in X (corre
sponding to node 1, which is treated as the root node). Thus X has at most n - 1 
independent rows. Since the number of linearly independent rows of a matrix is the 
same as the number of linearly independent columns, X has at most n - 1 linearly 
independent columns. We show that the n - 1 columns associated with arcs of any 
spanning tree are linearly independent and thus define a basis matrix of the minimum 
cost flow problem. 

Consider a spanning tree T. Let 0'3 be the (n - 1) x (n - 1) matrix defined 
by the arcs in T. As an example, consider the spanning tree shown in Figure 11.22(a) 
which corresponds to the matrix (% shown in Figure 11.22(b). The first row in 
this matrix corresponds to the redundant row in X and deleting this row yields an 
(n - 1) x (n - 1) square matrix. For the sake of clarity, however, we shall some
times retain the first row. We order the rows and columns of \% in a certain specific 

442 Minimum Cost Flows: Network Simplex Algorithms Chap. Jl 



/ 
/ 

;('/ 
(1,2) (3, 1) (3,5) (2,4) (2,4) (l,2) (3,5) (3,1) 

-1 0 0 4 -1 0 0 0 
-------------
2 -1 0 0 2 -1 0 0 

3 0 0 5 0 0 -1 0 

4 0 0 0 -1 3 0 0 
-------------

5 0 0 -1 0 0 0 -1 

(b) (c) 

Figure 11.22 (a) Spanning tree and its reverse thread traversal; (b) basis matrix corre
sponding to the spanning tree; (c) bas~ matrix after rearranging the rows and columns. 

manner. Doing so requires the reverse thread traversal of the nodes in the tree. 
Recall that a reverse thread traversal visits each node before visiting its predecessor. 
We order nodes and arcs in the following manner. 

1. We order nodes of the tree in order of the reverse thread traversal. For our 
example, this order is 4-2-5-3-1 [see Figure 11.22(a)]. 

2. We order the tree arcs by visiting the nodes in order of the reverse thread 
traversal, and for each node i visited, we select the unique arc incident to it 
on the path to the root node. For our example, this order is (2, 4), (1, 2), 
(3, 5), and (3, 1). 

We now arrange the rows and columns of 0"3 as specified by the preceding node 
and arc orderings. Figure 11.22(c) shows the resulting matrix for our example. In 
this matrix, if we ignore the row corresponding to node 1, we have a lower triangular 
(n - 1) x (n - 1) matrix. The triangularity of the matrix is not specific to our 
example: The matrix would be triangular in general. It is easy-to see why. Suppose 
that the reverse thread traversal selects node i at some step. Letj = pred(i). Then 
either (j, i) E T, or (i, j) E T. Without any loss of generality, we assume that 
(i, j) E T. The reverse thread traversal ensures that we have not visited node j so 
far. Consequently, the column corresponding to arc (i, j) will contain a +1 entry in 
the row r corresponding to node i, will contain all zero entries above this row, and 
will contain a-I entry corresponding to node j below row r (because we will visit 
node j later). We have thus shown that this rearranged version of 0"3 is a lower 
triangular matrix and that all of its diagonal elements are + 1 or - 1. We, therefore, 
have established the following result. 

Theorem 11.9 (Triangularity Property). The rows and columns of the node
arc incidence matrix of any spanning tree can be rearranged to be lower triangular . 

• 
The determinant of a lower triangular matrix is the product of its diagonal 

elements. Since each diagonal element in the matrix is ± 1, the determinant is ± 1. 
We now use the well-known fact from linear algebra that a set of (n -1) column 

Sec. 11.11 Relationship to Simplex Method 443 



vectors, each of size (n - 1), is linearly independent if and only if the matrix con
taining these vectors as columns has a nonzero detenninant. This result shows that 
the columns corresponding to arcs of a spanning tree constitute a basis matrix of N. 

We now establish the converse result: Every basis matrix 0'3 of N defines a 
spanning tree. The fact that every basis matrix has the same number of columns 
implies that every basis matrix 0'3 has (n - 1) columns. These columns correspond 
to a subgraph G' of G having (n - 1) arcs. Suppose that G' contains a cycle 
W. We assign any orientation to this cycle and consider the expression ~(i.j)EW 
(± 1)Nij = ~(i.j)EW (± 1)(ei - ej); the leading coefficient of each term is + 1 for 
those arcs aligned along the orientation of the cycle and is - 1 for arcs aligned 
opposite to the orientation of the cycle. It is easy to verify that for each node j 
contained in the cycle, the unit vector ej appears twice, once with a + 1 sign and 
once with a-I sign. Consequently, the preceding expression sums to zero, indi
cating that the columns corresponding to arcs of a cycle are linearly dependent. 
Since the columns of 0'3 are linearly independent, G' must be an acyclic graph. Any 
acyclic graph on n nodes containing (n - 1) arcs must be a spanning tree. So we 
have established the following theorem. 

Theorem 11.10 (Basis Property). Every spanning tree ofG defines a basis of 
the minimum cost flow problem and, conversely, every basis of the minimum cost 
flow problem defines a spanning tree of G. • 

Implications of Triangularity 

In the preceding discussion we showed that we can arrange every basis matrix of 
the minimum cost flow problem so that it is lower triangular and has an associated 
spanning tree. We now show that the triangularity of the basis matrix allows us to 
simplify the computations of the simplex method when applied to the minimum cost 
flow problem. 

When applied to the minimum cost flow problem, the simplex method maintains 
a basis structure (B, L, U) at every step. Our preceding discussion implies that the 
arcs in the set B constitute a spanning tree and the arcs in the set L U U are nontree 
arcs. Therefore, this basis structure is no different from the spanning tree structure 
that the network simplex algorithm maintains. Moreover, the process of moving 
from one spanning tree structure to another corresponds to moving from one basis 

\ structure to another in the simplex method. 
The simplex method perfonns the following operations: 

1. Given a basis structure (B, L, U), determine the associated basic feasible so
lution. 

2. Given a basis structure (B, L, U), determine the associated simplex multipliers 
'iT (or, dual variables). 

3. Given a basis structure (B, L, U), check whether it is optimal, and if not, then 
detennine an entering nonbasic variable Xkl. 

4. Given a basis structure (B, L, U) and a nonbasic variable Xkl, determine the 
representation, N kl, of the column N kl, corresponding to this variable in terms 

444 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



of the basis matrix 0'3. We require this representation to perform the pivot 
operation while introducing the variable Xkl into the current basis. 

We consider these simplex operations one by one. 

Computing the Basio Feasible Solution 

Given the basis structure (B, L, U), the simplex method determines the associated 
basic feasible solution by solving the follow~ng system of equations: 

(11.5) 

In this expression, XB denotes the set of basic variables, and XL and Xu denote 
the sets of nonbasic variables at their lower and upper bounds. The simplex method 
sets each nonbasic variable in XL to value zero, each nonbasic variable in Xu to its 
upper bound, and solves the resulting system of equations. Let Uu be the vector of 
upper bounds for variables in U and let b I = b - OUuu. The simplex method solves 
the following system of equations: 

0'3XB = b'. (11.6) 

Let,us see how can we solve (11.6) for the minimum cost flow problem. For 
simplicity of exposition, assume that XB = (X2, X3, ... , xn). (Assume that the row 
corresponding to node 1 is the redundant row.) Since 0'3 is a lower triangular matrix, 
the first row of 0'3 has exactly one nonzero element corresponding to X2. Therefore, 
we can uniquely determine the value of X2. Since the coefficient of X2 is ± 1, the 
value of X2 is integral. The second row of 0'3 has at most two nonzero elements, 
corresponding to the variables X2 and X3. Since we have already determined the value 
of X2, we can determine the value of X3 uniquely. Continuing to solve successively 
for one variable at a time by this method of forward substitution, we can determine 
the entire vector XB. Since the nonzero coefficients in the basis matrix 0'3 all have 
the value ± 1, the only operations we perform are additions ang,subtractions, which 
preserve the integrality of the solution. 

It is easy to see that the computations required to solve the system of equations 
0'3XB = b I are exactly same as those performed by the procedure compute-flows 
described in Section 11.4. Recall that the procedure first modifies the supply/demand 
vector b by setting the flows on the arcs in U equal to their upper bounds. The 
modified supply/demand vector b ' equals b - OUuu. Then the procedure examines 
the nodes in order of the reverse thread traversal and computes the flows on the 
arcs incident to these nodes. To put the matrix 0'3 into a lower triangular form, we 
ordered its rows using the reverse thread traversal of the nodes. As a result, the 
procedure compute-flows computes flows on the arcs exactly in the same order as 
solving the system of equation 0'3XB = b I by forward substitution. 

Determining the Simplex Multipliers 

The simplex algorithm determines the simplex multipliers 'iT associated with a basis 
structure (B, L, U) by solving the following system of equations: 

(11.7) 

Sec. 11.11 Relationship to Simplex Method 445 



In this expression, CB is the vector consisting of cost coefficients of the variables 
in B. Assume, for simplicity of exposition, that 'IT = ('IT(2), 'IT(3), ... , 'IT(n)). Since 
0'3 is a lower triangular matrix, the last column of 0'3 has exactly one nonzero element. 
Therefore, we can immediately determine 'IT(n). The second to last column of 0'3 has 
at most two nonzero elements, corresponding to 'IT(n - 1) and 'IT(n). Since we have 
already computed 'IT(n), we can easily compute 'IT(n - 1), and so on. We can thus 
solve (11. 7) by backward substitution and compute all the simplex multipliers by 
performing only additions and subtractions. Since we have arranged the rows of 0'3 
in the order of the reverse thread traversal of the nodes, and we determine simplex 
multipliers in the opposite order, we are, in fact, determining the simplex multipliers 
of nodes in the order dictated by the thread traversal. Recall from Section 11.4 that 
the procedure compute-potentials also examines nodes and computes the node po
tentials by visiting the nodes via the thread traversal. Consequently, the procedure 
compute-potentials is in fact solving the system of equations 'lT0'3 = CB by backward 
substitution. Also, notice that the node potentials are the simplex multipliers main
tained by the simplex method. 

optimality Testing 

Given a basis structure (B, L, U), the simplex method computes the simplex mul
tipliers 'IT, and then tests whether the basis structure satisfies the optimality con
ditions (11.1) (see Appendix C). As expressed in terms of the reduced costs cli, the 
optimality conditions are 

for each (i, j) E A. 

For the minimum cost flow problem, Xu = ei - ej and, therefore, cli = Cij -

'IT(i) + 'IT(j). Consequently, the reduced costs of the arcs as defined in the network 
simplex algorithm are the linear programming reduced costs and the optimality con
ditions (11.1) for the network simplex algorithm are the same as the linear program
ming optimality conditions (see Section C.S). The selection of the entering arc 
(k, l) in the network simplex algorithm corresponds to selecting the nonbasic variable 
Xkl as the entering variable. To simplify our subsequent exposition, we assume that 
the entering arc (k, l) is at its lower bound. 

Representation of a Nonbasic Column 

Once the simplex algorithm has identified a nonbasic variable Xkl to enter the basis, 
it next obtains the representation X kl of the column corresponding to Xkl with respect 
to the current basis matrix. We use this representation to determine the effect on 
the basic variables of assigning a value e to Xkl, that is, to solve the system 

XB = b' - Xk1e. 

In this expression, b' = 0'3 - 1 b' and X kl = 0'3 - 1 X kl. Observe that - X kl denotes 
the change in the values of basic variables as we increase the value of the entering 
nonbasic variable Xkl by 1 unit (i.e., set e to value 1) and maintain all other nonbasic 
variables at their current lower and upper bounds. What is the graph-theoretic sig
nificance of X kl? 

446 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



The addition of arc (k, I) to the spanning tree T creates exactly one cycle, say 
W. Define the orientation of the cycle W to align with the orientation of the arc 
(k, I). Let Wand W denote the sets of forward and backward arcs in W. Observe 
that if we wish to increase the flow on arc (k, I) by 1 unit, keeping the flow on all 
other nontree arcs intact, then to satisfy the mass balance constraints we must aug
ment 1 unit of flow along W. This change would increase the flow on arcs in W by 
1 unit and decrease the flow on arcs in W by 1 unit. This discussion shows that the 

. fundamental cycle W created by the nontree.arc (k, l) defines the representation .Nkl 

in the following manner. All the basic Ivariables corresponding to the arcs in W have 
a coefficient of -1 in the column veqtor .Nkl , all the basic variables corresponding 
to the arcs in W have a coefficient df" + 1, and all other basic variables have a 
coefficient of O. This discussion also shows that in the network simplex algorithm, 
augmenting flow in the fundamental cycle created by the entering arc (k, I) and 
obtaining a new spanning tree solution corresponds to performing a pivot operation 
and obtaining a new basis structure in the simplex method. 

To summarize, we have shown that the network simplex algorithm is the same 
as the simplex method applied to the minimum cost flow problem. The triangularity 
of the basis matrix permits us to apply the simplex method directly on the network 
without explicitly maintaining the simplex tableau. This possibility permits us to use 
the network structure to greatly improve the efficiency of ' the simplex method for 
solving the minimum cost flow problem. 

In this section we have shown that the network simplex algorithm is an ad
aptation of the simplex method for solving general linear programs. A similar de
velopment would permit us to show that the parametric network simplex algorithm 
is an adaptation of the right-hand-side parametric algorithm of linear programmi.ng, 
and that the dual network simplex algorithm is an adaptation 'of the well-known dual 
simplex method for solving linear programs. We leave the details of these results 
as exercises (see Exercises 11.35 and 11.36). 

11.12 UNIMODULARITY PROPERTY 

In Section 11.4, using network flow algorithms, we established one of the funda
mental results of network flows, the integrality property, stating that every minimum 
cost flow problem with integer supplies/demands and integer capacities has an integer 
optimal solution. The type of constructive proof that we used to establish this result 
has the obvious advantage of actually permitting us to compute integer optimal so
lutions. In that sense, constructive proofs have enormous value. However, con
structive proofs do not always identify underlying structural (mathematical) reasons 
for explaining why results are true. These structural insights usually help in under
standing a subject matter, and often suggest relationships between the subject matter 
and other problem domains or help to define potential limitations and generalization 
of the subject matter. In this section we briefly examine the structural properties of 
the integrality property, by providing an algebraic proof of this result. This discussion 
shows relationships between the integrality property and certain integrality results 
in linear programming. 

Let .sa be a p x q matrix with integer elements and p linearly independent rows 
(the matrix's rank is p). We say that the matrix .sa is unimodular if the determinant 

Sec. 11.12 Unimodularity Property 447 



of every basis matrix ~ of sIl has value + 1 or -1 [i.e., det(~) = ± 1]. Recall from 
Appendix C that a p x p submatrix of sIl is a basis matrix if its columns are linearly 
independent. The following classical result shows the relationship between uni
modularity and the integer solvability of linear programs. 

Theorem 11.11 (Unimodularity Theorem). Let sIl be an integer matrix with lin
early independent rows. Then the following three conditions are equivalent: 
(a) sIl is unimodular. 
(b) Every basic feasible solution defined by the constraints sIlx = b, x 2: 0, is integer 

for any integer vector b. 
(c) Every basis matrix ~ of sIl has an integer inverse ~ -1 . 

Proof. We prove the theorem by showing that (a) =? (b), (b) =? (c), and 
(c) =? (a). 

(a) =? (b). Each basic feasible solution XB has an associated basic matrix ~ 
for which ~XB = b. By Cramer's rule, any component Xj of the solution XB will be 
of the form 

det(integer matrix) 
Xj = det(~) 

We obtain the integer matrix in this formula by replacing the jth column of ~ 
with the vector b. Since, by assumption, sIl is unimodular, det(~) is ± 1, so Xj is 
integer. 

(b) =? (c). Let ~ be a basis matrix of sIl. Since ~ has a nonzero determinant, 
its inverse ~ -1 exists. Let ej denote the jth unit vector (i.e., a vector with a 1 at 
thejth position and 0 elsewhere). Let 05 = ~-1 and 05j denote thejth column of 05. 
We will show that the column vector 05j is integer for eachj whenever condition (b) 
holds. Select an integer vector IX so that 05j + IX 2: O. Let x = 05j + IX. Notice that 

(11.8) 

Multiplying the expression (11.8) by 05 = ~ -1, we see that x = 05j + IX. Since 
ej + ~IX is integer (by definition), condition (b) implies that 05j + IX is integer. 
Recalling that IX is integer, we find that 05j is also integer. This conclusion completes 
the proof of part (b). 

(c) =? (a). Let ~ be a basis matrix of sIl. By assumption, ~ is an integer matrix, 
so det(~) is an integer. By condition (c), ~-1 is an integer matrix; consequently, 
det( ~ -1) is also an integer. Since ~ . ~ - 1 = I (i. e., an identity matrix), 
det(~) . det(~-l) = 1, which implies that det(~) = det(~-l) = ± 1. • 

This result shows us when a linear program of the form minimize ex, subject 
to sIlx = b, x 2: 0, has integer optimal solutions for all integer right-hand-side vectors 
b and for all cost vectors c. Network flow problems are the largest important class 
of models that satisfy this integrality property. To establish a formal connection 
between network flows and the results embodied in this theorem, we consider an
other noteworthy class of matrices. 

Totally unimodular matrices are an important special subclass of unimodular 

448 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



matrices. We say that a matrix :il is totally unimodular if each square submatrix of 
:il has determinant 0 or ± 1. Every totally unimodular matrix :il is unimodular because 
each basis matrix ~ must have determinant ± 1 (because the zero value of the de
terminant would imply the linear dependence of the columns of ~). However, a 
unimodular matrix need not be totally unimodular. Totally unimodular matrices are 
important, in large part, because the constraint matrices of the minimum cost flow 
problems are totally unimodular. 

Theorem 11.12. The node-arc incidence matrix .N of a directed network is 
totally unimodular. 

Proof To prove the theorem, we need to show that every square submatrix 
<iF of.N of size k has determinant 0, + 1, or -1. We establish this result by performing 
induction on k. Since each element of N is 0, + 1, or -1, the theorem is true for 
k = 1. Now suppose that the theorem holds for some k. Let <iF be any (k + 1) x 
(k + 1) submatrix of .N. The matrix <iF satisfies exactly one of the three following 
possibilities: (1) <iF contains a column with no nonzero element; (2) every column of 
<iF has exactly two nonzero elements, in which case, one of these must be a + 1 and 
the another a -1; and (3) some column <iF I has exactly one nonzero element, in, say, 
the ith row. In case (1) the determinant of <iF is zero and the theorem holds. In case 
(2) summing all of the rows in <iF yields the zero vector, implying that the rows in 
<iF are linearly dependent and, consequently, det(<iF) = 0. In case (3) let <iF' denote 
the submatrix of <iF obtained by deleting the ith row and the lth column. Then 
det(<iF) = ± 1 det(<iF'). By the induction hypothesis, det(<iF') is 0, + 1, or -1, so 
det(<iF) is also 0, + 1, or -1. This conclusion establishes the theorem. • 

This result, combined with Theorem 11.11, provides us with an algebraic proof 
of the integrality property of network flows: Network flow models have integer 
optimal solutions because every node-arc incidence matrix is totally unimodular 
and therefore unimodular. As we will see in later chapters,-the constraint matrices 
for many extensions of the basic network flow problem, for example, generalized 
flows and multicommodity flows, are not unimodular. Therefore, we would not ex
pect the optimal solutions of these models to be integer even when all of the un
derlying data are integer. Therefore, to find integer solutions to these problems, we 
need to rely on methods of integer programming. Although our development of the 
minimum cost flow problem has not stressed this point, one of the primary reasons 
that we are able to solve this problem so efficiently, and still obtain integer solutions, 
is because, as reflected by the integrality property, the basic feasible solutions of 
the linear programming formulation of this problem are integer whenever the un
derlying data are integer. 

To close this section, we might note that the unimodularity properties provide 
us with a very strong result: any basic feasible solution is guaranteed to be integer
valued whenever the right-hand-side vector b is integer. It is possible, however, that 
basic feasible solutions to a linear program might be integer valued for a particular 
right-hand side even though they might be fractional for some other right-hand sides. 
We illustrate this possibility in Section 13.8 when we give an integer programming 
formulation of the minimal spanning tree problem. 

Sec. 11.12 Unimodularity Property 449 



11.18 SUMMARY 

The network simplex algorithm is one of the most popular algorithms in practice for 
solving the minimum cost flow problem. This algorithm is an adaptation for the 
minimum cost flow problem of the well-known simplex method of linear program
ming. The linear programming basis of the minimum cost flow problem is a spanning 
tree. This property permits us to simplify the operations of the simplex method 
because we can perform all of its operations on the network itself, without main
taining the simplex tableau. Our development in this chapter does not require linear 
programming background because we have developed and proved the validity of the 
network simplex algorithm from first principles. Later in the chapter we showed the 
connection between the network simplex algorithm and the linear programming sim
plex method. 

The development in this chapter relies on the fact that the minimum cost flow 
problem always has an optimal spanning tree solution. This result permits us to 
restrict our search for an optimal solution among spanning tree solutions. The net
work simplex algorithm maintains a spanning tree solution and successively trans
forms it into an improved spanning tree solution until it becomes optimal. At each 
iteration, the algorithm selects a nontree arc, introduces it into the current spanning 
tree, augments the maximum possible amount of flow in the resulting cycle, and 
drops a blocking arc from the spanning tree, yielding a new spanning tree solution. 
The algorithm is flexible in the sense that we can select the entering arc in a variety 
of ways and obtain algorithms with different worst-case and empirical attributes. 

The network simplex algorithm does not necessarily terminate in a finite num
ber of iterations unless we impose some additional restrictions on the choice of the 
entering and leaving arcs. We described a special type of spanning tree solution, 
called the strongly feasible spanning tree solution; when implemented in a way that 
maintains strongly feasible spanning tree solutions, the network simplex algorithm 
terminates finitely for any choice of the rule used for selecting the entering arc. We 
can maintain strongly feasible spanning tree solutions by selecting the leaving arc 
appropriately whenever several arcs qualify to be the leaving arc. 

We also specialized the network simplex algorithm for the shortest path and 
maximum flow problems. When specialized for the shortest path problem, the al
gorithm maintains a directed out-tree rooted at the source node and iteratively mod
ifies this tree until it becomes a tree of shortest paths. When we specialize the 
network simplex algorithm for the maximum flow problem, the algorithm maintains 
an s-t cut and selects an arc in this cut as the entering arc until the associated cut 
becomes a minimum cut. 

The network simplex algorithm has two close relatives that might be quite useful 
in some circumstances: the parametric network simplex algorithm and the dual net
work simplex algorithm. The parametric network simplex algorithm maintains a 
spanning tree solution and parametrically increases the flow from a source node to 
a sink node until the algorithm has sent the desired amount of flow between these 
nodes. This algorithm is useful in situations in which we want to maximize the amount 
of flow to be sent from a source node to a sink node, subject to an upper bound on 
the cost of flow (see Exercise 10.25). The dual network simplex algorithm maintains 
a spanning tree solution in which spanning tree arcs do not necessarily satisfy the 

450 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



flow bound constraints. The algorithm successively attempts to satisfy the flow 
bound constraints. The primary use of the dual network simplex algorithm has been 
for reoptimizing the minimum cost flow problem procedures for solving the minimum 
cost flow problem after we have changfd the supply/demand or capacity data. 

We also described methods for usiQg the network simplex algorithm to conduct 
sensitivity analysis for the minimum cost flow problem with respect to the changes 
in costs, supplies/demands, and capacities. The resulting methods maintain a span
ning tree solution and perform primal or dual pivots. Unlike the methods described 
in Section 9.11, these methods for conducting sensitivity analysis do not necessarily 
run in polynomial time (without further refinements). However, network simplex
based sensitivity analysis is excellent in practice. 

The minimum cost flow problem always has an integer optimal solution; at the 
beginning of the chapter, we gave an algorithmic proof of this integrality property. 
We also examined the structural properties of the integrality property by providing 
an algebraic proof of this result. We showed that the constraint matrix of the min
imum cost flow problem is totally unimodular and that, consequently, every basic 
feasible solution (or, equivalently, spanning tree solution) is an integer solution. 

REFERENCE NOTES 

Dantzig [1951] developed the network simplex algorithm for the uncapacitated trans
portation problem by specializing his linear programming simplex method. He 
proved the spanning tree property of the basis and the integrality property of the 
optimal solution. Later, his development of the upper bounding technique for linear 
programming led to an efficient specialization of the simplex method for the minimulV 
cost flow problem. Dantzig's [1962] book discusses these topics. . 

The network simplex algorithm gained its current popularity in the early 1970s 
when the research community began to develop and test algorithms using efficient 
tree indices. Johnson [1966] suggested the first tree indices. Srinivasan and Thomp
son [1973], and Glover, Karney, Klingman, and Napier [1974] implemented these 
ideas; these investigations found the network simplex algorithm to be substantially 
faster than the existing codes that implemented the primal-dual and out-of-kilter 
algorithms. Subsequent research has focused on designing improved tree indices and 
determining the best pivot rule. The book by Kennington and Helgason [1980] de
scribes a variety of tree indices and specifies procedures for updating them from 
iteration to iteration. The book by Bazaraa, Jarvis, and Sherali [1990] also describes 
a method for updating tree indices. The following papers describe a variety of pivot 
rules and the computational performance of the resulting algorithms: Glover, Kar
ney, and Klingman [1974], Mulvey [1978], Bradley, Brown, and Graves [1977], Gri
goriadis [1986], and Chang and Chen [1989]. The candidate list pivot rule that we 
describe in Section 11.5 is due to Mulvey [1978]. The reference notes of Chapter 9 
contain information concerning the computational performance of the network sim
plex algorithm and other minimum cost flow algorithms. 

Experience with solving large-scale minimum cost flow problems has shown 
that for certain classes of problems, more than 90% of the pivots in the network 
simplex algorithm can be degenerate. The strongly feasible spanning tree technique, 
proposed by Cunningham [1976] for the minimum cost flow problem, and indepen-

Chap. 11 Reference Notes 451 



dently by Barr, Glover, and Klingman [1977] for the assignment problem, helps to 
reduce the number of degenerate steps in practice and ensures that the network 
simplex algorithm has a finite termination. Although the strongly feasible spanning 
tree technique prevents cycling during a sequence of consecutive degenerate pivots, 
the number of consecutive degenerate pivots can be exponential. This phenomenon 
is known as stalling. Cunningham [1979] and Goldfarb, Hao, and Kai [1990b] describe 
several antistalling pivot rules for the network simplex algorithm. 

Researchers have attempted, with partial success, to develop polynomial-time 
implementations of the network simplex algorithm. TaIjan [1991] and Goldfarb and 
Hao [1988] have described polynomial-time implementations of a variant of the net
work simplex algorithm that permits pivots to increase value of the objective func
tion. A monotone polynomial-time implementation, in which the value of the ob
jective function is nonincreasing (as it does in any natural implementation), remains 
elusive to researchers. 

Several FORTRAN codes of the network simplex algorithm are available in 
the public domain. These include (1) the RNET code developed by Grigoriadis and 
Hsu [1979], (2) the NETFLOW code developed by Kennington and Helgason [1980], 
and (3) a recent code by Chang and Chen [1989]. 

We next give selected references for several specific topics. 

Shortest path problem. We have adapted the network simplex algorithm 
for the shortest path problem from Dantzig [1962]. Goldfarb, Hao, and Kai [1990a] 
and Ahuja and arlin [1992a] developed the polynomial-time implementations of this 
algorithm that we have presented in Section 11.7. Additional polynomial-time im
plementations can be found in arlin [1985] and Akgiil [1985a]. 

Maximum flow problem. Fulkerson and Dantzig [1955) specialized the net
work simplex algorithm for the maximum flow problem. Goldfarb and Hao [1990] 
gave a polynomial-time implementation of this algorithm that performs at most nm 
pivots and runs in O(n2m) time; Goldberg, Grigoriadis, and Trojan [1988] describe 
an O(nm log n) implementation of this algorithm. 

Assignment problem. One popular implementation of the network simplex 
algorithm for the assignment problem is due to Barr, Glover, and Klingman [1977]. 
Roohy-Laleh [1980], Hung [1983], arlin [1985], Akgiil [1985b], and Ahuja and arlin 
[1992a] have presented polynomial-time implementations of the network simplex 
algorithm for the assignment problem. Balinski [1986) and Goldfarb [1985] present 
polynomial-time dual network simplex algorithms for the assignment problem. 

Parametric network simplex algorithm. Schmidt, Jensen, and Barnes 
[1982], and Ahuja, Batra, and Gupta [1984) are two sources for additional information 
on the parametric network simplex algorithm. 

Dual network simplex algorithm. Ali, Padman, and Thiagarajan [1989] 
have described implementation details and computational results for the dual net
work simplex algorithm. Although no one has yet devised a (genuine) polynomial
time primal network simplex algorithm, arlin [1984] and Plotkin and Tardos [1990] 

452 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



have developed polynomial-time dual network simplex algorithms. The algorithm of 
Orlin [1984J is more efficient if capacities satisfy the similarity assumption; other
wise, the algorithm of Plotkin and Tardos [1990J is more efficient. The latter algorithm 
performs O(m2 log n) pivots and runs in O(m3 log n) time. 

Sensitivity analysis. Srinivasan and Thompson [1972J have described para
metric and sensitivity analysis for the transportation problem, which is similar to 
that for the minimum cost flow problem. Ali, Allen, Barr, and Kennington [1986J 
also discuss reoptimization procedures for the minimum cost flow problem. 

Unimodularity. Hoffman and Kruskal [1956J first proved Theorem 11.11; 
the proof we have given is due to Veinott and Dantzig [1968J. The book by Schrijver 
[1986J presents an in-depth treatment of the unimodularity property and related 
topics. 

EXERCISES 

11.1. Nurse scheduling problem. A hospital administrator needs to establish a staffing sched
ule for nurses that will meet the minimum daily requirements shown in Figure 11.23. 
Nurses reporting to the hospital wards for the first five shifts work for 8 consecutive 
hours, except nurses reporting for the last shift (2 A.M. to 6 A.M.), when they work 
for only 4 hours. The administrator wants to determine the minimal number of nurses 
to employ to ensure that a sufficient number of nurses are available for each period. 
Formulate this problem as a network flow problem. 

Shift 1 2 3 4 5 6 

Clock 6 A.M. 10 A.M. 2 P.M. 6 P.M. 10 P.M. 2 A.M. 

time to to to to to to 
10 A.M. 2 P.M. 6 P.M. 10 P.M. 2 A.M. 6 A.M. 

-." 

Minimum 70 80 50 60 40 30 
nurses 
required 

Figure 11.23 Nurse scheduling problem. 

11.2. Caterer problem. As part of its food service, a caterer needs dj napkins for each day 
of the upcoming week. He can buy new napkins at the price of u cents each or have 
his soiled napkins laundered. Two types of laundry service are available: regular and 
expedited. The regular laundry service requires two working days and costs 13 cents 
per napkin, and the expedited service requires one working day and costs "I cents per 
napkin ("I > 13). The problem is to determine a purchasing and laundry policy that 
meets the demand at the minimum possible cost. Formulate this problem as a minimum 
costs flow problem. (Hint: Define a network on 15 nodes, 7 nodes corresponding to 
soiled napkins, 7 nodes corresponding to fresh napkins, and 1 node for the supply of 
fresh napkins.) 

11.3. Project assignment. In a new industry-funded academic program, each master's degree 
student is required to undertake a 6-month internship project at a company site. Since 
the projects are such an important component of the student's educational program 

Chap. 11 Exercises 453 



and vary considerably by company (e.g., by the problem and industry context) and 
by geography, each student would like to undertake a project of his or her liking. To 
assure that the project assignments are' 'fair," the students and program administrators 
have decided to use an optimization approach: Each student ranks the available 
projects in order of increasing preference (lowest to highest). The objective is to assign 
students to projects to achieve the highest sum of total ranking of assigned projects. 
The project assignment has several constraints. Each student must work on exactly 
one project, and each project has an upper limit on the number of students it can 
accept. Each project must have a supervisor, drawn from a known pool of eligible 
faculty. Finally, each faculty member has bounds (upper and lower) on the number 
of projects that he or she can supervise. Formulate this problem as a minimum cost 
flow problem. 

11.4. Passenger routing. United Airlines has six daily flights from Chicago to Washington. 
From 10 A.M. until 8 P.M., the flights depart every 2 hours. The first three flights have 
a capacity of 100 passengers and the last three flights can accommodate 150 passengers 
each. If overbooking results in insufficient room for a passenger on a scheduled flight, 
United can divert a passenger to a later flight. It compensates any passenger delayed 
by more than 2 hours from his or her regularly scheduled departure by paying $200 
plus $20 for every hour of delay. United can always accommodate passengers delayed 
beyond the 8 P.M. flight on the 11 P.M. flight of another airline that always has a great 
deal of spare capacity. Suppose that at the start of a particular day the six United 
flights have 110, 160, 103, 149, 175, and 140 confirmed reservations. Show how to 
formulate the problem of determining the most economical passenger routing strategy 
as a minimum cost flow problem. 

11.5. Allocating receivers to transmitters (Dantzig [1962]). An engine testing facility has four 
types of instruments: u. thermocouplers, U2 pressure gauges, U3 accelerometers, and 
U4 thrust meters. Each instrument measures one type of engine characteristic and 
transmits its measurements over a separate communication channel. A set of receivers 
receive and record these data. The testing facility uses four types of receivers, each 
capable of recording one channel of information: 131 cameras, 132 oscilloscopes, 133 
instruments called "Idiots," and 134 instruments called "Hathaways." The setup time 
of each receiver depends on the measurement instruments that are transmitting the 
data; let elj denote the setup time needed to prepare a receiver of type i to receive 
the information transmitted from any measurement taken by the jth instrument. The 
testing facility wants to find an allocation of receivers to transmitters that minimizes 
the total setup time. Formulate this problem as a network flow problem. 

11.6. Faculty-course assignment (Mulvey [1979]). In 1973, the Graduate School of Manage
ment at UCLA revamped its M.B.A. curriculum. This change necessitated an in
creased centralization of the annual scheduling of faculty to courses. The large size 
of the problem (100 faculty, 500 courses, and three quarters) suggested that a mathe
matical model would be useful for determining an initial solution. The administration 
knows the courses to be taught in each of the three teaching quarters (fall, winter, 
and spring). Some courses can be taught in either of the two specified quarters; this 
information is available. A faculty member might not be available in all the quarters 
(due to leaves, sabbaticals, or other special circumstances) and when he is available 
he might be relieved from teaching some courses by using his project grants for "fac
ulty offset time." Suppose that the administration knows the quarters when a faculty 
member will be available and the total number of courses he will be teaching in those 
quarters. The school would like to maximize the preferences of the faculty for teaching 
the courses. The administration determines these preferences through an annual fac
ulty questionnaire. The preference weights range from - 2 to + 2 and the administra
tion occasionally revises the weights to reflect teaching ability and student inputs. 
Suggest a network model for determining a teaching schedule. 

11.7. Optimal rounding ofa matrix (Bacharach [1966], Cox and Ernst [1982]). In Application 
6.3 we studied the problem of rounding the entries of a table to their nearest integers 

454 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



while preserving the row and column sums of the matrix. We refer to any such rounding 
as a consistent rounding. Rounding off an element of the matrix introduces some error. 
If we round off an element aij to bij and bij = laijJ or bij = r aij 1, we measure the 
error as (aij - b;)2. Summing these terms for all the elements of the matrix gives us 
an error associated with any consistent rounding scheme. We say that a consistent 
rounding is an optimal rounding if the error associated with this rounding is as small 
as the error associated with any consistent rounding. Show how to determine an op
timal rounding by solving a circulation problem. (Hint: Construct a network similar 
to the one used in Application 6.3. Define the arc costs appropriately.) 

11.8. Describe an algorithm that either identifies p arc-disjoint directed paths from node s 
to node t or shows that the network does not contain any such set of paths. In the 
former case, show how to determine p arc-disjoint paths containing the fewest number 
of arcs. Suggest modifications of this algorithm to identify p node-disjoint directed 
paths from node s to node t containing the fewest number of arcs. 

11.9. Show that a tree is a directed out-tree T rooted at node s if and only if every node in 
T except node s has indegree 1. State (but do not prove) an equivalent result for a 
directed in-tree. 

11.10. Suppose that we permute the rows and columns of the node-arc incidence matrix .N 
of a graph G. Is the modified matrix a node-arc incidence matrix of some graph G'? 
If so, how are G' and G related? 

11.11. Let T be a spanning tree of G = (N, A). Every nontree arc (k, l) has an associated 
fundamental cycle which is the unique cycle in T U {(k, I)}. With respect to any 
arbitrary ordering of the arcs U], h), (i2 , j2), ... , Urn, jrn), we define the incidence 
vector of any cycle Win G as an m-vector whose kth element is (1) 1, if (h, A) is a 
forward arc in W; (2) - 1, if Uk. A) is a backward arc in W; and (3) 0, if Uk, A) E w. 
Show how to express the incidence vector of any cycle Was a sum of incidence vectors 
of fundamental cycles. 

11.12. Figure 11.24(b) gives a feasible solution of the minimum cost flow problem shown in 
Figure 11.24(a). Convert this solution into a spanning tree solution with the same ,or 
lower cost. . 

60 

b(i) b(j) 

®f--(~Clj,--.' u--,ij_) ~~ 0 
-15 -60 

10 -5 
(a) 

(1,35) 

(b) 

Figure 11.24 Example for Exercise 11.12: (a) problem data; (b) feasible solution. 

25 

11.13. Figure 11.25 specifies two spanning trees for the minimum cost flow problem shown 
in Figure 11.24(a). For Figure 11.25(a), compute the spanning tree solution assuming 
that all nontree arcs are at their lower bounds. For Figure 11.25(b), compute the 
spanning tree solution assuming that all nontree arcs are at their upper bounds. 

Chap. 11 Exercises 455 



(a) (b) 

Figure 11.25 Two spanning trees of the network in Figure I I .24. 

11.14. Assume that the spanning trees in Figure 11.25 have node 1 as their root. Specify the 
predecessor, depth, thread, and reverse thread indices of the nodes. 

11.15. Compute the node potentials associated with the trees shown in Figure 11.25, which 
are the spanning trees of the minimum cost flow problem given in Figure 11.24(a). 
Verify that for each node j, the node potential 'IT(j) equals the length of the tree path 
from node j to the root. 

11.16. Consider the minimum cost flow problem shown in Figure 11.26. Using the network 
simplex algorithm ini.plemented with the first eligible pivot rule, find an optimal so
lution of this problem. Assume, as always, that arcs are arranged in the increasing 
order of their tail nodes, and for the same tail node, they are arranged in the increasing 
order of their head nodes. Use the following initial spanning tree structure: T = 
{(t, 2), (3, 2), (2, 5), (4, 5), (4, 6)}, L = {(3, 5)}, and U = {(I, 3), (2, 4), (5, 6)}. 

20 

(4, 15) 

b(i) b(j) 

~I-_(-,Ci},-.' u-,,",--) -.. ~ 

o o 

(3,10) 

(2, 10) ~ 
(7,20) (8, 10) ~-20 

fl"3'Jil-__ -.V'5l 

o 0 

Figure 11.26 Example for Exercises 
11.16 and 11.17. 

11.17. Using the network simplex algorithm implemented with Dantzig's pivot rule, solve 
the minimum cost flow problem shown in Figure 11.26. Use the same initial spanning 
tree structure as used in Exercise 11.16. 

11.18. In the procedure compute-potentials, we set 'ITO) = 0 and then compute other node 
potentials. Suppose, instead, that we set 'IT(1) = C/. for some C/. > 0 and then recompute 
all the node potentials. Show that all the node potentials increase by the amount C/.. 

Also show that this change does not affect the reduced cost of any arc. 
11.19. Justify the procedure compute-jlows for capacitated networks. 
11.20. In the candidate list pivot rule, let size denote the ma~imum allowable size of the 

candidate list and iter denote the maximum number of minor iterations to be performed 
within a major iteration. 

456 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



(a) Specify values of size and iter so that the candidate list pivot rule reduces to 
Dantzig's pivot rule. 

(b) Specify values of size and iter so that the candidate list pivot rule reduces to the 
first eligible arc pivot rule. 

11.21. In Section 11.5 we showed how to find the apex of the pivot cycle Win 0(/ Wi) time 
using the predecessor and depth indices. Show that by using predecessor indices alone, 
you can find the apex of the pivot cycle in O(/wl) time. (Hint: Do so by scanning at 
most 2/WJ arcs.) 

11.22. Given the predecessor indices of a spanning tree, describe an O(n) time method for 
computing the thread and depth indices. 

11.23. Desciibe methods for updating the predecessor and depth indices of the nodes when 
performing a pivot operation. Your method should require O(n) time and should run 
faster than recomputing these indices from scratch. 

11.24. Prove that in a spanning tree we can send a positive amount of flow from any 'node 
to the root without violating any flow bound if and only if every tree arc with zero 
flow is upward pointing and every tree arc at its upper bound is downward pointing. 

11.25. Let G(x) denote the residual network corresponding to a flow x. Show that a spanning 
tree T is a strongly feasible spanning tree if and only if for every node i E N - {I}, 
G(x) contains the arc (i, pred(i». 

11.26. Primal perturbation. In the minimum cost flow problem on a network G, suppose that 
we alter the supplyldemand vector from value b to value b + E for some vector E. 
Let us refer to the modified problem as a perturbed problem. We consider the per
turbation E defined by E(i) = lin for all i = 2,3, ... , n, and E(1) = -en - l)ln. 
(a) Let T be a spanning tree of G and let D(j) denote the set of descendants of node 

j in T. Show that the perturbation decreases the flow on a downward-pointing arc 
(i, j) by the amount I D(j) lin and increases the flow on an upward-pointing arc 
(i, j) by the amount I D(i) lin. Conclude that in a strongly feasible spanning tree 
solution, each arC flow is nonzero and is an integral multiple of lin. 

(b) Use the result in part (a) to show that the network simplex algorithm solves the 
perturbed problem in pseudopolynomial time irrespective of the pivot rule used 
for selecting entering arcs. 

11.27. Perturbation and strongly feasible solutions. Let (T, L, U) be a feasible spanning tree 
structure of the minimum cost flow problem and let E be a perturbation as defined in 
Exercise 11.26. Show that (T, L, U) is strongly feasible if and only if (T, L, U) remains 
feasible when we replace b by b + E. Use this equivalence to show that when im
plemented to maintain a strongly feasible basis, the network simplex algorithm runs 
in pseudopolynomial time irrespective of the pivot rule used for selecting entering 
arcs. 

11.28. Apply the network simplex algorithm to the shortest path problem shown in Figure 
11.27(a). Use a depth-first search tree with node 1 as the source node in the initial 
spanning tree solution and perform three iterations of the algorithm. 

11.29. Apply the network simplex algorithm to the maximum flow problem shown in Figure 
11.27(b). Use the following spanning tree as the initial spanning tree: a breadth-first 
search tree rooted at node 1 and spanning the nodes N - it} plus the arc (t, s). Show 
three iterations of the algorithm. 

11.30. Consider the application of the network simplex algorithm, implemented with the fol
lowing pivot rule, for solving the shortest path problem. We examine all the nodes, 
one by one, in a wraparound fashion. Each time we examine a node i, we scan all 
incoming arcs at that node, and if the incoming arcs contain an eligible arc, we pivot 
in the arc with the maximum violation. We terminate when during an entire pass of 
the nodes, we find that no arc is eligible. Show when implemented with this pivot 
rule, the network simplex algorithm would perform O(n2) pivot operations and would 
run in O(n3) time. (Hint: The proof is similar to the proof of the first eligible arc pivot 
rule that we discussed in Section 11.7.) 

Chap. 11 Exercises 457 



8 5 

2 
10 3 4 

(b) 

Figure 11.27 Examples for Exercises 11.28 and 11.29. 

11.31. The assignment problem, as formulated as a linear programming in (12.1), is a special 
case of the minimum cost flow problem. Show that every strongly feasible spanning 
tree of the assignment problem satisfies the following properties: (1) every downward
pointing arc carries unit flow; (2) every upward-pointing arc carries zero flow; and (3) 
every downward-pointing arc is the unique arc with flow equal to 1 emanating from 
node i. 

11.32. In a strongly feasible spanning tree of the assignment problem, a nontree arc (k, l) is 
a downward arc if node I is a descendant of node k. Show that when the network 
simplex algorithm, implemented to maintain strongly feasible spanning trees, is applied 
to the assignment problem, a pivot is nondegenerate if and only if the entering arc is 
a downward arc. 

11.33. Solve the minimum cost flow problem shown in Figure 11.26 by the parametric network 
simplex algorithm. 

11.34. Show how to solve the constrained maximum flow problem, as defined in Exercise 
10.25, by a single application of the parametric network simplex algorithm. 

11.35. Show that the parametric network simplex algorithm described in Section 11.9 is an 
adaptation of the right-hand-side parametric simplex method of linear programming. 
(Consult any linear programming textbook for a review of the parametric simplex 
method of linear programming.) 

11.36. Show that the dual network simplex algorithm described in Section 11.9 is an adap
tation of the dual simplex method of linear programming. (Consult any linear pro
gramming textbook for a review of the dual simplex method of linear programming). 

11.37. At some point during its execution, the dual network simplex algorithm that we dis
cussed in Section 11.9 might find that the set Q of eligible arcs is empty. In this case 
show that the minimum cost flow problem is infeasible. (Hint: Use the result in Ex
ercise 6.43.) 

11.38. Dual perturbation. Suppose that we modify the cost vector c of a minimum cost flow 
problem on a network G in the following manner. After arranging the arcs in some 
order, we add! to the cost of the first arc, ~ to the cost of the second arc, ~ to the 
cost of the third arc, and so on. We refer to the perturbed cost as c', and the minimum 
cost flow problem with the cost c' as the perturbed minimum cost flow problem. 

458 

(a) Show that if x* is an optimal solution of the perturbed problem, x* is also an 
optimal solution of the original problem. (Hint: Show that if G(x*) does not contain 
any negative cycle with cost c', it does not contain any negative cycle with cost 
c.) 

(b) Show that if we apply the dual network simplex algorithm to the perturbed prob
lem, the reduced cost of each nontree arc is nonzero. Conclude that each dual 

Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



pivot in the algorithm will be nondegenerate and that the algorithm will terminate 
finitely. (Hint: Use the fact that the reduced cost of a nontree arc (k, l) is the cost 
of the fundamental cycle created by adding arc (k, l) to the spanning tree.) 

11.39. In Exercise 9.24 we considered a numerical example concerning sensitivity analysis 
of a minimum cost flow problem. Solve the same problem using the simplex-based 
methods described in Section 11.10. 

11.40. In Section 11.10 we described simplex-based procedures for reoptimizing a minimum 
cost flow solution when some cost coefficient Cij increases or some flow bound uij 

decreases. Modify these procedures so that we can use them to handle situations in 
which (1) some cij decreases, or (2) some uij decreases. 

11.41. Let ~ denote the basis matrix associated with the columns of the spanning tree in 
Figure 11.25(a). Rearrange the rows and columns of ~ so that it is lower triangular. 

11.42. Let G' = (N, A') be a subgraph of G = (N, A) containing I A' I = n - 1 arcs. Let 
~' be the square matrix defined by the columns of arcs in A' (where we delete one 
redundant row). Show that A' is a spanning tree of G if and only if the determinant 
of~' is ± 1. 

11.43. Computation of ~ -1. In this exercise we discuss a combinatorial method for computing 
the inverse of a basis matrix ~ of the minimum cost flow problem. (We assume that 
we have deleted a redundant row from ~.) By definition, ~~ -I = !P, an identity 
matrix. Therefore, thejth column ~j-I of the inverse matrix ~ -I satisfies the condition 
~~j-I = ej. Consequently, ~j-I is the unique solution x of the system of equations 
~x = ej. Assuming that we have deleted the row corresponding to node 1, x is the 
flow vector obtained from sending 1 unit of flow from node j to node 1 on the tree 
arcs corresponding to the basis. Use this result to compute ~ -I for the basis ~ defined 
by the spanning trees shown in Figure 11.25(a). 

11.44. Show that a matrix sIl whose components are 0, + 1, or -1 is totally unimodular if it 
satisfies both of the following conditions: (1) each column of sIl contains at most two 
nonzero elements; and (2) the rows of sIl can be partitioned into two subsets sill and 
sIl2 so that the two nonzero entries in any column are in the same set of rows if they 
have different signs and are in different set of rows if they have the same sign. 

11.45. Let.N be a totally unimodular matrix. Show that .NT and [.N, -.N] ar~ also totally 
unimodular. 

11.46. Show that a matrix .N is totally unimodular if and only if the matrix [.N, !P] is uni
modular. 

11.47. Let T be a spanning tree of a directed network G = (N, A) with node 1 as a designated 
root node. Let d(i, j) denote the number of arcs on the tree path from node i to node 
j in T. 
(a) For the given tree T, the average depth is (kEN d(1 , j))/n, and the average cycle 

length is (Lnontree arcs (i,j) d(i, j) + l)/(m - n + 1). Show that if G is a complete 
graph, the average cycle length is at most twice the average depth. Show that this 
relationship is not necessarily valid if the graph is not complete. (Hint: Use the 
fact that the length of the cycle created by adding the arc (i, j) to the tree is at 
most d(1, i) + d(1, j) + 1.) 

(b) For a given tree T, let D(j) denote the set of descendants of node j. The average 
subtree size ofT is (kEN I D(j) I)/n. Show that the average subtree size is 1 more 
than the average depth. (Hint: Let E(j) denote the number of ancestors of node 
j in the tree T. First show that kEN I E(j) I = LjEN I D(j) I.) 

11.48. Cost parametrization (Srinivasan and Thompson [1972]). Suppose that we wish to solve 
a parametric minimum cost flow problem when the cost Cij for each arc (i, j) E A is 
given by Cij = c~ + ~c'lJ for some constants c~ and c'lJ and we want to find an optimal 
solution for all values of the parameter ~ in a given interval [a, 13]. 
(a) Let (T, L, U) be an optimal spanning tree structure for the minimum cost flow 

problem for some value ~ of the parameter. Let 'ITo denote the node potentials for 
the tree T when c~ are the arc costs, and let 'IT* denote node potentials when 

Chap. 11 Exercises 459 



ct are the arc costs in T (we can compute these potentials using the procedure 
compute-potentials). Show that 'ITo + ~'IT* are the node potentials for the tree T 
when t!!e arc costs are cg + ~ct. Use this result to identify the largest value of 
~, say ~, for which (T, L, U) satisfies the optimality conditions. 

(b) Show that at ~ = X:, some nontree arc (k, l) satisfies its optimality condition as 
an equality and violates the optimality condition when ~ > X:. Show that if we 
perform the pivot operation with arc (k, I) as the entering ars the new spanning 
tree structure also satisfies the optimality conditions at ~ = ~. 

(c) Use the results in parts (a) and (b) to solve the minimum cost flow problem for 
all values of the parameter ~ in a given interval [u, 13]. 

11.49. Supply/demand parametrization (Srinivasan and Thompson [1972]). Suppose that we 
wish to solve a parametric minimum cost flow problem in which the supply/demand 
b(i) of each node i E N is given by b(i) = b°(i) + ~b*(i) for some constants bO(i) 
and b*(i) and we want to find an optimal solution for all values of the parameter ~ in 
a given interval [u, 13]. We assume that LiEN b°(i) = LiEN b*(i) = O. 
(a) Let (T, L, U) be an optimal spanning tree structure of the minimum cost flow 

problem for some value ~ of the parameter. Let xg· and xt denote the flows on 
spanning tree arcs when bO and b* are the supply/demand vectors (we can compute 
these flows using the procedure compute-flows). Show that xg + ~t is the flow 
on the spanning tree arcs when bO + ~b* is the supply/demand vector. Use this 
result to identify the largest value of A., say X:, for which spanning tree arcs satisfy 
the flow bound constraints. 

(b) Show that at ~ = X:, some tree arc (p, q) satisfies one of its bounds (lower or 
upper bound) as an equality and violate its flow bound for ~ > X:. Show that if we 
perform a dual pivot (as described in Section 11.9) with arc (p, q) as the leaving 
arc, !!Ie new spanning tree structure also satisfies the optimality conditions at 
~ = ~. 

(c) Use the results in parts (a) and (b) to solve the minimum cost flow problem for 
all values of the parameter ~ in a given interval [u, 13]. 

11.50. Capacity parametrization (Srinivasan and Thompson [1972]). Consider a parametric 
minimum cost flow problem when the capacity uij of each arc (i, j) E A is given by 
Uij = ug + ~ut for some constants ug and ut. Describe an algorithm for solving the 
minimum cost flow problem for all values of the parameter ~ in an interval [u, 13]. 
(Hint: Let (T, L, U) be the basic structure at some state. Maintain the flow on each 
arc in the set U as the arc's upper flow bound (as a function of ~), determine the impact 
of this choice on the flows on the arcs in the spanning tree, and identify the maximum 
value of ~ for which all the arc flows satisfy their flow bounds.) 

11.51. Constrained minimum cost flow problem. The constrained minimum cost flow problem 
is a minimum cost flow problem with an additional constraint Lu.j)EA dijxij ~ D, called 
the budget constraint. 

460 

(a) Show that the constrained minimum cost flow problem need not satisfy the in
tegrality property (i.e., the problem need not have an integer optimal solution, 
even when all the data are integer). 

(b) For the constrained minimum cost flow problem, we say that a solution x is an 
augmented tree solution if some partition of the arc set A into the subsets T U 
{(p, q)}, L, and U satisfies the following two properties: (1) T is a spanning tree, 
and (2) by setting xij = 0 for each arc (i, j) ELand xij = Uij for each arc (i, j) E 
U, we obtain a unique flow on the arcs in T U {(p, q)} that satisfies the mass 
balance constraints and the budget constraint. Show that the constrained minimum 
cost flow problem always has an optimal augmented tree solution. Establish this 
result in two ways: (1) using a linear programming argument, and (2) using a com
binatorial argument like the one we used in proving Theorem 11.2. 

Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



12 

ASSIGNMENTS AND MATCHINGS 

Chapter Outline 

12.1 Introduction 
12.2 Applications 
12.3 Bipartite Cardinality Matching Problem 
12.4 Bipartite Weighted Matching Problem 
12.5 Stable Marriage Problem 
12.6 Nonbipartite Cardinality Matching Problem 
12.7 Matchings and Paths 
12.8 Summary 

12.1 INTRODUCTION 

It takes two to tango. 
-From a popular American song 

To this point in our discussion, we have focused on the three major building blocks 
of network flows: shortest paths, maximum flows (or minimum cuts), and minimum 
cost flows. We have seen how these models arise in numerous application settings, 
we have studied a number of different solution strategies and specific algorithms for 
solving these problems, and we have seen how important data structures can be 
used in designing algorithms and in implementing them efficiently. Many of these 
same ideas apply more generally to the broader field of combinatorial (or discrete) 
optimization and, indeed, many results in this broader field build on those developed 
for network flows. This chapter, which considers a particular class of combinatorial 
optimization problems known as matching problems, illustrates the flow of ideas 
from network flows to other arenas of discrete optimization. 

In general, in discrete optimization we are given a finite set of objects and an 
objective function defined on these objects, and we wish to choose the object with 
the smallest (or largest) ohjective value. In this most general form, discrete optimi
zation problems are hopelessly difficult to solve unless we impose some structure 
on the finite set and on the objective function. In fact, we might view the field of 
combinatorial optimization as the study of those structures that permit us to say 
something interesting about the nature of the underlying optimization problem or 
permit us to find an optimal solution efficiently. 

Network flow problems certainly define one very important class of specially 
structured combinatorial optimization problems. With the exception of our treatment 
of the combinatorial implications of the max-flow min-cut theorem in Chapter 6, we 
have not emphasized this viewpoint very much in our discussion. Nevertheless, all 

461 



of the problems we have considered fit this description· of discrete optimization 
problems. For example, in the context of the shortest path problem, the finite objects 
are all the paths joining two nodes in a network and th~ objectiVe function is additive 
over the arcs selected in any path. For the minimum cut problem, the finite set is 
the set of cuts separating the source and the sink and the objective function is again 
additive over the arcs. For the maximum flow problem with unit arc capacities, the 
finite objects are all sets of paths from the source to the sink that are arc-disjoint 
and we wish to find the solution with the largest number of paths (by replacing arcs 
with integer capacities by parallel arcs with unit capacities, we can interpret all 
maximum flow problems in a similar fashion). For minimum cost flow problems with 
unit supplies and demands at the nodes, the underlying objects are the set of paths 
directed from a supply node to a demand node; the objective function in this case 
is the sum of the weight of arcs in the chosen paths. (By duplicating nodes with 
integral supplies and demands into sets of nodes with unit supplies and demands, 
we can interpret more general minimum cost flow problems in this same way.) 

In this and the next chapter, we consider two related combinatorial models 
that are defined over graphs with a weight associated with each arc. In Chapter 13 
the objects are all the spanning trees in the network and we wish to find the spanning 
tree with the smallest overall weight (defined as the sum of the weights of its con
stituent arcs). This problem is known as the minimum spanning tree problem. In 
this chapter the objects are all subgraphs, called matchings, with the property that 
every node in the subgraph has degree zero or one. That is, no two arcs in the 
subgraph are incident to the same node. We wish to find the matching with the 
smallest overall weight, again defined as the sum of the weights of its constituent 
arcs. 

The matching problem arises in many different problem settings since we often 
wish to find the best way to pair objects or people together to achieve some desired 
goal. The classical bipartite matching problem is a special case in which objects 
separate into two groups, and we wish to pair the objects in the different groups in 
some optimal fashion-for example, we wish to assign jobs to machines in the most 
cost-effective manner. The general matching problem models situations in which the 
objects need not fall into two groups-that is, the underlying network need not be 
bipartite. 

We begin this chapter by describing several applications of matching problems 
in practical contexts as varied as inventory planning, machine scheduling, drilling 
oil fields, and personnel assignment. We then describe solution approaches for sev
eral special cases of the general matching problem. We begin by examining bipartite 
matching problems. We consider two versions of these problems: (1) the cardinality 
problem in which we wish to find a matching containing the maximum number of 
arcs, and (2) the weighted problem in which we have a weight associated with each 
arc and we wish to find a matching with the largest overall weight (for the cardinality 
problem, the weights are all 1). For the weighted problem, we restrict the matching 
to a smaller class of subgraphs, known as perfect matchings, in which every node 
is incident to exactly one arc in the matching (i.e., every node has degree exactly 
1). 

As we will see, bipartite problems are easy to solve because we can model 
them as network flow problems and solve them using any of the many algorithms 

462 Assignments and Matchings Chap. 12 



that we have already studied. Because the resulting network flow problems have a 
special structure, we can refine our analysis of the network flow algorithms and 
show that their worst-case complexity is better for the bipartite matching problems 
than they are in general. In particular, we show that maximum flow algorithms solve 
the cardinality bipartite matching problem in OCViim) time. We also show that if 
S(n, m, C) denotes the time required to solve a shortest path problem on an n-node 
and m-arc'network with nonnegative arc costs bounded by C, specializations of the 
successiye shortest path algorithm and the primal-dual minimum cost flow algo
rithms s6lve the weighted bipartite matching problem in O(n S(n, m, C» time. We 
also describe a cost scaling algorithm with an even better time bound. 

Nonbipartite matching problems are more difficult to solve because they do 
not reduce to standard network flow problems. Therefore, they require specialized 
combinatorial algorithms. To demonstrate the flavor of these algorithms but not go 
too far afield from the general thrust of this book, we consider only the cardinality 
version of the nonbipartite matching problem. We describe a clever O(n 3

) aug
menting path algorithm for solving this problem. Even though the details of this 
algorithm are quite different from those of the algorithms we have studied for solving 
core network flow problems, the algorithm does adopt a common algorithmic strat
egy that we have seen many times before in previous chapters. 

In this chapter we also consider a variant of the matching problem known as 
the stable marriage problem. This model differs from other models we have consid
ered in the text in one important respect: It has no objective function that we wish 
to optimize. Instead, it models situations with two groups, such as men and women, 
in which each man has a ranking of each woman and each woman has a ranking of 
the men. We seek a feasible matching of the members of the two groups, knowJ?, as 
a stable matching, with the property that no pair of man and woman prefer each 
other to the partners that they have in the stable matching. We show that for any 
set of rankings, this problem always has a stable matching and we show how to 
compute such a solution in O(n2

) time. 

12.2 APPLICATIONS 

As we show in this section, matching problems arise in a variety of different problem 
contexts. In Chapter 1 we considered two applications, the pairing of stereo speakers 
to achieve balanced frequency responses and the rewiring of typewriters. We now 
describe several other applications. 

Application 12.1 Bipartite Personnel Assignment 

In many different problem contexts, we wish to assign people to objects: for example, 
to jobs, machines, rooms, or each other. Each assignment has a "value" and we 
wish to make the assignments so that we maximize the sum of these values. To 
illustrate the range of these contexts, in this and the next application, we consider 
six different applications relating to personnel assignment. 

1. A firm has hired n graduates to fill n vacant jobs. Based on aptitude tests, 
college grades, and letters of recommendation, the firm has assigned a profi-

Sec. 12.2 Applications 463 



ciency index Uij for placing candidate i in job j. The objective is to identify an 
assignment that maximizes the total proficiency score over all jobs. This prob
lem is clearly an application of the assignment problem: 

2. A swimming coach must select from his eight best swimmers a medley relay 
team of four, each of whom will then swim one of the four strokes (back, breast, 
butterfly, and free-style). The coach knows the time of each swimmer in each 
stroke. The problem is to identify the team of the four best swimmers out of 
the eight that are available. Clearly, the sum of times obtained by optimally 
matching four out of the eight swimmers to the four strokes gives the minimum 
feasible relay time and the corresponding team is the best team. We point out 
that in this version of the assignment problem I NJ I > I Nzl; nevertheless, by 
adding "dummy nodes," we can easily transform this problem into an equiv
alent one in which both node sets NJ and N z have the same size. 

3. In the armed forces, many men and women are qualified to perform specific 
jobs, or postings. The armed forces would like to assign the service personnel 
to postings in order to minimize moving costs. General rules specify the needed 
qualifications of the personnel for the postings and identify jobs that need to 
be filled. Policy rules determine allowable assignments that reflect job quali
fications and personnel requirements. For an allowable assignment, the posting 
cost is the dollar cost of moving the person, his or her family, and his or her 
belongings to the new residence. In this case the assignment problem would 
find an allowable assignment that minimizes the total posting cost. 

Application 12.2 Nonbipartite Personnel Assignment 

1. During World War II, the Royal Air Force (RAF) of Britain contained many 
pilots from foreign countries who spoke different languages and had different 
levels of training. The RAF had to assign two pilots to each plane, always 
assigning pilots with compatible languages and training to the same plane. The 
RAF wanted to fly as many planes as possible. To formulate this problem as 
a maximum cardinality matching problem, we define a graph whose nodes 
represent pilots; we join two nodes by an arc if the corresponding pilots are 
compatible. 

2. A hostel manager wants to assign pairs of roommates to rooms of her hostel. 
The nationality, religion, cultural background, and hobbies determine com
patible pairs of roommates. So the problem of finding the maximum number 
of compatible pairs is a maximum cardinality matching problem. 

3. Suppose that an airline wishes to divide its 2p airplane pilots, linearly ordered 
by seniority (with no ties), into m teams each containing a captain and a first 
officer. The captain of each team must have seniority over the first officer. 
Each pilot i has a measure, a;, of his effectiveness as a captain and another, 
~;, measure of his effectiveness as a first officer. We seek an assignment of 
pilots to teams that will maximize the total measure of effectiveness summed 
over all the teams. This problem is an instance of the maximum weight matching 
problem: We represent eac~ ;S'; a node and define the cost of an arc (i, j) 

464 Assignments and Matchings Chap. 12 



as (Xj .+ ,!3i if pilot j is more senior than pilot i, and as (Xi + !3j if pilot i is more 
senior than pilot j. 

Application 12.8 Assigning Medical School Graduates 
to Hospitals 

Each year medical schools in the United States graduate thousands of doctors who 
are eligible/for residencies at the various hospitals across the country. To give each 
of the graduates a chance to find the "best possible" residency and the hospitals 
the chance to obtain the "best possible" residents, the American Medical Associ
ation (AMA) conducts a matching proces s in which the graduates rank the hospitals 
according to their preferences and the hospitals rank the graduates according to their 
preferences. It then assigns the graduates to hospitals so that the matching is "stable" 
in the following sense. We say that an assignment is unstable if some graduate i is 
not assigned a hospitalj, but that graduate prefers hospitalj over his or her current 
assignment and, at the same time, hospital j prefers graduate i over one of the 
graduates assigned to it. This assignment is unstable because both the graduate i 
and the hospital j have an incentive to change their current assignments. We refer 
to an assignment that is not unstable as stable. The objective of the AMA is to 
identify a stable assignment. This problem is an example of the stable marriage 
problem that we discuss in Section 12.5. 

Application 12.4 Dual Completion of Oil Wells 

An oil company has identified several individual oil traps, called targets, in an off... 
shore oil field and wishes to drill wells to extract oil from these traps. Figure 12.1 
illustrates a situation with eight targets. The company can extract any target sepa
rately (so-called single completion) or extract oil from any two targets together by 
drilling a single hole (so-called dual completion). It can estimate the cost of drilling 
and completing any target as a single completion or any pair of targets as a dual 
completion. This cost will depend on the three-dimensional spatial relationships of 
targets to the drilling platform and to each other. The decision problem is to deter
mine which targets (if any) to drill as single completions and which pairs to drill 
together as duals, so as to minimize the total drilling and completion costs. If we 
restrict the solution to use only dual completions, the decision problem is a non
bipartite weighted matching problem. 

Sec. 12.2 Applications 

Oil 
sand 

Oil 
sand 

Oil 
sand 

Figure 12.1 Targets and matchings for 
the dual completion problem. 

465 



Application 12.5 Determining Chemical Bonds 

Matching problems arise in the field of chemistry as chemiSts'attempt to determine 
the possible atomic structures of various molecules. Figure 12.2(a) specifies the 
partial chemical structure of a molecule of some hydrocarbon compound. The mol
ecule contains carbon atoms (denoted by nodes with the letter "C" next to them) 
and hydrogen atoms (denoted by nodes with the letter "H" next to them). Arcs 
denote bonds between atoms. The bonds between the atoms, which can be either 
single or double bonds, must satisfy the "valency requirements" of all the nodes. 
(The valency of an atom is the sum of its bonds.) Carbon atoms must have a valency 
of 4 and hydrogen atoms a valency of 1. 

H H H H 

H H H H 

H H H H 

(a) (b) 

Figure 12.2 Determining the chemical structure of a hydrocarbon. 

In the partial structure shown in Figure 12.2, each arc depicts a single bond 
and, consequently, each hydrogen atom has a valency of 1, but each carbon atom 
has a valency of only 3. We would like to determine which pairs of carbon atoms 
to connect by a double bond so that each carbon atom has valency 4. We can 
formulate this problem of determining some feasible structure of double bonds as 
an instance of a perfect matching problem in the network obtained by deleting the 
hydrogen atoms and those carbon atoms with valency 4. Figure 12.2(b) gives one 
feasible bonding structure of the compound; the bold lines in this network denote 
double bonds between the atoms. 

Application 12.6 Locating Objects in Space 

To identify an object in (three-dimensional) space, we could use two infrared sensors, 
located at geographically different sites. Each sensor provides an angle of sight of 
the object and hence the line on which the object must lie. The unique intersection 
of the two lines provided by the two sensors (provided that the two sensors and the 
object are not collinear) determines the unique location of the object in space. 

Consider now the situation in which we wish to determine the locations of p 
objects using two sensors. The first sensor would provide us with a set of lines LJ , 
L2 , ••• , Lp for the p objects and the second sensor would provide us a different 

466 Assignments and Matchings Chap. 12 



set of lines L;, Lz, ... , L~. To identify the location of the objects-using the fact 
that if two lines correspond to the same object, the lines intersect one another-we 
need to match the lines from the first sensor to the lines from the second sensor. In 
practice, two difficulties limit the use of this approach. First, a line from a sensor 
might intersect more than one line from the other sensor, so the matching is not 
unique. Second, two lines corresponding to the same object might not intersect 
because the> sensors make measurement errors in determining the angle of sight. We 
can overcpme this difficulty in most situations by formulating this problem as an 
assignmerit problem. 

In the assignment problem, we wish to match the p lines from the first sensor 
with the p lines from the second sensor. We define the cost Cij of the assignment 
(i, j) as the minimum Euclidean distance between the lines Li and Lj • We can de
termine Cij using standard calculations from geometry. If the lines Li and Lj corre
spond to the same object, Cij would be close to zero. An optimal solution of the 
assignment problem would provide an excellent matching of the lines. Simulation 
studies have found that in most circumstances, the matching produced by the as
signment problem defines the correct location of the objects. 

Application 12.7 Matching Moving Objects 

In several different application contexts, we might wish to estimate the speeds and 
the directions of movement of a set ofp objects (e.g., enemy fighter planes, missiles) 
that are moving in space. Using the method described in the preceding application, 
we can determine the location of the objects at any point in time. One plausible way 
to estimate the objects' movement directions and speeds is to take two snapsho~s 
of the objects at two distinct times and then to match one set of points with the 
other set of points. If we match the points correctly, we can assess the speed and 
direction of movement of the objects. As an example, consider Figure 12.3 which 
denotes the objects at time 1 by squares and the objects at time 2 by circles. 

Let (Xi, Yi, Zi) denote the coordinates of object i at time 1 and (xl, yI, zD denote 
the coordinates of the same object at time 2. We could match one set of points with 

Sec. 12.2 

o First set of locations 

• Second set ofiocations 

Figure 12.3 Two snapshots of a set of eight objects. 

Applications 467 



the other set of points in many ways. Minimizing the sum of the squared Euclidean 
distances between the matched points is quite appropriate in this scenario because 
it attaches a higher penalty to larger distances. If we take the sna"kshots ofthe objects 
at two times that are sufficiently close to each other, the optimal assignment will 
often match the points correctly. In this application of the assignment problem, we 
let Nt == {I, 2, ... , p} denote the set of objects at time 1, let N2 == {I', 2' , ... , 
p'} denote the set of objects at time 2, and define the cost of an arc (i, j') as [(Xi -
XJ)2 + (Yi - yJf + (Zi - zJ)2). The optimal assignment in this graph will specify 
the desired matching of the points. From this matching we obtain an estimate of the 
movement directions and the velocities of the individual objects. 

Application 12.8 Optimal Depletion of Inventory 

In many different problem contexts, we need to store items that either deteriorate 
or increase in value over time. Suppose that we have a stockpile consisting of p 
items of the same type. Item i has a current age ai. A function v(t) specifies the 
expected utility (or value) for an item of age t when we withdraw it from the stockpile. 
We need to meet a given schedule that specifies the times at which items are required. 
The problem is to determine the order for issuing the items that maximizes the total 
expected utility summed over all p items. A specific example of this general problem 
is the storage of a number of vats of a volatile liquid (e.g., alcohol). Since alcohol 
is volatile, we incur an increasing loss due to evaporation with age in storage, so 
the value of the vat decreases over time. 

Some special instances of this inventory problem are particularly easy to solve; 
for example, when the utility function v(t) satisfies convexity or concavity properties 
(see Exercise 12.5). When the utility function is arbitrary, we can solve the problem 
as an assignment problem. Let tl, t2, ... , tp denote the time instances when we 
need to extract an item from the stockpile. Then since item i has an age ai at time 
zero, the expected utility for the issue of ith item at time tj is 

Uij == v(ai + tj). 

If we compute these utilities for all pairs of i and j, we solve the inventory 
problem by solving the p x p assignment problem of maximizing the assignment 
utilities. 

Application 12.9 Scheduling on Parallel Machines 

In many application settings, such as the scheduling of computer programs on pro
cessors of a computer, we are given a set of w jobs each requiring processing on 
one of r machines. Suppose that job i requires a processing time of pij on machine 
j. Our aim is to find an assignment ofthe jobs to the machines and a machine schedule 
(i.e., an order for performing the jobs assigned to the same machine) that will min
imize the total flow time of jobs. The flow time of a job is the time the job spends 
in the system before the machines have completed its processing. For example, if 
we assign jobs 1, 4, and 5 to machine 2 in the order 4-1-5, the flow time of job 4 
is P24, the flow time of job 1 is P24 + P2t, and the flow time of job 5 is P24 + P21 

+ P2S. Consequently, the total flow times of the jobs assigned to machine 2 is I(P2s) 

468 Assignments and Matchings Chap. 12 



+ 2(Pzd. +: 3(PZ4). Observe that to determine the total flow time of jobs allocated 
to a specific machine, we multiply the processing time of the last job by 1, the 
processing time of the second to last job by 2, and so on, and sum these numbers. 

Any algorithm for this scheduling problem must accomplish two objectives. 
First, it must assign jobs to the various machines. Second, it must sequence the 
processing of the jobs assigned to any single machine (i.e., assign one job to the 
first place,' one job to the second place, etc.). We would like to make these assign
ments to/minimize the total flow time. This viewpoint suggests that we can assign 
a job j in one of the wr ways: We can assign it to one of the r machines i (so i can 
vary from 1 to r) and to one of the kth to last positions on this machine (so k can 
vary from 1 to w). The cost of this specific assignment would be kpu. 

This scheduling problem is an assignment problem on a network G = (NJ U 
N z, A) with nodes NJ representing the jobs (so I NJ I = w) and with nodes N z 
representing the places on different machines (so I Nzi = wr). Each node in NJ in 
this network is connected to every node in N z and the cost of any arc is the cost of 
assigning a job to a specific place on any machine. In Exercise 12.6 we provide a 
more rigorous set of arguments for establishing the validity of this formulation. 

At first glance, the resulting assignment problem might appear to be much larger 
than the scheduling problem. However, it is possible to obtain a bound on the max
imum number of jobs assigned to the machines and thus to reduce the size of the 
assignment problem substantially for most instances of the scheduling problem. 

12.8 BIPARTITE CARDINALITY MATCHING PROBLEM 

As defined earlier, in the bipartite cardinality matching problem (or simply the .bi
partite matching problem), we wish to identify a matching of maximum cardinality 
in a bipartite undirected network. Several efficient algorithms for solving this prob
lem achieve a worst-case bound of OCViim). One approach is to transform the 
problem into a maximum flow problem in a simple network. In this section we study 
this approach. We discuss another approach in Section 12.7 as a stepping stone for 
developing an algorithm for the nonbipartite cardinality matching problem. 

Recall from Section 8.2 that in a simple network, each arc has a unit capacity 
and each node has an indegree of at most 1 or an outdegree of at most 1. To transform 
a bipartite matching problem defined on an undirected graph G = (NJ U N z, A) 
into a maximum flow problem, we first create a directed version of the underlying 
graph G by designating all arcs as pointing from the nodes in NJ to the nodes in N z. 
We then introduce a source node s and a sink node t, with an arc connecting s to 
each node in NJ and an arc connecting each node in N z to t. We set the capacity of 
each arc in the network to 1. Figure 12.4 illustrates this transformation. We refer 
to the transformed network as G ' = (N' , A '). Note that the network G ' is a simple 
network since every node in NJ has one incoming arc and every node in N z has one 
outgoing arc. We now establish a one-to-one correspondence between a matching 
of cardinality k in the original network and an integral flow of value k in the trans
formed network. 

Given a matching {(iJ,jd, (iz,jz), ... ,(ibjk)) of cardinality k in the original 
network G, we construct a flow in the transformed network G ' as follows. We first 
set the flow on each of the matched arcs equal to 1. Then to satisfy the mass balance 

Sec. 12.3 Bipartite Cardinality Matching Problem 469 



(a) (b) 

Figure 12.4 Transforming a bipartite (cardinality) matching problem to a maximum 
flow problem: (a) original network; (b) unit capacity maximum flow network. 

constraints, we set the flow on the arcs (s, ir) and (jr, t) equal to 1 for all r = 1, 
2, ... , k. Clearly, this choice gives us a flow of value k from node s to node t. 

Similarly, given an integral flow of value k from node s to node t in the trans
formed network, we can specify a corresponding matching in the original network: 
By flow decomposition, the integral flow of cardinality k decomposes into k paths 
of the form s - il - jl - t, s - i2 - h - t, ... , s - ik - jk - t. Since each of 
the arcs incident to nodes sand t have a unit capacity, no two nodes in NI or N2 
appear in more than one of these paths, and so the k arcs {(ilo it), (i2, h), ... , 
Uk. jk)} define a matching. 

We have thus established an equivalence between matchings in the original 
network and integral flows in the transformed network. Therefore, to solve the 
matching problem, we solve a maximum flow problem in the transformed network 
using the OeViim) time algorithm described in Section 8.2. Recall that this algorithm 
produces an integer optimal flow. The matching corresponding to the maximum flows 
is a maximum cardinality matching. We have therefore established the following 
result. 

Theorem 12 .1. It is possible to solve the maximum cardinality bipartite match
ing problem in OeViim) time. 

12.4 BIPARTITE WEIGHTED MATCHING PROBLEM 

In this section we study the bipartite weighted matching problem; namely, given a 
weighted bipartite network G = (N1 U N 2, A) with / NI / = / N 2 / and arc weights 
Cij, find a perfect matching of minimum weight. We allow the network G to 
be directed or undirected. If the network is directed, we require that for each arc 
(i, j) E A, i E NI and j E N 2. If the network is undirected, we make it directed 
by designating all arcs as pointing from the nodes in NI to those in N 2. We shall, 
therefore, henceforth assume that G is a directed graph. In the operations research 
literature, the bipartite weighted matching problem is known as the assignment prob
lem; for the sake of brevity and to conform with this convention, we adopt this 
terminology. 

470 Assignments and Matchings Chap. 12 



Recall that the assignment problem is a special case of the minimum cost flow 
problem and can be stated as the following linear program. 

subject to 

Minimize L Gijxij 
(i,j)EA 

L Xij = 1 
{j:(i,j)EA} 

L Xji = 1 
U:(j,ilEA} 

for all i E N j , 

for all i E N 2 , 

for all (i, j) E A. 

(12.1a) 

(12.1b) 

(12.1c) 

(12.1d) 

Since we can formulate the weighted bipartite matching problem as this special 
type of flow problem, it is not too surprising to learn that most algorithms for the 
assignment problem can be viewed as adaptations of algorithms for the minimum 
cost flow problem. However, the special structure of the assignment problem often 
permits us to simplify these algorithms and to obtain improved bounds on their 
running times. 

One popular algorithm for the assignment problem is a specialization of the 
network simplex algorithm discussed in Chapter 11. Another popular algorithm is 
the successive shortest path algorithm and its many variants. In the following dis
cussion, we briefly describe some ofthese successive shortest path-based algorithms. 
We also describe an adaptation of the cost scaling algorithm. 

Successive Shortest Path Algorithm 

This algorithm is a direct implementation of the successive shortest path algorithm 
for the minimum cost flow problem discussed in Section 9.7. Recall that the suc
cessive shortest path algorithm obtains shortest path distances from a supply node 
to all other nodes in a residual network, uses these distances to update node potentials 
and then augments flow from that supply node to a demand node. This algorithm, 
when applied to the assignment problem, would augment 1 unit flow in every iter
ation, which would amount to assigning one additional node in N j • Consequently, 
if we let S(n, m, C) denote the time needed to solve a shortest path problem with 
nonnegative arc lengths and let nj = 1 N j I, the algorithm would terminate within 
nj iterations and would require O(nIS(n. m, C» time. 

Hungarian Algorithm 

The Hungarian algorithm is a direct implementation of the primal-dual algorithm 
for the minimum cost flow problem that we discussed in Section 9.8. Recall that the 
primal-dual algorithm first transforms the minimum cost flow problem into a problem 
with a single supply node s* and a single demand node t*. At every iteration, the 
primal-dual algorithm computes shortest path distances from s* to all other nodes, 
updates node potentials, and then solves a maximum flow problem that sends the 
maximum possible flow from node s* to node t* over arcs with zero reduced costs. 
When applied to the assignment problem, this algorithm terminates within nj iter-

Sec. 12.4 Bipartite Weighted Matching Problem 471 



ations since each iteration sends at least 1 unit of flow, and hence assigns at least 
one additional node in N 1 • The time required to solve shortest path problems in all 
these iterations is O(n1S(n, m, C)). Next consider the total time-required to establish 
maximum flows. The labeling algorithin, described in Section 6.5, for solving the 
maximum flow problem would require a total of O(nm) time because it would per
form n augmentations and each augmentation requires O(m) time. The dominant 
portion of these computations is the time required to solve shortest path problems. 
Consequently, the overall running time of the algorithm is O(n1S(n, m, C)). 

Relaxation Algorithm 

The relaxation algorithm, which is closely related to the successive shortest path 
algorithm, is another popular approach for solving the assignment problem. This 
algorithm relaxes the constraint (12.1c), thus allowing any node in N2 to be assigned 
to more than one node in N 1 • The relaxed problem is easy to solve: We assign each 
node i E Nl to any nodej E N2 with the minimum cost Cij among all arcs in A(i). 
As a result, some nodes in N2 might be unassigne8 while some other nodes are 
overassigned (i.e., assigned to more than one node in N 1). The algorithm then grad
ually converts this solution to a feasible assignment while always maintaining the 
reduced cost optimality condition. At each iteration the algorithm selects an over
assigned node k in N 2 , obtains shortest path distances from node k to all other nodes 
in the residual network with reduced costs ,as arc lengths, updates node potentials, 
and augments a unit flow from node k to an unassigned node in N2 along the shortest 
path. Since each iteration assigns one more node in N2 and never converts any 
assigned node into an unassigned node, within nl such iterations, the algorithm 
obtains a feasible assignment. The relaxation algorithm maintains optimality con
ditions throughout. Therefore, the shortest path problems have nonnegative arc 
lengths, and the overall running time of the algorithm is O(n1S(n, m, C)). 

Cost Scaling Algorithm 

This algorithm is an adaptation of the cost scaling algorithm for the minimum cost 
flow problem discussed in Section 10.3. Recall that the cost scaling algorithm per
forms O(log(nC)) scaling phases and the generic implementation requires O(n 2m) 
time for each scaling phase. The bottleneck operation in each scaling phase is per
forming non saturating pushes which require O(n2 m) time; all other operations, such 
as finding admissible arcs and performing saturating pushes, require O(nm) time. 
When we apply the cost scaling algorithm to the assignment problem, each push is 
a saturating push since each arc capacity is 1. Consequently, the cost scaling al
gorithm solves the assignment problem in O(nm 10g(nC)) time .. 

A modified version of the cost scaling algorithm has an improved running time 
of oevTim 10g(nC)), which is the best available time bound for assignment problems 
satisfying the similarity assumption. This improvement rests on decomposing the 
computations in each scaling phase into two subphases. In the first subphase, we 
apply the usual cost scaling algorithm with the difference that whenever we have 
relabeled a node more than 2Vn times, we set this node aside and do not examine 
it further. When we have set aside all (remaining) active nodes, we initiate the second 
sUbphase. It is possible to show that the first subphase requires O(~ m) time, and 

472 Assignments and Matchings Chap. 12 



when it ends, the network will contain at most O(~) active nodes. The second 
subphase makes these active nodes inactive by identifying "approximate shortest 
paths" from nodes with excesses to nodes with deficits and augmenting unit flow 
along these paths. The algorithm uses Dial's algorithm (described in Section 4.6) to 
identify each such path in O(m) time. Consequently, the second subphase also runs 
in O(~m 10g(nC». We provide a reference for this algorithm in the reference 
notes. 

We summarize the preceding discussion. 

Theorem 12.2. The successive shortest path algorithm, Hungarian algorithm, 
and the relaxation algorithm solve the assignment problem in O(n)S(n, m, C» time. 
A straightforward implementation of the cost scaling algorithm solves the assign
ment problem in O(nm 10g(nC» time and a further improvement of this algorithm 
runs in O(~m 10g(nC» time. • 

12.5 STABLE MARRIAGE PROBLEM 

The stable marriage problem is a novel application of bipartite matchings. This prob
lem can be stated'as follows. A certain community consists of n men and n women. 
Each person ranks those ofthe opposite sex in accordance with his or her preferences 
for a spouse. For a given matching, a man-woman pair is said to be unstable if they 
are not married to each other but, prefer each other to their current spouses. A perfect 
matching (marriage) of men and women is said to be stable if it contains no unstable 
pairs. The stable marriage problem is to identify a stable perfect matching. In this 
section W~ show that for any set of rankings, we can always find a stable matching. 
We establish this result constructively, specifying an algorithm that constructs' a 
stable matching in O(n 2

) time. 
The input to the stable marriage problem consists of two n x nmatrices; the 

first matrix gives each man's ranking of women and the second matrix gives each 
woman's ranking of men. A higher rank denotes a more favored person. Without 
any loss of generality, we can assume that each rank is an integer between 1 and n. 
To implement the stable marriage algorithm efficiently, we use these two matrices 
to construct a vector of n elements for each person, called his or her priority list, 
that lists the persons of opposite sex in decreasing order of their rankings. Since all 
the ranks are between 1 and n, we can construct these priority lists in a total of 
O(n2

) time using a bucket sort algorithm (see Exercise 12.30). 
The algorithm for the stable marriage problem is an iterative greedy algorithm: 

Each man proposes to his most preferred woman, and each woman receiving more 
than one proposal rejects all except her most preferred man from among those who 
have proposed to her. The algorithm maintains a set, LIST, of unassigned men and 
for each man it maintains an index, called current-woman, which denotes the woman 
in his priority list that he will next offer a proposal. Initially, LIST = N), the set 
of all men, and the current-woman of each man is the first woman in his priority 
list. 

The stable marriage algorithm proceeds as follows. At each iteration, the al
gorithm selects a man from LIST, say Bill, and he proposes to his current-woman, 
say Helen. If Helen is still unassigned, she accepts the proposal and Bill and Helen 

Sec. 12.5 Stable Marriage Problem 473 



are tentatively assigned to each other-they are "engaged." -If Helen is already 
engaged to some man, say Frank, she accepts the proposal of Bill or Frank that she 
prefers the most and rejects the other. The rejected mandesigfiates the next woman 
on his priority list his current-woman. Whenever the algorithm selects a man from 
LIST, he is removed from it; and whenever a man is rejected by a woman, he is 
added to LIST. The algorithm repeats this iterative step until LIST is empty, at 
which point it has assigned all the men and women. We refer to this algorithm as 
the propose-and-reject algorithm. 

It is easy to show that the matching obtained by this algorithm is stable. Suppose 
that Dick prefers Laura to his marriage partner; he must have proposed to Laura 
at some earlier stage and she must have rejected his proposal in favor of someone 
whom she liked more than Dick. Consequently, since no woman ever switches to 
a man that she prefers less, Laura prefers her husband to Dick, so the matching is 
stable. 

To analyze the complexity of the stable marriage algorithm, we note that at 
each iteration each woman receiving a proposal either (1) receives her first proposal 
(which occurs exactly once for each woman), or (2) rejects some proposal. Since 
each woman rejects any man's proposal at most once, the second outcome occurs 
at most (n - 1) times for each woman. Therefore, the algorithm performs O(n) steps 
per woman and O(n2

) steps in total. Notice that no algorithm for the stable marriage 
problem can have any better complexity bound, since the running time of the 
propose-and-reject algorithm is linear in the length of the input data. We have thus 
established the following result. 

Theorem 12.3. For any matrix of rankings, the stable marriage problem al
ways has a stable matching. Further, the propose-and-reject algorithm constructs 
a stable matching in O(n 2

) time. • 

Needless to say,_ there could be several stable matchings; the propose-and
reject algorithm constructs one such stable matching. We refer to a pair (i, j) of a 
man i and a womanj as stable partners if some stable matching matches man i with 
womanj. The matching constructed by our algorithm possesses an interesting prop
erty that every man is at least as well off under it as under any stable matching. In 
other words, each man obtains his best possible stable partner. For obvious reasons 
we refer to such a matching as the man-optimal matching. The fact that the matching 
constructed by our algorithm is a man-optimal matching relies on the following result. 

Lemma 12.4. In the propose-and-reject algorithm, a woman never rejects a 
stable partner. 

Proof. Let M* be the matching constructed by the propose-and-reject algo
rithm. Suppose that the lemma is false and women do reject stable partners. Consider 
the first time that a woman, say Joan, rejects a stable partner, say Dave. Let MO be 
the stable matching in which Joan and Dave constitute a stable pair of partners. 
Suppose that the rejection took place because Joan was engaged to Steve, whom 
she prefers to Dave. Now notice that prior to the rejection, no other woman had 
rejected a stable partner, which implies that Steve can have no stable partners whom 
he prefers to Joan. In M O

, let Sue and Steve be the stable pair for Steve. By our 

474 Assignments and Matchings Chap. 12 



prior observation, Steve prefers Joan to Sue. We have earlier shown that Sue prefers 
Steve to Dave. The preceding two facts contradict the assumption that MO is a stable 
matching. This conclusion implies the lemma. • 

In the propose-and-reject algorithm, men propose to women in decreasing order 
of their preferences, and since no woman ever rejects a stable partner, each man 
must be married to the best possible stable partner. Therefore, we have established 
the followiQg theorem. 

Theorem 12.5. The propose-and-reject algorithm constructs a man-optimal 
stable matching. • 

This theorem is a surprising result. It implies that if each man is independently 
given his best stable partner, the result is a stable matching. However, we gain this 
optimality from the men's point of view at the expense of the women. In fact, it is 
possible to show that in a man-optimal matching, each woman obtains the worst 
partner that she can have in any stable matching (see Exercise 12.27). 

As a concluding remark, we point out that the stable marriage problem also 
has "nonmatrimonial" applications, such as assigning residents to hospitals, or as
signing graduate students to doctoral programs. These applications are actually 
many-to-one matchings, but can be solved by a minor variation of the propose-and
reject algorithm (see Exercise 12.31). 

12.6 NONBIPARTITE CARDINALITY MATCHING 
PROBLEM 

In this section we study the nonbipartite cardinality matching problem on undirected 
graphs, which we subsequently refer to by the abbreviated name the' 'nonbipartite 
matching problem." As we shall see, the nonbipartite matching problem is sub
stantially more difficult to solve than the bipartite problem. To highlight the essential 
differences between the nonbipartite and bipartite matching problems, we first con
sider a very natural approach for the matching problem that closely resembles the 
augmenting path algorithm for solving maximum flow problems discussed in Section 
6.4. We show that this approach gives an optimal algorithm for the bipartite problem, 
but fails for the nonbipartite case. We then identify the reason why the algorithm 
fails and modify it so that it works for the nonbipartite case as well. 

In this section, as usual, we let A(i) denote the node adjacency list of node i 
[i.e., A(i) = {j E N:(i,j) E A}]. We assume that we store each adjacency list as a 
singly linked list so that we can insert items into the list in 0(1) time. We begin by 
introducing some notation. 

Matched Arcs and Nodes 

A matching M of a graph G = (N, A) is a subset of arcs with the property that no 
two arcs of M are incident to the same node. We refer to the arcs in M as matched 
arcs, and arcs not in M as unmatched arcs. We also refer to the nodes incident to 
matched arcs as matched nodes and refer to the other nodes as unmatched. If (i, j) 

Sec. 12.6 Nonbipartite Cardinality Matching Problem 475 



belongs to the matching, we say that node i is matched to nodej and nodej is matched 
to node i. Figure 12.5 illustrates these definitions. The arcs {(2, 4), (3, 5)} constitute 
a matching in this graph; we depict matched arcs using'tliicRer lines. Notice each 
node has degree 0 or 1 in the subgraph defined by the matched arcs. Also notice 
that a matching can contain at most Ln/2J arcs. 

Figure 12.5 Matching example. 

Alternating Paths and Cycles 

We refer to a path P = i 1 - i2 - '" - ik in the graph as an alternat'ing path with 
respect to a matching M if every consecutive pair of arcs in the path contains one 
matched and one unmatched arc. In Figure 12.5, 1-2-4-3-5 and 1-2-4-3-5-6 are 
alternating paths. We refer to an alternating path as an even alternating path if it 
contains an even number of arcs and an odd alternating path if it contains an odd 
number of arcs. In the preceding example, the first alternating path is even, and the 
second alternating path is odd. An alternating cycle is an alternating path that starts 
and ends at the same node. In Figure 12.5, 3-2-4-5-3 is an alternating cycle. 

Augmenting Paths 

We refer to an odd alternating path P with respect to a matching M as an augmenting 
path if the first and last nodes in the path are unmatched. We use the terminology 
augmenting path because by redesignating matched arcs on the path as unmatched 
and unmatched arcs as matched, we obtain another matching of cardinality I M I + 
1. For example, in Figure 12.5 the path 1-2-4-3-5-6 is an augmenting path with 
respect to a matching of cardinality 2, and if we interchange the matched and un
matched arcs on this path, we obtain the matching of cardinality 3 shown in Figure 
12.6. 

476 

.6 

Figure 12.6 Matching a larger 
cardinality than the matching in Figure 
12.5. 

Assignments and Matchings Chap. 12 



Symmf!tr,ic Difference 

The concept .of symmetric difference of sets is quite important in matching theory. 
Let SI and S2 be two sets; the symmetric difference of these sets, denoted SI ED S2, 
is the set SlED S2 = (S 1 U S2) - (Sin S2). In other words, the symmetric difference 
of sets SI and S2 is the set of elements that are members of one, but not both of SI 
and S2. For example, if SI = {4, 5, 7, 8} and S2 = {2, 4, 8, 9}, then SI ED S2 = {2, 
5, 7, 9}. We shall use the following two properties of symmetric differences. 

Property 12.6. If M is a matching and P is an augmenting path with respect 
to M, then M ED P is a matching of cardinality I M I + 1. Moreover, in the matching 
M ED P, all the matched nodes in M remain matched and two additional nodes, 
namely the first and last nodes of P, are matched. • 

The symmetric difference of the matching M with the augmenting path P is a 
set-theoretic way to interchange the matched and unmatched arcs in P, and we have 
seen earlier that this operation yields a matching of cardinality M + 1. We refer to 
the process of replacing M by M ED P as an augmentation. The second conclusion 
of Property 12.6 follows from the definitions. 

Property 12.7. If M and M* are two matchings, their symmetric difference 
defines the subgraph G* = (N, M ED M*) with the property that every component 
is one of the six types shown in Figure 12.7. • 

Sec. 12.6 

(a) ® 

(b) ~ 

(c) M ••• ~ 

(d) ~ 

(e)'.M* ••• ~ 

Figure 12.7 Possible types of components formed by a symmetric difference of two 
matchings M and M*. 

Nonbipartite Cardinality Matching Problem 477 



This property follows from the facts that in the subgraph G* each node has 
degree 0, 1 or 2, and the only possible components with,these node degrees are 
singleton nodes (as shown in Figure 12.7(a)], paths (as shown Tv-Figure 12.7(b) to 
(e)], or even-length cycles (as shown in Figure 12.7(f)]. 

Augmenting Path Theorem 

Our algorithm for the matching problem depends crucially on the following aug
menting path theorem. 

Theorem 12.8 (Augmenting Path Theorem). If a node p is unmatched in a 
matching M, and this matching contains no augmenting path that starts at node p, 
then node p is unmatched in some maximum matching. 

Proof. Let M* be a maximum matching. If node p is unmatched in M*, the 
theorem is clearly true. Therefore, assume that node p is matched in M*. Consider 
the symmetric difference of the matchings M EB M* . We have seen earlier that every 
component of the subgraph defined by this symmetric difference is one of the six 
types shown in Figure 12.7. The fact that node p is unmatched in M rules out all of 
these possibilities except the ones shown in Figure 12.7(d) and (e) with node p as 
the starting node. The fact that no augmenting path starts at node p rules out the 
possibility shown in Figure 12.7(d). Therefore, the only remaining possibility is the 
even alternating path P shown in Figure 12.7(e) with node p as the starting node. 
But notice that M' = M* EB P is also a maximum matching in which node p is 
unmatched. We have thus shown that given a maximum matching M* in which node 
p is matched, we can construct another maximum matching M' in which node pis 
unmatched, which establishes the theorem. • 

This theorem is an alternative version of a well-known theorem due to Berge, 
which states that a matching M* is a maximum matching if and only if the graph G 
contains no augmenting path with respect to matching M*. We ask the reader to 
prove this theorem in Exercise 12.39. 

Bipartite Matching Algorithm 

The augmenting path theorem suggests the following algorithm for solving the match
ing problem. Start with a feasible matching M (which might be a null matching) and 
then repeat the following step for every unmatched node pEN. Try to identify an 
augmenting path starting at node p. If we find such a path P, replace M with M EB 
P; otherwise, delete node p and all the arcs incident to it from the graph. 

Using Theorem 12.8, it is easy to show that this algorithm obtains an optimal 
matching. At each iteration, the algorithm reduces the number of unmatched nodes 
by at least one, either by deleting a node or by matching it. Since matched nodes 
remain matched throughout the algorithm (by Property 12.6), when the algorithm 
terminates, each node in the remaining subgraph, say G', is matched. Consequently, 
the matching M must be a maximum matching for G'. Theorem 12.8 implies that 

478 Assignments and Matchings Chap. 12 



the deletion of nodes does not reduce the number of arcs in a maximum cardinality 
matching. 'Consequently, M is also a maximum matching in G. 

We have therefore reduced the matching algorithm to finding whether or not 
the network contains an augmenting path starting at node p. How can we find such 
a path if one exists? The most natural approach might be to use a search algorithm 
to identify an augmenting path, as we did in the labeling algorithm for the maximum 
flow problem as discussed in Section 6.S. We can define a node i in the graph as 
reachable from node p if the network contains an alternating path from node p to 
node i, and then use a search algorithm to identify all reachable nodes. If the al
gorithm finds an unmatched node that is reachable from node p, it has discovered 
an augmenting path. However, if none of the reachable nodes is unmatched, we can 
conclude that the network contains no augmenting path starting at node p. 

It is, perhaps, easy to believe that identifying all nodes that are reachable from 
a specified node should be a rather straightforward task using a search algorithm. 
Unfortunately, the task is complicated. A straightforward version of a search tech
nique does not work for all matching problems. This approach does work for bipartite 
matching problems, but fails for nonbipartite problems. Nevertheless, this approach 
gives valuable insight into the matching problem that will help us in solving the 
general case. Consequently, we first discuss this straightforward approach and then 
(}evelop a (nontrivial) modification of it that solves the general problem. 

A 'straightforward approach for solving the matching problem would be to grow 
a search tree rooted at node p so that each path in the tree from node p to another 
node is an alternating path. For convenience, we refer to node p as the root node 
of the search tree. For obvious reasons, we also refer to this search tree as an 
alternating tree. We say that the nodes in the alternating tree are labeled nodes an,d 
that the other nodes are unlabeled. The labeled nodes are of two types: even or odd. 
Node i is even or odd depending on whether the number of arcs in the unique path 
from the root node to node i in the alternating tree is even or odd. Notice that 
whenever.an unmatched node (other than the root) has an odd label, the path joining 
the.,root ;p6de to this node is an augmenting path. For convenience, we assign the 
label "E" to even nodes and the label "0" to odd nodes. 

Recall from Section 3.4 that the search algorithm maintains a set, LIST, of 
labeled nodes and examines labeled nodes one by one. While examining an even 
node i, the algorithm scans its adjacency list A(i) and assigns an odd label to every 
nodej in A (i) (provided that nodej is unlabeled). If nodej is unmatched, we have 
discovered an augmenting path; otherwise, we add this node to LIST. On the other 
hand, while examining an odd node i, the algorithm examines its unique matched 
arc (i, j). If node j is unlabeled, the algorithm assigns an even label to this node and 
adds it to LIST. The search algorithm terminates when LIST becomes empty, or it 
has assigned an odd label to an unmatched node, thus discovering an augmenting 
path. 

Figure 12.S illustrates the process of growing the search tree on the graph shown 
in Figure 12.S(a). Assuming that we examine the labeled nodes in the first-in, first
out order, and scan the nodes in any adj acency list in increasing order of the node 
numbers, the algorithm will examine the nodes in the order 1-2-4-3-7-6-S-5. The 
resulting alternating tree shown in Figure 12.S(b) has an augmenting path 1-4-7-S. 

Sec. 12.6 Nonbipartite Cardinality Matching Problem 479 



Root 

a E 

Root 

E a 

a E 
(a) (b) 

Figure 12.8 Growing an alternating tree: (a) the graph; (b) its complete alternating tree. 

a 
8 

We are now in a position to give a complete algorithmic description of the 
matching algorithm. We subsequently refer to this algorithm, as described in Figures 
12.9 and 12.10, as the bipartite matching algorithm because, as we explain later, it 
will always establish a maximum matching in bipartite networks (it might fail when 
applied to nonbipartite networks). 

algorithm matching; 
begin 

M: =0; 
for each node pEN do 

if node p is unmatched then 
begin 

search(p, found); 
if found equals true then augment 
else delete node p and all arcs incident to it from G; 

end; 
M* = M; Figure 12.9 Bipartite matching 

algorithm. end; 

It is easy to show that the matching algorithm runs in O(nm) time. The algorithm 
executes the search and augment procedures at most n times. The augment procedure 
clearly requires O(n) time. It is easy to see that the search procedure requires O(m) 
time per execution. For each node i, the search procedure performs one of the 
following two operations at most once: (1) it executes examine-even(i, found), or 
(2) it executes examine-odd(i, found). The latter operation requires 0(1) time 
per execution. The former operation requires O(IAU)i) time, so a total of 
O(~iEN IAU)I) = O(m) time for all the nodes. 

Difficulties with the Bipartite Matching Algorithm 

Does the search procedure work correctly? It is clear that whenever the algorithm 
finds an augmenting path starting at node p, this path is an augmenting path. But 
when the algorithm fails to find an augmenting path, can we conclude that the net
work contains no such path ? We shall show that if the graph possesses a unique 
label property (defined next), our conclusion will be correct; otherwise, the conclu
sion could be incorrect. 

480 Assignments and Matchings Chap. 12 



procedure search(p, found); 
begin . 

found: = false; 
unlabel all nodes; 
give an even label to node p and initialize LIST = {p}; 
while LIST ¥ e do 
begin 

delete a node i from LIST; 
if node i has an even label then examine-even(i, found) 
elliie examine-odd(i, found); 
if found equals true then return; 

end; 
end; 

(a) 

procedure examine-even(i, found); 
begin 

for every node j E A(i) do 
begin 

if node j is unmatched then set q: = j and pred(q) : = i; 
found: = true and return; 
if node j is matched and unlabeled then 

end; 
end; 

set pred( j) : = i, give node j an odd label and add node j to LIST; 

(b) 

procedure examine-odd(i,found); 
begin 

let j be the node matched to node i; 
if node j is unlabeled then set pred(j) = i, give node j an even label and add it to LIST; 

end; 

(c) 

procedure augment; 
begin 

trace the augmenting path P by starting at node q and traversing the predecessor indices; 
update the matching using the operation M: = M Ell P; 

end; 

(d) 

Figure 12.10 Procedures for the bipartite matching algorithm. 

Unique label property. A graph is said to possess a unique label property 
with respect to a given matching M and a root node p if the search procedure assigns 
a unique label to every labeled node (i.e., even or odd) irrespective of the order in 
which it examines labeled nodes. 

It is easy to show that if the graph possesses tfte unique label property, it will 

Sec. 12.6 Nonbipartite Cardinality Matching Problem 481 



always discover an augmenting path if one such path exists. Suppose that the network 
does contain an augmenting path p - i l - j] - i2 - iz - ... if - jt - q from node 
p to node q with respect to the matching M. If we examine"the nodes p, ii, jJ, i2 , 

iz, . . . in order, we will assign even labels to nodes p, jl ,iz, . -.. ,jf, and odd labels 
to nodes i J, i2 , • • • , if, q. Since the graph possesses the unique label property, the 
algorithm would assign the same labels no matter in which order the search procedure 
examines the labeled nodes. Therefore, the search procedure will always assign an 
odd label to node q and will discover an augmenting path. 

Does any netwprk satisfy the unique label property with respect to any match
ing and any root node? Yes; in fact, bipartite networks satisfy this property. Recall 
from Section 2.2 that in a bipartite network G = (N, A), we can partition the node 
set N into two subsets NJ and N2 so that every arc (i, j) E A has its end points in 
different subsets. For a bipartite network, if the root node is in N J , every labeled 
node in NJ will receive an even label and every labeled node in N2 will receive an 
odd label (because the alternating path will begin at a node in NJ and then alternate 
between nodes in N2 and NJ respectively). Similarly, if the root node is in N 2, every 
labeled node in NJ will receive an odd label and every labeled node in N2 will receive 
an even label. Consequently, the matching algorithm will find an optimal matching 
in bipartite networks. 

N onbipartite networks might not satisfy the unique label property, and there
fore the search algorithm might fail to detect an augmenting path even though the 
network contains one. Consider, for example, the situation shown in Figure 12.11. 
If node 5 receives its label via the path 1-2-3-4-5, it receives the even label. When 
we examine node 5, the search algorithm gives node 6 an odd label and discovers 
the augmenting path 1-2-3-4-5-6. However, if node 5 receives its label via the 
path 1-2-3-7-8-5, its label will be odd. Since node 5 has an odd label, we scan its 
unique matched arc (5, 4), attempting to label node 4, but do not scan arc (5, 6). 
Thus the algorithm fails to discover an augmenting path. 

Figure 12.11 Nonbipartite matching problem. 

The preceding situation arises because we can connect node 5 to the root by 
both an odd-length and an even-length alternating path. Therefore, depending on the 
order in which the search algorithm examines labeled nodes, node 5 might receive 
an even or an odd label. But since we assign only one label to any node (either even 
or odd), assigning an odd label prevents us from giving the node an even label in 
subsequent stages, so we miss the opportunity to give node 6 an odd label. 

482 Assignments and Matchings Chap. 12 



On.e plausible way to overcome this difficulty would be to permit nodes to have 
both even ~md odd.Iabels. When a node i receives an even label, we scan its adjacency 
list A(i) to label further nodes; and when a node i receives an odd label, we scan 
its unique matched arc. But even this modification does not work. To see this, 
consider the example shown in Figure 12.12. We might examine the nodes in the 
following order: 1 (even), 2 (odd), 3 (even), 4 (odd), 5 (even), 8 (odd), 7 (even), 3 
(odd), 2 (even), 6 (odd). At this point, the unmatched node 6 receives an odd label 
and the algorithm would declare that it has found an augmenting path, even though 
the network contains no such path. To summarize, we find that by assigning just 
one label to each node, we might overlook an augmenting path, and by assigning 
two labels, we might falsely believe that we have found an augmenting path. 

Figure 12.12 Another nonbipartite 
matching problem. 

Why do we encounter this difficulty? What causes the algorithm to break down? 
The root cause of the difficulty in solving a nonbipartite matching problem is the 
presence of certain subgraphs called flowers, composed of particular types of paths 
and odd cycles. (Note that since bipartite graphs contain no odd cycles, they never 
contain any flowers.) 

Flowers and Blossoms 

A flower, defined with respect to a matching M and a root node p, is a subgraph 
with two components: 

1. Stem. A stem is an even (length) alternating path that starts at the root node 
p and terminates at some node w. We permit the possibility that p = w, in 
which case we say that the stem is empty. 

2. Blossom. A blossom is an odd (length) alternating cycle that starts and ter
minates at the terminal node w of a stem and has no other node in common 
with the stem. We refer to node was the base of the blossom. 

Figure 12.13 shows two examples of flowers. The flower shown in Figure 
12. 13 (a) has an empty stem, and the flower shown in Figure 12. 13(b) has a nonempty 
stem. We denote a blossom by B and define it by its set of arcs or set of nodes, 
whi~hever is convenient. In our subsequent discussion, we use several properties 
of flowers, which we record for easy future reference. 

Sec. 12.6 Nonbipartite Cardinality Matching Problem 483 



(a) 

(b) 

Figure 12.13 Two examples of flowers. 

Property 12.9 
(a) A stem spans 21 nodes and contains I matched arcs for some integer I ;::= o. 
(b) A blossom spans 2k + 1 nodes and contains k matched arcs for some integer 
k ;::= 1. The matched arcs match all nodes of the blossom except its base. 
(c) The base of a blossom is an even node. 

Property 12.10. Every node i in the blossom (except its base) is reachable 
from the root (or from the base of the blossom) through two distinct alternating 
paths; one has even length and the other has odd length (see, e.g., Figure 12.14). 

484 

./ 

---------------~/ 

Root 

/ 

./ 
/ 

/ 

./ 
./ 

/'------------~ 

• I 
I 
I 
I 
I 
I _______________ ~ I 

" I 
~ I 
~~ I 

~ I 
~, / 

.......... _-------------/ 

Figure 12.14 Two distinct alternating paths from the root to every node in the blos
som. 

Assignments and Matchings Chap. 12 



The even a(ternating path to node i terminates with a matched arc, and the odd 
alternating path to node i terminates with an unmatched arc. 

These properties are relatively straightforward to establish, so we omit their 
proofs. 

Contracting a Blossom 

We now consider the issue we were discussing prior to our definition of blossoms: 
Why might the labeling algorithm fail to identify an augmenting path, and how might 
we remedy the problem? If the network contains a blossom with respect to the 
current matching and the root node p, each node in the blossom is qualified to receive 
an even label because the network contains an even alternating path from the root 
to that node. But the search algorithm will give even labels to some nodes in the 
blossom and odd labels to others. Notice that if we had a choice we would prefer 
to give even labels to the nodes for the following reason: When examining even
labeled nodes, we can label nodes outside the blossom by searching along all un
matched arcs incident to nodes in the blossom; when examining odd-labeled nodes, 
however, we label only the nodes in the blossom. 

So, it seems intuitively clear that if we could give all the nodes in the blossom 
an even label, whenever we detect a blossom, the search algorithm would always 
detect an augmenting path. There are several ways to achieve this objective; one of 
the more popular approaches is to contract (or shrink) the blossom into a single 
node. This operation replaces the blossom B consisting of the node sequence i I 
i2 - ... - h - il by a single new node b in the following manner: 

1. Introduce a new node b and define its adjacency list A(b) = AUd U A(i2) U 
... U AUk). 

2. Update the adjacency list of every nodej E A(b) by executing AU) = A(j) 
U {b}. 

3. To be able to recover information about the nodes within the blossom that we 
have contracted into the single node b, we form a circular doubly linked list 
of nodes ii, i2 , ••• , ik, and then delete the nodes ;1, i2 , ••• , ik and all arcs 
incident to these nodes from the network. (Notice that this operation requi~es 
the updating ofthe adjacency list of all the nodes that are adjacent to the deleted 
nodes.) 

We reter to the resulting network GC = (NC, A C) as the contracted network. 
We let A c(i) denote the adjacency list of a node i in GC and let MC denote the 
corresponding matching in the contracted network. 

Figure 12. 15(a) illustrates a contraction. The flower 1-2-3-4-5-6-7-3 in this 
figure contains the blossom 3-4-5-6-7-3. Contracting all these nodes into a new 
node, node II, we obtain the graph shown in Figure 12.15(b). Each contraction 
operation creates a new node. To differentiate this node from the nodes of the original 
network, we refer to it as a pseudonode. Notice that a pseudonode is always an 
even node because it merges the entire blossom into its base, which is always even 
[see Property 12.9(c)]. Since the adjacency list of the pseudonode is the union of 

Sec. 12.6 Nonbipartite Cardinality Matching Problem 485 



(a) (b) 

Figure 12.15 Contraction: (a) network before the contraction; (b) network after the 
contraction. 

9 

10 

the adjacency lists of the nodes it contains, scanning the adjacency list of the pseu
donode allows us to reach out to all the nodes that we would have reached out to 
from nodes in the blossom. Consequently, contracting the entire blossom into a single 
even pseudonode amounts to assigning even labels to each blossom node in the 
original graph. 

Nonbipartite Matching Algorithm 

We are now in a position to describe the nonbipartite matching algorithm. This 
algorithm modifies the search procedure of the bipartite matching algorithm in the 
following manner. As the search procedure proceeds, it assigns even or odd labels 
to the nodes. Although the algorithm will never relabel an already labeled node, it 
will identify the possibility of assigning an odd label to a node with an even label, 
or of assigning an even label to a node with an odd label. When we find that we 
can, for the first time, assign a node, say node i, a label other than what it already 
has, we suspend the search procedure. At this point we have discovered an even 
as well as an odd alternating path to node i. If we trace back the predecessor indices 
of these paths until we encounter the first common node on these paths, the arcs 
we have traced constitute a blossom and the first common node (which has an even 
label) is the base of the blossom (see Exercise 12.37). We then contract the blossom 
into a pseudonode, update the data structures, and continue the search procedure. 
We might note that we could perform several contractions before we either discover 
an augmenting path (in the contracted graph) or run out of nodes to examine, which 
indicates that the network contains no augmenting path starting from the root node 
p. If we succeed in identifying an augmenting path from node p to some unmatched 
node q, we check whether this path contains any pseudonodes. If so, we expand 
the blossoms represented by these pseudonodes one by one, in an order to be de
scribed later, until the augmenting path contains no pseudonodes. We point out that 
we can contract blossoms containing pseudonodes; so pseudonodes might contain 
other pseudonodes. 

The algorithmic description of the resulting algorithm, which we subsequently 
refer to as the nonbipartite matching algorithm, is the same as the bipartite matching 
algorithm with the exception ofa change in the search procedure. Figure 12.16 shows 

486 Assignments and Matchings Chap. 12 



Sec. 12.6 

procedure search(p, found); 
begin 

, set AC(i) : = A(i) for all nodes i; 
found: = false; 
unlabel all nodes; 
give an even label to node p and initialize LIST: = {p}; 
while LIST orf0do 
begin 

delete a node i from LIST; 
If node i has even label then examine-even(i, found) 
else examine-odd(i, found); 
if found = true then return; 

end; 
end; 

(a) 

procedure examine-even(i, found); 
begin 

for every node j E AC(i) do 
begin 

if node j has an even label then contract(i, j) and return; 
if node j is unmatched then set q : = j, 

pred(q) : = i, found: = true and return; 
if node j is matched and unlabeled then set pred(j) : = i, 

give node j an odd label and add it to LIST; 
end; 

end; 

(b) 

procedure examine-odd(i, found); 
begin 

let node i be matched to node j; 
If node j has an odd label then contract(i, j) and return; 
if node j is unmatched and unlabeled 

thElnset pred(j) : = i, give node j an even label and add it to LIST; 
end; 

(c) 

procedure contract(i, j); 
begin 

trace the predecessor indices of nodes i and j to identify a blossom 8; 
create a new node b and define AC(b) = UkEB AC(k); 
give an even label to node b and add it to LIST; 
update AC(j) = AC(j) U {b} for each j E AC(b); 
form a circular doubly linked list of nodes in 8; 
delete the nodes in 8 from the network and update the data structure; 

end; 

(d~ 

Figure 12.16 Procedures for the nonbipartite matching algorithm. 

Nonbipartite Cardinality Matching Problem 487 



Root 

Root 

procedure augment; 
begin 

trace the augmenting path P' by starting at node <?J afld 
traversing the predecessor indices; 

if the path P' contains pseudonodes then expand the corresponding 
blossoms and obtain an augmenting path P in the original network; 

update the matching using the operation M = M E9 P; 
end; 

(e) 

Figure 12.16 (Continued) 

the new search procedure and its subroutines. Notice that the algorithm uses an 
additional procedure contract that contracts a blossom into a pseudonode. 

In the nonbipartite matyhing algorithm, each time we execute the procedure 
contract, we create a new pseudonode. One particularly simple scheme for keeping 
track of these additional nodes would be to number them as n + 1, n + 2, n + 
3, .... In this scheme, a node i is a pseudonode if and only if i > n. 

We illustrate the nonbipartite matching algorithm by applying it to the numerical 
example shown in Figure 12. 17(a). We assume that the algorithm examines the la
beled nodes in the first-in, first-out order, and scans the adjacency list of any node 
in increasing order of the node numbers. Suppose that tbe algorithm selects node 1 

488 

E 

Root 

o E 
(a) (b) 

E 0 

~ 

(e) (d) (e) 

Figure 12.17 Identifying an augmenting path in the contracted network: (a) example net
work; (b) alternating tree; (c) contracted graph; (d) blossom; (e) contracted graph. 

Assignments and Matchings Chap. 12 



Root 

as the root node. Then it would examine the nodes in the following order: 1 (even), 
3 (odd), 4 (odd), 5 (even), 6 (even), 7 (odd). Figure 12.17(b) shows the alternating 
tree at this point. While examining node 7, the algorithm scans arc (7, 8) and discovers 
the blossom 5-7-8-5. Contracting this blossom into the pseudonode numbered 9 
gives us the contracted graph shown in Figure 12.17(c). To distinguish a pseudonode 
from a node of the original network, in the figure, we depict a pseudonode as a 
square instead of a circle. At this point, node 9 is the only unexamined node; while 
examining the adjacency list of node 9, we discover another blossom spanning the 
nodes 1-3-9-6-4-1 [see Figure 12. 17(d)]. Contracting this blossom into the pseu
donode numbered 10 gives us the contracted graph shown in Figure 12.17(e). While 
examining node 10, we assign an odd label to the unmatched node 2 and discover 
an augmenting path 10-2. 

We now expand the pseudonodes in the augmenting path so that we can find 
an augmenting path in the original network. We first expand node 10, as shown in 
Figure 12.18(b). Node 2 is\adjacent to the blossom node 4. To the arc (2, 4), we add 
the even alternating path from the root to node 4. Doing so gives us the path 1-3-
9-6-4-2. We next expand node 9,as shown in Figure 12.18(c), and obtain the aug
menting path 1-3-5-7-8-6-4-2 in the original network. 

/' .,-
.-----<II(-----~ 

(b) 

/ 

I 
I 

/ 
I 

/ 

(a) 

Root 

/' 
/' 

/' 

/' 
/' 

/' 

//~ ----------

II 

(c) 

Figure 12.18 Identifying an augmenting path in the original network: (a) contracted graph; 
(b) network after expanding node 10; (c) network after expanding node 9. 

Correctness of the Nonbipartite Matching Algorithm 

To show that the algorithm correctly finds a maximum matching, we need to show 
that (1) whenever we find an augmenting path in the contracted graph we can, by 
expanding the contracted nodes, also find an augmenting path in the original network; 
and (2) by contracting blossoms we do not add or omit augmenting paths. To prove 
this result, we assume that we contract only one blossom. If we do contract more 
than one blossom, we can use this result iteratively to prove the validity of multiple 
contractions. In the proof of the theorem, we assume that we have contracted a 
blossom B with respect to a matching M whose base is w, creating the pseudonode 

Sec. 12.6 Nonbipartite Cardinality Matching Problem 489 



b. We let GC and Me respectively represent the contracted graph and the matching 
in the contracted graph. 

Lemma 12.11. If the contracted network GC contains an augmenting path pc 
starting at the root node p (or the pseudonode containing p) with respect to the 
matching MC, then the original network G contains an augmenting path starting at 
the root p with respect to the matching M. 

Proof. If the augmenting path pc does not contain node b, it also is an aug
menting path in G and the conclusion is valid. Next suppose that b is an interior 
node of pc (i.e., the blossom B has anonempty stem). In that case the augmenting 
path in the contracted network will have the structure shown in Figure 12. 19(a). 
Recall from Property 12.9(c) that the pseudonode b is an even node and the alter
nating path from node p to b ends with a matched arc. We can represent the aug
menting path in GC as [Ph (i, b), (b, I), P3 ]. If we expand the contracted node, we 
obtain the graph shown in Figure 12.19(b). Notice that node I is incident to some 
node in the blossom, say node k. Property 12.10 implies that the network contains 
an even alternating path from node w (i.e., the base of the blossom) to node k that 
ends with a matched arc. Let P2 denote this path. Now observe that the path [PI, 
(i, w), P2 , (k, I), P3 ] is an augmenting path in the graph G. This result establishes 
the lemma whenever b is an internal node of the augmenting path. Whenever b is 
the first node of the augmenting path, p = wand the path [P2 , (k, I), P3 ] is an 
augmenting path in the original graph. • 

This lemma shows that if we discover an augmenting path iri the contracted 
network, we can use this path to identify an augmenting path in the original network. 
The lemma also shows that by contracting a blossom we do not add any augmenting 
paths beyond those that are contained in the original graph. We now need to prove 
the converse result: If G contains an augmenting path in G from node p to some 
node q with respect to the matching M, then GC also contains an augmenting path 
from node p (or the pseudonode containing p) to node q with respect to the matching 
MC. This result will show that by contracting nodes, we do not miss any augmenting 
paths from the original network. 

490 

(a) 

(b) 

Figure 12.19 Identifying an augmenting path in the original network: (a) augmenting path 
in contracted network; (b) augmenting path in original network. 

Assignments and Matchings Chap. 12 



Lemma 12.12. IfG contains an augmenting path from node p to node q with 
respect to a matching M, then GC contains an augmenting path from node p (or the 
pseudonodecontaining p) to node q with respect to the matching Me. 

Proof. Suppose that G contains an augmenting path P from node p to node q 
with respect to a matching M and that nodes p and q are the only unmatched nodes 
in G. We incur no loss of generality in making this assumption since nodes p and q 
are the only unmatched nodes that appear in P, so this path remains an augmenting 
path even:if we delete the remaining unmatched nodes. If the path P has no node 
in common with the nodes in the blossom B, we have nothing to prove because P 
is also an augmenting path in the contracted network. When P has some nodes in 
common with the blossom B, we consider two cases: 

Case 1: The blossom B has an empty stem. In this case, node p is the base of 
the blossom and the pseudonode b in the contracted network contains node p. Let 
node i be the last node of the path P that lies in the blossom. Path P has the form 
[PI, (i,j), P2 ] for some nodej and some unmatched arc (i,j) [see Figure 12.20(a)]. 
Note that the path PI might have some arcs in common with the blossom. Now 
notice that [(b,j), P2 ] is an augmenting path in the contracted network and we have 
established the desired conClusion [see Figure 12.20(b)]. 

Case 2: The blossomBhas a nonempty stem. LetP3 denote the even alternating 
path from node p to the base w of the blossom and consider the matching M' = 
M EB P3 • In the matching M', node p is matched and node w is unmatched. Moreover, 
since the matchings M and M' have the same cardinality, M is not a maximum 
matching if and only if M' is not a maximum matching. By assumption, G contains 
an augmenting path with respect to M. Therefore, G must also contain an augmenting 
path with respect to M'. But with respect to the matching M', nodes wand q are 
the only unmatched nodes in G, so the network must contain an augQ1enting path 
between these two nodes. 

Now let M C
' denote the matching in the contracted graph GC corresponding to 

the matching M' in the graph G. Note that M C might be different than M C
'. In the 

(b) 

(a) 

q 

Figure 12.20 Proving case I of Lemma 12.12: (a) augmenting path in original network; (b) 
augmenting path in contracted network. 

Sec. 12.6 Nonbipartite Cardinality Matching Problem 491 



matching M', the blossom B has an empty stem and the analysis of Case 1 implies 
that the graph contains an augmenting path after we contract the nodes of the blos
som. Consequently, GC contains an augmenting path with re§pect to the matching 
MC'. But since MC' and M C have the same cardinality, GC must also contain an 
augmenting path with respect to the matching MC. This conclusion completes the 
proof of the lemma. • 

The preceding two lemmas show that the contracted network contains an aug
menting path starting at node p if and only if the original network contains one. 
Therefore, by performing contractions we do not create new augmenting paths con
taining node p nor do we miss any. As a consequence, the nonbipartite matching 
algorithm correctly computes a maximum matching in the network. 

Complexity of the Nonbipartite Matching Algorithm 

We next show that the nonbipartite matching algorithm has a worst-case complexity 
of O(n3). As a first step in establishing this result, we obtain a bound on the total 
number of contractions we can conduct in one execution of the search procedure. 

Lemma 12.13. During an execution of the search procedure, the algorithm 
performs at most n12 contractions. 

Proof A blossom contains at least three nodes, and contracting it produces 
one new node. So each contraction reduces the number of nodes by at least 2. Since 
the network initially contains n nodes, we can perform at most n12 contractions 
between two augmentations. • 

The nonbipartite matching algorithm is the same as the bipartite matching al
gorithm except that it contracts and expands blossoms while executing the search 
procedure. To perform these steps efficiently, we need to contract blossoms cleverly 
so that we can perform future expansions easily. Achieving this objective requires 
that we slightly modify our earlier method for contracting a blossom. The modified 
method for contracting blossoms is exactly the same as the earlier method except 
that we do not delete the nodes iI, i2 , ••• , ik of the blossom B from the network 
since this operation would require that we make many changes to our data structures. 
Instead, we formally keep these nodes as part of the network, but declare them as 
inactive, so that we avoid examining them in future steps. The advantage of this 
modification is that it contracts the network while maintaining information about 
the original network that we use later to expand the blossoms. In our subsequent 
discussion we refer to those nodes that are not inactive as active nodes. We also 
refer to an arc (i, j) as an active arc if nodes i andj are both active; otherwise, we 
refer to it as an inactive arc. 

By not deleting the nodes that we have contracted into pseudonodes, we need 
to exercise some care in carrying out and analyzing the algorithm. First, the algorithm 
might attempt to examine inactive nodes. This possibility poses no problem, how
ever, since we can check the status of a node or arc before examining it and ignore 
the node or arc if it is inactive. As a second consideration, we note that keeping 

492 Assignments and Matchings Chap. 12 



inactive nodes in the network increases the size of the adjacency list of some nodes, 
since wh~never we contract a set of nodes into a pseudonode, all the nodes that are 
adjacent to the contracted nodes will now also have the pseudonode as a neighbor. 
This increase in the size of the adjacency lists might increase the execution time of 
certain steps. Since each contraction adds at most one element to any adjacency list 
(the pseudonode), and since the algorithm performs at most nl2 contractions, no 
adjacency list will ever contain more than 3nl2 elements. Therefore, the increase in 
size of the adjacency lists will not add to the computational complexity of the al
gorithm. ' 

We have now given sufficient background material for carrying out the worst
case analysis of the nonbipartite matching algorithm. We intend to show that each 
execution of the search and augment procedure requires 0(n2) time. Since the non
bipartite matching algorithm executes these procedures at most n times, the overall 
algorithm runs in 0(n3) time. 

First, consider the time that the algorithm spends without contracting and ex
panding blossoms. For each node i, the search procedure performs one of the fol
lowing operations at most once: (1) it discovers that node i is inactive, in which case 
it does nothing; (2) it executes examine-odd(i, found), or (3) it executes examine
even(i, found). Clearly, the first two cases require 0(1) time; the time for the third-
step, however, is proportional to I A c(i) I :5 3nl2. Since the search procedure ex
amines at most 3n12 nodes, we obtain a bound of 0(n2) on its running time, ignoring 
the time for handling blossoms. 

Our next task is to analyze the time for contracting blossoms. The bottleneck 
step in contracting a blossom B consisting of the node sequence it - i2 - ... -
ik - it is to form the adjacency list of the resulting pseudonode b, which is defin,ed 
as A C(b) = A c(it) U A c(i2) U ... U A CUk). To construct the adjacency list A C(b), 
we first Use a "marking" method for finding the nodes that will be adjacent to the 
pseudonode. We first declare all nodes in the network as unmarked. Then we ex
amine nodes in the blossom one by one, and for each node i being examined, we 
mark all the nodes in A c(i). When we have examined all the nodes in the blossom, 
we again scan all the nodes in the network and form a set of marked nodes. These 
are exactly the nodes that are adjacent to the pseudonode b. We record these nodes 
as A C(b) and we also add node b to the adjacency list of all these nodes. Clearly, 
this method requires O(n) effort each time we contract a blossom (we do so at most 
nl2 times) plus the time spent in scanning nodes in the adjacency list A c(i). The 
latter time also sums to 0(n2) over all contractions, because each node is part of a 
blossom at most once (since it becomes inactive subsequently), so the algorithm will 
examine its adjacency list at most once. 

Finally, we analyze the time required for expanding blossoms. The search 
procedure needs to expand blossoms during an augmentation in order to obtain an 
augmenting path in the original network. Suppose that the procedure discovers an 
augmenting path P from node p to node q in the contracted network. We determine 
a corresponding augmenting path in the original network using the following repet
itive process: we start at node q and trace back the predecessor indices until either 
(1) we arrive at node p, or (2) we encounter a pseudonode; in the latter case, we 
expand the blossom and obtain a corresponding augmenting path in the expanded 
network. After at most nl2 such iterations, we obtain an augmenting path in the 

Sec. 12.6 Nonbipartite Cardinality Matching Problem 493 



original network. Let us show that we can expand each pseuoonode in O(n) time 
which would establish a time bound of O(n2) per augmentation. ' 

Suppose that node j is the first pseudonode encountered ill the path while trac
ing predecessor indices from node q. Let pred(i) = j. By definItion, node i is not a 
pseudonode. Clearly, node i is adjacent to some node in the blossom B contained 
in the pseudonodej, and this node must be contained in the adjacency list AC(i). To 
locate this node, we again use a marking approach; we first declare all the nodes in 
the network as unmarked, mark all nodes in the blossom B, and then scan the nodes 
in A c(i) to identify a marked node. Let node k be such a node. Node k is incident 
to two arcs in the blossom; one of these arcs is matched and the other is unmatched. 
We then trace through the nodes of the blossom in the direction of the matched arc 
until we reach the base of the blossom, at which point we trace the predecessor 
indices to reach node p. The result is an augmenting path from node p to node q in 
the expanded network; as is clear from the preceding discussion, this method requires 
O(n) time. We might note that if during the course of expanding a blossom, we 
encounter a pseudonode, we expand this pseudonode by the method we have just 
described, and once we have finished expanding this node, we continue to expand 
the pseudonode that contained it. 

We have now shown that all the steps of the search procedure require O(n2) 
time per execution. The matching algorithm calls the search procedure at most n 
times and therefore runs in O(n3

) time. We state this result as a theorem. 

Theorem 12.14. The bipartite matching algorithm identifies a maximum 
matching in a network in O(n3) time. • 

12.7 MATCHINGS AND PATHS 

In this section we describe some interesting relationships between matchings and 
paths. We show how to solve the shortest path problem in a directed network be
tween a specific pair of nodes by solving two assignment problems. In fact, this 
transformation allows us to obtain the best current time bound for solving the shortest 
path problem with arbitrary arc lengths. We also show how to solve a shortest path 
problem in an undirected network with arbitrary arc lengths by solving a nonbipartite 
weighted matching problem. 

Shortest Paths in Directed Networks 

Suppose that we want to determine a shortest path from node s to node t in a directed 
network that might contain negative arc lengths. We will solve this problem by 
invoking two applications of any algorithm for the assignment problem. The first 
application determines if the network contains a negative cycle; if it does not, the 
second application identifies a shortest path. To solve the assignment problem, we 
can use O(n 1l2m 10g(nC» time approach that we outlined in Section 12.4. 

Consider a shortest path problem in the network G = (N, A). We apply the 
node-splitting transformation on this network and replace each node i by two nodes 
i and i'. Furthermore, we replace each arc (i,j) by an arc (i,j') and add an artificial 
zero cost arc (i, i'). As an illustration, consider the shortest path problem from node 

494 Assignments and Matchings Chap. 12 



1 to node 5 shpwn in Figure 12.21(a). Figure 12.21(b) gives the transformed network 
of Figure 12.21(a). We first note that the transformed network always has a feasible 
assignment with cost zero, namely, the assignment containing all artificial arcs. We 
next show that the optimal value of the assignment problem in the transformed 
network is negative if and only if the original network has a negative cycle. 

4 
2 

(a) (b) (c) 

Figure 12.21 Transforming a shortest path problem to an assignment problem: (a) 
original network; (b) network for identifying a negative cycle; (c) network for iden
tifying a shortest path from node 1 to node 6. 

First, suppose that the original network contains a negative cost cycle jl 
iz - ... - jk - jl' Then the assignment {UI, jz), U2' j3), ... , (A, jI), Uk+l, 
jk+ I), Uk+2,jk+2), ... ,Un,j~)} has a negative cost. Therefore, the cost of the optimal 
assignment must be negative. Conversely, suppose that the cost of an optimal as
signment {UI,jZ), U2,j]), ... ,Uk,j\), Uk+l,jk+I), Uk+2,jk+2), ... ,Un,j~)} is 
negative. This solution must contain at least one arc of the form UI, j2) with jl "# 
iz.Ifj] = jt, we stop; otherwise, we consider the arc (h,j4)' Repeating this argu
ment as many times as necessary, we eventually find a partial assignment defined as 
{UI, j2), U2, j3), ... , (jk, jl)}. The cost of this partial assignment is zero or neg
ative because it can be no more expensive than the partial assignment {UI, jl), 
U2' jz), ... , Uk, jO}. Since the optimal assignment cost is negative, some partial 
assignment must be negative. But then by the construction of the transformed net
work, the cyclejl - iz - .. , - jk - jl is a negative cost cycle in the original network. 
For our example, the optimal assignment in Figure 12.21(b) is {(1, I'), (3,3'), (2,4'), 
(4, 5'), (5, 2')} and has cost equal to -1. This assignment defines the negative cycle 
2-4-5-2 of cost -1 in the original network given in Figure 12.21(a). 

If the original network contains no negative cost cycle, we can obtain a shortest 
path between a specific pair of nodes, say from node 1 to node n, as follows. We 
consider the transformed network as described earlier and delete the nodes I' and 
n and the arcs incident to these nodes. [See Figure 12.21(c) for an example of this 
transformation; in this figure we have modified the cost of arc (2, 4) to 8 so that the 
network contains no negative cost cycle.] Observe that each path from node 1 to 
node n in the original network has a corresponding assignment of the same cost in 
the transformed network, and the converse is also true. For example, the path 
1-2-4 in Figure 12.21(a) corresponds to the assignment {(l, 2'), (2, 4'), (3, 3'), 

Sec. 12.7 Matchings and Paths 495 



(5, 5')} in Figure 12.21(c), and the assignment {(l, 2'), (2, 4'), (4, 5'), (3, 3')} in Figure 
12.21(c) corresponds to the path 1-2-4-5 in Figure 12.21(a). Consequently, an 
optimal assignment in the transformed network gives 'a '"shortest path in the 
original network. 

Shortest Paths in Undireoted Networks 

Having shown how to transform any shortest path problem (with arbitrary arc costs) 
in a directed network into an assignment problem, we now study shortest path prob
lems in undirected networks. As we noted in Section 2.4, solving any shortest path 
problem in an undirected network G with nonnegative arc costs is quite easy; 
we simply replace each arc (i, j) in the undirected network G with cost Cij by two 
directed arcs (i,j) and (j, i), both with the same cost Cij, and solve the shortest path 
problem in the directed network. If the undirected network G contains some arc (i, 
j) with a negative cost Cij, however, this transformation creates a negative cycle i
j-i. By transforming the undirected problem into a directed problem, we create a 
negative cycle even though G itself might not contain any negative cycle. Recall 
from Chapters 4 and 5 that the shortest path algorithms for directed networks do 
not apply to networks with negative cycles. Consequently, the preceding transfor
mation does not allow us to solve shortest path problems with arbitrary arc lengths 
on undirected networks. Indeed, solving shortest path problems on undirected net
works with negative arc lengths (but with no negative cycles) is substantially harder 
than the corresponding problem with nonnegative arc lengths; nevertheless, the prob
lem is still solvable in polynomial time. We next describe a transformation that 
reduces the problem to a minimum weight nonbipartite perfect matching problem. 

We perform this transformation in three stages. First, we transform the shortest 
path problem into a minimum weight perfect b-matching problem. For a given non
negative n-vector b, we say that a subgraph G' of G is a perfect b-matching if each 
node i has exactly b(i) incident arcs in G'. We illustrate the transformation using 
the shortest path problem shown in Figure 12.22(a). Suppose that we want to solve 
the shortest path problem from the source node s = 1 to the sink node t = 4. As 
shown in Figure 12.22(b), we add a loop (i, i) of zero cost for each node i, except 
nodes sand t, and consider the perfect b-matching in the resulting network G' with 
b(s) = b(t) = 1, and b(i) = :2 for other nodes. If we observe that each loop arc (i, 
i) in the matching contributes a degree of 2 units to node i, it is easy to see that any 
perfect b-matching in G' corresponds to a path in G from node s to node t, and vice 
versa. [The perfect matching contains the loop arc (i, i) whenever the shortest path 
from node s to node t does not contain node i.] This observation shows that we can 
solve the shortest path problem in G by solving the perfect b-matching problem in 
G'. 

We might be tempted, at this point, to try to transform the perfect b-matching 
problem into a perfect matching problem by splitting those nodes with the degree 
condition b(i) = 2 into two nodes. However, in making this transformation, we 
encounter one particular difficulty: Mter splitting the nodes, an arc (i, j) in the 
original network will correspond to two arcs (i', j) and (i", j) in the new network 
that are incident to the copies i' and i" of the split node i; therefore, the perfect 
matching in the transformed network might contain both the arcs (i', j) and (i", j) 

496 Assignments and Matchings Chap. 12 



o 

5 -2 5 -2 

-1 -1 

-3 4 -3 4 

o 

(a) (b) 

(c) 

Figure 12.22 Formulating a shortest path problem in an undirected network as a 
weighted nonbipartite matching problem. 

which corresponds to using the original arc (i,j) twice. [We say that we have "used 
the arc (i, j) twice" when this situation occurs.] To overcome this difficulty, we 
introduce an additional stage in our transformation. 

In the second stage of the transformation, we insert two additional nodes, say 
nodes k and I, in the middle of each arc (i, j) for which i "# j and b(i) = b(j) = 2, 
and replace the arc (i, j) by the arcs (i, k), (k, I), and (I, j). We set b(k) = b(l) = 
1, Cik = Clj = ci)2, and Ckl = O. Let Gil denote the graph obtained from this trans
formation; Figure 12.22(c) shows this graph for our example. To see the equivalence 
of b-matchings in G' and Gil, note that if arc (i, j) is an element of a b-matching M' 
in G', the corresponding b-matching Mil in Gil would contain the arcs (i, k) and 
(I, j). Conversely, if arc (i, j) is not contained in the b-matching M', then (k, I) is 
contained in the b-matching Mil. Also, notice that after we have made this trans
formation, for each arc (p, q) in Gil, either b(p) = 1 or b(q) = 1, which ensures 
that the matching that we obtain in the subsequent node splitting transformation will 
use no arc from the graph Gil twice. 

Sec. 12.7 Matchings and Paths 497 



In the third stage of the transformation, we construct a-third network G'" by 
splitting each node i with b(i) = 2 into two nodes i' and i"; for each arc (i,j) in Gil, 
we introduce two arcs (i', j) and (i", j) with the same cost as fli.e arc (i, j). Because 
b (j) = 1, any perfect matching of Gill will contain at most one of the arcs (i' ,j) and 
(i",j). For our example, Figure 12.22(d) is the resulting network. It is easy to establish 
an equivalence between perfect b-matchings in Gil and perfect matchings in G"'. 
Tracing the steps of these transformations, this result shows that each perfect match
ing in Gill corresponds to a path from node s to node t in the original graph G; 
moreover, because the perfect matching and the path have the same cost, we can 
obtain a shortest path in the undirected graph G by solving the minimum cost perfect 
matching problem by any polynomial-time algorithm. 

12.8 SUMMARY 

Matching problems are an important class of optimization models that lie at the 
interface between network flows and more general problems in combinatorial op
timization. The algorithms for certain types of matching problems (those defined on 
bipartite networks) are streamlined versions of network flow algorithms that we have 
developed in previous chapters. Although the solution methods for other matching 
problems (nonbipartite problems) are quite different from those that we have de
veloped for the,minimum cost flow problem and its variants, these algorithms do 
borrow ideas of augmenting paths. Moreover, matching problems are rather inti
mately related to shortest path problems. In this chapter we studied the following 
matching problems: (1) the bipartite cardinality matching problem, (2) the bipartite 
weighted matching problem (also known as the assignment problem), (3) the stable 
marriage problem, and (4) the nonbipartite cardinality matching problem. 

As we have seen, since bipartite matching problems are transformable into 
network flow problems, we can solve these problems using the algorithms we have 
developed in previous chapters: for example, we can solve the bipartite cardinality 
matching problem as a maximum flow problem in unit capacity simple networks (as 
discussed in Section 8.2). This approach gives an OCVnm) algorithm for solving the 
problem. In the saine way we can transform the weighted bipartite matching problem 
into a minimum cost flow problem, so we can use the algorithms we have developed 
in Chapters 9, 10, and 11. The resulting minimum cost flow problem is, however, 
simpler than general versions of this problem (because the supply/demand vector 
has only + 1 or -1 elements), so the minimum cost flow algorithms run faster. By 
adapting the three pseudopolynomial-time minimum cost flow algorithms discussed 
in Chapter 9, we have been able to solve the assignment problem in O(n S(n, m, 
C» time, where S(n, m, C) denote the time required to solve a shortest path problem 
with nonnegative arc lengths. We achieved the best time bound, however, by adapt
ing the cost scaling algorithm: the resulting algorithm runs in OCVnm 10g(nC» time. 

Nonbipartite matching problems are significantly more difficult to solve. In this 
chapter we discussed only the cardinality version of this problem; we did not consider 
weighted nonbipartite matching. Although we can solve the bipartite cardinality 
matching problem by an augmenting path algorithm, the direct extensions of the 
algorithm do not solve nonbipartite matching problems. This approach fails because 
the network might contain blossoms. However, if we contract a blossom whenever 

498 Assignments and Matchings Chap. 12 



we discover one, we can use an augmenting path algorithm. This approach yields 
an O(n3

) algorithm for the cardinality matching problem. The proof of the algorithm 
and its worst-case analysis are intricate and much more difficult than the corre
sponding analysis for the bipartite cardinality matching problem. 

Matching problems are closely related to shortest path problems. Many al
gorithms for weighted matching problems-such as the successive shortest path, 
Hungarian and relaxation algorithms-use the shortest path algorithm for problems 
with nonnegative arcs as a subroutine. Conversely, we can transform shortest path 
problems' with arbitrary arc lengths into matching problems, and these transfor
mations provide some of the best available time bounds for solving shortest path 
problems. In this chapter we showed how to transform the shortest path problem 
on directed networks into a bipartite weighted matching problem (i.e., the assignment 
problem) and how to transform the shortest path problem on undirected networks 
into a nonbipartite weighted matching problem. 

REFERENCE NOTES 

Matching problems have received a great deal of attention in the literature. The book 
by Lovasz and Plummer [1986] presents an extensive wealth of information and ,
references on matching theory. In this discussion we cite several key references to 
the literature, placing an emphasis on theoretically efficient algorithms. Ahuja, Mag
nanti, and Orlin [1989] present more extensive reference notes on the assignment 
problem. 

Bipartite cardinality matching problems. Hopcroft and Karp [1973] gave 
an O(n5/2) algorithm for this problem. Using similar ideas, Even and Tarjan [1975] 
obtained an o ('Vnm ) algorithm for the maximum flow problem on unit capacity 
simple networks. This algorithm, in turn, provides an O(Vnm) algorithm for the 
bipartite cardinality matching problem, which is still the best available time bound 
for solving this problem. 

Nonbipartite cardinality matching problem. The backbone of the non
bipartite matching algorithm is the important characterization result: a matching is 
optimal if and only if it contains no augmenting path. This theorem is due to Berge 
[1957], who also gave an exponential time algorithm for identifying an augmenting 
path. Edmonds [1965a] obtained the first polynomial-time algorithm for this problem, 
with a time bound of O(n4). Researchers subsequently developed several improved 
implementations of this algorithm. Some notable contributions in chronological order 
are (1) an O(n2m) algorithm by Witzgall and Zahn [1965], (2) an O(n 3

) algorithm by 
Gabow [1975], (3) an O(n5/2) algorithm by Even and Kariv [1975], (4) an O(nm) 
algorithm by Kameda and Munro [1974], and finally, (5) an O(n1l2m) algorithm by 
Micali and Vazirani [1980]. The algorithm by Micali and Vazirani is still the fastest 
available algorithm for solving the nonbipartite cardinality matching problem; its 
running time is comparable to the running time of the best bipartite cardinality match
ing algorithm. Vazirani [1989] offered a complete version of this algorithm and its 
proof. Ball and Derigs [1983] described data structures required for implementing 
matching algorithms. 

Chap. 12 Reference Notes 499 



Assignment problem. The assignment problem has been a popular, heavily 
studied research topic within the operations research commuQjty. The paper by 
Ahuja, Magnanti, and Orlin [1989] presented a detailed survey of assignment algo
rithms. Kuhn [1955] developed the first (primal-dual) algorithm for the assignment 
problem. Although researchers have developed several different algorithms for the 
assignment problem, many of these algorithms share common features. The suc
cessive shortest path algorithm for the minimum cost flow problem, discussed in 
Section 9.7, appears to lie at the heart of many (apparently different) assignment 
algorithms. This approach yields an O(n S(n, m, C» time algorithm for solving the 
assignment problem, where S(n, m, C) is the time needed for solving a shortest path 
problem with nonnegative arc lengths. Currently, S(n, m, C) = O(min{m + n log 
n, m log log C, m + n Ylog C}). Therefore, O(nm + n2 log n) is the best available 
strongly polynomial time bound for solving the assignment problem. Gabow and 
TaIjan [1989a] developed a cost scaling algorithm for the assignment problem that 
runs in O(n 1l2m 10g(nC» time. Bertsekas [1988] proposed an auction algorithm for 
the assignment problem. Incorporating scaling in the auction algorithm, Orlin and 
Ahuja [1992] also obtained an O(n 1/2m 10g(nC» time algorithm; this is the algorithm 
that we mentioned in Section 12.4. The reference notes for Chapter 11 provide 
references for simplex-based approaches for the assignment problem. Carpento, 
Martello, and Toth [1988] presented FORTRAN codes for several algorithms for the 
assignment problem. For recent computational studies of assignment algorithms, see 
Bertsekas [1988], Zaki [1990], and Kennington and Wang [1990]. 

Nonbipartite weighted matching problems. Edmonds [1965b] gave the 
first algorithm for the nonbipartite weighted matching problem. Gabow [1975] and 
Lawler [1976] developed O(n3) implementations of this algorithm. Currently, the 
fastest algorithms for this problem are (1) an O(nm + n2 log n) algorithm due to 
Gabow [1990], and (2) an O(m 10g(nC)Yna(m, n) log n) algorithm due to Gabow 
and TaIjan [1989b]. For information concerning the empirical behavior of nonbi
partite weighted matching algorithms, see Grotschel and Holland [1985]. 

Stable marriage problem. Our discussion of this problem has presented 
the most basic results obtained by Gale and Shapley [1962]. The book by Gusfield 
and Irving [1989] on the stable marriage problem contains a wealth of information 
on this topic. The paper by Roth, Rothblum, and Vande Vate [1990] studied poly
hedral aspects of the stable marriage problem and used linear programming theory 
to obtain simpler proofs of many fundamental results for the problem. 

Paths and assignments. We presented two transformations to reduce 
shortest path problems to matching problems. The transformation of the shortest 
path problem in directed networks to an assignment problem is due to Hoffman and 
Markowitz [1963] and the transformation of the shortest path problem in undirected 
networks to the nonbipartite weighted matching problem is due to Edmonds [1967]. 

The applications of matchings that we gave in Section 12.2 are adapted from 
the following papers: 

500 Assignments and Matchings Chap. 12 



1. Bipartite personnel assignment (Machol [1970] and Ewashko and Dudding 
[1971]) 

2. Nonbipartite personnel assignment (Meggido and Tamir [1978]) 
3. Assigning medical graduates to hospitals (Gale and Shapley [1962]) 
4. Dual completion of oil wells (Devine [1973]) 
5. Determining chemical bonds (Dewar and Longuet-Higgins [1952]) 
6. Locat.ing objects in space (Brogan [1989]) 
7. Matching moving objects (Brogan [1989] and Kolitz [1991]) 
8. Optimal depletion of inventory (Derman and Klein [1959]) 
9. Scheduling of parallel machines (Horn [1973]) 

Elsewhere in the book, we discussed the following applications of matching 
problems: (1) rewiring of typewriters (Application 1.5, Machol [1961]), (2) pairing 
stereo speakers (Application 1.6, Mason and Philpott [1988]), (3) the dating problem 
(Exercise 1.5), (4) the pruned chessboard problem (Exercise 1.6), (5) large-scale 
personnel assignment (Exercise 1.4), (6) solving shortest path problems in directed 
and undirected networks (Section 12.7), (7) school bus driver assignment (Exercise 
12.1, R. B. Potts), (8) the ski instructor's problem (Exercise 12.2), (9) the undirected 
Chinese postman problem (Application 19.15, Edmonds and Johnson [1973]), and 
(10) discrete location problems (Application 19.16, Francis and White [1976]). 

Additional applications of the matching problems arise in (1) two-processor 
scheduling (Fujii, Kasami, and Ninomiya [1969]), (2) determining the rank of a matrix 
(Anderson [1975]), (3) vehicle and crew scheduling (Carraresi and Gallo [1984]), and 
(4) making matrices optimally sparse (Hoffman and McCormick [1984]). 

EXERCISES 

12.1. School bus driver assignment (R. B. Potts). A bus company has n morning runs and n 
afternoon runs that it needs to assign to its n drivers. The runs are of different duration. 
If the total duration of the morning and afternoon runs assigned to a driver is more 
than a specified number D, the driver receives a premium payment for each hour of 
overtime. The company would like to assign the runs to the drivers to minimize the 
total number of overtime hours. 
(a) Formulate this problem as a matching problem. 
(b) Suppose that we arrange the morning runs in the nondecreasing order of their 

duration and the afternoon runs in the nonincreasing order of their duration. Show 
that if we assign each driver i to the ith morning run and the ith afternoon run, 
we obtain the optimal assi.gnment. 

12.2. Ski instructor's problem. A ski instructor needs to assign n pairs of skis to n novice 
skiers. The skis are available in lengths 1\ ::; 12 ::; ••. ::; In, and the skiers have heights 
h\ ::; h2 ::; ... ::; hn . The lengths of the skis assigned to a skier should be proportional 
to his height: Assume that the constant of proportionality is cx. The instructor wishes 
to assign the skis to skiers so that the total difference between the actual ski lengths 
and the ideal ski lengths is as small as possible. Show that if for each i, she assigns 
the ith skier to the ith pair of skis, her assignment is optimal. 

Chap. 12 Exercises 501 



12.3. A budding connoisseur plans to consume one of n bottles of wine in his cellar on 
Saturday evening for each of the next n weeks. The age a; of bottle i is known (in 
weeks). The utility of bottle i as a function of time t (in weeks) is given by b;t3 

- Cit, 
for some constants b; and C;. The connoisseur wants to know how he should consume 
his wine to maximize the total utility of wine he consumes. Formulate this problem 
as an assignment problem using the following data. 

i 1 2 3 4 5 6 

a; 10 5 4 20 10 15 

b; 2 3 5 3 1 4 

C; 10 15 20 5 25 15 

12.4. Show how to solve the bin packing problem described in Exercise 3.10 as a matching 
problem if aj > ! for eachj = 1, ... , n. 

12.5. When the utility function for items has a special form, we can solve the optimal in
ventory depletion problem discussed in Application 12.8 very efficiently. 
(a) Show that when the utility function v(t) is a concave function, the optimal policy 

is to issue the youngest item first. 
(b) Show that when the utility function v(t) is a convex function, the optimal policy 

is to issue the oldest item first. 

12.6. This exercise develops a justification for the assignment formulation of the machine 
scheduling problem discussed in Application 12.9. Let us refer to a feasible assignment 
as a proper assignment if it assigns the jobs to each machine in consecutive places, 
including the last place. For instance, if we assign jobs 1, 4, and 5 to some machine, 
assigning job 5 to the last place, job 1 to the second to last place, and job 4 to the 
fifth to last place, the resulting assignment is not a proper assignment. 
(a) Show that we can always improve a nonproper assignment. Conclude that any 

optimal assignment of the assignment problem is a proper assignment. 
(b) Establish a one-to-one correspondence, which preserves costs, between feasible 

schedules of the scheduling problem and proper assignments of the assignment 
problem. Conclude that the solution of the assignment problem will yield an op
timal schedule for the scheduling problem. 

12.7. Determine a maximum cardinality matching in the graph shown in Figure 12.4. 

12.8. Let M\ and M2 be two arbitrary matchings in a bipartite network G = (N\ U N 2, A). 
Show that some matching M matches all the nodes in N\ that are matched by M\ and 
all the nodes of N2 that are matched in M2. (Hint: Consider MJ ffi M2 and modify the 
matching M\ or M2 appropriately.) 

12.9. The army would like to transfer five servicemen to five new posts in a way that min
imizes the total moving cost. The accompanying table specifies allowable assignments 
and the moving cost for each possible assignment. Use the relaxation algorithm to 
determine an assignment that minimizes the total moving cost. 

502 Assignments and Matchings Chap. 12 



~ 1 2 3 4 5 
Servicema 

1 25 30 - - -

2 20 - 70 35 -

3 80 75 90 65 -

4 - - - 55 40 

5 - - - 60 50 

12.10. A construction company needs to assign four workers to four jobs. The accompanying 
table specifies the workers' proficiency scores for the jobs. A dash "-" in position 
(i,j) indicates that worker i is unqualified to performjobj. Use the successive shortest 
path algorithm to identify an assignment that maximizes the total proficiency scores 
for carrying out the jobs. 

I~ 1 2 3 4 
Worker 

1 45 - - 30 

2 50 55 15 -

3 - 60 25 75 

4 45 - - 35 

12.11. Let G = (NJ U N 2, A) be a bipartite network with 1 NJ 1 = 1 N2 1 = nJ. For any set 
S ~ N J, define neighbor(S) as the set of nodes in N2 that are adjacent to the nodes 
in S. 
(a) Show that if G has a perfect matching, then for any subset S ~ N J , 1 neighbor(S) 1 

21 SI· 
(b) Show that if for every subset S ~ NJ, 1 neighbor(S) 121 S I, then G has a perfect 

matching. Conclude that G has a perfect matching if and only if for every subset 
S ~ N J , 1 neighbor(S) 1 2 1 S I· (Hint: Prove that using the bipartite matching 
algorithm given in Figure 12.9, we would either find an augmenting path from 
every unassigned node in NJ to a node in N 2, or we would contradict the as
sumption that 1 neighbor(S) 1 2 1 S I.) 

Chap. 12 Exercises 503 



12.12. Dancing problem. At a high school partY' attended by n boys and n girls, each boy 
knows exactly k (1 ~ k ~ n) girls and each girl knows exactly k boys. Assume that 
the acquaintanceship is mutual (i.e., if b knows c, then c also'knows b). 
(a) Show that it is always possible to arrange a dance in which -each boy dances with 

a girl he knows. (Hint: Use the result of Exercise 12.11.) 
(b) Show that it is possible to arrange k consecutive parties so that at each party each 

boy dances with a different girl that he knows. 

12.13. A 0-1 matrix of size n x n is a permutation matrix if each row and column contains 
a single 1 entry. Let H be a 0-1 matrix of size n x n and suppose that each row and 
each column contains exactly k 1 'so Show that it is possible to represent H as the sum 
of k permutation matrices of size n x n. (Hint: Use the results in Exercise 12.11 or 
12.12.) 

12.14. An n x n matrix R is doubly stochastic if all of its elements rij are nonnegative and 
if the sum of the elements in each row and each column equals 1. Show that it is 
possible to represent a doubly stochastic matrix as a convex combination of the per
mutation matrices (i.e., R = alPI + azPz + ... + apPp for some set of permutation 
matrices PI, Pz, ... , Pp and some positive weights aj satisfying the condition al + 
az + ... + ap = 1). Moreover, show that we can choose the permutation matrices 
so that p is no more than the number of nonzero elements in the matrix R. (Hint: Let 
Q = {qij} be a 0-1 matrix with qij = 1 if rij is positive. Show that Q contains a per
mutation matrix. Modify R and use this result repeatedly.) 

12.15. Suppose that each of 10,000 individuals serves on exactly 13 of 10,000 committees 
and each committee has exactly 13 members. Show that we can order the committees 
so that for each} = 1, ... , 10,000, individual} serves on committee j. (Hint: Use 
the result of some previous exercise.) 

12.16. An arc coloring (or, simply, a coloring) of an undirected graph G = (N, A) is a coloring 
of the arcs with several colors so that no two arcs incident to the same node have the 
same color. A k-coloring is a coloring of the arcs with k distinct colors. 
(a) Show that a k-coloring of the graph G decomposes the arcs in A into k arc-disjoint 

matchings. 
(b) A graph is k-regular if the degree of each node is exactly k. Show that a k-regular 

bipartite graph has a k-coloring. 
(c) Let 8( G) denote the maximum degree of any node in the graph G. Show that every 

bipartite graph G has a 8(G) coloring. (Hint: Show how to make the graph 8(G)
regular by adding additional nodes and arcs.) 

12.17. A small manufacturing company produces a speciality home security device composed 
of p components. The company employs p individuals who have different expertise; 
each of them must spend time in the production of each component: the ith worker 
must spend aij hours (an integer) on component}. The company wants to determine 
the minimum number of hours required to produce the device so that (1) no worker 
is working on two different components at the same time, and (2) no more than one 
person is working on any component at anyone time. 
(a) For each 1 ~ i ~ p, let ri = Lf~1 aij, and for each 1 ~} ~ p, let Cj = Lf~1 aij' 

Also let a be the largest value of all the parameters ri and Cj. Show that the company 
requires at least a hours to produce the device. 

(b) Use the result in part (a) to show that we can increase some of the aij's so that 
each ri and each Cj equals a. 

(c) Use the results in part (b) and Exercise 12.14 to show that the company can always 
produce the device in a hours. 

12.18. In this chapter we considered the assignment problem on bipartite networks G = 
(NI U N z , A) with I NI I = I Nzi. Consider a modified version of the assignment 
problem when I NI I < I Nzi. In this case, in a feasible assignment, we require all the 
nodes in NI to be matched, but permit some of the nodes in N z to be unmatched. 

504 Assignments and Matchings Chap. 12 



Show that we can transform this modified assignment problem to the (original) as
signment problem. 

12.19. Show how to transform the (uncapacitated) transportation problem into an assignment 
problem on an expanded network. Next show how to transform the (capacitated) 
minimum cost flow problem into an assignment problem. Justify your transformation. 
(Hint: If U denotes the magnitude of the largest supply/demand at a node, transforming 
the transportation problem to an assignment problem yields a network with O(nU) 
nodes~) 

12.20. Consider an assignment problem whose arc costs are all 0 or 1. Which assignment 
algorithm discussed in this chapter would solve this problem in the least possible time? 

12.21. The president's office at a university needs to assign a targeted group of n faculty to 
be chairs of n committees. Each person proposes, in decreasing order of preference, 
a list of three committees that he or she would like to chair. We want to determine 
whether we could possibly find a satisfiable assignment (i.e., one that assigns the 
faculty to the committees so that each faculty member obtains ajob on his or her list). 
If some satisfiable assignment is possible, we want to find the assignment that max
imizes the number of faculty with their most preferred committee chair, and further, 
among such assignments, the assignment that maximizes the number of faculty with 
their second most preferred committee chair. Show how to solve this problem by 
solving'a single assignment problem. (Hint: Assign arc costs appropriately.) 

12.22. Factored assignment problems 
(a) A factored assignment problem is an assignment problem on a complete bipartite -

network G = (N\ U N 2 , A) (i.e., A = N\ x N 2 ) when each arc cost is specified 
as cij = Ci.iCi.j for some set of node numbers Ci.i associated with the nodes in N\ U 
N2 • Assume that we are given the node numbers Ci./ s sorted in nondecreasing order 
for each ofthe sets N\ and N 2 • [Notice that the input size ofthe factored assignment 
problem is only O(n).J Describe an O(n) algorithm for solving this specialized 
version of the assignment problem. (Hint: First solve the problem when I N\ I = 
2 and then generalize your result.) , 

(b) Consider the assignment problem on a complete bipartite network G = (N\ U N 2 , 

A) when the cost data Cij is of the form Cij = Ci.i + Ci.j for some node numbers Ci.i 

associated with the nodes in N\ U N 2 • Describe an O(n) algorithm for solving this 
assignment problem. 

12.23. Bottleneck assignment problem. The bottleneck assignment problem is an important 
variation of the classical assignment problem that arises in the following scenario. 
Suppose that an assembly line has p jobs to be assigned to p operators. Let cij denote 
the number of units per hour that operator i can process if assigned to job j. For a 
given assignment, the output rate of the assembly line is given by the minimum cij in 
the assignment, which we would like to maximize over all assignments. In the bot
tleneck assignment problem we wish to determine an assignment for which the least 
costly assignment is as large as possible. This is a maximin version of the bottleneck 
assignment problejll; similarly, we could define the minimax version in which we want 
to determine an"assignment for which the most costly assignment is as small as pos
sible. In the following exercise, we consider the minimax version of the problem. 

Suppose we sort the arc costs cij's: let C\ < C2 < ... < Ck denote the sorted list 
of distincNlahH~s of these costs (k ::; m). Let FS(l, M) denote a subroutine that for 
any input number I ~ 1, determines whether in some assignment every arc cost is no 
more than C/. If no such assignment exists, M is a null set. 

(a) Describe an o('Vli m) algorithm for implementing the subroutine FS(l, M). 
(b) Show how to solve the bottleneck assignment problem by calling the subroutine 

FS(l, M) O(log k) times. 
12.24. Balanced assignment problem (Martello et al. [1984]). The balanced assignment problem 

is another variation of the classical assignment problem, which is perhaps best illus-

Chap. 12 Exercises 505 



trated by some specific scenarios. Given n people and n tasks, iet cij denote the amount 
of work person i requires to perform job}. Suppose that we are interested in choosing 
a pairing of workers and jobs that distributes the work load'as~evenly as possible. As 
another problem setting for the balanced assignment problem, we let Cij be the expected 
lifetime of component} produced by a company i; we wish to choose the components 
so that we will need to replace all the components at about the same time. In these 
settings and in general, in the balanced assignment we wish to determine an assignment 
that will minimize the difference between the most costly and the least costly assign
ment. In this exercise we develop an algorithm for solving this version of the assign
ment problem. 

Suppose that we sort the arc costs co's and let Cl < C2 < ... < Ck denote the 
sorted list of distinct values ofthese costs (k ~ m). Let FS(l, u, M) denote a subroutine 
that takes as an input two numbers I and u, satisfying the condition 1 ~ I ~ u ~ k, 
and determines whether in some assignment M every arc cost is between C[ and C • 

if no such assignment exists, then M is a null set. '" 

(a) Describe an ocVn m) algorithm for implementing the subroutine FS(l, u, M). 
(b) Show how to solve the balanced assignment problem by calling the subroutine 

FS(l, u, M) O(k) times. 
12.25. Solve the stable marriage problem shown in Figure 12.23 when the matrix M gives 

the rankings of men for women and matrix W gives the ranking of women for men. 
A higher ranking implies a greater preference. 

2 3 4 5 2 3 4 5 

3 5 2 1 4 5 4 3 1 2 

M = 2 4 3 5 1 2 W = 2 5 1 3 2 4 

3 4 1 3 2 5 3 5 4 1 3 2 

4 1 3 2 5 4 4 5 3 1 2 4 

5 4 2 3 1 5 5 5 3 2 1 4 

Figure 12.23 Men and women rankings. 

12.26. Give a 2 x 2 example of the stable marriage problem (i.e., two men and two women) 
which has at least two distinct stable matchings. 

12.27. Show that in a man-optimal matching, each woman has the least preferred partner 
that she can have in any stable matching. 

12.28. Suppose that in the stable marriage problem, men and women might prefer to remain 
unmarried if they do not find suitable mates. In this version of the problem, each man 
and each woman makes a list of potential mates in order of preference but does not 
list anyone whom he/she is unwilling to marry. Now a stable marriage will permit some 
men/women to remain unmarried. Show how to modify the stable matching algorithm 
given in Section 12.5 to find such a matching. Suppose that a man i is unmarried in 
the matching produced by your algorithm. Is it true that he is unmarried in all stable 
marriages? Prove your answer. 

12.29. In Section 12.5 we described an algorithm for constructing a man-optimal matching. 

506 

Modify this algorithm so that it constructs a woman-optimal matching. Apply this 
algorithm to the example given in Figure 12.23. Is the woman-optimal matching dif
ferent than the man-optimal matching? 

Assignments and Matchings Chap. 12 



12.30. Suppose that you are given a matrix denoting men's ranking of women: a higher rank 
denotes a more favored woman. Assume that each rank is an integer between 1 and 
n. Using this matrix, you wish to prepare the priority list of each man, which lists the 
women in nonincreasing order of their rankings. Show how you can construct priority 
lists of all men in a total of O(n2) time. 

12.31. Stable nniversity admissions. In the stable marriage algorithm, each man is matched 
to one woman and each woman is matched to one man. Generalize this algorithm to 
find a stable assignment of medical school graduates to hospitals (see Application 12.3). 
In this case each hospital i can hire ai graduates. 

12.32. Unstable roommates (Gale and Shapley [1962]). The headmaster of a boarding school 
needs to divide an even number of boys into pairs of roommates. In this setting, a set 
of pairings is stable if no two boys who are not roommates prefer each other to their 
actual roommates. Show that in some situations no stable pairing is possible. (Hint: 
There is an example with four boys.) 

12.33. Consider the graph shown in Figure 12.24(a) with a matching shown by the bold lines. 
In this graph, specify (1) an alternating path of length 10; (2) an alternating cycle of 
length 10; (3) an augmenting path oflength 5; (4) an augmenting path of length 9; and 
(5) an alternating tree rooted at node 2 that spans all the nodes. 

(a) (b) 

Figure 12.24 Examples for Exercises 12.33 to 12.35. 

12.34. Consider the graph shown in Figure 12.24(b) with a matching as shown by the bold 
lines. Specify a blossom in the graph whose stem contains two arcs. Contract this 
blossom and show the contracted graph. List all augmenting paths of length 3 in the 
contracted graph and the corresponding paths in the original (uncontracted) graph. 

12.35. Apply the nonbipartite cardinality matching algorithm to the example shown in Figure 
12.24(b). Use the matching shown by bold lines as the starting matching. 

12.36. Professor May B. Wright has posed the following problem for you to resolve: Consider 
the graph shown in Figure 12.25(a) which has an augmenting path 1-2-3-4. The se-

(a) 

Chap. 12 Exercises 

(b) 
Figure 12.25 Example for Exercise 
12.36. 

507 



quence of nodes 2-3-5-2 defines a blossom in the graph; contracting the nodes, we 
obtain the graph shown in Figure 12.25(b). However, the contracted graph does not 
have any augmenting path. Professor Wright believes that this, example contradicts 
the theorem that the graph has an augmenting path if and only if the contracted graph 
has an augmenting path. Is she correct? 

12.37. Show that a network is nonbipartite if during the application of the search procedure 
of the nonbipartite matching algorithm (described in Section 12.6), it attempts to assign 
an odd label to an even-labeled node or an even label to an odd-labeled node. Show 
that the "only if" part of the result is not true. (Hint: For the second part, use the 
network shown in Figure 12.25.) 

12.38. A subset N' ~ N is matchable if each node in N' is matched in some matching. Let 
S be a matchable set of nodes. Show that each node in S is matched in some maximum 
cardinality matching. 

12.39. Berge's theorem (Berge [1957]). Prove the following theorem from first principles: A 
matching M* in a graph G is maximum if and only if the graph G contains no augmenting 
path with respect to M*. 

12.40. A matching M is a maximal matching of G = (N, A) if for every arc (i, j) eo M, 
M U {(i, j)} is not a matching. 
(a) Show how to construct a maximal matching in O(m) time. 
(b) Show that a maximal matching contains at least 50 percent as many arcs as a 

maximum matching. 
12.41. Let G = (N, A) be a graph. Let I1(G) denote the maximum cardinality of any matching 

in G. A subset A' ~ A is an arc cover if for every node i E N, i is an endpoint of at 
least one arc in A '. Let a( G) denote the minimum cardinality of any arc cover of G. 
Show that I1(G) + a(G) = n. (Hint: Show how to extend any matching of cardinality 
k into an arc cover of cardinality n - k.) 

12.42. Suppose that an undirected graph G = (N, A) has a perfect matching. An arc (i, j) 
in Gis unmatchable if no perfect matching contains the arc (i, j). 
(a) Let Gij denote the graph obtained by deleting from G the nodes i and j and the 

arcs incident to these nodes. Show that an arc (i, j) is unmatchable if and only if 
Gij has no perfect matching. Use this result to develop a polynomial-time algorithm 
for identifying all unmatchable arcs. 

(b) Specify an O(n3) algorithm for finding all unmatchable arcs in a graph G. (Hint: 
First find a perfect matching. Then show how to find in O(m) time all unmatchable 
arcs incident to any node i.) 

12.43. Consider a non bipartite graph G that has a perfect matching. In general, we might 
expect that a maximum weight matching of G would be perfect. Show that this is not 
always true by constructing an example in which a maximum weight matching is not 
a perfect matching. (Hint: Try an example with four nodes.) 

Figure 12.26 Policemen's problem. 

508 Assignments and Matchings Chap. 12 



12.44. Describe a polynomial-time algorithm for solving the maximum weight matching prob
lem on a tree. 

12.45. Policemen's problem (Gondran and Minoux [1984]). Consider an undirected graph 
shown in Figure 12.26, which represents the street map of a town. A policeman stand
ing in the middle of a street can survey the crossings at the two ends of the street. 
What is the smallest number of policemen needed to survey all the crossings in the 
network? (Hint: Use the result of a previous exercise.) 

Chap. 12 Exercises 509 



13 

MINIMUM SPANNING TREES 

Chapter Outline 

13.1 Introduction 
13.2 Applications 
13.3 Optimality Conditions 
13.4 Kruskal's Algorithm 
13.5 Prim's Algorithm 
13.6 SoUin's Algorithm 
13.7 Minimum Spanning Trees and Matroids 
13.8 Minimum Spanning Trees and Linear Programming 
13.9 Summary 

18.1 INTRODUCTION 

I think I will never see, 
A poem as lovely as a tree. 

-Joyce Kilmer 

As we have seen repeatedly throughout earlier chapters, spanning trees playa central 
role within the field of network flows. In solving the shortest path problem in Chap
ters 4 and 5, we constructed (shortest path) spanning trees rooted at a source node. 
The simplex method for solving minimum cost flow problems that we discussed in 
Chapter 11 is a spanning tree manipulation algorithm that iteratively moves from 
one spanning tree to another, at each step introducing one arc into the spanning tree 
in place of another. As we have also seen in Chapter 11 (Theorem 11.3), minimum 
cost flow problems always have spanning tree solutions; therefore, in principle to 
solve any minimum cost network flow problem, including shortest path problems 
and maximum flow problems, we can always restrict our attention to spanning tree 
solutions. Since any network has only a finite number of spanning trees, we can 
view any network flow problem as a discrete optimization model and solve it in a 
finite number of iterations. 

In this chapter we consider another spanning tree model, known as the mini
mum spanning tree problem. Recall that a spanning tree Tof G is a connected acyclic 
subgraph that spans all the nodes. Every spanning tree of G has n - 1 arcs (see 
Property 2.2). Given an undirected graph G = (N, A) with n = I N I nodes and 
m = I A I arcs and with a length or cost cij associated with each arc (i, j) E A, we 
wish to find a spanning tree, called a minimum spanning tree, that has the smallest 
total cost (or length) of its constituent arcs, measured as the sum of costs of the arcs 

510 



in the spanning tree. Note that minimal spanning trees differ from the shortest path 
tree that we have considered in Chapters 4 and 5 in the following two respects: 

1. For the minimum spanning tree problem, the arcs are undirected. [Since the 
network is undirected, we refer to the arc between the node pair i and j as 
either (i, j) or (j, i).] For the version of the shortest path problems that we 
considered previously, the networks were directed. This distinction is unim
portant in one sense: We could easily have developed our prior results for 
shortest path problems using undirected graphs as well as directed graphs (see 
Section 2.4). Viewed in another way, however, this distinction is important: 
Finding a minimum spanning tree on a directed network with all paths directed 
away from a given root node (this structure is known as a rooted arborescence) 
is a much more difficult problem than the undirected minimum spanning tree 
problem. 

2. Our objective functions for the minimum spanning tree problem and for the 
shortest path tree problem are quite different. For the minimal spanning tree 
probi~m, we count the cost of each arc exactly once; for the shortest path tree 
problem, we typically count the cost of some arcs several times: equal to the 
number of paths from the root node that pass through that arc (i.e., the number 
of shortest paths in the tree that contain that arc). 

The minimum spanning tree problem arises in a number of applications, both 
as a stand-alone problem and as a subproblem in a more complex problem setting. 
We begin this chapter by describing several such applications. We next consider 
combinatorially based optimality conditions for assessing whether a given spanqing 
tree is a minimum spanning tree. We consider two such optimality conditions. The 
first condition is based on comparing the cost of any tree arc with the other arcs 
contained in the cut defined by removing that arc from the tree. The other is based 
on comparing the cost of a nontree arc with the tree arcs in the path that connects 
the endpoints of the nontree arc. These two cut and path optimality conditions are 
easy to state and to develop, yet they quite naturally motivate several algorithms 
for solving the minimum spanning tree problem. 

The resulting algorithms are all very simple, although implementing them ef
ficiently requires considerable care and ingenuity. The three algorithms we consider 
in this chapter-Kruskal's algorithm, Prim's algorithm, and SoUin's algorithm-all 
share one characteristic: They are "greedy" algorithms in the sense that at each 
step they add an arc of minimum cost from a candidate list, as long as the added 
arc does not form a cycle with the arcs already chosen. All three algorithms maintain 
a forest containing arcs already chosen and then they add one or more arcs to enlarge 
the size ofthe forest. For Kruskal's algorithm, the candidate list is the entire network; 
for Prim's algorithm, the forest is a single tree plus a set of isolated nodes and the 
candidate list contains all the arcs between the single tree and the nodes not in the 
tree; SoUin's algorithm is a hybrid approach that maintains several components in 
the forest, as in Kruskal's algorithm, but then adds several arcs at each iteration, 
choosing (like Prim's algorithm) the minimum cost arc connecting each component 
of the forest to the nodes not in that component. 

Since greedy algorithms, such as Kruskal's, Prim's, and Sollin's, arise in many 

Sec. 13.1 Introduction 511 



other problem contexts in discrete optimization, in Section' 13.7 we show how a 
generalization of Kruskal's algorithm will solve a broad class of abstract combi
natorial optimization problems known as matroid optimizaiio~ problems. This dis
cussion not only permits us to show how to solve a new class of combinatorial 
optimization problems, but also provides additional insight concerning the combi
natorial structure of spanning trees that underlies the validity of the greedy solution 
approach. 

Mathematical programming has another useful way to view the minimal span
ning tree problem. In Section 13.8 we formulate the minimal spanning tree problem 
as an integer programming model and use linear programming arguments to establish 
yet another proof of the validity of Kruskal' s algorithm. This discussion serves sev
eral purposes: (1) it gives another useful view of minimum spanning trees; (2) it 
illustrates a proof technique, via linear programming, that has proven to be very 
powerful in the field of combinatorial optimization; and (3) it provides a bridge 
between the minimum spanning tree problem and an important topic in discrete 
optimization, polyhedral combinatorics (i.e., the study of integer polyhedra). 

In closing this section we might note that we can also define and study the 
maximum spanning tree problem, which as its name implies, seeks the spanning tree 
with the largest total costs of its constituent arcs. Since we can find a maximum 
spanning tree by multiplying all the arc costs by - 1 and then solving a minimum 
spanning tree, the algorithms and theory of the maximum spanning tree problem are 
essentially the same as those of the minimum spanning tree problem. . 

18.2 APPLICATIONS 

Minimum spanning tree problems generally arise in one of two ways, directly or 
indirectly. In some direct applications, we wish to connect a set of points using the 
least cost or least length collection of arcs. Frequently, the points represent physical 
entities such as components of a computer chip, or users of a system who need to 
be connected to each other or to a central service such as a central processor in a 
computer system. In indirect applications, we either (1) wish to connect some set 
of points using a measure of performance that on the surface bears little resemblance 
to the minimum spanning tree objective (sum of arc costs), or (2) the problem itself 
bears little resemblance to an "optimal tree" problem-in these instances, we often 
need to be creative in modeling the problem so that it becomes a minimum spanning 
tree problem. In this section we consider several direct and indirect applications. 

Application 18.1 Designing Physical Systems 

The design of physical systems can be a complex task involving an interplay between 
performance objectives (such as throughput and reliability), design costs and op
erating economics, and available technology. In many settings, the major criterion 
is fairly simple: We need to design a network that will connect geographically dis
persed system components or that will provide the infrastructure needed for users 
to communicate with each other. In many of these settings, the system need not 
have any redundancy, so we are interested in the simplest possible connection, 
namely, a spanning tree. This type of application arises in the construction (or in-

512 Minimum Spanning Trees Chap. 13 



stallation) of numerous physical systems: highways, computer networks, leased-line 
telephone networks, railroads, cable television lines, and high-voltage electrical 
power transmission lines. For example, this type of minimum spanning tree problem 
arises in the following problem settings: 

1. Connect terminals in cabling the panels of electrical equipment. How should 
we wire the terminals to use the least possible length of the wire? 

2. Coqstructing a pipeline network to connect a number of towns using the small
est possible total length of pipeline. 

3. Linking isolated villages in a remote region, which are connected by roads but 
not yet by telephone service. In this instance we wish to determine along which 
stretches of roads we should place telephone lines, using the minimum possible 
total miles of the lines, to link every pair of villages. 

4. Constructing a digital computer system, composed of high-frequency circuitry, 
when it is important to minimize the length of wires between different com
ponents to reduce both capacitance and delay line effects. Since all components 
must be connected, we obtain a spanning tree problem. 

5. Connecting a number of computer sites by high-speed lines. Each line is avail
able for leasing at a certain monthly cost, and we wish to determine a con~ 
figuration that connects all the sites at the least possible cost. 

Each of these applications is a direct application of the minimum spanning tree 
problem. We next describe several indirect applications. 

Application 18.2 Optimal Message Passing 

An intelligence service has n agents in a nonfriendly country. Each agent knows 
some of the other agents and has in place procedures for arranging a rendezvous 
with anyone he knows. For each such possible rendezvous, say between agent i and 
agent j, any message passed between these agents will fall into hostile hands with 
a certain probability pij. The group leader wants to transmit a confidential message 
among all the agents while minimizing the total probability that the message is in
tercepted. 

If we represent the agents by nodes, and each possible rendezvous by an arc, 
then in the resulting graph G we would like to identify a spanning tree T that min
imizes the probability of interception given by the expression {I - n(!,j)ET (1 -
Pij)}' Alternatively, we would like to find a tree T that maximizes nU,j)ET (1 - Pij). 
We can identify such a tree by defining the length of an arc (i,j) as 10g(1 - Pu-) and 
solving a maximum spanning tree problem. 

Application 18.8 All-Pairs Minimax Path Problem 

The minimax path problem is a variant of the maximum capacity path problem that 
we discussed in Exercise 4.37. In a network G = (N, A) with arc costs cij, we define 
the value of a path P from node k to node I as the maximum cost arc in P. The all
pairs minimax path problem requires that we determine, for every pair [k, l] of nodes, 
a minimum value path from node k to node I. We show how to solve the all-pairs 

Sec. 13.2 Applications 513 

! 



minimax path problem on an undirected graph by solving a single minimum spanning 
tree problem. 

The minimax path problem arises in a variety of situatiOns. As an example, 
consider a spacecraft that is about to enter the earth's atmosphere. The craft passes 
through different pressure and temperature zones that we can represent by arcs of 
a network. It needs to fly along a trajectory that will bring the craft to the surface 
of the earth while keeping the maximum temperature to which the surface of the 
craft is exposed as low as possible. As an alternative, we might wish to select a path 
that will minimize the maximum deceleration during the descent. Other examples 
of the minimax path problem arise when (1) in traveling through a desert, we want 
to minimize the length of the longest stretch between rest areas; and (2) in traveling 
in a wheelchair, a person might wish to minimize the maximum ascent along the 
path segments. 

To transform the all-pairs minimax path problem into a minimum spanning tree 
problem, let T* be a minimum spanning tree of G. Let P denote the unique path in 
T* between a node pair [p, q] and let (i, j) denote the maximum cost arc in P. 
Observe that the value of the path P is cij. By deleting arc (i, j) from T*, we partition 
the node set N into two subsets and therefore define a cut [S, 5] with i E Sand 
j E 5 (see Figure 13.1). We later show in Theorem 13.1 that this cut satisfies the 
following property: 

for each arc (k, l) E [S, S], (13.1) 

for otherwise by replacing the arc (i, j) by an arc (k, I) we can obtain a spanning 
tree of smaller cost. Now, consider any path pi from node p to node q. This path 
must contain at least one arc (k, l) in [S, 5]. Property (13.1) implies that the value 
of the path pi will be at least Cij. Since Cij is the value of the path P, P must be a 
minimum value path from node p to node q. This observation establishes the fact 
that the unique path between any pair of nodes in T* is the minimum value path 
between that pair of nodes. 

Application 18.4 Reducing Data Storage 

In several different application contexts, we wish to store data specified in the form 
of a two-dimensional array more efficiently than storing all the elements of the array 

514 

s 

" / -- ./ -----' 
/ 

I 
I 

/ 
/ 

/ 

/---- ........ 
./ "-

/ " / "-
/ "-

/ \ 
/ \ 
I \ 
I \ 

/ 

......... ----_/./ 

I 
I 
/ 

/ 
/ 

/ 

Figure 13.1 Cut formed by deleting the arc (i, j) from a spanning tree. 

Minimum Spanning Trees Chap. 13 



(to save memory space). We assume that the rows of the array have many similar 
entries and differ only at a few places. One such situation arises in the sequence of 
amino acids in a protein found in the mitochondria of different animals and higher 
plants. 

Since the entities in the rows are similar, one approach for saving memory is 
to store one row, called the reference row, completely, and to store only the dif
ferences between some of the rows so that we can derive each row from these 
differences and the reference row. Let cij denote the number of different entries in 
rows i andj; that is, if we are given row i, then by making cij changes to the entries 
in this row we can obtain row j, and viFe versa. Suppose that the array contains 
four rows, represented by R I, R2, R 3 , and R 4 , and we decide to treat R I as a reference 
row. Then one plausible solution is to store the differences between R I and R2, R2 
and R 4 , and RI and R 3 . Clearly, from this solution, we can obtain rows R2 and R3 
by making C12 and C13 changes to the elements in row R I. Having obtained row R2 , 

we can make C24 changes to the elements of this row to obtain R4 • 

It is easy to see that it is sufficient to store differences between those rows 
that correspond to arcs of a spanning tree. These differences permit us to obtain 
each row from the reference row. The total storage requirement for a particular 
storage scheme will be the length of the reference row (which we can take as the. 
row with the least amount of data) plus the sum of the differences between the rows. 
Therefore, a minimum spanning tree would provide the least cost storage scheme. 

Application 18.5 Cluster Analysis 

The essential issue in cluster analysis is to partition a set of data into "natgral 
groups"; the data points within a particUlar group of data, or a cluster, should be 
more "closely related" to each other than the data points not in that cluster. Cluster 
analysis is important in a variety of disciplines that rely on empirical investigations. 
Consider, for example, an instance of a cluster analysis arising in medicine. Suppose 
that we have data on a set of 350 patients, measured with respect to 18 symptoms. 
Suppose, further, that a doctor has diagnosed all of these patients as having the 
same disease, which is not well understood. The doctor would like to know if he 
can develop a better understanding of this disease by categorizing the symptoms 
into smaller groupings that can be detected through cluster analysis. Doing so might 
permit the doctor to find more natural disease categories to replace or subdivide the 
original disease. 

In this section we describe the use of spanning tree problems to solve a class 
of problems that arise in the context of cluster analysis. Suppose that we are inter
ested in finding a partition of a set of n points in two-dimensional Euclidean space 
into clusters. A popular method for solving this problem is by using Kruskal's al
gorithm for solving the minimum spanning tree problem (we describe this method 
in Section 13.4). As we will show, at each intermediate iteration, Kruskal's algorithm 
maintains a forest (i.e., a collection of node-disjoint trees) and adds arcs in non
decreasing order of their lengths. We can regard the nodes spanned by the trees at 
intermediate steps as different clusters. These clusters are often excellent solutions 
for the clustering problem, and moreover, we can obtain them very efficiently. Krus
kal's algorithm can be thought of as providing n partitions: The first partition contains 

Sec. 13.2 Applications 515 



0 

0 

0 
00 

n clusters, each cluster containing a single point, and the last partition contains just 
one cluster containing all the points. Alternatively, we can obtain n partitions by 
starting with a minimum spanning tree and deleting tree arcs" One by one in nonin
creasing order of their lengths. We illustrate the latter approach using an example. 
Consider a set of 27 points shown in Figure 13.2(a). Suppose that the network in 
Figure 13.2(b) is a minimum spanning tree for these points. Deleting the three largest 
length arcs from the minimum spanning tree gives a partition with four clusters shown 
in Figure 13.2(c). 

0 

~ 
0 0 

~ 0 o 0 0 

o 0 
0 

0 
000 ~ Ifoo 0 o 0 0 

0 o 00 

(a) (b) (c) 

Figure 13.2 Identifying clusters by finding a minimum spanning tree. 

Analysts can use the information obtained from the preceding analysis in sev
eral ways. The procedure we have described yields n partitions. Out of these, we 
might select the' 'best" partition by simple visualization or by defining a~ appropriate 
objective function value. A good choice of the objective function depends on the 
underlying features of the particular clustering application. We might note that this 
analysis is not limited to points in two-dimensional space; we can easily extend it 
to multidimensional space if we define interpoint distances appropriately. 

18.8 OPTIMALITY CONDITIONS 

As in our earlier discussion of network flow algorithms, optimality conditions for 
the minimum spanning tree problem playa central role in developing algorithms and 
establishing their validity. For the minimum spanning tree problem, we can formulate 
the optimality conditions in two important ways: cut optimality conditions and path 
optimality conditions. Needless to say, both optimality conditions are equivalent. 
Before considering these conditions, let us establish some further notation and il
lustrate some basic concepts. 

The subgraphs shown in Figures 13.3(b) and 13.3(c) are spanning trees for the 
network shown in Figure 13.3(a). However, the subgraph shown in Figure 13.3(d) 
is not a spanning tree because it is not connected, and the subgraph shown in Figure 
13.3(e) is not a spanning tree because it contains a cycle 1-3-4-1. We refer to those 
arcs contained in a given spanning tree as tree arcs and to those arcs not contained 
in a given spanning tree as nontree arcs. The following two elementary observations 
will arise frequently in our development in this chapter. 

516 Minimum Spanning Trees Chap. 13 



(a) (b) 
t)---~~ 

(c) 

(d) (e) 

Figure 13.3 Illustrating spanning trees: (a) underlying graph; (b) two spanning trees; (c) 
nonspanning tree (disconnected graph); (d) nonspanning tree (doesn't span all nodes); (e) 
another nonspanning tree (cyclic graph). 

1. For every nontree arc (k, I), the spanning tree T contains a unique path from 
node k to node I. The arc (k, I) together with this unique path defines a cycle 
[see Figure 13.4(a)]. 

2. If we delete any tree arc (i,j) from a spanning tree, the resulting graph partitions 
the node set N into two subsets [see Figure 13.4(b)]. The arcs from the uri: 

- - - - - - - - - - - - --t!§9,?;~----!;,ImJ 

(a) 

s s 

(b) 

Figure 13.4 Illustrating properties of a spanning tree: (a) adding arc (3, 9) to the 
spanning tree forms the unique cycle 3-4-5-9-3; (b) deleting arc (4, 5) forms the cut 
[S, S] with S = {I, 2, 3, 4}. 

Sec. 13.3 Optimality Conditions 517 



derlying graph G whose two endpoints belong to the-different sub~ets constitute 
a cut. 

We next prove the two optimality conditions. 

Theorem 13.1 (Cut Optimality Conditions). A spanning tree T* is a minimum 
spanning tree if and only if it satisfies the following cut optimality conditions: For 
every tree arc (i, j) E T*, c ij ::s Ckl for every arc (k, l) contained in the cut formed 
by deleting arc (i, j) from T*. 

Proof It is easy to see that every minimum spanning tree T* must satisfy the 
cut optimality condition. For, if cij > Ckl and arc (k, I) is contained in the cut formed 
by deleting arc (i, j) from T*, then introducing arc (k, l) into T* in place of arc 
(i, j) would create a spanning tree with a cost less than T*, contradicting the opti
mality of T* . 

We next show that if any tree T* satisfies the cut optimality conditions, it must 
be optimal. Suppose that TO is a minimum spanning tree and TO =F- T*. Then T* 
contains an arc (i, j) that is not in yo (the reader might find it helpful to refer to 
Figure 13.5 while reading the rest of the proof). Deleting arc (i, j) from T* creates 
a cut, say [S, S). Now notice that if we add the arc (i, j) to TO, we create a cycle 
W that must contain an arc (k, l) [other than arc (i, j)] with k E S and I E S. Since 
T* satisfies the cut optimality conditions, Cij ::s Ckl. Moreover, since TO is an optimal 
spanning tree, cij ;::: Ckl, for otherwise we could improve on its cost by replacing arc 
(k, l) by arc (i, j). Therefore, cij = Ckl. Now if we introduce arc (k, l) in the tree T* 
in place of arc (i, j), we produce another minimum spanning tree and it has one more 
arc in common with YO. Repeating this argument several times, we can transform 
T* into the minimum spanning tree TO. This construction shows that T* is also a 
minimum spanning tree and completes the proof of the theorem. • 

The cut optimality conditions imply that every arc in a minimum spanning tree 
is a minimum cost arc across the cut that is defined by removing it from the tree. 
In fact, the cut optimality conditions also imply that we can always include any 
minimum cost arc in any cut in some minimum spanning tree, which we state in the 
following somewhat stronger form. 

s s 
--~---

/~ " 
/ , 

/ , 
/ "-

/ T* \ 
I \ 
I I 
\ \ I 
\ \ / 

\ / \ / "- ----T-------~---- / , / , / 

"- // "- // ----- - -------
Figure 13.5 Proving cut and path optimality conditions. 

518 Minimum Spanning Trees Chap. 13 



Property 13.2. Let F be a subset of arcs in some minimum cost spanning tree 
and let S be a set of nodes of some component ofF. Suppose that (i, j) is a minimum 
cost arc in the cut [S, S]. Then some minimum spanning tree contains all the arcs 
in F as well as the arc (i, j). 

Proof. Suppose that F is a subset of the minimum cost tree T*. If (i, j) E T*, 
we have nothing to prove. So suppose that (i, j) E T*. Adding (i, j) to T* creates 
a cycle C, and C contains at least one arc (p, q) =F (i,j) in [S, S] . .By assumption, 
Cij ::5 cpq • Also, since T* satisfies the cut optimality conditions, Cij ;::: Cpq • Conse
quently, Cij = Cpq , so adding arc (i, j) to T* and removing arc (p, q) produces a 
minimum spanning tree containing all the arcs in F as well as the arc (i, j). • 

The cut optimality conditions provide us with an "external" characterization 
of a minimum spanning tree that rests on the relationship between a single arc in 
the tree and many arcs outside the tree, that is, those in the cut that we produce by 
removing the arc from the tree. The following related path optimality conditions 
provide an alternative "internal" characterization that considers the relationship 
between a single nontree arc and several arcs in the tree, that is, those in the path 
formed by adding the nontree arc to the spanning tree. 

Theorem 13.3 (Path Optimality Conditions). A spanning tree T* is a minim'um 
spanning tree if and only if it satisfies the following path optimality conditions: For 
every nontree arc (k, I) of G, Cij ::5 Ckl for every arc (i, j) contained in the path in 
T* connecting nodes k and I. 

Proof It is easy to show the necessity of the path optimality conditions. Sup
pose T* is a minimal spanning tree satisfying these conditions and arc (i, j) i~ con
tained in the path in T* connecting nodes k and I. If Cij > Ckl, introducing arc (k, l) 
into T* in place of arc (i, j) would create a spanning tree with a cost less than T*, 
contradicting the optimality of T*. 

We establish the sufficiency of the path optimality conditions by using the 
sufficiency of the cut optimality conditions. This proof technique highlights the 
equivalence between these conditions. We will show that if a tree T* satisfies the 
path optimality conditions, it must also satisfy the cut optimality conditions; Theorem 
13.1 would then imply that T* is an optimal tree. Let (i, j) be any tree arc in T*, 
and let Sand S be the two sets of connected nodes produced by deleting arc (i, j) 
from T*. Suppose i E S andj E S. Consider any arc (k, l) E [S, S] (see Figure 13.5). 
Since T* contains a unique path joining nodes k and I and since arc (i, j) is the 
only arc in T* joining a node in S and a node in S, arc (i, j) must belong to this 
path. The path optimality condition implies that Cij ::5 Ckl; since this condition 
must be valid for every nontree arc (k, l) in the cut [S, S] formed by deleting any 
tree arc (i,j), T* satisfies the cut optimality conditions and so it must be a minimum 
spanning tree. • 

In the preceding discussion we have established two optimality conditions for 
the minimum spanning tree problem. The following optimality conditions for the 
maximum spanning tree problem are similar. We leave their proofs as an exercise 
(see Exercise 13.9). 

Sec. 13.3 Optimality Conditions 519 



Theorem 13.4 (Maximum Spanning Tree Optimality Conditions). 
(a) A spanning tree T* is a maximum spanning tree if and only if it satisfies the 

following cut optimality conditions: For every tree dYc. (i, j) E T*, cij ;:::: ckzior 
every arc (k, l) contained in the cut formed by deleting arc (i, j) from T*. 

(b) A spanning tree is a maximum spanning tree T* if and only if it satisfies the 
following path optimality conditions: For every nontree arc (k, l) of G, Cij ;:::: Ckl 
for every arc (i, j) contained in the tree path in T* connecting nodes k and I. 

18.4 KRUSKAL'S ALGORITHM 

The path optimality conditions immediately suggest the following straightforward 
algorithm for solving the minimum spanning tree problem. We start with any arbitrary 
spanning tree T and test the path optimality conditions. If T satisfies this condition, 
it is an optimal tree; otherwise, Cij > Ckl for some nontree arc (k, l) and some tree 
arc (i, j) contained in the unique path in T connecting nodes k and I. In this case, 
adding arc (k, l) to T in place of arc (i, j) gives us a spanning tree with a lower cost. 
Repeating this step will give us a minimum spanning tree within a finite number of 
iterations. Although this algorithm is strikingly simple, its running time cannot be 
polynomially bounded in the size of the problem data. 

Simple Version of Kruskal's Algorithm 

To derive an alternative and more efficient algorithm, known as Kruskal's algorithm, 
from the path optimality conditions, we"consider an algorithm that builds an optimal 
spanning tree from scratch by adding one arc at a time. We first sort all the arcs in 
nondecreasing order of their costs and define a set, LIST, that is the set of arcs we 
have chosen as part of a minimum spanning tree. Initially, the set LIST is empty. 
We examine the arcs in the sorted order one by one and check whether adding the 
arc we are currently examining to LIST creates a cycle with the arcs already in 
LIST. If it does not, we add the arc to LXST; otherwise, we discard it. We terminate 
when I LIST I = n - 1. At termination, the arcs in LIST constitute a minimum 
spanning tree T*. 

The correctness of Kruskal's algorithm follows from the fact that we discarded 
each nontree arc (k, l) with respect to T* at some stage because it created a cycle 
with the arcs already in LIST. But observe that the cost of arc (k, I) is greater than 
or equal to the cost of every arc in that cycle because we examined the arcs in the 
non-decreasing order of their costs. Therefore, the spanning tree T* satisfies the path 
optimality conditions, so it is an optimal tree. 

To iUustrate Kruskal's algorithm on a numerical example, we consider the 
network shown in Figure 13.6(a). Sorted in the order of their costs, the arcs are 
(2, 4), (3, 5), (3, 4), (2, 3), (4, 5), (2, 1), and (3, 1). In the first three iterations, the 
algorithm adds the arcs (2, 4), (3, 5), and (3, 4) to LIST [see Figures 13.6(b) to (d)]. 
In the next two iterations, the algorithm examines arcs (2, 3) and (4, 5) and discards 
them because the addition of each arc to LIST creates a cycle [see Figure 13.6(e) 
and (1)]. Then the algorithm adds arc (2, 1) to LIST and terminates. Figure 13.6(g) 
shows the minimum spanning tree. 

We might view the running time of Kruskal's algorithm as being composed of 

520 Minimum Spanning Trees Chap. 13 



(a) 

(b) (c) (d) 

(e) (0 (g) 

Figure 13.6 Illustrating Kruskal's algorithm. 

the time for sorting the arcs and the time for detecting cycles. For a network with 
arbitrarily large arc costs, sorting requires O(m log m) = O(m log n2

) = O(m log n) 
time. The time to detect a cycle depends on the method we use for this step. One 
naive method would work as follows. The set LIST at any stage of the algorithm is 
a/orest (i.e., a collection of subtrees). For example, the set LIST corresponding to 
Figure 13.6(c) consists of three trees containing the nodes {I}, {2, 4}, and {3, 5}, 
respectively. We denote these sets of nodes for a collection of trees by N J , N 2 , 

N 3 , •••• We can store these sets as different singly linked lists. While examining 
an arc (k, I), we scan through these linked lists and check whether both the nodes 
k and I belong to the same list. If so, adding arc (k, I) to LIST creates a cycle and 
we discard this arc. If nodes k and I belong to different lists, we add arc (k, l) to 
LIST, which requires merging the lists containing nodes k and I into a single list. 
Clearly, this data structure requires O(n) time for each arc that we examine, so if 
we use this data structure, Kruskal's algorithm runs in O(nm) time. 

Improved Implementation of Kruskal's Algorithm 

We now describe a more efficient implementation of Kruskal's algorithm that runs 
in O(m + n log n) time plus the time taken for sorting the arcs. This implementation 
is similar to the preceding one: We store the collection of trees, denoted by the sets 

Sec. 13.4 Kruskal's Algorithm 521 



N 1, N 2, N 3, . . . , as different singly linked lists. With each list L, we maintain two 
indices: size(L), representing the number of elements in th~ tist L; and last(L), rep
resenting the last element in the list L. For each element i, we associate an index 
first(i) that stores the first element in the list containing node i. For example, if 
L = {1, 5, 6}, then size(L) = 3; last(L) = 6; and first(1) = first(5) = first(6) = 1. 

U sing this scheme, we can easily check whether the nodes k and I belong to 
the same list. If first(k) = first(l), they do; otherwise, they don't. This step con
tributes a total of O(m) time to the running time of the algorithm. When we add the 
arc (k, I) to LIST, we need to merge the lists containing the nodes k and I. To merge 
these two lists, we always put the larger list first, breaking ties arbitrarily. The size 
indices allow us to determine the larger list, and last indices allow us to determine 
the last element of the larger list where we append the smaller list. As a result of 
the merge operation, several indices change. Updating the size and last indices is 
easy and requires 0(1) effort. To update the first indices, we need to modify this 
index for every node in the smaller list; the time required for this operation is pro
portional to the number of elements in the list. Suppose that the time required to 
merge the two lists Land L' of sizes h and h' (with h::5 h') is ph for some constant 
p. We shall show that the total time required in all the mergings is O(n log n). 

We prove this result using an induction argument. We claim that the total time 
required to obtain a merged list of size n is at most pn log n for some constant p. 
This result is clearly true for n = 1, since this case requires no mergings. Let us 
assume inductively that the result is true for any number of elements strictly less 
than n. 

When we carry out the algorithm, we ultimately obtain a single list of n ele
ments, obtained by appending two smaller lists Land L I containing hand n - h 
elements. Let us assume that h ::5 n12, so that we place list L after list L I in the 
merge operation. By the inductive hypothesis, the time needed to create L is at most 
ph log h and the time needed to create L' is at most p(n - h) log(n - h). Since 
the time needed for merging the two lists is at most ph, the total time required for 
all the merging steps is at most 

ph log h + p(n - h) log(n - h) + ph ::5 ph log(nI2) + p(n - h)log n + ph 

= ph(log n - 1) + p(n - h)log n + ph 

= pn log n. 

The following theorem summarizes the implication of this result. 

Theorem 13.5. The improved implementation of Kruskal's algorithm solves 
the minimum spanning tree problem in O(m + n log n) time plus the time for sorting 
the arcs. 

Kruskal's algorithm requires two basic operations on lists of elements, which 
are commonly known as union-find operations. The union operation merges two lists 
and the find operation determines the list an element belongs to. Although our im
plementation of Kruskal's algorithm gives an attractive running time of O(m + 
n log n), in addition to the time for sorting, we could improve on this time even 
further by using better implementations of the union-find operations. The improved 

522 Minimum Spanning Trees Chap. 13 



implementation has a running time of O(m a(n, m)) for a function a(n, m) that grows 
so slowly that for all practical purposes it can be viewed as a constant less than 6 
(see the reference notes). 

18.5 PRIM'S ALGORITHM 

Just as the path optimality conditions allowed us to develop Kruskal's algorithm, 
the cut optimality conditions permit us to develop another simple algorithm for the 
minimum spanning tree problem, known as Prim's algorithm. This algorithm builds 
a spanning tree from scratch by fanning out from a single node and adding arcs one 
at a time. It maintains a tree spanning on a subset S of nodes and adds a nearest 
neighbor to S. The algorithm does so by identifying an arc (i, j) of minimum cost 
in the cut [S, S]. It adds arc (i,j) to the tree, nodej to S, and repeats this basic step 
until S = N. The correctness of the algorithm follows directly from Property 13.2 
since this result implies that each arc that we add to the tree is contained in some 
minimum spanning tree with the arcs that we have selected in the previous steps. 

We illustrate Prim's algorithm on the same example, shown in Figure 13.7(a), 
that we used earlier to illustrate Kruskal's algorithm. Suppose, initially, that S = 

{1}. The cut [S, S] contains two arcs, (1, 2) and (1, 3), and the algorithm selects the' 
arc (1, 2) [see Figure 13.7(b)]. At this point S = {1, 2} and the cut [S, S] contains 
the arcs (1, 3), (2, 3), and (2, 4). The algorithm selects arc (2, 4) since it has the 
minimum cost among these three arcs [see Figure 13.7(c)]. In the next two iterations, 
the algorithm adds arc (4, 3) and then arc (3, 5); Figure 13.7(d) and (e) show the 
details of these iterations. Figure 13. 7(t) shows the minimum spanning tree produced 
by the algorithm. 

To analyze the running time of Prim's algorithm, we consider each of the 
n - 1 iterations that the algorithm performs as it adds one arc at a time to the tree 
until it has a spanning tree with n - 1 arcs. In each iteration, the algorithm selects 

(a) (b) 

Figure 13.7 Illustrating Prim's algorithm. 

Sec. 13.5 Prim's Algorithm 

..... ..... ..... 
40 ..... [:0)~';'}---F;"~ 

(c) 

(0 

523 



the minimum cost arc in the cut [S, S]. If we scan the entire arc list to identify the 
minimum cost arc, this operation requires O(m) time, giving.us an O(nm) time bound 
for the algorithm. Therefore, this implementation of Prim's algorithm runs in O(nm) 
time. However, we can improve upon it substantially, as we next show. 

The bottleneck step in the O(nm) implementation of Prim's algorithm is the 
identification of a minimum cost arc in the cut [S, S]. We.£an improve the efficiency 
of this step by maintaining two indices for each nodej in S: (1) a distance label d( j), 
which represents the minimum cost of arcs in the cut incident to a node j not in S 
(i.e., d(j) == min{cij:(i, j) E [S, Sm, and (2) a predecessor label pred(j), which 
represents the other endpoint of the minimum cost arc in the cut incident to node 
j. For example, in Figure 13.7(d), three arcs, (1, 3), (2, 3), and (4, 3), in the cut are 
incident to node 3. Among these arcs, arc (4, 3) has the minimum cost of 20. There
fore, d(3) == 20 and pred(3) == 4. For the same figure, d(5) == 30 and pred(5) == 4. 
If we maintain these indices, we can easily find the minimum cost of an arc in the 
cut; we simply compute min{d(j):j E S}. If node i achieves this minimum, (pred(i), 
i) is a minimum cost arc in the cut. Observe that if we move node i from S to S, we 
need to update the distance and predecessor labels only for the nodes adjacent to 
node i. 

Notice the similarity between this implementation of Prim's algorithm and the 
implementation of Dijkstra's algorithm that we discussed in Section 4.5. Just as in 
Dijkstra's algorithm, the basic operations are finding the minimum distance label 
d(i) among the nodes in the set S, moving the corresponding node into the set S, 
and updating the distance labels of those nodes in S that are adjacent to node i. 
Indeed, we can implement Prim's algorithm using the various types of heaps (or 
priority queues) that we used in our implementations of Dijkstra' s algorithm in Sec
tion 4.7. Recall from Appendix A that a heap is a data structure that permits us to 
perform the following operations on a collection H of objects, each having an as
sociated real number called its key. 

create-heap (H). Create an empty heap H. 
find-minCH). Find and return an object from H with the minimum key. 
insert(i, H). Insert a new object i with a predefined key into a collection H of 
objects. 
decrease-key(i, value, H). Reduce the key of an object i in H to value, which 
must be smaller than the key it is replacing. 
delete-min(i, H). Delete an object i with the minimum key from the collection 
H of objects. 

Observe that if we implement Prim's algorithm using a heap, H would be the 
collection of nodes in S and the key of a node would be its distance label. Prim's 
algorithm would be implemented as described in Figure 13.8. As always, we let C 
denote the maximum arc cost in the graph G. 

As is clear from its description, Prim's algorithm performs the operations find
min, delete-min, and insert at most n times and the operation decrease-key at most 

524 Minimum Spanning Trees Chap. 13 



algorithm heap-Prim; 
begin 

create-heap( H); 
for each j E N - {1} do d(j) : = C + 1; 
set d(1) : = 0; and pred(1) : = 0; 
for each j E N do insert(j, H); 
T*: = 0; 
while [T*[ < (n - 1) do 
begin 

find-min(i, H); 
delete-min(i, H); 
T*: = T* u (pred(i), i); 
for each (i, j) E A(i) with j E H do 

if d(j) > Clj then 
begin 

d(j) : = Clj; 

pred( j) : = i; 
decrease-key(j, cij, H); 

end; 
end; 

T* is a minimum spanning tree; 
end; Figure 13.8 Prim's algorithm. 

m times. When implemented with different heaps, the algorithm would have the 
running times shown in Figure 13.9. 

Our discussion of the binary heap, d-heap, and Fibonacci heap data structures 
in Appendix A permits us to justify these time bounds. In that discussion we show 
that the d-heap data structure performs each delete-min operation in O(d logdn) time 
and every other heap operation in O(lOgdn) time. If we select d = min, this result 
gives us a running time of O(m logdn + nd logdn) = O(m logdn) for Prim's algorithm 
implemented using the d-heap data structure. The binary heap is a special case of 
d-heap with d = 2, so its time bound is O(m log n). The Fibonacci heap data struc
ture performs each delete-min operation in O(log n) time and every other heap op
eration in 0(1) time. Consequently, the Fibonacci heap implementation of Prim's 
algorithm runs in O(m + n log n) time. 

Theorem 13.6. Fibonacci heap implementation of Prim's algorithm solves the 
minimum spanning tree problem in O(m + n log n) time. • 

Heap type Running time 
" 

Binary heap O(m log n) 

d-heap O(m logd n), with d = max{2, mIn} 

Fibonacci heap O(m + n log n) 

Johnson's data structure O(m log log C) 

Figure 13.9 Running times of various heap implementations of Prim's algorithm. 

Sec. 13.5 Prim's Algorithm 525 



18.6 SOLLIN'S ALGORITHM 

We can use the cut optimality conditions to derive another"nQ.vel algorithm for the 
minimum spanning tree problem, known as Sollin's algorithm. We can view this 
algorithm as a hybrid version of Kruskal's and Prim's algorithm. As in Kruskal's 
algorithm, Sollin's algorithm maintains a collection of trees spanning the nodes N J , 

N 2 , N 3 , ••• , and adds arcs to this collection. However, at every iteration, it adds 
minimum cost arcs emanating from these trees, an idea borrowed from Prim's al
gorithm. As a result, we obtain a fairly simple algorithm that uses elementary data 
structures and runs in O(m log n) time. As pointed out in the reference notes, a 
more clever implementation of this approach runs in O(m log log n) time. 

Sollin's algorithm repeatedly performs the following two basic operations: 

nearest-neighbor (Nk, ik, jk). This operation takes as an input a tree spanning 
the nodes Nk and determines an arc (h, jk) with the minimum cost among all 
arcs emanating from Nk [i.e., Cikik = min{cij:(i,j) E A, i E Nk andj E N k}]. 
To perform this operation we need to scan all the arcs in the adjacency lists 
of nodes in Nk, and find a minimum cost arc among those arcs that have one 
endpoint not belonging to N k. 

merge(h, jk). This operation takes as an input two nodes ik andjk, and if the 
two nodes belong to two different trees, then merges these two trees into a 
single tree. 

U sing these two basic operations, we state Sollin' s algorithm as shown in Figure 
13.10. 

We illustrate Sollin's algorithm on the same numerical example that we have 
used to illustrate Kruskal's and Prim's algorithms. As shown in Figure 13. 11 (b) , 
Sollin's algorithm starts with a forest containing five trees: Each tree is a singleton 
node. This figure also shows the least cost arc emanating from each tree. We next 
perform mergings, reducing the number of trees to only two [see Figure 13. l1(c)]. 
The least cost arc emanating from these two trees is (3, 4), and when we add this 
arc, we obtain the spanning tree shown in Figure 13.11(d). The algorithm now ter
minates. 

To analyze the running time of Sollin's algorithm, we need to discuss the data 
structure needed to implement it. We will show that the algorithm performs O(log n) 
executions of the while loop, and that we can perform all the nearest-neighbor and 

algorithm Sollin; 
begin 

for each i E N do N; : = {t}; 
T*: =£1; 
while WI < (n - 1) do 
begin 

for each tree Nkdo nearest-neighbor(Nk, ik, M; 
for each tree Nk do 

if nodes ik and jk belong to different trees then 
merge(ik, M and update T* : = T* U {(ik, M}; 

end; 
end; Figure 13.10 Sollin's algorithm. 

526 Minimum Spanning Trees Chap. 13 



~ 
10 

35 

40 

(a) 

20/'" 
/ . 

~ 
(c) (d) 

Figure 13.11 Illustrating SoUin's algorithm. 

merge operations in Oem) time. These results establish a time bound of Oem log n) 
for Sollin's algorithm. 

We store the nodes of a tree as a circular doubly linked list. The doubly linked 
list allows us to visit every node of the tree starting at any tree node. We assign a 
numerical label with every node in the network; the label satisfies the following two 
properties: (1) nodes of the same tree have the same label, and (2) nodes of differelJt 
trees have different labels. At the beginning of the algorithm, we assign label i to 
each node i E N. 

Using this data structure, we can easily check whether an arc (i, j) has both 
of its endpoints in the same tree: We answer this question simply by checking the 
labels of nodes i and j. This observation implies that we can perform the nearest
neighbor operation for each tree in the forest in a total time of O(LiEN 1 A(i) I) = 
Oem). 

We perform merge operations in a while loop using the following iterative 
scheme. In each iteration we select an unexamined tree, say NJ, and consider the 
minimum cost arc (it, jt) emanating from Nt. (Node it is in Nt andjt might or might 
not be in Nt.) Suppose that nodes in Nt have the label a. If node jt also has the 
label a, the iteration ends. Otherwise, we scan through the nodes of the tree, say 
N 2 , containing nodejt and assign them the label a. Next, we consider the minimum 
cost arc (i2, iz) emanating from N 2 • If nodeiz has label a, the iteration ends; other
wise, we scan through the nodes ofthe tree, say N 3 , containing nodeiz and assign 
them the label a. We repeat this process until the iteration ends. Notice that within 
an iteration we might assign the nodes of several trees the label of the first tree. 
When an iteration ends, we initiate a new iteration by selecting another unexamined 
tree. We terminate this iterative process when we have examined all the trees. As 
is clear from this description, this method assigns a label to each node once and 
hence runs in O(n) time. 

Having proved that each execution of the while loop in Sollin's algorithm re-

Sec. 13.6 SoWn's Algorithm 527 



quires Oem) time, we now obtain a bound on the number of executions of the loop. 
Each execution of the loop reduces the number of trees in the forest by a factor of 
at least two because we merge each tree into a larger tree. This observation implies 
that we will perform O(log n) executions of the loop. We have therefore established 
the following result. 

Theorem 13.7. The execution of Sollin's algorithm requires Oem log n) time. 

13.7 MINIMUM SPANNING TREES AND MATROIDS 

In keeping with the orientation of this. book, we have examined the minimum span
ning tree problem from a perspective of graph theory and the data structures needed 
to implement spanning tree algorithms efficiently. We could, instead, view the min
imum spanning tree problem and develop several of the core ideas of this chapter 
from at least two other perspectives: (1) broader notions in combinatorial optimi
zation, and (2) linear programming. These two alternative viewpoints are instructive 
because they help to show the connection between network optimization and other 
important topics in discrete optiinization. Indeed, the minimum spanning tree prob
lem and network flows have inspired the development of many other problem do
mains in discrete optimization. Consequently, it is useful to pause at this point and 
briefly delineate these connections. 

Matroids and the Greedy Algorithm 

Suppose that we view a spanning tree in the following way: We have a finite collection 
of objects E, the arcs of a network, and we define a subset I of objects to be in
dependent if they do not form a cycle in the network. If each object (i.e.; arc) e has 
an associated weight We, the minimal spanning tree problem seeks an n - 1 element 
independent set I with the smallest total weight w(I) == LeE! Wij. 

Let us now describe this and related problems in a more abstract setting. A 
subset system (E, !J» is a finite set of objects E and nonempty collection !J> of subsets 
of these objects, called independent sets, that satisfies the hereditary property that 
whenever I is an independent set (i.e., belongs to !J» and l' is a subset of I, then l' 
also is an independent set. 

Suppose that we associate a weight We with each element e of E and define the 
weight w(S) of any subset S of E as the sum of the weights of its elements; that is, . 
w(S) == LeES We' As a generalization of the minimum spanning tree problem, we 
might consider the following independence (or subset) system optimization problem: 
Find a maximal independent set of the subset system (E,!J» with the minimum weight. 

At this level of generality, the independence system optimization problem ap
pears to be hopelessly difficult to solve efficiently. Therefore, we need to impose 
additional structure on the problem so that it becomes tractable. We would like to 
do so, however, by imposing the least amount of additional structure so that the 
results remain as general as possible. The following type of auxiliary structure ap
pears to be just right for this purpose. 

A subset system (E, !J» is a matroid if it satisfies the growth property that if 
Ip and Ip + I are independent sets containing p and p + 1 elements, we always can 

528 Minimum Spanning Trees Chap. 13 



find an element e E Ip + 1 - Ip, satisfying the property that Ip U {e} is an independent 
set. 

Note that this definition implies if 1 and l' are any two independent sets and 
1 I' 1 > 1 I I, we can add certain elements of l'to I and obtain another independent 
set 1" so that 1" contains I and has as many elements as 1'. That is, the sets Ip and 
Ip+ 1 in the definition need not differ in cardinality by one. (We establish this extended 
growth property by applying the growth property to I and the first 1 I 1 + 1 elements 
of 1', which are independent by the definition, and then repeating the operation.) 

Let us illustrate the definition of a matroid with a few examples. 

Graphic or forest matroid. Note that forests in a network satisfy these 
definitions if we let E equal the arcs in a network and let !J> denote the collection of 
arc sets that contain no cycles (i.e., the arcs define a forest). In this case the system 
(E, !J» is an independent system because removing arcs from a forest always produces 
another forest. Moreover, if Ip and Ip + 1 are two forests containing p and p + 1 arcs, 
the forest Ip + 1 must contain an arc e that we can add to Ip and produce another 
forest Ip U {e} (see Exercise 13.41). Consequently, the system (E, !J» is a matroid. 

Partition matroid. Let E = EI U E2 U ... U EK be a union of K disjoint .. 
finite sets and let UI, U2, ••• , UK be given positive integers. Let !J> be the family of 
subsets I of E that satisfy the property that for all k = 1, 2, ... , K, I contains no 
more than Uk elements of Ek • The system is a matroid. Note that if we consider a 
bipartite graph (NI U N 2 , A) and let Ek, for all nodes kin N 1 , be the set of arcs 
incident to node k, then if all the Uk are equal to 1, the matroid defines "half' of an 
assignment problem. Another partition matroid defined on the nodes N2 defines tJle 
other half of the matroid, so any feasible solution to the assignment problem is an 
independent set in both partition matroids. 

Matric matroid. Let M be a real-valued matrix, let E be the columns of M, 
and let !J> be sets of columns of M that are linearly independent. Since removing 
columns from a linearly independent set of columns produces another independent 
set, the system (E, !J» is a subset system. By elementary results in linear algebra, 
this system also satisfies the growth property and so is a matroid. 

Let us make one further observation about matroids. A maximal independent 
set is an independent set I satisfying the property that we cannot add any other 
element e to I and produce aItother independent set. The (extended) growth property 
implies that every maximal independent set of a matroid contains the same number 
of elements (since we can always add elements of one maximal independent set to 
another if they contain a different number of elements). Borrowing notation from 
linear algebra, we refer to any maximal independent set as a basis of the matroid. 
In this terminology, the matroid optimization problem seeks a basis with the smallest 
possible total weight. 

We can attempt to solve this problem by using a greedy algorithm (Figure 
13 .12) which is a direct generalization of Kruskal's algorithm. 

Note that for the minimal spanning tree problem, the test condition "LIST U 
{eJ is independent" from this algorithm is just the test condition from Kruskal's 

Sec. 13.7 Minimum Spanning Trees and Matroids 529 



algorithm greedy; 
begin 

order the elements of E = {e1, e2, ... , eK} so that W1 :s -W2~:S '" :s WK; 
set LIST: = 13; 
for j = 1 to K do 

if LIST U {ej} is independent then LIST: = LIST U {eJ; 
LIST is a minimum weight basis; 

end; 

Figure 13.12 Greedy algorithm. 

algorithm, namely, that the network defined by the arcs in LIST and ej contains no 
cycle. 

Theorem 13.8. The greedy algorithm solves the matroid optimization prob-

lem. 

Proof. Let 1* be any optimal solution to the matroid optimization problem and 
let LIST = {ejJ, ej2> ... , ejn} be the solution generated by the greedy algorithm. 
We will show that w(LIST) = w(l*) and therefore that LIST is an optimal basis as 
well. If LIST = 1*, we have nothing to prove. So assume that LIST =;6 1*. Suppose 
that we order the elements of 1* in the order of increasing indices from the set E = 
{eJ, e2, ... , eK} as ejl' ej2' ... , ejk' eq , ••• ,with eq =;6 ejk+l and assume that eq 

is the first element of 1* not in LIST. Since the set {ejJ> ej2> ... , ejk, eq } is inde
pendent, the steps of the greedy algorithm imply that q ;::: ik+ J and therefore that 
wq ;::: Wjk+I' Since both the sets 1= {ejJ> ejz, ... , ejk> ejk+l} and 1* are independent, 
the growth property implies that we can add elements of 1* to I to obtain another 
basis I'. Since this basis contains the elements 1* U {ejk+l} - ep for some ep E 1* 
and p ;::: ik+l, w(l') :s:; w(l*); consequently, l' is also an optimal basis. Note that 
this basis has a greater number of lead elements in common with LIST (at least 
k + 1). But now if we apply the same argument to the sets l' and LIST, we will 
obtain another optimal basis with at least one more lead element in common with 
LIST. If we continue in this fashion, eventually l' will equal LIST, therefore es-
tablishing that LIST is a minimum-basis matroid. • 

Note that this discussion not only gives an alternative proof of Kruskal's al
gorithm for the minimum spanning tree problem, but also shows that two underlying 
combinatorial properties-independence and the growth property-are the essential 
ingredients necessary to ensure that the greedy algorithm solves the minimum span
ning tree problem. (In Exercise 13.45 we show that the greedy algorithm will solve 
the minimum weight independent set problem for any choice of the element weights 
if and only if the subset system is a matroid.) Therefore, any other property of a 
graph is irrelevant for ensuring that Kruskal's algorithm works correctly. That is, 
we have now identified the combinatorial postulates that drive the algorithm. 

13.8 MINIMUM SPANNING TREES AND LINEAR 
PROGRAMMING 

Linear programming provides yet another proof of Kruskal's algorithm. Moreover, 
the development of a linear programming-based approach permits us to make some 
elementary connections between network optimization and an important topic in 

530 Minimum Spanning Trees Chap. 13 



applied mathematics, polyhedral combinatorics, which is the study of integer poly
hedra (Le., polyhedra with integer extreme points). As shown in Section 11.12, the 
minimum cost flow problem provides another connection between these topics. 

LetA(S) denote the set of arcs contained in the subgraph ofG = (N, A) induced 
by the node set S [Le., A(S) is the set of arcs of A with both endpoints in S]. Consider 
the following integer programming formulation of the minimum spanning tree prob
lem: 

subject to 

Minimize L CijXij 
(i,j)EA 

L Xij = n - 1, 
(i,j)EA 

L Xij :s; I S I - 1 for any set S of nodes, 
(i,j)EA(S) 

Xij ;::: 0 and integer. 

(13.2a) 

(13.2b) 

(13.2c) 

(13.2d) 

In this formulation, the 0-1 variable Xij indicates whether we select arc (i, j) 
as part of the chosen spanning tree (note that the second set of constraints with 
I S I = 2 implies that each Xij :s; 1). The constraint (13.2b) is a cardinality constraint 
implying that we choose exactly n - 1 arcs, and the "packing" constraint (13.2c) 
implies that the set of chosen arcs contain no cycles (if the chosen solution contained 
a cycle, and S were the set of nodes on a chosen cycle, the solution would violate 
this constraint). Note that as a function of the number of nodes in the network, this 
model contains an exponential number of constraints. Nevertheless, as we will show, 
we can solve it very efficiently by applying Kruskal's algorithm. We might note that
any formulation in the variables Xij always requires an exponential number of con
straints; that is, we cannot replace the given constraints by some polynomial set of 
constraints and still have a valid formulation of the problem. Nevertheless, it is 
possible to give a polynomial formulation of the problem if we introduce new (mul
ticommodity flow) variables (see the reference notes). 

Suppose that we consider the linear programming relaxation of this integer 
programming model. That is, we drop the restriction that the variables be integer. 
As we noted in Section 9.4 (also see Appendix C), we can formulate a set of reduced 
cost and complementary slackness optimality conditions for every linear program
ming problem and use these conditions, as we use the reduced costs and comple
mentary slackness conditions of network flows, to assess when a given feasible 
solution is optimal. Recall that for network flow problems, we used node potentials 
to define the reduced costs and the complementary slackness conditions; each node 
in a minimum cost flow problem corresponds to one equation of the mass balance 
constraints Xx = b, so we can view the potentials as associated with these equations. 
Since the minimum spanning tree formulation has one equation or inequality for any 
set S of nodes (the one equation in the model corresponds to the node set S = N), 
for the minimum spanning tree problem we associate a potential f.l.s with every set 
S of nodes. The potential f.l.N is unrestricted in sign and the other potentials f.l.s must 
be nonnegative. We then define the reduced cost cli of any arc as 

cli = Cij + 
A(S) contains arc (i,j) 

Sec. 13.8 Minimum Spanning Trees and Linear Programming 531 



With this definition of the reduced costs, we have the following complementary 
slackness optimality conditions. 

Minimum spanning tree complementary slackness optimality Con
ditions. A solution x of the minimum spanning tree problem is an optimal solution 
to the linear programming relaxation of the integer programming formulation (13.2) 
if and only if we can find node potentials fJ.s defined on node sets S so that the 
reduced costs satisfy the following conditions: 

cij = 0 

cij 20 

if Xij > O. 

if Xij = o. 
We can use this fundamental result to give yet another proof that Kruskal's 

algorithm solves the minimum spanning tree problem. 

Theorem 13.9. If x is the solution generated by Kruskal's algorithm, x solves 
both the integer program (13 .2) and its linear programming relaxation. 

Rather than giving a formal proof of this theorem, let us illustrate the proof 
technique on the five-node example that we have already considered in Figure 13.6. 
For this problem, Kruskal's algorithm chooses the arcs of the minimum spanning 
tree in the order (2,4), (3, 5), (3,4), and (1,2). So we set X24 = X35 = X34 = X12 = 
1 and Xl3 = X23 = X45 = O. Note that during the course of applying Kruskal's 
algorithm, we form several connected node components: first {2, 4}, then {3, 5}, then 
{2, 3,4, 5}, and finally, the entire node set {I, 2, 3,4, 5}. We will associate a nonzero 
potential with these sets and a zero potential with every other set of nodes. We 
define these potentials in the reverse order that Kruskal's algorithm formed the node 
components. We first set fJ.{1,2,3,4,5} = - 35, the negative of the cost of the final arc 
added to the tree. Now we note that each arc (i, j) that we add to the tree defines 
a node component S(i, j). For example, S(3, 4) = {2, 3, 4, 5}. Moreover, at some 
later stage in the algorithm, we combine the node component S(i, j) with one 
or more other nodes to define a large component by adding another arc (p, q) to 
the tree. We now set the potential of the node component S(i, j) to be the differ
ence between the cost of arc (p, q) and the cost of arc (i, j). Therefore, we set 
fJ.{2,3,4,5} = C12 - C34 = 35 - 20 = 15, fJ.{3,5} = C34 - C35 = 20 - 15 = 5, and 
fJ.{2,4} = C34 - C24 = 20 - 10 = 10. 

532 

Now checking the reduced cost of every arc, we find that 

C12 = 35 - 35 = 0 

C13 = 40 - 35 = 5 

C13 = 25 - 35 + 15 = 5 

C14 = 10 - 35 + 15 + 10 = 0 

C!f4 = 20 - 35 + 15 = 0 

C!f5 = 15 - 35 + 15 + 5 = 0 

Clt5 = 30 - 35 + 15 = 10. 

Minimum Spanning Trees Chap. 13 



Note that with these choices of the potentials, the reduced cost of every arc 
chosen by Kruskal's algorithm is zero and the cost of every other arc (i, j) is the 
difference between the cost of arc (i, j) and the cost of the most expensive arc on 
the path formed by adding arc (i, j) to the tree found by Kruskal's algorithm. It is 
fairly easy to use an induction argument to extend this proof technique for any 
problem and thus to give a formal proof of Theorem 13.9 (see Exercise 13.42). 

The proof technique we have just illustrated establishes one of the most im
portant-core results in combinatorial optimization. Since a linear program always 
has an extreme point solution (see Appendix C for this result and for linear pro
gramming definitions), if we can show that for every choice of the coefficients of 
its objective function, a linear programming formulation has at least one integral 
solution, then the extreme points of the polyhedron defined by that linear program 
are integer valued. Since we have just established this property for the linear pro
gramming relaxation of the integer program (13.2), we have proven the following 
fundamental result. 

Theorem 13.10. The polyhedron defined by the linear programming relaxation 
of the packing formulation of the minimum spanning tree problem has integer ex-
treme points. < 

This theorem is just one example of an important meta rule that seems to lie 
at the core of combinatorial optimization; namely, for essentially most optimization 
problems that can be solved in polynomial time, it is possible to define a linear 
program with integer extreme points that contains the incident vectors of the solution 
to the combinatorial optimization problem. The minimum cost flow problem and the 
minimal spanning tree problem were two of the first notable examples of this result 
discovered in the combinatorial optimization literature; these results have inspired 
many streams of investigation within discrete optimization, such as the study of 
matroids that we introduced in Section 13.7. For example, it is possible to specify 
a linear programming formulation of the matroid optimization problem so that the 
extreme points of the linear programming formulation are exactly the set of bases 
of the underlying matroid (see Exercise 13.44). 

18.9 SUMMARY 

The minimum spanning tree problem is perhaps the simplest, and certainly one of 
the most central, models in the field of combinatorial optimization. In this chapter, 
after describing several applications of minimum spanning trees, we proved two 
(equivalent) necessary and sufficient conditions-the cut and path optimality con
ditions-for characterizing the optimality of minimum spanning trees. The cut op
timality conditions state that a spanning tree T* is a minimum spanning tree if and 
only if the cost of the tree arc (i, j) is less than or equal to the cost of every nontree 
arc in the cut formed by deleting arc (i, j) from T*. The path optimality conditions 
are closely related to these conditions (in a sense, they are dual conditions); they 
state that a spanning tree T* is a minimum spanning tree if and only if the cost of 
every nontree arc (k, l) is greater than or equal to the cost of every tree arc in the 
path in T* between nodes k and I. 

Sec. 13.9 Summary 533 



In this chapter we described three algorithms for solving the minimum spanning 
tree problem: Kruskal's, Prim's, and Sollin's. All these algQ[ithms are easy to im
plement, have excellent running times, and are very efficient in practice. Figure 
13.13 summarizes the basic features of these algorithms. 

The minimum spanning tree problem is important not only because it is a core 
model in network optimization, but also because it serves as a valuable prototype 
model in combinatorial optimization that has stimulated many lines of inquiry. In 
this chapter we have considered two ways in which minimum spanning trees relate 
to general issues in combinatorial optimization. If we consider Kruskal's algorithm 
as a greedy procedure that chooses the minimum cost feasible arc at each step, we 
might ask whether a similar type of greedy algorithm is able to solve other combi
natorial optimization problems. We have answered this question affirmatively by 
showing that the greedy algorithm also solves a broad class of problems known as 
matroid optimization problems. 

Studying specialized structures, such as matroids, is one very important stream 
of inquiry in combinatorial optimization. Another is the use of linear programming 
as a tool for understanding and solving combinatorial optimization problems. In 
Section 13.8 we showed how to characterize the incidence vectors of spanning trees 
as solutions to a linear programming formulation of the problem; we also showed 
how to interpret Kruskal's algorithm as a method for solving this linear program. 
This development illustrates the use of linear programming in combinatorial optim
ization and is indicative of the type of investigations that analysts conduct in the 
important subspecialty of combinatorial optimization known as polyhedral combi
natorics (i.e., the study of integer polyhedra). 

Algorithm Running time Features 

Kruskal's O(m + n log n) 1. Examines arcs in nondecreasing order of their lengths and 
algorithm plus time needed to include them in the minimum spanning tree if the added arc 

sort m arc lengths does not form a cycle with the arcs already chosen. 
2. The proof of the algorithm uses the path optimality 

conditions. 
3. Attractive algorithm if the arcs are already sorted in 

increasing order of their lengths. 

Prim's O(m + n log n) 1. Maintains a tree spanning a subs.!Ot S of nodes and adds a 
algorithm minimum cost arc in the cut [S, S]. 

2. The proof of the algorithm uses the cut optimality 
conditions. 

3. Can be implemented using a variety of heaps structures; the 
stated time bound is for the Fibonacci heap data structure. 

Sollin's O(m log n) 1. Maintains a collection of node-disjoint trees: in each 
algorithm iteration, adds the minimum cost arc emanating from each 

such tree. 
2. The proof of the algorithm uses the cut optimality 

conditions. 

Figure 13.13 Summary of minimum spanning tree algorithms. 

534 Minimum Spanning Trees Chap. 13 



REFERENCE NOTES ' 

Algorithms for the minimum spanning tree problem, developed as early as 1926, are 
among the earliest network algorithms. The paper by Graham and Hell [1985] pre
sents an excellent survey of the historical developments of minimum spanning tree 
algorithms. Boruvka [1926] and Jarnick [1930] independently formulated and solved 
the minimum spanning tree problem. Later, other researchers rediscovered these 
algorithms. Kruskal [1956] and Loberman and Weinberger [1957] independently dis
covered Kruskal's algorithm discussed in Section 13.4. Prim [1957] developed the 
algorithm described in Section 13.5. SoUin presented his algorithm, discussed in 
Section 13.6, in a seminar in 1961; it was never published. Claude Berge was present 
at this seminar and reported this algorithm in his book, Berge and Ghouila-Houri 
[1962]. Later, researchers discovered that SoUin's algorithm is similar to 
Boruvka's algorithm and that Prim's algorithm is similar to Jarnick's algorithm. 

Our description of Kruskal's algorithm runs in the time required to sort m 
numbers plus Oem + n log n). The use ofimproved union-find data structures leads 
to a faster implementation of Kruskal's algorithm. This implementation, as devel
oped by Tarjan [1984], runs in the time required to sort m numbers plus Oem a(n, 
m)); a(n, m) is the Ackermann function which, for all practical purposes, is smaller~ 
than 6. In this chapter we reported an Oem + n log n) implementation of Prim's 
algorithm; this implementation appears to be new. Gabow, Galil, Spencer, and Tarjan 
[1986] presented a variant of this algorithm that runs in Oem log ~(m, n)) time with 
the function ~(m, n) defined as ~(m, n) = min{i:log(i)(mln)::5 I}. In this expression, 
log(i)x = log log log ... log x with the log iterated i times. So ~(m, n) is a very slowly 
growing function. For example, if min = 2264

•
000 then ~(m, n) = 6. Yao [1975] de

veloped an improved implementation of SoUin's algorithm running in Oem log log n) 
time. Currently, the fastest algorithm for solving the minimum spanning tree algo
rithm is Tarjan's [1984] implementation of Kruskal's algorithm if the arcs are already 
sorted, and Gabow et al. [1986] variant of Prim's algorithm, otherwise. Gabow et 
at. [1986] also give efficient algorithms that (1) solve the minimum spanning tree 
problem in a directed network (i.e., the arborescence problem), and (2) solve the 
minimum spanning tree problem with a single degree constraint. 

Chin and Houch [1978], Gavish and Srikanth [1979], and Tarjan [1982] have 
developed techniques for reoptimizing the minimum spanning tree problem when 
we change arc costs. Haymond, Jarvis, and Shier [1980] have described data struc
tures for implementing Kruskal's, Prim's, and SoUin's algorithm and have presented 
computational results for these algorithms. Jarvis and Whited [1983] described the 
results of another computational study. These studies indicate that Prim's and Sol
lin's algorithms are consistently superior to Kruskal's algorithm. They show that 
SoUin's algorithm is better than Prim's algorithm for sparse networks, and is worse 
for dense networks. These studies find that the best implementation of Prim's al
gorithm uses a variant of Dial's implementation of Dijkstra's algorithm that we de
scribed in Section 4.6. 

Our presentation of matroids in Section 13.7 and of a linear programming for
mulation of the minimum spanning tree in Section 13.8 merely touches upon two 
very important topics in combinatorial optimization. Although the concept of ma
troids is quite old, dating from their introduction by Whitney [1935], their use in 

Chap. 13 Reference Notes 535 



combinatorial optimization is much more recent, stemming from the seminal con
tributions of Edmonds [1965c, 1971]. Thebook by Lqwler [1976] and the survey 
paper by Bixby [19821 highlight connections between matroids and network opti
mization. The books by Tutte [1971] and Welsh [1976] provide excellent mathe
matical accounts of this field, and the book by Recski [1988] presents many illu
minating applications in engineering and the physical sciences. 

The description of the polyhedral structure of combinatorial optimization prob
lems via linear programs has become a very fertile field in combinatorial optimization 
that has shed theoretical light on many problems and led to effective algorithms for 
solving many important applications. The comprehensive text by Nemhauser and 
Wolsey [19881 gives an instructive account of this field, known as polyhedral Com
binatorics. The linear programming description of the minimum spanning tree prob
lem, and the interpretation of Kruskal's algorithm as a method for solving the linear 
programming formulation of the problem, has served as an important stimulus for 
developments ofthis field. As but one example, this approach has proven very fruitful 
in developing 'algorithms for solving the nonbipartite matching problems that we 
considered in Chapter 12 from a purely combinatorial approach. For a polynomial 
formulation of the minimal spanning tree problem using multicommodity flow vari
ables, see the survey by Magnanti, Wolsey, and Wong [1992]. 

The applications of the minimum spanning tree problem that we presented in 
Section 13.2 are adapted from the following papers: 

1. Designing physical systems (Bonlvka [1926], Prim [1957], Loberman and Wein-
berger [1957], and Dijkstra [1959]) 

2. Optimal message passing (Prim [1957]) 
3. All pairs minimax path problem (Hu [1961]) 
4. Reducing data storage (Kang, Lee, Chang, and Chang (19771) 
5. Cluster analysis (Gciwer and Ross [1969], and Zahn [1971]) 

In Application 1.7 we described another application of the spanning tree prob
lem that arises in measuring the homogeneity of bimetallic objects (Shier [19821 and 
Filliben, Kafadar, and Shier [1983]). Additional applications of the minimum span
ning tree problem arise in (1) solving a special case ofthe traveling salesman problem 
(Gilmore and Gomory (19641), (2) chemical physics (Stillinger (19671), (3) Lagrangian 
relaxation techniques (Held and Karp [1970]), (4) network reliability analysis (Van 
Slyke and Frank [1972]), (5) pattern classification (Dude and Hart [1973]), (6) picture 
processing (Osteen and Lin [1974]), and (7) network design (Magnanti and Wong 
[19841). The survey paper of Graham and Hell [19851 provides references for ad
ditional applications of the minimum spanning tree problem. 

EXERCISES 

13.1. Suppose that you want to determine a spanning tree T that minimizes the objective 
function L~(i,j)ET (Cijnll2. How would you solve this problem? 

13.2. In the network shown in Figure 13.14, the bold lines represent a minimum spanning 
tree. 

536 Minimum Spanning Trees Chap. 13 



Figure 13.14 Verifying cut and path 
optimality conditions . 

. (a) By listing each nontree arc (k, l) and the minimum length arc on the tree path 
from node k to node I, verify that this tree satisfies the path optimality conditions. 

(b) By listing each tree arc (i, j) and the minimum length arc in the cut defined by 
the arc (i, j), verify that the tree satisfies the cut optimality conditions. 

13.3. Using Kruskal's algorithm, find minimum spanning trees of the graphs shown in Figure 
13.15. . 

(b) 

Figure 13.15 Examples for Exercises 13.3 to 13.5. 

13.4. Using Prim's algorithm, find minimum spanning trees of the graphs shown in Figure 
13.15. 

13.5. Using Sollin's algorithm, find minimum spanning trees of the graphs shown in Figure 
13.15. 

13.6. Think of the network shown in Figure 13.16 as a highway map, and the number 
recorded next to each arc as the maximum elevation encountered in traversing the 
arc. A traveler plans to drive from node 1 to node 12 on this highway. This traveler 
dislikes high altitudes and so would like to find a path connecting node 1 to node 12 

Figure 13.16 Highway grid. 

Chap. 13 Exercises 537 



that minimizes the maximum altitude. Find the best path for this traveler using a 
minimum spanning tree algorithm. 

13.7. Can you generalize the approach outlined in Application "13:3 to solve the all-pairs 
maximum capacity path problem in directed networks? If yes, describe your algorithm; 
if not, why not? 

13.8. In Theorem 13.3 we proved the sufficiency of the path optimality conditions using the 
cut optimality conditions. Give a direct proof of this sufficiency condition that does 
not use the cut optimality conditions. 

13.9. Prove the maximum spanning tree optimality conditions stated in Theorem 13.4. 
13.10. Let (p, q) be a minimum cost arc in G. Show that (p, q) belongs to some minimum 

spanning tree of G. Does every minimum spanning tree of G contain the arc (p, q)? 

13.11. Show that a maximum weight acyclic subgraph in an undirected graph G with strictly 
positive arc weights Cij must be a spanning tree. 

13.12. How would you modify Kruskal's and Prim's algorithms to solve the maximum span
ning tree problem? 

13.13. In an undirected network, we define a tree of shortest paths as a spanning tree in 
which the unique path from a specified node s to every other node is a shortest path. 
Is a minimum spanning tree of G also a tree of shortest paths? Either prove this result 
or construct an example to show that' the trees could be different. 

13.14. Tree minimax result. Let G = (N, A) be an undirected network with a capacity uij 
associated with every arc (i, j) E A. For any spanning tree T of G, we define 
its capacity as min{uij:(i, j) E T}, and for any cut Q of G, we define its value as 
max{uij: (i, j) E Q}. Show that the capacity of any spanning tree is a lower bound on 
the value of every cut. Next show that the maximum capacity of any spanning tree 
equals the minimum value of any cuL 

13.15. We say that two spanning trees T' and Til are adjacent if they have all but one arc in 
common. Show that for any two spanning trees T' and Til, we can find a sequence of 
spanning trees TI, T2, ... , Tk with TI = T', Tk = T' and with Ti adjacent to Ti+ I 
for every i = 1 to k - 1. 

13.16. Suppose that you are given a graph with each arc colored either red or blue. 
(a) Show how to find a spanning tree with the maximum number of red arcs. 
(b) Suppose that some spanning tree has k' red arcs and another spanning tree has 

k" > k' red arcs. Show that for every k, k' :s k:s k", some spanning tree has k 
red arcs. 

13.17. Let T be a spanning tree. For any pair [i, j] of nodes, let (3[i, j] denote the least cost 
arc among the arcs in the tree path joining node i and node j. Show how to compute 
(3[i, j] for every pair of nodes in a total of O(n2) time. 

13.18. In a class of undirected networks, suppose that all arc costs are small (i.e., they lie 
in the interval [1, k] for some small integer k, say k = 10). How fast could you im
plement Kruskal's and Prim's algorithms for solving the minimum spanning tree prob
lem in this class of networks? 

13.19. Consider the following reverse greedy algorithm: 

begin 
let the arcs (i1, M, (i2, h), ... , (im, jm) be arranged in 

nonincreasing order of their lengths; 
G':= G; 
for k : = 1 to m do 

if G' - {Uk, jk)} is a connected graph then 
G': = G' - {Uk, M'}; 

end; 

Show that at the termination of this algorithm, the graph G' is a minimum spanning 
tree. ' 

538 Minimum Spanning Trees Chap. 13 



13.20. Consider the following algorithm. Arrange the arcs in A in any arbitrary order and 
start with a null tree T. Examine each arc (i, j) in A, one by one, and perform the 
following steps: add arc (i, j) to T and if T contains a cycle W, delete from T an arc 
of maximum cost from the cycle W. Show that when this algorithm has examined all 
the arcs, the final tree T is a minimum spanning tree. Is it possible to implement this 
algorithm as efficiently as Kruskal's algorithm? Why or why not? 

13.21. Can you use the data structure of Dial's implementation of Dijkstra's shortest path 
algorithm (discussed in Section 4.6) to implement Prim's algorithm? If so, is the running 
time of Prim's algorithm better than the running time of the shortest path algorithm? 

13.22. In Section 13.5 we observed a striking resemblance between Prim's algorithm and 
Dijkstra's algorithm. This observation might lead us to conjecture that we can use a 
radix heap data structure (discussed in Section 4.8) to implement Prim's algorithm in 
O(m + n 10g(nC» time. However, this conjecture is not valid. What are the difficulties 
we would encounter if we attempted to implement Prim's algorithm using radix heaps? 

13.23. The first implementation of Kruskal's algorithm that we discussed in Section 13.4 
selects a nontree arc (k, I) violating its optimality condition and exchanges this arc 
with some tree arc of lower cost. Show that no matter which order we use to select 
the nontree arcs violating their optimality conditions, we perform at most nm itera
tions. (Hint: Let f(i, j) be the number of arcs in the network whose cost is strictly 
greater than Cij. Consider the effect on the potential function = LU.j)ET f(i, j) as we 
change the spanning tree T.) 

13.24. Let T be a minimum spanning tree of an undirected graph G = (N, A) and let Q be· 
a set of nontree arcs (k, I) satisfying the following property: Some arc (i, j) in the tree 
path from node k to node I has the same cost as arc (k, I); that is, Cij = Ckl. Professor 
May B. Wright claims that every spanning tree in the subgraph G' = (N, T U Q) is 
a minimum spanning tree of G. Construct a counterexample to show that Professor 
Wright's claim is false. 

13.25. Sensitivity analysis. Let T* be a minimum spanning tree of a graph G = (N, A). For 
any arc (i, j) E A, we define its cost interval as the set of values of cij for which,T* 
continues to be a minimum spanning tree. 
(a) Describe an efficient method for determining the cost interval of a given arc 

(i,j). (Hint: Consider two cases: When (i,j) E T* and when (i,j) eo T*, and use 
the cut and path optimality conditions.) 

(b) Describe a method for determining the cost intervals of every arc in A. Your 
method must be faster than determining the cost intervals of each arc one by one. 
(Hint: Use the result of Exercise 13.17.) 

13.26. Suppose that we have in hand a minimum spanning tree T for the undirected graph 
G = (N, A). Suppose that we add a new node (n + 1) to Nand p new arcs to A 
incident to this node. How fast can you find a minimum spanning tree for the enlarged 
network G' from the minimum spanning tree T of G? (Hint: Use the cut optimality 
conditions. ) 

13.27. Arc additions and deletions. Let T* be a minimum spanning tree for the undirected 
graph G = (N, A). Describe an algorithm for reoptimizing the minimum spanning tree 
when we delete an arc (i, j) E A from the network. Similarly, describe an algorithm 
for reoptimizing the problem when we add a new arc (i, j) to A. Prove that your 
algorithms correctly find new minimum spanning trees and state their running times. 

13.28. Spanning trees containing specific arcs. In an undirected graph G = (N, A), let (p, q) 
be a specified arc. Describe a method for identifying a minimum spanning tree T* 
subject to the condition that the tree must contain the arc (p, q). Prove that your 
method correctly solves this problem. Generalize the method for situations in which 
the minimum spanning tree must contain an acyclic set A' of arcs. (Hint: Assign 
appropriate costs to the arcs required to be in the optimal tree.) 

13.29. Factored minimum spanning tree problem. Let G be a complete undirected graph. 
Suppose that we associate a positive real number {Xi with each node i E N and define 

Chap. 13 Exercises 539 



the cost of each arc (i,j) as cij = {Xi{Xj. This specialized minimum spanning tree problem 
is known as the factored minimum spanning tree problem. We wish to develop an 
algorithm for solving this class of problems that is more effi€ient than the general 
minimum spanning tree algorithms. 
(a) Consider a five-node network with (Xi = i. Find a minimum spanning tree in this 

network. 
(b) Use the insight obtained from answering part(a) to develop an O(n) algorithm for 

solving the factored minimum spanning tree problem. 
13.30. Most vital arcs. In the minimum spanning tree problem, we refer to an arc as a vital 

arc if its deletion strictly increases the cost of the minimum spanning tree. A most 
vital arc is a vital arc whose deletion increases the cost of the minimum spanning tree 
by the maximum amount. 
(a) Does a network always contain a vital arc? 
(b) Suppose that a network contains a vital arc. Describe an O(nm) algorithm for 

identifying a most vital arc. Can you develop an algorithm that runs faster than 
O(nm) time? (Hint: Use the cut optimality conditions.) 

13.31. Suppose that we arrange all the spanning trees of a graph G in nondecreasing order 
of their costs. We refer to a spanning tree T as a kth minimum spanning tree if it is 
at the kth position in this order. Describe an O(n2

) algorithm for finding the second 
minimum spanning tree. (Hint: Observe that the second minimum spanning tree must 
contain at least one arc that is not in the first minimum spanning tree. Then use the 
result of Exercise 13.17.) 

13.32. Bottleneck spanning trees. A spanning tree T is a bottleneck spanning tree if the max
imum arc cost in T is as small as possible from among all spanning trees. Show that 
a minimum spanning tree of G is also a bottleneck spanning tree of G. Is the converse 
result also true (i.e., is a bottleneck spanning tree of G also a minimum spanning tree 
of G)? Either prove this result or construct a counterexample. 

13.33. Describe an Oem log n) algorithm, using binary search, for solving the bottleneck 
spanning tree problem defined in Exercise 13.32. 

13.34. Balanced spanning trees. A spanning tree T is a balanced spanning tree if from among 
all spanning trees, the difference between the maximum arc cost in T and the minimum 
arc cost in T is as small as possible. Describe an O(m2) algorithm for determining a 
balanced spanning tree. 

13.35. Parametric analysis of minimum spanning trees. In the parametric minimum spanning 
tree problem, each arc length cij = c~ + Act is a linear function of a parameter A. 
Let TA denote a minimum spanning tree with arc lengths chosen as c~ + ACl) for a 
specific value of A. 
(a) Show that for sufficiently large values of the constant k > 0, T- k and Tk are the 

maximum and minimum spanning trees when the arc lengths are ct. 
(b) Show that TA is a minimum spanning tree for all of the values of A in some interval 

[A, "X:]. Moreover, show that at the lower and upper limits of this interval, at least 
two alternate minimum spanning trees are adjacent in the sense of Exercise 13.15. 
(Hint: Use the path optimality conditions.) 

(c) Describe an algorithm for determining a minimum spanning tree for all values of 
A from -00 to +00. 

13.36. (a) Show that in the parametric minimum spanning tree problem, as we vary A from 
-00 to +00, we obtain at most m 2 minimum spanning trees and every two con
secutive minimum spanning trees are adjacent. (Hint: Use the fact that if T' and 
Til are two consecutive minimum spanning trees, we can obtain Til from T' by 
replacing a tree arc (i, j) by a nontree arc (k, I) satisfying the condition ell :S 

ct·) 

540 

(b) Consider a special case of the parametric minimum spanning tree problem in which 
each ct = 0 or 1. Show that in this case, as we vary A from -00 to +00, we obtain 
at most n minimum spanning trees. 

Minimum Spanning Trees Chap. 13 



(e) Consider another special case of the parametric minimum spanning tree problem 
in which each C;q = I for a specific arc (p, q) and is zero for all other arcs. Show 
how to find minimum spanning trees for all values of A in time proportional to 
solving a single minimum spanning tree problem. 

(d) Consider yet another special case of the minimum spanning tree problem where 
all parametric arcs are incident to a common node p (i.e., ct = 1 whenever i = 
p or j = q, and is zero for all other arcs). How fast can you find minimum cost 
spanning trees for all values of A? 

13.37. Minimum ratio spanning trees (Chandrasekaran [1977]). In the minimum ratio spanning 
tree ·problem, we associate two numbers, Cij and 'Tij, with each arc (i, j) in a network 
G and wish to determine a spanning tree 1'* that minimizes (~(i.j)ET cu)1 
(~(i,j)ET* 'Tij) from among all spanning trees. We assume that ~(i. j)ET* 'Tij > 0 
for all spanning trees T. Suggest a binary search algorithm for identifying a mini
mum ratio spanning tree of G that runs in polynomial time. 

13.38. A I-tree of G is a spanning tree of G plus one arc. Show that the minimum spanning 
tree of G plus the least cost nontree arc defines a minimum cost I-tree of G. Suppose 
that the additional arc must be adjacent to a particular node s of G. How would you 
find a minimum cost I-tree for this version of the problem? 

13.39. Optimal I-forest. A set of arcs is a I-forest of an undirected graph G if some arc 
(k, l) in F satisfies the condition that F - {(k, I)} is a forest. 
(a) Show that the collection of all I-forests forms a matroid. 
(b) Give a greedy algorithm for identifying a maximum weight I-forest of G. 
(e) How would you modify your answers to parts (a) and (b) if we required that the 

arc (k, l) be incident to a specific node s of the network? 

13.40. Optimal k·forest. A set F of arcs is a k-forest of an undirected graph G if some subset 
F' ~ F containing k arcs satisfies the condition that F - F' is a forest. Show that the 
collection of all k-forests forms a matroid and give a greedy algorithm for identifying 
a maximum weight k-forest of G. (Hint: Generalize the result in Exercise 13.39.) 

13.41. Let Fp and Fp+ 1 be forests in a graph containing p and p + I arcs. Show that we can 
always add some arc in Fp+ 1 to Fp to produce a forest with p + 1 arcs. 

13.42. Using the example we have considered in the text as motivation, give a formal proof 
of Theorem 13.9. 

13.43. Linear programming proof of the greedy algorithm. Let (E, !f» be a matroid with an 
associated weight We for e E E. Let Xe be a zero-one vector indicating whether or not 
the element e is a member of a set I from E; that is, Xe = I if eEl and Xe = 0 if 
eEl. For any subset S in E, let reS) denote its rank, defined as the number of elements 
of the largest independent set in S. For example, the rank of a set S of arcs in a graph 
is the size of the largest forest defined by these arcs. 
(a) Show that the incidence vectors Xe of a basis of the matroid satisfy the following 

conditions: 

~ Xe = reEl, (13.3a) 
eEE 

~ Xe ~ reS) for all S ~ !f>, (13.3b) 
eES 

Xe 2:: O. (13.3c) 

(b) Show that for the minimum spanning tree problem, the constraints in (13.3) contain 
all of the constraints in the formulation (13.2). 

(e) Mimicking the proof of Theorem 13.9 (see Exercise 13.42), give a linear program
ming proof that the greedy algorithm solves the matroid optimization problem of 
finding a basis of the matroid (E, !f» with the smallest possible weight weB). 

13.44. Linear programming formulation ofmatroids. In Theorem 13.10 we showed that span
ning trees of a graph correspond to the extreme points of the linear program (13.2). 

Chap. 13 Exercises 541 



Using the result of Exercise 13.43, show that the bases of a matroid correspond to 
the extreme points of the polyhedron defined by the constraints given in (13.3). (Hint: 
Use the result of Exercise 13.43 and the fact that each extreme point of a linear program 
is the unique optimal solution for some choice of the objective coefficients.) 

13.45. In Exercise 13.43 we showed that the greedy algorithm solves the matroid optimization 
problem. Show that this property actually characterizes matroids. That is, show that 
the greedy algorithm will solve the minimum weight independent set problem for any 
choice of the element weights if and only if the subset system is a matroid. (Hint: 
Any subset system that is not a matroid contains two independent subsets I and I' 
satisfying the property that II' I > I I I and no element in I' can be added to I to obtain 
an independent set. Define the weight function on E appropriately so that the greedy 
algorithm terminates with I, but I' is optimal.) 

13.46. (a) The set of minimum spanning trees Tl, T2, ... , T k
-

l that we determined in 
Exercise 13.36(d) as we varied the parameter from C + 1 to -00 satisfy the "mon
otonicity" property that once an arc (1, j) belongs to any tree TP, it also belongs 
to all of the trees Tq for q ~ p. Suppose that the parametric cost of arc (1, j) is 
Clj + 'Adlj for some constant dlj and that the cost of arc (i, j) is Cij for i =Jf 1 and 
j =Jf 1. Does the set of optimal spanning trees, as we vary 'A from C + 1 to - 00, 

satisfy the monotonicity property? 

542 

(b) If possible, describe a polynomial time variant of the procedure discussed in Ex
. ercise 13.36(d) that will solve the parametric problem defined in part (a). If you 
cannot describe any such algorithm, explain the difficulties encountered. 

Minimum Spanning Trees Chap. 13 



14 

CONVEX COST FLOWS 

Chapter Outline 

14.1 Introduction 
14.2 Applications 
14.3 Transformation to a Minimum Cost Flow Problem 
14.4 Pseudopolynomial-Time Algorithms 
14.5 Polynomial-Time Algorithm 
14.6 Summary 

14.1 INTRODUCTION 

I bend but do not break. 
-Jean de La Fontaine 

Essentially all fields of scientific inquiry evolve into specialized branches of inves
tigations, each with its own particular traditions and approaches. The field of QP
timization is no exception; it divides quite naturally into several ways: constrained 
versus unconstrained optimization; linear versus nonlinear programming; and dis
crete versus continuous optimization. By its very nature, network optimization is a 
special class of constrained optimization problems. We can, however, distinguish 
the various domains of network optimization along the other dimensions. Our de
velopment has focused exclusively on linear models. Moreover, because the inte
grality property ensures that linear minimum cost flow problems, even when stated 
as continuous optimization models, always have integer solutions (assuming that the 
data are integral), with the exception of the matching and spanning tree problems 
that we have considered in the preceding two chapters, we have not had to make 
any distinction between discrete and continuous models. Yet many ofthe arguments 
and approaches in network optimization have a distinct combinatorial flavor. Indeed, 
the optimization community typically views network flows as the starting point for 
building much of the theory and algorithmic approaches of discrete optimization. 

Suppose that we wish to extend our discussion into the realm of nonlinear 
optimization. What type of models should we consider? Perhaps the most natural 
approach would be to replace the linear objective function of the minimum cost flow 
problem by a general nonlinear function. Although we might like to consider the 
most general nonlinear functions possible, doing so would take us far afield from 
the mainstream of our investigations. Instead, we might ask the following question: 
Is there a class of nonlinear optimization models that arise frequently in practice 
and that we can solve by adapting the algorithmic approaches that we have already 

543 



t 
Cij(Xi) 

40 

30 

20 

10 

0 

-10 

developed? In this chapter we examine one such set of models, t"hose with separable 
convex objective functions. Fortunately, these models provide us with the most 
useful set of nonlinear objective functions that arise in the practice of network op
timization. Moreover, this particular set of models permits us to remain within the 
domain of discrete optimization, since as we will see in this chapter, if we further 
restrict these models by requiring the solutions to be integer, we can solve these 
problems quite efficiently, in theory as well as in practice. 

In all the models we have considered to this point, the objective function was 
separable in the sense that the different flow variables Xij appeared in separate terms 
cijxij. In the models we consider in this chapter, we retain the separability assump
tion, but we now permit the separable terms to be nonlinear functions of the form 
Cij(Xij). We also impose an additional convexity assumption: Each function Cij(Xij) 
is convex: the functions are "bathtub" shaped in the sense that linear interpolations 
always lie on or above the functions (mathematically, if 6 is a parameter satisfying 
o ::5 6 ::5 1 and xij and x'ij are any two points within the flow bounds of Xij, then 
Cij(6xij + (1 - 6)xij) ::5 6 Cij(xij) + (1 - 6)Cij(x'ij)). Figure 14.1 gives two exam
ples of convex functions. 

0 

We consider two different models: 

1. Piecewise linear model [see Figure 14.1(a)J. Each arc cost Cij(xij) has at most 
p linear segments: 0 = d~ < db < dt < .. , denote the breakpoints ofthe func
tion and the cost varies linearly in the interval dt- 1 to dt. We let ct denote 
the linear cost coefficient in the interval [dt- 1

, dtJ. Therefore, to specify a 
piecewise linear co:>t function, we need to specify the breakpoints and the 
slopes of the linear segments between successive breakpoints. 

2. Concise function model [see Figure 14.1(b)]. The functions Cij(Xij) are specified 
in a functional form, such as X&. In this case we often require only 0(1) in
formation to specify the function. For this model, we assume that we restrict 
the feasible solutions to integers. Although we could easily adapt the algorithm 

1000 

800 

600 

t 400 

C,/xi) 200 

0 
2 4 6 8 10 0 2 4 6 8 10 

xij ----.. xij ----.. 

(a) (b) 

Figure 14.1 Two examples of convex cost flow functions" 

544 Convex Cost Flows Chap. 14 



that we examine for this model to solve continuous problems, our computa
tional complexity results apply only to the integer model. 

The integer restriction on the optimal solution does impose some loss of gen
erality because the integer optimal solution might not be as good as a continuous 
optimal solution. But we can always obtain an integer optimal solution as close as 
desired to a continuous optimal solution by scaling the data. For example, if we 
want a solution more accurate than the integer optimal solution, we could substitute 
MYij, for sufficiently large value of M, for each Xij' We would chose M depending 
on the accuracy we desired (e.g., M = 1,000 or 10,000). If yt denotes an integer 
optimal solution of the transformed problem, xt = ytJM is an optimal solution of 
the original problem (to a degree of accuracy of 11M). This technique allows us to 
obtain a real-valued optimal solution of the convex cost flow problem to any desired 
degree of accuracy. 

Note that in view ofthe integrality assumption, we can assume that each convex 
cost function is a piecewise linear function since we can allow each integer point to 
be a breakpoint of the function and linearize the function between these breakpoints 
(see Figure 14.2). However, we differentiate between the two models we have in
troduced for the following reason: 

1. When we specify the function by specifying the breakpoints and the slopes of 
the function between successive breakpoints, the length of the input data is 
proportional to the number of linear segments in all the cost functions. 

2. When we specify the function concisely, we assume the length of the input 
data for arc (i, j) is 0(1), but when we linearize it, it will have V segments, 
where V is the largest arc capacity. In this case the length of the input data is' 
not proportional to the total number of segments. 

It is necessary to distinguish between these two cases because an algorithm 
that solves breakpoint problems in polynomial time might not solve the concise
function model in polynomial time. 

Before describing algorithms for solving these problems, we discuss several 
applications of the convex cost model. First, however, let us formally define the 

i 

Sec. 14.1 

150 

100 

Figure 14.2 Transforming a function in 
o -t---r-=iF-,----,---,,----,----,-,----,--, concise form to a piecewise linear 

o 2 3 

Introduction 

4 5 form. The dashed line shows the 
piecewise linear approximation. 

545 



convex cost model that we will be considering and introduce several assumptions 
that we will be imposing. We formulate the model as the following optimization 
problem: 

Minimize L Cij(Xij) 
(i,j)EA 

subject to 

L Xij - L Xji = b(i) for all i E N, 
U:(i,j)EA} U:(j,iJEA} 

for all (i, j) E A, 

Xij is integer for all (i, j) E A. 

(14.1a) 

(14.1b) 

(l4.1c) 

(14.1d) 

We define this model on a directed network G = (N, A) with a capacity uij 
and a convex cost function Cij(Xij) associated with every arc (i, j) EA. As always, 
we associate a number b(i) with each node i E N specifying the node's supply or 
demand, depending on whether b(i) > 0 or b(i) < O. Let U denote the largest number 
among the supplies/demands of the nodes and the finite arc capacities. 

We impose several assumptions that we discussed in some detail in Section 
9.1 for the minimum cost flow problem: (1) the network is directed; (2) all the supply/ 
demand values b(i) are integers; LiEN b(i) = 0; and the convex cost flow problem 
has a feasible solution; (3) the lower bounds on all the arc flows are zero; and (4) 
the network contains a directed uncapacitated path between every pair of nodes. 
Using arguments similar to those that we have used for the minimum cost flow 
problem, we can show that we incur no loss of generality by imposing these as
sumptions. We also assume that for each arc (i, j), Cij(x;) = 0 when Xij = O. This 
assumption imposes no loss of generality because we can always satisfy it by defining 
CiiCxij) = Cij(Xij) - Cij(O). 

14.2 APPLICATIONS 

Many of the linear network flow models that we have examined in our previous 
discussions have rather natural nonlinear cost generalizations. System congestion 
and queuing effects are one source of these nonlinearities (since queuing delays vary 
nonlinearly with flows). In finance, we often are interested in not only the returns 
on various investments, but also in their risks, which analysts often measure by quad
ratic functions. In some other applications, cost functions assume different forms 
over different operating ranges, so the resulting cost function is piecewise linear. 
For example, in production applications, the cost of satisfying customers' demand 
is different if we meet the demand from current inventory or by backordering items. 

To give a flavor of the applications of convex cost network flow models, in 
this section we describe four applications. The first one is a direct application of 
physical systems' nonlinear cost imposed upon the flows. The second application 
is one in which different operating ranges produce different costs. In the last two 
applications, even though the underlying problem is not a flow problem, we can 
model it as a convex cost network flow model. 

546 Convex Cost Flows Chap. 14 



Application 14.1 Urban Traffic Flows 

In road networks, as more vehicles use any road segment, the road becomes in
creasingly congested and so the delay on that road increases. For example, the delay 
on a particular road segment, as a function of the flow x on that road, might be cal 
(u - x). In this expression u denotes a theoretical capacity of the road and a is 
another constant: As the flow increases, so does the delay; moreover, as the flow 
x approaches the theoretical capacity of that road segment, the delay on the link 
becomes arbitrarily large. In many instances, as in this example, the delay function 
on each road segment is a convex function of the road segment's flow, so finding 
the flow plan that achieves the minimum overall delay, summed over all road seg
ments, is a convex cost network flow model. 

Another model of urban traffic flow rests on the behavioral assumption that 
users of the system will travel, with respect to any prevailing system flow, from 
their origin to their destination by using a path with the minimum delay. So if Cij(Xij) 
denotes the delay on arc (i, j) as a function of the arc's flow Xij, each user of the 
system will travel along a shortest delay path with respect to the total delay cost 
Cij(Xij) on the arcs of that path. Note that this problem is a complex equilibrium 
model because the delay that one user incurs depends on the flow of other users, 
and all of the users are simultaneously choosing their shortest paths. In this problem 
setting, we can find the equilibrium flow by solving a convex network flow model 
with the objective function 

L (Xi.i Cij(Y) dy. 
(i,j)EA Jo 

If the delay function is nondecreasing, the function of each variable Xij within the" 
summation is convex, and since the sum of convex functions is convex (see Exercise 
14.1), the overall objective function is convex. Moreover, if we solve the network 
optimization problem defined by this objective function and the network flow con
straints, the optimality conditions are exactly the shortest path conditions for the 
users. (See the reference notes for the details of these claims.) 

This example is a special case of a more general result, known as a variational 
principle, that arises in many settings in the physical and social sciences. The varia
tional principle says that to find an equilibrium of a system, we can solve an as
sociated optimization problem: The optimality conditions for the problem are then 
equivalent with the equilibrium conditions. 

Application 14.2 Area Transfers in Communication 
Networks 

In communication networks, telephones do not have sufficient "intelligence" to 
route calls between each other (historically, equipping every telephone with the 
ability to route its own calls has been prohibitively expensive). Instead, the system 
connects each of the telephones within a collection of customers directly to a so
phisticated telecommunication device known as a switching center; this center does 
all of the routing for the telephones that "home into" it. That is, the switching center 
receives and sends all of the calls (1) between its assigned customers, and (2) between 

Sec. 14.2 Applications 547 



these customers and every other customer in the system (who home into some other 
switching center). Because the switching centers have limited capacity, as Com
munication traffic in the system increases, a telephone company must either add 
capacity at one or more of its centers or make "area transfers," that is, rehome 
traffic from one switching center to another. 

Consider a communication network with regions divided into many districts 
that are served by several switching centers. Let d(j) denote the current demand 
of district j, as measured by number of lines, and let b(i) denote the capacity of 
switching center i, that is, the maximum number of lines the switching center can 
handle. To meet the current demands of the districts, the company currently uses 
Wij working lines between switching center i and districtj. To satisfy future demands 
for lines at district j, the company can use some of the Sij spare lines connecting 
switching center i to districtj at a cost of Aij per line. It can also add additional lines 
beyond the available spares at a larger per line cost of 3ij > Aij. To avoid exceeding 
the capacity at switching center i the company can make "area transfers" by dis
connecting a line connecting switching center i to districtj, at a cost of j.Lij per line, 
and reconnecting the district to another switching center. The company faces the 
following problem. Given the new demands d(j) + a(j) for lines at each districtj, 
how should it assign the customers in the districts to the switching centers (with 
possible area transfers) at the least possible total cost? 

Figure 14.3(a) shows a network formulation for this problem. The flow Xij on 
the arc from the switching center i to districtj represents the capacity of the switching 
center i allocated to district j. Figure 14.3(b) specifies the cost of the flow on arc 
(i, j). Notice that if switching center i supplies Wij lines to district j, it incurs no 
additional cost; supplying any less of an allocation than Wij incurs the costs of area 
transfers, and supplying any more allocation than Wij incurs the cost of adding lines. 
Because of the area transfer cost and the added incremental costs of using spare 
lines, the cost structure is nonlinear, so the problem is a convex cost network flow 
model. 

Application 14.8 Matrix Balancing 

Statisticians, social scientists, agricultural specialists, and many other practitioners 
frequently use experimental data to try to draw inferences about the effects of certain 
control parameters at their disposal (e.g., the effects of using different types of 
fertilizers). These practitioners often use contingency tables to classify items ac
cording to several criteria, with each criterion partitioned into a finite number of 
categories. As an example, consider classifying r individuals in a population ac
cording to the criteria of marital status and age, assuming that we have divided these 
two criteria into p and q categories, respectively. As categories for marital status, 
we might choose single, married, separated, or divorced; as categories for age, we 
might choose below 20, 21-25, 26-30, and so on. This categorization gives a table 
of pq cells. Dividing the entry in each cell by the number of items r (i.e., the total 
population) gives the (empirical) probability of that cell. 

In many applications it is important to estimate the current cell probabilities, 
which change continually with time. We can estimate these cell probabilities very 
accurately using a census, or approximately by using a statistical sampling of the 

548 Convex Cost Flows Chap. 14 



q 

I(d(j) + /l(j)) 
j=l 

b(i) b(j) 

~ 
o 

Switching centers 

(a) 

Districts 

Figure 14.3 (a) Network for the area transfers in communication networks; (b) cost 
structure of arcs from switching centers to districts. 

population; however, even this sampling procedure is expensive. Typically, we 
would calculate the cell probabilities by sampling only occasionally (for some ap
plications, only once in several years), and at other times revise the most recent 
cell probabilities based on partial observations. Suppose that we let aij denote the 
most recent cell probabilities. Suppose, further, that we know some aggregate data 
in each category with high precision; in particular, suppose that we know the row 
sums and column sums. Let Ui denote the number of individuals in the ith marital 
category and let Vj denote the number of individuals in the jth age category. Let 
r = Lf= 1 Ui. We want to obtain an estimate of the current cell probabilities Xij'S so 
that the cumulative sum of the cell probabilities for the ith row equals u;/r, the 
cumulative sum of the cell probabilities for thejth column equals v)r, and the matrix 
x is, in a certain sense, nearest to the most recent cell probability matrix a. One 
popular measure of defining the nearness is to minimize the weighted cumulative 
squared deviation of the individual cell probabilities. With this objective, our problem 
reduces to the following convex cost flow problem: 

Sec. 14.2 Applications 

p q 

Minimize L L wij(Xij - aij)2 
i=1 j=1 

(14.2a) 

549 



subject to 
q 

L Xij = u;lr 
j=1 

p 

- L Xij = -v)r 
;=1 

for all i = 1, ... ;p'; . 

for all j = 1, . . . , q, 

for all i = 1, ... ,p, and for allj = 1, ... , q. 

(14.2b) 

(14.2c) 

(14.2d) 

This type of matrix balancing problem arises in many other application settings. 
The interregional migration of people provides another important application. In the 
United States, using the general census of the population, taken once every 10 years, 
the federal government produces flow matrices with detailed migration character
istics. It uses these data for a wide variety of purposes, including the allocation of 
federal funds to the states. Between the 10-year census, net migration estimates for 
every region become available as by-products of annual population estimates. Using 
this information, the federal government updates the migration matrix so that it can 
reconcile the out-of-date detailed migration patterns with the more recent net figures. 

Application 14.4 Stick Percolation Problem 

One method for improving the structural properties of (electrically) insulating ma
terials is to embed sticks of high strength in the material. The current approach used 
in practice is to add, at random, sticks of uniform length to the insulating material. 
Because the sticks are generally conductive, if they form a connected path from one 
side of the material to the other, the configuration will destroy the material's desired 
insulating properties. Material scientists call this phenomenon percolation. Although 
longer sticks offer better structural properties, they are more likely to cause per
colation. Using simulation, analysts would like to know the effect of stick length on 
the possibility that a set of sticks causes percolation, and when percolation does 
occur, the resulting heat loss due to (electrical) conduction. 

Analysts use simulation in the following manner: The computer randomly 
places p sticks of a given length L in a square region; see Figure 14.4(a) for an 
example. We experience heat loss because of the flow of current through the inter
section of two sticks. We assume that each such intersection has unit resistance. 
We can identify whether percolation occurs and determine the associated power 
dissipation by creating an equivalent resistive network as follows. We assign a re
sistor of 1 unit to every intersection of the sticks. We also associate a current source 
of 1 unit with one of the boundaries of the insulant and a unit sink with the opposite 
boundary. The problem then is to determine the power dissipation of the resistive 
network. 

Figure 14.4(b) depicts the transformation of the stick percolation problem into 
a network model. In this network model, each node represents a resistance and 
contributes to the power dissipation. The node splitting transformation described in 
Section 2.4 permits us to model the node resistances as arc resistances. Recall from 
Ohm's law that a current flow of x amperes across a resistor of r ohms creates a 
power dissipation of rx2 watts. Moreover, the current flows in an electrical network 

550 Convex Cost Flows Chap. 14 



8 

9 

Source 

17 

18 

(a) (b) 

Figure 14.4 Formulating the stick percolator problem: (a) placement of sticks; (b) corre
sponding network. 

in a way that minimizes the rate of power dissipation (i.e., follows the path of least 
resistance). Consequently, we can state the stick percolator problem as the follo~ing 
convex cost flow problem. 

subject to 

Minimize L rijxt 
(iJ)EA 

L Xji - L Xji = { ~ 
{j:(i,j)EA} {j:(j,i)EA} -1 

for i = s 
for all i E N - {s, t}, 
for i = t 

for all (i, j) E A. 

(14.3a) 

(14.3b) 

(14.3c) 

In this model, Xij is the current flow on arc (i, j). The solution of this convex 
cost flow model indicates whether percolation occurs (i.e., if the problem has a 
feasible solution), and if so, the solution specifies the value of the associated power 
loss. 

14.8 TRANSFORMATION TO A MINIMUM COST FLOW 
PROBLEM 

In this section we show how to transform a convex cost flow problem with piecewise 
linear convex cost functions into a minimum cost flow problem. This transformation 
has one significant limitation: it substantially expands the underlying network. 

Sec. 14.3 Transformation to a Minimum Cost Flow Problem 551 



Recall that we are assuming that each piecewise linear convex function contains 
at most p linear segments. To simplifY our notation, we assume that each cost func
tion has exactly p linear segments. We incur no loss of general1ty in imposing this 
assumption because we can always add "trivial" segments of zero length at the end 
of the last interval 0 :5 Xu :5 uu. Moreover, we need not store these trivial segments 
explicitly because dt- l = dt = Uu for any such segment. 

Consider a flow Xu on arc (i, j), which we will view as decomposed into different 
segments,each representing flow between two of the breakpoints dt- l to dt. Let 
yt denote the flow along the kth segment, that is, between dt- l and dt. For example, 
if we send 6 units of flow along the arc with the cost function depicted in Figure 
14.1(a), we send 2 units of flow along segment 1, 3 units along segment 2, and 1 unit 
along segment 3. In general, we can compute the segment flows yt from the total 
arc flow Xi} using the following formula: 

yt = {~u -dt- l 

dt - dt- l 

By definition, Xu = LJ;~ 1 yt and Cu(x;}) = LJ;~ 1 ctyt. Substituting 
LJ;~ 1 yt for Xu in (14.1) gives us the following problem: 

P 

Minimize z = L L ctyt (14.4a) 
(i,})EA k~l 

subject to 

P P 

L L yt - L L yj; = b(i) for all i E N, (14.4b) 
{}:(i,})EA} k~ 1 {j:(J,i)EA} k~ 1 

o :5 yt :5 dt - dt- 1 for all (i, j) E A, for all k = 1, ... ,p. (14.4c) 

It is easy to see that (14.4) is a minimum cost flow problem on an expanded 
network G' = (N, A') with at most p nontrivial parallel arcs corresponding to each 
arc (i, j) E A. Figure 14.5 shows the costs and capacities corresponding to any arc 
(i, j). Let (i, j)l, (i, j)2, ... , (i, j)P denote these arcs, and let ct and dt - dt- l 

denote the cost and capacity of arc (i, j)k. . 
We now establish the equivalence between the convex cost flow problem stated 

in (14.1) and the minimum cost flow problem stated in (14.4). Given a flow X of 

~ 
(ct, db- d8) 

(a) (b) 

552 

Figure 14.5 Transforming a convex 
cost flow problem to a minimum cost 
flow problem: (a) original arc; (b) 
corresponding arcs in the transformed 
networ.k. 

Convex Cost Flows Chap. 14 



(14.1), we obtain the corresponding flow y of (14.4) with the same cost as follows. 
For each arc (i, j) E A, we examine the arcs (i, j)1 ,(i, j)2, ... , in order.and send 
the maximum possible flow along these arcs until we have sent a total of Xi) units 
from node ito nodej. We refer to any such solution of (14.4) as a contiguous solution. 
The contiguous solution satisfies the property that ifthe flow on arc (i,j)k is positive, 
the flow on each of the arcs (i, j)l, (i, j)2, ... ;(i, jl-I equals the arc's capacity. 
Equivalently, in the contiguous solution, if the flow on arc (i, jl is strictly less than 
its upper bound, the flow on each of the arcs (i, jl+ I, (i, j)k+2, ... , (i,))p is zero. 

Conversely, if y is a contiguous solution of (14.4), then the flow Xij = 
~~~ I yt is a solution of (14.1) and both the solutions have the same cost. These 
observations establish one-to-one correspondence between solutions of (14.1) and
contiguous solutions of (14.4). A solution Xu of (14.1) defined by a noncontiguOl,ls
solution yt of (14.4) might have a different cost. But we need not worry about
noncontiguous solutions, because an optimal solution of (14.4) will always be a con
tiguous solution. To see this, consider a noncontiguous solution in which y~ > 0,
and for some k < I, yt is strictly less than its upper bound. Since ct < c~ [by the
convexity of the function Cu(xu)], we can improve this solution by adding a small
number e to yt and subtracting e from y~j. Therefore, a noncontiguous solution cannot
be an optimal solution to (14.4).

The preceding discussion shows that we can solve the convex cost flow problem
by solving an associated minimum cost flow problem. If yt is an optimal solution
of the minimum cost flow problem, then Xu = ~~~ I yt is an optimal solution of the
convex cost flow problem.

The major drawback of the minimum cost flow transformation is that it expands
the network substantially. Each arc in the convex cost flow network has as many
copies in the minimum cost flow network as the number of linear segments in its
cost function. When we are given the cost function Cu(xu) specified as a piecewise
linear continuous convex function for each arc (i, j) E A, this transformation might
be satisfactory, because the amount of storage space (i.e., input size) required to
specify the convex cost flow problem is proportional to the total number of segments
in all the cost functions, which equals the total number of arcs in the resulting
minimum cost flow problem. In other words, both problems have the same input
size. Consequently, any polynomial-time algorithm for solving the transformed min
imum cost flow problem would also solve the associated convex cost flow problem
in polynomial time.

On the other hand, if we were to specify the cost Cu(xu) for some arc (i, j) as
a concise function, such as xD, and we convert the function into piecewise linear by
introducing segments of unit lengths, the transformation is not satisfactory. In this
case, although stating Cu(xu) might require only 0(1) space, the minimum cost flow
problem will have Uu copies of arc (i, j), and Uu might not be polynomially bounded
by n and m. Consequently, even though we employ a polynomial-time algorithm to
solve the minimum cost flow problem, the resulting algorithm is not a polynomial
time algorithm for the convex cost flow problem because it is not polynomial in the
problems size. To overcome this drawback, we need to develop new algorithms for
the convex cost flow problem that are polynomial in the problems size. In Section
14.5 we describe one such algorithm, which we call the capacity scaling algorithm
because it is a variant of the capacity scaling algorithm for the minimum cost flow

Sec. 14.3 Transformation to a Minimum Cost Flow Problem 553

problem that we discussed in Section 10.2. As a starting point, however, we first
discuss two pseudopolynomial-time algorithms.

14.4 PSEUDOPOLYNOMIAL-TIME ALGORITHMS

In this section we discuss two algorithms for the convex cost flow problem. We
assume that each cost function Cij(xij) is a piecewise linear convex function. The
algorithms we discuss are modifications of the cycle-canceling algorithm and the
successive shortest path algorithm discussed in Sections 9.6 and 9.7. Both algorithms
use the fact that we can convert the integer version of the convex cost flow problem
into a minimum cost flow problem by introducing multiple arcs. The novelty of these
algorithms is that rather than introducing the multiple arcs explicitly, they handle
them implicitly. These algorithms use the fact that every optimal solution of the
convex cost flow problem is a contiguous solution.

Both the cycle-canceling and successive shortest path algorithms maintain a
residual network at every step. Because the minimum cost flow transformation of
a convex cost flow problem has multiple arcs between any pair of nodes, so does
the residual network. For example, consider a flow of 3 units on an arc (i, j) of
capacity 5 whose cost function is depicted in Figure 14.2. The resulting flow in the
transformed network will be 1 unit on each of the arcs (i, j)!, (i, j)2, and (i, j)3, and
zero units on each of the arcs (i, j)4 and (i, j)5 [see Figure 14.6(b»). Our definition
of the residual network as described in Section 2.4 implies that the residual network
will contain the arcs (i, j)4, (i, j)5, (j, i) I, (j, i)Z, and (j, i)3, each of unit capacity
[see Figure 14.6(c»).

The contiguity of the solution implies that if we wish to send additional flow
from node i to node j, we will send it through the arc (i, j)4, and if we wish to send
flow from node j to node i, we will send it through the arc (j, i)!. This observation
implies that we need not maintain many arcs between this pair of nodes in the residual
network: Maintaining just the two arcs (i, j)4 and (j, i)! is sufficient because those
are the arcs that matter at this point. Eliminating multiple arcs permits us to achieve
substantial savings in the storage requirements, which translates into enhanced speed
of algorithms.

554

The preceding discussion implies the following method to construct the residual

~ __ (_3_, 5_)_ ... ~

(a) (b) (c)

Figure 14.6 IllUstrating the construction of the residual network: (a) flow on the arc
(i, j) of the original network; (b) flow on arcs ofthe transformed network; (c) residual
network for flow in the transformed network.

Convex Cost Flows Chap. 14

network G(x). For any arc (i, j) E A, if Xij < Uij, the residual network contains the
arc (i, j) with cost Cij(Xij + 1) - Cij(Xij). Moreover, for any arc (i, j) E A, if Xij >
0, the residual network contains the arc (j, i) with cost Cij(Xij - 1) - Cij{xij). For
any arc (i, j) in the residual network, we set its residual capacity equal to the max
imum flow change for which the unit flow cost remains equal to Cij(Xij + 1) -
Cij(Xij). For instance, if the function shown in Figure 14.7 gives the cost of flow for
an arc (i, j) and Xij = 7, the residual network will contain the arc (i, j) with cost
equal to 3 and residual capacity equal to 5. The residual network will also contain
the arc (j, i) with cost equal to - 2 and residual capacity equal to 2.

25

20

I 15 Slq<.~'
CiX i) 10 j~2

5
I
I

o 1 2 3 4 5 6 7 8 9 10 11 12 Figure 14.7 Illustrating the
xij ~ construction of the residual network.

We are now in a position to describe the cycle-canceling algorithm for the
convex cost flow problem. We start the algorithm with a feasible flow X. We construct
the residual network G(x) and use any algorithm to identify a negative cycle. If the
residual network does not contain any negative cycle, x is an optimal integer flow
of the convex cost flow problem. If the residual network contains a negative cycle,
we augment a maximum amount of flow along this cycle, update x and G(x), and
repeat the process. This algorithm is exactly the same as the algorithm we have
discussed in Section 9.6 except that we construct the residual network differently.

To speed up the cycle-canceling algorithm in practice, we might attempt to
augment more flow than would be permitted if we restrict ourselves to just one
segment. At every iteration, the cycle-canceling algorithm identifies a negative cycle
W and augments a maximum amount of flow along this cycle. Mter augmenting the
flow, it updates the residual network (and the costs of arcs in the residual network)
and identifies another negative cycle. At each step we might add some arcs to the
residual network, delete some others, and change the costs of some arcs that remain
in the residual network. However, it is quite possible that the cycle W will still be
a directed cycle in the new residual network (the cost might be different, but the
cycle still might be negative). If so, we augment flow along the same cycle. In fact,
we can keep doing so until either W is no longer a directed cycle in the residual
network or its cost becomes nonnegative. We could identify the amount of flow that
we could send along W before we satisfy one of these two conditions in two ways:
(1) by sending flow repeatedly along W, or (2) by performing binary search in the

Sec. 14.4 Pseudopolynomial-Time Algorithms 555

interval [0, UJ. We might choose the methods that would perform better in practice
for the type of applications that we encounter. .

The successive shortest path algorithm for the convex cost flow problem is
similar. We maintain a pseudoflow x and the residual network G(x) corresponding
to this pseudoflow. We also maintain a set of node potentials 1T(.) so that the reduced
cost of every arc in the residual network is nonnegative. Initially, we set each node
potential1T(i) = 0 and each arc flow Xij equal to the value at which Cij(xij) attains
its minimum. At every iteration, the algorithm selects a node k with an excess and
obtains shortest path distances dO from node k to every other node in the residual
network. Then it updates the potentials by setting 1T to the value 1T - d and augments
a maximum possible flow along the shortest path from node k to some deficit node
I. The algorithm repeats these steps until the pseudoflow x becomes a flow. Again,
this algorithm is the same as the one that we described in Section 9.7 except that
we construct the residual network differently.

This discussion shows how we can adapt two core pseudopolynomial-time min
imum cost flow algorithms for the convex cost flow problem. We could also modify
other algorithms for the minimum cost flow problem along similar lines. For example,
in Exercise 14.20, we discuss a modification of the out-of-kilter algorithm for the
convex cost flow problem, and in Exercise 14.21, we consider a modification of the
network simplex algorithm.

14.5 POLYNOMIAL-TIME ALGORITHM

In this section we describe a polynomial-time algorithm for the convex cost flow
problem. This algorithm is a generalization of the capacity scaling algorithm for the
minimum cost flow problem discussed in Section 10.2 (this development draws heav
ily upon that discussion). The generalization, however, does not affect the algorithms
worst-case complexity, which remains intact at O((m log U)S(n, m, C)); as before,
Sen, m, C) is the time needed to solve a shortest path problem with nonnegative arc
lengths.

The capacity scaling algorithm for the convex cost flow problem is an im
provement of the successive shortest path algorithm discussed in Chapter 10. The
major drawback of the successive shortest path algorithm is that it might augment
as little as 1 unit of flow per augmentation, which would be too small compared to
the total imbalances available at the nodes. As a result, the algorithm might perform
too many augmentations. The capacity scaling algorithm ensures that the flow sent
per augmentation is sufficiently large and as a result the total number of augmen
tations is sufficiently small.

The capacity scaling algorithm uses the following basic idea. The successive
shortest path algorithm linearizes a given functional form by introducing several
linear segments of unit length. The capacity scaling algorithm does not perform this
linearization in a single step, but instead, does it in several scaling phases. Consider,
for example, the function CiAxij) = xt with Uij = 12. In the first scaling phase, the
algorithm linearizes the function into segments of length 8, in the second scaling
phase it linearizes the function into segments of length 4, and so on until the segment
lengths become 1. Figure 14.8 illustrates these linearizations for this function. The
advantage of this scheme is that in the first scaling phase the algorithm can send 8

556 Convex Cost Flows Chap. 14

2,000 2,000

1,500

11,000

Cij(xij)

1,500

1 1,000

Ci/Xij) 500

1

Ci/Xi}

500

O~~-.-'-r-.-.-.-'-'--'-~
o 8

(a)

2000

1500

1000
a=2

500

04-~~~~~-.-,-.--.-.-.-.
o 2 4 6 8 10 12

(c)

1

Cij(xij)

04-~T=T=~.-.-.-.-.-.-~
o 4 8 12

(b)

2000

1500

1000

a=l

500

04-~~~~.-.-,-,-.-.-,-,
o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 14.8 Approximations of Ciixij) in several scaling phases.

units of flow along augmenting paths, in the second scaling phase it can send 4 units
of flow along augmenting paths, and so on. As a result, the algorithm reduces ex
cesses at nodes at a faster rate, so it terminates more quickly.

The capacity scaling algorithm for the convex cost flow problem performs
a number of scaling phases with varying values of ~. In the ~-scaling phase,
the algorithm maintains a ~-residual network G(x, ~) with respect to a pseu
doflow defined as follows: For any arc (i, j) E A with Xij + ~ ::; Uij, the ~-residual
network contains the arc (i, j) with a residual capacity of ~ and a cost equal to
(Ci}(Xi) + ~) - Cij(Xij))/~. For any arc (i, j) E A with Xij ;:::: ~, the ~-residual
network contains the arc (j, i) with a residual capacity of ~ and a cost equal to
(CiAxij - ~) - Cij(Xij))/~.

Initially, ~ = 2l1og
U J and we initiate the algorithm with the zero pseudoflow

x and zero node potentials 1T. In the~-scaling phase, we first construct the ~-residual
network G(x, ~). We then examine every arc (i, j) in A, and if any of the arcs

Sec. 14.5 Polynomial-Time Algorithm 557

(i, j) or (j, 0, in G(x, ~) violates its reduced cost optimality condition (9.7), we
increase or decrease the flow Xu by ~ units, so that both .t~~ arcs satisfy their op
timality conditions (we later show that it is always possible to. do so). The algorithm
next defines S (~) and T(~), respectively, as the set of nodes with excesses and
deficits of at least ~ units. The algorithm then performs the following step iteratively
until either S(~) or T(~) is empty: Identify a shortest path in the ~-residual network
from a node k E S(~) to a node I E T(~), augment ~ units of flow along this path,
and update G(x, ~). At this point the algorithm decreases ~ by a factor of 2 and
starts a new scaling phase. Eventually, ~ = 1 and the solution at the end of this
scaling phase is optimal.

To show that the capacity scaling algorithm correctly solves the convex cost
flow problem, we use the invariant property that the algorithm satisfies the reduced
cost optimality condition for every arc in the ~-residual network. Assuming that the
algorithm satisfies this invariant at the beginning of each scaling phase, it is easy to
show that the algorithm maintains it subsequently within that phase. The algorithm
augments flow along shortest paths in the ~-residual network, and Lemma 9.12
implies that the resulting solution satisfies the optimality conditions.

To see that the algorithm satisfies the invariant property at the beginning of
the first scaling phase, notice that in this scaling phase ~ = 2l1og uJ. This definition
of ~ implies that we have linearized each cost function Cu(xu) into at most one linear
segment [as shown in Figure 14.8(a)]. Ifwe setxij == O,'the ~-residual network might
contain the arc (i, j), but not (j, i); let a be the cost of arc (i, j). On the other hand,
if we set Xu = ~, the ~-residual network might contain the arc (j, 0 with cost - a.
We set the flow on arc (i,j) so that the cost of the corresponding arc in the ~-residual
network is nonnegative. We repeat this step for all arcs in the network G so that all
arcs in the ~-residual network have nonnegative costs. Since all node potentials are
zero at this point, the reduced cost of every arc in the residual network is also
nonnegative.

We next show that at the beginning of any general ~-scaling phase, we can
adjust arc flows by at most ~ units so that the ~-residual network satisfies the reduced
cost optimality conditions. We initiate the ~-scaling phase when the 2 ~-scaling phase
terminates; we assume inductively that the solution X at the end of the 2~-scaling
phase satisfies the optimality conditions. In the 2~-scaling phase, we linearize Cij(Xij)
by segments of length 2 ~, and in the ~-scaling phase we linearize this cost function
by segments oflength ~. Consequently, when we move from the 2~-scaling phase
to the ~-scaling phase, the arc costs change. As a result, the reduced costs of the
arcs also change and the new values might become negative. To see this point better,
consider Figure 14.9. In the 2~~scaling phase, the cost of the arc (i, j) is the slope
of the line AB and the cost of the arc (j, i) is the negative of the slope of the line
AC. In the ~-scaling phase, the cost of the arc (i, j) is the slope of the line AD and
the cost of the arc (j, 0 is the negative of the slope of the line AE. We claim that
by adjusting flow on an arc (i, j) by at most ~ units, we can make the reduced costs
of both the arcs, (i, j) and (j, i) in the ~-residual network nonnegative.

Suppose that X denotes the flow at the end of the 2~-scaling phase. At the
beginning of the ~-scaling phase, we first update the ~-residual network and the arc
reduced costs. Consider some arc (i, j) in A and assume, for simplicity, that the ~
residual network contains both the arcs (i, j) and (j, i). The reduced costs of arcs

558 Convex Cost Flows Chap. 14

ZO,OOO

Arc costs with scale factor ZI:!.

15,000

Arc costs with scale factor I:!.
10,000

5,000

Z 4 6 8 10 1Z Figure 14.9 Changes in arc costs with

xij-ZI:!. xij-I:!. xij xij + I:!. xij+ ZI:!. changes in I:!..

(i, j) and (j, i) might satisfy four alternatives: (1) eij ;::: 0 and eft;::: 0, (2) eij < 0 and
eft ;::: 0, (3) eij ;::: 0 and eft < 0, and (4) eij < 0 and eft < O. In case 1, both arcs
(i, j) and (j, i) satisfy the optimality conditions and nothing needs to be done. In
case 2 we increase Xu by ~ units, and in case 3 we decrease Xu by ~ units. Conve~
cost functions cannot .satisfy case 4 (we ask the reader to prove this property in
Exercise 14.17).

j We now show that in case 2, if we increase Xu by ~ units,the reduced costs
of both the arcs (i, j) and (j, i) become nonnegative. The arc (i, j) in G(x, 2~)
satisfies the reduced cost optimality condition at the end of the 2~-scaling phase.
Therefore,

Alternatively,

(14.5)

However, the arc (i, j) in G(x, ~) does not satisfy the reduced cost optimality
condition. Consequently,

(14.6)

We want to show that after we have increased Xij by ~ units, the arc (i, j) in
G(x, ~) will satisfy the optimality conditions. In other words, we wish to show the
following result:

Cu(xu + 2~) - Cu(xu + ~) - ~'lT(i) + ~'lT(j) ;::: O. (14.7)

We can write the inequality (14.5) as

[Cu(xu + 2~) - Cu(xu + ~) - ~'lT(i) + ~'lT(j)] (14.8)
+ [Cu(xu + ~) - CU(Xij) - ~'lT(i) + ~'lT(j)] ;::: O.

Using the expression (14.6) in (14.8) immediately implies (14.7). We also need
to show that after we have increased Xu by ~ units, the arc (j, i) in G(x, ~) will also
satisfy the optimality condition. To see this result, observe that the reduced cost of

Sec. 14.5 Polynomial-Time Algorithm 559

arc (j, i) is ([Cij(Xij) - CAxij + A)]!A) - 7f(j) + 7f(i), which is clearly positive in
view of (14.6). This observation shows that in case 2, if we increase Xij by A units,
the reduced costs of both the arcs (i, j) and (j, i) are nonnegative. Using similar
arguments, we can show that in case 3, if we decrease xij by-A units, the reduced
costs of both the arcs (i, j) and (j, i) are nonnegative.

To assess the complexity of the capacity scaling algorithm, note that 2 A-scaling
phase ends when either S(2A) = 0 or T(2A) = 0. Therefore, the sum of the positive
imbalances is at most 2nA. At the beginning of the A-scaling phase, the algorithm
adjusts the flow on any arc by at most A units. Consequently, 2(n + m)A is a bound
on the sum of the positive imbalances. Each augmentation in the A-scaling phase
decreases the sum of the positiveimbalances by A units; consequently, the algorithm
can perform at most O(m) augmentations. Overall, the algorithm performs O(m
log U) augmentations and runs in O«m log U)S(n, m, C)) time. We state this result
as the following theorem.

Theorem 14.1. The capacity scaling algorithm obtains an integer optimaljlow
for a convex cost jlow problem in O«m log U)S(n, m, C)) time.

14.6 SUMMARY

The convex cost flow problem is an efficiently solvable and yet important subcase
of the general nonlinear· network flow problems. Unlike the minimum cost flow
problem, the convex cost flow problem might not have an integer optimal solution.
In this chapter, however, we assume that we wish to determine an integer optimal
solution. We incur no significant loss of generality in making this assumption because
by multiplying the data by a suitably large number, we can use this integer model
to obtain a real-valued optimal solution ~hat is near integer to any desired level of
accuracy.

We considered two types of mOdels: (1) each arc cost function Cij(xij) is a
piecewise linear convex function of the arc flow Xij, and (2) each arc cost function
is a concise convex function such as 5x&. By imposing the integrality assumptions
on arc flows, we can transform any concise function into a piecewise linear function
by introducing unit length segments. Throughout most of our discussion, we there
fore assumed that all of the arc cost functions were piecewise linear.

We first showed how to transform a convex cost flow problem with piecewise
linear cost functions into a minimum cost flow problem. The major drawback of this
transformation is that it expands the network substantially: For each arc of the
convex cost flow network, the transformation introduces one copy of the arc into
the minimum cost flow model for each linear segment in the arc's cost function. We
showed that we need not maintain so many copies of each arc in the residual network
G(x) with respect to any flow x; maintaining at most two copies, corresponding to
those arcs whose flow would change next, is sufficient. We then adapted two min
imum cost flow algorithms, the cycle-canceling algorithm and the successive shortest
path algorithm, for the convex cost flow problem. These algorithms are the same
as those for the minimum cost flow problem with one exception: they have different
residual networks. The running times of these algorithms are the same as their run
ning times for the minimum cost flow problem.

560 Convex Cost Flows Chap. 14

We also discussed a polynomial-time algorithm for the convex cost flow prob
lem. Polynomial-time algorithms for the minimum cost flow problem do not translate
directly into polynomial-time algorithms for the convex cost flow problem for the
simple reason that the number of arcs in the resulting minimum cost flow formula
tion might not be polynomially bounded in n, m, and log U. As a result, we need
to make modest changes in the minimum cost flow algorithms so that they retain their
polynomial-time behavior. In this spirit we modified the capacity scaling algo
rithm for the minimum cost flow problem that we had developed in Section 10.2
to obtain a polynomial-time algorithm for the convex cost flow problem. The run
ning time ofthis algorithm is O(m log U S(n, m, C)), which is the same as that of
the capacity scaling algorithm for the minimum cost flow problem. [S(n, m, C) is the
time required for solving a shortest path problem on a network with n nodes, m
arcs, and with C as the largest arc cost.]

REFERENCE NOTES

Most of the research devoted to convex cost flows uses nonlinear programming
techniques to obtain a real-valued optimal solution. In this chapter we have adopted
an unconventional approach by examining methods for obtaining an integer optimal.
solution. The transformation of the convex cost flow problem into a minimum cost
flow problem is a specialization of a standard transformation for converting a sep
arable piecewise linear convex program into a linear program. The adaptations of
the cycle-canceling and successive shortest path algorithms described in Section
14.4 are direct consequences of this transformation.

Minoux [1984] developed a polynomial-time algorithm for obtaining a relll
valued optimal solution of the quadratic cost flow problem [i.e., the convex cost
flow problem with arc costs of the form CAxij) = aijxij + bijxt for some constants
aij and bij]. His approach uses the out-of-kilter algorithm as a subroutine. Subse
quently, Minoux [1986] observed that this approach can also be used to obtain an
integer optimal solution of the (general) convex cost flow problem. The algorithm
we have presented in Section 14.5 is a variant of Minoux [1986] algorithm; it is in
the framework of a scaling algorithm given by Hochbaum and Shanthikumar [1990].
Our analysis of the correctness and running time of the algorithm is similar to the
analysis presented by Minoux [1986]. Goldberg and Tarjan [1987] generalized their
cost scaling algorithm for the minimum cost flow problem, which we described in
Section 10.3, to obtain an integer optimal solution of the convex cost flow problem
if Cij(Xij) is integer for all integer Xij. Hochbaum and Shanthikumar [1990] developed
scaling based algorithms that would solve separable convex integer programs defined
by totally unimodular constraint matrices. Their algorithm is polynomial time for
finding optimal integer solutions.

Many nonlinear programming techniques are available for solving the convex
cost flow problem. Among these are (1) the Frank-Wolfe method developed by
Braynooghe, Gibert and Sakarovitch [1968] and Collins et al. [1978], (2) the convex
simplex method described by Rosenthal (1981], (3) Newton's method as developed
by Klincewicz [1983], and (4) relaxation methods proposed by Zenios and Mulvey
[1986] and Bertsekas, Hosein, and Tseng [1987]. The paper by Ali, Helgason, and
Kennington [1978] presents a survey of algorithms for the convex cost flow problem

Chap. 14 Reference Notes 561

developed before 1978 and the paper by Florian [1986] describes many recent de
velopments, focu~ing on the use of nonlinear programming algorithms in solving
transportation planning and traffic equilibrium problems.

In Section 14.2 we described several applications of the convex cost flow prob
lem. We have adapted these applications from the following papers:

1. Urban traffic flows (Magnanti [1984]).
2. Area transfers in communication networks (Monma and Segal [1982]).
3. Matrix balancing (Schneider and Zenios [1990]).
4. Stick percolation problem (Ahlfeld, Dembo, Mulvey, and Zenios [1987]).

The model arising in electrical networks (Hu [1966]) that we described in Sec
tion 1.3 is another application of the convex cost flow problem. Some additional
applications of the convex cost flow problem are (1) the target-assignment problem
(Manne [1958]), (2) solution of Laplace's equation (Hu [1967]), (3) production sched
uling problems (Ratliff [1978]; Barr and Turner [1981]), (4) the pipeline network
analysis problem (Collins et al. [1978]), (5) microdata file merging (Barr and Turner
[1981]), and (6) market equilibrium problems (Barros and Weintraub [1986]). Papers
by Ali, Helgason, and Kennington [1978], Dembo, Mulvey, and Zenios [1989], and
Schneider and Zenios [1990] provide additional references concerning applications
of the convex cost flow problem.

EXERCISES

Note: In the following exercises, interpret an optimal solution of the convex cost
flow problem as an integer optimal solution. Moreover, unless we specifically describe the
form of the cost function Cij(xij), assume that it is a piecewise linear convex function or a
concise function, whichever is more convenient.

14.1. A function f(x) of an n-dimensional vector x is convex if f(AxI + (1 - >")X2) ::5

>..f(xd + (1 - >")f(X2) for every two distinct values Xl and X2 of X and for every weighting
parameter >.., 0 ::5 >.. ::5 1. Suppose that f(x) and g(x) are both convex functions of a
scalar x. Which of the following functions h(·) are always convex functions? Justify
your answer.
(a) h(x) = f(x) + g(x)
(b) h(x) = f(x) - g(x)
(c) h(x) = (f(X»2

(d) h(x) = v'f(x) [Assume that f(x) ;::: 0.]

14.2. Let x and cI, c2, ... , ck be n-dimensional vectors. Show that the function f(x) =
max{clx, c2x, ... , ckx} is a convex function of x. Is the function g(x) = min{clx,
c2x, ... , ckx} also convex?

14.3. Consider a minimum cost flow problem whose supply/demand vector b(>") = bO + >..b*
is a function of a scalar parameter >... Let z(>") denote the optimal objective function
value of the problem as a function of this parameter. Show that z(>..) is a convex function
of >...

14.4. Capacity expansion of a network. A network G = (N, A) is used to send flow from one
node s to another node t and does not have sufficient arc capacities to meet anticipated
future demands. Suppose that we wish to increase some of the arc capacities so that
we can send the desired amount of flow from node s to node t. Let aij denote the per
unit cost of increasing the capacity of arc (i, j). Suppose that we wish to determine an

562 , Convex Cost Flows Chap. 14

expansion plan that increases the maximum flow in the network to VO while incurring
the least possible cost. Formulate this problem as a convex cost flow problem.

14.5. Finding nearly feasible flows. Recall from Section 9.7 that a pseudoflow x of a network
flow problem is a solution that satisfies the arc flow bounds 0 :S Xij :S Uij, but might
violate the mass balance constraints. To determine whether the network flow problem
has a feasible flow, and if not, then to determine a pseudoflow with minimum possible
infeasibility, we could attempt to find a pseudoflow x that minimizes the function
:LiEN [e(i)]2 of the excesses

e(i) = b(i) - :L xij + :L Xji'
{j:(i.j)EA} {j:(j.i)EA}

(Observe that the minimum value of this problem is zero if and only if the network
flow problem has a feasible solution.) Show how to formulate this excess minimization
problem as a convex cost flow problem. (Hint: Augment the network by adding a node
and some arcs.)

14.6. Racial balancing with penalties. Consider the racial balancing problem described in
Application 9.3. Assume that each schoolj has a targeted enrollment ofbj black students
and Wj white students. The actual number of black and white students enrolled in the
jth school might differ from these targeted values. Suppose that if we miss any of these
targets by y students, we incur an associated penalty ofl aj Iy. We would like to allocate
students to the schools in a way that minimizes the sum of the total cost of transpor
tation and the penalties. Formulate this problem as a convex flow problem.

14.7. Solve the convex cost flow problem shown in Figure 14.IO(a) by the cycle-canceling
algorithm. Assume that arc (i, j) has the flow cost CijX& for the value of Cij specified
in the figure. Start with the following flow: X\3 = X34 = 5, and Xij = 0 for all other
arcs. Always augment flow along a negative cycle with the minimum cost. Show the
residual network after each augmentation.

5

b(i) b(j)
~ ___ (_C,~,,_U,~0 __ ~.~~

o

o
(a)

(5,3)

-5 s

(b)

Figure 14.10 Examples for Exercises 14.7 to 14.9.

(1,3)

(5,2)

14.8. This exercise concerns the capacity expansion problem described in Exercise 14.4.
Consider a numerical example of this capacity expansion problem shown in Figure
14.IO(b) and assume that we wish to send 10 units of flow from the source node to the
sink node. Solve this problem by the successive shortest path algorithm.

14.9. Apply the capacity scaling algorithm to the convex cost flow problem shown in Figure
14.IO(a). Show your computations for only the first two scaling phases.

14.10. In a particular class of convex cost flow problems formulated on undirected networks,
the flow cost on any arc (i, j) satisfies the conditions Cij(xij) ;::: 0 for all Xij ;::: 0 and

Chap. 14 Exercises 563

Cij(O) = o. Show how to convert this type of problem into a convex cost flow problem
on a directed network. Justify your transformation by establishing an equivalence be
tween the flows in the two networks. What happens if we "rel:ax the assumption that
Cij(O) = O?

14.11. Let X* be an optimal solution of a convex cost flow problem with Cij(Xij) as the flow
cost on arc (i, j) EO A. Suppose that we add a constant k to each arc cost; that is,
CI)Xi) = Cij(xij) + k for some constant k. Professor May B. Wright claims that x*
also solves the modified problem. Prove or disprove this claim.

14.12. In Section 11.2 we proved that a minimum cost flow problem always has at least one
optimal spanning tree solution [i.e., a solution with an associated spanning tree that
satisfies the condition that each nontree arc (i, j) has a flow value of Xij = 0 or of
Xij = uij and each tree arc (i, j) has flow Xij satisfying the flow bounds 0 ::5 Xij ::5 uij].
Show that convex cost flow problems do not satisfy this spanning tree property. To
do so, construct an instance of the convex cost flow problem (with piecewise linear
convex functions or with concise convex functions) that has a unique nonspanning tree
solution.

14.13. We say that a function Cij(xij) is concave iffor any two points Xfj and x'!j and for every
value of the parameter I) satisfying 0 ::5 I) ::5 1, Cij(l)xi) + (1 - I))x:)) 2 I) C,"ix!j
+ (1 - I))Cij(x'!). Consider a capacitated network flow problem in which the cost of
flow Cij(Xij) on each arc (i, j) is a concave function. In this network we want to obtain
a flow that minimizes the total cost of flow. Show that this problem always has an
optimal spanning tree solution. Explain why this result is not true for the convex cost
flow problem. (Hint: Use an approach similar to the one we used in Section 11.2 to
show that we can always obtain a cycle free solution from any given solution without
increasing the cost of the flow.)

14.14. Let X* be an optimal solution of the convex cost flow problem. Describe an Oem)
method that either shows that X* is the unique solution to the problem or that finds
an alternative optimal solution.

14.15. Let x* be a feasible solution of the convex cost flow problem. Consider the residual
network G(x*) as defined in Section 14.4. Show that X* is an optimal solution of the
convex cost flow problem if and only if G(x*) contains no negative cycle.

14.16. In Section 14.4, while describing the cycle-canceling algorithm for the convex cost flow·
problem, we indicated that we can use a binary search technique to determine the
maximum flow 0 that we can augment along the selected cycle W so that it remains a
negative cycle. Work out the details of this method and specify the time needed to
determine o.

14.17. While discussing the capacity scaling algorithm for the convex cost flow problem in
Section 14.5, we claimed that at the beginning of any ~-scaling phase, we will never
encounter a pair of arcs (i, j) and (j, i) in the residual network satisfying the conditions
cij < 0 and cJi < o. Prove this claim.

14.18. Budget.constrained capacity expansion. In this exercise we study a variation of the
capacity expansion problem described in Exercise 14.4. Suppose that we have allocated
D dollars for increasing arc capacities (assume that D is integer). We wish to spend
this money in a way that will permit the maximum possible flow from node s to node
t in the network. Suggest a polynomial-time algorithm for solving this problem. (Hint:
Formulate the problem as a constrained maximum flow problem as in Exercise 10.25
and use the solution technique developed in that exercise.)

14.19. Consider the budget-constrained capacity' expansion problem described in Exercise
14.18. Show how to solve this problem by a single application of the parametric network
simplex algorithm described in Section 11.9.

14.20. Suppose that we wish to develop a generalization of the out-of-kilter algorithm (see
Section 9.9) for solving a convex cost flow problem whose arc costs are all piecewise
linear convex functions. Specify a kilter diagram for an arc (Le., those combinations
of reduced costs cij and arc flows Xij that satisfy the optimality conditions). Next define

564 Convex Cost Flows Chap. 14

the kilter number of an arc (i, j) as the flow change required to make it an in-kilter
arc. Finally, show that by solving a shortest path problem, we can reduce the kilter
number of some arc by at least 1 unit.

14.21. Adapt the network simplex algorithm for a convex cost flow problem whose arc costs
are each given by a concise function Cij(Xij). Explain how to perform the following
steps: (1) identifying an entering (k, I); (2) determining the maximum flow that we can
augment along the cycle formed by adding arc (k, I) to the spanning tree; and (3)
updating the node potentials.

14.22. Cost scaling algorithm. In this exercise we discuss an adaptation of the cost scaling
algorithm for the minimum cost flow problem discussed in Section 10.3 for solving a
convex cost flow problem when each arc cost is a piecewise linear convex function
containing at most p linear segments. Suppose that we transform this problem into a
minimum cost flow problem and then use the generic version of the cost scaling al
gorithm described in Section 10.3. For a specific scaling phase, obtain a bound on the
number of times that the algorithm performs each of the following operations: (1) sat
urating pushes; (2) relabels; and (3) nonsaturating pushes. How much time does the
algorithm require to execute a scaling phase? What is the running time of the entire
algorithm?

14.23. Suppose that we wish to obtain a real-valued optimal flow for a convex cost flow
problem whose arc cost functions Cij(Xi) are all concise functions. Let x be a feasible
flow for the convex cost flow problem and let e be any positive real number. Let G(x)
denote the residual network with respect to the flow x. We define the e-incremental"
costs of arcs in the residual network in the following manner. If (i, j) E A and Xij <
uu, then G(x) contains the arc (i, j) with an e-incremental cost equal to [Cij(xij +
e) - Cij(xi)]/e. If (i, j) E A and Xu > 0, then G(x) contains the arc (i, j) with the
e-incremental cost equal to [Cij(xij - e) - Cu(xij)]le. Show that x is a real-valued optimal
solution of the convex cost flow problem if and only if for all e > 0, G(x) contains no
directed cycle with a negative e-incremental cost. Use this result to outline an algorithm
that produces a real-valued optimal solution of the problem to any desired degree.of
accuracy (i.e., produces a solution whose objective function value is sufficiently close
to the optimal objective function value).

Chap. 14 Exercises 565

15
GENERA l,TZED FLOWS

Chapter Outline

15.1 Introduction
15.2 Applications

There are occasions when it is undoubtedly better to incur loss
than to make gain.

-Titus Maccius Plautus

15.3 Augmented Forest Structures
15.4 Determining Potentials and Flows for an Augmented Forest Structure
15.5 Good Augmented Forests and Linear Programming Bases
15.6 Generalized Network Simplex Algorithm
15.7 Summary

15.1 INTRODUCTION

In each of the models we have considered so far, we have made one very funda
mental, yet almost invisible, assumption: We conserve flow on every arc. That is,
the amount of flow on any arc that leaves its tail node equals the amount of flow
that arrives at its head node. This assumption is very reasonable in many application
settings, including the numerous applications we have considered in the previous
chapters (and that we consider later in Chapter 19). Other practical contexts, how
ever, violate this conservation assumption. For example, in the transmission of a
volatile gas, we might lose flow because of evaporation; or, in the transmission of
liquids such as raw petroleum crude, we might lose flow due to leakage.

In this chapter we consider a basic generalized network flow model for ad
dressing these situations. In this model we associate a positive mUltiplier fJ-ij with
every arc (i, j) of the network and assume that if we send 1 unit from node i to node
j along the arc (i, j), then fJ-ij units arrive at node j. This model is a generalization
of the minimum cost flow problem that we have been considering in previous chapters
in the sense that if every multiplier has value 1, the generalized network flow model
becomes the minimum cost flow problem.

The generalized maximum flow problem is another special case of the gener
alized network flow problem. In this model, instead of determining a minimum cost
flow, we determine a maximum flow that can leave the source or that can enter the
sink. The literature on the generalized maximum flow problem is extensive and
includes several recently developed polynomial-time algorithms. In this chapter,
rather than discussing these algorithms, we concentrate on the generalized minimum

566

cost flow problem because it is more general and includes the generalized maximum
flow problem as a special case. Moreover, rather than attempting to be compre
hensive in our coverage of algorithms for the generalized minimum cost flow prob
lem, we will study just one algorithm, an adaptation of the network simplex method,
which we refer to as the generalized network simplex algorithm.

Like our discussion of the network simplex method in Chapter 11, our pre
sentation of the generalized network simplex algorithm emphasizes the problem's
underlying combinatorial structure. We do, however, require limited background in
linear programming since a linear programming perspective simplifies much of our
development. The combinatorial and linear programming approaches both provide
valuable insight into the generalized network simplex method. We stress the com
binatorial approach because it is similar to the way that we have developed the
network simplex method in Chapter 11 and because it requires only modest back
ground in linear programming.

Recall from Chapter 11 that the network simplex algorithm maintains a par
titioning of the arcs of the network as a triple (T, L, U) called a spanning tree
structure. The arcs in T correspond to those in a spanning tree and the arcs in U
and L are nontree arcs with flow at their upper and lower bounds. The rationale for
restricting our search to this type of solution rests on the fundamental spanning tree
property that implies that any minimum cost flow problem always has a spanning
tree solution. The generalized network simplex algorithm will be conceptually sim
ilar. We again restrict our attention to a particular type of solution (F, L, U), called
an augmented forest structure; in this case, the arcs in F constitute what we call an
augmentedforest. As in the network simplex method, the generalized algorithm will
be an iterative procedure, moving from one augmented forest structure to another,
at each step producing an augmented forest structure with a smaller cost (assuming
nondegeneracy). To guide the algorithmic steps, we again define node potentials and
use them to determine optimality conditions for assessing when a given solution is
optimal.

We have organized this chapter in a modular fashion. After describing a number
of applications of the generalized flow problem, we begin to develop the generalized
network simplex algorithm by defining augmented forests and by describing several
of their properties, including optimality conditions for assessing when an augmented
forest structure defines an optimal solution. We then develop the two major building
blocks of the generalized network simplex algorithm: procedures for finding the node
potentials and the arc flows associated with any augmented forest structure. Not
coincidentally, these procedures are also the major building blocks of the simplex
method for general linear programs. To highlight the connection between our de
velopment in this chapter and linear programming in general, we next show that an
augmented forest is a graph-theoretic interpretation of a linear programming basis
of the linear programming formulation of the generalized network flow problem. In
Section 15.6 we bring all of these algorithm ingredients together to produce the
generalized network simplex algorithm.

To set notation, let us first introduce the following linear programming for
mulation of the generalized flow problem:

Sec. 15.1 Introduction

Minimize L CijXij

U.j)EA

(IS.la)

567

subject to

L Xij - L !-1jiXji = b(i)
{j:(i,j)EA} {j:(j,i)EA}

for °alH E N, (15.1b)

for all (i, j) E A. (15.1c)

As we have already noted, !-1ij> 0 is the multiplier of the arc (i,j). We assume
that each arc multiplier !-1ij is a rational 'number, that is, it can be expressed as !-1ij
= pijlqij for some integers pij and qij. When we send 1 unit of flow on arc (i, j), !-1ij

units of flow arrive at nodej. If!-1ij < 1, the arc is lossy; if!-1ij > i, the arc is gainy.
Notice that we are assuming that the arc capacity Uij is an upper bound on the

flow that we send from node i, not on the flow that becomes available at node j.
Similarly, Cij is the cost per unit flow that we send from node i, not the per unit cost
of the flow that becomes available at node j. In this model we a~sume that the lower
bound on every arc flow is zero. Exercise 15.9 shows that we incur no loss of
generality in making this assumption.

15.2 APPLICATIONS

Generalized networks can successfully model many application settings that cannot
adequately be represented as minimum cost flow problems. Two common interpre
tations of the arc multipliers underlie many uses of generalized flows. In the first
interpretation, we view the arc multipliers as modifying the amount of flow of some
particular item. Using this interpretation, generalized networks model situations
involving physical transformations such as evaporation, seepage, deterioration, and
purification processes with various efficiencies, as well as administrative transfor
mations such as monetary growth due to interest rates. In the second interpretation,
we view the multiplication process as transforming one type of item into another.
This interpretation allows us to model processes such as manufacturing, currency
exchanges, and the translation of human resources into job requirements. In the
following discussion, we describe applications of the generalized network flows that
use one or both of these interpretations of the arc multipliers.

Application 15.1 Conversions of Physical Entities

In many different application settings, generalized networks arise quite naturally
because the flow in a network converts one type of physical entity into another at
a certain conversion rate. The following few brief problem descriptions are illustra
tive of these types of applications.

Financial networks. In financial networks, nodes represent various equi
ties such as stocks, bonds, current deposits, Treasury bills, and certificates of deposit
at certain points in time and arcs represent various investment alternatives that
convert one type of equity into another. The multiplier of an arc represents the gain
associated with the corresponding investment.

568 Generalized Flows Chap. 15

Mineral networks. In these networks, nodes represent mines, purification
plants, refineries, ports, and final markets. Arcs represent processing opportunities
or flow of material through intermediate junctions to their final destinations. The
multiplier of an arc represents the loss associated with the corresponding process.

Energy networks. As discussed in Application 1.9, in certain types of en
ergy networks, nodes represent various raw materials (e.g., crude oil, coal, uranium,
or hydropower) and various energy outputs (e.g., electricity, domestic oil, or gas).
The arcs represent the transformation of one raw material into an energy output;
the efficiency of this transformation is the arc multiplier.

Application 15.2 Machine Loading

Machine loading problems arise in a variety of application domains. In one of the
most popular contexts, we would like to schedule the production of r products on
p machines. Suppose that machine i is available for (Xi hours and that any of the p
machines can produce each product. Producing 1 unit of product i on machine j
consumes au hours of the machine's time and costs Cu dollars. To meet the demands
of the products, we must produce ~j units of product j. In the machine loading
problem, we wish to determine how we should produce, at the least possible pro
duction cost, the r products on the p machines.

In this problem setting, products compete with each other for the use of the
more efficient, faster machines; the limited availability of these machines forces us
to use the less economical and slower machines to process some of the products.
To achiev~ the optimal allocation of products to the machines, we can formulate
the problem as a generalized network flow problem, as shown by Figure 15.1. The
network hasp product nodes, 1,2, ... ,p and r machine nodes, T, 2, ... ,r. Product
node i is connected to every machine node]. The multiplier au on arc (i,]) indicates
the hours of machine capacity needed to produce 1 unit of product i on machine j.
The cost of the arc (i,]) is Cij. The network also has arcs (],]) for each machine

Sec. 15.2

b(i) b(j)

13,

13, K~iT;lj'}------l.(jll':,;'r

Applications

Product
nodes

Machine
nodes

Figure 15.1 Formulating a machine
loading problem as a generalized
network flow problem.

569

node]; the multiplier of each of these arcs is 2 and the cost is zero. The purpose of
these arcs is to account for the unfulfilled capacities of the machines: as described
in Section 15.3, we can send additional flow along these arcs to generate enough
flow (or items) to exactly consume the available machine capacity.

As stated, this machine loading problem is fairly generic. Consequently, it
arises naturally in many different problem settings. The following example illustrates
one such application context. We leave the detailed formulation of this problem as
an exercise (see Exercise 15.3).

Aircraft assignment. An airline needs to assign its fleet of various aircrafts
to its flight routes. The airline fleet has l3i aircraft of type i; it wishes to use this
fleet to meet its demand of Cij passengers on each of its j routes. By operating an
aircraft of type i on routej, the airline incurs a cost of Cij and can accommodate aij

passengers. The airline would like to assign aircrafts to the routes to satisfy the
customer demand at the least possible operating costs. Note that the generalized
network flow formulation of the aircraft assignment problem does not assure that
the number of aircrafts assigned to a route will be integral. The optimal solution
might be fractional. In some cases, rounding up this fractional solution to an integer
solution might provide a good solution of the problem. In other cases, the solution
to the generalized flow problem would serve as a good starting point, and as a
valuable bounding mechanism, for initiating an implicit enumeration procedure.

Application 15.3 Managing Warehousing Goods and
Funds Flows

An entrepreneur owns a warehouse of fixed capacity H that she uses to store a price
volatile product. Knowing the price of this product over the next K time periods,
she needs to manage her purchases, sales, and storage patterns. Suppose that she
holds 10 units of the good and Co dollars as her initial assets. In each period she can
either buy more goods or sell the goods in the warehouse to generate additional
cash. The price of the product varies from period to period and ultimately all goods
must be sold. The problem is to identify a buy-sell strategy that maximizes the
amount of cash CK available at the end of the Kth period.

Figure 15.2 gives a generalized network flow formulation of this warehousing

Inventory carrying arcs

...... ~KC.
Cash flow arcs

Figure 15.2 Formulating the warehouse funds flow model.

570 Generalized Flows Chap. 15

goods and funds flow problem. This formulation has the following three types of
arcs:

1. Inventory carrying arcs. The cost of this type of arc is the inventory carrying
cost per unit; its capacity is H. The multiplier on this arc is less than 1 or equal
to 1, depending on whether carrying inventory incurs any loss.

2. Cashflow arcs. These arcs are uncapacitated and have zero cost. The multiplier
of this type of arc is the bank interest rate for that period.

3. Buy and sell arcs. These arcs also are uncapacitated and have zero cost. If Pi
is the purchase cost of the product in period i, a buy arc has a multiplier of
value lIPi and a sell arc has a multiplier of value Pi.

It is easy to establish a one-to-one correspondence between buy-sell strategies
of the entrepreneur and flows in the underlying network. To enrich this model, we
could easily incorporate various additional features, such as policy limits on the
maximum and minimum amount of cash held or goods flow in each period or intro
duce alternative investments such as certificates of deposits that extend beyond a
single period.

Application 15.4 Land Management

The U.S. Bureau of Land Management (BLM) manages 173 million acres of public
rangelands. It uses a significant part of this land to grow vegetation consumed by
animals (both wild and domestic). The BLM must devise- a resource management
plan for determining the optimal number of animals of different types that the land
can support, given the vegetation inventory and the dietary requirements for the
different animal types. We present a simplified version of this problem.

The BLM needs to support several animal types, say AI, A 2 , ••• ,Aa , using
several types of vegetation, say VI, V2 , ••• , Vv , while satisfying the following
constraints:

1. The total animal consumption cannot exceed an upper limit I3j (in pounds) on
the production of vegetation Vj. This upper limit prescribes the maximum
amount of the annual vegetation production that the animals can remove by
grazing without reducing the vigor of this type of vegetation. The Bureau uses
historical records and professional judgment to determine these limits.

2. Each animal type i consumes (Xi units of vegetation. Animal typeAi can consume
at most "{ij pounds of vegetation type Vj • This bound defines a fraction of the
total annual vegetation production that a given animal type can consume with
out destroying the surrounding vegetation community (different animals might
have a different effect on the vegetation).

3. Each animal type must receive a "balanced diet" that will satisfy certain dietary
requirements. These requirements are stated as follows: The ratio of the intake
of vegetation of type Vj (in pounds) to the total intake of all vegetation for each
animal type Ai must lie between fu and gij. The Bureau determines these limits
from the scientific literature.

Sec. 15.2 Applications 571

Figure 15.3 shows a generalized network flow model for a situation with two
animal types and three vegetation types, but restricted to only the first two of the
three listed constraints. In the figure any arc other than the source arc has a multiplier
of value 1. The flow on a source arc (s, i) indicates the number of animals of type
Ai supported. Since the multiplier of this arc is ai, when this flow reaches node i,
it is converted into the total food requirement of the animal type Ai. The network
distributes this food requirement among different vegetation types while honoring
the imposed lower and upper limits. If we set the cost of each source arc to be -1,
this model will determine the maximum number of animal types that the land can
support.

Animal
nodes Vegetation

nodes

131

Figure 15.3 Generalized network flow
formulation of the land management
problem.

Incorporating the third constraint in the model formulation adds additional
complications. This constraint states that fij(aixSi) ::5 Xij ::5 gij(aixS;) for each animal
type Ai and vegetation type Vj • Unfortunately, these constraints destroy the network
structure of the model. However, we can still use network flow techniques to solve
the problem because it has significant embedded network flow structure. By using
a technique known as the Lagrangian relaxation (which we discuss in Chapter 16),
we can relax-that is, remove-these "nonnetwork" constraints and solve the orig
inal problem by repeatedly solving a sequence of generalized network flow problems.

15.8 AUGMENTED FOREST STRUCTURES

In this section we present background material needed for developing the generalized
network simplex algorithm for the generalized network flow problem. This algorithm
maintains a topological structure that we call an augmentedforest structure. In this
section we define the augmented forest structure and derive associated optimality
conditions for it. In Section 15.5 we show that an augmented forest structure defines
a linear programming basis structure for the generalized network flow problem.

572 Generalized Flows Chap. 15

Flows along Paths

Let P be a path (not necessarily, directed) from node s to node t. Let P and e.. denote
the sets of forward and backward arcs in P. We define the path multiplier f-L(P) of
the path P as follows:

f-L(P) = llU,j)EPf-LU
ll(i,j)E~f-LU

(15.2)

We first address the following question: If we send a unit amount of flow from
node s to node t along P, how does the arc flow change? Consider, for example,
the path shown in Figure 15.4(a); suppose that we wish to send 2 units of flow from
node 1 to node 5. To send 2 units from node 1 to node 5 means that 2 units leave
node 1, a certain amount, say a, reaches node 5, and inflow equals outflow at all
the internal nodes of the path. If we send 2 units on the arc (1, 2), 6 units become
available at node 2 because the multiplier of this arc is 3. The arc (2, 3) has multiplier
0.5, so when we send 6 units on it, only 3 units reach node 3. If we carry the flow
further, then 12 units reach node 4 as well as node 5. To summarize, if we send 2
units along the path 1-2-3-4-5, then 12 units reach node 5. The ratio of units
reaching node 5 to the units sent from node 1 is 12/2 = 6, which equals the multiplier
of the path.

(a)

(b)

Figure 15.4 Flows along paths in a
generalized network: (a) path with all
forward arcs, path multiplier is 6; (b)
path with both forward and backward
arcs, path multiplier is i.

Next, suppose that we send 1 unit along the path 1-2-3-4 shown in Figure
15.4(b). If we send 1 unit on the arc (1,2),2 units become available at node 2. The
next arc on the path, arc (3, 2), is a backward arc. We need to send enough flow
on this arc to cancel the 2 units at node 2. If we send - ~ of a unit on the arc (3, 2),
- 2 units become available at node 2, thus satisfying the mass balance constraint at
node 2. But sending -~ of a unit on arc (3, 2) creates an excess of ~ of a unit at
node 3. We next send ~ of a unit on arc (3,4) and ~ of a unit becomes available at
node 4. We thus find that if we send 1 unit along the path 1-2-3-4, then ~ of a unit
reaches node 4, which again equals the multiplier of the path.

As illustrated by these two examples, (1) if we send y units of flow on a forward
arc (i, j), the flow creates f-LuY units at nodej; and (2) if we send Y units from node
j on a backward arc (j, i), the flow on the arc is -Y/f-Lj; units and Y/f-Lji units of flow
become available at node i. The following property is an immediate consequence of
the preceding discussion.

Sec. 15.3 Augmented Forest Structures 573

Property 15.1. If we send 1 unit offlow from node s to another node t along
a path P, then f-L(P) units become available at node t.

Flows along Cycles

Let W be a cycle (not necessarily directed) from a specified node s to itself whose
orientation has already been defined. Let Wand W denote the sets of forward and
backward arcs in this cycle. With respect to the cycle's orientation, we define its
cycle multiplier f-L(W) as follows:

f-L(W) = II(i,j)Ewf-Lij .

IIu,j)Elr f-Lij
(15.3)

Sending flow along a cycle is the same as sending flow along a path except
that the flow comes back to itself. Property 15.1 implies that if we send 1 unit of
flow along the cycle W starting from node s, then f-L(W) units return to this node. If
f-L(W) > 1, we create an excess at node s; in this case we refer to the cycle Was a
gainy cycle. If f-L(W) < 1, we create a deficit at node s; in this case we refer to the
cycle Was a lossy cycle. If f-L(W) = 1, the flow around this cycle conserves mass
balance at all its nodes; we refer to any such cycle Was a breakeven cycle.

Notice that if we reverse the orientation of the cycle, we exchange the roles
of the sets Wand Wand as a result, the numerator in the expression (15.3) becomes
the denominator, and the denominator becomes the numerator. The following result
formalizes this observation:

Property 15.2. If f-L(W) is the multiplier of a cycle W with a particular ori
entation, then 1/f-L(W) is the multiplier of the same cycle with the opposite orientation.

Note that unless the cycle is a breakeven cycle, we can make it either a gainy
cycle or a lossy cycle by defining its orientation appropriately. We next state some
additional properties of cycles that are immediate consequences of the preceding
discussion. The proofs of these properties are straightforward and left to the reader.

Property 15.3. By sending (i.e., augmenting) 6 units along a nonbreakeven
cycle W starting at node s, we create an imbalance of6(f-L(W) - 1) units at node s.

Property 15.4. Let s be a node in a nonbreakeven cycle W. Then to uniquely
create an imbalance of a units at node s (while satisfying the mass balance con
straints at all other nodes), we must send oo'(f-L(W) - 1) flow along the cycle W
starting at node s.

Augmented Tree and Augmented Forest

Property 15.4 implies that in a feasible solution of the generalized network flow
problem, the set of arcs A' with positive flow will not, in general, be a spanning
tree. To ensure feasibility, the arcs in A' might contain a cycle. For example, if the
network itself is a cycle W with a gain f-L(W), one node t has a positive demand and
each node other than node t has a zero demand, the problem has a unique solution

574 Generalized Flows Chap. 15

and the set A' of arcs with positive flow will be the entire cycle. Therefore, for the
generalized network flow problem, each component of A' might contain a cycle. As
we show later in this chapter, the generalized network flow problem always has an
optimal solution for which each component of A' contains exactly one cycle (as
suming nondegeneracy). These types of solutions play the same central role in gen
eralized flows that spanning tree solutions play in minimum cost flows. In this section
we describe these special types of solutions and develop optimality conditions for
them.

Let Ga = (Na, Ta) be a subgraph of G = (N, A) so that Na ~ Nand Ta ~ A.
We refer to Ga as an augmented tree if Ta is a spanning tree of the node set N a

together with an additional arc (u, ~) which we call the extra arc. An augmented
tree has a specially designated node, called its root. We consider any augmented
tree as hanging from its root. Figure 15.5(b) and (c) show two augmented trees of
the graph shown in Figure 15.5(a). In these figures we depict the extra arcs by dashed
lines. .

An augmented tree contains exactly one cycle which is formed by adding the
extra arc (u, ~) to the tree Ta

- {(u, ~)}; we refer to this cycle as the extra cycle.
Note that we can consider any arc in the extra cycle as the extra arc. For reasons
that will become clear later, we refer to an augmented tree as a good augmented
tree if its extra cycle is lossy or gainy (Le., not a breakeven cycle).

We define an augmented forest Gf = (N, F) with F ~ A as a collection of
node-disjoint augmented trees that span all the nodes of the graph. We refer to an
augmented forest as a good augmented forest if each of its components is a good
augmented tree. Figure 15.5(d) shows an augmented forest of the graph shown in
Figure 15.5(a). We refer to those arcs in an augmented forest as the augm{?nted-
forest arcs and the remaining arcs as nonaugmented-forest arcs. '

Sec. 15.3

(a) (b)

(c) (d)

Figure 15.5 Examples of augmented trees and augmented forest: (a) original graph;
(b) and (c) two augmented trees; (d) augmented forest.

Augmented Forest Structures 575

We store an augmented forest in a computer as a collection of augmented trees.
Each augmented tree is a tree plus the extra arc. We can store.a~!ree by associating
three indices with each node i in the tree: a predecessor index, pred(i), a depth
index, depth(i), and a thread index, thread(i). We refer the reader to Section 11.3
for a detailed discussion of these indices. These indices allow us to perform oper
ations on trees very efficiently.

Augmented Forest Structures and Optimality Conditions

Suppose that the sets F, L, and U define a partition of the arc set A and that F is a
good augmented forest. As before, we refer to the arcs in F as AF-arcs. We refer
to the arcs in L as nonaugmented-forest arcs at their lower bounds, and the arcs in
U as nonaugmented-forest arcs at their upper bounds. We also refer to the triple (F,
L, U) as an augmented forest structure.

An augmented forest structure (F, L, U) is either feasible or infeasible. If we
set Xij = 0 for all (i, j) ELand xij = uij for all (i, j) E U, then a unique flow on the
arcs of the augmented forest will satisfy the system of equations (15.1b) (in Section
15.4 we show how to compute this flow). If this flow satisfies the lower and upper
bound constraints imposed on all the arcs of the augmented forest, we say that the
structure (F, L, U) is feasible; otherwise, it is infeasible. We will say that a feasible
augmented forest structure is nondegenerate if 0 < Xu < Uij for every arc (i, j) E F;
it is degenerate otherwise. We will also say that a feasible augmented forest structure
(F, L, U) is an optimal augmented forest structure if its associated flow xij is an
optimal solution of (15.1).

We associate with each node i a number 'IT(i), which we refer to as its node
potential. With respect to a set of node potentials, we define the reduced cost of an
arc (i, j) as cij = Cij - 'IT(i) + !-1ij'IT(j). In the following theorem, we state and prove
a sufficiency condition for a flow to be optimal.

Theorem 15.5 (Generalized Flow Optimality Conditions). Aflow x* is an optimal
solution of the generaliz.ed network flow problem ifit isfeasible andfor some vector
'IT of node potentials, the pair (x*, 'IT) satisfies the following optimality conditions:

(a) If 0 < xij < Uij, then cij = O. (15.4a)

(b) If XU = 0, then cij 2: O. (15.4b)

(c) If 4 = Uij, then cij ::5 O. (15.4c)

Proof. We first claim that minimizing L(i,j)EA CijXij is equivalent to minimizing
L(iJ)EA cijxij. The proof of this claim is similar to that of Property 2.4 and is left
as an exercise (see Exercise 15.12). Let 'IT be a vector that together with the flow
x* satisfies the conditions (15.4), and let X be any arbitrary flow. Consider the fol
lowing summation:

L cij(xij - 4)· (15.5)
U,j)EA

We claim that each term in (15.5) is nonnegative. We establish this claim by
considering three cases.

576 Generalized Flows Chap. 15

Case 1: 0 < xu < Uij. In this case (15.4a) implies that cij = 0, so the term
cij(Xij - xU) is zero.
Case 2: xU = O. In this case Xij :::=: xU = 0, and by (15.4b), cij :::=: 0, so the term
clJ(Xij - xu) is nonnegative.
Case 3: xU = Uij. In this case, Xij ::5 Xu = Uij, and by (15.4c), cij ::5 0, so the
term cij(Xij - xu) is again nonnegative.

We have shown that c'IT(x - x*) = c'ITx - c'ITx* :::=: 0, or c'ITx* ::5 c'ITx, which
concludes the proof of the theorem. •

The following property is an immediate consequence of this optimality con
dition.

Property 15.6 (Augmented Forest Structure Optimality Conditions). A feasible
augmented forest structure (F, L, U) with the associatedj1ow x* is an optimal aug
mented forest structure if for some vector 'IT of node potentials, the pair (x*, 'IT)
satisfies the following optimality conditions:

(a) cij = 0 for all (i, j) E F.

(b) cij:::=: 0 for all (i, j) E L.

(c) cij::5 0 for all (i, j) E U.

15.4 DETERMINING POTENTIALS AND FLOWS FOR AN
AUGMENTED FOREST STRUCTURE

(15.6a)

(15.6b)

(15.6c)

Associated with each augmented forest structure are unique arc flows and a unique
set of node potentials; in this section we describe efficient methods for determining
these quantities. These methods are the major subroutines of the generalized network
simplex algorithm that we describe in Section 15.6. We begin by considering the
computation of node potentials.

Determining Node Potentials for an Augmented Forest
Structure

Let (F, L, U) be an augmented forest structure of the generalized network flow
problem. The augmented forest F contains several augmented trees. We describe a
method for determining node potentials for the nodes in an augmented tree. Applying
this method iteratively for every augmented tree, we can obtain potentials for every
node in the network. Let T U {(a, ~)} be the augmented tree under consideration
and let node h be its root. We wish to determine node potentials that satisfy the
condition cij = 0 for every arc (i, j)in the augmented tree T U {(a, ~)}. We first set
the potential of node h equal to a parameter e whose numerical value we will compute
later. We then fan out along the tree arcs (i, j) using the thread indices and compute
the other node potentials by using the equation cij =Cij - 'IT(i) + f.Lij'IT(j) = O. The
thread traversal ensures (see Section 11.3) that we have already evaluated one of
the potentials, 'IT(i) or 'IT(j), so we can compute the other from the equation Cij -

Sec. 15.4 Determining Potentials and Flows for an Augmented Forest Structure 577

7I'(i) + f-Lij7l'(j) = O. We note that all the node potentials determined in this way
will be (linear) functions of e. We next use the equation for the extra arc, ca (3 -

7I'(u) + f-Lo<(371'(~) = 0, to compute a numerical value of e. This' numerical value of e
allows us to compute the numerical values of all the node potentials. Figure 15.6
gives an algorithmic description of this method.

procedure compute-potentials;
begin

'If(h): = 9;
j: = thread(h);
while j ~ h do
begin

i : = pred(j);
if (i, j) E A then 'If(j) : = ('If(i) - Cij)/II-ii;
if (j, i) E A then 'If(j) : = lLif'lf(i) + Cii;
j : = thread(i)

end;
for each node i, let the potential 'If(i), as a function of 9, be represented

by f(i) + g(i)9 for some constants f(i) and g(i);
compute 9 : = (C"'13 - /(0.) + 1I-"'l3f(I3» / (g(o.) - 11-"'13 g(I3»;
sUbstitute this value of 9. in the expression 'If(i) = f(i) + 9g(i) to

compute the potentials for each node i;
end;

Figure 15.6 Computing node potentials of an augmented tree.

Let us illustrate this procedure on a numerical example. Figure 15.7(a) shows
an augmented tree and Figure 15.7(b) shows the node potentials in terms of the
parameter e. Using the extra arc (2, 3), we compute e = -17. Substituting for this
value of e permits us to determine the numerical values of all node potentials, as
shown in Figure 15.7(c). We suggest that the reader verify that all the arcs in the
augmented tree have zero reduced costs.

The correctness of this procedure follows from the definition of the node po
tentials [i.e., the vector 71' must satisfy the condition cij = 0 for every arc (i, j) in
the augmented tree T U {(u, (3))]. To show that we can carry out the steps of these
computations, we need to show that while computing the numerical value of e in
the procedure compute-potentials (see Figure 15.6), the denominator (g(u) -
f-Lo<(3g(l3)) is never zero. We ask the reader to establish this result in Exercise 15.20.
The procedure compute-potentials has a complexity of O(n).

Determining Flow for an Augmented Forest Structure

Let (F, L, U) be an augmented forest structure of the generalized network flow
problem. Assume for the time being that the network is uncapacitated, and conse
quently, U = 0. As before, we describe a method for determining the flow for an
augmented tree; applying this method for every augmenting tree individually, we
can determine flows on all the arcs of the augmented forest. The method for com
puting the arc flows proceeds in the reverse fashion of the method we have used
for computing the node potentials: Instead of starting at the root node and fanning
out along the tree arcs, we start at the leaf nodes and move in toward the root.

578 Generalized Flows Chap. 15

Root 9

-2.5 +0.59 !(i) + g(i)9

-6.25 + 0.259

(a) (b)

-73 -10.5

(c)

Figure 15.7 Illustrating the computation of node potentials.

Our method for determining the flow for an augmenting tree T U {(a, 13)} with.
root h works as follows. We first define the imbalance e(i) of each node i as equal
to b(i) and set the flow on each arc equal to zero. We then set the flow on the extra
arc (a, 13) equal to e. This amounts to decreasing the imbalance at node a by e units
and increasing the imbalance at node 13 by f-LC:X13 e units. We next determine all of the
arc flows as a function of e; then we determine the numerical value of e, and sub
stituting this value for the arc flows, we determine the numerical values of all the
arc flows.

Let us consider a leaf node j in the tree T. Exactly one tree arc (i.e., an arc
in T) is incident to node j: It is either (j, i) or (i, j). Therefore, we have only one
way to discharge the imbalance of node j, through the arc (j, i) or (i, j). If arc
(j, i) is incident to node j, we send e(j) units of flow from node j to node i, which
reduces the imbalance of node j to zero, sets the flow on arc (j, i) equal to e(j),
and changes the imbalance of node i to e(i) + e(j)f-Lji [because e(j)f-Lji additional
units of flow arrive at node i]. We illustrate this case in Figure lS.8(a). If arc (i, j)
is incident to node j, we need to send - e (j)/ f-Lij units of flow from node i over the
arc (i, j) in order to make - e(j) units available at node j, thus canceling its excess.
We illustrate this possibility in Figure lS.8(b). In this case we change the imbalance
of node ito e(i) - e(j)/f-Lij and set the flow on arc (i, j) to - e(j)/f-Lij. Once we have
determined the flow value on the arc (i, j) or (j, i), whichever is present in the
network, we delete this arc and repeat the procedure on the remaining tree. Even
tually, we are left with only the root node h with an imbalance e(h).

At this point, the flow on each arc in the augmented tree T U {(a, 13)} is a linear

Sec. 15.4 Determining Potentials and Flows for an Augmented Forest Structure 579

e(i)

@

J;
(a)

e(;)

I
(b)

Figure 15.8 Computing flows on tree
arcs.

function of e and the flow satisfies the mass balance constraints of all the nodes
except node h, which has an imbalance of e(h) (which again is a linear function of
e). By setting e(h) = 0, we compute e and determine the numerical values of flows
on the arcs in the augmented tree. Figure 15.9 summarizes our discussion in the
form of an algorithmic description of the procedure. We apply the procedure shown
in Figure 15.9 for every augmented tree, starting from the following global initiali
zation: e(i) = b(i) for all i E Nand Xij = 0 for all (i, j) E A.

procedure compute-flows;
begin

set Xap : = a, e(a) : = e(a) - a, and e(~) : = e(~) + ~apa;
T': = T;
while T' ~ {h} do
begin

select a leaf node j in T';
i: = pred(j);
If (j, i) E T' then set X}I : = e(j) and add e(j)~j/ to e(i);
If (i, j) E T' then set Xi} : = - e(j)/~;j and add e(j}/~I} to e(i);
delete node j and the arc incident to it from T';

end;
for each arc (i, j) in the augmented tree, let XI} be represented by fU, j) + 9g(;, j);
let e(h) be represented by f(h) + eg(h);
compute e : = - f(h)/g(h) and use this value of e to compute numerical values of all the arc

flows;
end;

Figure 15.9 Determining arc flows for an augmented tree.

It is easy to verify that this procedure uniquely determines the flow on arcs of
the augmented tree since by scanning tree arcs we determine the arc flows uniquely
as a function of 9, and the mass balance constraints of the root node h imply a unique
numerical value of 9.

We illustrate this procedure using the numerical example shown in Figure
15.10(a). The figure shows the node imbalances after we have sent an amount of
flow 9 on the extra arc (2, 3). We examine nodes of the trees in the order 4, 5, 2,
3, and compute the flows on the arcs incident to these nodes. Figure 15.10(b) shows
the arc flows and node imbalances at this point. Now, node 1 has an imbalance of
25 - 0.59, and equating this quantity to zero, we find that e = 50. Using this value
of 9, we compute the numerical values for all the arc flows, as shown in Figure
15.10(c).

S80 Generalized Flows Chap.}5

I
' .. ' e(i)

~.

:; e(j)

e(1) = 25 - 0.59

-6 0.59

I
',
..

.•...... x,}

J
10 -20

(8) (b) (c)

Figure 15.10 Illustrating the computation of flow for an augmented tree.

To complete our discussion showing that the procedure compute-flows cor
rectly finds the arc flows, we need to show that g(h) is never zero; otherwise, we
cannot compute 9 using the equation 9 = - f(h)/g(h). It is easy to see that 9g(h)
is the imbalance at node h resulting from setting the flow on the extra arc (a, J3) to
value 9. Setting the flow on the arc (a, J3) to value 9 creates a deficit of - 9 units at
node a and an excess of J.La~9 units at node J3. Let P a denote the tree path from node
h to node a and P~ denote the tree path from node J3 to node h; also, let J.L(P a)
denote the mUltiplier of the path P a' We can cancel the deficit at node a by sending
9/J.L(P a) units from node h to node a. Similarly, when we send the excess of J.La~
units from node J3 to node h on the path P~, J.La~9J.L(P~) units arrive at node h. These
observations show that

g(h) = J.La~J.L(P~) - l/J.L(P a).

Therefore, g(h) is zero if and only if J.L(P a)J.La~J.L(P~) = 1. Since J.L(P a)J.La~J.L(P~)
is the multiplier of the extra cycle, we have shown that g(h) is zero if and only if
the extra cycle is a breakeven cycle. Since the augmented tree is good, the extra
cycle is not a breakeven cycle and g(h) is nonzero.

So far we have considered uncapacitated networks, that is, we have assumed
that f,A.ij = 00 for all (i, j) E A. As a result, the set U is empty. If the network is
capacitated and the set U is non empty , we need to slightly modify the procedure
compute-flows. In the uncapacitated case, we start with Xi) = 0 for all (i, j) E A and
e(i) = b(i) for all i E N. In the capacitated case we start with the same values of
Xu and e(i) and then execute the following statements:

for every (i, j) E U do
begin

Xi} : = Ulj;

eU) : = eU) - Ui};

e(j) : = e(j) + ~ljUij;
end;

The purpose of these statements is to set the flow on each arc (i, j) E U to its
upper bound, which creates an additional deficit of Uij units at node i and an additional

Sec. 15.4 Determining Potentials and Flows for an Augmented Forest Structure 581

excess of tJ.;jUij units at node j. After invoking this initialization, we execute the
procedure compute-jlows as described in Figure 15.9.

The procedure compute-flows provides us with a method for determining a flow
that satisfies the supply/demand constraints of all the nodes in an augmented tree.
Applying this procedure repeatedly for each augmented tree, we obtain a flow that
satisfies the supply/demand constraints of all the nodes. Note that we have computed
the arc flows by applying the procedure update-flows and using the fact that the flow
satisfies the mass balance constraints. We have observed earlier that the flows on
the arcs in the augmented forest that satisfy the mass balance constraints are unique
and the procedure compute-flows determines this unique solution. This flow might
or might not satisfy the flow bounds on the arc flows. If it does, the augmented
forest structure is feasible; otherwise, it is infeasible. Clearly, the running time of
the procedure compute-flows is O(m).

115.15 GOOD AUGMENTED FORESTS AND LINEAR
PROGRAMMING BASES

In this section we establish a connection between the good augmented forests of G
and bases of the generalized network flow problem. The graph-theoretic structure
of the basis allows us to specialize the linear programming simplex method so that
we can perform all of the computations on the network itself. As a result, the gen
eralized network simplex algorithm is substantially faster than the general-purpose
simplex method. Our main result in this section uses a well-known property of linear
programs.

In stating this result, we consider a linear program formulated as

Minimize cx

subject to

.stlx = h,

o ~ x ~ u.

In this formulation, .stl is a p x q matrix whose rows are linearly independent
(i.e., the matrix has rank equal to p). We let .stli denote the column in .stl associated
with the variable Xi, let B denote an index set of p variables, XB = {x; : i E B}, and
eJ3 = {.stl i : i E B}. We use the following well-known result:

Property 15.7. The variables XB define a basis of the linear programming
problem if and only if the system of equations eJ3XB := h has a unique solution.

When translated into the framework of the generalized network flow problem,
this property implies that a subset B of arcs defines a basis of the generalized network
flow problem if and only if for every supply/demand vector h, the arcs in B have a
unique flow (not necessarily honoring the flow bounds) that satisfies the mass balance
constraints. We will show that arcs in B have a unique flow if and only if B is a good
augmented forest.

Recall from the last section that if B is a good augmented forest, the flow on
each augmented forest arc is unique. Therefore each augmented forest defines a

582 Generalized Flows Chap. 15

basis of the generalized network flow problem. We next establish the converse result:
If B is not a good augmented forest, it cannot be a basis. To do so, we use another
well-known result stating that each basis of a linear program contains the same
number of variables. Since each good augmented forest contains n arcs and defines
a basis, each basis B of the generalized network flow problem must contain narcs.
Now consider a set B of n arcs that does not define a good augmented forest. Let
us consider those components (i.e., connected subgraphs) of B that are not good
augmented trees. Since some component is not a good augmented tree, either some
component is a spanning tree (Case 1), or some component is an augmented tree
whose extra cycle is breakeven (Case 2). (As a third possibility, some component
might have two or more extra arcs; but notice that in this case some other component
must satisfy Case 1; therefore, it is sufficient to consider Case 1 and Case 2.) We
consider these two cases separately.

Case 1.

Let 11 be a component of B that is a tree. Designate an arbitrary node, say
node h, as the root of 11. Set b(h) = 1 and b(i) = 0, for each node i E N -
{h}. As is easy to verify, we can never consume the supply at node h if we
restrict the flow to only tree arcs. This conclusion violates the basis property
that for every vector b, some flow must satisfy the mass balance constraints.

Case 2.

Let 11 be a component of B that is an augmented tree whose extra cycle W is
breakeven. Notice that sending additional flow around a breakeven cycle main
tains the mass balance constraints at all the nodes of the cycle. Therefore, if
11 has a feasible flow, it has infinitely many feasible flows. This conclusion
violates the basis property that for every vector b, a unique flow satisfies the
mass balance constraints.

The preceding observations establish the following result.

Theorem 15.8. A set B of arcs defines a basis of the generalized networkflow
problem if and only ifB is a good augmented forest.

Since each good augmented forest constitutes a basis of the generalized network
flow problem, each good augmented forest structure defines a basis structure of the
generalized network flow problem.

1~.8 GENERALIZED NETWORK SIMPLEX ALGORITHM

The generalized network simplex algorithm is similar to the network simplex al
gorithm that we discussed in Chapter 11. The algorithm maintains a (good) feasible
augmented forest structure at every iteration (which, in linear programming termi
nology, is a feasible basis structure) and by performing a pivot operation transforms
this solution into an improved (good) augmented forest structure. The algorithm
repeats this process until the augmented forest structure satisfies the optimality
conditions (15.6). Figure 15.11 gives an algorithmic description of the generalized
network simplex algorithm.

Sec. 15.6 Generalized Network Simplex Algorithm 583

algorithm generalized network simp/ex;
begin

determine an initial feasible augmented forest structure (F, L, U);
let x be the flow and 1T be the node potentials associated

with the initial augmented forest structure;
while some nonaugmented forest arc violates its optimality condition do
begin

select an entering arc (k, I) violating its optimality condition;
add arc (k, /) to the augmented forest and determine the leaving arc (p, q);
update the the solutions x and 1T and the augmented forest structure;

end;
end;

Figure 15.11 Generalized network simplex algorithm.

In the following discussion we describe in greater detail various steps of this
algorithm.

Obtaining an Initial Augmented Forest Structure

It is easy to obtain an initial (all-artificial) augmented forest structure. For every
node i E N we first introduce an artificial arc (i, i) of sufficiently large cost M and
infinite capacity. We set the multiplier of the arc (i, i) equal to 0.5 if node i is a
supply node [i.e., b(i) > 0], and equal to 2 if node i is a demand or a transshipment
node [Le., b(i) :S 0]. Notice that for a supply node i, because the cycle consisting
of the arc (i, i) is a lossy cycle, we can consume the supply of node i by sending
flow along this cycle. Similarly, for a demand node i, the cycle (i, i) is a gainy cycle
and by augmenting flow along the cycle we can generate sufficient flow to satisfy
the demand of node i. Property 15.4 implies that by setting Xii = e(i)/(l - ~ii)' we
can satisfy the supply/demand of the node i. Moreover, notice that since each ar
tificial arc (i, i) has sufficiently large cost M, no solution with a positive flow on
any artificial arc will be optimal unless the generalized network flow problem is
infeasible. We determine the initial node potentials from the fact that the reduced
cost of each arc in F must be zero. Using ell = eii - 'iT(i) + f,Lii'iT(i) for each node
i E N yields 'iT(i) = M/(l - f,Lii).

Optimality Testing and Entering Arc

Let (F, L, U) denote a feasible augmented forest structure of the generalized network
flow problem and let 'iT be the corresponding node potentials. To determine whether
the augmented forest structure (F, L, U) is optimal, we check to see whether it
satisfies the following optimality conditions:

clJ 2: 0

clJ :S 0

for every arc (i, j) E L,

for every arc (i, j) E U.

If the current augmented forest structure satisfies these conditions, it is optimal
and the algorithm terminates. Otherwise, the algorithm selects a non augmented for
est arc violating its optimality condition and introduces this arc into the augmented
forest. Two types of arcs are eligible to enter the augmented forest:

S84 Generalized Flows Chap. 15

1. Any arc (i, j) E L with eli < 0

2. Any arc (i, j) E U with eli > 0

For any eligible arc (i, j), we refer to I eli I as its violation. The generalized
network simplex algorithm can select any eligible arc as the entering arc. However,
different rules, known as pivot rules, for selecting the entering arc produce algorithms
with different empirical behavior. In Chapter 11 we discussed several popular pivot
rules for the network simplex algorithm. These were (1) Dantzig's pivot rule, which
selects the arc with maximum violation as the entering arc; (2) the first eligible arc
pivot rule, which selects, in a wraparound fashion, the first arc with positive violation
encountered in examining the arc list; and (3) the candidate list pivot rule, which
maintains a candidate list of arcs with positive violation and selects the arc with the
maximum violation from the candidate list as the entering arc. We can use these
same rules for the generalized network simplex algorithm.

Identifying the Leaving Arc

To describe a procedure for determining the leaving arc, suppose that we select arc
(k, l) as the entering arc. The arc (k, I) belongs to the set L or the set U. Throughout
the discussion in this section, we examine the situation in which (k, I) is at its lower
bound; we leave the case when (k, l) is at its upper bound as an exercise for the
reader (see Exercise 15.22). The approach first determines the rate by which the
flow on any arc (i, j) of F changes per unit increase of flow on the entering arc
(k, I). Let Yij denote this rate. It is easy to verify that the flow on the augmented
forest arcs change linearly with the flow on the entering arc (k, l) [i.e., if the entering
arc (k, I) carries 0 units of flow, the flow change on arc (i, j) is oYij. Therefore, if
we know the Yij values, we can easily compute the maximum value of 0 for which
all the arc flows remain within their lower and upper bounds. At this value of 0, at
least one arc in F reaches its lower or upper bound and we select one such arc as
the leaving arc.

We now address the problem of determining the Yij values, which represent
the flow changes produced on the arcs when we send 1 unit of flow on the entering
arc (k, l) (Le., set YkJ = 1). We can compute the other Yij values by setting the flow
on arc (k, l) equal to 1 and then determining flows on the other arcs so that every
node satisfies the mass balance constraint. Setting the flow on arc (k, l) to value 1
creates a deficit (or, demand) of 1 unit at node k and an excess (or, supply) of J.Lkl

units at node I. To determine the effect of sending a unit flow on arc (k, I), we apply
the procedure compute-flows on the augmented trees containing nodes k and I, start
ing with zero flow and the following imbalance vector:

{

-I

e(i) = ~kl
for i = k,
for i = I,
for all i ¥= k and I.

If the nodes k and I belong to different augmented trees, we need to execute
the procedure compute-flows twice; otherwise, one execution is sufficient. The arc
flows we obtain are the Yij values. Having determined the Yij values, we can easily

Sec. 15.6 Generalized Network Simplex Algorithm 585

compute the maximum additional flow 0 on the entering arc (k, I). Let Xij denote
the flow corresponding to the current augmented forest structure (F, L, U). The flow
bound constraints require that

for all (i, j) E F U {(k, l)}.

If for some arc (i, j), Yij > 0, the flow on the arc increases with 0 and will
eventually reach the arc's upper bound. Similarly, if Yij < 0, the flow on the arc
decreases with 0 and will eventually reach its lower bound. Therefore, if oij denotes
the maximum possible increase in 0 allowed by arc (i, j), then

{

(Uij - xu)/yij
oij = Xi)(- Yi)

00

if Yij > 0,
if Yij < 0,
if Yij = O.

The largest value of 0 for which x + oY is feasible is

o = min[oij : (i, j) E F U {(k, l))].

We next augment 0 units of flow on the arc (k, l) and change the flow on the
augmented forest arcs to Xi) + 0Yij. We refer to any arc (i, j) that defines 0, that is,
for which 0 = Oij, as a blocking arc. We select any blocking arc, say (p, q), as the
leaving arc. Observe that for the leaving arc (p, q), Ypq 0:/:: O. We say that the iteration
is nondegenerate if 0 > 0, and degenerate if 0 = O. A degenerate iteration occurs
only if F is a degenerate augmented forest.

We illustrate the procedure of determining the leaving arc on a numerical ex
ample. Figure 15.12(a) shows an augmented tree along with the arc multipliers.
Figure 15.12(b) gives the arc capacities and the current arc flows. Assume that
(5, 6) is the entering arc. We first determine the values Yij of the flow changes. To
determine these values, we set the flow on the entering arc to value 1 and the flow
on the extra arc (2, 3) to value 9. Then, as described in the procedure compute
flows, we examine the leaf nodes of the tree, one by one, and determine the flows
on the unique arcs incident to them. Figure 15.12(c) gives the arc flows as a function
of 9. The excess at the root node 1 is 0.5 - 0.59 and setting this quantity equal to
o gives 9 = I. Figure 15.12(b) shows the resulting numerical value for each Yij' This
figure also specifies the values of each oij; using these values, we find that 0 = 2.
Clearly, (I, 3) is the leaving arc and dropping it gives the augmented tree shown in
Figure 15.12(d) with arc (5, 6) as the extra arc.

Updating the Augmented Forest

When the generalized network simplex algorithm has determined a leaving arc
(p, q) for a given entering arc (k, I), it updates the augmented forest structure. If
the leaving arc is the same as the entering arc, which would happen when 0 = 8kl

= Ukl, the augmented forest does not change. In this instance, the arc (k, l) merely
moves from the set L to the set U, or vice versa. If the leaving arc differs from the
entering arc, the augmented forest changes and we need to update the sets F, L,
and U. In this case we need to show that the modified set of arcs in F constitutes
an augmented forest and is good. To do so, we use the fact that the simplex method
moves from one basis to another. Since each basis in the generalized network flow

586 Generalized Flows Chap. 15

(i,]) (1,2) (1,3) (2,3) (3,5) (4,2) (5,6) (6,3)

~'} 0.5 1 1.5 2 3 4 0.25

u'} 10 00 8 00 5 7 00

x'} 5 4 3 2 0 2 5

0.25
Y,} 2 -2 1 0.5 0 I 4

0" 2.5 2 5 00 00 5 00

6
4

(a)
(b)

e(l) = 0.5 - 0.59

1

4

---. 6

(c) (d)

Figure IS.12 Illustrating the selection of a leaving arc.

problem is a good augmented forest, the generalized network simplex algorithm
moves from one good augmented forest to another good augmented forest.

Updating Potentials and Tree Indices

After we have updated the flows and obtained a new augmented forest structure,
the next step is to update the node potentials. Clearly, we need to update the node
potentials for only those nodes that belong to the augmented tree(s) involved in the
pivot operation. In fact, for the generalized network flow problem, updating the node
potentials appears to be almost as difficult as recomputing them from scratch. We
can recompute the node potentials of the augmented tree(s) using the procedure
compute-potentials described in Figure 15.6. The final step in the pivot operation is
to update various tree indices. This step is rather involved and for details we refer
the reader to the references given in the reference notes. Alternatively, we could
compute the tree indices from scratch, which would also require O(n) time.

Flows in Bicycles

As we have seen in Chapter 11, in the process of moving from one spanning tree
solution to another, the network simplex algorithm sends flows along cycles. Since
this interpretation helped us to understand the network simplex algorithm, we might

Sec. 15.6 Generalized Network Simplex Algorithm 587

naturally ask the following question: What is the counterpart of a cycle in the gen
eralized network flow problem? Alternatively, we might pose this question as fol
lows. Let Yij be the changes in the flows on the arcs that we defined previously, and
let Y denote the set of arcs with strictly positive values of Yij. Then, what is the
graph-theoretic structure of Y?

To answer this question, consider several possibilities for the entering arc
(k, l) as shown in Figure 15.13. Figure 15.13(a) shows a case when the entering arc
has both of its endpoints in different augmented trees and Figure 15.13(b) to (d) show
three cases when the entering arc has both of its endpoints in the same augmented

(a) (b)

W2

8

"',4
(c) (d)

Figure 15.13 Several possibilities for the entering arc.

S88 Generalized Flows Chap. 15

tree. Consider Figure 15. 13(a) first. To increase the flow on the entering arc (5, 8),
we first circulate some flow along WI starting at some node, say node 3, in a direction
defined so that WI is a gainy cycle. This flow change creates some excess at node
3. We send this excess to node 5 by the unique tree path, and then to node 8 through
the arc (5, 8). Finally, we send a sufficient amount of flow along the cycle W2 (whose
direction is defined so that it is a lossy cycle), so that the excess available at node
8 is consumed. Clearly, Yu will be positive for any arc in the cycles WI and W2 and
in the unique path connecting these two cycles. The flow changes in the cases shown
in Figure 15. 13(b) to (d) have similar interpretations. In each case we have two cycles:
one is gainy and the other is lossy. We create an excess by sending flow along one
cycle and consume it by circulating flow along the second cycle. As a result, we
increase the flow on the entering arc and satisfy the mass balance constraints at all
the nodes.

The preceding observations imply that the subgraph defined by the arcs in the
set Yis one of the two types shown in Figure 15.14. We refer to the subgraph shown
in Figure 15.14(a) as a type 1 bicycle and the subgraph shown in Figure 15.14(b) as
a type 2 bicycle. Figure 15.13 illustrates these bicycles. The cases shown in Figure
15. 13 (a) and (b) have type 1 bicycles and the cases shown in Figure 15. 13(c) and (d)
have type 2 bicycles. Therefore, bicycles play the same role in the generalized net
work simplex algorithm as cycles play in the network simplex algorithm.

(a) (b)

Figure 15.14 Two types of bicycles.

Finally, we note that in the generalized network simplex algorithm, the number
of augmented trees in F might change from one iteration to the next. For example,
consider the situations shown in Figure 15.13(a). If arc (7,8) is the leaving arc, the
pivot creates one fewer augmented tree. On the other hand, if (5, 3) is the leaving
arc, the pivot does not change the number of augmented trees. Consider the situation
shown in Figure 15.13(b). In this case, if (7, 3) is the leaving arc, the pivot creates
an additional augmented tree; for every other leaving arc, the number of augmented
trees remain unchanged.

Termination

The generalized network simplex algorithm moves from one feasible augmented
forest structure to another until it obtains a structure that satisfies the optimality
conditions. In a pivot operation, the objective function value decreases by the

Sec. 15.6 Generalized Network Simplex Algorithm 589

amount & 1 CJ:I I. If each pivot operation in the algorithm is nondegenerate (i.e., & >
0), each subsequent augmented forest structure has a smaller cost. Since any network
has a finite number of augmented forest structures and each augmented forest struc
ture has a unique associated cost, the generalized network simplex algorithm ter
minates finitely. Degenerate pivots, however, pose some difficulties: The algorithm
might not terminate finitely unless we perform pivots carefully. In the following
discussion we describe a perturbation technique that ensures that the generalized
network simplex algorithm always terminates finitely.

Complexity

The worst-case complexity of the generalized network simplex algorithm is the prod
uct of the number of iterations and the complexity per iteration. Although in the
worst case we cannot bound the number of iterations by any polynomial function
of nand m, in practice the number of iterations an algorithm performs is generally
a low-order polynomial in nand m. And what is the running time per iteration? The
algorithm requires O(m) time to identify the entering arc. Each of the other oper
ations, such as computing the Yij values, updating the flows, the potentials, and the
tree indices, requires O(m) time. Therefore, in practice, the running time of the
generalized network simplex algorithm is a low-order polynomial of nand m. Em
pirical investigations have found that the generalized network simplex algorithm is
only two to three times slower than the network simplex algorithm for the minimum
cost flow problem.

Perturbation

To ensure finite termination of the algorithm for problems that are degenerate, we
use the well-known perturbation technique of linear programming, which we dis
cussed for the minimum cost flow problem in Exercise 11.26. For the generalized
network flow problem, we define E as an n-vector whose elements are (0., 0., 0., ... ,
0.) for a sufficiently small real number 0.. We then replace the supply/demand vector
b by b + E and apply the generalized network simplex algorithm to the perturbed
problem. It is possible to show that for the perturbed problem, the augmented forest
structure maintained by the generalized simplex algorithm at every iteration is non
degenerate. Consequently, every pivot is nondegenerate and the algorithm will ter
minate finitely. Moreover, it is possible to show that an optimal augmented forest
structure of the perturbed problem is also an optimal augmented forest structure of
the original problem. Thus the perturbation does not affect optimality of the solution.
For the sake of brevity, we do not specify the details of these results (see the ref
erence notes for a citation to the literature). We do note, however, that we do not
need to actually carry out the perturbation. Just as the perturbation for the network
simplex algorithm is equivalent to maintaining strongly feasible spanning tree struc
tures, similarly, perturbation in the generalized network simplex algorithm reduces
to maintaining certain special types of augmented forest structures which are called
strongly feasible augmented forest structures (see the reference notes for citations
to the literature concerning this issue as well).

S90 Generalized Flows Chap. 15

1~.7 SUMMARY

The generalized network flow problem is a generalization of the minimum cost flow
problem in the sense that arcs do not conserve flow. The generalized network flow
problem is significantly more difficult to solve than the minimum cost flow problem
and, in only a few instances, can we generalize algorithms for the minimum cost
flow algorithm so that they would be suitable for solving the generalized network
flow problem. The network simplex algorithm discussed in Chapter 11 is one such
instance and the resulting algorithm, called the generalized network simplex algo
rithm, is the fastest available algorithm for solving the generalized network flow
problem in practice. This chapter has developed the details of the generalized net
work simplex algorithm.

The generalized network simplex algorithm is an adaptation of the linear pro
gramming simplex method (see Appendix C) for the generalized network flow prob
lem. This adaptation is possible because of the special topological structure of the
basis. The basis of the generalized network flow problem is a good augmented forest;
this fact permits us to perform the steps of the simplex method without maintaining
the simplex tableau. Good augmented forests play the same role in the generalized
network simplex algorithm as do spanning trees in the network simplex algorithm.
The optimality conditions for a good augmented forest are the same as those for the
minimum cost flow problem, but with a slightly different definition of the reduced
cost cli of an arc (i, j); in this context, it is cli = Cij - 'TT(i) + ~ij'TT(j).

The generalized network simplex algorithm performs two fundamental oper
ations at every iteration: determining the node potentials and arc flows associated
with a good augmented forest structure. We showed how to implement both oper
ations very efficiently, in O(m) time, using methods that generalize their counterparts
in the network simplex algorithm.

The generalized network simplex algorithm maintains a feasible (good) aug
mented forest structure at every iteration and successively transforms it into an
improved augmented forest structure until it becomes optimal. To implement the
generalized network simplex algorithm, we can use the tree indices that we described
in Chapter 11 in our discussion of the implementation of the network simplex al
gorithm. U sing these indices permits us to select the leaving variable and to update
the flows and potentials in O(n) time. The time to select an entering arc is O(m).
The generalized network simplex algorithm terminates finitely, even though the num
ber of iterations it performs cannot be bounded by a polynomial or pseudopolynomial
function of the input size parameters. In practice, however, because the algorithm
rarely performs more than 5m iterations for moderately sized problems and because
the average time per pivot is much less than n, its computational time grows slower
than O(nm), even though its worst-case running time is exponential. Empirical tests
have found the generalized network simplex algorithm to be about two to three times
slower than the network simplex algorithm.

REFERENCE NOTES

The generalized network simplex algorithm, presented in this chapter, is an adap
tation of the linear programming simplex method and is due to Dantzig [1963]. Ken
nington and Helgason [1980] and Jensen and Barnes [1980] have given other textbook

Chap. 15 Reference Notes 591

treatments of the generalized network simplex algorithm. Our presentation of the
generalized network simplex algorithm differs from these presentations; it is more
combinatorial than algebraic. The approach we have adopted appears for the first
time in this book. Elam, Glover, and Klingman [1979] describe the generalized net
work simplex algorithm, which maintains a strongly feasible basis at every step.
Orlin [1985] discusses pertubation techniques for the generalized network simplex
algorithm. Elam, Glover, and Klingman [1979] and Brown and McBride [1984] have
presented implementation details of the generalized network simplex algorithm and
have examined the computational performances of the resulting algorithms. These
investigations have found that the generalized network simplex algorithm is about
two to three times slower than the network simplex algorithm for the minimum cost
flow problem, but substantially faster than a general-purpose linear programming
code.

Researchers have also studied nonsimplex approaches for the generalized net
work flow problem. These approaches include (1) a primal-dual algorithm developed
by Jewell [1962], (2) a dual algorithm proposed by Jensen and Bhaumik [1977], and
(3) a relaxation algorithm developed by Bertsekas and Tseng [1988b]. Balachandran
and Thompson [1975] describe procedures for performing sensitivity and parametric
analyses for the generalized network flow problem.

Researchers have also actively studied the generalized maximum flow problem,
which is a special case of the generalized network flow problem. These studies have
produced simpler algorithms for this problem. The survey paper by Truemper [1977]
described these approaches and showed that the generalized maximum flow problem
is, in several ways, related to the (ordinary) minimum cost flow problem. None of
these algorithms are pseudopolynomial-time algorithms, partly because the optimal
arc flows and node potentials might be fractional. Goldberg, Plotkin, and Tardos
[1991] presented the first polynomial-time combinatorial algorithm for the general
ized maximum flow problem.

In Section 15.2 we described several applications of the generalized network
flow problem. Our discussion of these applications has been adapted from the fol
lowing papers:

1. Conversion of physical entities (Golden, Liberatore, and Lieberman [1979],
Glover, Glover, and Shields [1988], and Farina and Glover [1983])

2. Machine loading (Dantzig [1962])

3. Managing warehousing goods and funds flow (Cahn [1948])

4. Land management (Glover, Glover, and Martinson [1984])

In Section 1.3 we described another application of generalized networks arising
in energy modeling. Additional applications of the generalized network flow problem
arise in (1) resort development (Glover and Rogozinski [1982]), (2) airline seat al
location problems (Dror, Trudeau, and Ladany [1988]), (3) personnel planning (Gor
ham [1963]), (4) a consensus ranking model (Barzilai, Cook, and Kress [1986]), and
(5) cash flow management in an insurance company (Crum and Nye [1981]). The
survey papers of Glover, Hultz, Klingman, and Stutz [1978] and Glover, Klingman,
and Phillips [1990] contain additional references concerning applications of gener
alized network flow problems.

592 Generalized Flows Chap. 15

EXERCISES

15.1. Generalized caterer problem. In Exercise 11.2 we studied a particular version of the
caterer problem; here we consider a generalization of this problem. Suppose that two
types of laundry service are available, slow and fast. Suppose, in addition, that each
type of service incurs a loss: the slow service loses 5 percent of the napkins it is given
to clean and a fast service loses 10 percent of the napkins it is given. The objective,
as earlier, is to provide the desired number of napkins on each week day at the lowest
possible total cost. Show how to model this extension of the caterer problem as a
generalized network flow problem.

15.2. Production scheduling problem. A steel fabricator has several manufacturing plants.
Plant i has a manufacturing capacity of S; tons per month. The company produces n
distinct products and for a given month the total customer demand for product j is Dj

tons. The plants differ in their fabricating facilities and production efficiencies. A ton
of capacity at plant i can produce au tons of product j. The fabricator incurs a cost
of Cij dollars for each ton of product j produced at plant i and would like to allocate
its customer demands to its plants at the least possible cost. Formulate this problem
as a generalized network flow problem.

15.3. Formulate the aircraft assignment problem described in Application 15.2 as a gener
alized network flow problem.

15.4. Optimal currency conversion. Each day an exchange control bureau permits people to
exchange a limited amount of money from one currency to another. On a particular
day, suppose that the "table shown in Figure 15.15 specifies these limits as well as the
exchange rates of various currencies that the exchange control department handles.
Suppose that you have $1000 and you want to determine the maximum number of
francs you can obtain on that day through a sequence of currency transactions. For
mulate this problem as a generalized maximum flow problem.

Currency Currency Exchange rate, r Limit
given, x received, y (y = rx) (on x)

Dollars Pounds 0.56 1,000

Dollars Lira 1,241 500

Pounds Lira 2,200 160

Lira Pounds 0.00045 200,000

Guilders Pounds 3.37 400

Lira Yen 0.11 950,000

Yen Guilders 0.014 15,000

Guilders Yen 70.5 500

Guilders Francs 3.0 1,600

Yen Francs 0.042 80,000

Figure 15.15 Currency exchange rates on a particular day.

15.5. In Exercise 11.3 we studied a project assignment problem in which each project had
exactly one supervisor. Suppose that we permit each project to have a group of su
pervisors and we know this group for each project. Show that it is difficult to model

Chap. 15 Exercises 593

the modified problem as a minimum cost flow problem but that we can model it as
an integer generalized network flow problem.

15.6. In this exercise we study a few generalizations of the warehouse funds and goods flows
problem that we discussed in Application 15.3. Give network flow formulations for
situations with K = 4 time periods when we impose the following additional problem
features.
(8) At the beginning of each period, the entrepreneur can lend cash for 2 or 3 years,

accruing an interest of 20 percent and 35 percent.
(b) At the beginning of each period, the entrepreneur can borrow cash for 2 years.

She pays an interest in the amount of 25 percent for the 2-year period.
(c) The entrepreneur must satisfy a demand of d(k) units for the product in each time

period k.
15.7. In the warehouse funds and goods flows model that we discussed in Application 15.3,

suppose that the warehouse can store two products: In every period the entrepreneur
can convert portions of each product into cash or into each other. The conversion
ratios for each period are known in advance. Can you formulate this model as a gen
eralized network flow problem? If so, give the formulation; if no, outline the difficulties
encountered.

15.8. Give two real-life situations, not described in this chapter, of networks that have flow
gains and/or losses on their arcs.

15.9. Explain how you would model each of the following extensions of the generalized
network flow problems: (1) the flow on arc (i, j) has a nonnegative lower flow bound
Ii); (2) the mUltiplier of an arc (i, j) is zero; (3) a supply node i is permitted to keep
some of its supply b(i); and (4) at most uU) units can enter node i. Consider each of
these generalizations separately.

15.10. (8) Consider a linear programming problem in which each column has exactly two
nonzero entries: one positive and the other negative. Transform this linear pro
gramming problem into a generalized network flow problem.

(b) Consider a linear programming problem satisfying two properties: (I) each column
has at most two nonzero entries, and (2) if any column has exactly two nonzero
entries, one of these is positive and the other is negative. Transform this linear
programming problem into a generalized network flow problem.

15.11. Prove Properties 15.3 and 15.4.
15.12. Show that the generalized network flow problem satisfies c""x = cx - 7rb for any 'IT.

Conclude that any solution that minimizes cx also minimizes c""x. (Hint: The proof
is similar to that of property 2.4.)

15.13. In the generalized network simplex algorithm, we obtain an initial augmented forest
structure by introducing an artificial arc (i, i), with a sufficiently large cost M, for
every node i E N. Specify a finite value of M, as a function of the problem data, that
would ensure that these artificial arcs carry zero flow if the generalized network flow
problem has a feasible solution. (Hint: Determine an upper bound a on the objective
function value of any feasible flow without using artificial arcs. Next, determine a
lower bound ~ on the flow on any artificial arc (i, i) if that arc carries a positive flow
in any augmented forest. Select M so that M~ > a.)

15.14. Professor May B. Wright announced a novel algorithm for solving the generalized
network flow problem when all the arcs are lossy. Can you transform a generalized
network flow problem with arbitrary positive arc multipliers to a problem in which all
arcs are lossy? Assume that all arcs have finite capacities.

15.15. Suppose that we associate a positive real number aU) with each node i E N in a graph
G. With respect to the vector a, we define the reduced multiplier of an arc (i, j) as
.... ij = a(i) i)/a(j).

594

(8) Show that tJ. Q(W) = tJ.(W) for any cycle W.
(b) Let T be a spanning tree of G. Define a vector a so that tJ.ij = 1 for every arc

(i, j) E T. Let W(k, l) be the fundamental cycle defined by a nontree arc (k, I).

Generalized Flows Chap. IS

Show that if W(k, I) is a breakeven cycle, JJ.kl = 1. Conclude that if every fun
damental cycle of G with respect to T is a breakeven cycle, then JJ.ij = 1 for all
(i, j) EA.

(c) Prove that all cycles in G are breakeven if and only if all fundamental cycles with
respect to any spanning tree Tare breakeven. Use this result to show that we can
determine in O(m) time whether all cycles in G are breakeven.

15.16. Consider the linear programming formulation of the generalized network flow problem
given in (15.1). Suppose that we associate a positive real number a(i) with each node
i E N and define the new set of variables y as Yu = xu/aU). Suppose that we then
make the substitution Xij = Yija(i) for every (i, j) in (15.0. Show that the resulting
formulation is also a generalized network flow problem, but with different supplies/
demands, arc costs, capacities, and multipliers. We refer to the resulting problem as
the a-transformed problem.
(8) What are the supplies/demands, arc costs, capacities, and multipliers of the

a-transformed problem in terms of a and the original problem data?
(b) Show that if all the cycles in G are breakeven, then for some choice of the vector

a, the a-transformed problem becomes a minimum cost flow problem. (Hint: Use
the result of Exercise 15.15.)

15.17. Using the procedure compute-potentials, determine node potentials for the augmented
trees shown in Figure 15.16.

40 -2

(a)

Figure 15.16 Two augmented trees.

IS.IS. Using the procedure compute-flows, determine arc flows for the augmented trees
shown in Figure 15.16. Assume that all arcs are uncapacitated. Are the flows feasible?

15.19. Apply two iterations of the generalized network simplex algorithm to the generalized
network flow problem shown in Figure 15.17. Assume that all arcs are uncapacitated.

15

Chap. 15 Exercises

10

Figure IS.17 Generalized network
example for Exercise 15.19.

595

15.20. Let T U {(a, (3)} be an augmented tree of G. Suppose that we defin.e the multiplier of
a path P as f.L(P) = (~(i.j)EP f.Lij)/(~(i.j)EP f.Lij); in this expression, P and f.. denote the
sets of forward and backward arcs in the path P.
(a) Let Pi denote the unique path from any node i to the root node h in T [i.e., the

augmenting tree minus the extra arc (a, (3)]. Show that at the termination of the
procedure compute-potentials described in Figure 15.6, each g(i) equals f.L(P;).

(b) Show that the expression (g(a) - f.Laj3g(J3» is nonzero if and only if the augmented
tree T U {(a, (3)} is good (i.e., contains no breakeven cycle).

15.21. Show that if an augmented forest is not good, node potentials determined by the
procedure compute-potentials might not be unique. Next argue that if an augmented
forest is good, node potentials determined by the procedure compute-potentials are
unique. Conclude that the procedure compute-potentials gives a unique set of node
potentials if and only if the augmented forest is good.

15.22. In the description of the generalized network simplex algorithm, we have assumed
that the entering arc (k, l) belongs to L. If arc (k, l) E U, what steps of the algorithm
would we need to modify, and how?

15.23. When we add the entering arc (k, l) to an augmented forest, we create a bicycle. Write
separate pseudocodes to accomplish the following tasks: (I) determine whether the
bicycle is a type 1 bicycle or a type 2 bicycle; (2) if the bicycle is a type 1 bicycle,
determine the cycles W" W2 and the path segment P; (3) if the bicycle is a type 2
bicycle, determine the three path segments PI, P2 , and P3 ; (4) if the bicycle is a type
2 bicycle and contains a breakeven cycle, determine the breakeven cycle. Your pseu
docodes should use only predecessor and depth indices and run in D(n) time.

15.24. For a given feasible flow x of the generalized network flow problem, we define a
residual network G(x) as follows. We replace each arc (i, j) by two arcs (i, j) and
(j, i). Arc (i, j) has cost cij, a residual capacity rij = U;) - xij, and a multiplier f.L;);
arc (j, i) has cost - C;)f.Lij, a residual capacity xij/f.Lij, and a mUltiplier l/f.Lij. The residual
network consists of only those arcs with a positive residual capacity.
(a) Define the length of each arc (i, j) in G(x) as -log(f.Lij)' Show that a directed cycle

W is a gainy cycle if and only if its length is a negative cycle. Using this result,
describe a polynomial-time algorithm for identifying whether G(x) contains a di
rected cycle that is gainy.

(b) Describe a polynomial-time algorithm for identifying whether G(x) contains a di
rected cycle that is lossy.

15.25. Generalized maximum flow problem. In the generalized maximum flow problem, we
wish to obtain a feasible flow that maximizes one of two objectives: (1) the flow into
a sink node t, or (2) the flow out of the source node s. Formulate the generalized
maximum flow problem as a generalized minimum cost flow problem. (Hint: Trans
form the problem into one in which all the nodes have zero supplies/demands.)

15.26. Generalized maximum flow algorithm. In this exercise we discuss an algorithm for
maximizing the flow into the sink node t. Suppose that we define the residual network
G(x) with respect to a flow x as in Exercise 15.24. In the residual network, we define
a generalized augmenting path as either (1) a directed path from node s to node t,
or (2) a directed cycle W that is gainy, plus a directed path from some node in W to
node t.
(a) Show that if G(x) contains a generalized augmenting path, we can increase the

flow into the sink. Use this result to describe an algorithm for the generalized
maximum flow problem.

(b) Describe a polynomial-time algorithm for identifying a generalized augmenting
path. (Hint: To identify the second type of augmenting path, let G' be the subgraph
of G consisting of those nodes that have directed paths to node t. Then look for
a gainy cycle in G'.)

15.27. Generalized flow decomposition property. We refer to a generalized network flow prob
lem as a generalized circulation problem if b(i) = 0 for every node i E N (i.e., for
each node the inflow equals its outflow). In a generalized circulation problem, we refer

596 Generalized Flows Chap. 15

to any flow Xu satisfying the mass balance and flow bound constraints as a generalized
circulation. Two types of generalized circulation are of special interest: cycle flow and
bicycle flow. A cycle flow is a generalized circulation for which Xu > 0 only along
arcs of a breakeven cycle; a bicycle circulation is a generalized flow for which
xu> 0 only along arcs of a bic~le (of either type 1 or type 2). We refer to a cycle or
bicycle flow X as negative if ~(i.j)EA CjjXjj is negative. Show that it is possible to
decompose any generalized circulation into flows along at most m cycle or bicycle
flows. Hint: Use the generalized simplex method to find a breakeven cycle or a bicycle.

15.28. Generalized flow optimality conditions. Show that a generalized circulation x* is an
optimal solution of the generalized circulation problem if and only if the network
contains no negative cycle or bicycle flow with respect to x* .

15.29. Show that by adding a loop arc (i, i) of zero cost with a mUltiplier of! to every node
with :S b(i) constraint and a loop arc (j, j) of zero cost with a multiplier of 2 to every
node j with ~ b(j) constraint, we can formulate any generalized flow problem with
one or more inequalities for supplies and demands, (i.e., the mass balance constraints
are stated as ":sb(i)" for a supply node i, and/or "~b(j)" for a demand node j) into
an equivalent problem with all equality constraints (i.e., "= b(k)" for all nodes k).

Chap. 15 Exercises 597

16

LAGRANGIAN RELAXATION AND
NETWORK OPTIMIZATION

Chapter OutlIne

16.1 Introduction

I never missed the opportunity to remove obstacles in the way
of unity.

-Mohandas Gandhi

16.2 Problem Relaxations and Branch and Bound
16.3 Lagrangian Relaxation Technique
16.4 Lagrangian Relaxation and Linear Programming
16.5 Applications of Lagrangian Relaxation
16.6 Summary

16.1 INTRODUCTION

As we have noted throughout our discussion in this book, the basic network flow
models that we have been studying-shortest paths, maximum flows, minimum cost
flows, minimum spanning trees, matchings, and generalized and convex flows
arise in numerous applications. These core network models are also building blocks
for many other models and applications, in the sense that many models met in prac
tice have embedded network structure: that is, the broader models are network
problems with additional variables and/or constraints.

In this chapter we consider ways to solve these models using a solution strategy
known as decomposition which permits us to draw upon the many algorithms that
we have developed in previous chapters to exploit the underlying network structure.
In a sense this chapter serves a dual purpose. First, it permits us to introduce a
broader set of network optimization models than we have been considering in our
earlier discussion. As such, this chapter provides a glimpse of how network flow
models arise in a wide range of applied problem settings that cannot be modeled as
pure network flow problems. Second, the chapter introduces a solution method,
known as Lagrangian relaxation, that has become one of the very few solution
methods in optimization that cuts across the domains of linear and integer program
ming, combinatorial optimization, and nonlinear programming.

Perhaps the best way to understand the basic idea of Lagrangian relaxation is
via an example.

598

Constralned Shortest Paths

Consider the network shown in Figure 16.I(a) which has two attributes associated
with each arc (i, j): a cost Cij and a traversal time tij' Suppose that we wish to find
the shortest path from the source node 1 to the sink node 6, but we wish to restrict
our choice of paths to those that require no more than T = 10 time units to traverse.
This type of constrained shortest path application arises frequently in practice since
in many contexts a company (e.g., a package delivery firm) wants to provide its
services at the lowest possible cost and yet ensure a certain level of service to its
customers (as embodied in the time restriction). In general, the constrained shortest
path problem from node 1 to node n can be stated as the following integer program
ming problem:

subject to

:L Xij-

{j: U.j)EA}

Minimize :L CijXij
(iJ)EA

{

I
:L Xji = 0

{j:(j.i)EA} -I

:L tijxij ~ T,
(i.j)EA

for i = 1
for i E N - {l, n},
for i = n

Xij = 0 or 1 for all (i, j) E A.

(16.la)

(16.lb)

(16.lc)

(16.ld)

The problem is not a shortest path problem because of the timing restriction.
Rather, it is a shortest path problem with an additional side constraint (16.lc). Instead
of solving this problem directly, suppose that we adopt an indirect approach by
combining time and cost into a single modified cost; that is, we place a dollar equiv
alent on time. So instead of setting a limit on the total time we can take on the chosen
path, we set a "toll charge" on each arc proportional to the time that it takes to

(a) (b)

Figure 16.1 Time-constrained shortest path problem: (a) constrained shortest path problem
(bold lines denote the shortest path for J.L = 0); (b) modified cost c + J.Ll with Lagrange
multiplier J.L = 2 (bold lines denote the shortest path).

Sec. 16.1 Introduction S99

traverse that arc. For example, we might charge $2 for each hour that it takes to
traverse any arc. Note that if the toll charge is zero, we are ignoring time altogether
and the problem becomes a usual shortest path problem with respect to the given
costs. On the other hand, if the toll charge is very large, these charges become the
dominant cost and we will be seeking the quickest path from the source to the sink.
Can we find a toll charge somewhere in between these values so that by solving the
shortest path problem with the combined costs (the toll charges and the original
costs), we solve the constrained shortest path problem as a single shortest path
problem?

For any choice ~ of the toll charge, we solve a shortest path problem with
respect to the modified costs Cij + ~tij. For the sample data shown in Figure 16.1(a),
if ~ = 0, the modified problem becomes the shortest path problem with respect to
the original costs Cij and the shortest path 1-2-4-6 has length 3. This value is an
obvious lower bound on the length of the constrained shortest path since it ignores
the timing constraint. Now suppose that we set ~ = 2 and solve the modified prob
lem. Figure 16.1(b) shows the modified costs Cij + 2tij. The shortest path 1-3-2-
5-6 has length 35. In this case, the path 1-3-2-5-6 that solves the modified problem
happens to require 10 units to traverse, so it is a feasible constrained shortest path.
Is it an optimal constrained shortest path?

To answer this question, let us make an important observation (which we will
prove formally in the next section). Let P, with cost Cp = L(i.})EP Cij and traversal
time tp = LU.})EP tij, be any feasible path to the constrained shortest path problem,
and let l(~) denote the optimal length of the shortest path with the modified costs
when we impose a toll of ~ units. Since the path P is feasible for the constrained
shortest path problem, the time tp required to traverse this path is at most T = 10
units. With respect to the modified costs Cij + ~tij, the cost Cp + ~tp of the path P
is the path's true cost Cp plus ~tp ~ ~T units. Therefore, if we subtract ~T from the
modified cost Cp + ~tp of this path, we obtain a lower bound Cp + ~tp - ~T =
Cp + ~(tp - T) ~ Cp on the cost Cp of this path. Since the shortest path with respect
to the modified arc costs is less than or equal to the modified cost of any particular
path, l(~) ~ Cp + ~tp and so l(~) - ~T is a common lower bound on the length of
any feasible path P and thus on the length of the constrained shortest path. Because
this argument is completely general and applies to any value ~ 2: 0 of the toll charges,
if we subtract ~Tfrom the optimal length of the shortest path of the modified problem,
we obtain a lower bound on the optimal cost of the constrained shortest path problem.

Bounding Principle. For any nonnegative value of the toll ~, the length l(fL)
of the modified shortest path with costs Cij + ~tij minus ~T is a lower bound on the
length of the constrained shortest path.

Note that for our numerical example, for ~ = 2, the cost of the modified shortest
path problem is 35 units and so 35 - 2(T) = 35 - 2(1 0) = 15 is a lower bound on
the length of the optimal constrained shortest path. But since the path 1-3-2-5-6
is a feasible solution to the constrained shortest path problem and its cost equals
the lower bound of 15 units, we can be assured that it is an optimal constrained
shortest path.

Observe that in this example we have been able to solve a difficult optimization

600 Lagrangian Relaxation and Network Optimization Chap. 16

model (the constrained shortest path problem is an Xg:>-complete problem) by re
moving one or more problem constraints-in this case the single timing constraint
that makes the problem much more difficult to solve. Rather than solving the difficult
optimization problem directly, we combined the complicating timing constraint with
the original objective function, via the toll IJ., so that we could then solve a resulting
embedded shortest path problem. The motivation for adopting this approach was
our observation that the original constrained shortest path problem had an attractive
substructure, the shortest path problem, that we would like to exploit algorithmically.
Whenever we can identify such attractive substructure, we could adopt a similar
approach. For reasons that will become clearer in the next section, this general
solution approach has become known as Lagrangian relaxation.

In our example we have been fortunate to find a constrained shortest path by
solving the Lagrangian subproblem for a particular choice of the toll IJ.. We will not
always be so lucky; nevertheless, as we will see, the lower bounding mechanism of
Lagrangian relaxation frequently provides valuable information that we can exploit
algorithmically.

Lagrangian relaxation is a general solution strategy for solving mathematical
programs that permits us to decompose problems to exploit their special structure.
As such, this solution approach is perfectly tailored for solving many models with
embedded network structure. The Lagrangian solution strategy has a number of
significant advantages:

1. Since it is often possible to decompose models in several ways and apply La
grangian relaxation to each different decomposition, Lagrangian relaxation is
a very flexible solution approach. Indeed, because of its flexibility, Lagrangian
relaxation is more of a general problem solving strategy and solution framework
than any single solution technique.

2. In decomposing problems, Lagrangian relaxation solves core subproblems as
stand-alone models. Consequently, the solution approach permits us to exploit
any known methodology or algorithm for solving the subproblems. In partic
ular, when the subproblems are network models, the Lagrangian solution ap
proach can take advantage of the various algorithms that we have developed
previously in this book.

3. As we have already noted, Lagrangian relaxation permits us to develop bounds
on the value of the optimal objective function and, frequently, to quickly gen
erate good, though not necessarily optimal solutions with associated perfor
mance guarantees-that is, a bound on how far the solution could possibly be
from optimality (in objective function value). In many instances in the context
of integer programming, the bounds provided by Lagrangian relaxation meth
ods are much better than those generated by solving the linear programming
relaxation of the problems, and as a consequence, Lagrangian relaxation is
often an attractive alternative to linear programming as a bounding mechanism
in branch-and-bound methods for solving integer programs.

4. In many instances we can use Lagrangian relaxation methods to devise effective
heuristic solution methods for solving complex combinatorial optimization
problems and integer programs.

Sec. 16.1 Introduction 601

In the remainaer of this chapter we describe the Lagrangian relaxation solution
approach in more detail and demonstrate its use in solving several important network
optimization models. Our purpose is not to present a comprehensive treatment of
Lagrangian relaxation or of its applications to the field of network optimization, but
rather to introduce this general solution strategy and to illustrate its applications in
a way that would lay the essential foundations for applying the method in many other
problem contexts. As a by-product of this discussion, in the text and in the exercises
at the end of this chapter we introduce several noteworthy network optimization
models that we do not treat elsewhere in the book.

Since one of the principal uses of Lagrangian relaxation is within implicit enu
meration procedures for solving integer programs, before describing Lagrangian re
laxation in more detail, we first discuss its use within classical branch-and-bound
algorithms for solving integer programs. The reader can skip this section without
loss of continuity.

16.2 PROBLEM RELAXATIONS AND BRANCH AND
BOUND

In the last section we observed that Lagrangian relaxation permits us to develop a
lower bound on the optimal length of a constrained shortest path. In Section 16.3
we develop a generalization of this result, showing that we can obtain a lower bound
on the optimal objective function value of any minimization problem. These lower
bounds can be of considerable value: for example, for our constrained shortest path
example, we were able to use a lower bound to demonstrate that a particular solution
that we generated by solving a shortest path subproblem, with modified costs, was
optimal for the overall constrained problem. In general, we will not always be as
fortunate in being able to use a lower bound to guarantee that the solution to a single
subproblem solves the original problem. Nevertheless, as we show briefly in the
section, we might still be able to use lower bounds as an algorithmic tool in reducing
the number of computations required to solve combinatorial optimization problems
formulated as integer programs.

Consider the following integer programming model:

Minimize ex

subject to

xE F.

In this formulation, the set F represents the set of feasible solutions to an integer
program, that is, the set of solutions x = (XI, X2, ••• , xJ) to the system

S1ix = b,

Xj = 0 or 1 for j = 1, 2, ... , J.

In a certain conceptual sense, this integer program is trivial to solve: We simply
enumerate every combination of the decision variables, that is, all zero-one vectors
(XI, X2, ••• ,xJ) obtained by setting each variable Xj to value zero or 1; from among

602 Lagrangian Relaxation and Network Optimization Chap. 16

all those vectors that satisfy the given equality constraint sflx = b, we choose the
combination with the smallest value of the objective function ex. Of course, because
of its combinatorial explosiveness, this total enumeration procedure is limited to
very small problems; for a problem with 100 decision variables, even if we could
compute one solution every nanosecond (10 -9 second), enumerating all 2100 solutions
would take us over a million million years-that is, a million different million years!

Can we avoid any of these computations? Suppose that F = FI U F2. For
example, we might obtain F' from F by adding the constraint Xl = 0 and F2 by
adding the constraint x, = 1. Note that the optimal solution over the feasible set F
is the best of the optimal solutions over FI and F2. Suppose that we already have
found an optimal solution x to min{ex : x E F2} and that its objective function value
is z(x) = 100. The number of potential integer solutions in F' is still 2J

- I, so it will
be prohibitively expensive to enumerate all these possibilities, except when J is
small.

Rather than attempt to solve the integer program over the feasible region F',
suppose that we solve a relaxed version of the problem, possibly by relaxing the
integrality constraints, and/or possibly by performing a Lagrangian relaxation of the
problem. In general, we obtain a relaxation by removing some constraints from the
model: for example, by replacing the restrictions Xj 2: 0 and integer, by the restriction
Xj 2: 0, or by deleting one or more constraints of the form ax = ~. We could use
many different types of relaxation-in Lagrangian relaxation, for example, we not
only delete some problem constraints, but we also change the objective function of
the problem. For the purpose of this discussion, we merely require that we relax
some of the problem constraints and that the objective function value of the relax
ation is a lower bound on the objective function value of the original problem.

Let x' denote an optimal solution to the relaxation, and let z(x ') denote the
objective function value of this solution. We consider four possibilities:

1. The solution X I does not exist because the relaxed problem has no feasible
solution.

2. The solution x' happens to lie in F' (even though we relaxed some of the
constraints).

3. The solution x' does not lie in F' and its objective function value z(x ') satisfies
the inequality z(x ') 2: z(x) = 100.

4. The solution x' does not lie in F' and its objective function value z(x ') of x'
satisfies the inequality z(x') < z(x) = 100.

Note that these four alternatives exhaust all possible outcomes and are mutually
exclusive. Therefore, exactly one of them must occur.

We now make an important observation. In cases 1 to 3, we can terminate our
computations: we have solved the original problem over the set F, even though we
have not explicitly solved any integer program (assuming that we obtained the so
lution over the set F2 without solving an integer program). In case 1, since the
relaxation of the set FI is empty, the set FI is also empty, so the solution x solves
the original (overall) integer program. In case 2, since we have found the optimal
solution in the relaxation (and so a superset) of the set FI, and this solution lies in

Sec. 16.2 Problem Relaxations and Branch and Bound 603

FI, we have also found the best solution in FI; therefore, either x or x' is the solution
to the original problem (whichever solution has the smaller objective function value).
Note that in this case we have implicitly considered (enumerated) all of the solutions
in FI in the sense that we know that no solution in this set is better than x. In case
3, the solution x has as good an objective function value as the best solution in a
relaxation of FI, so it has an objective function value that is as good as any solution
in Fl. Therefore, x solves the original problem. Note that in case 3 we have used
bounding information on the objective function value to eliminate the solutions in
the set FI from further consideration.

In case 4, we have not yet solved the original problem. We can either try to
solve the problem minimize {ex: x E FI} by some direct method of integer pro
gramming or, we can partition FI into two sets F3 and F4. For example, we might
obtain F3 from F by constraining Xl = 0 and X2 = 0 and obtain F4 by setting XI = 0
and X2 = 1. We could then apply any relaxation or direct approach for the problems
defined over the sets F3 and F4.

In a general branch-and-bound procedure, we would systematically partition
the feasible region F into subregions F 1, F2, F3, . . . , FK. Let x denote the best
feasible solution (in objective function value) we have obtained in prior computa
tions. Suppose that for each k = 1, 2, ... , K, either Fk is empty or Xk is a solution
of a relaxation of the set Fk and ex :S cxk. Then no point in any of the regions FI,
p2, F 3, ... , Fk could have a better objective function value than x, so x solves the
original optimization problem. If ex > exk, though, for any region Fk, we would
need to subdivide this region by "branching" on some of the variables (i.e., dividing
a subregion in two by setting Xj = 0 or Xj = 1 for some variable j to define two new
subregions). Whenever we have satisfied the test ex :S exk for all of the subregions
(or we know they are empty), we have solved the original problem.

The intent of the branch-and-bound method is to find an optimal solution by
solving only a small number of relaxations. To do so, we would need to obtain good
solutions quickly and obtain good relaxations so that the objective function value
z(xk) of the solution Xk to the relaxation of the set Fk is close in objective function
value to the optimal solution over Fk itself.

In practice, in implementing the branch-and-bound procedure, we need to make
many design decisions concerning the order for choosing the subregions, the vari
ables to branch on for each subregion, and mechanisms (e.g., heuristic procedures)
that we might use to find "good" feasible solutions. The literature contains many
clever approaches for resolving these issues and for designing branch-and-bound
procedures that are quite effective in practice. We also need to develop good re
laxations that would permit us to obtain effective (tight) lower bounds: if the lower
bounds are weak, cases 2 and 3 will rarely occur and the branch-and-bound procedure
will degenerate into complete -enumeration. On the other hand, if the bounds are
very tight, the relaxations will permit us to eliminate much of the enumeration and
develop very effective solution procedures. Since our purpose in this chapter is to
introduce one relaxation procedure that has proven to be very effective in practice
and discuss its applications, we will not consider the detailed design choices for
implementing the branch-and-bound procedure.

We next summarize the basic underlying ideas of the Lagrangian relaxation
technique.

604 Lagrangian Relaxation and Network Optimization Chap. 16

16.3 LAGRANGIAN RELAXATION TECHNIQUE

To describe the general form of the Lagrangian relaxation procedure, suppose that
we consider the following generic optimization model formulated in terms of a vector
x of decision variables:

subject to

z* = min ex

stlx = b,

xEX.

(P)

This model (P) has a linear objective function ex and a set stlx = b of explicit
linear constraints. The decision variables x are also constrained to lie in a given
constraint set X which, as we will see, often models embedded network flow struc
ture. For example, the constraint set X = {x : Xx = q, 0 ~ x ~ u} might be all the
feasible solutions to a network flow problem with a supply/demand vector q. Or,
the set X might contain the incidence vectors of all spanning trees or matchings of
a given graph. Unless we state otherwise, we assume that the set X is finite (e.g.,
for network flow problems, we will let it be the finite set of spanning tree solutions).

As its name suggests, the Lagrangian relaxation procedure uses the idea of
relaxing the explicit linear constraints by bringing them into the objective function
with associated Lagrange multipliers ~ (this old idea might be a familiar one from
advanced calculus in the context of solving nonlinear optimization problems). We
refer to the resulting problem

Minimize ex + ~(stlx - b)

subject to

xEX,

as a Lagrangian relaxation or Lagrangian subproblem of the original problem, and
refer to the function

L(~) = min{cx + ~(stlx - b) : x EX},

as the Lagrangian function. Note that since in forming the Lagrangian relaxation,
we have eliminated the constraints stlx = b from the problem formulation, the so
lution of the Lagrangian subproblem need not be feasible for the original problem
(P). Can we obtain any useful information about the original problem even when the
solution to the Lagrangian subproblem is not feasible in the original problem (P)?
The following elementary observation is a key result that helps to answer this ques
tion and that motivates the use of the Lagrangian relaxation technique in general.

Lemma 16.1 (Lagrangian Bounding Principle). For any vector ~ of the La
grangian multipliers, the value L(~) of the Lagrangian function is a lower bound
on the optimal objective function value z* of the original optimization problem (P).

Proof. Since sflx = b for every feasible solution to (P), for any vector ~ of
Lagrangian multipliers, z * = min{ ex : sflx = b, x E X} = min{ ex + IJ.(stlx - b) :
sflx = b, x E X}. Since removing the constraints sflx = b from the second formulation

Sec. 16.3 Lagrangian Relaxation Technique 605

cannot lead to an increase in the value of the objective function (the value might
decrease), z* ~ min{cx + ~(3lx - b) : x E X} = L(~). •

As we have seen, for any value of the Lagrangian multiplier ~, L(~) is a lower
bound on the optimal objective function value of the original problem. To obtain the
sharpest possible lower bound, we would need to solve the following optimization
problem

L * = maxf.LL(~)

which we refer to as the Lagrangian multiplier problem associated with the original
optimization problem (P). The Lagrangian bounding principle has the following im
mediate implication.

Property 16.2 (Weak Duality). The optimal objective function value L * of the
Lagrangian multiplier problem is always a lower bound on the optimal objective
function value of the problem (P) (i.e., L * ~ z*).

Our preceding discussion provides us with valid bounds for comparing objective
function values of the Lagrange multiplier problem and optimization (P) for any
choices of the Lagrange multipliers ~ and any feasible solution x of (P):

L(~)~L*~z*~cx.

These inequalities furnish us with a guarantee when a Lagrange mUltiplier ~ to the
Lagrange multiplier problem or a feasible solution x to the original problem (P) are
optimal.

Property 16.3 (Optimality Test)
(a) Suppose that ~ is a vector of Lagrangian multipliers and x is a feasible solution

to the optimization problem (P) satisfying the condition L(~) = cx. Then L(~)
is an optimal solution of the Lagrangian multiplier problem [i.e., L * = L(J-L)]
and x is an optimal solution to the optimization problem (P).

(b) If for some choice of the Lagrangian multiplier vector ~, the solution x* of the
Lagrangian relaxation is feasible in the optimization problem (P), then x* is an
optimal solution to the optimization problem (P) and ~ is an optimal solution to
the Lagrangian multiplier problem.

Note that by assumption in part (b) of this property, L(~) = cx* + ~(3lx* -
b) and 3lx* = b. Therefore, L(~) = cx* and part (a) implies that x* solves problem
(P) and ~ solves the Lagrangian multiplier problem.

As indicated by Property 16.3, the bounding principle immediately implies one
advantage of the Lagrangian relaxation approach-the method can give us a certif
icate [in the form of the equality L(JJ.) = cx for some Lagrange multiplier J-L] for
guaranteeing that a given feasible solution x to the optimization problem (P) is an
optimal solution. Even if L(~) < cx, having the lower bound permits us to state a
bound on how far a given solution is from optimality: If [cx - L(~)]/L(~) ~ 0.05,
for example, we know that the objective function value of the feasible solution x is
no more than 5% from optimality. This type of bound is very useful in practice-it

606 Lagrangian Relaxation and Network Optimization Chap. 16

permits us to assess the degree of suboptimality of given solutions and it permits us
to terminate our search for an optimal solution when we have a solution that we
know is close enough to optimality (in objective function value) for our purposes.

Lagrangian Relaxation and Inequality Constraints

In the optimization model (P), the constraints :Ax = b are all equality constraints.
In practice, we often encounter models, such as the constrained shortest path prob
lem, that are formulated more naturally in inequality form :Ax :s b. The Lagrangian
multiplier problem for these problems is a slight variant of the one we have just
introduced: The Lagrangian multiplier problem becomes

L * = max L(fJ.).
~2:0

That is, the only change in the Lagrangian multiplier problem is that the La
grangian multipliers now are restricted to be nonnegative. In Exercise 16.1, by in
troducing "slack variables" to formulate the inequality problem as an equivalent
equality problem, we show how to obtain this optimal multiplier problem from the
one we have considered for the equality problem. This development implies that the
bounding property, the weak duality property, and the optimality test 16.3(a) are
valid when we apply Lagrangian relaxation to any combination of equality and in
equality constraints.

There is, however, one substantial difference between relaxing equality con
straints and inequality constraints. When we relax inequality constraints stlx :s b, if
the solution x* of the Lagrangian subproblem happens to satisfy these constraints,
it need not be optimal (see Exercise 16.2). In addition to being feasible, this solution
needs to satisfy the complementary slackness condition fJ.(stlx* - b) = 0, which is
familiar to us from much of our previous discussion of network flows in section 9.4.

Property 16.4. Suppose that we apply Lagrangian relaxation to the optimi
zation problem (PS) defined as minimize {cx : stlx :s b and x E X} by relaxing the
inequalities stlx :S b. Suppose, further, that for some choice of the Lagrangian mul
tiplier vector fJ., the solution x* of the Lagrangian relaxation (1) is feasible in the
optimization problem (PS

), and (2) satisfies the complementary slackness condition
fJ.(stlx* - b) = 0. Then x* is an optimal solution to the optimization problem (PS).

Proof. By assumption, L(fJ.) = cx* + fJ.(:Ax* - b). Since fJ.(stlx* - b) = 0,
L(fJ.) = cx*. Moreover, since :Ax* :S b, x* is feasible, and so by Property 16.3(a)
x* solves problem (PS). •

Are solutions to the Lagrangian subproblem of use in solving the original prob
lem? Properties 16.3 and 16.4 show that certain solutions of the Lagrangian sub
problem provably solve the original problem. We might distinguish two other cases:
(1) when solutions obtained by relaxing inequality constraints are feasible but are
not provably optimal for the original problem (since they do not satisfy the com
plementary slackness condition), and (2) when solutions to the Lagrangian relaxation
are not feasible in the original problem.

In the first case, the solutions are candidate optimal solutions (possibly for use

Sec. 16.3 Lagrangian Relaxation Technique 607

in a branch-and-bound procedure). In the second case, for many applications, re
searchers have been able to devise methods to modify "modestly" infeasible so
lutions so that they become feasible with only a slightly degradation in the objective
function value. These observations suggest that we might be able to use the solutions
obtained from the Lagrangian subproblem as "approximate" solutions to the original
problem, even when they are not provably optimal; in these instances, we can use
Lagrangian relaxation as a heuristic method for generating provably good solutions
in practice (the solutions might be provably good because of the Lagrangian lower
bound information). The development of these heuristic methods depends heavily
on the problem context we are studying, so we will not attempt to provide any further
details.

Solving the Lagrangian Multiplier Problem

How might we solve the Lagrangian multiplier problem? To develop an understand
ing of possible solution techniques, let us consider the constrained shortest path
problem that we defined in Section 16.1. Suppose that now we have a time limitation
of T = 14 instead of T = 10. When we relax the time constraint, the Lagrangian
multiplier function L(~) for the constrained shortest path problem becomes

L(~) = min{cp + ~(tp - T) : P E Cl}}.

In this formulation, Cl} is the collection of all directed paths from the source node 1
to the sink node n. For convenience, we refer to the quantity cp + ~(tp - T) as
the composite cost of the path P. For a specific value of the Lagrangian multiplier
~, we can solve L(~) by enumerating all the directed paths in Cl} and choosing the
path with the smallest composite cost. Consequently, we can solve the Lagrangian
multiplier problem by determining L(~) for all nonnegative values of the Lagrangian
multiplier ~ and choosing the value that achieves max 2:0 L(~).

Let us illustrate this brute force approach geometrically. Figure 16.2 records
the cost and time data for every path for our numerical example. Note that the
composite cost cp + ~(tp - T) for any path P is a linear function of ~ with an
intercept of cp and a slope of (tp - T). In Figure 16.3 we have plotted each of these
path composite cost functions. Note that for any specific value of the Lagrange
mUltiplier ~, we can find L(~) by evaluating each composite cost function (line) and
identifying the one with the least cost. This observation implies that the Lagrangian
multiplier function L(~) is the lower envelope of the composite cost lines and that
the highest point on this envelope corresponds to the optimal solution of the La
grangian mUltiplier problem.

In practice, we would never attempt to solve the problem in this way because
the number of directed paths from the source node to the sink node typically grows
exponentially in the number of nodes in the underlying network, so any such enu
meration procedure would be prohibitively expensive. Nevertheless, this problem
geometry helps us to understand the nature of the Lagrangian multiplier problem
and suggests methods for solving the problem.

As we noted in the preceding paragraph, to find the optimal multiplier value
~ * of the Lagrangian mUltiplier problem, we need to find the highest point of the
Lagrangian multiplier function L(~). Suppose that we consider the polyhedron de-

608 Lagrangian Relaxation ana Network Optimization Chap. 16

Path cost Path time Composite cost
Path P Cp tp Cp + J1 (tp - T)

1-2-4-6 3 18 3 + 4

1-2-5-6 5 15 5 +

1-2-4-5-6 14 14 14

1-3-2-4-6 13 13 13-

1-3-2-5-6 15 10 15 - 4

1-3-2-4-5-6 24 9 24 - 5

1-3-4-6 16 17 16 + 3

1-3-4-5-6 27 13 27 -

1-3-5-6 24 8 24 - 6

Figure 16.2 Path cost and time data for constrained shortest path example with T
= 14.

fined by those points that lie on or below the function L(,....). These are the shaded
points in Figure 16.3. Then geometrically, we are finding the highest point in a
polyhedron defined by the function L(,....), which is a linear program.

Even though we have illustrated this property on a specific example, this sit
uation is completely general. Consider the generic optimization model (P), defined

40

30

'til
OE-.,

~:1
.':: I

8.'£ 20

S+ 8

IO

o

o 2 3 4

Lagrange multiplier

Figure 16.3 Lagrangian function for T = 14.

Sec. 16.3 Lagrangian Relaxation Technique

5

Paths

1-3-4-6

1-2-4-6
1-3-4-5-6

1-2-4-5-6

1-2-5-6
1-3-2-4-6

1-3-2-4-5-6

609

as min{ cx : Stlx = b, x E X} and suppose that the set X = {x I , x 2 , ..• ,XK} is finite.
By relaxing the constraints Stlx = b, we obtain the Lagrangian multiplier function
L(,....) = min{cx + ,....(Stlx - b) : x E X}. By definition,

for all k = 1, 2, ... , K.

In the space of composite costs and Lagrange multipliers,.... (as in Figure 16.3),
each function cxk + ,....(Stlxk

- b) is a multidimensional "line" called a hyperplane
(if ,.... is two-dimensional, it is a plane). The Lagrangian multiplier function L(,....) is
the lower envelope of the hyperplanes cxk + ,....(Stlxk

- b) for k = I, 2, ... , K. In
the Lagrangian multiplier problem, we wish to determine the highest point on this
envelope: We can find this point by solving the optimization problem

Maximize w

subject to

for all k = 1, 2, . . . , K,

J-l unrestricted,

which is clearly a linear program. We state this result as a theorem.

Theorem 16.5. The Lagrangian multiplier problem L * = max~L(J-l) with
L(,....) = min{cxk + J-l(Stlx - b) : x E X} is equivalent to the linear programming
problem L* = max{w : w ~ cxk + J-l(Stlx k

- b) for k = 1,2, ... , K}. •

Since, as shown by the preceding theorem, the Lagrangian multiplier problem
is a linear program, we could solve this problem by applying the linear programming
methodology. One resulting algorithm, which is known as Dantzig- Wolfe decom
position or generalized linear programming, is an important solution methodology
that we discuss in some depth in Chapter 17 in the context of solving the multicom
modity flow problem. One of the disadvantages of this approach is that it requires
the solution of a series of linear programs that are rather expensive computationally.
Another approach might be to apply some type of gradient method to the Lagrangian
function L(J-l). As shown by the constrained shortest path example, the added com
plication of this approach is that the Lagrangian function L(J-l) is not differentiable.
It is differentiable whenever the optimal solution of the Lagrangian subproblem is
unique; but when the subproblem has two or more solutions, the Lagrangian function
generally is not differentiable. For example, in Figure 16.4, at J-l = 0, the path
1-2-4-6 is the unique shortest path solution to the subproblem and the function
L(fJ..) is differentiable. At this point, for the path P = 1-2-4-6, L(fJ..) = Cp +
fJ..(tp - D; since tp = 18 and T = 14, L(fJ..) has a slope (tp - T) = (18 - 14) = 4.
At the point fJ.. = 2, however, the paths 1-2-5-6 and 1-3-2-5-6 both solve the
Lagrangian subproblem and the Lagrangian function is not differentiable. To ac
commodate these situations, we next describe a technique, known as the subgradient
optimization technique, for solving the (nondifferentiable) Lagrangian multiplier
problem.

610 Lagrangian Relaxation and Network Optimization Chap. 16

40

Paths
30

~~
.B~
... I ...

20 ~'a

1-2-4-6

8 + ...
u"

10 1-2-5-6
TargetL = 7

o

1-3-2-5-6

-10~-----+------~----~----~------r-----------
ILk = 0 1Lk+ I = I 2 3 4 5

Lagrangian multiplier IL ..

Figure 16.4 Steps of Newton's method for T = 14.

Bubgradient Optimization Technique

In solving optimization problems with the nonlinear objective function f(x) of an
n-dimensional vector x, researchers and practitioners often use variations of the
following classical idea: Form the gradient V f(x) of f defined as a row vector with
components (af(x)ldxl, aj(x)ldx2, ... , af(x)ldxn). Recall from advanced calculus
that the directional derivative of f in the direction d satisfies the equality

lim f(x + ad) - f(x) = Vf(x)d.
8-0 a

So if we choose the direction d so that Vf(x)d > 0 and move in the direction d with
a small enough "step length" a-that is, change x to x + ad-we move uphill. This
simple observation lies at the core of a considerable literature in nonlinear pro
gramming known as gradient methods.

Suppose that in solving the Lagrangian multiplier problem, we are at a point
where the Lagrangian function L(fJ..) = min{ex + fJ..(six - b) : x E X} has a unique
solution X, so is differentiable. Since L(fJ..) = ex + p,(six - b) and the solution
x remains optimal for small changes in the value of fJ.., the gradient at this point is
six - b, so a gradient method would change the value of fJ.. as follows:

fJ.. +- fJ.. + a(six - b).

In this expression, a is a step size (a scalar) that specifies how far we move in
the gradient direction. Note that this procedure has a nice intuitive interpretation.
If (six - b)i = 0, the solution x uses up exactly the required units of the ith resource,
and we hold the Lagrange multiplier (the toll) fJ..i of that resource at its current value;

Sec. 16.3 Lagrangian Relaxation Technique 611

if (sctx - b); < 0, the solution x uses up less than the available units of the
ith resource and we decrease the Lagrange multiplier fJ..i on that resource; and if
(sa.x - b); > 0, the solution x uses up more than the available units of the ith resource
and we increase the Lagrange multiplier fJ..i on that resource.

To solve the Lagrangian multiplier problem, we adopt a rather natural extension
of this solution approach. We let fJ..0 be any initial choice of the Lagrange multiplier;
we determine the subsequent values fJ.. k for k = 1, 2, ... ,of the Lagrange multipliers
as follows:

fJ..k+1 = fJ..k + ek(sa.Xk - b).

In this expression, Xk is any solution to the Lagrangian subproblem when fJ.. = fJ.. k
and ek is the step length at the kth iteration.

To ensure that this method solves the Lagrangian multiplier problem, we need
to exercise some care in the choice of the step sizes. If we choose them too small,
the algorithm would become stuck at the current point and not converge; if we choose
the step sizes too large, the iterates fJ..k might overshoot the optimal solution and
perhaps even oscillate between two nonoptimal solutions (see Exercise 16.4 for an
example). The following compromise ensures that the algorithm strikes an appro
priate balance between these extremes and does converge:

k

ek~ 0 and L ej~ 00.

j=1

For example, choosing ek = Ilk satisfies these conditions. These conditions
ensure that the algorithm always converges to an optimal solution of the multiplier
problem, but a proof of this convergence result is beyond the scope of our coverage
in this book (the reference notes cite papers and books that examine the convergence
of subgradient methods).

One important variant of the subgradient optimization procedure would be an
adaptation of "Newton's method" for solving systems of nonlinear equations. Sup
pose, as before, that L(fJ..k) = cxk + Jj.k(sa.Xk - b); that is, Xk solves the Lagrangian
subproblem when fJ.. = fJ.. k. Suppose that we assume that Xk continues to solve the
Lagrangian subproblem as we vary fJ..; or, stated in another way, we make a linear
approximation r(fJ..) = cxk + fJ..(sctx k - b) to L(fJ..). Suppose further that we know
the optimal value L * of the Lagrangian multiplier problem (which we do not). Then
we might move in the subgradient direction until the value of the linear approximation
exactly equals L *. Figure 16.4 shows an example of this procedure when applied to
our constrained shortest path example, starting with fJ.. k = O. At this point, the path
P = 1-2-4-6 solves the Lagrangian subproblem and sa.Xk - b equals tp - T =
18 - 14 = 4. Since L * = 7 and the path P has a cost Cp = 3, in accordance with
this linear approximation, or Newton's method, we would approximate L(fJ..) by r(.... >
= 3 + 4Jj., set 3 + 4fJ.. = 7, and define the new value of fJ.. as fJ..k+ J = (7 - 3)/4 =
1. In general, we set the step length ek so that

r(fJ..k+ I) = cxk + fJ..k+ I (sa.xk - b) = L *,

or since, fJ..k+ 1 = fJ..k + ek(sa.Xk - b),

r(fJ..k+l) = cxk + [fJ..k + ek(sa.Xk - b)](sa.xk - b) = L*.

612 Lagrangian Relaxation and Network Optimization Chap. /6

Collecting terms, recalling that L(fJ..k) = cxk + fJ..(stxk - b), and letting /I y II =
(L,; yJ)1/2 denote the Euclidean norm of the vector y, we can solve for the step length
and find that

L* - L(fJ..k)
6k = 1/ stxk - b 1/ 2 '

Since we do not know the optimal objective function value L * of the Lagrangian
multiplier problem (after all, that's what we are trying to find), practitioners of La
grangian relaxation often use the following popular heuristic for selecting the step
length:

6 _ AdVB - L(fJ..k)]
k - 1/ stxk - b 1/ 2 •

In this expression, VB is an upper bound on the optimal objective function
value z* of the problem (P), and so an upper bound on L* as well, and Ak is a scalar
chosen (strictly) between 0 and 2. Initially, the upper bound is the objective function
value of any known feasible solution to the problem (P). As the algorithm proceeds,
if it generates a better (i.e., lower cost) feasible solution, it uses the objective function
value of this solution in place of the upper bound VB. V sually, practitioners choose
the scalars Ak by starting with Ak = 2 and then reducing Ak by a factor of 2 whenever
the best Lagrangian objective function value found so far has failed to increase in
a specified number of iterations. Since this version of the algorithm has no convenient
stopping criteria, practitioners usually terminate it after it has performed a specified
number of iterations.

The rationale for these choices of the step size and the convergence proof of
the subgradient method would take us beyond the scope of our coverage. In passing,
we might note that the subgradient optimization procedure is not the only way to
solve the Lagrangian multiplier problem: practitioners have used a number of other
heuristics, including methods known as multiplier ascent methods that are tailored
for special problems. Since we merely wish to introduce some of the basic concepts
of Lagrangian relaxation and to indicate some of the essential methods used to solve
the Lagrangian mUltiplier problem, we will not discuss these alternative methods.

Subgradient Optimization and Inequality Constraints

As we noted earlier in this section, if we apply Lagrangian relaxation to a problem
with constraints stx ~ b stated in inequality form instead of the equality constraints,
the Lagrange multipliers fJ.. are constrained to be nonnegative. The update formula
fJ..k+ I = fJ..k + 6k(stxk - b) might cause one or more of the components fJ..i of fJ.. to
become negative. To avoid this possibility, we modify the update formula as follows:

fJ..k+l = [fJ..k + 6k(stxk - b)]+.

In this expression, the notation [y] + denotes the "positive part" of the vector y;
that is, the ith component of [y] + equals the maximum of 0 and Yi. Stated in another
way, if the update formula fJ.. k + I = fJ.. k + 6k(stxk - b) would cause the ith component
of fJ..i to be negative, then we simply set the value of this component to be zero. We
then implement all the other steps of the subgradient procedure (i.e., the choice of

Sec. 16.3 Lagrangian Relaxation Technique 613

the step size 8 at each step and the solution of the Lagrangian subproblems) exactly
the same as for problems with equality constraints. For problems with both equality
and inequality constraints, we use a straightforward mixture of the equality and
inequality versions of the algorithm: whenever the update formula for the Lagrange
multipliers would cause any component fJ..i of fJ.. corresponding to an inequality con
straint to become negative, we set the value of that multiplier to be zero.

Let us illustrate the subgradient method for inequality constraints on our con
strained shortest path example. Suppose that we start to solve our constrained short
est path problem at fJ.. 0 = 0 with A 0 = O.S and with VB = 24, the cost corresponding
to the shortest path 1-3-5-6joining nodes 1 and 6. Suppose that we choose to reduce
the scalar Ak by a factor of 2 whenever three successive iterations at a giveri\value
of Ak have not improved on the best Lagrangian objective function value L(fJ..). As
we have already noted, the solution XO to the Lagrangian subproblem with fJ.. = 0
corresponds to the path P = 1-2-4-6, the Lagrangian subproblem has an objective
function value of L(O) = 3, and the subgradient Stlxu - b at fJ.. = 0 is (tp - 14) =
IS - 14 = 4. So at the first step, we choose

80 = 0.S(24 - 3)/16 = 1.05,

fJ..1 = [0 + 1.05(4)] + = 4.2.

For this value of the Lagrange multiplier, from Figure 16.3, we see that the path
P = 1-3-2-5-6 solves the Lagrangian subproblem; therefore, L(4.2) = 15 +
4.2(10) - 4.2(14) = 15 - 16.S = -1.S, and Stlx l

- b equals (tp - 14) = 10 -
14 = - 4. Since the path 1-3-2-5-6 is feasible, and its cost of 15 is less than VB,
we change VB to value 15. Therefore,

81 = 0.S(15 + I.S)/16 = 0.S4,

fJ..2 = [4.2 + 0.S4(- 4)] + = 0.S4.

From iterations 2 through 5, the shortest paths alternate between the paths 1-2-4-
6 and 1-3-2-5-6. At the end of the fifth iteration, the algorithm has not improved
upon (increased) the best Lagrangian objective function value of 6.36 for three it
erations, so we reduce Ak by a factor of 2. In the next 7 iterations the shortest paths
are the paths 1-2-5-6, 1-3-5-6, 1-3-2-5-6, 1-3-2-5-6, 1-2-5-6, 1-3-5-6, and
1-3-2-5-6. Once again for three consecutive iterations, the algorithm has not im
proved the best Lagrangian objective function value, so we decrease Ak by a factor
of 2 to value 0.2. From this point on, the algorithm chooses either path 1-3-2-5-
6 or path 1-2-5-6 as the shortest path at each step. Figure 16.5 shows the first 33
iterations of the subgradient algorithm. As we see, the Lagrangian objective function
value is converging to the optimal value L * = 7 and the Lagrange multiplier is
converging to its optimal value of fJ.. * = 2.

Note that for this example, the optimal multiplier objective function value of
L * = 7 is strictly less than the length of the shortest constrained path, which has
value 13. In these instances, we say that the Lagrangian relaxation has a duality
(relaxation) gap. To solve problems with a duality gap to completion (i.e., to find
an optimal solution and a guarantee that it is optimal), we would apply some form
of enumeration procedure, such as branch and bound, using the Lagrangian lower
bound to help reduce the amount of concentration required.

614 Lagrangian Relaxation and Network Optimization Chap. 16

k k tp - T L(.... k) A.k Ok

0 0.0000 4 3.0000 0.80000 1.0500

4.2000 -4 -1.8000 0.80000 0.8400

2 0.8400 4 6.3600 0.80000 0.4320

3 2.5680 -4 4.7280 0.80000 0.5136

4 0.5136 4 5.0544 0.80000 0.4973

5 2.5027 -4 4.9891 0.40000 0.2503

6].5016 1 6.5016 0.40000 3.3993

7 4.9010 -6 - 5.4059 0.40000 0.2267

8 3.5406 -4 0.8376 0.40000 0.3541

9 2.1244 -4 6.5026 0.40000 0.2124

10 1.2746 I 6.2746 0.40000 3.4902

II 4.7648 -6 -4.5886 0.40000 0.2177

12 3.4589 -4 1.1646 0.20000 0.1729

13 2.7671 -4 3.9316 0.20000 0.1384

14 2.2137 -4 6.1453 0.20000 0.1107

15 1.7709 6.7709 0.20000 1.6458

16 3.4167 -4 1.3330 0.20000 0.1708

17 2.7334 -4 4.0664 0.20000 0.1367

18 2.1867 -4 6.2531 0.10000 0.0547

19 1.9680 6.9680 0.10000 0.8032

20 2.7712 -4 3.9150 0.10000 0.0693

21 2.4941 -4 5.0235 0.10000 0.0624

22 2.2447 -4 6.0212 0.05000 0.0281

23 2.1325 -4 6.4701 0.05000 0.0267

24 2.0258 -4 6.8966 0.05000 0.0253

25 1.9246 6.9246 0.00250 0.0202

26 1.9447 6.9447 0.00250 0.0201

27 1.9649 6.9649 0.00250 0.0201

28 1.9850 6.9850 0.00250 0.0200

29 2.0050 -4 6.9800 0.00250 0.0013

30 2.0000 -4 7.0000 0.00250 0.0012

31 1.9950 I 6.9950 0.00250 0.0200

32 2.0150 -4 6.9400 0.00250 0.0013

33 2.0100 -4 6.9601 0.00125 0.0006

Figure 16.5 Subgradient optimization for a constrained shortest path problem.

18.4 LAGRANGIAN RELAXATION AND LINEAR
PROGRAMMING

In this section we discuss several theoretical properties of the Lagrangian relaxation
technique. As we have noted earlier in Section 16.2, the primary use of the La-
grangian relaxation technique is to obtain lower bounds on the objective function
values of (discrete) optimization problems. By relaxing the integrality constraints in
the integer programming formulation of a discrete optimization problem, thereby

Sec. 16.4 Lagrangian Relaxation and Linear Programming 615

creating a linear programming relaxation, we obtain an alternative method for gen
erating a lower bound. Which of these lower bounds is sharper (i.e., larger in value)?
In this section we answer this question by showing that the lower bound obtained
by the Lagrangian relaxation technique is at least as sharp as that obtained by using
a linear programming relaxation. As a result, and because the Lagrangian relaxation
bound is often easier to obtain than the linear programming relaxation bound, La
grangian relaxation has become a very useful lower bounding technique in practice.

The content in this section requires some background in linear algebra and
linear programming. We refer the reader to Appendix C for a review of this material.

Our first result in this section concerns the application of Lagrangian relaxation
to a linear programming problem.

Theorem 16.6. Suppose that we apply the Lagrangian relaxation technique
to a linear programming problem (PI) defined as min{cx : sIx = b, qj;x ::; q, x ~ O}
by relaxing the constraints sIx = b. Then the optimal value L * of the Lagrangian
multiplier probLem equaLs the optimal objective function value of (PI).

Proof We use linear programming optimality conditions to prove the theorem.
Suppose that x* is an optimal solution of the linear programming problem (PI) and
that 1T* and -y* denote vectors of optimal dual variables associated with the con
straints sIx = band qj;x ::; q. By linear programming theory, x*, 1T*, and -y* satisfy
the following dual feasibility and complementary slackness conditions:

c + 1T*sI + -y*qj; ~ 0, [c + 1T*sI + -y*qj;]x* = 0, and -y*[qj;x - q] = O.

Consider the Lagrangian subproblem L(f.1) at f.1 = 1T*, which is L(1T*) =
min{cx + 1T*(sIx - b) : qj;x ::; q, x ~ O}. Notice that x* is feasible for this problem
because it is feasible to (PI). Moreover, for the fixed value f.1 = 1T*, the previous
dual feasibility and complementary slackness conditions are exactly those for the
Lagrangian subproblem; therefore, x* also solves the Lagrangian subproblem at f.1
= 1T*. But since 1T*(sIx* - b) = 0, L(1T*) = cx*. Consequently, Property 16.3
implies that L* = L(1T*) = cx*, the optimal objective function value of (PI) .

•
The preceding theorem shows that the Lagrangian relaxation technique pro

vides an alternative method for solving a linear programming problem. Instead of
solving the linear programming problem directly using any linear programming al
gorithm, we can relax a subset of the constraints and solve the Lagrangian multiplier
problem by using subgradient optimization and solving a sequence of relaxed prob
lems. In some situations the relaxed problem is easy to solve, but the original problem
is not; in these situations, a Lagrangian relaxation-based algorithm is an attractive
solution approach.

Suppose next that we apply Lagrangian relaxation to a discrete optimization
problem (P) defined as min{cx : sIx = b, x E X}. We assume that the discrete set
X is specified as X = {x : qj;x ::; q, x ~ 0 and integer} for an integer matrix Cfn and
an integer vector q. Consequently, the problem (P) becomes

z* = min{cx : sIx = b, Cfnx ::; q, x ~ 0 and integer}. (P)

616 Lagrangian Relaxation and Network Optimization Chap. 16

We incur essentially no loss of generality by specifying the set X in this manner
because we can formulate almost all real-life discrete optimization problems as in
teger programming problems. Let (LP) denote the linear programming relaxation of
the problem (P) and let ZO denote its optimal objective function value. That is,

ZO = min{cx : silx = b, CZ/Jx ::; q, x ~ O}. (LP)

Clearly, ZO ::; z * because the set of feasible solutions of (P) lies within the set
of feasible solutions of (LP). Therefore, the linear programming relaxation provides
a valid lower bound on the optimal objective function value of (P). We have earlier
shown in Property 16.2 that the Lagrangian mUltiplier problem also gives a lower
bound L * on the optimal objective function value of (P). We now show that ZO ::;

L *; that is, Lagrangian relaxation yields a lower bound that is at least as good as
that obtained from the linear programming relaxation. We establish this result by
showing that the Lagrangian multiplier problem also solves a linear programming
problem but that the solution space for this problem is contained within the solution
space of the problem (LP). The linear programming problem that the Lagrangian
mUltiplier problem solves uses "convexification" of the solution space X = {x : CZ/Jx
::; q, x ~ 0 and integer}.

We assume that X = {x 1, x 2
, ••• , x K

} is a finite set. We say that a solution
x is a convex combination of the solutions Xl, x 2

, ••• , x K if x = :Lf = 1 AkXk for
some nonnegative weights AI, A2, ... , AK satisfying the condition :Lf = 1 Ak = I.
Let ~(X) denote the convex hull of X (i.e., the set of all convex combinations of
X). In the subsequent discussion we use the following properties of ~(X).

Property 16.7
(a) The set ~(X) is a polyhedron, that is, it can be expressed as a solution space

defined by a finite number of linear inequalities.
(b) Each extreme point solution of the polyhedron ~(X) lies in X, and if we optimize

a linear objective function over ~(X), some solution in X will be an optimal
solution.

(c) The set ~(X) is contained in the set of solutions {x : CZ/Jx ::; q, x ~ O}.

Proof. Part (a) is a well-known result in linear algebra which we do not prove.
The first statement in part (b) follows from the fact that every point of ~(X) not in
X is a convex combination, with positive weights, of two or more points in X and
so is not an extreme point (see Appendix C). The second statement in part (b) is a
consequence of the fact that linear programs always have at least one extreme point
solution (see Appendix C). Part (c) follows from the fact that every solution in
X also belongs to the convex set {x : CZ/Jx ::; q, x ~ O}, and consequently, every
convex combination of solutions in X, which defines ~(X), also belongs to the set
{x : 2Llx ::; q, x ~ O}. •

We now prove the main result of this section.

Theorem 16.8. The optimal objective function value L * of the Lagrangian
multiplier problem equals the optimal objective function value of the linear program
min{cx : silx = b, x E ~(X)}.

Sec. /6.4 Lagrangian Relaxation and Linear Programming 617

Proof. Consider the Lagrangian subproblem

L(....) = min{cx + (.Stlx - b) : x EX},

for some choice of the Lagrange multipliers. This problem is equivalent to the
problem

L(....) = min{cx + ,....(Sllx - b) : x E ~(X)}, (16.2)

because by Property 16.7(b), some extreme point solution of ~(X) solves this prob
lem and each extreme point solution of'M(X) belongs to X. Now, notice that the
Lagrangian subproblem defined by (16.2) is a linear programming problem because
by Property 16.7(a), we can formulate the set ~(X) as the set of solutions of a finite
number of linear inequalities. Therefore, we can conceive of the Lagrangian sub
problem (16.2) as a relaxation of the following linear programming problem:

min{ cx : Sllx = b, x E 'M(X)}.

Finally, we use Theorem 16.6 to observe that the optimal value L * of the
Lagrangian multiplier problem equals the optimal objective function value of the
linear program min{cx : Sllx = b, x E ~(X)}. •

We subsequently refer to the problem min{cx : .9'1x = b, x E 'M(X)} as the
convexified version of problem (P) and refer to it as (CP). The preceding theorem
shows that L * equals the optimal objective function value of the convexified problem.
What is the relationship between the set of feasible solutions of the convexified
problem (CP) and the linear programming relaxation (LP)? We illustrate this rela
tionship using a numerical example.

For simplicity, in our example we assume that the relaxed constraints are of
the form .9'1x ~ b instead of .9'1x = b. We consider a two-variable problem with the
constraints .9'1x ~ band 2llx ~ q as shown in Figure 16.6(a). This figure also specifies
the set of solutions of the integer programming problem (P), denoted by the circled
points. Figure 16.6(b) shows the solution space of the linear programming relaxation
(LP) of the problem. Figure 16.6(c) shows the convex hull 'M(X) and Figure 16.6(d)
depicts the solution space of the convexified problem (CP). Note that the solution
space of (CP) is a subset of the solution space of (LP).

The preceding result is also easy to establish in general. Notice from Property
16.7(c) that since 'M(X) is contained in the set {x : 2llx ~ q, x ~ O}, the set of solutions
of problem (CP) given by {x : .9'1x = b, x E 'M(X)} is contained in the set of solutions
of (LP) given by {x : .9'1x = b, 2Llx ~ q, x ~ O}. Since optimizing the same objective
function over a smaller solution space cannot improve the objective function value,
we see that ZO ~ L *. We state this important result as a theorem.

Theorem 16.9. When applied to an integer program stated in minimization
form, the lower bound obtained by the Lagrangian relaxation technique is always
as large (or, sharp) as the bound obtained by the linear programming relaxation of
the problem; that is. ZO ~ L * .

Under what situations will the Lagrangian bound equal the linear programming

618 Lagrangian Relaxation and Network Optimization Chap. 16

The set Ix:.stx S b, ~x S q,x ~ 0 and integer' The set Ix: .stx S b, ~x S q,x ~ 0,

t t

(b)

The convex hull '3e(X) The set I x: .stx S b, x E '3e(X)'

t
•

o 2
XI -----.

~xSq

(c) (d)

Figure 16.6 Illustrating the relationship between the problem (LP) and (CP): (a)
solution space of the integer program (P); (b) solution space of the linear programming
relaxation (LP); (c) convex hull '3e(x); (d) solution space of the convexified problem
(CP).

bound? We show that if the Lagrangian subproblem satisfies a property, known as
the integrality property, the Lagrangian bound will equal the linear programming
bound. We say that the Lagrangian subproblem min{dx : ~x =s; q, x ~ 0 and integer}
satisfies the integrality property if it has an integer optimal solution for every choice
of objective function coefficients even if we relax the integrality restrictions on the
variables x. Note that this condition implies that the problems min{cx + f.L(.six -
b) : ~x =s; q, x ~ 0 and integer} and min{cx + f.L(.six - b) : ~x =s; q, x ~ O} have
the same optimal objective function values for every choice of the Lagrange mul
tiplier f.L. For example, if Jhe constraints ~x :s q are the mass balance constraints
of a minimum cost flow problem (or any of its special cases, such as the maximum
flow, shortest path, and assignment problems), the problem min{cx + f.L(.six - b)
: 2"bx =s; q, x ~ O} will always have an integer optimal solution and imposing integrality
constraints on the variables will not increase the optimal objective function value.

Sec. 16.4 Lagrangian Relaxation and Linear Programming 619

Theorem 16.10. If the Lagrangian subproblem of the optimization problem
(P) satisfies the integrality property, then ZO = L *.

Proof. Observe that the problem min{dx : 9Jx:::; q, x ~ O} will have an integer
optimal solution for every choice of d only if every extreme point solution of the
constraints 9Jx :::; q, x ~ 0, is integer; for otherwise, we can select d so that a
noninteger extreme point solution becomes an optimal solution. This observation
implies that the set {x : 9Jx :::; q, x ~ O} equals the convex hull of X = {x : 9Jx :::;
q, x ~ 0 and integer}, which we have denoted by ::1e(X). This result further implies
that the sets {x : 9'lx = b, 9Jx :::; q, x ~ O} and {x : 9'lx = b, x E ::1e(X)} are the
same. The first of these sets is the set of feasible solutions of the linear programming
relaxation (LP) and the latter set is the set of feasible solutions of the convexified
problem (CP). Since both the problems (LP) and (CP) have the same set of feasible
solutions, they will have the same optimal objective function value, which is the
desired conclusion of the theorem. •

This result shows that for problems satisfying the integrality property, solving
the Lagrangian multiplier problem is equivalent to solving the linear programming
relaxation of the problem. In these situations the Lagrangian relaxation technique
provides no better a bound than the linear programming relaxation. Nevertheless,
the Lagrangian relaxation technique might still be of considerable value, because
solving the Lagrangian multiplier problem might be more efficient than solving the
linear programming relaxation directly. Network optimization problems perhaps pro
vide the most useful problem domain for exploiting this result because the Lagrangian
subproblem in these cases often happens to be a minimum cost flow problem or one
of its specializations.

As we have noted previously, in many (in fact, most) problem instances, the
optimal objective function value L * of the Lagrangian mUltiplier problem will be
strictly less than the optimal objective function value z* of problem (P); that is, the
problem has a duality gap. As an example, consider the constrained shortest path
example that we discussed in Section 16.3. For this example, L * = 7 and z* = 13.
The duality gap occurs because the Lagrangian multiplier problem solves an optim
ization problem over a larger solution space (its convexification) than that of the
original problem (P), and consequently, its optimal objective function value might
be smaller.

16.15 APPLICATIONS OF LAGRANGIAN RELAXATION

As we noted earlier in the chapter, Lagrangian relaxation has many applications in
network optimization. In this section we illustrate the breadth of these applications.
The selected applications are both important in practice and illustrate how many of
the network models we have considered in earlier chapters arise as Lagrangian
subproblems. We consider the following models with embedded network structure.

620 Lagrangian Relaxation and Network Optimization Chap. 16

Topic Emhedded network structure

Networks with side constraints • Minimum cost flows
• Shortest paths

Traveling salesman problem • Assignment problem
• Minimum cost flows

Vehicle routing • Assignment problem
• A variant of minimum spanning tree

Network design
Two-duty operator scheduling

Degree-constrained minimum spanning trees
Multi-item production planning

• Shortest paths
• Shortest paths
• Minimum cost flows
• Minimum spanning tree
• Shortest paths
• Minimum cost flows
• Dynamic programs

Application 16.1 Networks with Side Constraints

The constrained shortest path problem is a special case of a broader set of optim
ization models known as network flow problems with side constraints. We can for
mulate a generic version of this problem as follows:

Minimize ex

subject to

s4.x ~ b,

Xx = q,

I ~ x ~ u, and Xi} integer for all (i, j) E I.

In this formulation, as in the usual minimum cost flow problem, x is a vector
of arc flows, X is a node-arc incidence matrix, q is a vector of node supplies and
demands, and I and u are lower and upper bounds imposed on the arc flows. The
set I is an index set of variables that must be integer. The flow vector x might be
constrained to be integer or not, depending on the application being modeled. The
added complication in this model are the side constraints s4.x ~ b that further restrict
the arc flows.

For example, in the constrained shortest path problem, the network constraints
model a shortest path problem [i.e., q(s) = 1 and q(t) = -1 for the source node
s and destination node t, and q(j) = 0 for every other node j; also, every lower
bound Ii} = 0 and every upper bound Ui} = 00]. In this case the side constraint
LCi,j)EA ti}xi} ~ T is a single inequality constraint modeling the timing restriction.

The network flow model with side constraints arises in many application con
texts in which the arc flows consume scarce resources (e.g., labor) or we wish to
impose service constraints on the flows (e.g., maximum delay times in a commu
nication and transportation network). The model also arises when the network flow
model has multiple commodities, each governed by their own flow constraints, that

Sec. 16.5 Applications of Lagrangian Relaxation 621

share common resources such as arc capacities. In Chapter 17 we consider one such
mode], the classical multicommodity flow problem, in some detail.

We might note that the network flow model with side constraints also arises
in other, perhaps more surprising ways. As an illustration, consider a standard work
force scheduling problem. Suppose that we wish to schedule employees (e.g., tele
phone operators, production workers, or nurses) in a way that ensures that o.(j)
employees are available for work on thejth day of the week; suppose, further, that
we wish to schedule the employees so that each has two consecutive days off each
week. That is, each of them works 5 consecutive days and then has 2 days off. We
incur a cost Cj for each employee that is scheduled to work on day j. Figure 16.7
shows a network flow model with side constraints for this problem. The network
contains three types of arcs.

1. A "work arc" for each day of the week: The flow on this arc is the number
of employees scheduled to work on that day; the arc has an associated cost
(e.g., weekends might have a pay premium and so a higher cost) and a lower
flow bound equaling the number of employees required to work on that day.

2. A "total work force arc" that introduces the work force at the beginning of
the planning cycle (which we arbitrarily take to be Sunday) and removes it at
the end of the planning cycle (Saturday): the flow y on this arc is the total
number of employees employed during the week.

3. "Days-off arcs" with the flows X sun , Xmon , ... ,Xsat, each representing a sched
ule with 2 days off beginning with the day indicated by the subscript: The flow
on arc X sun , for example, bypasses the Sunday and Monday work arcs, indi
cating that the employees working in this schedule are not available for work
on Sunday and Monday.

A complicating feature of this network flow model is a single additional con
straint indicating that every employee must be assigned to at least one schedule;
that is,

622

y = Xsun + Xmon + ... + Xsat·

Total workforce arc

Total workforce y = x,un + xmon + x tue + x wed + x thu + xfn + Xsat

Figure 16.7 Network model of the cyclic scheduling problem. Lower bound on day
arcs = demand for the day.

Lagrangian Relaxation and Network Optimization Chap. 16

This side constraint specifies a flow relationship between several of the arcs
in the network flow model. Relaxing this constraint and using Lagrangian relaxation
provides us with one algorithmic approach for solving this problem. The algorithmic
procedure for applying Lagrangian relaxation to the general network flow model
with side constraints is essentially the same as the procedure we have discussed for
the constrained shortest path problem: we associate nonnegative Lagrange multi
pliers J.L with the side constraints 9'lx ~ b and bring them into the objective function
to produce the network flow subproblem

minimize{cx + J.L(9'lx - b) : Xx = q, I ~ x ~ u},

and then solve a sequence of these problems with different values of the Lagrange
multipliers J.L which we update using the subgradient optimization technique. For
each choice of the Lagrangian mUltiplier on this constraint, the Lagrangian sub
problem is a network flow problem. In Exercise 9.9 we show that we can actually
solve this special case of network flows with side constraints much more efficiently
by solving a polynomial sequence of network flow problems.

Application 16.2 Traveling Salesman Problem

The traveling salesman problem is perhaps the most famous problem in all of network
and combinatorial optimization: Its simplicity and yet its difficulty have made it an
alluring problem that has attracted the attention of many noted researchers over a
period of several decades. The problem is deceptively easy to state: Starting from
his home base, node 1, a salesman wishes to visit each of several cities, represented
by nodes 2, ... , n, exactly once and return home, doing so at the lowest possible
travel cost. We will refer to any feasible solution to this problem as a tour (of the
cities).

The traveling salesman problem is a generic core model that captures the com
binatorial essence of most routing problems and, indeed, most other routing problems
are extensions of it. For example, in the classical vehicle routing problem, a set of
vehicles, each with a fixed capacity, must visit a set of customers (e.g., grocery
stores) to deliver (or pick up) a set of goods. We wish to determine the best possible
set of delivery routes. Once we have assigned a set of customers to a vehicle, that
vehicle should take the minimum cost tour through the set of customers assigned to
it; that is, it should visit these customers along an optimal traveling salesman tour.

The traveling salesman problem also arises in problems that on the surface
have no connection with routing. For example, suppose that we wish to find a se
quence for loadingjobs on a machine (e.g., items to be painted), and that whenever
the machine processes job i after job j, we must reset the machine (e.g., clear the
dies of the colors of the previous job), incurring a setup time Cij' Then in order to
find the processing sequence that minimizes the total setup time, we need to solve
a traveling salesman problem-the machine, which functions as the "salesman,"
needs to "visit" the jobs in the most cost-effective manner.

There are many ways to formulate the traveling salesman problem as an op
timization model. We present a model with an embedded (directed) network flow
structure. Exercises 16.21 and 16.23 consider other modeling approaches. Let Cij

Sec. 16.5 Applications of Lagrangian Relaxation 623

denote the cost of traveling from city i to city j and let Yij be a zero-one variable,
indicating whether or not the salesman travels from city i to city j. Moreover,
let us define flow variables Xij on each arc (i, j) and assume that the salesman has
n - 1 units available at node 1, which we arbitrarily select as a "source node," and
that he must deliver 1 unit to each of the other nodes. Then the model is

subject to

Minimize ~ CijYij
(i.j)EA

~ Yij = 1 for all i = 1, 2, ... , n,
I S;jS;n

~ Yij = 1 forallj = 1,2, ... , n,
I s;iS;n

Xx = b,

Yij = 0 or 1

for all (i, j) E A,

for all (i, j) E A,

for all (i, j) E A.

(16.3a)

(16.3b)

(16.3c)

(16.3d)

(16.3e)

(16.30

(16.3g)

To interpret this formulation, let A' = {(i, j) : Yij = I} and let A" {(i, j) :
xij > O}. The constraints (16.3b) and (16.3c) imply that exactly one arc of A I leaves
and enters any node i; therefore, A I is the union of node disjoint cycles containing
all of the nodes of N. In general, any integer solution satisfying (16.3b) and (16.3c)
will be the union of disjoint cycles; if any such solution contains more than one
cycle, we refer to each of the cycles as subtours, since they pass through only a
subset of the nodes. Figure 16.8 gives an example of a subtour solution to the con
straints (16.3b) and (16.3c).

Home base

Figure 16.8 Infeasible solution for the
traveling salesman problem containing
subtours.

Constraint (16.3d) ensures that A" is connected since we need to send 1 unit
of flow from node 1 to every other node via arcs in A ". The "forcing" constraints
(16.3e) imply that A" is a subset of A'. [Notice that since no arc need ever carry
more than (n - 1) units of flow, the forcing constraint for arc (i, j) is redundant if
Yij = 1.] These conditions imply that the arc set A' is connected and so cannot
contain any subtours. We conclude that the formulation (16.3) is a valid formulation
for the traveling salesman problem.

One of the nice features of this formulation is that we can apply Lagrangian
relaxation to it in several ways. For example, suppose that we attach Lagrange
multipliers J.Lij ~ 0 with the forcing constraints (16.3e) and bring them into the ob
jective function, giving the Lagrangian objective function

624 Lagrangian Relaxation and Network Optimization Chap. 16

Minimize
(i,j)EA (i,j)EA

and leaving (16.3b)-(16.3d), (16.30, and (16.3g) as constraints in the Lagrangian
subproblem. Note that nothing in this Lagrangian subproblem couples the variables
Yi) and Xi). Therefore, the subproblem decomposes into two separate subproblems:
(1) an assignment problem in the variables Yi), and (2) a minimum cost flow problem
in the variables Xi). SO for any choice of the Lagrangian multipliers J,L, we solve two
network flow subproblems; by using subgradient optimization we can find the best
lower bound and optimal values of the multipliers. By relaxing other constraints in
this model, or by applying Lagrangian relaxation to other formulations of the trav
eling salesman problem, we could define other network flow subproblems (see Ex
ercise 16.19).

Application 16.3 Vehicle Routing

The vehicle routing problem is a generic model that practitioners encounter in many
problem settings including the delivery of consumer products to grocery stores, the
collection of money from vending machines and telephone coin boxes, and the de
livery of heating oil to households. As we have noted earlier in this section, the
vehicle routing problem is a generalization of the traveling salesman problem.

The vehicle routing problem is easy to state: Given (1) a fleet of K capacitated
vehicles domiciled at a common depot, say node 1, (2) a set of customer sites j =
2, 3, ... , n, each with a prescribed demand dj , and (3) a cost Ci) of traveling from
location ito locationj, what is the minimum cost set of routes for delivering (picking
up) the goods to the customer sites? We assume that the vehicle fleet is homogeneous
and that each vehicle has a capacity of u units.

There are many different variants on this core vehicle routing problem. For
example, the vehicle fleet might be nonhomogeneous, each vehicle route might have
a total travel time restriction, or deliveries for each customer might have time window
restrictions (earliest and latest delivery times). We illustrate the use of Lagrangian
relaxation by considering only the basic model, which we formulate with decision
variables xt indicating whether (xt = 1) or not (xt = 0) we dispatch vehicle k on
arc (i, j) and Yi) indicating whether some vehicle travels on arc (i, j):

Minimize ~ ~ Ci)xt (16.4a)
1 :5k:5K (i,j)EA

subject to

~ xt = Yi), (16.4b)
1 :5k:5K

~ Yi) = 1 for i = 2,3, ... ,n, (16.4c)
l:5j:511

~ yi) = I forj= 2,3, ... ,n, (16.4d)

~ yJj=K, (16.4e)
l:5j:511

~ Yil = K, (16.40
I :5j:511

Sec. 16.5 Applications of Lagrangian Relaxation 625

L L d;xt:5 u
2os;;os;n los;jos;n

L L Yij:51 Q 1 - 1
iEQjEQ

Yij = 0 or 1

xt = Oor 1

for all k = 1, 2, ... ,K,

for all subsets Q of {2, 3, ... ,n},

for all (i,j) E A,

foralI(i,j)EAandaIlk= 1,2, ... ,K.

(16.4g)

(16.4h)

(16.4i)

(16.4j)

Let A' == {(i, j) : Yij = I}. As in our discussion of the traveling salesman
problem, constraints (16.4c) and (16.4d) ensure that A' is the union of node disjoint
cycles containing all of the nodes in N. Constraint (16.4h) ensures that the solution
must contain no cycle using the nodes 2, 3, ... , n (i.e., not contain any subtours
on these nodes); otherwise, the arcs A' would contain some cycle passing through
a set Q of nodes and the solution would violate constraint (16.4h) since the left-hand
side of the constraint (16.4h) would be at least 1 Q I. For this reason, we refer to the
constraints (l6.4h) as subtour breaking constraints.

We might note that if K = 1, and u is so large that the constraint (l6.4g) is
redundant, this model becomes an "assignment-based" formulation of the traveling
salesman problem, which is an alternative formulation to the "flow-based" model
that we introduced previously as (16.3). In Exercise 16.24 we study the relationships
between these formulations as well as a third model, a multicommodity flow-based
formulation.

Note that this formulation has several embedded structures that we might ex
ploit in a Lagrangian relaxation solution approach. By relaxing some of the con
straints, we are also able to decompose the problem into independent subproblems.
For example, if we relax only constraints (16.4b), no constraint connects the x vari
ables and Y variables, so the problem decomposes into separate subproblems in each
of these variables. By relaxing different combinations of the constraints, we create
several different types of subproblems:

1. If we relax the constraints (16.4b), (16.4g) , and (16.4h), the resulting formulation
is an assignment problem.

2. If we relax the constraints (16.4b) to (16.40, and (16.4h), the resulting problem
decomposes into independent "knapsack problems," one for each vehicle k.

3. If we relax constraint (16.4b), the problem decomposes into separate sub
problems, one in the Y variables and one in the Xk variables for each vehicle
k. The first of these problems is a so-called K-traveling salesman problem (see
Exercise 16.25) and each problem in the variables Xk is a knapsack problem.

4. If we relax the assignment constraints (16.4c) to (16.40, the constraint (l6.4b)
defining y, and the capacity constraint (16.4g), the resulting problem is a min
imum forest problem on the nodes 2, 3, ... , n. This problem is easy to solve
by a simple variant of any minimum spanning tree algorithm. We could
strengthen this approach by adding other (redundant) constraints to the problem
formulation (see Exercise 16.28).

5. If we relax constraints (16.4b), (16.4c), and (l6.4e) to (l6.4g), the subproblem
with the constraints (l6.4d), (16.4h), and (l6.4i) becomes a directed minimum
spanning tree problem-any feasible solution will be a directed spanning tree

626 Lagrangian Relaxation and Network Optimization Chap. 16

with exactly one arc directed into each node (except for the root node 1).
Although we do not consider this problem in this book, it is polynomially solv
able.

6. If we relax the constraint (16.4g), the problem becomes a variant of the
K -traveling salesman problem.

These various possibilities illustrate the remarkable flexibility of the Lagrangian
relaxation solution approach.

Application 16.4 Network Design

Suppose that we have the flexibility of designing a network as well as determining
its optimal flow (routing). That is, we have a directed network G = (N, A) and can
introduce an arc or not into the design of the network: If we use (introduce) an arc
(i, j), we incur a design (construction) cost f ij. Our problem is to find the design
that minimizes the total systems cost-that is, the sum of the design cost and the
routing cost. This type of model arises in many application contexts, for example,
the design of telecommunication or computer networks, load planning in the trucking
industry (i.e., the design of a routing plan for trucks), and the design of production
schedules.

Many alternative modeling assumptions arise in practice. We consider one
version of the problem, the uncapacitated network design problem. In this model
we need to route multiple commodities on the network; each commodity k has a
single source node Sk and a single destination node d k

• Once we introduce an arc
(i, j) into the network, we have sufficient capacity to route all of the flow by all
commodities on this arc.

To formulate this problem as an optimization model, let Xk denote the vector
of flows of commodity k on the network. Rather than letting xi model the total flow
of commodity k on arc (i, j), however, we let xi· denote the fraction of the required
flow of commodity k to be routed from the source Sk to the destination d k that flows
on arc (i,j). Let c k denote the cost vector for commodity k, which we scale to reflect
the way that we have defined xi [i.e., ci is the per unit cost for commodity k on arc
(i, j) times the flow requirement of that c~mmodity]. Also, let Yij be a zero-one
vector indicating whether or not we select arc (i, j) as part of the network design.
Using this notation, we can formulate the network design problem as follows:

Minimize (16.5a)

subject to

L xi- L xt
{j:(i.j)EA} {j:(j,i)EA}

= {-i if i = Sk

if i = d k for all i E N, k = 1, 2, ... ,K, (16.5b)
otherwise

for all (i, j) E A, k = 1, 2, . . . , K, (16.5c)

Sec. 16.5 Applications of Lagrangian Relaxation 627

for all (i, j) E A and all k = 1, 2, . . . , K, (16.5d)

Yij = 0 or 1 for all (i, j) E A. (16.5e)

In this formulation, the "forcing constraints" (16.5c) state that if we do not select
arc (i,j) as part of the design, we cannot flow any fraction of commodity k's demand
on this arc, and if we do select arc (i, j) as part of the design, we can flow as much
of the demand of commodity k as we like on this arc.

Note that if we remove the forcing constraints from this model, the resulting
model in the flow variables Xk decomposes into a set of independent shortest path
problems, one for each commodity k. Consequently, the model is another attractive
candidate for the application of Lagrangian relaxation. To see why this type of
solution approach might be attractive, consider a typically sized problem with, say,
50 nodes and 500 candidate arcs. Suppose that we have a separate commodity for
each pair of nodes (as is typical in communication settings in which each node is
sending messages to every other node). Then we have 50(49) = 2450 commodities.
Since each commodity can flow on each arc, the model has 2450(500) = 1,225,000
flow variables, and since (1) each flow variable defines a forcing constraint, and (2)
each commodity has a flow balance constraint at each node, the model has 1,225,000
+ 2450(50) = 1,347,500 constraints. In addition, it has 500 zero-one variables. So
even as a linear program, this model far exceeds the capabilities of current state of
the art software systems. By decomposing the problem, however, for each choice
of the vector of Lagrange mUltipliers, we will solve 2450 small shortest path prob
lems.

Application 16.lS Two-Duty Operator Scheduling

In many different problem contexts in work force planning, a private firm or public
sector organization must schedule its employees-for example, nurses, airline
crews, telephone operators-to provide needed services. Typically, the problems
are complicated by complex work rules, for example, airline crews have limits on
the number of hours that they can fly in any week or month. Moreover, frequently,
the demand for the services of these employees varies considerably by time of the
day or week, or across geography (as in the case of airline crew scheduling). Con
sequently, finding a minimum cost schedule requires that we balance the prevailing
work rules with the demand patterns. Figure 16.9 shows one example of a work
force planning problem, which we will view as a driver schedule for a single bus
line.

Every column in this table corresponds to a possible schedule. For example,
in schedule 1, a driver operates the bus line in two shifts, from 8 to 11 and then
from 1 to 3; in schedule 2 the driver works a single shift, from 11 to 1, and in schedule
3, he/she drives from 3 to 6. As indicated by the column entitled demand in the
table, we wish to find a set of schedules satisfying the property that at least one
driver is assigned to the bus at every hour of the day from 8 A.M. until 6 P.M. (if two
drivers are assigned to the same bus at the same time, one drives and the other is
a rider). One possibility is to choose schedules 1, 2, and 3; another is schedules 4
and 5; and still another is schedules 3, 5, and 6. Each schedulej has an associated

628 Lagrangian Relaxation and Network Optimization Chap. 16

Schedule
Time

period 1 2 3 4 5 6 7 8 Demand

8-9 1 0 0 1 0 1 0 1 ~I

9-10 I 0 0 I 0 1 0 1 ~I

1O-11 I 0 0 0 1 0 0 1 ~I

11-12 0 1 0 0 1 0 0 1 ~I

12-1 0 1 0 0 1 0 0 I ~I

1-2 1 0 0 I 0 I 1 0 ~I

2-3 1 0 0 I 0 1 1 0 ~l

3-4 0 0 I I 0 0 I 0 ~I

4-5 0 0 I I 0 0 I 0 ~I

5-6 0 0 I I 0 0 I 0 ~I

Cost C. C2 C3 C4 C5 C6 C7 C8

Figure 16.9 Two-duty operator schedule.

cost Cj and we wish to choose the set of schedules that meets the scheduling re
quirement at the lowest possible cost. To formulate this problem formally as an
optimization model, let Xj be a binary (i.e., zero-one) variable indicating whether
(Xj = 1) or not (Xj = 0), we choose schedule}, and let 31 denote the zero-one matrix
of coefficients of the scheduling table (i.e., the ijth element is 1 if schedule) has a
driver on duty during the ith hour of the day). Also, let e denote a column of 1 'so
Then the model is

Minimize cx

subject to

3lx ~ e,

Xj = 0 or 1 for} = 1, 2, ... , n.

(16.6a)

(16.6b)

(16.6c)

The choice of the available schedules in the problem depends on the governing
work rules; as an illustration, in our example, no operator works in any shift of less
than 2 hours. Moreover, note that the schedules permit split shifts, that is, time on,
time off, and then time on again as in schedule 1. Note, however, that no schedule
has more than two shifts. We refer to this special version of the general operator
scheduling problem as the two-duty operator scheduling problem.

In Exercise 4.13 we showed how to solve the single-duty scheduling problem
as a shortest path problem: The shortest path model contains a node for each time
period 1, 2, ... , T to be covered, plus an artificial end node T + 1, and an arc
from node i to node} whenever a schedule starts at the beginning of time period i
and ends at the beginning of time period}. We interpret arc (i,}) as H covering" the
time periods i, i + 1, ... ,} - 1. The network also contains Hbackward" arcs of
the form () + I,}) that permits us to "back up" from time period} + 1 to time
period} so that we can cover any node more than once and model the possibility
that a schedule might assign more than one driver to any time period. Can we use

Sec. 16.5 Applications of Lagrangian Relaxation 629

Lagrangian relaxation to exploit the fact that the single-duty problem is a shortest
path problem? To do so, we will use an idea known as variable splitting.

Consider any column j of the matrix 31 that contains two sequences of l' s
that is, corresponds to a schedule with two shifts. Let us make two columns 31; and
31J out of this column; each of these columns contains one of the duties (sequence
of 1 's) from 31j , so 31j = 31; + 31J. Let us also replace the variable Xj in our model
with two variables x; and xJ. We form a new model with these variables as

Minimize e' x' + e"x"

subject to

31lx' + 31"x" ~ e,

x' - x" 0,

x; and xJ o or 1 for j = 1, 2, ... , n.

(16.7a)

(16.7b)

(16.7c)

(16.7d)

For convenience, in formulating this model we have assumed that we have split
every column of the matrix 31. If not, we can simply assume that some columns of
31" are columns of zeros. Moreover, we can split the cost of each variable Xj arbitrarily
between e; and eJ. For example, we could let each of these costs be half of ej. This
model and the original model (16.6) are clearly equivalent. Note, however, that the
new model reveals embedded network structure; as shown in Figure 16.10, which
is the network model associated with the data in Figure 16.9, the model is a shortest
path problem with the complicating constraints that we need to choose arcs in pairs:
We choose either both or none of the arcs corresponding to the variables xj and
xJ. If we eliminate the "complicating" constraint x' - x" = 0, the problem becomes
an easily solvable single duty scheduling problem, which as we have seen before,
we can solve via a shortest path computation. This observation suggests that we
adopt a Lagrangian relaxation approach, relaxing the constraints with a Lagrange
multiplier fJ. so that the Lagrangian subproblem has the objective function

L{fJ.) = min{e ' + fJ.)x ' + {e" - fJ.)x". (16.8)

Now, as usual to solve the Lagrangian multiplier problem, we apply subgradient

630

Paired arcs

-- Paired arcs ----------

-------://
./

./

--././

Figure 16.10 Shortest path subproblem for the two duty scheduling problem.

Lagrangian Relaxation and Network Optimization Chap. 16

optimization, or some other solution technique, to maximize L(fJ.) over all possible
choices of the Lagrange multipliers fJ..

When we split a column Aj into two columns Ai and Ai, it does not matter
how we split the cost Cj between c; and cJ, as long as Cj = ci + cJ. Since xi =
xi in any feasible solution, the cost of any feasible solution will be the same no matter
how we allocate the cost. However, cost splitting does make a significant difference
in the relaxed problem obtained by dropping the constraint xi = xJ. If we were to
make c; large and ci small, then in the solution to the relaxed problem we would
probably find that xi would be 0 and xJ would be 1. Similarly, if we made ci small
and cJ large, in the solution to the relaxed problem we would likely find that xi
would be 1 and xi would be o. Ideally, we should allocate the costs between c J and
ci, so that either x; = xJ = 0 or xi = xJ = 1 in the relaxed problem.

As it turns out, we need not worry about the cost allocation at all if we use
Lagrangian relaxation since the Lagrange mUltiplier fJ.j for the constraint x J - xJ =

o does the cost allocation. Suppose, for example, that cJ = Cj and cJ = O. Then,
since we are relaxing the constraint xi - xJ = 0, the coefficient of x} in the relaxed
problem is Cj + fJ.j, and the coefficient of xi is - fJ.j. As fJ.j ranges over the real
numbers, we obtain all possible ways of splitting the cost Cj between cJ and cJ.

The operator scheduling problem we have considered permits us to find an
optimal schedule of drivers for a single bus line. If we wish to schedule several bus
lines simultaneously, the right-hand-side coefficients in the constraints (16.6) will be
arbitrary positive integers, indicating the number of required operators for each time
period during the day. In this instance, the variable splitting device still permits us
to use Lagrangian relaxation and network optimization to solve the problem. In this
instance, the Lagrangian subproblems will be minimum cost flow problems rather
than shortest path problems.

As this application shows, embedded network flow structure is not always so
apparent and, consequently, the use of Lagrangian relaxation often requires con
siderable ingenuity in model formulation. Indeed, the application of Lagrangian re
laxation typically requires considerable skill in modeling. Moreover, as several of
our examples have shown, we often can formulate network optimization problems
in several different ways, and by doing so we might be able to recognize and exploit
different network substructures. The models we have proposed for the traveling
salesman problem, both in the discussion of this problem and in the discussion of
the vehicle routing problem, illustrate these possibilities. As a result, the design and
implementation of Lagrangian relaxation algorithms often require careful choices
concerning the "best" models to use and the "best" constraints to relax. The lit
erature that we cite in the reference notes gives some guidance concerning these
issues; successful prior applications, such as those that we have discussed in this
section and in the exercises at the end of this chapter, provide additional guides.

Application 18.8 Degree-Constrained Minimum
Spanning Trees

Suppose that we wish to find a minimum spanning tree of a network, but with the
added provision that the tree contain exactly k arcs incident to a given root node,
say node 1 (in some settings, the degree of the root node should be at most k). This

Sec. 16.5 Applications of Lagrangian Relaxation 631

degree-constrained minimum spanning tree problem arises in several applications.
For example, in computer networking, the root node might be a central processor
with a fixed number of ports and the other nodes might be terminals that we need
to connect to the processor. In the communication literature, this problem has be
come known as the teleprocessing design problem or as the multidrop terminal layout
problem. The vehicle routing problem, described in Application 16.3, provides an
other application setting. If we are routing k vehicles and we delete the last arc from
every route, every solution is a spanning tree with k arcs incident to the depot (the
tree has additional structure: each subtree off the root is a single path). Therefore,
the degree constrained minimum spanning tree problem is a relaxation of the vehicle
routing problem. Note that this relaxation is stronger than the minimum spanning
tree relaxation that we discussed in Application 16.3.

We might formulate the degree-constrained minimum spanning tree problem
as follows.

subject to

Minimize cx

n

~ Xlj = k,
j=2

xEX.

In this formulation, x = (Xij) is a vector of decision variables and each Xij is a zero
one variable indicating whether (Xij = 1) or not (Xij = 0), arc (i, j) belongs to the
spanning tree. The number Cij denotes the fixed cost of installing arc (i, j) and the
set X denotes the set of incidence vectors of spanning trees. The additional constraint
states that the degree of node 1 must be k. Let C = max{cij : (i, j) E A}.

To solve this problem, we might use Lagrangian relaxation. If we associate a
Lagrange multiplier fJ. with the degree constraint and relax it, the objective function
of the Lagrangian subproblem becomes cx + fJ. L/=2 Xlj - fJ.k and the remaining
(implicit) constraint, x E X, states that the vector x defines a spanning tree. Note
that if we ignore the last term, fJ.k, which is a constant for any fixed value of fJ., this
problem is a parametric minimum spanning tree problem: for eachj, the cost of arc
(1, j) is Clj + fJ., and whenever i =1= 1 and j =1= 1, the cost of arc (i, j) is Cij' We will
use this observation to solve the degree constrained problem. That is, rather than
using subgradient optimization, we will use a combinatorial algorithm to solve the
Lagrangian multiplier problem.

We first solve the minimum spanning tree problem for fJ. = O. If the degree of
node 1 in the optimal tree equals k, this tree is optimal for the degree-constrained
minimum spanning tree problem. So suppose that the degree of node 1 is different
than k. We first consider the case when the degree of node 1 is strictly less than k.
Notice that since fJ. affects the lengths of only those arcs incident to node 1, changing
the value fJ. affects the ranking of these arcs relative to the arcs not incident to node
1. Consequently, as we decrease the value of fJ., the arcs incident to node 1 become
more attractive relative to the other arcs, so we would insert these arcs into the
spanning tree in place of the other arcs. The algorithm uses this observation: It starts
with a minimum spanning tree TI for fJ. = 0 and by decreasing the value of fJ., it

632 Lagrangian Relaxation and Network Optimization Chap. 16

generates a sequence of spanning trees TI, ... , Tq - I, terminating with a minimum
spanning tree Tq for fJ. = - C - 1. Each tree TI, ... , Tq - I is a minimum spanning
tree for some value of fJ.. The algorithm creates Tj from Tj - I by adding one arc
(1, i) to Tj-l and deleting one arc (p, q) with p =F 1 and q =F 1 from Tj-l. That is,
at each step it increases the degree of node 1 by one. Finally, Tq includes all the
arcs incident to node 1. (For a discussion of parametric minimum spanning trees,
see Exercises 13.35 and 13.36.)

Let Tk denote the tree containing exactly k arcs incident to node 1 and let fJ. k
denote the value of fJ. for which Tk is a minimum spanning tree for the parametric
problem. Further, let Xk denote the incidence vector associated with the span
ning tree Tk. By definition, Xk solves the Lagrangian multiplier problem L(fJ.) =

ex + fJ. Lf=2 Xi} - fJ.k, x E X, for fJ. = fJ.k because fJ.k is a constant. Now notice
that L(fJ.k) = exk + fJ.k Lf=2 xlj - fJ.kk = exk + fJ.kk - fJ.kk = exk, which implies
that for fJ. = fJ. k, the optimal objective function value of the Lagrangian subproblem
equals the value of a feasible solution Xk of the degree-constrained minimum
spanning tree problem. Property 16.3 shows that Xk is an optimal solution of the
degree-constrained minimum spanning tree problem.

When the optimal tree for fJ. = 0 contains more than k arcs, we parametrically
increase the value of fJ. until fJ. = C + 1. As we increase the value of fJ., the arcs
incident on node 1 become less attractive, and they leave the optimal tree one by
one. Eventually, node 1 will have degree exactly equal to k, and the tree at this
point will be a minimum degree-constrained spanning tree.

Note that this application of Lagrangian relaxation is different than the others
that we have considered in this chapter. In this case we have used Lagrangian re
laxation to define a parametric problem that is related to the constrained model we
are considering. We have then used a combinatorial algorithm rather than a general
purpose Lagrangian relaxation algorithm to solve the parametric problem. In this
case the Lagrangian relaxation has proven to be valuable not only in formulating
the parametric problem, but also in validating that the solution generated by the
parametric problem is optimal for the constrained model.

Application 18.7 Multi-item Produotion Planning

In production planning we would like to find the best use of scarce resources (people,
machinery, space) in order to meet customer demand at the least possible cost. As
we show in Chapter 19, the research community has developed a number of different
models for addressing various planning issues in this application domain. Some of
these models are shortest path problems and some are minimum cost flow problems;
still others are multicommodity flow problems or more general models with embed
ded network flow structure. In this section, to show how we might use Lagrangian
relaxation to solve more general models, we consider two applications of production
planning: multi-item production planning and production planning with changeover
costs.

Suppose that we are producing K items over a planning horizon containing T
periods (e.g., production shifts). Suppose, further, that we produce the items on the
same machine and that we can produce at most one item in each period. We would

Sec. 16.5 Applications of Lagrangian Relaxation 633

like to find the least cost production plan that will satisfy a demand dkt for every
item k in each period t.

Let Xkt denote the amount of item k that we produce in period t and let ht

denote the amount of inventory of item k that we carry from period t to period
t + 1. Let Zkt be a zero-one variable indicating whether or not we produce item
k in period t. With this notation, we can model the multi-item production planning
problem as follows:

K T K T K T

Minimize L L CktXkt + L L hktht + L L FktZkt
k= 1 t= 1 k= 1 t= 1 k= 1 t= 1

subject to
K

L Zkt:5 1 fort = 1,2, ... ,T,
k=1

Xkt + h,t-l - ht = dkt fork = 1,2, ... ,Kandt = 1,2, ... , T,

Xkt:5Pkt Zkt fork = 1,2, ... ,Kandt = 1,2, ... ,T,

Xkt ~ 0, ht ~ 0 for k = 1,2, ... , K and t = 1,2, ... ,T,

Zkt = Oor 1 fork = 1,2, ... ,Kandt = 1,2, ... , T.

(16.9a)

(16.9b)

(16.9c)

(16.9d)
(16.ge)

(16.90

In this model Ckt is the per unit production cost and h kt is the per unit inventory
carrying cost for item k in period t. Fkt is a fixed cost that we incur if we produce
item k in period t and P kt is the production capacity for item k in period t. The
constraint (16.9a) ensures that we produce at most one item in each period. Con
straint (16.9c) states that we allocate the amount we have on hand of item k in period
t (i.e., the production plus incoming inventory of that item) either to demand in that
period or to inventory at the end of the period. The "forcing" constraint (16.9d)
ensures that the quantity Xkt of item k produced in period t is zero if we do not select
that item for production in that period, that is, if Zkr = 0; this constraint also ensures
that the production of item k in period t never exceeds the production capacity of
that item.

Note that constraints in (16.9b) are the only constraints in this model that link
various items. Therefore, these constraints would be attractive candidates to relax
via Lagrange multipliers At. Doing so creates the following objective function

K T K T K T T

Minimize L L CktXkt + L L hktht + L L [Fkt + At]Zkt - LAt.
k= 1 t= 1 k= I t= I k= I t= 1 t=1

For a fixed value of the Lagrange multipliers, the last term is a constant, so the
problem separates into a single-item production planning problem for each item k;
the production and inventory carrying costs in the relaxation are the same as those
in the original model, and in each period the fixed cost for each item in the relaxation
is At units more than in the original model.

The subproblems assume different forms, depending on the nature of the pro
duction capacities. In Chapter 19 we show that whenever each single-item sub
problem is uncapacitated (i.e., Pkt is as large as the sum of the demands dkt in periods
t + 1, t + 2, ... , n, we can solve each single-item subproblem as a shortest path
problem. If we impose production capacities, the subproblems are NP-complete. In

634 Lagrangian Relaxation and fVetwork Optimization Chap. 16

these instances, since the number of time periods is often very small, we might use
a dynamic programming approach for solving the subproblems.

To conclude this discussion, we might note that we can enrich this basic multi
item production planning model in a variety of ways. For example, as shown in
Chapter 19, we can model multiple stages of production or the backlogging of de
mand. As another example, we can model situations in which we incur a startup
cost whenever we initiate the production of a new item. To model this situation, we
let Ykt be a zero-one variable, indicating whether or not the production system
switches from not producing item k in period t - 1 to producing the item in period
t. We then add the following constraints to the basic model (16.9):

Zkt - Zk,t-I $ Ykt for k = 1,2, ... ,K and t = 1,2, ... , T,

and for each "turn on" variable Ykt, we add a cost term CXktYkt to the objective function
(CXkt is the cost for turning on the machine to produce item k in period t). By relaxing
these constraints as well as the item choice constraints (16.9b), we again obtain
separate production planning problems for each item. Or, by relaxing only the item
choice constraints, we obtain a single-item production planning problem in which
we incur three types of production costs: (1) a cost for turning the machine on, (2)
a cost for setting up the machine in any period to produce any amount of the item,
and (3) a per unit production cost.

This startup cost problem is important in many practical production settings.
Moreover, this model is illustrative of the enhancements that we can make to the
basic production planning problem and once again demonstrates the algorithmic
flexibility of Lagrangian relaxation.

16.8 SUMMABY

Lagrangian relaxation is a flexible solution strategy that permits modelers to exploit
the underlying structure in any optimization problem by relaxing (i.e., removing)
complicating constraints. This approach permits us to "pull apart" models by re
moving constraints and instead place them in the objective function with associated
Lagrange multipliers. In this chapter we have developed the core theory of La
grangian relaxation, described popular solution approaches, and examined several
application contexts in which Lagrangian relaxation effectively exploits network
substructure.

The starting point for the application and theory of Lagrangian relaxation (as
applied to a model specified as a minimization problem) is a key bounding principle
stating that for any value of the Lagrange multiplier, the optimal value of the relaxed
problem, called the Lagrangian subproblem, is always a lower bound on the objective
function value of the problem. To obtain the best lower bound, we need to choose
the Lagrangian multiplier so that the optimal value of the Lagrangian subproblem
is as large as possible. We call this problem the Lagrangian multiplier problem. We
can solve the Lagrangian multiplier problem in a variety of ways. The subgradient
optimization technique is possibly the most popular technique for solving the La
grangian multiplier problem and we have described this technique in some detail.
The subgradient optimization technique solves a sequence of Lagrangian subprob
lems.

Sec. 16.6 Summary 635

Usually, we choose the constraints to relax so that the Lagrangian subproblem
is much easier to solve than the original problem. Consequently, when applying
Lagrangian relaxation, we solve many "simple" problems instead of one single
"complicated" problem. Frequently, the complicating constraints that we relax are
the only constraints that couple otherwise independent subsystems (e.g., shortest
path problems); in these instances, Lagrangian relaxation permits us to decompose
a problem into smaller, more tractable subproblems. For this reason, the research
community often refers to Lagrangian relaxation as a decomposition technique.

In discussing the theory of Lagrangian relaxation, we showed how to formulate
the Lagrangian multiplier problem as an associated linear program with a large num
ber of constraints; we also showed how to interpret the Lagrangian multiplier prob
lem as a convexification of the original optimization model. That is, instead of re
stricting our choices to a discrete set of possible alternatives (e.g., spanning tree
solutions), the multiplier problem produces the same objective function value that
we would obtain if we solved the original problem, but permitted the use of convex
combinations of the alternatives. We also showed that when applied to integer pro
grams, the Lagrangian relaxation always gives at least as large a lower bound as
does the linear programming relaxation of the problem. Finally, we showed that
whenever the Lagrangian subproblem satisfies the integrality property (so it has an
integer solution for all values of the Lagrange multiplier), solving the Lagrange mul
tiplier problem is equivalent to solving the linear programming relaxation of the
original optimization model. In these instances, even though the Lagrangian ap
proach provides the same lower bound as the linear programming relaxation, it does
have the ability to solve network (or other) subproblems quickly, which is often
greatly preferred to solving the original problem by general-purpose linear program
ming codes.

Our discussion of applications has introduced several important network op
timization models: networks with side constraints, the traveling salesman problem,
vehicle routing, network design, personnel scheduling, degree-constrained minimum
spanning trees, and production planning. As we have seen, these optimization models
have applications in such diverse settings as machine scheduling, communication
system design, delivery of consumer goods, telephone coin box collection, telephone
operator scheduling, logistics, and production. Consequently, our discussion has
illustrated the broad applicability of Lagrangian relaxation across many practical
problem contexts. It has also illustrated the versatility of Lagrangian relaxation and
its ability to exploit the core network substructures-shortest paths, minimum cost
flows, the assignment problem, and minimum spanning tree problems-that we have
studied in previous chapters. Our discussion of applications has also highlighted
several other points:

1. Need for creative modeling. Formulating Lagrangian relaxations can require
considerable ingenuity in modeling (as in the variable splitting device that we
used to study the two-duty operator scheduling problem).

2. Flexibility of Lagrangian relaxation. In many models, such as the vehicle rout
ing problem, we can obtain a variety of different Lagrangian subproblems by
relaxing different constraints. This variety of potential subproblems permits us
to develop different algorithms for solving the same problem.

Lagrangian Relaxation and Network Optimization Chap. 16

3. Use of Lagrangian relaxation as a conceptual as well as algorithmic tool. On
some occasions, as in our discussion of the degree-constrained minimum span
ning tree problem, we can use the bounding information provided by Lagran
gian relaxation as a stand-alone tool that is unrelated to any iterative method
for solving the Lagrangian multiplier problem. For example, we can use the
bounds to analyze the solutions generated by combinatorial or heuristic al
gorithms for solving a problem.

REFERENCE NOTES

The Lagrange multiplier technique of nonlinear optimization dates to the eighteenth
century and was suggested by the famous mathematician Lagrange, for whom the
technique is named. The use of this technique in integer programming and discrete
optimization is much more recent, originating in the seminal papers by Held and
Karp [1970, 1971], who studied the traveling salesman problem. Everett's [1963]
development of Lagrangian mUltiplier methods for general mathematical program
ming problems was a precursor to this development. Held and Karp's application
of the Lagrange multiplier method was not only an eye-opening successful appli
cation, but also set out many key ideas in applying the method to integer program
ming problems. Fisher [1981, 1985], Geoffrion [1974], and Shapiro [1979] provide
insightful surveys of Lagrangian relaxation and its uses in integer programming. The
papers by Fisher contain many citations to successful applications in a wide variety
of problem settings. For a discussion of the branch-and-bound algorithm, see Win
ston [1991].

Most of the key results of Lagrangian relaxation (e.g., the bounding properties
and optimality conditions) are special cases of more general results in mathematical
programming duality theory. Rockafellar [1970] and Stoer and Witzgall [1970] pro
vide comprehensive treatments of this subject. Magnanti, Shapiro, and Wagner
[1976] establish the equivalence of the Lagrangian multiplier problem and generalized
linear programming, whose development by Dantzig and Wolfe [1961] predates the
formal development of Lagrangian relaxation in integer programming. The integrality
property is due to Geoffrion [1974]. The subgradient method is an outgrowth of so
called relaxation methods for solving systems of linear inequalities. Bertsimas and
Orlin [1991] have developed the most efficient algorithms (in the worst-case sense)
for solving many classes of Lagrangian relaxation problems.

Several of the application contexts that we have discussed in Section 16.5 and
in the exercises have very extensive literatures. The following books and survey
articles, which contain many references to the literature, serve as good sources of
information on these topics.

Traveling salesman problem: the book edited by Lawler, Lenstra, Rinnooy
Kan, and Shmoys [1985]
Vehicle routing: surveys by Bodin, Golden, Assad, and Ball [1983], Laporte
and N obert [1987], and Magnanti [1981]
Network design: surveys by Magnanti and Wong [1984], Magnanti, Wolsey,
and Wong [1992], and Minoux [1989]

Chap. 16 Reference Notes 637

Production planning: the survey paper by Shapiro [1992], the book by Hax
and Candea [1984], and the paper by Graves [1982]

Several other of the applications discussed in this chapter are adapted from
research papers from the literature. For a Lagrangian relaxation-based branch-and
bound approach to the constrained shortest path problem, see Handler and Zang
[1980]. Shepardson and Marsten [1980] have used the variable splitting device and
Lagrangian relaxation for solving the two-duty operator scheduling problem and
applied this approach to bus operator scheduling. For an algorithmic approach to
the network design problem, see Balakrishnan, Magnanti, and Wong [1989a]. Vol
genant [1989] considers the degree-constrained minimum spanning tree problem.

EXERCISES

16.1. Lagrangian relaxation and inequality constraints. To develop the Lagrangian mUltiplier
problem for an inequality constraint problem stated as min{ ex : stlx ~ b, x E X},
suppose that we add nonnegative "slack" variables s to model the problem in the
following equivalent equality form: min{ex : stlx + s = b, x E X and s ~ OJ.
(a) State the Lagrangian mUltiplier problem for the equality formulation.
(b) Show that if some J.Li < 0, then L(J.L) = -00. Further, show that if some J.Li> 0,

then in the optimal solution of the Lagrangian subproblem L(J.L)' the slack variable
Sj = O.

(c) Conclude from part (b) that the Lagrangian multiplier problem of the inequality
constrained problem is maxlJ.2:0 L(J.L) with L(J.L) = min{ex + J.L(stlx - b) : x EX}.

16.2. Consider the problem

Minimize - 2x - 3y

subject to

x + 4y ~ 5,

x, y E {O, I},

and the corresponding relaxed problem

Minimize - 2x - 3y + (x + 4y - 5)

subject to
x, Y E {O, l}.

Show that x = 1, y = 0 solves the relaxed problem, is feasible for the original problem,
and yet does not solve the original problem. (Reconcile this example with Property
16.4.)

16.3. Lagrangian relaxation applied to linear programs. Suppose that we apply Lagrangian
relaxation to the linear program q} defined as min{ ex : stlx = b, x ~ O} by relaxing
the equality constraints stlx = b. The Lagrangian function is L(J.L) = minx 2:o {ex -
J.L(stlx - b)} = minx 2:o {(e - J.Lstl)x + J.Lb}. (Since the constraints stlx = b are equalities,
the Lagrange multipliers J.L are unconstrained in sign. For the purpose of this exercise,
we have chosen a different sign convention than usual, that is, used - J.L in place of
J.L.) Now, consider the Lagrangian multiplier problem maxIJ.L(J.L).

638

(a) Suppose we choose a value of J.L so that for some}, (e - J.Lstl)j < O. Show that
L(J.L) = -00.

(b) Suppose we choose a value of J.L so that for some}, (e - J.Lstl)j> O. Show that in
the optimal solution of the Lagrangian subproblem, Xj = o.

(c) Conclude from parts (a) and (b) that the Lagrangian mUltiplier problem is equiv-

Lagrangian Relaxation and Network Optimization Chap. 16

alent to the linear programming dual of 'lP, that is, the problem max JLb, subject
to JL.s.4. :s c.

16.4. Oscillation in Lagrangian relaxation. Suppose that we apply Lagrangian relaxation to
the constrained shortest path example shown in Figure 16.1 with the time constraint
of T = 14, starting with value JLo = 0 for the Lagrange multiplier JL. Show that if we
choose the step size Ok = 1 at each iteration, the subgradient algorithm JLk+ I = JLk +
Ok(.s.4.Xk - b) oscillates between the values JL = 0 and JL = 4 and the Lagrangian
subproblem solutions alternate between the paths 1-2-4-6 and 1-3-2-5-6.

16.5. In Section 16.4 we showed that when T = 14, our constrained shortest path example
had an optimal objective function value z* = 13 while the Lagrange multiplier problem
had a value L * = 7. Show that L * equals the optimal objective function value of the
linear programming relaxation of the problem. Interpret the solution of the linear pro
gram as the convex hull of shortest path solutions. That is, find a set of paths whose
convex combination satisfies the timing constraint and whose weighted (i.e., convex
combination) cost equals L * .

16.6. Suppose that X is a finite set and that when we solve the Lagrangian multiplier problem
corresponding to the optimization problem min{cx : .s.4.x = b, x E X} for any value
of c, we find that the problem has no duality gap, that is, if x* solves the given optimi
zation problem and JL * is an optimal solution to the Lagrangian multiplier problem,
then cx* = L(JL *). Show that the polyhedron {x : .s.4.x = b and x E 'af(Xn has integer
extreme points. (Hint: Use the results given in the proofs of Theorems 16.9 and 16.10.)

16.7. Lagrangian relaxation interpretation of successive shortest paths. Recall from Section
9.7 that each intermediate stage of the successive shortest path algorithm for solving
the minimum cost flow problem maintains a pseudoflow x satisfying the flow bound
constraints and a vector 71' of node potentials satisfying the conditions cij = cij - 71'(i)
+ 71'(j) ~ 0 for all arcs (i,}) E G(x).
(a) Show that the pseudoflow x is optimal for the problem obtained by relaxing the

mass balance constraints and replacing the objective function cx with the La
grangian function

Minimize ~ (cij - 71'(i) + 71'(j»xij.
U.j)EA

(b) Interpret the successive shortest path algorithm as a method that proceeds by
adjusting the Lagrangian mUltipliers. At each stage the method adjusts the mul
tipliers 71' so that (1) the current pseudoflow x is optimal for the Lagrangian sub
problem, and (2) some alternate optimal pseudoflow x' for the Lagrangian relax
ation is "less infeasible" than x. Finally, when the optimal pseudoflow becomes
a flow, we obtain an optimal solution of the Lagrangian subproblem that is also
feasible for the original problem; therefore, it must be an optimal solution of the
original problem.

16.8. Generalized assignment problem (Ross and Soland [1975]). The generalized assignment
problem is the optimization model

subject to

~ Xi} = 1
jEJ

~ ai}xij ~ dj
iEI

xi} ~ 0 and integer

Minimize ~ ~ ci}xi} (16. lOa)
iEI jEJ

for all i E I, (16. lOb)

for all} E J, (16.lOc)

for all (i,}) E A. (16.lOd)

In this problem we wish to assign III "objects" to I J I "boxes." The variable
xi} = 1 if we assign object i to box j and Xi} = 0 otherwise. We wish to assign each

Chap. 16 Exercises 639

object to exactly 1 box; if assigned to box j, object i consumes aij units of a given
"resource" in that box. The total amount of resource available in the jth box is dj •

This generic model arises in a variety of problem contexts. For example, in machine
scheduling, the objects are jobs, the boxes are machines; aij is the processing time for
job i on machine j and dj is the total amount of time available on machine j.
(a) Outline the steps required for solving the Lagrangian subproblem obtained by (1)

relaxing the constraint (16. lOb), and (2) by relaxing the constraint (16.lOc).
(b) Compare the lower bounds obtained by the two relaxations suggested in part (a).

Which provides the sharper lower bound? Why? (Hint: Use Theorems 16.9 and
16.10.)

(c) Compare the optimal objective function value of the Lagrangian multiplier problem
for each relaxation suggested in part (a) with the bound obtained by the linear
programming relaxation of the generalized assignment model.

16.9. FacUity location (Erlenkotter [1978]). Consider the following facility location model:

Minimize ~ ~ cijxij + ~ FjYj (16. 11 a)
iEI jEJ jEJ

subject to

~ xij = 1 for all i = 1, 2, ... , I, (16.11b)
jEJ

~ dixij S KjYj for allj = 1,2, ... , J, (16. 11 c)
iEI

Os xij S 1 for all i E I and j E J, (16. 11 d)

Yj = 0 or 1 for allj E J. (16. 11 e)

In this model, I denotes a set of customers and J denotes a set of potential facility
(e.g., warehouse) locations used to supply to the customers. The zero-one variable
Yj indicates whether or not we choose to locate a facility at location j and Xij is the
fraction of the demand of customer i that we satisfy from facility j. The constant d;
is the demand of customer i. The cost coefficient Cij is the cost (e.g., the transportation
cost) of satisfying all of the ith customer's demand from facility j, and the cost coef
ficient Fj is the fixed cost of opening (e.g., leasing) a facility of size Kj at location j.
The constraints (16. 11 b) state that we need to satisfy all of the demand for each cus
tomer, and the constraints (16.11c) state that (1) we cannot meet any of the demand
of any customer if we do not locate a facility at locationj (i.e., Xij = 0 if Yj = 0), and
(2) if we do locate a facility at location j (Le., Yj = 1), the total demand met by the
facility cannot exceed the facility's capacity Kj •

(a) Show how you would solve the Lagrangian subproblem obtained by relaxing the
constraints (16.11b). (Hint: Note that the Lagrangian subproblem decomposes into
a separate subproblem for each location.)

(b) Show next how you would solve the Lagrangian subproblem if we relax the con
straints (16.llc). (Hint: Note that the Lagrangian subproblem decomposes into a
separate subproblem for each customer.)

(c) Show that if III = I J I = 1, K, = 10, d, = 5, and C'I = 0, the relaxation suggested
in part (a) gives a sharper lower bound than the relaxation in part (b). Next prove
the general result that the relaxation in part (a) gives at least as good a bound as
given by the relaxation in part (b).

16.10. Modified facUity location. Suppose that in the model considered in Exercise 16.9, we
impose the additional constraint that the demand for each customer should be "sole
sourced"; that is, each variable xij has value zero or I.

640

(a) Show how to use the solution of a single knapsack problem for each facility j to
solve the Lagrangian relaxation obtained by relaxing the constraints (16.11b).

(b) Show that the bound obtained from the Lagrangian multiplier problem by relaxing

Lagrangian Relaxation and Network Optimization Chap. 16

the constraints (16.11 b) is always at least as strong as the bound obtained by
relaxing the constraints (16.11c).

16.11 Tightening the facility location relaxation. Suppose that we add the redundant con
straints Xij s min{Yb KJ to the facility location model described in Exercise 16.9 and
then we apply Lagrangian relaxation by relaxing the constraints (16.11b) or (l6.11c).
(a) Show that the bound obtained from the Lagrangian multiplier problem is always

as strong or stronger than the bound obtained by relaxing the corresponding con
straints in the original model without the additional constraints Xij :s.:; min{yj, Kid;}.

(b) How would you solve the Lagrangian subproblem with the added constraints
Xij s min{yj, K)d;}?

(c) How would your answers to parts (a) and (b) change if we considered the sole
sourcing-facility location model described in Exercise 16.1O?

16.12. Local access capacity expansion (Balakrishnan, Magnanti, and Wong [1991]). The lowest
level of national telephone networks are trees that connect individual customers to
the rest of the national network through special nodes known as switching centers,
which route telephone calls to their final destination. Each local access network (tree)
T has its own switching center. As demand for service increases, telephone companies
have two basic options for increasing the capacity of a local access network: (1) they
can install more copper cables on the arcs of the networks; or (2) they can install
devices, called multiplexers (or concentrators), at the nodes. The multiplexers com
press calls so that they use less downstream cable capacity. We assume that once a
call reaches a mUltiplexer, it requires negligible cable capacity to send it to the switch
ing center. Every call must be routed through the tree T either to the switching center
or to one of the multiplexers. Suppose that the existing capacity of arc (i, j) is Uij and
increasing the capacity by Yij units incurs an arc-dependent cost Ci.JYij. Let d; denote
the numbers of calls originating at node i that must be routed to the switching center
or to a multiplexer. Each multiplexer has two associated costs: (1) a fixed cost F, and
(2) a variable throughput cost (l incurred for each unit of call compressed by that
multiplexer. The optimization problem is to meet the demand for service by incurring
minimum total cost.
(a) Let Zi be a zero-one variable indicating whether or not we place a multiplexer at

node i. Further, let Xij be a zero-one variable indicating whether or not we assign
node i to the multiplexer j. In the local access network T, for any pair (i, j] of
nodes, we let Pij denote the unique path between these two nodes, and for any
arc (k, I) in T, we let Qkl be the set of all node pairs [i, j] from which Pij contains
the arc (k, I). We assume that node 1 is the switching center. Let node S denote
the remaining nodes in the network. Using this notation, give an integer program
ming formulation of the local access network design problem.

(b) Suggest two relaxations of the formulation in part (a) that produce a relaxed prob
lem with a structure that we have treated in this book.

16.13. Contiguous local access capacity expansion problem (Balakrishnan, Magnanti, and Wong
[1991]). In most practical settings of the local access capacity expansion problems,
the set of nodes assigned to the switching center or to any multiplexer must be con
tiguous. That is, if we assign node i to a multiplexer at node j and node k lies on the
path in T from node i to node j, we must also assign node k to the multiplexer at node
j. Therefore, the final configuration of the local access network will be a subdivision
of the tree T into subtrees, with each subtree containing either the switching center
or one multiplexer and the nodes it serves.
(a) Show that we can incorporate the contiguity condition in the formulation of Ex

ercise 16.12 by adding the following constraints for every pair [i, j] of nodes: if
the path Pij contains node k, then Xkj 2: Xij.

(b) Consider the integer programming formulation of the contiguous local access ca
pacity expansion problem from part (a). Suppose that we relax the capacity con
straints imposed on the arcs. Show that we can solve the Lagrangian subproblem
in polynomial time using a dynamic programming technique.

Chap. 16 Exercises 641

16.14. Design of telecommunication networks (Leung, Magnanti, and Singhal [1990] and Mag
nanti, Mirchandani, and Vachani [1991]). In designing telecommunications networks,
we would like to install sufficient capacity to carry required traffic (telephone calls,
data transmissions) simultaneously between various source-sink locations. Suppose
that (Sk, t k

) for 1 s k s K denote K pairs of source-sink locations, and rk denotes
the number of messages sent from the source Sk to the sink tk. We can install either
of two different types of facilities on each link of the transmission network, so-called
TO lines and TI lines. Each TO line can carry 1 unit of message and each TI line can
carry 24 units of messages; installing a TO line on arc (i, j) incurs a cost of ai) and
installing a TI line on arc (i, j) incurs a cost of bi)' Once we have installed the lines,
we incur no additional costs in sending flow on them. This problem arises in practice
because companies with large telecommunication requirements might be able to lease
lines more cost-effectively than paying public tariffs. The same type of problem arises
in trucking of freight; in this setting, the facilities to be "installed" on any arc are the
trucks of a particular type (e.g., 36-foot trailers or 48-foot trailers) to be dispatched
on that arc.
(a) Show how to formulate this telecommunication network design problem with two

types of constraints: (1) a set of network flow constraints modeling the required
flow between every pair of source-sink locations, and (2) capacity constraints
restricting the total flow on each arc to be no more than the capacity that we install
on that arc. (Hint: Use the following integer decision variables: (1) Yu : the number
of TO lines for arc (i, j), (2) Zu : the number of TI lines for arc (i, j), and (3) the
number of messages xi sent from the source Sk to the sink t k that pass through
the arc (i, j).)

(b) How would you solve the linear programming relaxation of this model? (Hint:
Consider two cases: when 24 aij < bij and when 24 au ~ bij.)

(c) Show how to solve the Lagrangian subproblem obtained by relaxing constraints
of type 1 in the model formulation. (Hint: Consider the two cases as in part (b).)

(d) Show how to solve the Lagrangian subproblem obtained by relaxing constraints
of type 2 in the model formulation.

16.15. Steiner tree problem. The Steiner tree problem is an .N~-hard variant of the minimum
spanning tree problem. In this problem we are given a subset S ~ N of nodes, called
customer nodes, and we wish to determine a minimum cost tree (not necessarily a
spanning tree) that must contain all the nodes in S and, optionally, some nodes in
N - S. This problem arises in many application settings, such as the design of rural
road networks, pipeline networks, or communication networks. Formulate this prob
lem as a special case of the network design problem discussed in Application 16.4 and
show how to apply Lagrangian relaxation to the resulting formulation. (Hint: Designate
any customer node as a source node and send 1 unit of flow to every other customer
node.)

16.16. In this exercise we show how to formulate a directed traveling salesman problem as
a network design problem. Consider a network design problem with the following data:
(1) unit commodity flow requirements between every pair of nodes, (2) the cost of
flow on every arc is zero, and (3) the fixed cost of the arc (i, j) is Ci} + M for some
sufficiently large number M. Show that the optimal network will be an optimal traveling
salesman tour with cij as arc lengths. (Hint: The optimal network must be strongly
connected and must contain the fewest possible number of arcs.)

16.17. Uncapacitated undirected network design problem. In the formulation of the directed
uncapacitated network design problem in Application 16.4, the zero-one vector Yij
indicated whether we would include the directed arc (i, j) in the underlying network.
Suppose, instead, that the arcs are undirected, so if we introduce arc (i, j) in the
network, we can send flow in either direction on the arc.

642

(a) How would you formulate this problem and apply Lagrangian relaxation to obtain
lower bounds?

Lagrangian Relaxation and Network Optimization Chap. 16

(b) Show that in the uncapacitated undirected network design problem, if all flow
costs ct are zero, all the fixed costs f ij are nonnegative, and the problem has a
commodity for each pair of nodes, the problem reduces to the minimum spanning
tree problem.

16.18. (a) Show that if the un capacitated network design problem has a single commodity
(i.e., K = 1), we can solve the problem by solving a single shortest path problem.

(b) Show how to formulate the production planning problems that we described in
Application 16.7 as capacitated or uncapacitated network design problems.

16.19. (a) Suppose that we relax the mass balance constraint Xx = b in the formulation
(16.3) of the traveling salesman problem described in Application 16.2. Show how
to solve the Lagrangian subproblem as an assignment problem. (Hint: Show that
some optimal solution of the Lagrangian subproblem satisfies the conditions
xij = 0 or xij = (n - l)Yii for each arc (i, j) E A. Use this fact to eliminate the
variables xij from the subproblem.)

(b) Suppose that we relax the assignment constraints (l6.3b) and (16.3c) in the for
mulation (16.3) of the traveling salesman problem. Show how to solve the La
grangian subproblem as an uncapacitated network design problem.

(c) What is the relationship between the optimal solutions of the Lagrangian multiplier
problems obtained by the relaxations considered in parts (a) and (b), the relaxation
described in the text (obtained by relaxing the forcing constraints xij S (n - 1)Yij) ,
and the optimal objective function value of the linear programming relaxation of
the problem?

16.20. Assignment-based formulation of the traveling salesman problem
(a) Consider the integer program (16.3) with the constraints (16.3d) and (16.3e) re

placed by the subtour breaking constraints (l6.4h). Show that the resulting model
is an integer programming formulation of the traveling salesman problem.

(b) Show that the solution of the Lagrangian subproblem formed by relaxing the sub
tour breaking constraints will be a set of directed cycles satisfying the property
that each node is contained in exactly one cycle. Describe a heuristic method for
modifying the Lagrangian subproblem solution so that it becomes a feasible trav
eling salesman tour.

16.21. Undirected traveling salesman problem. In the undirected (or symmetric) traveling
salesman problem, we can traverse any arc (i, j) in either direction at the same cost
cij' Let Yij indicate whether or not we include arc (i, j) in a feasible tour.
(a) Give a formulation of this problem as an integer program containing three sets of

constraints: (1) degree 2 constraints, indicating that each node should have degree
at most 2 in any feasible tour; (2) sub tour breaking constraints on the nodes
2, 3, ... , n; and (3) a cardinality constraint indicating that the tour contains
exactly n arcs. (Hint: Modify the assignment based formulation of the directed
traveling salesman problem described in Exercise 16.20.)

(b) Show how to apply Lagrangian relaxation in two ways: (1) by relaxing the degree
2 constraints; and (2) by relaxing the subtour breaking constraints and the car
dinality constraint. In case 1 show how to solve the Lagrangian subproblem as a
I-tree (see Exercise 13.38). In case 2 show how to solve the Lagrangian subproblem
as a matching problem. (Hint: In case 2, first show that any network with narcs
and degree at most 2 on each node, must have a degree of exactly 2 at each node.)

16.22. Multlcommodlty now-based formulation of the traveling salesman problem. In Appli
cation 16.2 we examined a single-commodity flow-based formulation of the traveling
salesman problem with n - 1 units available at a source node (which we arbitrarily
took to be node 1) and 1 unit of demand required at each other node. Suppose that,
instead, we formulated a multicommodity flow model with 2(n - 1) commodities, with
two commodities k defined for each node k # 1, an "outgoing" commodity and an
"incoming" commodity. The incoming commodity for node k has 1 unit of supply at
node 1 and 1 unit of demand at node k, and the outgoing commodity for node k has

Chap. 16 Exercises 643

1 unit of supply at node k and 1 unit of demand at node 1 (i.e., we wish to send 1 unit
from node 1 to node k and 1 unit from node k to node 1). We can state this formulation
of the traveling salesman problem as the following integer program:

Minimize L cijYij,
(i,j)EA

subject to

L Yij = 1 for all i = 1,2, ... , n,
Isjsn

L Yij = 1 for all j = 1,2, ... , n,
Isisn

Nx k = bk for all k = 2, ... , n,

Nz k = d k for all k = 2, ... , n,

xt :5 Yij and zt :5 Yij for all (i, j) and all k,
Yij and xt = 0 or 1 for all (i, j) and all k.

Note that the supply/demand vectors bk and d k in this formulation have a special
form: d k = - bk and b7 is 1 if i = 1, is - 1 if i = k, and is 0 if i =1= 1 and i =1= k.
(a) Suppose that we apply Lagrangian relaxation to the multicommodity flow-based

model by relaxing the forcing constraints [Le., the constraints xt :5 Yij and
zt :5 Yij, for all (i,j) and all k]. How would you solve the Lagrangian subproblem?

(b) Show that the lower bound L * determined by the Lagrangian mUltiplier problem
for the Lagrangian relaxation in part (a) is always as strong or stronger than the
lower bound determined by relaxing the forcing constraints in the single-com
modity flow-based formulation. (Hint: Compare the set of feasible solutions of
both problems.)

(c) What is the relationship between the optimal objective function values ofthe linear
programming relaxations of the single and multicommodity flow-based formula
tions? (Hint: Same as that in part (b).)

16.23. Alternate formulations of the traveling salesman problem (Wong [1980]). In this chapter
we have considered three different formulations of the traveling salesman problem:
(1) a single-commodity flow-based formulation in Application 16.2, (2) an assignment
based formulation discussed in Exercise 16.20, and (3) a multicommodity flow-based
formulation in Exercise 16.22, where we showed that from the perspective of linear
programming or Lagrangian relaxations, the multicommodity flow-based formulation
is stronger than the single commodity flow-based formulation.
(a) Show that we can replace the subtour breaking constraints in the assignment

based formulation, or in its linear programming relaxation, by the constraints LiES

kEN-S Yij 2: 1 for all sets S of nodes satisfying the cardinality condition 1 :s
I S I :5 n - 1, and in both cases obtain an equivalent model (i.e., one with the
same feasible solutions).

(b) Using the max-flow min-cut theorem and part (a), show that the linear program
ming relaxation of the assignment-based formulation of the traveling salesman
problem and the linear programming relaxation of the multicommodity flow-based
formulation are equivalent in the sense that Y is feasible in the linear programming
relaxation of the assignment-based formulations if and only if for some flow vector
x, (x, y) is feasible in the multicommodity flow-based formulation. (Note that the
number of subtour breaking constraints in the assignment-based formulation is
exponential in n. The number of constraints in the multicommodity flow-based
formulation is polynomial in n, so this formulation is a so-called compact for
mulation.)

16.24. Consider the undirected traveling salesman problem shown in Figure 16.11.
(a) What is the optimal tour length for this problem?

644 Lagrangian Relaxation and Network Optimization Chap. /6

(;\ Y'j 0 0---- 1
o

~---------------------4 S
I

T

2. f-------------------__\.
o

(a) (b)

Figure 16.11 Traveling salesman problem: (a) network data; (b) solution to the linear pro
gramming relaxation.

(b) Show that the arc weights shown in Figure 16.II(b) solve the linear programming
relaxation of the formulation developed in Exercise 16.21. Interpret this solution
as the convex hull of I-tree solutions to the Lagrangian subproblem that we obtain
by relaxing the degree two constraints in this formulation. That is, show how to
represent this solution as a convex combination of I-tree solutions.

(c) Show the network corresponding to the equivalent directed traveling salesman
problem and specify the optimal solution to the linear programming relaxation of
the assignment-based formulation and both the single and multicommodity flow
based formulations.

(d) Interpret the solution to each linear programming relaxation as the convex hull of
solutions to Lagrangian subproblems.

16.25. K-traveling salesman problem. Suppose that we wish to find a set of K a~c-disjoint
directed cycles in a directed graph satisfying the property that node I is contained in
exactly K cycles and every other node is contained in exactly one cycle. In this model
each arc has an associated cost cij and we wish to find a feasible solution with the
smallest possible sum of arc costs. We refer to this problem as the K -traveling salesman
problem since it corresponds to a situation in which K salesmen, all domiciled at the
same node 1, need to visit all the other nodes of a graph.
(a) Formulate this problem as an optimization model and show how to apply La

grangian relaxation to the formulation. (Hint: Modify the single-commodity flow
based formulation given in Application 16.2 or the assignment-based formulation
given in Exercise 16.20.)

(b) By forming K copies of node I and assigning a large cost with all of the arcs joining
the copies of node 1, show how to formulate the problem as an equivalent (single)
traveling salesman problem.

16.U. Consider the K-traveling salesman problem described in Exercise 16.25. Show how
to formulate this problem as a special case of the vehicle routing problem described
in Application 16.3. The resulting formulation will be considerably simpler than the
general vehicle routing problem. (Hint: First show that we can eliminate the con
straints (l6.4g). Next show how to use the constraints (16.4b) to eliminate the variables
xt·)

16.27. Vehicle routing with nonhomogeneous Deets and with time restrictions. This exercise
studies a generalization of the vehicle routing problem discussed in Application 16.3.
Show how to formulate a vehicle routing problem with each of the following problem
ingredients: (1) each vehicle k in a fleet of K vehicles can have different capacity Uk,

Chap. 16 Exercises 645

or (2) each vehicle must make its deliveries within T hours, given that it takes tij hours
to traverse any arc (i, j).

16.28. Suppose that we add the redundant constraint ~(i,j)EA Yij = n +" K'to the formulation
(16.4) of the vehicle routing problem. Consider the additional set of constraints
kES Ylj + ~iES ~jES Yij :s I S I for all subsets S of {2, 3, ... , n}.
(a) Are these constraints valid?
(b) Are these constraints implied by the other constraints in the integer programming

formulation ofthe problem? Are they implied by the other constraints in the linear
programming relaxation of the problem?

(c) Suppose that we add the additional constraints to the formulation of the vehicle
routing problem. Show that by relaxing the capacity constraints (16.4g) and the
assignment constraints (16.2c) and (16.2d) for nodes 2, 3, ... , n, the resulting
Lagrangian subproblem decomposes into two subproblems: (i) a degree-con
strained minimum spanning tree problem with degree K imposed on node 1, and
(ii) a problem of choosing the K cheapest (with respect to the Lagrangian sub
problem coefficients) arcs of the form Yjl. (Hint: First eliminate the variables
xt and then note that the Lagrangian subproblem decomposes into two subprob
lems, one containing the variables Yjl and one containing all the other variables.)

16.29. Solve the degree-constrained minimum spanning tree problem shown in Figure 16.12
assuming that the degree of node 1 must be 8. Solve it if the degree of node 1 must
be 5.

e------ Length=O.8

Length = 1

Length = 2.5

Figure 16.12 Constrained minimum spanning tree problem.

16.30. Suppose that X is a finite set and that when we solve the Lagrangian multiplier problem
corresponding to the optimization problem min{cx : sIlx = b, x E X} for any value of
c, we find that the problem has no relaxation gap; that is, if x* solves the given
optimization problem and f.!. * is an optimal solution to the Lagrangian multiplier prob
lem, then cx* = L(f.!. *). Show that the polyhedron {x E '3£(X) : sIlx = b} has integer
extreme points. (Hint: Use the equivalence between convexification and Lagrangian
relaxation (Theorem 16.10) and the fact that every extreme point to a polyhedron CfP
is the unique optimal solution to the linear program min{cx : x E CfP} for some choice
of the objective coefficients c.)

16.31. Let X denote the set of incidence vectors of spanning trees of a given network.

646 Lagrangian Relaxation and Network Optimization Chap. 16

(a) Using Exercise 16.30 and the results in Section 16.4, show that for any value of
k, the polyhedron {x : x E ~(X) and Lj#l Xij = k} has integer extreme points.
Note that if we view the set of solutions to x E ~(X) and Lj#l Xlj = k as we
vary k as "parallel slices" through the polyhedron x E ~(X), this result says that
extreme points of every slice are integer valued.

(b) For any subset S of nodes, let A(S) = {(i, j) E A : i E S andj E S}. Using the
result of part (a) and the development in Section 13.8, show that for any value of
k, the following polyhedron has integer extreme points:

L xlj = k,
j#l

L Xij = n - 1,
(i,j)EA

L xij ~ I S I - 1
(i,j)EA(S)

Xij ~ O.

for any set S of nodes,

(Hint: In Section 13.8 we showed that without the cardinality constraint
L#l xlj = k, the extreme points in the polyhedron defined by the remaining con
straints are incident vectors of spanning tree solutions (and so are integer valued).)

16.32. Suppose that we wish to find a minimum spanning tree of an undirected graph G
satisfying the additional conditions that the degree of node 1 is k and the degree of
node n is I. Suggest a Lagrangian relaxation bounding procedure for this problem.
(Hint: Consider relaxing just one of the two degree constraints.)

16.33. Capacitated minimum spanning tree problem (Gavish [1985]). In some applications of
the minimum spanning tree problem, we want to construct a capacitated tree T rooted
at a specially designated node, say node 1. In this problem we wish to identify a
minimum cost spanning tree subject to the additional condition that no subtree of T
formed by eliminating all the arcs incident to node 1 contains more than a prescribed
number u of nodes. This model arises, for example, in computer networking when
node 1 is a central processor and for reasons of reliability we wish to limit the number
of nodes (terminals) attached to this node through any of its ports (incident arcs). Let
Yij be a zero-one variable, indicating whether or not we include arc (i,j) in the optimal
capacitated tree.
(a) Explain how the capacitated minimum spanning tree problem differs from the

degree-constrained minimum spanning tree problem.
(b) By introducing additional constraints in the integer programming formulation

(13.2) of the minimum spanning tree problem, obtain an integer programming for
mulation of the capacitated minimum spanning tree problem.

(c) Suggest a Lagrangian-based method for obtaining a lower bound on the optimal
solution by solving a sequence of minimum spanning tree problems.

16.34. Identical customer vehicle routing problem. In the identical customer vehicle routing
problem, each customer has the same demand. Formulate this problem as a capacitated
minimum spanning tree problem with additional constraints. Show how to obtain
bounds on the objective values by applying Lagrangian relaxation to this problem
using the capacitated minimum spanning tree problem as a subproblem.

16.35. Note that every solution to a vehicle routing problem is a degree constrained minimum
spanning tree (with degree K for node 1) together with K additional arcs incident to
node 1 as well as another set of constraints modeling vehicle capacities. Use this
observation to give a formulation of the vehicle routing problem and an associated
Lagrangian relaxation that contains the degree-constrained minimum spanning tree
problem as a subproblem.

16.36. Lagrangian decomposition (Guignard and Kim [1987a,b]). Consider the optimization
problem PI defined as min{cx : sIlx = b, qnx = d, x ~ 0 and integer}. Suppose that
by using a variable splitting technique described in Application 16.5, we restate this

Chap. 16 Exercises 647

problem in the following equivalent form P2: minHcx + icy : dlx = b, qny = d, x -
Y = 0, x, Y 2:: 0 and integer}. We might form three different Lagrangian relaxations
for this problem, one by relaxing the constraint dlx = b "in'-J>2, one by relaxing the
constraint qnx = d in P2, and one by relaxing the constraint x - y in P2. Let L I , L 2,

and L 3 denote the optimal values of the Lagrangian multiplier problems for each of
these relaxations. The approach via problem L3 is known as a Lagrangian decom
position since it permits us to decompose the problem into two separate subproblems,
one corresponding to each set of equality constraints. Using Theorems 16.8 and Theo
rem 16.9, show that L3 2:: LI and L3 2:: L2. (Hint: Let HI and HZ, respectively, denote
the convex hulls of the sets {qnx = d, x 2:: 0 and integer} and {dlx = b, x 2:: 0 and
integer}. Consider the sets HI n {x : dlx = b}, HZ n {x : qnx = d}, and HI n fl2,
and consider the minimization of the objective function cx over each of these sets.
Which of these problems has the smallest objective function value? What is the re
lationship between these optimal objective function values and the values L I , L 2 , and
L3?)

16.37. Example of Lagrangian decomposition. Suppose that we apply the Lagrangian decom
position procedure to the following integer programming example:

648

subject to

9xI + lOx2 :s 63,

4xI + 9x2 :s 36,

Minimize -2x1 - 3X2

xI. X2 2:: 0 and integer.

In this case, the reformulated problem is:

subject to

9xI + lOx2 :s 63,

4YI + 9y2 :s 36,

XI - YI = 0,

X2 - Y2 = 0,

Minimize - XI - ~X2 - YI - ~Y2

XI. Xz, YI, Y2 2:: 0 and integer.

Give a geometrical interpretation of the Lagrangian relaxation obtained by relaxing
each of the following constraints: (1) 4xI + 9X2 :s 36; (2) 4YI + 9Y2 :s 36; and (3)
XI - YI = 0 and X2 - Y2 = O. From these geometrical considerations, interpret the
fact that in the notation of Exercise 16.36, L 3, 2:: L I and that L3 2:: L 2.

Lagrangian Relaxation and Network Optimization Chap. 16

17

MULTICOMMODITY FLOWS

Chapter Outline

17 .1 Introduction
17.2 Applications
17.3 Optimality Conditions
17.4 Lagrangian Relaxation
17.5 Column Generation Approach
17.6 Dantzig-Wolfe Decomposition
17.7 Resource-Directive Decomposition
17.8 Basis Partitioning
17.9 Summary

17.1 INTRODUCTION

You cannot conceive the many without the one.
-Plato

Throughout most of our discussion to this pOInt, we have considered network models
composed of a single commodity-one that we wish to send from its source(s) to
its sink(s) in some optimal fashion, for example, along .a shortest path or via a min
imum cost flow. In many application contexts, several physical commodities, ve
hicles, or messages, each governed by their own network flow constraints, share
the same network. For example, in telecommunications applications, telephone calls
between specific node pairs in an underlying telephone network each define a sep
arate commodity. If the commodities do not interact in any way, then to solve
problems with several commodities, we would solve each single-commodity problem
separately using the techniques that we have developed in prior chapters. In other
situations, however, because the commodities do share common facilities, the in
dividual single commodity problems are not independent, so to find an optimal flow,
we need to solve the problems in concert with each other. In this chapter we study
one such model, known as the multicommodity flow problem, in which the individual
commodities share common arc capacities. That is, each arc has a capacity Uij that
restricts the total flow of all commodities on that arc.

Let xt denote the flow of commodity k on arc (i, j), and let Xk and ck denote
the flow vector and per unit cost vector for commodity k. Using this notation we
Can formulate the multicommodity flow problem as follows:

Minimize (17.1a)

subject to

649

~ xt S Uij for all (i, j) E A,
l:5k:5K

for k = 1,2, ... , K,

for all (i, j) E A and all k = 1, 2, ... , K.

(17.1b)

(17.1c)

(17.1d)

This formulation has a collection of K ordinary mass balance constraints
(17.1c), modeling the flow of each commodity k = 1,2, ... , K. The "bundle"
constraints (17.1b) tie together the commodities by restricting the total flow
~1:5k:5K xi of all the commodities on each arc (i, j) to at most uij. Note that we also
impose individual flow bounds ui on the flow of commodity k on arc (i, j). Many
applications do not impose these bounds, so for these applications we set each bound
to + 00. Although we might formulate a variety of alternative multicommodity models
with different assumptions, we will refer to this model as the multicommodity flow
problem.

At times in our discussion, it will be more convenient to state the bundle con
straints (17 .1 b) as equalities instead of inequalities. In these instances we introduce
nonnegative "slack" variables Sij and write the bundle constraints as

~ xi + Sij = Uij for all (i, j) E A. (17.1b')
i:5k:5K

The slack variable Sij for the arc (i, j) measures the unused bundle capacity on that
arc.

Assumptions

Note that the model (17.1) imposes capacities on the arcs but not on the nodes. This
modeling assumption imposes no loss of generality, since by using the node splitting
techniques described in Section 2.4, we can use this formulation to model situations
with node capacities as well. Three other features of the model are worth noting.

Homogeneous goods assumption. Weare assuming that every unit flow
of each commodity uses 1 unit of capacity of each arc. A more general model would
permit the unit flow of each commodity k to consume a given amount pi of
the capacity (or some other resource) associated with each arc (i, j), and replace
the bundle constraint with a more general resource availability constraint
~1:5k:5K pixt S Uij. With minor modifications, the solution techniques that we
will be discussing in this chapter apply to this more general model as well (see
Exercise 17.10).

No congestion assumption. We are assuming that we have a hard (i.e.,
fixed) capacity on each arc and that the cost on each arc is linear in the flow on that
arc. In some applications encountered in communication, transportation, and other
problem domains, the commodities interact in a more complicated fashion in the
sense that as the flow of any commodity increases on an arc, we incur an increasing
and nonlinear cost on that arc. This type of model arises frequently, for example,
in traffic networks where the objective function is to find the flow pattern of all the
commodities that minimizes overall system delay. In this setting, because of queuing

650 Multicommodity Flows Chap. 17

effects, the greater the flow on an arc, the greater is the queuing delay on that arc.
For example, a "congestion" model for multicommodity flows might contain the
individual flow constraints (17.1b) and (17.1c), no bundle constraint, but a nonlinear
objective function of the form

Minimize ~
(i,j)EA Uu - Xu

In this model Uij is the "nominal" capacity of the arc (i, j); as the total flow
Xij = ~(i,j)EA xi on any arc approaches the arc's nominal capacity, the delay ap
proaches + 00 (this form of the objective function is derived from basic results in
queuing theory). Practitioners often use this type of model in the context of "per
formance modeling" to see how overall system delay, or performance, varies as a
function of various system designs (e.g., in response to changes in the network
topology). In Chapter 14 we show how to solve these nonlinear models for a single
commodity as a generalization of the minimum cost flow problem. In Exercise 17.11
we show how to solve a class of nonlinear multicommodity flow problems.

Indivisible goods assumption. The model (17.1) assumes that the flow
variables can be fractional. In some applications encountered in practice, this as
sumption is appropriate; in other contexts, however, the variables must be integer
valued. In these instances the model that we are considering might still prove to be
useful, since the linear programming model might either be a good approximation
of the integer programming model, or we can use the linear programming model as
a linear programming relaxation of the integer program and embed it within branch
and-bound or some other type of enumeration approach.

We note that the integrality of solutions is one very important distinguishing
feature between single and multicommodity flow problems. As we have seen several
times in our previous development, one very nice feature of single-commodity net
work flow problems is that they always have integer solutions whenever the supply/
demand and capacity data are integer valued. Multicommodity flow problems do
not satisfy this integrality property. For example, consider a multicommodity max
imum flow problem with three noctes 1, 2, 3, and three commodities as shown in
Figure 17.1. Each arc has a capacity of 1 unit. We wish to find a solution that
maximizes the total flow between the source and sink nodes of all three commodities.

Sec. 17.1 Introduction

Figure 17.1 Multicommodity
maximum flow problem with a
fractional solution. Maximum total flow
from all sources to all sinks is 1.5 units.

651

The optimal solution is to send 0.5 units between the source and sink of all three
commodities for a total flow of 1.5 units. The optimal integral solution to this problem
would send 1 unit between just one of the three commodities for a total flow of 1
unit. In Exercise 17.25 we ask the reader to formulate this multicommodity maximum
flow problem as a special case of the multicommodity flow problem stated in (17.1)
and so to show that this model does not always have integral solutions even when
the problem data are integral.

Solution Approaches

Researchers have developed several approaches for solving the multicommodity flow
problem, including:

1. Price-directive decomposition
2. Resource-directive decomposition
3. Partitioning methods

Price-directive decomposition methods place Lagrangian multipliers (or prices)
on the bundle constraints and bring them into the objective function so that the
resulting problem decomposes into a separate minimum cost flow problem for each
commodity k. That is, these methods remove the capacity constraints and instead
"charge" each commodity for the use of the capacity of each arc. These methods
attempt to find appropriate prices so that some optimal solution to the resulting
"pricing problem" or Lagrangian subproblem also solves the overall multicom
modity flow problem. Several methods are available for finding appropriate prices.
Building on our discussion of Lagrangian relaxation methods in Chapter 16, we
describe the application of Lagrangian relaxation to find the correct prices in Section
17.4.

Dantzig-Wolfe decomposition is another approach for finding the correct
prices; this method is a general-purpose approach for decomposing problems that
have a set of "easy" constraints and also a set of "hard" constraints (that is, con
straints that make the problem much more difficult to solve). For multicommodity
flow problems, the network flow constraints are the easy constraints and the bundle
constraints are the hard constraints. The approach begins, like Lagrangian relaxa
tion, by ignoring or imposing prices on the bundle constraints and solving Lagrangian
subproblems with only the single-commodity network flow constraints. The resulting
solutions need not satisfy the bundle constraints, and the method uses linear pro
gramming to update the prices so that the solutions generated from the subproblems
satisfy the bundle constraints. The method iteratively solves two different problems:
a Lagrangian subproblem and a price-setting linear program. This method has played
an important role in the field of optimization both because the algorithm itself has
proven to be very useful, and also because it has stimulated many other approaches
to problem decomposition. Moreover, the algorithm and its associated underlying
theory have had a significant influence on the field of economics since this type of
price decomposition formalizes ideas of transfer pricing and coordination that lie at
the heart ~f planned economies. In Sections 17.5 and 17.6 we describe the use of

652 Multicommodity Flows Chap. 17

Dantzig-Wolfe decomposition, and the related technique of column generation, for
solving the multicommodity flow problem.

An alternative way of viewing the multicommodity flow problem is as a capacity
allocation problem. All the commodities are competing for the fixed capacity Uij of
every arc (i, j) of the network. Any optimal solution to the multicommodity flow
problem will prescribe a specific flow on each arc (i, j) for each commodity which
is the appropriate capacity to allocate to that commodity. If we started by allocating
these capacities to the commodities and then solved the resulting (independent)
single-commodity flow problems, we would be able to solve the problem quite easily
as a set of independent single-commodity flow problems. Resource-directive meth
ods provide a general solution approach for implementing this idea. They begin by
allocating the capacities to the commodities and then use information gleaned from
the solution to the resulting single-commodity problems to reallocate the capacities
in a way that improves the overall system cost. In Section 17.7 we show how to
solve the multicommodity flow problem using this resource-directive approach.

Partitioning methods exploit the fact that the multicommodity flow problem is
a specially structured linear program with embedded network flow problems. As we
have seen in Chapter 11, to solve any single-commodity flow problem, we can use
the network simplex method, which works by generating a sequence of improving
spanning tree solutions. In Section 11.11 we showed how to interpret the network
simplex method as a special implementation of the simplex method for general linear
programs and showed that spanning trees solutions correspond to basic feasible
solutions of the minimum cost flow problem. This observation raises the following
questions: (1) Can we adopt a similar approach for solving the multicommodity flow
problem? (2) Can we somehow use spanning tree solutions for the embedded network
flow constraints .Nxk = b k ? The partitioning method is a linear programming ap
proach that permits us to answer both of these questions affirmatively. It maintains
a linear programming basis that is composed of bases (spanning trees) of the indi
vidual single-commodity flow problems as well as additional arcs that are required
to "tie" these solutions together to accommodate the bundle constraints. In Section
17.8 we describe the essential features of this approach.

The various solution techniques we describe in this chapter require linear pro
gramming background. We refer the reader to Appendix C for a review of this ma
terial. Before discussing the solution techniques, we describe several applications
of the multicommodity flow problem.

17.2 APPLICATIONS

Multicommodity flow problems arise in a wide variety of application contexts. In
this section we consider several instances of one very general type of application
as well as a production planning and warehousing example and a vehicle fleet plan
ning example.

Application 17.1 Routing of Multiple Commodities

In many applications of the multicommodity flow problem, we distinguish com
modities because they are different physical goods, and/or because they have dif
ferent points of origin and destination; that is, either (1) several physically distinct

Sec. 17.2 Applications 653

commodities (e.g., different manufactured goods) share a common network, or (2)
a single physical good (e.g., messages or products) flows on a network, but the good
has multiple points of origin and destination defined by different pairs of nodes in
the network that need to send the good to each other. This second type of application
arises frequently in problem contexts such as communication systems or distribution!
transportation systems. In this section we introduce several application domains of
both types.

Communication networks. In a communication network, nodes represent
origin and destination stations for messages, and arcs represent transmission lines.
Messages between different pairs of nodes define distinct commodities; the supply
and demand for each commodity is the number of messages to be sent between the
origin and destination nodes of that commodity. Each transmission line has a fixed
capacity (in some applications the capacity of each arc is fixed; in others, we might
be able to increase the capacity at a certain cost per unit). In this network, the
problem of determining the minimum cost routing of messages is a multicommodity
flow problem.

Computer networks. In a computer communication network, the nodes
represent storage devices, terminals, or computer systems. The supplies and de
mands correspond to the data transmission rates between the computer, terminals,
and storage devices, and the transmission line capacities define the bundle con
straints.

Railroad. transportation networks. In a rail network, nodes represent yard
and junction points, and arcs represent track sections between the yards. The de
mand is measured by the number of cars (or any other equivalent measure of tonnage)
to be loaded on any train. Since the system incurs different costs for different goods,
we divide traffic demand into different classes. Each commodity in this network
corresponds to a particular class of demand between a particular origin-destination
pair. The bundle capacity of each arc is the number of cars that we can load on the
trains that are scheduled to be dispatched on that arc (over some period of time).
The decision problem in this network is to meet the demands of cars at the minimum
possible operating cost.

Distribution networks. In distribution systems planning, we wish to dis
tribute multiple (nonhomogeneous) products from plants to retailers using a fleet of
trucks or railcars and using a variety of railheads and warehouses. The products
define the commodities of the multicommodity flow problem, and the joint capacities
of the plants, warehouses, railyards, and the shipping lanes define the bundle con
straints. Note that in this application the nodes (plants, warehouses) as well as the
arcs have bundle constraints.

Foodgrain export-import network. The nodes in this network correspond
to geographically dispersed locations in different countries, and the arcs correspond
to shipments by rail, truck, and ocean freighter. Between these locations, the com-

654 Multicommodity Flows Chap. 17

modities are various foodgrains, such as corn, wheat, rice, and soybeans. The ca
pacities at the ports define the bundle constraints.

Application 17.2 Warehousing of Seasonal Products

A company manufactures multiple products. The products are seasonal, with de
mands varying weekly, monthly, or quarterly. To use its work force and capital
equipment efficiently, the company wishes to "smooth" production, storing pre
season production to supplement peak-season production. The company has a ware
house with fixed capacity R that it uses to store all the products it produces. Its
decision problem is to identify the production levels of all the products for every
week, month, or quarter of the year that will permit it to satisfy the demands incurring
the minimum possible production and storage costs.

We can view this warehousing problem as a multicommodity flow problem
defined on an appropriate network. For simplicity, consider a situation in which the
company makes two products and the company needs to schedule its production for
each of the next four quarters of the year. Let d} and d} denote the demand for
products 1 and 2 in quarter j. Suppose that the production capacity for thejth quarter
is u} and u}, and that the per unit cost of production for this quarter is
c} and c}. Let h} and h} denote the storage (holding) costs of the two products from
quarter j to quarter j + 1.

Figure 17.2 shows the network corresponding to the warehousing problem. The
network contains one node for each time period (quarter) as well as a source and
sink node for each commodity. The supply and demand of the source and sink nodes
is the total demand for the commodity over all four quarters. Each source nodI{_ Sk

has four outgoing arcs, one corresponding to each quarter. Only one commodity
flows on each of these arcs. We associate a cost cJ and capacity uJ with arc (s\j).
Similarly, the sink node tk has four incoming arcs; sink arc (j, tk

) has a zero cost
and capacity dJ. The remaining arcs are of the form (j, j + 1) for j = 1, 2, 3; the
flow on these arcs represents the units stored from period j to period j + 1. Each
of these storage arcs has a capacity R, a per unit flow of hJ for commodity 1 and a
per unit flow cost of h} for commedity 2. The two commodities share the capacity
of this arc.

Sec. 17.2

Source
nodes for

commodities k

Applications

Time
periods

Sink
nodes for

commodities k

Figure 17.2 Optimal warehousing of
seasonal products.

655

It is easy to see that each feasible multicommodity flow x in the network spec
ifies a feasible production and inventory schedule for the two products with the same
cost as the flow x. By optimizing the multicommodity flow,-we find the optimal
production and inventory plan.

The warehousing problem we have considered is a relatively simple model; We
can augment it to include more realistic complexities: for example, transportation
expenses incurred between plant-warehouse, warehouse-retailer, and plant
retailer combinations. It is relatively straightforward to incorporate these features
in our model (see Exercise 17.2).

Application 17.3 Multivehicle Tanker Scheduling

Suppose that we wish to determine the optimal routing of fuel oil tankers required
to achieve a prescribed schedule of deliveries: Each delivery is a shipment with a
given delivery date of some commodity from a point of supply to a point of demand.
In the simplest form this problem considers a single product (e.g., aviation gasoline
or crude oil) to be delivered by a single type of tanker. We discussed this simple
version of the problem in Application 6.6 and showed how to determine the minimum
tanker fleet to meet the delivery schedule by solving a maximum flow problem. The
multivehicle tanker scheduling problem, studied in this application, considers the
scheduling and routing of a fixed fleet of nonhomogeneous tankers to meet a pre
specified set of shipments of multiple products. The tankers differ in their speeds,
carrying capabilities, and operating costs.

To formulate the multivehicle tanker scheduling problem as a multicommodity
flow problem, we let the different commodities correspond to different tanker types.
The network corresponding to the multivehicle tanker scheduling problem is similar
to that of the single vehicle type, shown in Figure 6.9, except that each distinct type
of tanker originates at a unique source node Sk. This network has four types of arcs
(see Figure 17.3 for a partial example with two tanker types): in-service arcs, out
of-service arcs, delivery arcs, and return arcs. An in-service arc corresponds to the
initial employment of a tanker type; the cost of this arc is the cost of deploying the
tanker at the origin of the shipment. Similarly, an out-of-service arc corresponds to
the removal of the tanker from service. A delivery arc (i, j) represents a shipment
from origin ito destinationj; the cost ct of this arc is the operating cost of carrying
the shipment by a tanker of type k. A return arc (j, k) denotes the movement ("back-

Tanker
origin
nodes

656

Delivery arc

Figure 17.3 Multivehicle tanker scheduling problem as a multicommodity flow problem.

Multicommodity Flows Chap. 17

haUl") of an empty tanker, with an appropriate cost, between two consecutive ship
ments (i, j) and (k, I).

Each arc in the network has a capacity of 1. The shipment arcs have a bundle
capacity ensuring that at most one tanker type services that arc. Each shipment arc
also has a lower flow bound of 1 unit, which ensures that the chosen schedule does
indeed deliver the shipment. Some arcs might also have commodity-based capacities
ut. For instance, if tanker type 2 is not capable of handling the shipment on arc
(i, j), we set ut = O. Moreover, if tanker type 2 can use the return arc (j, k), but
tanker type 1 cannot (because it is too slow to make the connection between ship
ments), we set UJk = O.

Airline scheduling is another important application domain for this type of
model. In this problem context, the vehicles are different types of airplanes in an
airline's fleet (e.g., Boeing 727s or 747s or McDonald Douglas DC lOs). The delivery
arcs in this problem context are the flight legs that the airline wishes to cover.

We might note that in this formulation of the multivehicle tanker scheduling
problem, we are interested in integer solutions ofthe multicommodity flow problem.
The solutions obtained by the multi commodity flow algorithms described in this
chapter need not be integral. Nevertheless, the fractional solution might be useful
in several ways. For example, we might be able to convert the nonintegral solution
into a (possibly, suboptimal) integral solution by minor tinkering, or as we noted
earlier, we might use the nonintegral solution as a bound in solving the integer
valued problem by a branch-and-bound enumeration procedure.

17.3 OPTIMALITY CONDITIONS

Throughout our previous development, as we introduced each new problem, we
usually began by stating optimality conditions for characterizing when a given fea
sible solution was optimal. Doing so permitted us to assess whether or not we have
found an optimal solution to the problem. It also permitted us to interpret various
algorithms as particular methods for solving the optimality conditions, and in several
instances even suggested novel algorithmic approaches for solving the problem we
were studying. Optimality conditions for the multicommodity flow problem serve
these same purposes; so before discussing algorithms for solving the problem, we
describe these conditions. For this discussion we assume that the flow variables
xt have no individual flow bounds; that is, each ut = + 00 in the formulation (17.1).

Since the multi commodity flow problem is a linear program, we can use linear
programming optimality conditions to characterize optimal solutions to the problem.
These conditions assume a particularly simple, and familiar, form for the multicom
modity flow problem. Since the linear programming formulation (17.1) of the problem
has one bundle constraint for every arc (i, j) of the network and one mass balance
constraint for each node-commodity combination, the dual linear program has two
types of dual variables: a price Wij on each arc (i, j) and a node potential -rrk(i) for
each combination of commodity k and node i. Using these dual variables, we define
the reduced cost cr/ of arc (i, j) with respect to commodity k as follows:

clJ,k = ct + Wij - -rrk(i) + -rrk(j).

In matrix notation, this definition is C"",k = ck + W - -rrk N.

Sec. 17.3 Optimality Conditions 657

Note that if we consider a fixed commodity k, this reduced cost is similar to
the reduced cost that we have used previously for the minimum cost flow problem;
the difference is that we now add the arc price Wij to the ani-cost ct. Note that just
as the bundle constraints provided a linkage between the otherwise independent
commodity flow variables xt, the arc prices Wij provide a linkage between the other
wise independent commodity reduced costs.

To use linear programming duality theory to characterize optimal solutions to
the multicommodity flow problem, we first write the dual of the multicommodity
flow problem (17.1):

K

Maximize - ~ UijWij + ~ bk'Trk
(i,j)EA k= 1

subject to

cij,k = ct + Wij - 'Trk(i) + 'Trk(j) ;::: 0 for all (i,j) E A and all k = 1, ... ,K,

for all (i, j) EA.

The optimality conditions for a linear programming, called the complementary
slackness (optimality) conditions, state that a primal feasible solution x and a dual
feasible solution (w, 'Trk) are optimal to the respective problems if and only if the
product of each primal (dual) variable and the slack in the corresponding dual (primal)
constraint is zero. The complementary slackness conditions for the primal-dual pair
of the multicommodity flow problem assume the following special form. (In this
statement, we use yt to denote a specific value of the flow variable xt.)

Multicommodity flow complementary slackness conditions. The com
modity flows yt are optimal in the multicommodity flow problem (17.1) with each
ut = +00 if and only if they are feasible andfor some choice of (nonnegative) arc
prices wij and (unrestricted in sign) node potentials 'Trk(i), the reduced costs and
arc flows satisfy the following complementary slackness conditions:

(a) Wij (~ yt - Uij) = (j for all arcs (i, j) EA. (17.2a)
lc:5kc:5K

(b) cij,k ;::: 0 for all arcs (i, j) E A and

all commodities k = 1, 2, ... , K.

(c) cij,kyt = 0 for all arcs (i, j) E A and

all commodities k = 1, 2, ... , K.

(17.2b)

(17.2c)

We refer to any set of arc prices and node potentials that satisfy the comple
mentary slackness conditions as optimal arc prices and optimal node potentials. The
following theorem shows the connection between the multicommodity and single
commodity flow problems.

Theorem 17.1 (Partial Dualization). Let yt be optimal flows and let Wij be
optimal arc prices for the multicommodity flow problem (17.1). Thenfor each com
modity k, the flow variables yt for (i, j) E A solve the following (uncapacitated)
minimum cost flow problem:

658 Multicommodity Flows Chap. 17

min{ ~ (ct + Wij)xt : .Nxk = b, xt ;::;: Ofor all (i, j) E A}.
(i.j)EA

(17.3)

Proof. Since yt are optimal flows and Wij are optimal arc prices for the mul
ticommodity flow problem (17.1), these variables together with some set of node
potentials 'lTk(i) satisfy the complementary slackness condition (17.2). Now notice
that conditions (17.2b) and (17.2c) are the optimality conditions for the uncapacitated
minimum cost flow problem for commodity k with arc costs (ct + Wij) [see condition
(9.8) in Section 9.3 with Uij = 00]. This observation implies that the flows yt solve
the corresponding minimum cost flow problems. •

This property shows that we can use a sequential approach for obtaining optimal
arc prices and node potentials: We first find optimal arc prices and then attempt to
find the optimal node potentials and flows by solving the single-commodity minimum
cost flow problems (17.3). In the next few sections we use this observation to develop
and assess algorithms for solving the multicommodity flow problem.

To illustrate the partial dualization result, we consider a numerical example.
The multi commodity flow problem shown in Figure 17.4 has two commodities and
two arcs with bundle capacities: arc (s 1, t 1) with a capacity of 5 units and arc (1, 2).

10 units

20 units

10 units

20 units

(5, (0)

(1,00)

(1,5)

(5, (0)

(a)

(b)

c;7 = cij for all arcs (i, j) and
for all commodities k = 1, 2

10 units

(5, (0)

20 units

10 units

20 units

Figure 17.4 Multicommodity flow example: (a) problem data; (b) optimal solution.

Sec. 17.3 Optimality Conditions 659

with a capacity of 10 units. For this example, since each commodity has a single
source and sink, for any choice of the arc prices Wij, the networ~flow problem (17.3)
is a shortest path problem. As shown in Figure 17 .4(b), the optimal solution of this
problem has y1 1tl = y11! = yh = y1tl = y~2! = yh = y~t2 = 5, y~2t2 = 15, and all
other yt = O. Note that the total flow on arc (Sl, (I) and on arc (1, 2) equals its
bundle capacity. Suppose that we set W12 = 2 and Wsltl = 12. Then with respect to
the arc costs ct + Wij, the shortest path distances for commodity 1 are d!(s!) =
0, d l(1) = 5, d l(2) = 8, dl«(I) = 13, d l(t2) = 9, d!(S2) = +00 and the shortest
path distances for commodity 2 are d 2(S2) = 0, d 2(1) = 1, d 2(2) = 4, d 2(t2) = 5,
d 2(t1) = 9, d 2(SI) = +00. If we set, 'lTk(i) = -dk(i) for all nodes i and for both
commodities k = 1, 2, the node potentials 'lTk(i), arc prices Wij, and arc flows yt
given earlier satisfy the optimality conditions (17.2). Therefore, we have verified
that y is an optimal solution to the problem and that w, 'IT!, 'lT2 are optimal arc prices
and node potentials.

17.4 LAGRANGIAN RELAXATION

To apply Lagrangian relaxation to the multicommodity flow problem, we associate
nonnegative Lagrange multipliers Wij with the bundle constraints (17.1b), creating
the following Lagrangian subproblem:

L(w) = min ~ CkXk + ~ Wij (~ xi - Ui) (17.4a)
(i,j)EA ! s;kS;K

or, equivalently,

L(w) = min ~ ~ (ci + Wi)Xt - ~ wijuij
!s;ks;K (i,j)EA (i,j)EA

subject to

for all k = 1, ... , K,

for all (i, j) E A and all k = 1, 2, ... , K.

(17.4b)

(l7.4c)

(l7.4d)

Note that since the term - ~(i,j)EA wijuij in the objective function of the La
grangian subproblem is a constant for any given choice of the Lagrange multipliers,
for any fixed value of these multipliers, this term is a constant and therefore we can
ignore it. The resulting objective function for the Lagrangian subproblem has a cost
of ci + Wij associated with every flow variable xi. Since none of the constraints in
this problem contains the flow variables for more than one of the commodities, the
problem decomposes into separate minimum cost flow problems, one for each com
modity. Consequently, to apply the subgradient optimization procedure from Section
16.~ to this problem, we would alternately (1) solve a set of minimum cost flow
pr~blems (for a fixed value of the Lagrange multipliers w) with the cost coefficients
c5 + wij, and (2) update the multipliers by the algorithmic procedures described in
Section 16.3. In this case, if yt denotes the optimal solution to the minimum cost
flow subproblems when the Lagrange multipliers have the value wlj at the qth it
eration, the subgradient update formula becomes

wlj+! [wlj + 8q (~ yi - Ui)] + .
ls;ks;K

660 Multicommodity Flows Chap. 17

In this expression, the notation [a] + denotes the positive part of a, that is, max(a,
0). The scalar 6q is a step size specifying how far we move from the current solution
Woo Note that this update formula increases the mUltiplier wo on arc (i, j) by the
amount (~IS;kS;K yt - Uij) if the subproblem solutions yt use more than the available
capacity Uij of that arc, or reduces the Lagrange multiplier of arc (i, j) by the amount
(uij - ~1S;kS;K yt) if the subproblem solutions yt use less than the available capacity
of that arc. If, however, the decrease would cause the multiplier wo+ I to become
negative, we reduce the multiplier to value zero. We choose the step sizes 6q for
iterations q = 1, 2, ... , in accordance with the procedures described in Chapter
16.

It is instructive to view the subgradient method for the multicommodity flow
problem as a solution procedure for solving the linear program (17.1) that is able to
exploit the special structure of the unrelaxed mass balance constraints. In Theorem
16.6 we noted that whenever we apply Lagrangian relaxation to any linear program,
such as the multicommodity flow problem, the optimal value L * = maxw;;:,o L(w)
of the Lagrangian multiplier problem equals the optimal objective function value z*
of the linear program. We illustrate this technique with a numerical example.

Consider again the two-commodity example shown in Figure 17.4. As we noted
in our discussion in Section 17.3, for any choice of the Lagrange multipliers WI2 and
Wsltl for the two capacitated arcs (Sl, tl) and (1,2), the problem decomposes into
two shortest path problems. If we start with the Lagrange multipliers WY2
W~ltl = 0, then in the subproblem solutions, the shortest path s I_tl carries 10 units
of flow at a cost of 1(10) = 10 and the path s2-1-2-t2 carries 20 units of flow at a
cost of 3(20) = 60. Therefore, L(O) = 10 + 60 = 70 is a lower bound on the optimal
objective function value for the problem. Since Y!ltl + Y;ltl - Usl t 1 = 5 and yb +
YI2 - UI2 = 10, the update formulas become

If we choose 60 = 1, then W!ltl = 5 and wb = 10. The new shortest path
solutions send 10 units on the path s I_tl at a cost of (1 + 5) (10) = 60 and 20 units
on the path s2_t2 at a cost of 5(20) ;;;, 100. The new lower bound obtained through
(17.4b) is 60 + 100 - wbul2 - W!ltlUsltl = 160 - 10(10) - 5(5) = 35. (Note that
the value of the lower bound has decreased.) At this point, Y!ltl + Y~ltl - Usltl =
5 and yb + YI2 - UI2 = 0, so the update formulas become

Choosing the step size 61 = 1 again, we find that wb = 0 and W;ltl = 10 and that
the new shortest path solutions send 10 units on the path s I_tl at a cost of (1 + 10)
(10) = 110 and 20 units on the path s2-1-2-t2 at a cost of 3(20) = 60. If we continue
by choosing the step sizes for the kth iteration as 6k = 11k, in accordance with the
theory of subgradient optimization as discussed in Section 16.4, we obtain the set
of iterates shown in Figure 17.5. From iteration 14 on, the values of the Lagrange
multipliers oscillate about, and converge to, their optimal values WI2 = 2 and
Wsltl = 12 and the optimal lower bound oscillates about its optimal value 150, which
equals the optimal objective function value of the multicommodity flow problem.

Sec. 17.4 Lagrangian Relaxation 661

Iteration Shortest Shortest path 10w'l2 Lower bound
number q W'l2 w11t 1 paths costs + 5w1·1tl.~ L(wq) 9q

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 0 sl_tl 10(1) 0 70 1
s2_1_2_t2 20(1 + 1 + 1)

10 5 sl_il 10(1 + 5) 125 35 1
s2_t2 20(5)

0 10 sl_tl 10(1 + 10) 50 120 0.5
s2_1_2_t2 20(1 + 1 + 1)

5 12.5 sl_tl 10(1 + 12.5) 112.5 122.5 0.333
s2_t2 20(5)

1.67 14.17 sl-I-2-tl 10(5 + 2.67 + 5) 87.55 132.5 0.25
s2_1_2_t2 20(1 + 2.67 + 1)

6.67 12.92 sl_tl 10(1 + 12.92) 131.3 107.9 0.2
s2_t2 20(5)

4.67 13.92 sl_tl 10(1 + 13.92) 116.3 132.9 0.167
s2_t2 20(5)

3 14.75 sl_I_2_t1 10(5 + 4 + 5) 103.8 136.3 0.143
s2_t2 20(5)

3 14.04 sl_I_2_t1 10(5 + 4 + 5) 100.2 139.8 0.125
s2_t2 20(5)

3 13.41 sl_I_2_tl 10(5 + 4 + 5) 97.05 143.0 0.111
s2_t2 20(5)

3 12.86 sl_tl 10(1 + 12.86) 94.3 144.3 0.1
s2_t2 20(5)

2 13.36 sl_I_2_tl 10(5 + 3 + 5) 86.8 143.2 0.091
s2_f 20(5)

2 12.9 sl_I_2_t1 10(5 + 3 + 5) 84.5 145.5 0.083
s2_t2 20(5)

2 12.48 sl-I-2-tl 10(5 + 3 + 5) 82.2 147.6 0.077
s2_t2 20(5)

2 12.09 sl_I_2_t1 10(5 + 3 + 5) 80.25 149.5 0.071
s2-f 20(5)

Figure 17.5 Application of subgradient optimization to a multicommodity flow problem.

Figures 17.6 and 17.7 show how the values of the Lagrange multipliers and
Lagrangian lower bounds vary during the execution of the algorithm. Note that
neither the multiplier values nor the lower bounds converge monotonically to their
optimal values. In this example, as in the application of Lagrangian relaxation in
general, these values tend to oscillate, sometimes considerably, before settling down
to their optimal values.

662 Multicommodity Flows Chap. 17

20
19
18
17

I
16
15
14
13
12

'" 11
Q}

10 '" «! 9 > 8
] 7
;E 6

'" 5 ;:;s 4
3
2

--\
Optimal values

~~--[
1
0

0 5 10 15 20

Iteration •

Figure 17.6 Multiplier values for the numerical example.

The use of subgradient optimization for solving the Lagrangian multiplier prob
lem is attractive for several reasons. First, as we have just noted, this soh,ltion
approach permits us to exploit the underlying network flow structure. Second, the
formulas for updating the Lagrange multipliers Wij are rather trivial computationally
and very easy to encode in a computer program. This solution approach, however,
also has some limitations. To ensure convergence we need to take small step sizes;
as a result, the method does not converge very fast. Second, the method is dual
based, and so even though it is converging to the optimal dual variables Wij, the
optimal solutions yt of the subproblems need not cOnverge to the optimal solution
to the multicommodity flow problem. Indeed, even though we have shown that if
we set the Lagrangian multipliers to their optimal values [Le., as the optimal dual

160
150

I
140
130
120
110

-'\-
Best possible lower bound

't:l HIO I':

'" 0 90 .!:1
....

80 Q}

~
..8 70
§ 60 'ED

~
50
40

'"" 30
20

0 5 10 15 20

Iteration •

Figure 17.7 Lagrangian lower bound for the numerical example.

Sec. 17.4 Lagrangian Relaxation 663

variables for the bundle constraints in the dual to the linear program (17.1)], the
optimal flows yt solve the Lagrangian subproblem (17.4), these subproblems might
also have other optimal solutions that do not satisfy the bundle constraints. For
example, for the problem we have just solved, with the optimal Lagrange multipliers
W12 = 2 and Ws't' = 12, the shortest paths subproblems have solutions with 10 units
on the path sl_tl and 20 units on the path s2_t2. This solution violates the capacity
of the arc (s I, tl). In general, to obtain optimal flows, even after we have solved
the Lagrangian multiplier problem, requires additional work (see Exercise 17.18).

To conclude this discussion of Lagrangian relaxation, we might note that we
can also combine Lagrangian relaxation with linear programming by using Lagran
gian relaxation to develop an "advance basis" start for the linear programming
formulation (17.1). Suppose that we solve the Lagrangian subproblem for any choice
of the Lagrange multipliers by the network simplex algorithm (see Chapter 11). By
doing so we obtain an optimal spanning tree solution for each commodity, which
corresponds to a basis rzAk of the network flow constraints .Nxk = bk. We can extend
these bases into an overall basis rzA of the linear program (17.1), as shown in Figure
17.8. . . c·

The identity matrix in the topmost row in this matrix corresponds to the slack
variables Sij in the equality formulation (17.1b') of the bttndle constraints. Note that
in the solution corresponding to the basis rzA, (1) each flow variable Xk for k = 1,
2, ... , K equals the solution yk to the Lagrangian subproblem, and (2) the values
of the slack variables are given by Sij = Uij - ~1S;kS;K yt. If all the slack variables
are nonnegative, this basis is feasible. If any of them are negative,. the basis is
infeasible. In either case we can apply standard linear programming methods (either
the primal simplex method or the dual simplex method) using this basis as a starting
solution for solving the problem to completion.

This advanced basis defines an attractive starting solution for the simplex
method because it permits us to exploit the underlying network structure and flow
costs to generate a "smart" starting solution for the algorithm. For problems that
are "modestly capacitated," the advanced basis can be a very good approximation

664

Bundle
Constraint
Coefficients

Commodity 1

Commodity 2

Commodity 3

Commodity K

.'J Coefficients of the flow variables
in the bundle constraints

~,

=~
~2

~

Figure 17.8 Initial basis formed from bases of individual commodity subproblems.

Multicommodity Flows Chap. 17

of the optimal solution of the problem and so can greatly improve the performance
of the simplex method. .

We next consider an alternative solution approach, known as Dantzig-Wolfe
decomposition, for solving the Lagrangian multiplier problem. This approach re
quires considerably more work at each iteration for updating the Lagrange multipliers
(the solution of a linear program) but has proved to converge faster than the subgra
dient optimization procedure for several classes of problems. Rather than describing
the Dantzig-Wolfe decomposition procedure as a variation of Lagrangian relaxation,
we will first develop it from an alternate large-scale linear programming viewpoint
that provides a somewhat different perspective on the approach.

17.5 COLUMN GENERATION APPROACH

To simplifY our discussion in this section, we consider a special case of the multi
commodity flow problem: We assume that each commodity k has a single source
node Sk and a single sink node t k and a flow requirement of d k units between these
source and sink nodes. We also assume that we >impose no flow bounds on the
individual commodities other than the bundle constraints. Therefore, for each com
modity k, the subproblem constraints Nxk = b\ Xk 2:: 0 define a shortest path prob.:~
lem: For this model, for any choice Wij of the Lagrange multipliers for the bundle
constraints, the Lagrangian relaxation requires the solution of a series of shortest
path problems, one for each commodity.

Reformulation with Path Flows

To begin our discussion in this section, let us first reformulate the multicommodity
flow problem using path and cycle flows instead of arc flows. Recall from Section
3.5 that we can formulate any network flow problem using path and cycle flows. To
simplify our discussion even further, let us assume that for every commodity the
cost of every cycle W in the underlying network is nonnegative (in Exercise 17.8
we relax this assumption). The problem satisfies this condition, for example, if the
arc flow costs are all nonnegative. If-we impose this nonnegative cycle cost condition,
then in some optimal solution to the problem, the flow on every cycle is zero, so
we can eliminate the cycle flow variables. Therefore, throughout this section we
assume that we can represent any potentially optimal solution as the sum of flows
on directed paths. Let us recall our notation from Section 3.5 concerning path and
cycle decompositions, tailored a bit for the multicommodity flow problem.

For each commodity k, let pk denote the collection of all directed paths from
the source node Sk to the sink node tk in the underlying network G = (N, A). In
the path flow formulation, each decision variable f(P) is the flow on some path P
and for the kth commodity, we define this variable for every directed path Pin pk.

As in Section 3.5, let '8ij(P) be an arc-path indicator variable, that is, '8ij(P)
equals 1 if arc(i, j) is contained ip the path P, and is 0 otherwise. The flow decom
position theorem of network flows states that we can always decompose some op
timal arc flow xt into path flows f(P) as follows:

f(P) = xt :L '8ij(P)f(P).
PEpk

Sec. 17.5 Column Generation Approach 665

Let ck(P) = L(i.j)EA ct3ij(P) = LU.j)EP ct denote the per unit cost of flow
on the path P E pk with respect to the commodity k. Note that for each commodity
k, if we substitute for the arc flow variables in the objective''function, interchange
the order of the summations, and collect terms, we find that

L ctxt = L ct [L 3ij(P)f(P)] = L ck(P)f(P).
(i,j)EA (i,j)EA

This observation shows that we can express the cost of any solution as either the
cost of arc flows or the cost of path flows.

By substituting the path variables in the multicommodity flow formulation, we
obtain the following equivalent path flow formulation of the problem:

Minimize L L ck(P)f(P) (17.5a)
l:5;k:5;K PEpk

subject to

L L 3ij(P)f(P)::S; uij for all (i, j) E A, (17.5b)
l:5;k:5;K PEpk

L f(P) = d k for all k = 1, 2, ... , K, (17.5c)
PEpk

f(P) ;:::: 0 for all k = 1, 2, ... , K and all P E pk. (17.5d)

In formulating this problem we have invoked the flow decomposition theorem stating
that we can decompose any feasible arc flow of the system Nx k = b k into a set of
path and cycle flows in such a way that the path flows satisfy the mass balance
condition (17.5c).

Note that the path flow formulation of the multicommodity flow problem has
a very simple constraint structure. The problem has a single constraint for each arc
(i, j) which states that the sum of the path flows passing through the arc is at most
Uij, the capacity of the arc. Moreover, the problem has a single constraint (17.5c)
for each commodity k which states that the total flow on all the paths connecting
the source node Sk and sink node tk of commodity k must equal the demand d k for
this commodity. For a network with n nodes, m arcs, and K commodities, the path
flow formulation contains m + K constraints (in addition to the nonnegativity re
strictions imposed on the path flow values). In contrast, the arc formulation (17.1)
contains m + nK constraints since it contains one mass balance constraint for every
node and commodity combination. For example, a network with n = 1000 nodes
and m = 5000 arcs and with a commodity between every pair of nodes has ap
proximately K = n2 = 1,000,000 commodities. Therefore, the path flow formulation
contains about 1,005,000 constraints. In contrast, the arc flow formulation contains
about 1,000,005,000 constraints. But the difference is even more pronounced: Be
cause no path appears in more than one of the constraints (17.5c), we can apply a
specialized version of the simplex method, known as the generalized upper bounding
simplex method, to solve the path flow formulation very efficiently. Even though
the linear programming basis for our example has size 1,005,000 by 1,005,000, the
generalized upper bounding simplex method is able to perform all of its matrix com
putations on a much smaller basis of size 5000 by 5000. This method essentially
solves the problem as though it contained only m bundle constraints, which, for this

666 Multicommodity Flows Chap. 17

" sample data, means that we can essentially solve a linear program with only 5000
constraints instead of over 1 billion constraints in the arc formulation.

This savings in the number of constraints does come at a cost, however, since
the path flow formulation has a variable for every path connecting a source and sink
node for each of the commodities. The number of variables will typically be enor
mous, growing exponentially in the size of the network. All hope is not lost, though,
since we might expect that only very few of the paths will carry flow in the optimal
solution to the problem. In fact, linear programming theory permits us to show that
at most K + m paths carry positive flow in some optimal solution to the problem
(see Exercise 17.6). Therefore, for a problem with 1,000,000 commodities and 5,000
arcs as in our previous example, we could, in principle, solve the path flow for
mulation using 1,005,000 paths. Since the problem contains 1,000,000 commodities,
this solution would use two or more paths for at most 5,000 commodities and one
path for at least the 995,000 remaining commodities. If we knew the optimal set of
paths, or a very good set of paths, we could obtain an optimal solution (i.e., values
for the path flows) by solving a linear program containing just the commodities with
two or more sets of paths. The generalized upper bounding linear programming
procedure for solving linear programs permits us to exploit this observation.

Optimality Conditions

Recall that the revised simplex method of linear programming maintains a basis at
every step, and using this basis determines a vector of simplex multipliers for the
constraints. Since the path flow formulation (17.5) contains one bundle constraint
for each arc and one demand constraint (17 .5c) for every commodity, the duallin~ar
program has a dual variable wij for each arc (this is the same arc price that we have
introduced before) and another dual variable Uk for each commodity k = 1, 2, ... ,
K. With respect to these dual variables, the reduced cost c'f,'w for each path flow
variable f(P) is

c'f"W = ck(P) + L Wij - uk.
(i,j)EP

and the complementary slackness conditions (17.2) for the arc formulation of the
original problem assume the following form:

Path flow complementary slackness conditions. The commodity path
flows f(P) are optimal in the path flow formulation (17.5) of the multicommodity
flow problem if and only if for some arc prices wij and commodity prices Uk, the
reduced costs and arc flows satisfy the following complementary slackness condi
tions:

(a) wij [L L 3ij(P)f(P) - uij] = 0 for all (i, j) E A.
i:o;k:O;K PEpk

(b) c'f,'w;::: 0 for all k = 1, 2, ... , K and all P E pk.

(c) c'f"Wf(P) = 0 for all k = 1, 2, ... , K and all P E pk.

(17.6a)

(17.6b)

(17.6c)

We leave the proof of these conditions as an exercise for the reader. These
optimality conditions have a very appealing and intuitive interpretation. Condition

Sec. 17.5 Column Generation Approach 667

(a) states that the price Wij of arc (i, j) is zero if the optimal solution f(P) does not
use all of the capacity Uij of the arc. That is, if the optimal solution does not fully
use the capacity of that arc, we could ignore the constraint (place no price on it).

Since the cost ck(P) of path P is just the sum of the cost of the arcs contained
in that path, that is, ck(P) = LU,j)EP ct, we can write the reduced cost of path P
as

cp,W = L (ct + wij) - Uk.
U,j)EP

That is, the reduced cost of path P is just the cost of that path with respect to the
modified costs ct + Wij minus the commodity cost Uk. The complementary slackness
condition (17.6b) states that the modified path cost LU,j)EP (ct + wij) for each path
connecting the source node Sk and the sink node tk of commodity k must be at least
as large as the commodity cost Uk. The condition (17.6c) implies that reduced cost
cp'w must be zero for any path P that carries flow in the optimal solution [Le., for
which the flow f(P) is positive]; that is, the modified cost LU,j)EP (ct + wij) of this
path must equal the commodity cost Uk. Therefore, conditions (17.6b) and (17.6c)
imply that

Uk is the shortest path distance from node Sk to node tk with respect to the modified
costs ct + Wij and in the optimal solution every path from node Sk to node tk that
carries a positive flow must be a shortest path with respect to the modified costs.

This result shows that the arc costs Wij permit us to decompose the multicom
modity flow problem into a set of independent "modified" cost shortest path prob
lems.

Column Generation Solution Procedure

To this point we have restated the multicommodity flow problem as a large-scale
linear program with an enormous number of columns-with one flow variable for
each path connecting the source and sink of any commodity. We have also shown
how to characterize any optimal solution to this formulation in terms of the linear
programming dual variables Wij and Uk, interpreting these conditions as shortest path
conditions with respect to the modified arc costs ct + Wij. We next show how to
solve the problem by using a solution procedure known as column generation.

The key idea in column generation is never to list explicitly all of the columns
of the problem formulation, but rather to generate them only "as needed." The
revised simplex method of linear programming is perfectly suited for carrying out
this algorithmic strategy. Recall from Appendix C that the revised simplex method
maintains a basis ~ at each iteration. It uses this basis to define a set of simplex
multipliers 1T via the matrix computation 1T~ = CB (in our application, the multipliers
are wand u). That is, the method defines the simplex multipliers so that the reduced
costs cli of the basic variables are zero; that is, cli = Coo - 1T~ = O. To find the
simplex multipliers, the method requires no information about columns (variables)
not in the basis. It then uses the multipliers to price-out the nonbasic columns, that
is,compute their reduced costs. If any reduced cost is negative (assuming a min-

668 Multicommodity Flows Chap. 17

imization formulation), the method will introduce one nonbasic variable into the
basis in place of one of the current basic variables, recompute the simplex multipliers
1T, and then repeat these computations. To use the column generation approach, the
columns should have structural properties that permit us to perform the pricing out
operations without explicitly examining every column.

When applied to the path flow formulation of the multicommodity flow problem,
with respect to the current basis at any step (which is composed of a set of columns,
or path variables, for the problem), the revised simplex method defines the simplex
multipliers Wij and (J'k so that the reduced cost of every variable in the basis is zero.
Therefore, if a path P connecting the source Sk and sink t k for commodity k is one
of the basic variables, then c'f,'w = 0, or equivalently, LU,j)EP (ct + wij) = (J'k.
Therefore, the revised simplex method determines the simplex multipliers Wij and
(J'k so that they satisfy the following equations:

L (ct + wij) = (J'k for every path P in the basis.
(i,j)EP

Notice that since each basis consists of K + m paths, each basis gives rise to
K + m of these equations. Moreover, the equations contain K + m variables (i.e.,
m arc prices wij and K shortest path distances (J'k). The revised simplex method uses
matrix computations to solve the K + m equations and determines the unique values
of the simplex multipliers.

The complementary slackness condition (17.6c) dictates that c'f"Wf(P) = 0 for
every path P in the network. Since each path P in the basis satisfies the condition
c'f,'w = 0, we can send any amount of flow on it and still satisfy the condition (17.6c).
To satisfy this condition for a path P not in the basis, we set f(P) = O. Next consider:.
the complementary slackness condition (17.6a). If the slack variable Sij =
[LlokoK Lu,j)EPkflij(P)f(P) - uij] is not in the basis, Sij = 0, so the solution sat
isfies (17.6a). On the other hand, if the slack variable Sij is in the basis, its reduced
cost, which equals 0 - Wij, is zero, implying that wij = 0 and the solution satisfies
(17.6a). We have thus shown that the solution defined by the current basis satisfies
conditions (17.6a) and (17.6c); it is optimal if it satisfies condition (17.6b) (i.e., the
reduced cost of every path flow variable is nonnegative). How could we check this
condition? That is, how can we check to see if for each commodity k, .

c'f,'w = L (ct + wij) - (J'k ;::: 0 for all P E Pk,
(i,j)EP

or, equivalently,

As we have noted, the left-hand side of this inequality isjust the length of the shortest
path connecting the source and sink nodes, Sk and tk, of commodity k with respect
to the modified costs ct + wij. Thus, to see whether the arc prices wij together with
current path distances (J'k satisfy the complementary slackness conditions, we solve
a shortest path problem for each commodity k. If for all commodities k, the length
of the shortest path for that commodity is at least as large as (J'k, we satisfy the
complementary slackness condition (17. 6b).

Otherwise, if for some commodity k, Q denotes the shortest path with respect

Sec. 17.5 Column Generation Approach 669

to the current modified costs ct + Wij and the reduced cost of path Q is less than
the length Uk of the minimum cost path from the set pk, then

cQ'w = ~ (ct + Wi) - Uk < o.
(i,j)EQ

In terms of the linear program (17.5), the path Q has a negative reduced cost, so we
can profitably use it in the linear program in place of one of the paths P in the current
basis eJ3. That is, using the usual steps of the simplex method, we would perform a
basis change introducing the path Q into the current basis. Doing so would permit
us to determine a new set of arc prices Wij and a new modified shortest path distance
Uk between the source and sink nodes of commodity k. We choose the values of
these variables so that the reduced cost of every basic variable is zero. That is, using
matrix operations, we would once again solve the system c'f,'w = ~(i,j)EP (ct +
wij) - Uk = 0 in the variables Wij and Uk. We would then, as before, solve a shortest
path problem for each commodity k and see whether any path has a shorter length
than Uk. If so, we would introduce this path into the basis and continue by alternately
(1) finding new values for the arc prices Wi} and for the path lengths uk, and (2)
solving shortest path problems.

This discussion shows us how we would determine the variable to introduce
into the basis at each step. The rest of the steps for implementing the simplex method
(e.g., determining the variable to remove from the basis at each step) are the same
as those of the usual implementation, so we do not specify any further details.

Determining Lower Bounds

Let z* denote the optimal objective function value of the multicommodity flow prob
lem (17.5) and let Zip denote the optimal objective function value at any step in solving
the path flow formulation of the problem (17.5) by the simplex method. Since Zip

corresponds to a feasible solution to the problem, z* ::s; ZiP. As we have noted in our
discussion of the Lagrangian relaxation technique in Section 17.4, for any choice of
the arc prices w, the optimal value L(w) of the Lagrangian subproblem is a lower
bound on z*. Therefore, suppose that at any point during the course of the algorithm,
we solve the Lagrangian subproblem with respect to the current arc prices Wij. That
is, we solve for the shortest path lengths [k(W) for all the commodities k with respect
to the modified costs ct +wij. (Notice that this is the same computation that we
perform in pricing out columns for the simplex method.) Then from (17.4) the value
L(w) of the Lagrangian subproblem is

K

L(w) = ~ [k(W) - 2: WijUij,
k=l (i,j)EA

and by the theory of Lagrangian relaxation,

L(w) ::s; z* ::s; ZiP.

Therefore, as a by-product of finding the shortest path distances [k(W) as we
are pricing out columns in implementing the column generation procedure, we obtain
a lower bound on the objective function value. This lower bound allows us to judge
the quality of the current solution in the column generation technique and often

Multicommodity Flows Chap. 17

terminate the procedure without further computations if the difference between the
solution value Zip and lower bound L(w) is sufficiently small. We might note that
since at each step of the simplex method, the objective value Zip of the problem
stays the same or decreases, the upper bound is monotonically nonincreasing from
step to step. On the other hand, the objective value L(w) of the Lagrangian sub
problem need not decrease from step to step, so at any point in the algorithm we
would use the largest of the values L(w) generated in all previous steps as the best
lower bound.

17.6 DANTZIG-WOLFE DECOMPOSITION

In Section 17.5 we showed how to use a column generation procedure to solve the
multicommodity flow problem formulated in the space of path flows. In this section
we interpret this solution approach in another framework, known as Dantzig-Wolfe
decomposition. Imagine that K different decision makers as well as one "coordi
natorl' are solving the K-commodity flow problem. Each person plays a special role
in solving the problem. The coordinator's job is to solve the path formulation (17.5)
of the problem, which we refer to as the "master" or "coordinating" problem. In"
solving the problem the coordinator does not, however, generate the columns of the
master problem; instead, the K decision makers, with guidance from the coordinator
in the forrn of arc prices, generate these columns, with the kth decision maker gen
eraii~g the columns of the master problem corresponding to the kth commodity.

In general, the coordinator has on hand only a subset of the columns of the
master problem. Since the coordinator can, at best, solve the linear program <;l.S

restricted to this subset of columns, we refer to this smaller linear program as the
restricted master problem.

The path formulation of the multicommodity flow problem has m + K con
straints: (1) one for each commodity k, specifying that the flow of commodity k is
d k

; and (2) one for each arc (i, j), specifying that the total flow on that arc is at most
Uij. The coordinator solves the restricted master problem to optimality using any
linear programming technique, such> as the simplex algorithm, and then needs to
determine whether the solution to the restricted master problem is optimal for the
original problem or if some other column has a negative reduced cost. To this end
the coordinator broadcasts the optimal set of simplex multipliers (or prices) of the
restricted master problem, that is, broadcasts an arc price Wij associated with arc
(i, j) and a path length Uk associated with each commodity k.

After the coordinator has broadcast the prices, the decision maker for com
modity k determines the least cost way of shipping d k units from the source node
Sk to the sink tk of commodity k, assuming that each arc (i, j) has an associated toll
of Wij in addition to its arc cost ct. If the cost of this shortest path is less than uk,
the kth decision maker will report this solution to the coordinator as an improving
solution. If the cost of this path equals Uk, the kth decision maker need not report
anything to the coordinator. (The cost will never be greater than Uk because, as
shown by our discussion of optimality conditions in Section 17.5, the coordinator
is already using some path of cost Uk for the kth commodity in his or her optimal
solution.) To see that this interpretation is consistent with the preceding section,

Sec. 17.6 Dantzig-Wolfe Decomposition 671

note that to price out the columns for commodity k, we need to solve the following
shortest path problem:

Minimize L L [ck(P) + L Wij]f(P)
l""k""K PEpk U,j)EP

subject to

L f(P) = d k for all k = 1,2, ... ,K,
PEpk

f(P) 2: 0 for all k = 1, 2, . . . , K and all P E pk.

which corresponds, since ck(P) = LU,j)EP ct, precisely to finding the best way of
satisfying the demand for the kth commodity assuming a cost of ct + Wij associated
with each arc (i, j). Moreover, the shortest path for commodity k will have a negative
reduced cost if and only if the cost for the kth shortest path problem is less than
Uk. We refer to the problems solved by each of the K decision makers as subproblems
since we are using them solely for the purpose of generating new columns for the
restricted master problem or proving optimality of the current solution.

Let us now summarize our discussion. In Section 17.5 we interpreted this
procedure as 11 column generation procedure that determines entering variables by
solving K different shortest path problems. The kth shortest path problem corre
sponds to the shortest path problem for the kth commodity with the added cost of
wij associated with arc (i, j). In the Dantzig-Wolfe interpretation of the procedure,
a central coordinator is solving the path formulation of the multicommodity flow
problem restricted to the columns that he or she has on hand. After obtaining an
optimal solution for this restricted master problem, the coordinator asks each of the
K decision makers to solve a shortest path problem using an additional arc cost of
Wij on each arc (i, j). Each decision maker (i.e., subproblem) then either provides
the coordinator with a new path or says that it can generate no shorter path than
the one(s) the coordinator is currently using. Figure 17.9 gives a schematic repre
sentation of the information flow in the algorithm.

This method is flexible in several respects. When implemented as the revised
simplex method, the algorithm would maintain a linear programming basis and in
troduce one column at each iteration. We might interpret this approach as main
taining a restricted master problem at each step with only a single column that is

Arc 1 r Paths solving
prices shortest path
w problems

Figure 17.9 Information flow in Dantzig-Wolfe decomposition.

672 Multicommodity Flows Chap. 17

not in the basis; consequently, the algorithm discards any column that leaves the
linear programming basis. However, generating new columns might be time con
suming, so it might potentially be advantageous to save old columns since they might
subsequently have a negative reduced cost. Therefore, in implementing the decom
position algorithm, we could retain some or all of the columns that we have generated
previously. As a result, when we solve the restricted master problem, we would
generally perform more than one basis change (to solve the restricted master problem
to completion) before we broadcast new prices and once again solved the shortest
path subproblems.

The column generation procedure and the decomposition procedure share one
other potential advantage-the possibility of solving the problem using parallel pro
cessors. Once we have determined the arc prices Wij in either procedure, the shortest
path subproblems are independent of each other, so we could solve each of them
simultaneously, using a separate processor for each shortest path problem.

Since each column of the master problem corresponds to one of a finite number
of paths for each commodity, the decomposition solution technique will be finite as
long as we never discard any columns of the restricted master problem. (Eventually,
we would generate every column in the full master problem~) Alternatively, we could
discard columns only vyhen the solution to the restricted master problem strictly
improves. Or, we could use an anticycling linear programming-based rule, such as
lexicography, for selecting the vafiable to leave the basis ateach iteration; any such
rule would guarantee finiteness of the algorithm since it would ensure that we never
repeat any of the finite number of bases to the linear program.

Finally, notice that the K subproblems correspond to the relaxed Lagrangian
problem with a multiplier of Wij imposed upon each arc (i,j). Consequently, we coulq.
view the coordinator as setting the Lagrange multipliers and solving the Lagrangian
multiplier problem. In fact, Dantzig-Wolfe decomposition is an efficient method for
solving the Lagrangian multiplier problem if we measure efficiency by the number
of iterations an algorithm performs. (By Theorem 16.7, the Dantzig-Wolfe algorithm
solves the Lagrangian multiplier problem since the multicommodity flow problem
is a linear program, and for linear programs, the Lagrangian multiplier problem has
the same objective function value as the linear program.) Unfortunately, in applying
Dantzig-Wolfe decomposition, at each iteration the coordinator must solve a linear
program with m + K constraints, and this update step for the simplex multipliers
is very expensive. It is far more time consuming to solve a linear program than to
update the multipliers using subgradient optimization. Because each multiplier
update for Dantzig-Wolfe decomposition is so expensive computationally, the
Dantzig-Wolfe decomposition method has generally not proven to be an efficient
method for solving the multicommodity flow problem; nevertheless, Dantzig-Wolfe
decomposition has one important advantage that distinguishes it from other La
grangian-based algorithms: The Dantzig-Wolfe decomposition algorithm always
maintains a feasible solution of the problem. Since, as we have shown in Section
17.5, the solution to the subproblems provides us with a lower bound on the optimal
value of the problem, at each step we also have a bound on how far the current
feasible solution is from optimal. Therefore, we can terminate the algorithm at any
step not only with a feasible solution, but also with a guarantee of how far, in
objective function value, that solution is from optimality.

Sec. 17.6 Dantzig-Wolfe Decomposition 673

17.7 RESOURCE-DIRECTIVE DECOMPOSITION

Lagrangian relaxation and Dantzig-Wolfe decomposition are price-directive meth
ods that decompose the multicommodity flow problem into single-commodity net
work flow problems (or shortest path problems) by placing tolls or prices on the
complicating bundle constraints. The resource-directive method that we consider in
this section takes a different algorithmic approach. Instead of using prices to de
compose the problem, it allocates the joint bundle capacity of each arc to the in
dividual commodities. When applied to the problem formulation (17.1), the resource
directive approach allocates rt :s; ut units of the bundle capacity Uij of arc (i, j) to
commodity k, producing the following resource-directive problem:

subject to

L rt:s; Uij

1 ""k""K

z == min L CkXk

1 ""k""K

for all (i, j) E A,

for k == 1, 2, ... , K,

for all (i, j) E A and all k == 1, 2, ... , K.

(17.7a)

(17.7b)

(17.7c)

(17.7d)

Note that the constraint (17.7b) ensures that the total resource allocation for
arc (i, j) does not exceed that arc's bundle capacity. Let r == (rt) denote the vector
of resource allocations.

We now make a few elementary observations about this problem.

Property 17.2. The resource-directive problem (17.7) is equivalent to the orig
inal multicommodity flow problem (17.1) in the sense that (1) if (x, r) is feasible in
the resource-directive problem, then x is feasible and has the same objective function
value in the original problem, and (2) zf x is feasible in the original problem and we
set r == x, then (x, r) is feasible and has the same objective function value in the
resource-directive problem.

Now consider the following sequential approach for solving the resource
directive problem (17.7). Instead of solving the problem by choosing the vectors r
and x simultaneously, let us choose them sequentially. We first fix the resource
allocations rt and then choose the flow xt. That is, let z(r) denote the optimal value
of the resource-directive problem for a fixed value of the resource allocation rand
consider the following derived resource-allocation problem:

Minimize z(r) (17.8a)

subject to

L rt:s; Uij for all (i, j) E A, (17.8b)
1 ""k""K

for all (i, j) E A and all k == 1, 2, ... , K. (17.8c)

The objective function z(r) for this problem is complicated. We know its value
only implicitly as the solution of an optimization problem in the flow variables xt.

674 Multicommodity Flows Chap. 17

Moreover, note that for any fixed value of the resource variables rt, the resource
directive problem decomposes into a separate network flow subproblem for each
commodity. That is, z(r) = ~kEK zk(rk) with the value zk(rk) of the kth subproblem
given by

subject to

zk(rk) = min ~ CkXk
l:5;k:5;K

for all k = 1, ... , K,

(17.9a)

(17.9b)

for all (i, j) E A and for all k = 1,2, ... , K. (17.9c)

Property 17.3. The resource-directive problem (17.7) is equivalent to the re
source-allocation problem (17.8) in the sense that (1) if (x, r) is feasible in the re
source-directive problem, then r is feasible in the resource-allocation problem and
z(r) ::; ex, and (2) if r is feasible in the resource-allocation problem, then for some
vector x, (x, r) is feasible in the original problem and ex = z(r).

Proof. If (x, r) = (xt, x2, ... , XK, rl, r2, ... , rK) is feasible in the resource
directive problem, then r is feasible in the resource-allocation problem. Moreover"
Xk is feasible in the kth commodity subproblem (17.9), so zk(rk) ::s; CkXk. Therefore,
z(r) = LI:5;k:5;K zk(rk) ::s; LI:5;k:5;K CkXk = ex. Conversely, if r is feasible in the
resource-allocation problem, then by definition of zk(rk), zk(rk) = CkXk for some
vector Xk, so x = (Xl, x2, ... , xK) satisfies the condition ex = z(r). •

Let us pause to consider the implication of Properties 17.2 and 17.3. They
imply that rather than solving the multicommodity flow problem directly, we can
decompose it into a resource-allocation problem with a very simple constraint struc
ture with a single inequality constraint but with a complex objective function z(r).
Although the overall structure of the objective function is complicated, it is easy to
evaluate: To find its value for any choice of the resource-allocation vector r, we
need merely solve K single-commodity flow problems.

Another way to view the objective function z(r) is as the cost of the linear
program (17.7) as a function of the right-hand-side parameters r. That is, any value
r for the allocation vector defines the values of right-hand-side parameters for this
linear program. A well-known result in linear program shows us that the function
has a special form. We state this result for a general linear programming problem
that contains the multicommodity flow problem as a special case.

Property 17.4. Let R denote the set of allocations for which the linear program
minimize {ex : .sflx = b, 0 ::s; x ::s; r} is feasible. Let z(r) denote the value of this
linear program as a function of the right-hand-side parameter r. On the set R, the
objective function z(r) is a piecewise linear convex function of r ..

Proof To establish convexity of z(r), we need to show that ifr and f are any
two values of the parameter r for which the given linear program is feasible and e
is any scalar, 0 ::; e ::s; 1, then z(er + (1 - em ::s; ez(r) + (1 - e)z(f). Let y and y
be optimal solutions to the linear program for the parameter choices r = rand r =

Sec. 17.7 Resource-Directive Decomposition 675

f. Note that dy == b, dy == b, y ::s; r, and y ::s; f. But then d(Oy + (1 - O)y) == b
and Oy + (1 - O)y ::s; Or + (1 - O)f. Therefore, the vector Oy + (1 - O)y is feasible
for the linear program with parameter vector r == Or + (1 - ~O)f, so the optimal
objective function value for this problem is at most c(Oy + (1 - O)y). Moreover,
by our choice of y and y, z(r) == cy and z (f) == cy; therefore,

z(Or + (1 - O)f) ::s; Ocf + (1 - O)cy == Oz(r) + 0 - O)z(f),

so z(r) is a convex function.
The piecewise linearity of z(r) follows from the optimal basis property of linear

programs. That is, for any choice of the parameter r, the problem has a basic feasible
optimal solution, and this basic feasible solution remains optimal for all values of r
for which it remains feasible. Moreover, the objective function value of the linear
program is linear in r for any given (optimal) basis. •

Solving the Resource-Directive Models

A number of algorithmic approaches are available for solving the resource-directive
models that we have introduced in this section. In the discussion to follow, we outline
a few basic approaches. The references cited in the reference notes contain further
details about these methods.

Since the function z(r) is nondifferentiable (because it is piecewise linear), we
cannot use gradient methods from nonlinear programming to solve the resource
allocation problem. We could, instead, use several other approaches. For example,
we could search for local improvement in z(r) using a heuristic method. As one such
possibility, we could use an "arc-at-a-time approach" by adding 1 to r~~ and sub
tracting 1 from r~~ for some arc (P, q) for two commodities k' and k", choosing the
arc and commodities at each step using some criterion (e.g., the choices that give
the greatest decrease in the objective function value at each step). This approach is
easy to implement but does not ensure convergence to an optimal solution. Note
that we can view this approach as changing the resource allocation at each step using
the formula

r (,- r + O'Y,

with a step length of 0 == 1 and a movement direction 'Y == ('Yt) given by 'Y~~ ==
1, 'Y~~ == -1, and 'Yt == 0 for all other arc-commodity combinations. Borrowing
ideas from subgradient optimization, however, we could use an optimization ap
proach by choosing the movement direction 'Y as a subgradient corresponding to the
resource allocation r (see Figure 17.10). A natural approach would be to search for
a subgradient, or movement direction 'Y, and a step length 0 that simultaneously
maintain feasibility and ensure convergence to an optimal solution r of the resource
allocation problem 07.8). We will adopt a two-step approach. First we determine
a subgradient direction and step length that would ensure convergence, provided
that we had no constraints imposed on the allocations. If moving to r + O'Y gives
us an infeasible solution, we transform r to a point r' that would maintain feasibility,
yet ensure convergence. To apply this approach, we need to be able to answer two
basic questions: 0) How can we find a subgradient 'Y of z(r) at any given point r?
(2) How could we transform any nonfeasible resource allocation r + O'Y so that it

676 Multicommodity Flows Chap. 17

becomes feasible for the resource-choice problem, that is, it satisfies the constraints
L l:sk:sK rt ::s; Uij for all (i, j) E A, and 0 ::s; rt ::s; ut for all (i, j) E A and all k = 1,
2, ... ,K? (Notice that when we applied subgradient optimization to the Lagrangian
multiplier problem in Chapter 15, the Lagrange multipliers were either unconstrained
or constrained to be nonnegative, so we either used the update formula r ~ r + S'Y
directly or used a modest modification of it to ensure that the Lagrange multipliers
remained nonnegative. Therefore, in the context of Lagrangian relaxation, feasibility
was easy to ensure.)

To answer 1, recall that as shown in Figure 17.10, a subgradient 'Y of z(r) at
the point r = r is any vector satisfying the condition

z(r) ;::: z(r) + 'Y(r - r)

In this expression, Rk is the set of resource allocations for commodity k for which
the subproblem (17.8) is feasible. The following property shows that to find any such
subgradient, we can work with each of the constituent functions zk(rk) indepen
dently.

Property 17.5.
point rK. Then 'Y
rK

).

Let 'Yk for k = 1, 2, ... , K be a subgradient of zk(rk) at the
('Y l , 'Y2, .•• , 'Yk) is a subgradient ofz(r) at r = (r1, r2, ... ,

Proof Since 'Yk is a subgradient of zk(rk),

z(rk) ;::: z(rk) + 'Yk(rk - rk) for all rk E Rk.

Adding these expressions for k = 1, 2, ... , K and using the fact that z(r)
LkEK zk(rk) and 'Y(r - r) = LkEK 'Yk(rk - rk) gives us the desired result. •

This result shows us that to obtain a subgradient of z(r), we can find a subgra
dient of each function zk(rk), which requires information about the sensitivity of the
solution of a network flow problem (17.9) to changes in the upper bounds rt on the
arc flows. Fortunately, as shown by the following result, this information will be a
by-product of almost any solution PfQcedure for solving the subproblem (17.9). Since
this result is general and applies to broader application contexts, we state it for a
general network flow problem (i.e., we subsume the index k).

z(r)

------='-====--____ ~S~u~bg~radient

Resource allocation r ~

Sec. 17.7 Resource-Directive Decomposition

Figure 17.10 Subgradient for the
function z(r).

677

Property 17.6. Consider the network flow problem z(q) = min{cx : Xx = b,
o :5 X :5 q}, with a parametric vector q of nonnegative upper bounds on the arc
flows. Suppose that x* is an optimal solution to this problem when q = q*, and
that x* together with the reduced cost vector c'" satisfy the minimum cost flow
optimality conditions (9.8). Define the vectors f..L = (f..Lij) by setting f..Lij = 0 if
xt < qt and f..Lij = cij if xt = qt· Then for any nonnegative vector q' for which the
problem is feasible, z(q') ;::: z(q*) + f..L(q' - q*). That is, f..L is a subgradient of the
parametric objective function z(f..L) at f..L = f..L *.

Proof. Recall that the definition of c'" implies that for any feasible flow vector
x, cx = c"'x - 7Tb. Therefore, z(q*) = cx* = c"'x* - 7Tb = f..Lq* - 7Tb. The last
equality in this expression follows from the optimality conditions (e.g., cij =
o if 0 < xt < qt) and the definition of f..L. Let x' solve the parametric problem when
q = q' and note that z(q') = ex' = e"'x' - 7Tb ;::: f..Lq' - 7Tb. (The inequality in this
expression follows from the fact that e'" :5 f..L and 0 :5 X :5 q'. Further, eij > f..Lij is
possible when xt = 0.) By combining the expressions for z(q*) and z(q'), we see
that z(q') ;::: z(q*) + f..L(q' - q*). •

To apply Property 17.6, we solve each. subproblem (17.9). Mter we solve the
subproblem for the kth commodity with q = rk, we set -yk equal to the vector f..L.
We then use Property 17.6 and set -y = (-yl, 'l, ... , 'YK). These results show us
how to use any minimum cost flow algorithm that produces reduced costs e'" as well
as an optimal flow vector to find a subgradient.

Once we have obtained a subgradient -y of z(r), we could use the subgradient
formula r (,- r + 6'Y to find the new resource allocation r. If the resulting resource
allocation vector r is feasible (Le., satisfies the constraints LI,,;;k";;K rt :5 uij), we
move to this point. If the new resource allocation r is not feasible, however, we
need to modify it to ensure feasibility, moving instead to some other point r. One
approach that ensures that the algorithm converges with the appropriate choice of
step sizes (as discussed in Chapter 16) is to choose r as the feasible point that is
as close as possible to r in the sense of minimizing the quantity LI,,;;k,,;;K

L(i,j)EA (rt - rtF. The references cited at the end of this chapter show how to
carry out this computation efficiently and show that with this choice off' the algorithm
still converges.

17.8 BASIS PARTITIONING

Our development in Chapter 11 built on a principal advantage of the simplex method
for the (single-commodity) minimum cost flow problem; namely, the algorithm can
use the spanning tree structure of the linear programming basis to accelerate the
required matrix computations. The multicommodity flow problem is a linear program
that combines two sets of constraints: (1) independent mass conservation constraints
XXk = bk for each commodity k = 1, 2, ... , K, and (2) bundle constraints that
link the commodities through shared arc capacities. Because of this underlying net
work substructure, we might ask whether we could also use some form of spanning
tree structure to implement the simplex method for the multicommodity flow prob
lem. The basis partitioning algorithm that we consider in this section provides at
least a partially affirmative answer to this question. As we will see, the method

678 Multicommodity Flows Chap. 17

Bundle
constraints

combines network methodology together with more generic ideas from linear pro
gramming.

This discussion is intended as an introduction to the basis partitioning method,
not as a detailed account of the method, which is rather involved; instead, we present
just the essential underlying ideas with the aim of showing how we can exploit the
underlying network structure. This discussion assumes familiarity with the network
simplex method (described in Chapter 11) and with the basic concepts of linear
programming (described in Appendix C).

Consider any basis ~ of the linear programming formulation (17.1) of the mul
ticommodity flow problem. Since each column of ~ corresponds to the flow on an
arc of some commodity, the columns in the basis define a set of subgraphs, one for
each commodity. Let .M k denote the submatrix of ~ corresponding to commodity
k. We note that each matrix .M k must contain a basis ~ k of the node-arc incidence
matrix,N'k (see Exercise 17.19). Our results in Section 11.11 show that each such
basis corresponds to a spanning tree Tk for the corresponding commodity k. There
fore, the subgraphs corresponding to any basis are spanning trees together with some
additional arcs. Moreover, since the constraints of the multicommodity flow problem
have a block angular form, so does the basis ~. Figure 17.11 (a) shows the structure
of the basis ~.

Rather than working directly with the basis matrix ~, through a change in
variables, we will transform this matrix into another matrix ~' so that we can perform
the steps of the simplex method much more efficiently using the underlying network
structure of the problem. Suppose that we state the bundle constraints as equality
constraints [see (17.1b')] by adding the nonnegative slack variable Sij to the bundle
constraint for arc (i,j). The variable SiJ denotes the amount of unused bundle capacity
on arc (i, j). Consider the system of mass balance and bundle constraints for a basis
of the multicommodity flow problem, which we write as ~XB = b. In this expression,
b = (u, b 1, b2

, ••• ,bK) is the vector of right-hand-side coefficients for the equations
and XB is the set of variables corresponding to the basic variables. These variables
include both flow variables xt and slack variables Sij for the bundle constraints.

To simplify the system ~XB = b, suppose that we make a change in variables
by letting 2llYB = XB for some appropriately selected nonsingular matrix 2ll. If we

Bundle
constraints

Commodity I

Commodity 2

Commodity 3

Commodity 4
B

Commodity 1

Commodity 2

Commodity 3

Commodity 4
B'

CommodityK CommodityK

Basic (spanning tree) for each commodity Basic (spanning tree) for each commodity

(a) (b)

Figure 17.11 Partitioning a linear programming basis of the multicommodity flow problem:
(a) original basis; (b) basis after change in variables and rearrangement of columns.

Sec. 17.8 Basis Partitioning 679

substitute 2llYB for XB in the system ~XB = b, and let~' = ~211, the system becomes
~(211YB) = (~211)YB = ~'YB = b. Suppose that we can make this change in variables
so that the matrix ~' has the special structure shown in Figure 17.11 (b); in this
special structure, only the Y variables that appear in the mass balance constraints
for commodity k are those corresponding to the basis ~k. Later in this section we
show how to use the underlying network structure of the problem to make this change
in variables. For the moment, so that we can obtain a broad view of the basic
approach without the complicating details, let us assume that we can easily make
this transformation of variables.

In the transformed system, let"W denote the matrix from the bundle constraints
that do not correspond to any of the columns in the bases ~k for k = 1, 2, ... , K.
We refer to "W as the working basis. In the pictorial representation of the basis ~'
in Figure 17.1l(b), we have rearranged the columns of the basis so that those in the
working basis appear first.

We now make two further observations:

1. Since a change in variables, which corresponds to column operations on the
matrix ~, does not change the nonsingularity of this matrix, the matrix ~' is
also nonsingular. This fact implies that the working basis "W is nonsingular.

2. Since column operations on the matrix ~ do not change the solution of the
system 1T~ = CB, the vector of the simplex multipliers determined by the system
1T~' = CB' is the same as those determined by the original system 1T~ = CB.

(When we perform the column operations, we change both ~ and CB; CB' de
notes the result of the column operations on the costs CB.)

These two observations and our change in variables gives us all the necessary
ingredients for implementing the basis partitioning simplex method for the multi
commodity flow problem. Recall that the simplex method requires that we make
two types of matrix computations:

1. Solving a system of the form ~XB = b or ~XB = .sflj for some column .sflj of
the coefficient matrix .sfl of the linear programming model (we make this com
putation at each step before we introduce column .sflj into the basis).

2. Solving a system of the form 1T~ = CB to find the vector 1T of simplex multipliers.

Rather than making these computations of the matrix ~ directly, we will use
the matrix ~'. As we have already noted, the systems 1T~ == CB and 1T~' = CB' have
the same solutions. Suppose that we partition the vector of simplex multipliers as
1T = (1TO, 1T1, ••• ,1TK). The vector 1TO contains the simplex multipliers for the bundle
constraints and the vector 1Tk contains the simplex multipliers corresponding to the
mass balance constraints .Nxk = bk for commodity k. Let Cw denote the subvector
of CB corresponding to the columns in "W. We solve the system 1T~' = CB' efficiently
by the following forward substitution procedure. We first solve the subsystem
1T0"W = Cw by solving a system of linear equations. If we substitute these values
into the system 1T~' = CB', the system decomposes into separate subsystems for
each commodity k with modified coefficients CB' for CB" Moreover, the computations
for each subsystem are exactly those required to find the simplex multipliers for a
single-commodity network flow problem. Therefore, we can use the very efficient

680 Multicommodity Flows Chap. 17

procedure for computing the simplex multipliers that we developed in Chapter 1I.
Recall that these computations are very efficient because they use the tree structure
of the basis.

To solve a system of the form QljXB = b, we first solve the related system
Qlj'YB = b using forward substitution. That is, ifwe partition the vector YB as YB =

(yO, yl, y2, ... ,yK) corresponding to the columns "W, Qljl, Qlj2, ..• , QljK of Qlj', we
first solve the independent subsystems Qljkyk = bk . Notice that we can perform these
computations by using the efficient procedure for computing the arc flows that we
developed in Chapter 11. Recall that this procedure also used the spanning tree
structure corresponding to the basis Qljk. We then substitute the values of the vari
ables yl, y2, .•. ,yK into the system Qlj'y = b, leaving a reduced system of the form
"WyO = u'. (Here u' denotes the modified arc capacities we obtain after substituting
the values of the flow variables y I, y2, .•. , yK in the transformed bundle con
straints.) Mter solv,ng this system of linear equations, we use the transformation
between XB and YB (i.e.; XB = 2llYB) to find the values for the variables XB.

Notice what this ~pproach has accomplished. Suppose that we apply the pro
cedure to a problem with p bundle constraints (p might equal the number m of arcs
if they all have bundle capacities, or it could be much less thanm). Rather than
solving systems of the form Qljx = b on the full matrix Qlj which has dimension p +'
K by p + K, we make K tree computations and solve one smaller p X P system
"WyO = u'. Similarly, rather than solving a large (p + K) x (p + K) system of the
form 1TQlj = Cli solve a single p x p syst~m 1T0"W = Cw and make K tree computations.
The resulting speed up in computations can be very substantial.

The rest of the steps of the simplex method (e.g., pricing out columns to find
the entering variable at each step or performing the ratio test to find the outgoing
variable) are exactly those of the m~thod in, general. Since our purpose in this dis
cussion is not to describe the simplex method, but rather to show how we can exploit
the underlying network structure to accelerate the computations, we do not describe
these details. There is one other important feature of the algorithm that we do not
discuss, namely how to recompute the matrix Qlj' when we exchange one column in
the basis for another. The references cited at the end of this chapter show how to
perform these computations. -,

To complete this brief description of the basis partitioning method, let us show
how to make the change in variables XB = 2llYB needed to eliminate any column
Att that belongs to At k but not to Qlj k from the mass balance equations for commodity
k so that the only remaining variables in these equations will be those corresponding
to the basis Qljk.

Consider the following example, which corresponds to the system Atkxk = bk

(for simplicity, we subsume the commodity index k and use xij in place of xt):

Node
1 +1 +1 Xl2 4
2 -1 XI3 2
3 -1 +1 +1 X34 1
4 -1 +1 X35 2
5 -1 -1 X65 4
6 +1 -1 X46 3

Sec. 17.8 Basis Partitioning 681

Let Atu denote the column of this system corresponding to the variable Xu. The
columns At 12 , At I3 , At34 , At35 , and At65 form a basis for this s),:stem and At46 is the
nonbasic column that we would like to eliminate. Notice that At46 = -At34 +
At35 - ~5, which in terms of the underlying network (see Figure 17.12) gives the
representation of arc (4, 6) in terms of the spanning tree defined by the arcs
(1, 2), (1, 3), (3, 4), (3, 5), and (6, 5). Now suppose that we make the change in
variables X34 = Y34 - Y46, X35 = Y35 + Y46, X65 = Y65 - Y46, XI2 = Y12, XI3 = YI3,

and X46 = Y46. Then we find that

At12X12 + At13X13 + At34X34 + At35X35 + At65X65 + At46X46

== At12Y12 + At13 Y13 + At34(Y34 - Y46) + At35(Y35 + Y46)

+ At65 (Y65 - Y46) + At46Y46

== At12Y12 + At13 Y13 + At34Y34 + At35Y35 + At6S Y65.

That is, we have eliminated the column At46 from the system. Notice that the new
variables Yij have a natural interpretation. The new variables Y34, Y35, and Y65 measure
both flows Xu on these arcs as well as the flow X46 "diverted" from the arc (4, 6) to
these arcs on the path 4-3-5-6.

Figure 17.12 Representing nontree
(nonbasic) arc for variable
transformation.

In general, if we have several columns Atu that we want to eliminate from the
system, and in the underlying graph the arc (i, j) forms a unique cycle when added
to the spanning tree T corresponding to the basis of the system, we let "Iff be either
± 1 or 0, depending on whether or not the arc (p, q) of the tree belongs to this cycle
(the sign of each ± 1 depends upon the orientation of the tree arc (p, q) relative to
the arc (i, j)). To transform the variables, we then set Xpq = ypq - L"IffYpq with
the sum taken over the indices (i, j) for all the columns Atij that we wish to eliminate.
We also set Xij = Yu for all arcs (i, j) not in the tree T.

To implement this procedure for the multicommodity flow problem, we apply
these network computations and change of variables for each of the matrices Atk.

These computations give us the matrix Qlj' and then we apply the operations discussed
previously in this section.

17.9 SUMMARY

Multicommodity flow problems arise whenever several network flow problems share
the same underlying network. This chapter has focused on a generic multicommodity
flow problem with fixed bundle capacities imposed on the total flow on any arc by

682 Multicommodity Flows Chap. 17

all the commodities. As we have seen in this chapter, in Chapter 1, and as we show
further in Chapter 19, this model arises in a wide variety of application settings in
communications, logistics, manufacturing, and transportation as well as in such prob
lem domains as urban housing and foodgrain export-import. The solution methods
for solving the multicommodity flow problem generally attempt to exploit the net
work flow structure of the individual-constitutent single-commodity flow problems.
Lagrangian relaxation removes the complicating bundle constraints by applying La
grangian mUltipliers to them and bringing them into the objective function. The
resulting Lagrangian subproblem separates into independent flow problems for each
commodity. This method is price directive in that rather than considering the bundle
constraints directly, it places tolls, or Lagrange multipliers on them. By the theory
of Lagrangian relaxation, for any choice of the tolls, the Lagrangian subproblems
give us a lower bound on the optimal objective function value of the problem. More
over, because the multicommodity flow problem is a linear program, the best possible
(Le., largest) lower bound equals the optimal objective function value for the prob
lem. Therefore, by solving the Lagrangian multiplier problem of finding the best
Lagrangian lower bound, we find the optimal objective function value for the mul
ticommodity flow problem.

The column generation procedure solves the multicommodity flow problem
formulated in the space of path (and cycle) flows. This formulation is a large-scale
linear program with an enormous number of variables (columns) but a rather simple
constraint structure. The column generation procedure solves the problem by ex
plicitly maintaining a relatively small number of these variables as part of a linear
programming basis and then pricing-out the remaining columns to determine a col
umn(s) that we could profitably add to the basis. The key to this procedure is tne
observation that to price-out the columns and to find the most profitable column to
add to the basis (in terms of reduced cost for each commodity), we need not consider
each column explicitly but can instead solve a shortest path problem for each com
modity. Since this procedure is just a special (and efficient) implementation of the
simplex method of linear programming, it inherits the finite convergence properties
of the simplex method (with provisions for handling linear programming degeneracy).
Moreover, since we can view the -pricing-out operation as solving a Lagrangian
relaxation of the problem, at each step we have not only a feasible solution, but also
a lower bound providing a guarantee how far the solution is from optimality in the
objective function value.

We might also interpret the column generation procedure as a price-setting
algorithm with the basis for the linear program determining prices on the bundle
capacities, and broadcasting these prices to shortest path subproblems, one for each
commodity. When interpreted in this way, this so-called Dantzig-Wolfe decom
position procedure is an alternative solution procedure for solving the Lagrangian
relaxation of the problem. In this approach we use a linear program, rather than
simply move in a subgradient direction, to update the values of the Lagrangian
multipliers at each step.

In our discussion of column generation and Dantzig-Wolfe decomposition, we
have assumed that each commodity in the multicommodity flow problem has a single
source and single sink. These algorithms apply to multicommodity flow problems
with multiple sources and sinks for each commodity (see Exercise 17.14) and to more

Sec. 17.9 Summary 683

general problems with otherwise independent subproblems coupled by joint resource
constraints (see Exercises 17.37 and 17.38).

Resource-directive decomposition is an alternative conceptual approach for
solving the multicommodity flow problem. Rather than removing the complicating
bundle capacities by charging tolls for them, this approach decomposes the problem
into a separate single commodity flow problem for each commodity by allocating
the scarce bundle capacities to the various commodities. Finding the optimal allo
cation (i.e., the one that gives the overall lowest cost) is an optimization problem
with a simple constraint structure and with a (complicated) convex cost objective
function. Using sensitivity information about the single-commodity subproblems,
however, we can generate subgradient information about the resource-allocation cost
function and therefore we can solve the allocation problem by a version of the
sub gradient optimization technique.

One approach for solving the minimum cost flow problem is the simplex method
implemented to exploit the underlying network flow structure, particularly the span
ning tree interpretation of any linear programming basis. The basis partitioning
method for solving the multicommodity flow problem is a generalization of this
approach. It uses the fact that any linear programming basis for the multicommodity
flow problem contains a basis for each commodity. Consequently, through a change
of variables, we can transform any basis of the problem into a basis for each com
modity as well as a small working basis for the bundle constraints that contains
information about the interactions between the individual commodities. This ap
proach permits us to solve the multicommodity flow problem by combining the
special network simplex approach for each commodity together with more general
linear programming matrix computations as applied to the working basis.

REFERENCE NOTES

Researchers have proposed a number of basic approaches for solving the multicom
modity flow problem. The three basic approaches, all based on exploiting network
flow substructure, that we have considered in this chapter and selected references
are (1) price-directive decomposition algorithm (Cremeans, Smith, and Tyndall
[1970], Swoveland [1971], Chen and Dewald [1974], and Assad [1980bD, (2) resource
directive decomposition algorithm (Geoffrion and Graves [1974], Kennington and
Shalaby [1977], and Assad [1980aD, and (3) basis partitioning (Graves and McBride
[1976] and Kennington and Helgason [1980]). Ford and Fulkerson [1958b] and Tomlin
[1966] first suggested the column generation approach. The first of these papers was
the forerunner of the general Dantzig-Wolfe [1960] decomposition procedure of
mathematical programming. The excellent survey papers by Assad [1978] and by
Kennington [1978] describe all of these algorithms and several standard properties
of multicommodity flow problems. The book by Kennington and Helgason [1980]
and the doctoral dissertation by Schneur [1991] are other valuable references on this
topic.

Most of the material discussed in this chapter is classical and dates from the
1960s and 1970s. Many of the standard properties of multicommodity flows (e.g.,
nonintegrality of optimal flows), including several of the examples we have used in

684 Multicommodity Flows Chap. 17

the text and exercises to illustrate these properties, are due to Fulkerson [1963], Hu
[1963], and Sakarovitch [1973].

The column generation and decomposition methods that we have considered
in this chapter extend to other situations as long as we can represent any solution
to a problem as a convex combination of other particularly "simple solutions"; in
the text we have used shortest paths as the simple solutions. For some applications
we might use solutions to knapsack problems as the simple solutions, and in other
cases, such as the general multicommodity flow problem with multiple sources and
destinations for each commodity, the simple solutions might be spanning tree so
lutions (see Exercise 17.14).

Researchers have developed and tested several codes for multicommodity flow
problems. Kennington [1978] and Ali et al. [1984] have described the results of some
of these computational experiments. These results have suggested that price-direc
tive and partitioning algorithms are the fastest algorithms for solving multicommodity
flow problems. The best multicommodity flow codes are two to five times faster
than a general-purpose linear programming code. Recent computational experience
by Bixby [1991] in solving large-scale network flow problems with side constraints
has shown that the simplex method with an advanced starting basis technique can
be very effective computationally. The approach that we have suggested at the end '
of our discussion of Lagrangian relaxation in Section 17.4 is a variant of this ap
proach.

Interior point algorithms provide another approach for solving multicommodity
flow problems. Although these algorithms yield the only known polynomial-time
bounds for these problems, an efficient and practical implementation of these al
gorithms is the subject of future research. The best time bound for the multicom
modity flow problem is due to Vaidya [1989]. Tardos's [1986] algorithm can solve
the multicommodity flow problem in strongly polynomial time.

Several researchers have recently suggested new algorithms for the multicom
modity flow problem: Gersht and Shulman [1987], Barnhart [1988], Pinar and Zenios
[1990], and Farvolden and Powell [1990]. Schneur [1991] studied scaling techniques
for the multicommodity flow problem. Matsumoto, Nishizeki, and Saito [1986] gave
a polynomial-time combinatorial algorithm for solving a multicommodity flow prob
lem in s-t planar networks.

In this chapter we have presented several applications of multicommodity flow
problems, adapted from the following papers:

1. Routing of multiple commodities (Golden [1975] and Crainic, Ferland, and
Rousseau [1984])

2. Warehousing of seasonal products (Jewell [1957])
3. Multivehicle tanker scheduling problem (Bellmore, Bennington, and Lubore

[1971])

We have presented three additional applications elsewhere in this book: (1)
racial balancing of schools in Application 1.10 (Clarke and Surkis [1968]), (2) optimal
deployment of resources in Exercise 17.1 (Kaplan [1973]), and (3) multiproduct mul
tistage production-inventory planning in Application 19.23 (Evans [1977]). Other
applications of multicommodity flows arise in (1) multicommodity distribution sys-

Chap. 17 Reference Notes 685

tern design (Geoffrion and Graves [1974]), (2) rail freight planning (Bodin, Golden
Schuster, and Rowing [1980] and Assad [1980a]), and (3) VLSI chip design (Kort~
[1988]).

EXERCISES

17.1. Optimal deployment of resources (Kaplan [1973]). Suppose that an organization requires
varying levels of resources at q geographical locations. Suppose, further, that changes
in economic, political, social, or environmental conditions have brought about a sud
den demand for the resources. For example, natural disasters such as floods might
create a need for various types of rescue equipment at various flood locations. Or,
the resources might be relief supplies such as food or medicines. This exercise studies
a model that minimizes the combined cost of transportation and unfulfilled demands.
Let dj denote the demand of resource k (in tons) at location j. The resources are
available in limited quantities at p different locations; let af denote the amount of
resource k available at location i. The cost of transporting 1 unit of the resource k
from location ito locationj is ct. Due to technological constraints, at most Ui tons of
all resources can be transported from location i. As a result, it might not be possible
to completely satisfy the demands for the resource. Let aj denote the cost of unfulfilled
demand of resource k at location j. Our objective is to identify the shipment of re
sources that minimizes the total of the transportation costs and the costs arising due
to unfulfilled demands. Formulate this problem as a multicommodity flow problem.

17.2. Show how to incorporate transportation expenses incurred between plant-warehouse,
warehouse-retailer, and plant-retailer combinations in the warehousing of seasonal
products model that we considered in Application 17.2.

17.3. Show that the optimal solution ofthe multicommodity flow problem in Figure 17.4(a),
as shown in Figure 17.4(b), satisfies both the arc optimality conditions (17.2) and the
path optimality conditions (17.6).

17.4. State a generalization of the arc optimality conditions (17.2) for the multicommodity
flow problem with upper bounds ut imposed on arc flows xt.

17.5. Write the dual of the path flow formulation of the multicommodity flow problem given
in (17.5). Show that (17.6) represents the complementary slackness conditions of this
primal-dual pair for the multicommodity flow problem.

17.6. The path formulation (17.5) of a multicommodity flow problem with p ::S m bundle
constraints and K commodities contains p + K constraints, and therefore any linear
programming basis for the problem will contain p + K basic variables.
(a) Show that at least one basic variable must appear in each of the K demand con

straints LPEPk f(P) = dk
; that is, in any basis at least one path must carry a

positive flow for each commodity.
(b) Show that in any feasible basis, at most p commodities will send flow on two or

more paths, so at least K - p commodities will send flow on a single path.

17.7. The numerical example shown in Figure 17.13 has four commodities: these commod
ities have nodes 1 and 4, 5 and 8, 9 and 12, and 13 and 16 as their source and sink
nodes. We wish to send 10 units from the source node to the sink node of each com
modity. The arcs (2, 3), (6, 7), (10, 11), and (14, 15) all have a bundle capacity of 15
units. All the other arcs are uncapacitated. The per unit flow costs shown next to each
arc are the same for each commodity. Starting with the Lagrange multiplier values
fL23 = fL67 = fLlO,lI = fLl3,16 = 0, and assuming step lengths of 60 = 1 and 6k = 11k
for k ~ 1, perform the first five steps of the Lagrangian relaxation algorithm for this
problem.

686 Multicommodity Flows Chap. 17

All arcs across this cut
~ ~ have bundle capacity of 15

10 units -~.(m',;;\----~h2f;fl---+-~Ci!3\1.l-----~f'41'l-~ 10 units

5

10 units

5

lOunits --

5

10 units

Figure 17.13 Multicommodity flow example with four commodities and with four
arcs with bundle capacities.

17.8. Find an optimal solution of the problem introduced in Exercise 17.7 by any method,
including visual inspection, and use the multicommodity flow optimality conditions
to prove that your solution is optimal.

17.9. Since the multicommodity flow example shown in Figure 17.4(a) has two arcs with
bundle capacities, the working basis in applying the basis partitioning algorithm to this
problem will be a 2 x 2 matrix. Specify the optimal linear programming basis (lJii
corresponding to the optimal solution shown in Figure 17.4(b). Restricting your choice
of variables to those in (13, specify a basis (spanning tree) for each commodity and the
resulting working basis for (13. Show how to use the working basis and spanning tree
to compute the simplex multipliers corresponding to the optimal linear programming
basis.

17.10. Nonhomogeneous goods. Consider an extension of the multicommodity flow problem
with nonhomogeneous goods. In this model, each unit xt of flow of commodity k on
arc (i, j) consumes a given aIQount pt of the capacity (or some other resource) as
sociated with the arc (i, j), and we replace the bundle constraint with a more general
resource availability constraint LtsksK ptxt:s Uij'

(a) Show how to convert this model into the bundle constraint model (17.1) that we
have considered in this chapter if each commodity consumes the same amount of
resource on each arc, that is, for every arc (i, j), P& = pt = ... = pff = Pij·

(b) Show how to solve the general version of this problem by using a modification of
the following methods that we have considered in this chapter: (1) Lagrangian
relaxation, and (2) column generation.

17.11. Modeling piecewise linear convex costs. Suppose that a multicommodity flow problem
has no bundle constraints, but instead the cost of flow on each arc is a piecewise
linear function of the total flow Xij = LtsksK xt of all the commodities on that arc.
Show how to model this problem as a (linear) multicommodity flow problem with
bundle constraints. (Hint: See Section 14.3.)

17.12. Multicommodity circulation problem. Suppose that the flow of each commodity in a
multicommodity flow problem must be a circulation (i.e., each supply/demand vector
bk is the zero vector). Also, assume that some of the arc costs might be negative.
Show how to modify the column generation algorithm to solve this circulation variant

Chap. 17 Exercises 687

of the multicommodity flow problem. (Hint: It is always possible to express any cir
culation as the union of cycle flows. Also, recall that we can use the label correcting
shortest path algorithm to detect a negative cost cycle.)

17.13. Show how to extend the column generation algorithm to handle situations with negative
costs. In these situations, some potentially optimal feasible flows could be a weighted
combination of both cycle and path flows, and the output of any shortest path sub
problem might be a negative cost cycle.

17.14. Show how to apply column generation and Dantzig-Wolfe decomposition to multi
commodity flow problems in which each commodity can have several sources and
destinations. Assume that the cost vector for each commodity is nonnegative. For
each commodity k, let x k

.
q for q = 1, 2,. . . , Qk denote the flow vector corresponding

to the qth of Qk feasible spanning tree solution for the system .N'xk = bk
, 0 :s; Xk :s;

Uk. Use the fact that we can write any potentially optimal feasible solution Xk to this
system as Xk = L 1 ,;k,;K A k.q x k

•
q for some nonnegative weighting vectors A k.q satisfying

the condition LI,;q,;Qk A k.q = 1. (Note that the nonnegativity ofthe costs implies that
we need not consider cycles in the optimal solution.)

17.15. Multisink maximum flow problem (Rothfarb; Shein, and Frisch [1968])
(a) Consider a multicommodity maximum flow problem with a source node s and with

two different sink nodes, t l and t2
• Suppose that every unit shipped from node s

into node t l yields a profit of $3, and that every unit shipped from node s into
node t2 yields a profit of $2. Show how to find the maximum profit flow by solving
two maximum flow problems. (Hint: First ship as much flow as possible from
node s to node t 1 , obtaining a maximum s-t 1 flow x'. Subsequently, ship as much
flow as possible from s to t2 in the residual network G(x') while keeping the flow
from node s to node t2 constant. Show that the resulting flow x" is optimal for the
two-sink problem by showing that the residual network G(x") contains no aug
menting path from node s to node t l and no augmenting path from node s to node
t2

.)

(b) Generalize the results of part (a) to the following situation. A network
G = (N, A) has one source node sand K sink nodes tl, t 2

, ••• , t K
, one for each

of K commodities. For k = 1 to K, let Ck be the value of shipping each unit of
commodity k to sink tk. Assume that CI 2: .•• 2: CK. Show how to find the optimal
valued multicommodity flow. Justify your solution procedure. (Hint: Extending
the results of part (a), solve the problem as a sequence of K maximum flow prob
lems.)

17.16. Common-source or common-sink multicommodity flow problem
(a) The common-source multicommodity flow problem is a special case of the mul

ticommodity flow problem (17.1) in which all commodities have a common source
but (possibly) distinct sinks. Show how to solve the common-source multicom
modity flow problem by solving one single-commodity minimum cost flow prob
lem. (Hint: First solve a minimum cost flow problem and then use flow decom
position.)

(b) In the common-sink multicommodity flow problem, all commodities have a com
mon sink but (possibly) distinct sources. Show how to solve the common-sink
multicommodity flow problem by solving one single-commodity minimum cost
flow problem.

17.17. Funnel problem. Let G = (N, A) be a network with K source nodes Sl, ..• , SK and
J sink nodes tl, ... , rIo Suppose, further, that the network contains a cut node v
whose deletion disconnects each source from each sink. That is, G - v has two
components, one containing all the source nodes and the other containing all the sink
nodes. Each source node Si and each sink node t j defines a commodity and has an
associated demand of dij; therefore, we must send dij units of flow from node Si to
node tj. Suppose that each arc (p, q) has an associated per unit arc flow cost cpq

(which is the same for all the commodities) and an associated flow capacity Upq • Show
that by solving two single-commodity minimum cost flow problems, we can either

688 Multicommodity Flows Chap. 17

determine a minimum cost multi commodity flow in the network G or prove that none
such flow exists. (Hint: Use ideas introduced in Exercise 17.16.)

17.18. Suppose that you had an algorithm that could find a feasible multicommodity flow for
the problem (17.1). Further, suppose that you also had the optimal set of prices (tolls)
for bundle constraints for the arcs. How might you use these prices and the solution
algorithm to find an optimal flow for the multicommodity flow problem?

17.19. Let.A{k denote the submatrix of a basis matrix (13 for the multicommodity flow model
(17.1) corresponding to the flow equations .Nxk = bk

• Show that.A{k must contain a
basis (13k of the node-arc incident matrix.N. (Hint: Show that the arcs corresponding
to the column in .A{ k must contain a spanning tree of the underlying network by recalling
that if (13 is a basis matrix, we can solve the system of equations (13x = d for any vector
d.)

17.20. Cutting stock problem. The production of paper or cloth often uses the following pro
cess. We first produce the paper on long rolls which we then cut to meet specific
demand requirements. The cutting stock problem is to meet the specified demand by
using the minimum number of rolls. The cutting stock problem also arises in other
guises as well. For example, it arises when we wish to store information with bit length
Li onto tracks in a computer disk, assuming that each track can hold L bits. Suppose
that the rolls all have length L and that we have a demand of di for smaller rolls of
size L i • There might be many ways to cut any roll into smaller rolls. For example, if
L = 50 and the Li have lengths 10, 15, 25, 30, we could cut the rolls into several,
different patterns: for example, (1) 5 rolls of size 10; (2) 3 rolls of size 15; (3) 2 rolls
of size 10 and 1 roll of size 25. Note that in the first pattern, we use the entire roll of
size L, but in the other two patterns we incur a waste of 5. Let CJ> denote the collection
of all patterns, and for any pattern P E CJ>, let ni,p denote the number of small rolls
of size Li in pattern P.
(a) Letting xp be a nonnegative integer variable indicating how many rolls we cut into

pattern P, show how to formulate the cutting stock problem of finding the fewest
number oflarge rolls to meet the specified demands as an optimization model with
a variable for each cutting pattern.

(b) Suppose that we wish to cut a single roll of size L into subrolls and that we receive
a profit of 1Ti for every subroll of size Li that we use in the solution. Show how
to formulate this problem as an integer knapsack problem.

(c) Show how to use the column generation technique described in Section 17.5 to
solve the linear programming relaxation of the cutting stock problem in part (a),
using knapsack problems of the form stated in part (b) to price out columns.

--,,~

17.21. Undirected multicommodity flow problem. In an undirected multicommodity flow prob
lem, the bundle constraint of any arc (i, j) is 'Lf= 1 I xi I S uij. The flows xt can be
either positive, zero, or negative. Assume that all flow costs ct are nonnegative.
(a) Show that using the transformation given in Figure 17.14 we can replace an un

directed arc by a set of directed arcs.
(b) Explain how you would transform an undirected multicommodity flow problem

into a directed multicommodity flow problem. What are the number of nodes and
arcs in the transformed network?

Chap. 17 Exercises

Figure 17.14 Converting an undirected
arc with nonnegative cost into directed
arcs.

689

17.22. Two-commodity undirected multicommodity flows (Hu [1963], Sakarovitch [1973]). Let
N be the node-arc incidence matrix for a given undirected network and consider a
two-commodity flow problem with the flow vectors Xl and ~2:

subject to

Nx l = b l
,

Nx2 = b2
,

I Xl I + I x 2 I :s u.

(17. lOa)

(17. lOb)

(17.1Oc)

(17.10d)

In this formulation u = (Ui) is a vector of upper bounds imposed on the total flow
on the arcs. Assume that u is an integer vector. This model is a two-commodity version
of the undirected multicommodity flow problem that we introduced in Exercise 17.21.
(a) Introducing vectors y I and y2 and making the substitution x I :if Y I -+' y2 - u -and

x2 = yl - y2, show that the upper bound constraints (17.10d) are equivalent to
the following constraints: 0 :s yl :s u, 0 :s y2 :s u. Show that after we have made
this substitution, the problem decomposes into two single commodity flow prob
lems, one with flows yl and the other with flows y2. (Hint: After substituting the
y variables for the x variables, add and subtract (17.1Ob) and (17.1Oc).)

(b) Use the transformation introduced in part (a) to show that the two-comQ.1odity
undirected multi commodity flow problem has an optimal solution in which each
arc flow x ij is a multiple of!. In addition, show that if (1) the sum of the capacities
of the arcs incident to each node is an even integer, and (2) all supplies and demands
are even integers, the problem has an optimal solution with every xij and xL in
teger.

17.23. Multicommodity maximum flow problem. In the multiple commodity maximum -flow
problem, each commodity k = 1,2, ... , K has a source node Sk and a sink node tk,

and we wish to send the maximum total flow from the source nodes to the sink nodes
while honoring a given bundle capacity Uij on each arc (i, j). That is, we wish to
maximize the sum of the flows over all the commodities. We refer to the largest possible
sum of flows as the maximum flow. We say that a cut [S, N - S] is a source-sink
cut if the set S contains all of the source nodes Sk and the set N - S contains all of
the sink nodes tk. The capacity of any source-sink cut is the sum of the bundle ca
pacities across the cut. We can define the multiple commodity maximum flow problem
for either directed or undirected problems. For undirected problems, we define the
bundle constraints as in Exercise 17.21.

690

(a) Show that for either the directed or undirected versions of the problem, the max
imum flow is always less than or equal to the capacity of any source-sink cut.

(b) Using the network shown in Figure 17.15, show that the maximum flow of the

All arcs have a
capacity of one unit

Figure 17.15 Two-commodity
undirected maximum flow problem with
value of the maximum flow strictly less
than the value of the minimum cut.

Multicommodity Flows Chap. 17

undirected two-commodity flow problem can be strictly less than the minimum
capacity of all source-sink cuts.

(c) Using the network shown in Figure 17.15 and the transformation of the undirected
multicommodity flow problem into a directed problem in Exercise 17.21, show
that the maximum flow of the directed two-commodity flow problem can be strictly
less than the minimum capacity of all source-sink cuts.

17.24. Nonintegrality of solutions to the muIticommodity maximum flow problem. Using the
network shown in Figure 17.16, show that the maximum flow in an undirected two
commodity maximum flow problem can be noninteger. Give an example of a directed
two-commodity flow problem with a noninteger optimal solution.

Figure 17.16 Two-commodity
undirected maximum flow problem wit.h
a fractional solution. ..'

17.25. Show how to formulate the multicommodity maximum flow problem as a version of
the multicommodity flow problem (17.1).

17.26. Concurrent flow problem. Consider a multicommodity flow problem in which, for each
commodity k = 1, 2, ... , K, we wish to send Dk units from the commodity's source
node Sk to its destination node tk. Suppose that the problem has no feasible solution;
so instead of finding a feasible flow, we wish to find a flow that for some parameter
6 :s; 1 satisfies all the bundle constraints as well as sends 6Dk units from the source
to destination of each commodity k. We refer to the maximum value 6* of the parameter
6 for which the problem has a feasible solution as the feasibility index or the optimal
throughput for the problem. We refer to the problem itself as the concurrent flow
problem since its objective is to satisfy all demands by the same proportional amount
6.
(a) Formulate the concurrent flow problem as a multicommodity flow problem with

one additional variable.
(b) The feasibility index for each commodity k is the maximum value at of a parameter

6k satisfying the property that the network has a feasible flow satisfying the demand
6kDk for commodity k (with no demand requirement for any other commodity).
Show how to find 6t for each commodity k.

(c) Let 6* be the optimal throughput defined in part (a), let 6t be as defined in part
(b), and let ii = min]sksK 6t. Show that iilK:S; 6* :s; ii.

(d) Suppose that you had an algorithm for finding a feasible flow, assuming that one
exists, for a multicommodity flow problem. Show how to use this algorithm as a
subroutine to determine the optimal throughput 6* to within a factor of E. That
is, the objective is to determine a value 6' satisfying the inequalities (1 - E)6* :s;
6' :s; (1 + E)6*. How many times do you need to call the subroutine for determining
a feasible multicommodity flow? (Hint: Use the results of part (c) to limit the
search.)

17.27. Show that for the concurrent flow problem described in Exercise 17.26, the optimal
throughput 6* satisfies the following inequalities: 6* :s; CAP(S, N - S)/DEMAND(S)
for every set S of nodes. In this expression, DEMAND(S) denotes the sum of the
demands Dk of all the commodities whose origin nodes lie in S, and CAP(S, N - S)
denotes the total bundle capacity of the arcs in the cut [S, N - SJ.

Chap. 17 Exercises 691

17.28. Suppose that we associate a certain positive cost Cij and a capacity Uij with each arc
(i, j) of the concurrent flow problem. For a given path P, let c(P) denote the sum of
the costs of the arcs in P. Also, let dk denote the cost of the ~shortest path from the
source node Sk to the sink node t k of commodity k using the arc costs Cr. Show that
the maximum throughput 6* satisfies the following inequality: 6* :s (fU,j)EA cijuij)/
(~ISkSK dkDk). (Hint: Show that 6* ~I sksK dkDk is a lower bound on the cost of any
feasible flow that satisfies all the demands, and that ~U.j)EA CijUij is an upper bound
on the cost of any feasible flow.)

17.29. Dynamic throughput in computer networks. Suppose that in a computer system, for
each pair [i, j] of nodes, we would like to send dij units of information from node i to
node j in the least amount of time. Sending any message on arc (i, j) requires tij units
of time and each arc (i, j) has a bundle capacity of uij at each instant in time (i.e., it
can carry at most uij messages at each instant in time). How would you approximate
this dynamic throughput problem as a maximum concurrent flow problem?

17.30. Show that the multicommodity flow problem always has K redundant constraints by
viewing it as follows. Each commodity flows on a separate, but identical network and
the bundle constraints tie together the flows on the separate network. In this "layered
representation" of the problem, let f denote the copy of node j on the network (layer)
corresponding to commodity k. Next show that it is possible to replace the nodes 1 k

for k = 1 to K by a single node 1 *, and that the resulting formulation corresponds to
a connected network.

17.31. Single bundle constraint as a single-commodity flow problem. Suppose that a multi
commodity flow problem has a bundle constraint imposed upon only one arc (i, j).
Show that the resulting problem is a minimum cost flow problem. (Hint: Use the result
of Exercise 17.30.)

17.32. Penalty approach for the multicommodity flow problem (Schneur [1991]). Consider the
following penalty approach for solving the multicommodity flow problem:

692

Minimize F(x) = ~ CkXk + p/2 ~ (fu)2 (17. 11 a)

subject to

~ xt - fu:S uij for all arcs (i, j) E A, (17. 11 b)
]:s;ksK

for all k = 1, ... , K, (17. 11 c)

for all arcs (i,j) E A, (17. 11 d)

o :S xt:s ut for all arcs (i, j) E A and all k = 1, 2, ... , K. (17.lle)

Note that in any optimal solution, fu is the excess flow in arc (i, j) [i.e., fu = max(O,
~k=I, ... ,K xt - Uij)]. Therefore, this model replaces the hard (i.e., fixed) bundle ca
pacity uij on any arc (i, j) by a quadratic penalty for exceeding the arc's capacity. In
this formulation p is a parameter specifying how much we penalize excess flows.
(a) Let z denote the optimal objective function value for the linear multicommodity

flow problem and let G(p) denote the optimal objective function value of the pen
alty problem for a fixed value of p. Show that G(p) :S Z for all p. Show also that
limp->ooG(p) = z.

(b) Let y denote 1 unit flow of commodity k around the cycle W (i.e., a flow of + 1
in each forward arc of W for commodity k and a flow of - 1 in each backward
arc of W for commodity k). We refer to the cycle W as a negative cycle with
respect to a flow x' if F(X' + 6y) - F(x ') is negative for some scalar 6> O. Show
that a feasible flow x' of (17.11) is an optimal flow if and only if it contains no
negative cost cycle. (Hint: The proof is similar to that of Theorem 3.8.)

Multicommodity Flows Chap. 17

17.33. Penalty method for the multicommodity flow problem. In this exercise we discuss an
algorithm for the multicommodity flow problem that uses the penalty approach de
scribed in Exercise 17.32. Let W be a cycle in the network and c(W) be its cost (i.e.,
the sum of the costs of the forward arcs in W minus the costs of the backward arcs
in W). Moreover, let f(W) denote the excess flow of W (i.e., the sum of the excess
flows of the forward arcs minus the sum of the excess flows of the backward arcs).
Finally, let y denote a unit flow of the commodity k around the cycle W (as defined
in Exercise 17.32(b).
(a) Express F(x' + 6y) - F(x') in terms of 6,1 wi, c(W), and f(w), and observe

that F(x' + 6y) - F(x') is a convex function of 6. Use this observation to suggest
a polynomial-time algorithm for finding a negative cycle in the network.

(b) Use your answer in part (a) to describe an algorithm for solving the penalty version
of the multicommodity flow problem.

17.34. Suppose that we apply Lagrangian relaxation to the resource-allocation problem (17.7)
by associating Lagrange multipliers Wij with the resource-allocation constraints
LlskSK rt S Uij, to produce the following Lagrangian subproblem:

z = min L CkXk + L Wij (L rt - UiJ
lsksK (i.}}EA lsksK

subject to

for k = 1, ... , K,

for all (i, j) E A and all k = 1, 2, ... , K.

Show that this problem is equivalent to the Lagrangian subproblem determined by
applying Lagrangian relaxation to the original formulation (17.1) obtained by relaxing
the bundle constraints L1SkSK xt S uij.

17.35. Consider a linear program of the form

Minimize

subject to

L sfJ.kxk S b,
1:5.ks.K

for all k = 1, 2, ... , K,

for all k =~'1, 2, ... ,K.

(17.12a)

(17. 12b)

(17. 12c)

(17. 12d)

In this formulation, each Xk is a vector of decision variables. The constraints (17. 12c)
are separate constraints imposed on each vector x\ and the constraint (17.12b) models
the limited availability of joint resources shared by these decision vectors. Note that
each qnk and sfJ.k is a matrix.
(a) Suppose that we introduce new "resource-allocation" variables rk and replace the

constraint (17. 12b) by the constraints L1SkSK rk s band sfJ.kxk s rk for each k =
1, 2, ... , K. Show that the formulation in the variables rk is equivalent to the
given formulation.

(b) Using the model with the resource-allocation variables rk, show how to adapt the
resource-directive decomposition technique described in Section 17.7 to solve
(17.12).

17.36. Show how to apply the basis partitioning algorithm to solve the optimization model
specified in the last exercise.
(a) First show that any basis (J3 for the problem must contain a basis (J3k for each

matrix qn k.
(b) Next show how to make a change in variables so that the only variables appearing

Chap. 17 Exercises 693

in the basis in the equations qnkxk = d k are those in the basis @/. (Hint: If'Y is
any column of qnk, it is always possible to solve the eguation (13ky = 'Y)'

(c) Define the working basis W as those columns of the constraints LISkSK sfJ.kxk :s
b that are in the basis (13 but not in any (13k. Show that the columns ofW are linearly
independent.

(d) Show how to use the working basis W and the basis matrices (13\ (132, ... , (13K
to implement the simplex method for solving the problem.

17.37. Show how to apply Dantzig-Wolfe decomposition to the optimization model (17.12)
with the constraints (17.12c) and (17. 12d) defining the subproblems.

17.38. Consider the optimization model

694

subject to

Ax = b,

xEX,

Minimize ex

defined over a finite set X. Show how to apply column generation and Dantzig-Wolfe
decomposition to solve the following convexified version of this problem:

subject to

Ax = b

x E ~(x)

Minimize ex

(17.13)

defined over the convex hull ~(x) of x. Recall that any point x E ~(x) has the rep
resentation x = Lf:: I A kXk for some set of nonnegative weights satisfying the weight
ing condition Lf= I A k = 1. (Hint: Make the replacement x = ~f= 1 A kXk to formulate
problem (17.13) in terms the weighting variables A I, A 2 , ••• ,A and form a restricted
version of the reformulated model by eliminating all but a small number of the A b S .)

Multieommodity Flows Chap. 17

18

COMPUTATIONAL TESTING OF
ALGORITHMS

The purpose of mathematical programming is insight,
not numbers.

-A. M Geoffrion

Chapter Outline

18.1 Introduction
18.2 Representative Operation Counts
18.3 Application to Network Simplex Algorithm
18.4 Summary

18.1 INTRODUCTION

In this book we have focused on developing the most "efficient" algorithms for
solving network optimization problems. The notion of efficiency involves all the
various computing resources needed for executing an algorithm. However, since
time is often a dominant computing resource in practice, we have used computational
time as the primary measure for asses sing algorithmic efficiency. We have measured
the computational time of an algorithm through its worst-case analysis. Worst-case
analysis provides upper bounds on the number of steps that a given algorithm can
take on any problem instance. As we have noted in Chapter 3, for a variety of reasons ,
the worst-case analysis of algorithms is a very popular criterion for judging algo
rithmic efficiency, and this approach has stimulated considerable research. How
ever, worst-case analysis can be overly pessimistic since it permits "pathological"
instances to determine the performance of an algorithm, even though they might be
exceedingly rare in practice. Often, the empirical behavior of an algorithm is much
better than suggested by its worst-case analysis. Consequently, the research com
munity typically relies on the empirical testing of an algorithm to assess its perfor-
mance in practice. .

In the operations research literature, researchers have conducted a large num
ber of empirical investigations of various network flow algorithms to determine the
"best" algorithms in practice. A typical study tests more than one algorithm for a
specific network flow problem and generally consists of the following steps: (1) write
a computer program (often in FORTRAN) for each algorithm to be tested; (2) use
pseudorandom network generators to generate random problem instances with se
lected combinations of input size parameters (e.g., nodes and arcs); (3) run computer

695

programs and note the CPU (central processing unit) times for the different algo
rithms on the data obtained by the network generators; ang (4) declare the algorithm
that takes the least amount of CPU time as the "winner" (if different algorithms are
faster for different input size parameters, then report this fact as well).

The existing literature on computational testing has a tendency to overrely on
CPU time as the primary measure of performance. CPU time depends greatly on
subtle details of the computational environment and the test problems such as (1)
the chosen programming language, compiler, and computer; (2) the implementation
style and skill of the programmer; (3) network generators used to generate the random
test problems; (4) combinations of input size parameters; and (5) the particular pro
gramming environment (e.g., the use of the computer system by other users). Be
cause of the mUltiple sources of variabilities, CPU times are often difficult to rep
licate, which is contrary to the spirit of scientific investigation. Another drawback
of the use of CPU time is that it is an aggregate measure of empirical performance
and does not provide much insight about an algorithm's behavior. For example, an
algorithm generally performs some fundamental operations repeatedly, and a typical
CPU time analysis does not help us to identify these "bottleneck" operations. Iden
tifying the bottleneck operations of an algorithm can provide useful guidelines for
where to direct future efforts to understand and subsequently improve an algorithm.

The spirit of worst-case analysis is to identify theoretical bottlenecks in the
performance of any algorithm and to provide upper bounds on the computation
counts of these bottleneck operations as a measure of the algorithm's overall be
havior. Borrowing this point of view for computational testing, we might attempt to
measure the empirical performance of an algorithm (or its computer implementation)
by counting the number of times the algorithm executes each of these bottleneck
operations while solving each instance of the problem. That is, we would conduct
computer experiments to obtain an actual count of bottleneck operations in~tead of
providing a theoretical upper bound on this number. This approach suggests that in
analyzing the empirical behavior of an algorithm, we need not count the number of
times it executes each line (of possibly thousands of lines) of code, but instead can
focus on a relatively small number of lines that are "summary measures" of the
algorithm's empirical behavior. Even for the most complex algorithms described in
this book, we need to keep track of the computation counts of at most three or four
operations or lines of code.

For example, in the FIFO preflow-push algorithm for the maximum flow prob
lem that we presented in Section 7.7, each push operation first selects an active
node i, next selects an admissible arc (i, j), and then pushes min{e(i), rij} units of
flow on the arc. If no admissible arc emanates from node i, we scan all of the arcs
emanating from this node, and we relabel the distance label of node i, giving it the
value d(i) = 1 + min{d(j) : rij > O}. We claim that for the generic preflow-push
algorithm, we need to keep track of only two operations: (1) the number of pushes,
and (2) the number of arcs scanned in the relabel operations.

These two operations dominate every other operation of the generic preflow
push algorithm. To establish this statement, note that to select a node requires 0(1)
operations per push, so the algorithm spends O(number of pushes) operations in
selecting nodes. In selecting admissible arcs, we check if the current arc is admis
sible, and if not, we modify the current arc. The algorithm modifies the current arc

696 Computational Testing of Algorithms Chap. 18

for node i 0(1 A(i) I) times, which is the number of arcs scanned in relabeling node
i between successive relabels of node i. Thus the algorithm modifies the current arcs
O(number of arcs scanned in relabels) times. We leave it to the reader to verify that
these two operations also bound each of the other operations performed in the FIFO
preflow-push algorithm. To summarize, even though an implementation of the FIFO
preflow-push algorithm might contain hundreds of lines of code, we need to keep
track of only two fundamental operations in order to identify the bottleneck oper
ations ,as well as to estimate the running time to within a constant factor.

We will soon formalize this notion of "representative operation counts" in
computational testing; however, let us first summarize some of the advantages of
this approa~h as compared to the more common approach of analyzing only CPU
time. ,.

1. ReprestPt!lJive operation counts allow us to identify the asymptotic bottleneck
operations of lin algorithm-i.e., the operations that progressively consume a
larger share of the computational time as the problem size increases. (For
sufficiently large problem sizes, improving the asymptotic bottleneck operation
has the maximum possible impact on the running time of the algorithm.)

2. Representative operation counts provide more guidance and insight about com
paring two algorithms that are run on different computers and permits us even
to compare algorithms implemented with different computer languages.

3. Representative operation counts permit us to determine lower and upper
bounds on the asymptotic growth rate in computation time as a function of the
problem size.

4. We can use statistical methodologies to estimate the CPU time on a computer
as a linear function of the representative operation counts. We refer to this
estimate of the CPU times as the virtual CPU time. Virtual CPU time permits
researchers to carry out experiments on different computers, but estimate the
running times as if all the experiments had been carried out on the same com
puter.

This type of asymptotic empirical analysis complements the worst-case analysis
that we have examined in many other chapters. The empirical analysis using rep
resentative operation counts allows us to identify the actual empirical behavior of
the algorithm for sufficiently large problem sizes. Just as the worst-case analysis
ignores constant factors in the running time, empirical analysis using representative
operation counts ignores constant factors in the running time, and instead focuses
on the dominant term in the computations.

Bef<;>re continuing we might note that the field of computational testing is very
broad, and we cannot do justice to it in a short chapter. Rather than treat the wide
range of topics of importance in computational testing (such as how to select test
problems, how to conduct an experimental design, what type of statistical tests are
most appropriate, and what data needs to be reported), we focus on the use of
representative operation counts as an aid in the analysis of computational experi
ments. We believe that it is quite easy to count representative operations while
conducting any computational testing and that generating this added information has
considerable potential payback.

Sec. 1B.1 Introduction 697

18.2 REPRESENTATIVE OPERATION COUNTS

In order to formalize our notion of counting operations perforined by an algorithm,
let us first stand back and consider what a computer does in executing a computer
program. Suppose that :Ii is a computer program for solving some problem and that
I is an instance of the problem. The computer program consists of a finite number
of lines of computer code, say aI, a2, ... , aK. Each line of code gives either one
or a small number of instructions to the computer. The instruction might tell the
computer to carry out an arithmetic operation on a register or to move data from
one memory location to another; or it might be a control instruction informing the
computer which line of code it should execute next. For convenience, we assume
that the program is written so that each line of the code gives 0(1) instructions to
the computer and that each instruction requires 0(1) units of time. We assume that
the fastest computer operation requires 1 time unit. (Although these assumptions
are reasonable, they do imply some restrictions; for example, we do not permit lines
of code that tell the computer to add two vectors, as would be allowed in some high
level languages such as APL. Rather, we would require that adding vectors be carried
out as a loop that sums the two vectors one component at a time.) The assumption
that each operation executed by the computer requires a comparable amount of time
seems reasonable in practice with the notable exceptions of input-output, caching
(moving data to and from storage), and paging (memory management of the sec
ondary storage space).

The preceding discussion implies that executing any line of code requires 0(1)
time units, and at least 1 time unit. Therefore, each line of code requires e(l) time
units since its execution time is bounded from both above and below by a constant
number of units. Suppose that the computer code we are investigating has K lines
of code. For a given instance I of the problem, let Cik(I), for k = 1 to K, be the
number of times that the computer executes line k of this computer program. Let
CPU(I) denote the CPU time of the computer program on instance I. The preceding
discussion implies the following lemma.

Lemma 18.1. CPU(1) = e(~f= I Cik(l)). •
Lemma 18.1 states that we can estimate the running time of an algorithm to

within a constant factor by counting the number of times it executes each line of
code. However, counting each line of code is unnecessarily burdensome. As we
shall soon see, it really suffices to count a relatively small number of lines of code.
For example, consider the following fragment of code.

for i: = 1 to 3 do
begin

A(i) : = A(i) + 1;
a(i) : = a(i) + 2;
C(i) : = C(i) + 3;

end;

We need not count the number of times the algorithm executes the statement
"B(i): = B(i) + 2," since it executes this statement whenever it executes the

698 Computational Testing of Algorithms Chap. 18

statement "AU) : = AU) + 1." Similarly, we need not count the number of times
the algorithm executes the statement "C(i) : = C(i) + 3." Moreover, it appears
that regardless of the size of the problem we are solving, the algorithm modifies nine
elements of the vectors A, B, and C during the execution of the "for loop. " So in
this case it would suffice to keep track of just the number of times that the algorithm
executes the "for loop."

Note that we have treated the number of iterations of the do loop as a constant.
Suppose, instead, that the first line of the do loop were "for i: = 1 to 10 do." Should
we also treat the 10 as a constant? What if the first line of the do loop were "for
i: = 1 to 10,000 do." Should we continue to treat the 10,000 as a constant? In
answering these questions, we might invoke two rules of thumb. First, we should
determine the representative operation counts after expressing the algorithm as a
pseudocode with all the problem parameters treated explicitly as parameters and
not as constants. For example, although in many practical situations log U will be
less than 16, in a pseudocode we should use the term "log U" rather than the
constant 16. We would not treat log U as a constant. Second, as a rule, we should
not treat the number of iterations of a "do loop" or a "while loop" or any other
loop as a constant since frequently the number of times that the program will call
the loop depends on a problem parameter rather than a constant.

We now formalize the notion we have been suggesting; that is, keeping track
of a small number of lines of code, which we call the representative operation counts.
Let S denote a subset of {I, ... , K}, and let as denote the set {ai : i E S}. We say
that as is a representative set of lines of code of a program if for some constant c,

a.;(I) ::; c (L ak(I)) ,
kES

for every instance I of the problem and for every line ai of code. In other words,
the time spent in executing line ai is dominated (up to a constant) by the time spent
in executing the lines of code in as. With this definition, we have the following
corollary to Lemma IS. 1.

Property 18.2. Let S be a repr,~sentative set of lines of code. Then CPU(l) =
8(LkES ak(l)).

Proof. By Lemma IS.1, CPU(I) = 8(Lf~1 ak(l)). Moreover, for each line ai
of code not in S, ai(l) ::; C(LkES ak(l)), so Lf~1 ak(l) = 8(LkES ak(l)). •

This methodology identifies a set of representative lines of code, and during
empirical investigations keeps track of the representative operation counts for each
instance solved. Sometimes, the selected representatives will not refer specifically
to one line of code. For example, we might keep track of the number of pushes in
the preflow-push algorithms, and each push might be described over several lines
of code. Rather than use the expression "the computation counts for a set of rep
resentative lines of code" we will refer to "the computation counts for a set of
representative operations" or more briefly as representative operation counts.

In the next section we discuss various uses of representative operation counts.
In addition to noting representative operation counts for various problem instances
we have solved, we might record some other counts that might be helpful in assessing

Sec. 18.2 Representative Operation Counts 699

an algorithm's behavior. For example, for each instance solved, we might note the
number of major iterations that the algorithm performs, such as the number of pivots
of the network simplex algorithm.

At first glance we might suspect that determining a representative set of op
erations could be difficult and that the set might be quite large. In fact, our experience
suggests that it is generally quite easy to determine representative sets, and often
we have several possible choices. In addition, the representative sets are typically
quite small. For the algorithms presented in this book, the number of representative
operation counts typically range from 1 to 4, even for quite complex algorithms.

We now give examples of representative sets for several network flow algo
rithms we have discussed in this book. The representative sets we indicate are not
unique. In some cases we suggest additional operation counts that might be of value
in empirical investigations.

Dial's implementation of Dijkstra's algorithm (see Section 4.6). A set
of representative operations for this algorithm are (1) the number of buckets scanned
while identifying the first nonempty bucket (as part of a findmin operation), and (2)
the number of arcs scanned to update distance labels. Since we know that the im
plementation scans 8(m) arcs, we need not actually count the number of arc scans.
Thus we need to keep track of only one operation in our representative set. In
addition to these representative operation counts, we might keep track of other
operations. For example, we might record the number of decreases in the distance
labels during the distance update operations since this set of operation counts would
also allow us to bound the running time of the binary heap implementation of Dijk
stra's algorithm.

Original implementation of Dijkstra's algorithm (see Section 4.5). The
running time of this algorithm is 8(n 2

) since the number of nodes scanned in the
find min operation is (n - 1) + (n - 2) + ... + 2 + 1 = n(n - 1)/2 = O(n2) time.
Therefore, we need not keep track of any counts in executing the algorithm.

FIFO label-correcting algorithm for the shortest path problem (see Sec
tion 5.4). The representative operation for this algorithm is the arcs scanned while
examining nodes in the set LIST.

Labeling algorithm for the maximum flow problem (see Section 6.5).
A representative operation for this algorithm is the arcs scanned while examining
labeled nodes. This operation dominates all other operations that the labeling al
gorithm performs. In addition to this representative operation, we would probably
want to count the number of augmentations. This additional information might pro
vide insight for comparing the labeling algorithm to other maximum flow algorithms.
For example, we could check whether the labeling algorithm requires more aug
mentations than other augmenting path algorithms.

Preflow-push algorithm for the maximum flow problem (see Section
7.7). A set of representative operations for this algorithm are (1) the number of
nonsaturating pushes, and (2) the arcs scanned while updating distance labels of

700 Computational Testing of Algorithms Chap.i8

nodes. (Operation 2 dominates the number of operations the algorithm performs in
updating the current arc and in making saturating pushes.) We do not need to keep
track of saturating pushes because the till1e spent in saturating pushes is bounded
by the time spent in scanning arcs to determine a current arc, and this time, in turn,
is bounded by the time spent updating the distance labels of nodes. Even though we
know that saturating pushes will not be a bottleneck operation, we might want to
keep track of them for a different reason. In practice, it appears that nonsaturating
pushes are not a bottleneck operation, even though they are the theoretical bottle
neck. An easy way to show that nonsaturating pushes are not a bottleneck operation
is to show, for example, that the number of nonsaturating pushes are, in practice,
at most a small constant times the number of saturating pushes. Keeping track of
saturating pushes would permit us to make this assessment empirically. We might
also want to record the number of saturating pushes because they might be a bot
tleneck operation if we use the dynamic trees data structure, and by keeping track
of the two operations (1) and (2) we can estimate whether the use of dynamic trees
might lead to an asymptotic improvement in the running time.

Successive shortest path algorithm for the minimum cost flow problem
(see Section 9.7). The successive shortest path algorithm determines shortest
paths from excess nodes to deficit nodes. Suppose that we use Dial's implementation
to solve shortest path problems. Then the representative operations for this algorithm
are: (1) the buckets scanned while the algorithm identifies nonempty buckets in Dial's
algorithm, and (2) the number of arcs that the algorithm scans while it updates
distance labels. In addition, we would want to keep track of the number of shorte.st
path problems that the algorithm solves.

Network simplex algorithm (see Section 11.5). The network simplex
algorithm has the following set of representative operations: (1) the number of arcs
whose reduced cost the algorithm calculates while it is identifying the entering arc,
(2) the number of arcs in the pivot cycles that the algorithm creates when it adds
the entering arc to the current spanning tree, and (3) the number of nodes in the
subtree Tz (Le., nodes whose potentials the algorithm changes during a pivot op
eration). The network simplex algorithm performs many other operations. We do
not need to keep track of these operations because the three operation counts we
have identified dominate them. For example, to update flows in a pivot cycle W
requires e(1 W I) time. (Even for degenerate pivots, the time spent by most algo
rithms is at least I W I, since most algorithms identify the pivot cycle before deter
mining the flow to send around the cycle.) To update the multipliers in a subtree Tz
of nodes whose potential changes require e(1 Tz I) time. Similarly, to update the tree
indices requires e(1 WI + I Tzl) time. This set of representative operations is strik
ingly compact considering the fact that implementations of the .network simplex
algorithm are typically quite intricate.

In addition to these representative operations, we might keep track of other
operations. For example, we would most likely want to count the number of pivots.
Moreover, if we were concerned about the effects of degeneracy, we would also
record the number of degenerate pivots that the algorithm performs.

Sec. 18.2 Representative Operation Counts 701

18.8 APPLICATION TO NETWORK SIMPLEX ALGORITHM

In this section we illustrate the use of representative operation counts using the
network simplex algorithm for the minimum cost flow problem. We provide exper
iments based on the network simplex algorithm, as implemented with the first eligible
arc pivot rule. As described in Section 11.5, this pivot rule selects the first arc with
positive violation as the entering arc while scanning the arcs in the wraparound
fashion.

The computational time that the network simplex algorithm requires to solve
a minimum cost flow problem depends on a number of different parameters, including
the number of nodes, the number of arcs, the network generator, the size of the cost
and capacity data, and the number of supply nodes. To illustrate the approach dis
cussed in this chapter, of these factors, we have chosen to focus on the number of
nodes and the number of arcs. We conducted experiments on networks with 1000,
2000,4000,6000, and 8000 nodes. For each choice of n nodes, we created networks
with 2n, 4n, 6n, 8n, and IOn arcs. Setting d = min, we have considered networks
with d = 2, 4, 6, 8, or 10. Thus the largest network size we considered had 8000
nodes and 80,000 arcs.

We used the well-known network generator NETGEN to generate minimum
cost flow problems with specified values of nand m. For each specific setting of n
and m, we solved five different problems generated from NETGEN and computed
the average of these five problem instances. (The averages have a lower variability
of outcomes than the individual tests, so the resulting graphs and charts reveal
patterns more clearly.) For each problem that we solved, we noted the following
values:

aE: number of arcs scanned in selecting an entering arc (summed over all pivots)
aw: number of arcs in the pivot cycles (summed over all pivots)
ap: number of node potentials modified (summed over all pivots)
p: number of pivots, further decomposed into the number of degenerate pivots
and the number of nondegenerate pivots
T: CPU time to execute the algorithm (times noted on a HP9000/850 computer
under a multiprogramming and multi sharing environment).

We computed the averages of these values over five problem instances for each
parameter setting. Figure 18.1 gives these averages for the network simplex algorithm
with the first eligible arc pivot rule.

Identifying Asymptotic Bottleneck Operations

We consider an operation to be a "bottleneck operation" for an algorithm if the
operation cQp-sumes a significant percentage of the execution time on at least some
fraction of the problems tested. We refer to an operation as an asymptotic nonbot
tie neck operation if its share in the computational time becomes smaller and ap
proaches zero as the problem size increases. Otherwise, we refer to an operation
as an asymptotic bottleneck operation. The asymptotic bottleneck operations are

702 Computational Testing of Algorithms Chap. 18

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

n

1,000

2,000

4,000

6,000

8,000

1,000

2,000

4,000

6,000

8,000

1,000

2,000

4,000

6,000

8,000

1,000

2,000

4,000

6,000

8,000

1,000

2,000

4,000

6,000

8,000

CtE + Ctw

m d CtE Ctw e Ctp p + Ctp

2,000 2 41,590 183,540 237,599 4,721 462,729

4,000 2 129,125 831,593 1,356,773 15,358 2,317,491

8,000 2 406,115 3,989,374 8,319,325 51,936 12,714,814

12,000 2 863,573 10,770,317 25,045,320 116,303 36,679,210

16,000 2 1,453,942 21,438,864 54,392,393 197,005 77,285,199

4,000 4 87,883 284,830 403,699 10,275 776,412

8,000 4 248,760 1,101,807 2,090,021 29,879 3,440,588

16,000 4 765,758 5,171,901 12,341,060 99,858 18,278,719

24,000 4 1,475,919 12,277,824 33,993,925 197,858 47,747,668

32,000 4 2,419,120 24,614,630 77,921,501 335,296 104,955,251

6,000 6 141,475 351,763 518,265 14,372 1,011,503

12,000 6 379,171 1,253,222 2,353,123 38,837 3,985,516

24,000 6 1,152,766 5,655,431 15,215,392 124,249 22,023,589

36,000 6 2,329,115 14,249,457 42,841,133 259,742 59,419,705

48,000 6 3,639,711 26,157,289 90,280,080 416,123 120,077 ,080

8,000 8 207,114 380,015 598,636 16,586 1,185,765

16,000 8 529,747 1,452,365 3,012,190 47,116 4,994,302

32,000 8 1,534,355 5,919,861 13,833,227 139,434 21,287,443

48,000 8 2,918,853 13,917,221 48,131,763 273,089 64,967,837

64,000 8 4,532,492 25,791,836 99,057,203 437,558 129,381,531

10,000 10 266,541 410,304 739,070 18,634 1,415,915

20,000 10 710,258 1,555,660 3,305,765 53,425 5,571,683

40,000 10 1,975,386 5,844,629 17,922,439 145,303 25,742,454

60,000 10 3,902,416 15,193,494 48,615,853 312,355 67,711,763

80,000 10 5,942,548 26,724,636 103,238,910 487,624 135,906,094

Figure 18.1 Table of computation counts for the network simplex algorithm with
the first entering pivot rule.

CPU
time

4.46

21.62

119.7

345.64

699.88

7.31

31.26

160.7

420.96

853.21

9.33

35.42

188.55

505.79

978.57

10.7

42.61

200.67

518.08

1,033.05

12.39"

48.08

208.30

584.34

1,064.45

important because they determine the rup.ning times of the algorithm for sufficiently
large problem sizes.

We have earlier shown that the representative operation counts provide both
upper and lower bounds on the number of operations an algorithm performs; there
fore, the set of representative operations must contain at least one asymptotic bot
tleneck operation. There is no formal method for determining asymptotic bottleneck
operations using computational testing unless we are willing to impose further as
sumptions on the behavior of an algorithm on large problems. Mter all, it is theo
retically possible that an algorithm behaves one way for problems of sufficiently
large size and it behaves totally differently for small problems. Nevertheless, some
procedures seem quite effective in practice for determining asymptotic bottlenecks,
even if we cannot completely justify their use.

We illustrate how to find an asymptotic bottleneck operation for the network
simplex algorithm. Let fXs(I) = fXE(l) + fXw(I) + fXp(l). Then we simply plot

Sec. 18.3 Application to Network Simplex Algorithm 703

aE(I)/as(I), aw(I)/as(I), ap(I)/as(I) for increasingly larger problem instances I and
look for a trend. Figure 18.2 gives these plots for the network simplex algorithm
with the first eligible arc pivot rule. In these plots we use the number of nodes as
a surrogate for the problem size and provide a plot for each different density d ==
min. This choice helps us to visualize the effect of nand m on the growth in rep
resentative operation counts. These plots suggest that updating node potentials is
an asymptotic bottleneck operation in the algorithm.

Estimating Growth Rates of Bottleneck Operations

How should we estimate the growth in the computational time (i.e., CPU time) as
the problem size increases? Instead of directly estimating the growth in the com
putational time, we estimate the growth in the asymptotic bottleneck operations. By
focusing only on the asymptotic bottleneck operations, we eliminate the contribution
of the nonbottleneck operations, and therefore the estimates should be superior. In
the notation of the preceding section, the asymptotic running time is proportional
to limlll~oo max(al(I), a2(I),' . .. , aK(I». In the manner that we have selected the
representative operations, the asymptotic running time is also proportional to
limlll->oo max(ai(I) : i E S). We need not consider the nonbottleneck operations in
estimating the asymptotic running time. The CPU time is a linear function of the
terms aiel) for i = 1 to K, and thus includes information from many of the non
bottleneck operations. For this reason, the CPU time is a much "noisier" estimator
of the asymptotic running time.

We describe a simple approach for estimating the growth rates of a bottleneck
operation, which in our illustration is ap, the number of potential updates. Our
approach consists of the following steps:

1. Determine an appropriate functional form for estimating the counts for the
operation ap. In our example, we choose the functional form to be n'Y for some
choice of a growth parameter 'Y. (A more common approach would be to choose
a function of both nand m; however, we will consider each network density
separately, and for each network density d = min, the ratio of m to n is fixed.
Therefore, a function of m and n reduces to a function of n.)

2. Select a candidate lower bound n l and a candidate upper bound nU on the growth
rate using one of the several possible methods.

3. Evaluate (using some methodology) whether n l and nU are really the lower and
upper bounds on ap • If not, return to step 2 and repeat the process.

For our illustration, suppose that we wished to consider a candidate lower
bound of n2

.
2 on the growth rate of the number of potential updates ap and a candidate

upper bound of n2
.
8 (we might simply have guessed to determine these bounds).

Figure 18.3 gives a plot of ap ln2
.2 and ap ln2.8. In Figure 18.3(a) we find that the

function apln2.2 has an increasing trend with the problem size, suggesting that n2.2

is indeed a lower bound on the number of potential updates. Further, we find in
Figure 18.3(b) that the function ap ln2

.
8 has a decreasing trend, suggesting that n2

.
8

is an upper bound on the number of potential updates. If we want more refined lower
and upper bounds, we carry out the technique further to see if n2 .4 is a valid lower

704 Computational Testing of Algorithms Chap. 18

~

0.2

L
a.E(!)
a.,(l)

\
\

\
\

\ \ , \
\ ", " , "

'................ ,
" ,

........................ ---
........ _--

d= 10
d=8
d=6
d=4
d=2

0.47

r 0.31

a..(!) 1
a.,(!)

0.27

.......................... ,

" "'",

" '-

0.0 --+1---,.----,---.,.------,---,.----,----,------, 0.17
o 2,000 4,000

n ~

(a)

0.7

r '0

a.,(l)

a.,(!)

0.5

6,000 8,000 o 2,000

d= 10
d=8
d=6
d=4
d=2

o 2,000 4,000 MI ~~ ~~
n ~

(e)

4,000

n ~

(b)

Figure 18.2 Identifying asymptotic bottleneck operations: (a) ratio of arc scan operations
and total number of operations; (b) ratio of flow update operations .and total number of
operations; (c) ratio of potential update operations and the tothl number of operations.

" "

d= 10
d=8
d=6
d=4
d=2

_-:-:"':':::'::'::':,:,:,:,--=,-"""""

6,000 8,000

0.3

0.2

r
<>'p(I)/,2.2 0.1

-- ------

./ ----------~~./-/ ----
/' -------

/// ---
----_/ -----------

--- d=lO
--- d=8
----- d=6
----- d=4
--------- d=2

0.0 +------.--,.------r---...--.----.---...----,
o

0.003

0.002

r
<>.p(I)/,2.8 0.001

2,000 4,000

n)0

(a)

\
\

\
\

'- \
'- \ " '-----

'-----------

6,000 8,000

--- d=lO
--- d=8
----- d=6
----. d=4
--------- d=2

------- ~ -- --- -- ------------------

0+---.--,---,....---,---,---,--..,.----,
o 2,000 4,000 6,000 8,000

n)0

(b)

Figure 18.3 Determining asymptotic growth rates of the bottleneck step: (a) plot of
up(I)ln z.z has an increasing trend; (b) plot of up(I)ln Z

.
8 has a decreasing trend.

bound or if n2.6 is a valid upper bound. The polynomial estimates for the lower and
upper bounds are significantly different because our method for estimating lower
and upper bounds typically is quite conservative and underestimates the lower bound
and overestimates the upper bound.

We might emphasize that our approach is intended primarily for gathering in
sight into the upper and lower bounds on function growth and is not rigorous. For
example, to determine the upper bound on the growth, the methodology must rec
ognize that a certain function has an increasing trend. However, we have not rig
orously d~fined what we mean by "increasing trend"; it depends, to an extent, on
a judgment call by the user.

706 Computational Testing of Algorithms Chap. 18

In addition to its lack of rigor, the methodology, as we have used it, is perhaps
too conservative, and can be strengthened through careful statistical analysis. To
illustrate, in the previous example, we estimated the growth in the number of po
tential updates as being between n2.2 and n2.8. The gap between these bounds is very
large, and careful statistical analysis should be able to narrow the gap considerably.

Comparing Two Algorithms

Suppose that we want to compare two different algorithms sIl.:£l and sIl.:£2 for solving
the same problem and are interested in knowing which algorithm performs better
asymptotically. We can apply the same methodology for assessing asymptotic bot
tleneck operations to compare different algorithms. Let u}(k) and u~(k) be the total
expected number of representative operations performed by the algorithms sIl.:£l and
sIl.:£2 on instances of size k. We say that algorithm sIl.:£l is asymptotically superior
to algorithm sIl.:£2 if

. u}(k)
hm 2(k) = o.
k_oo Us

Virtual Running Times

In Section 18.1 we have already mentioned some difficulties that arise when we use
CPU times as an empirical measure for computational investigations. We might note
yet one more disadvantage: CPU times force unnecessary rigidity in the testing of
an algorithm. To collect the CPU times for an algorithm, we should conduct all of
our tests on the same machine using the same compiler. Moreover, if the machine
is a time-sharing machine, we should ideally solve all the test problems when the
machine has a similar work load. As an additional complication, for large instances,
paging might dominate CPU times.

We can overcome some of these drawbacks by using virtual times instead of
CPU times. (We point out that the virtual time is not directly related to "virtual
memory.") The virtual running time of an algorithm is a linear estimate of its CPU
time obtained by using its representative operation counts. For example, the virtual
running time V(l) of the network simplex algorithm to solve instance I is given by

V(l) = csUE(I) + C6UW(l) + C7UP(l) ,

for a set of constants Cs, C6, and C7 selected so that V(l) is the best possible estimate
of the algorithm's actual running time CPU(l) on the problem instance I. One plau
sible way to determine the constants Cs, C6, and C7 is to use (multiple) regression
analysis. To do so, we consider the points (CPU(l), UE(l), uw(l), up(l)) generated
by solving various individual instances and use regression analysis to determine the
constants cs, C6, and C7 that minimizes the expression ~I (CPU(l) - V(l))2.

In our regression analysis we generated each of the points (CPU(l), UE(l) ,
uw(l), up(l)) by taking an average of five problem instances; we used the averages
reported in Figure 18.1, so we found the best linear fit to the 5-point averages. We
found that for the network simplex algorithm with the first eligible pivot rule, we
could estimate the virtual running time of an instance I as follows:

V(l) = (UE(l) + 2uw(l) + up(l))/69,OOO.

Sec. 18.3 Application to Network Simplex Algorithm 707

To obtain an idea of the goodness of this fit, in Figure 18.4 we plot the ratio
V(I)/CPU(l) for all the data points. We find that in 15 of 25 cases, the error is less
than 3%. In each case the error is at most 7%. So for this 'example, we can use the
virtual running time instead of the CPU time with remarkably little loss of accuracy.

1.5

1.4

1.3

r
1.2

1.1

1.0
V(I)fCPU (/)

0.9

0.8

0.7

0.6

0.5 "l
0

I
2,000

I
4,000

n •

6,000

--- d=1O
--- d=8
----- d=6
----- d=4
--------- d=2

8,000 10,000

Figure 18.4 Detennining how well the virtual running time estimates CPU time.

Using virtual running times has several advantages. First, the virtual running
time helps us to assess the proportion of time that an algorithm spends on different
representative operations. As an immediate consequence, it helps us to identify not
only the asymptotic bottleneck operation, but also the bottleneck operations for
different sizes of problem instances. For example, we estimated the virtual running
time of the network simplex algorithm as V(l) = (UE(l) + 2uw(l) + Up (I))/69 ,000.
To estimate the proportion of time spent on potential updates, in Figure 18.5 we plot
up(I)/(UE(l) + 2uw(l) + up(l)). As we can see, for small problems, the percentage
of time spent in updating node potential is less than 50 percent; however, as n
increases the percentage of the time spent in updating node potential also increases,
and it seems that as n approaches 00, the percentage of time spent updating node
potentials approaches 100 percent.

A second advantage of virtual running time is that it is particularly well suited
for situations in which the testing is carried out on more than one computer. This
situation might arise for several reasons: For example, several users might be con
ducting computational experiments at different sites; or the same user might wish
to conduct additional tests after upgrading from an old computer. This situation is
very co~mon in the research literature because authors often conduct additional
experiments at the suggestion of a referee or editor. When we move from one com
puter system to another, the representative operation counts remain unchanged.
Using the representative operation counts of the previous study and the constants
ofthe new computer system (obtained through the regression estimate for the virtual
running time), we can obtain the virtual running times for all problems of the previous
study measured in terms of the new computer system.

708 Computational Testing of Algorithms Chap. 18

0.7

0.6 ---/-~-::::::::::::::::::::::::::::::::::::

r 0.5

a.//)/V(/) ---d=1O

---d=8

0.4 ----- d=6
----- d=4
---------- d=2

0.3 +-----,--..-------,------r--.---.----,--,i
o 2,000 4,000 6,000 8,000

n)0

Figure 18.5 Identifying the percentage of the virtual running time accounted for by
potential updates.

A third advantage of virtual running time is that it permits us to eliminate the
effect of "paging" and "caching" in determining the running times. When a com
puter program executes a large program whose data do not fully fit into the com
puter's primary memory (e.g., RAM), it stores part of the data in the secondary
memory (e.g., disk) with higher retrieval times. As a result, large programs run mbre
slowly. In the virtual running time analysis, if we evaluate the constants using small
problems (that fully execute in primary memory), the virtual running times for large
problems would provide running time information as though the program were en
tirely run in primary memory. Thus we can use virtual running times to estimate
the running time of an algorithm on a computer with sufficiently large primary mem-
ory.

A natural question is whether the constants used in the virtual running time
are robust (i.e., do they give an accurate estimate of the CPU times for all possible
problem inputs). Again, our use of virtual CPU times is not fully rigorous, but our
limited experience so far has suggested that they do appear to be robust. In practice,
we can also measure the robustness of the constants using statistical analysis.

Additional Insight into Algorithms

Computation counts have the potential to provide additional insight concerning an
algorithm. For example, we can use the preceding analysis to estimate the number
of pivots performed by the network simplex algorithm. Consider the following widely
held belief in the linear programming literature: for most pivoting rules, the number
of pivots is typically proportional to the number of constraints and rarely more than
3 times the number of constraints. In our case, the number of constraints is n + m
since we assume that each variable has an associated upper bound. Let us try to
verify whether this assertion is valid for the first eligible pivot rule as applied to our

Sec. 18.3 Application to Network Simplex Algorithm 709

randomly generated problems. Notice that this rule would imply that if we plot the
ratio of (number of pivots)ln versus n for any specific network density d, we should
obtain nonincreasing functions. The plots given in Figure lS.6(a) indicate that this
conjecture is not true: the number of pivots, for a fixed value of d, is not bounded
by a linear function of n. However, if we plot (number of pivots)ln2 for different
network densities, then, as indicated by Figure lS.6(b), we do obtain nondecreasing
functions. Therefore, the growth rate of the number of pivots is bounded from above
by n2 and bounded from below by n.

710

70

60

50

r
40

30
pin

20

10

0
0

0.02

r 0.01

\

"
"

"

2000

"
"-

--- d=1O
---- d=8
----- d=6
----- d=4
---------- d=2

4000 6000 8000

(a)

--- d=1O
---d=8
----- d=6
----- d=4
---------. d=2

"" '-------- :::::::-----~
'------------------------

0.00 -+---,-----,,----,----.---.---.-----.-----,
o 2000 4000 6000 8000

n •

(b)

Figure 18.6 Detennining lower and upper bounds on the growth rate of the number
of pivots.

Computational Testing of Algorithms Chap. 18

We might also be interested in determining what percentages of pivots are
degenerate as the network size grows. The plots in Figure 18.7, which show the ratio
of the number of degenerate pivots to the total number of pivots as a function of n,
indicate that the ratio of degenerate pivots to total pivots varies between 70 and 90
percent.

0.90

II 0.88
0
.~
p..

g
.9 0.86
""' 0

~
II
0
.~ 0.84
p..

B
oj

g
! 0.82

~
'Ii'

---d=lO
---d=8
----- d=6
----- d=4

0.80 ---------- d=2

0.78
0 2,000 4,000 6,000 8,000

n •

Figure 18.7 Occurance of degenerate pivots.

We might plot a few more graphs to gain additional insight about the network
simplex algorithm. For example, we might plot the average size of the tree whose
node potentials change during the pivot operation [i.e., ap(I)/p]. This plot would
give us a good estimate of the running time per pivot since the potential update is
the bottleneck operation, at least for the first entering pivot rule.

In addition, we might be interested in c'onvergence results for the network
simplex algorithm, i.e., how quickly does the network algorithm converge to the
optimal objective function value? Does the algorithm quickly obtain a solution with
a near-optimal objective function value and then slows down, or does it slowly
approach the optimal objective function value and then converges rapidly? We could,
in principle, provide a partial answer to this question by selecting a few sufficiently
large instances and plotting the objective function values as a function of the number
of pivots.

Limitations

We emphasize that the methodology we have described is suggestive and provides
both insight and guidance, but it does not provide guarantees. In certain circum
stances it can lead to incorrect conclusions. Let us illustrate a situation in which

Sec. 18.3 Application to Network Simplex Algorithm 711

this approach would underestimate the asymptotic growth rate of the bottleneck
operation. Suppose that the actual growth rate of a bottleneck operation is hen) =
n 2 + 1000n and we have data only 'for instances n :5 2000: Suppose we conjecture
that the growth rate of the function is n 1.7. When we plot the ratio (n 2 + 1 OOOn)1
n 1.7 for various values of n, we obtain the plot shown in Figure 18.8, which is a
decreasing function of n. Therefore, using the methodology suggested earlier, we
would incorrectly reach the conclusion that n 1.

7 has an upper bound on h (n).

50

40

30

20

10

1000n / nl.7

o 1----------,----------,----------,---------,
o 1,000 2,000

n ~

Figure 18.8 Limitation of the analysis using representative operation counts.

What went wrong in the previous example that would lead us to make such a
significant mistake in estimating the running time? In our illustration, the growth
rate had two components with very dissimilar constant terms and our test problems
weren't sufficiently large so that the effect of the constant terms became insignificant.
Had the growth function been n 2 + IOn or had we solved problems of size n =
100,000, we would not have assessed the running time incorrectly, except possibly
by a minimal amount. We anticipate that errors of this type would occur rather
infrequently in practice.

We have suggested that we can determine an expression for the virtual running
time using regression analysis. In general, regression analysis will misestimate the
constant terms in the expression if the representative operation counts are highly
correlated. In this case we might prefer to use more sophisticated methods of es
timating the constants, possibly including computer timings of the basic operations.

We further point out that the methodology we have described is not useful for
identifying improvements that affect only the constant factors. The use of compu
tational counts will not identify improvements in coding or in data structures that
improve the running time by a constant factor; the analysis of CPU times would be
able to identify the effects of these improvements.

712 Computational Testing of Algorithms Chap. 18

18.4 SUMMARY

Most iterative algorithms for solving network flow problems repetitively perform
some basic operations. For almost all algorithms, we can decompose these basic
operations into fundamental operations so that the algorithm executes each operation
in e(1) time. An algorithm typically performs a large number of fundamental op
erations. We refer to a subset of fundamental operations as a set of representative
operations if for every possible problem instance, the sum of representative oper
ations provides an upper bound (to within a multiplicative constant) on the sum of
all operations that an algorithm performs. We have shown that these representative
operation counts might provide valuable information about an algorithm's behavior
that is not captured by CPU time. For example, the representative operation counts
allow us (1) to determine the asymptotic growth rate of the running time of an al
gorithm independent of its computing environment, (2) to assess the time an algo
rithm spends on different basic operations, (3) to compare two algorithms executed
on different computers, and (4) to estimate the running time of an algorithm on a
computer different from the one carrying out the experiments.

The simple methodologies that we have presented for conducting empirical
analysis of an algorithm using representative operation counts do not provide rig~
orous guarantees; nevertheless, they often provide considerable insight about an
algorithm's behavior, and they typically yield far more insight than is obtainable by
analyzing only CPU times. The ideas we have outlined in this chapter apply to most
network algorithms and should, as well, apply to optimization algorithms for prob
lems arising in several other application domains.

REFERENCE NOTES

This chapter has been largely excerpted from the paper of Ahuja and Orlin [1992b].
We illustrated our ideas on computational testing of algorithms using a network
simplex code developed by these authors. Researchers have tested several other
codes of the network simplex algQrithm; some notable computational studies are
due to Glover, Karney, and Klingman [1974], Mulvey [1978], Bradley, Brown, and
Graves [1977], Grigoriadis [1986], and Chang and Chen [1989]. In the computational
results reported in this chapter, we used NETGEN to generate random. network
flow problems; Klingman, Napier, and Stutz [1974] developed this network gener
ator.

In our discussion we have emphasized the value of operation counts in com
putational testing. The idea of using operation counts is quite old and probably dates
back to the origins of computational experiments. Nevertheless, the literature on
computational testing for mathematical programming has historically used CPU time
as its primary measure of computational effort and has used operation counts in a
rather limited way. (For example, most computational experiments on the network
simplex algorithm have counted the number of pivots, but have not kept track in
any systematic way of the work per pivot.) The thesis of McGeoch [1986] is an
excellent reference that deemphasizes CPU time in favor of other measures of per
formance. The computational studies by Johnson [1990] and Bentley [1990] provide
excellent illustrations of how to use both CPU times and representative operation

Chap. 18 Reference Notes 713

counts to analyze empirical behavior of algorithms. The term "virtual time" appears
in the thesis of Brown [1988] and is used in a similar way in this chapter.

Although we have focused on the use of operation counts in this chapter, the
following references offer insight about other very important aspects of computa
tional testing.

Performance measures. In this chapter we have focused on empirical run
ning time as measured both by representative operation counts and by CPU times.
Other important measures of performance for an algorithm include (1) ease of im
plementation, (2) robustness, (3) reliability, and (4) accuracy of the solutions. The
papers by Crowder and Saunders [1980], Hoffman and Jackson [1982], and Green
berg [1990] discuss these measures of performance.

Reporting computational experiments. The most comprehensive refer
ences on the reporting of computational experiments in mathematical programming
is Crowder, Dembo, and Mulvey [1978, 1979]. The authors provide guidelines for
what should be reported in a research paper and offer advice on how to conduct
appropriate computational experiments. Jackson and Mulvey [1978] have summa
rized the reporting of computational experiments within the mathematical program
ming literature, largely detailing how poor the reporting had been up to that time.
More recently, Jackson, Boggs, Nash, and Powell [1989] have provided updated
guidelines for conducting computational experiments.

Analysis and evaluation of test results. As emphasized in this chapter,
a large part of data analysis can be carried out without the formal use of statistical
methodology. Graphs, charts, and elementary statistics such as the computation of
means and standard deviations often provide significant insights into the performance
of algorithms. McGeoch [1986], Bentley [1990], and Johnson [1990] present several
case studies to show the power of these basic analytical tools.

Statistical methodologies. Often, statistical methodologies can provide
analysis and insight that is unavailable through other means. "For some papers on
computational testing that provide details on the use of statistical methodologies,
see Bland and Jensen [1985] and Golden, Assad, Wasil, and Baker [1986]. Moreover,
statistical methodologies such as variance reduction can often increase the power
of the analysis and reduce the number of experiments needed to obtain conclusive
results. We refer the reader to McGeoch [1992] for excellent illustrations of variance
as well as for pointers to the literature.

Algorithm animation. Algorithm animation is another technique for gain
ing insight about an algorithm. In his dissertation, Brown [1988] provides an excellent
treatment of this topic. Algorithm animation techniques view the progress of an
algorithm on a single instance as a sequence of snapshots. For example, consider
the greedy algorithm for finding the minimum spanning tree joining n points in the
plane. This algorithm creates the minimum spanning tree one arc at a time, main
taining a forest at each intermediate stage until it ultimately creates the minimum

714 Computational Testing of Algorithms Chap. 18

cost spanning tree. Using animation, we could construct a sequence of figures show
ing the forest at intermediate stages. Viewing a motion picture consisting of a series
of these snapshots might reveal additional insight about an algorithm. Alternatively,
we could see how the total length of the forest increases as a function of computer
time, or we could see how the size of the components decreases as a function of
computer time. The papers by Bentley and Kernighan [1990] and Bentley [1990]
discuss a simple langua~e that facilitates the construction of these animations.

EXERCISES

18.1. An algorithm is said to have a predictable running time if its empirical running time
is guaranteed to be within a constant factor of its worst-case running time. State which
of the following algorithms have a predictable running time: (1) the breadth-first search
algorithm discussed in Section 3.4; (2) the original implementation of Dijkstra's al
gorithm discussed in Section 4.5; (3) Dial's implementation of Dijkstra's algorithm
discussed in Section 4.6; (4) the radix heap implementation of Dijkstra's algorithm
discussed in Section 4.8; (5) the O(nm)-time cycle detection algorithm discussed in
Section 5.5; and (6) the minimum mean cycle algorithm discussed in Section 5.7. Justify
your answers by theoretical arguments without doing the computational testing.

18.2. Specify a set of representative operations for each of the following algorithms: (1) the
topological sorting algorithm discussed in Section 304; (2) the binary heap implemen
tation of Dijkstra's algorithm discussed in Section 4.7; and (3) the radix heap algorithm
described in Section 4.8. Justify your answers.

18.3. Give a set of representative operations for the following maximum flow algorithms
discussed in Chapter 7: (1) the shortest augmenting path algorithm; (2) the highest
label preflow-push algorithm; and (3) the excess scaling algorithm. For each algorithm,
obtain a set of representative operations with the fewest possible number of operations
and justify your answer.

18.4. Specify a set of representative operations for the following minimum cost flow al
gorithms: (1) the relaxation algorithm described in Section 9.10; (2) the cost scaling
algorithm described in Section 10.3; and (3) the double scaling algorithm described in
Section lOA.

18.5. Give a set of representative operations for the following minimum spanning tree al
gorithms: (1) the O(m + n log n) time implementation of Kruskal's algorithm (assume
that arcs are already sorted); and (2) the O(m log n) time implementation of Sollin's
algorithm. Justify your answers.

18.6. What are a set of representative operations for the generalized network simplex al
gorithm discussed in Chapter 15 and for the Dantzig-Wolfe decomposition algorithm
discussed in Chapter 17?

18.7. Let operation i and operationj be two operations that require 8(1) time in a particular
algorithm. Suppose that when this algorithm is applied to an instance I, it executes
operation i 0.;(/) times and operationj o.i/) times. We say that operationj dominates
operation i if for every possible instance I, o.;(I) ==.; Clo.j(I) for some known constant
Cl. For each of the algorithms mentioned in Exercises 18.1 and 18.2, specify repre
sentative operations as well as a nonrepresentative operation that it dominates.

18.8. Design a computational experiment for comparing the following implementations of
the shortest path problem discussed in Chapter 4: (1) the original implementation; (2)
Dial's implementation; and (3) the radix heap implementation. Which set of repre
sentative operations would you collect for each algorithm? Write a computer code for
each of these algorithms and test them using the methodology described in this chapter.

Chap. 18 Exercises 715

18.9. Write computer programs for the following maximum flow algorithms and compare
them using the methodology described in this chapter: (1) the labeling algorithm; (2)
the capacity scaling algorithm; and (3) the shortest augmenting path algorithm.

18.10. Write computer programs for the following minimum cost flow algorithms and compare
them using the methodology described in this chapter: (1) the cycle-canceling algo
rithm; (2) the successive shortest path algorithm; and (3) the relaxation algorithm.

716 Computational Testing of Algorithms Chap. 18

19

ADDITIONAL APPLICATIONS

Chapter Outline

19.1 Introduction
19.2 Maximum Weight Closure of a Graph
19.3 Data Scaling
19.4 Science Applications
19.5 Project Management
19.6 Dynamic Flows
19.7 Arc Routing Problems
19.8 Facility Layout and Location
19.9 Production and Inventory Planning
19.10 Summary

19.1 INTRODUCTION

Mens et Manus (Mind and Hand)
-The MIT Motto

As we have noted throughout this book, network flows is a topic that has evolved
in the best tradition of applied mathematics: It is a subject matter that poses con
siderable challenges for modeling and algorithm development and it has a core of
substantial theory and scholarly content. It unites ideas from the abstract world of
mathematics and concrete world of computation, and so draws its intellectual her
itage from several disciplines, including applied mathematics, computer science,
engineering, management science, and operations research. But perhaps as impor
tant, it is a subject that has had numerous applications in a wide variety of practical
problem settings.

As indicated by the title of this book, our coverage has attempted to emphasize
three critical ingredients of network flows: theory, algorithms, and applications.
Although we have organized most of our discussion in the previous chapters around
core network models and algorithmic approaches, as a key element of our discussion,
we have described approximately 150 applications and mentioned dozens more. We
have introduced these applications in the context of core network flow models
shortest path problems, maximum flow problems, minimum cost flows-and other
network optimization models such as minimal spanning trees. In this chapter we
adopt a somewhat different approach. We discuss 24 applications, organized around
application type. Therefore, within most ofthe topics that we introduce, we consider

717

several different network optimization models. Adopting this approach permits Us
to see a number of important applications in a somewhat different light: at times,
building from simple to more complex models all within the same application context.

At the end of Chapters 4, 6, 9, and 12 to 17 we have listed, with references
a great many applications, including both those that we have considered in the tex~
and in the exercises and others from the literature. At the end of this chapter, We
offer another view of these applications, including those that we have considered in
this chapter, organized in the following categories:

Applied mathematics
Computer science and communication systems
Defense
Distribution systems and transportation
Engineering
Management science
Manufacturing, production, and inventory planning
Physical and medical sciences
Scheduling
Social sciences and public policy

Although we could have adopted many alternative ways to categorize these
various applications, this topography provides one useful view of network flows in
practice. Some of the categories, such as manufacturing and transportation, refer
to specific industries; in these categories, the applications typically are models of
direct relevance to practitioners. Applied mathematics represents another type of
category; the applications in this case are mathematical problems of some interest
to the applied mathematics community (e.g., finding solutions to certain systems of
equations and inequalities) and which often are generic models with rich end ap
plications of their own. When viewed in its entirety, this list of applications attests
to the remarkable robustness of network flows as a practical modeling tool; it sug
gests that we might revise the opening sentence in this book and state: "Everywhere
we look, not only in our daily lives, but also in the worlds of commerce, science,
social systems, and technology, networks are apparent."

Figure 19.1 summarizes the applications that we consider in this chapter as
well as the network problems used to model these applications. As indicated by this
table, just the applications in this chapter attest to the richness of network flows in
practice. As shown by this table, this collection of applications uses many of the
network models that we have developed in previous chapters, including the core
shortest path, maximum flow, and minimum cost flow models, as well as minimum
spanning trees, matchings, and multicommodity flows. The applications also use
more specialized models that are transformable into network flow models (duals of
minimum cost flow models).

718 Additional Applications Chap. 19

Application

19.1 Open pit mining
19.2 Selecting freight handling terminals

19.3 Optimal destruction of military targets

19.4 Flyaway kit problem

19.5 Asymmetric data scaling with lower and
upper bounds

19.6 Minimum ratio asymmetric data scaling

19.7 DNA sequence alignment

Problem type

Minimum cut problem

Minimum cut problem

Minimum cut problem

Minimum cut problem

Shortest path problem

Minimum mean cycle problem

Shortest path problem

Transportation problem

Longest path problem
19.8 Automatic karyotyping of chromosomes

19.9 Determining minimum project duration

19.10 Just -in-time scheduling

19.11 Time-cost trade-off in project management

19.12 Maximum dynamic flows

Longest path problem, minimum cost flow problem

Dual of minimum cost flow problem

19.13 Models for building evacuation

19.14 Directed Chinese postman problem

19.15 Undirected Chinese postman problem

19.16 Discrete location problems

19.17 Warehouse layout

19.18 Rectilinear distance facility location

19.19 Dynamic lot sizing

19.20 Dynamic lot sizing with concave costs
19.21 Dynamic lot sizing with backorders

19.22 Multistage production-inventory planning

19.23 Multiproduct multistage production-inven
tory planning

19.24 Mold allocation

Maximum flow problem

Minimum cost flow problem

Minimum cost flow problem
Shortest path problem and nonbipartite matching

problem

Assignment problem

Transportation problem

Dual of minimum cost flow problem

Shortest path problem, minimum cost flow
problem

Shortest path problem
Shortest path problem

Minimum cost flow problem, mixed integer
programs

Integer multicommodity flow problem

Minimum cost flow problem

Figure 19.1 Applications considered in this chapter.

19.2 MAXIMUM WEIGHT CLOSURE OF A GRAPH

One of the primary purposes of scientific investigation is to structure the world
around us, discovering patterns that cut across and therefore help to unify varied
applied contexts. To begin our discussion of applications, in this section we examine
one such generic model that has applications as varied as designing mining opera
tions, scheduling freight handling terminals, developing a strategy for destroying
military targets, and designing optimal kits of parts and tools for field repair crews.

A closure of a directed network G = (N; A) is a subset of nodes without any
outgoing arcs, that is, a subset N, ~ N satisfying the property that if i belongs to
N, and (i, j) E A, then j also belongs to N,. A closure might have more than one

Sec. 19.2 Maximum Weight Closure of a Graph 719

component. Suppose that we associate a node weight Wi (of arbitrary sign) with each
node i of G. In the maximum weight closure problem, we wish to find a closure N\
with the largest possible weight w(N\) defined as weNd = LiEN' Wi. As an example,
the network shown in Figure 19.2(a) has the closures {3, 4, 5}, {4, 5}, {5}, {2, 5}, and
{1, 2, 4, 5}; the maximum weight closure for this network is {3, 4, 5}.

8(1}----~'

-10

(a) (b)

Figure 19.2 (a) Maximum weight closure problem; (b) transformed network G'.

As we will see in a moment, the maximum weight closure problem arises in a
variety of applications. Before discussing these applications, let us show how to
transform the maximum weight closure problem defined on the network G =

(N, A) into a maximum flow problem on a slightly augmented network G ' =
(N' , A '). To define G' , we introduce a source node s and for each node i E N with
Wi> 0, we create an arc (s, i) with capacity Wi. We also introduce a sink node t and
for each node i E N with Wi < 0, we create an arc (i, t) with capacity - Wi. We then
set the capacity of every original arc (i, j) E A equal to 00 (any integer greater than
LiEN 1 Wi 1 would suffice). Figure 19.2(b) shows the transformed network for the
maximum weight closure problem shown in Figure 19.2(a).

We refer to an s-t cut in the transformed network G ' = (N' , A ') as a simple
cut if all its forward arcs are source and sink arcs (i.e., arcs incident to the source
and sink nodes), We claim that there is a one-to-one correspondence between clo
sures of G and simple cuts in G ' . To establish this result, note that if N\ is a closure
of G, its corresponding cut is [S, S] with S = {s} U N\. The fact that N\ is a closure
of G implies that no arc in A is a forward arc of the cut [S, S]. Consequently, all
of the forward arcs in the cut [S, S] will be either source arcs or sink arcs, so this
cut will be a simple cut. Similarly, if [5', S] is a simple cut of G' , the subset of nodes
N\ defined by N\ = S - {s} is a closure of G.

To relate the weight of a closure to the capacity of the corresponding cut, let
N\ be a closure of G and N2 = N - N\. In addition, let Nt denote the nodes with
nonnegative weights in N\, and Ni denote the nodes with negative weights in N\.
We define Nt and N z similarly. By definition, the weight of the closure N\ is

w(N\) = L Wi - L 1 Wi I· (19.1)
iEN'(iEN,

720 Additional Applications Chap. 19

Now consider the simple cut [S, S] corresponding to the closure N 1 • Each
forward arc in the cut is a source or a sink arc. The construction of the network G'
implies that this cut would have a forward arc (i, t) for every i E NJ and a forward
arc (s, i) for every i E Nt. Therefore, the capacity of this cut is

u[S, S] = L Wi + L I Wi I. (19.2)
iENi iEN,

Adding (19.1) and (19.2), we find that

w(Nd + u[S, S] = L Wi + L Wi = w.
lENt lENt

The constant w in this expression is the total weight of all nodes. Consequently, if
[S, S] is a minimum capacity simple cut, the corresponding closure Nl is a maximum
weight closure.

To obtain a minimum capacity simple cut, we simply need to find a minimum
capacity cut in the network since in the transformed network G', no arc in A will
be a forward arc in any minimum cut because the arcs in A all have an infinite
capacity. Therefore, a minimum capacity cut of G' will automatically be a simple
cut.

To conclude this introductory discussion of the maximum weight closure prob
lem, we note that we can also derive the network formulation of the problem using
minimum cost flow duality, since we can formulate the maximum weight closure
problem as a linear program with at most one + 1 and at most .one - 1 in each row,
which is the dual of a minimum cost flow problem (as shown in Theorem 9.9).

We next describe four different applications of the maximum weight c1osuj:e
problem.

Application 19.1 Open Pit Mining

In mining operations, a problem of considerable importance is the determination of
the optimal contour of an open pit mine. In an open pit mine, we might divide the
potential mining region into blocks. The provisions of any given mining technology,
and perhaps the geography of the mine, impose restrictions on how we can remove
the blocks. For example, we can never remove a block until we have removed every
block that lies immediately above it (see Figure 19.3); restrictions on the "angle"
of mining the blocks might impose similar precedence conditions. Moreover, every
block i has an economic measure Wi representing the net profit obtained from re
moving that block (value of the ore contained in the block minus the cost of exploiting
and processing the block). In the open pit mining problem, we wish to identify a set
of blocks that maximizes the net profit. We model this problem as a maximum weight
closure problem by representing each block as a node; if we must remove block j
before removing block i, we include the arc (i, j) in the network. If we want to
remove a contour B of blocks, every block that we need to remove before removing
a block in B must also lie in B. That is, the nodes defined by B have no outgoing
arcs and therefore define a closure of the network.

Sec. 19.2 Maximum Weight Closure of a Graph 721

Possible
mining
profile

Figure 19.3 Open pit mine; we must remove blocksj and k before removing block i.

Application 19.2 Selecting Freight Handling Terminals

A transport company is considering the installation of a number of freight handling
terminals. It wants to choose from a set S of possible locations for the terminals.
The company has the potential to attract market share (which is a given amount of
demand) between some of the pairs of terminals. To satisfy the demand between
locations i and j, the company must locate terminals at both of these locations.
Suppose that Cj is the cost of installing a terminal at location j and that Pu is the
profit obtained by satisfying the demand between locations i and j. The transport
company would like to determine where to install terminals in order to maximize
its net profit (i.e., the revenue obtained from satisfying the demands minus the cost
of installing the terminals).

Consider, for example, the network shown in Figure 19.4(a). Each node in this

4

-8

-6

-6 -4

-2

3
-4

-8 -2

(a) (b)

Figure 19.4 (a) Selection problem; (b) corresponding maximum closure problem.

722 Additional Applications Chap. 19

network represents a potential terminal; the number next to it represents the negative
of the cost of installing that terminal. Each arc (i, j) represents a service that can
be operated only if both the terminals i andj are operating; the number next to the
arc represents the profit obtained by operating that service. For example, if we decide
to operate terminals 1, 2, and 3, we can operate services only between the following
pairs of terminals: (1, 2), (1, 3), and (2, 3). The net profit for this selection is 4, which
is the difference of the total revenues (of value 20) and the total installation cost
(which is 16).

To reduce the selection problem to the maximum weight closure problem, we
define a bipartite network G = (Nl U N 2 , A) with a node in Nl for every service
and a node in N2 for every terminal. The service node representing the service
between nodes i andj has two outgoing arcs entering the nodes representing terminals
i andj, implying that whenever we decide to provide the service between the nodes
i and j and accrue the profit Pij, we must install the terminals at these two nodes
and incur the installation cost Ci and Cj. Figure 19.4(b) shows the resulting maximum
weight closure problem for our example.

Application 19.3 Optimal Destruction
of Military Targets

A military commander has identified a set S of military targets that he wants to
destroy. These targets are heavily defended by four different layers of defense. TJ1e
first layer consists of forward air defense sites (FADS), the second layer consists
of band surface to air missiles (BSAM), the third layer consists of airborne inter
ceptors (AI), and the fourth layer consists of terminal surface to air missiles (TSAM);
a fifth layer contains the military targets themselves. Let S denote the set of all
defense sites. Each military target is protected by some, but not necessarily all, of
these defense sites. A defense site might also provide protection to other defense
sites in lower-numbered layers. LetP(i) denote the set of defense sites that protect
the target or defense site i E SUS.

Based on his past experience, the military commander feels that while it might
be possible for missiles to pass through all the defenses to reach the military targets,
the probability of such a "leakage" is quite small. Instead, he believes that to destroy
a target, he must first destroy all the defense sites that protect it. Therefore, he must
destroy defense sites as well as targets. Destroying the ith target or defense site has
a certain military benefit but also incurs some loss. Let Wi denote the benefit minus
the loss, which is the (net) value, of destroying the ith target or defense site. The
military commander wants to identify a set of targets and defense sites with the
largest possible total value.

To formulate this problem as a maximum weight closure problem, we associate
a node i with a weight of Wi with the ith target or defense site. For each i E SUS,
we introduce an arc (i, j) for every j E D(i). Figure 19.5 gives an example of the
resulting network. As is easy to see, every feasible destruction oftargets and defense
sites corresponds to a closure of the network. Therefore, the military commander's
problem is a maximum weight closure problem. .

Sec. 19.2 Maximum Weight Closure of a Graph 723

Layer I Layer 2 Layer 3 Layer 4

o
Missiles

FADS BSAM AI TSAM

Figure 19.5 Formulation for the optimal destruction of military targets.

Application 19.4 Flyaway Kit Problem

Layer 5

Military
targets

Many companies (e.g., computer companies or telephone companies) own, lease,
or warrantee a wide range of equipment that they must maintain at geographically
dispersed field locations. In performing a given job, the repair crew often require
various types of parts (and tools). In many cases the crews carry some replacement
parts in a kit rather than storing them at the equipment site. If all the required parts
are in the kit, the crew member can repair the equipment. But if any of these items
is not available, the service call is incomplete and the job is a "brokenjob." Broken
jobs are costly for several reasons: (1) they increase equipment downtime, (2) the
repair crew must make an extra trip for parts, and (3) partially repaired equipment
might be unsafe or vulnerable to damage. On the other hand, carrying more items
in the kit increases handling and inventory costs. In the flyaway kit problem, we
need to obtain the optimal kit of parts (and tools) that minimizes the sum of the
handling and inventory costs and the costs of broken jobs.

Suppose that we number the parts required for servicing the jobs as 1, 2, ... ,
r. We assume that the repairman restocks the kit between jobs, but with a fixed and
specified content. For our purposes we define a job by the set of parts (and tools)
that it requires. Making this association defines a collection of job types J 1, lz, ... ,
Jl , that encompasses all the known possibilities that a repairman might encounter.
The job type Jj is defined by the set B j of the parts required by that job. Let lj denote
the expected number of job types Jj serviced in one year, and '0 denote the penalty
cost we incur whenever job j is a broken job.

A stocking policy of a kit consists of a fixed set of parts M ~ {I, 2, ... , r}
that a crew would carry. Let Hi denote the yearly handling and inventory cost for
carrying part i in the kit. Then the total handling cost is LiEM Hi. Moreover,

724 Additional Applications Chap. 19

the total expected cost of broken jobs per kit per year for policy M would be
~U:Bjq;M} V)j. Therefore, policy M incurs a total expected yearly cost per kit of

z(M) = ~ Hi + ~ Lj .

iEM U:B4M}

In this expression, Lj = V)j. The optimal policy would, of course, be a set M ~ {I,
2, ... , r} that minimizes z(M). Notice that minimizing z(M) is equivalent to max
imizing - z(M), which we can restate as

- z(M) = L Lj - L Hi - L,
U:Bj<;;;,M} iEM

by letting L = ~j= 1 Lj, a constant. Consequently, our objective is to identify a
policy M that maximizes ~{j:Bj<;;;'M}Lj - ~iEM Hi. This problem is a special case
of the maximum weight closure problem on the bipartite network shown in Figure
19.6. This network contains two types of nodes: those representing parts and those
representing jobs. It also contains an arc from a node representing job type Jj to
each part node in Bj . Notice that a node Jj can be in the maximum weight closure
only if the closure also contains each part (and tool) in Bj .

Figure 19.6 Network for the flyaway
Job type Part type kit problem.

19.8 DATA SCALING

In many applied problem contexts, we wish to modify matrix data to achieve some
desired objective. In Application 6.3 we examined one instance of this generic prob
lem: the rounding of entries in census tables to preserve the basic nature of the
tabular entries and yet disguise confidential information. In this section we consider
two variations of a model of data scaling: We would now like to scale the rows and
columns of a matrix so that the resulting entries of the matrix are "close" to each
other; one variant of this model requires that we solve a shortest path problem and
the other requires that we solve a minimum mean cycle problem. Before discussing
these generic models, we first consider one important application context for data
scaling.

When we solve a linear programming problem of the form minimize ex, subject
to six = b and x ::::: 0 by the simplex method, we incur round-off errors because
computers perform arithmetic operations in floating-point arithmetic. The magnitude
of these errors depends on the relative sizes of the numbers. If the numbers being

Sec. 19.3 Data Scaling 725

manipulated are comparable, the round-off errors are relatively small; otherwise,
they are larger. Thus, given a linear program, it is often d~sirable to transform it
into an equivalent linear program whose constraint matrix A = {au} has elements
that are as close as possible to each other. We can achieve this objective by data
scaling: that is, multiplying each row i by a positive constant OLi and dividing each
column j by a positive constant !3j' Notice that multiplying the equality (row) i by
the constant OLi does not affect the feasibility of any solution, and dividing a column
j by a constant !3j is equivalent to replacing the variable Xj by the variable x} = Xj!3j.
Consequently, other than rescaling the variables, this transformation does not affect
the optimal solutions of the linear program.

We now study two data scaling problems and, in each case, reduce the problem
to a network flow model.

Application 19.5 Asymmetric Data Scaling with Lower
and Upper Bounds

In the asymmetric data scaling problem with lower and upper bounds, we want to
determine whether we can find row multipliers OLi and column divisors !3j so that
every scaled entry of a matrix has a value between the prescribed lower and upper
bounds [and u, that is,

for each i = 1, ... , p and eachj = 1, ... ,q. (19.3)

If we take the logarithms of both sides of the inequalities in (19.3), they become

log [:::;; log OLi + log 1 au 1 - log !3j :::;; log U

(19.4)
for each i = 1, . . . , p, and each j = 1, . . . , q.

For notational convenience, let us index the rows from 1 to p and index the
columns from p + 1 to P + q. Because of this numbering convention, we subse
quently refer to !3j by !3p+j and to a matrix element au by ai,p+j. Let

7r(i) = log OLi

7r(j) = log !3j

foreachi = 1, ... ,p,

for each j = p + 1, . . . ,p + q.

Also, let [' = log [, u' = log u, and aij = log 1 au I. Then we can rewrite the two
inequalities in (19.4) as

7r(i) - 7r(j) :::;; u' - a fj for each i = 1, ... ,p and j = p + 1, ... ,p + q, (19.Sa)

-7r(i) + 7r(j):::;; aij - [' for each i = 1, ... ,p and j = p + 1, ... ,p + q. (19.Sb)

We have thus reduced the data scaling problem into the problem of identifying
whether some vector 7r satisfies the inequalities in (19.S). This problem is known as
a system of difference constraints and, as described in Application 4.S, we can solve
it as a shortest path problem on the network shown in Figure 19.7. This network is
a complete bipartite network G = (N\ U N 2 , A) with node sets N\ = {I, ... ,p}
and N2 == {p + 1, ... ,p + q}. The network contains an arc (i, j) of cost Cu ==
u' - afj for every node pair [i, j] E N\ X N2, and an arc (j, i) of cost Cji = afj - ['

726 Additional Applications Chap. 19

@)
N2

Figure 19.7 Network for data scaling
problems. The network contains an arc
for each [i, j] E Nl x N2 and an arc
for each [j, i] E N2 X N 1•

for every node pair [j, i] E N2 X Nt. If we set d(j) = -7r(j) for eachj, then the
inequalities (19.5) reduce to

d(j) :5 d(i) + Cij for each arc (i, j) E A, (19.6)

which are the optimality conditions of a shortest path problem (see Section 5.2). We
have shown in Section 5.2 that (19.6) has a feasible solution [i.e., a set of shortest
path distances d(-)] if and only if the network contains no negative cycle. We can
resolve this question in O(nm) time by using the negative cycle detection algorithQ'l
described in Section 5.5. .

Application 19.6 Minimum Ratio Asymmetric
Data Scaling

In the minimum ratio asymmetric data scaling problem, we want to identify bounds
I and u, row multipliers OLi, and coh!p1n divisors (3j so that

for each i = 1, ... ,p andj = 1, ... ,q, (19.7)

with the smallest possible ratio ull. We will show how to solve this data scaling
problem by solving a minimum mean cycle problem.

We first observe that without any loss of generality we can fix I = 1 and identify
the minimum value of u that, together with some row and column multipliers, satisfies
the inequalities (19.7) (because we can transform any solution with I different than
1 to a solution with I equal to 1 by multiplying u and each OL; by I). Our discussion
of the preceding application shows that the following linear program is an alternative
formulation of the minimum ratio asymmetric data scaling problem:

Minimize u' (19.8a)

subject to

7r(i) - 7r(j) - u':5 -alj for every i = 1, ... ,p, andj = p + 1, ... ,p + q, (19.8b)

- 7r(i) + 7r(j) :5 a lj for every i = 1, ... ,p andj = p + 1, ... ,p + q. (19.8c)

Sec. 19.3 Data Scaling 727

In this model the variables 7I"(i) and constants u' and aij are defined as in Application
19.5. Notice that l' = log2 1 = o. To simplify (19.8), we ag~n redefine the variables.
Let 6 = - u' 12, 71"' (i) = 7I"(i) - u/2 for each i= 1, ... ,p, and 71"' (j) = 7I"(j)for each
j = p + 1, ... ,p + q. Moreover, for each i = 1, ... ,p andj = p + 1, ... ,
p + q, define Cij = -aij and Cji = aij. In this notation, the problem (19.8) becomes
the following linear program:

Minimize 6 (19.9a)

subject to

7I"'(i) - 7I"'(j) + 6::;cij foreveryi = 1, ... ,pandj=p + 1, ... ,p + q, (19.9b)

-71"'(0 + 7I"'(j) + 6 ::;cjdoreveryi = 1, ... ,pandj = p + 1, ... ,p + q. (19.9c)

This problem is similar to the one addressed in the preceding application; in
this case we want to find the minimum value of 6 for which the system of difference
constraints (19.9b) and (19.9c) has a feasible solution. Our discussion in the last
application implies that the system of inequalities (19.9b) and (19.9c) has a feasible
solution if and only if the network shown in Figure 19.7, with Cij -.6 as the length
of each arc (i, j), does not contain a negative cycle. The latter statement is equivalent
to saying that the network does not contain a negative cycle with mean 6. Therefore,
determining the minimum value of 6 for which the network contains no negative
cycle corresponds to determining the minimum mean cycle of the graph in Figure
19.7. In Section 5.7, we showed how to use dynamic programming to solve the
problem efficiently. If u * denotes the minimum cycle mean and d(·) represents short
est path distances with Cij - 6 as arc lengths, then 71"' (i) = -d(i) solves (19.9). We
can use these 71"' (0 values to obtain row multipliers and column divisors.

19.4 SCIENCE APPLICATIONS

In previous chapters we have considered several applications in the physical and
medical sciences, for example, reconstructing the left ventricle from x-ray projec
tions and determining chemical bonds. To illustrate other possibilities in the science
arena, we next consider two applications in the field of biology: DNA sequencing
and automatic karyotyping of chromosomes. We solve the first I of these problems
as a shortest path problem and the second one as a transportation problem.

Application 19.7 DNA Sequence Alignment

Scientists model strands of DNA as a sequence of letters drawn from the alphabet
{A, C, G, T}. Given two sequences of letters, say B = b 1b2 ••• bp and D = d 1d2 •••

dq of possibly different lengths, molecular biologists are interested in determining
how similar or dissimilar these sequences are to each other. (These sequences are
subsequences of a genome and typically contain several thousand letters.) A natural
way of measuring the dissimilarity between the two sequences Band D is to deter
mine the minimum "cost" required to transform sequence B into sequence D. To
transform B into D, we can perform the following operations: (1) insert an element

. in B (at any place in the sequence) at a "cost" of u units; (2) delete an element from

728 Additional Applications Chap. 19

B (at any place in the sequence) at a "cost" of ~ units; and (3) mutate an element
hi into an element dj at a "cost" of g(h;, dj) units. Needless to say, it is possible to
transform the sequence B into the sequence D in many ways, so identifying a min
imum cost transformation is a nontrivial task. We show how we can solve this
problem using dynamic programming, which we can also view as solving a shortest
path problem on an appropriately defined network.

Suppose that we conceive of the process of transforming the sequence B into
the sequence D as follows. Add or delete elements from the sequence B so that the
modified sequence, say B', has the same number of elements as D. Next "align"
the sequences B' and D to create a one-to-one alignment between their elements.
Finally, mutate the elements in the sequence B' so that this sequence becomes
identical with the sequence D. As an example, suppose that we wish to transform
the sequence B == AGTT into the sequence D == CTAGC. One possible transfor
mation is to delete one T from B and add two new elements at the beginning, giving
the sequence"' B' == EBEBAGT (we denote the new element by the placeholder EB and
later assign a letter to this placeholder). We then align B' with D, as shown in Figure
19.8, and mutate the element T into C so that the sequences become identical. Notice
that because we are free to assign values to the newly added elements, they do not
incur any mutation cost. The cost of this transformation is ~ + 2u + geT, C). <.

B' = EOOlAGT :::} CTAGC Figure 19.8 Transforming the sequence
D = CTAGC CTAGC B into the sequence D.

We now describe a dynamic programming formulation of this problem. ,Let
fU, j) denote the minimum cost of transforming the subsequence hI h2 ... hi into the
subsequence dl d2 ••• dj • We are interested in the value f(p, q), which is the minimum
cost 'of transforming B into D. To determine f(p, q), we determine fU, j) for all
i == 0, 1, ... ,p,and for allj == 0, 1, ... ,q. We can determine these intermediate
quantities fU, j) using the following recursive relationships:

fU,O) == ~i for alli,

f(O,j) == Uj for allj,

fU,j) == min{fU - l,j - 1) + g(hi' dj), fU,j - 1) + u,

fU - l,j) + ~}.

(19. lOa)

(19. lOb)

(19.10c)

We now justify this recursion. The cost f(i, 0) of transforming a sequence of
i elements into a null sequence is the cost of deleting i elements. The cost f(O,j) of
transforming a null sequence into a sequence of j elements is the cost of adding j
elements. Next consider fU, j). Let B' denote the optimal aligned, sequence of B
(i.e., the sequence we create just before the mutation of B' to transform it into D).
At this point, B' satisfies exactly one of the following three cases:

Case 1. B' contains the letter hi, which is aligned with the letter dj of D [as
shown in Figure 19.9(a)].
In this case, fU, j) equals the optimal cost of transforming the subsequence hI h2 .,.

Sec. 19.4 Science Applications 729

B' = I 1 1 1 1 hi 1 B' = / 1 1 hi 1 .. ·1 ffi 1

D = /dlld21 Idj_II~1 D = /dll 1 1···ldQI
(a) (b)

Figure 19.9 Explaining the dynamic
programming recursion.

hi - I into dl d2 •• , dj _ 1 and the cost of transforming the element hi into dj • Therefore,
f(i, j) = f(i - 1, j - 1) + g(hi' dj).

Case 2. B' contains the letter hi, which is not aligned with the dj [as shown
in Figure 19.9(b)].
In this case, hi is to the left of dj, so a newly added element must be aligned with
hj • In this case f(i, j) equals the optimal cost of transforming the subsequence hI h2
... hi into d I d2 ••• dj - 1 plus the cost of adding a new element to B. Therefore,
f(i, j) = f(i, j - 1) + u.

Case 3. B' does not contain the letter hi.
In this case we must have deleted hi from B, so the optimal cost of the transformation
equals the cost of deleting this element and transforming the remaining sequence
into D. Therefore, f(i, j) = f(i -1, j) + ~.

The preceding discussion justifies the recursive relationships specified in
(19.10). We can use these relationships to compute f(i, j) for increasing values of i
and, for a fixed value of i, for increasing values ofj. This method allows us to compute
f(p, q) in O(pq) time.

We can alternatively formulate the DNA sequence alignment problem as a
shortest path problem. In Figure 19.10 we show the shortest path network for this

730

Figure 19.10 Sequence alignment
problem as a shortest path problem.

Additional Applications Chap. 19

formulation for a situation with p = 3 and q = 3. For simplicity, in this network
we denote g(bi , d) by gij. We can establish the correctness of this formulation by
applying an induction argument based on the induction hypothesis that the shortest
path length from node 0° to node ij equals f(i, j). The shortest path from node 0°
to node ij must contain one of the following arcs as the last arc in the path: (1) arc
(i - 11"- 1, i j), (2) arc W- 1

, i j), or (3) arc (i - 11", i j). In these three cases, the lengths
of these paths will be f(i - 1, j - 1) + g(bi , dj), f(i, j - 1) + u, and f(i - 1, j)
+ (3. Clearly, the shortest path length fCi, j) will equal the minimum of these three
numbers, which is consistent with the dynamic programming relationships stated in
(19.10).

Application 19.8 Automatic Karyotyping
of Chromosomes

A normal human cell has 46 chromosomes, usually subdivided into 23 groups with
two identical (homologous) chromosomes per group, except for one male chromo
some. For males, the group with the sex chromosomes has one X chromosome and
one Y chromosome; these two chromosomes are not homologous. Each of these 23
groups of chromosomes has its own characteristic features and serves different bi
ological functions. In certain clinical tests, such as amniocentesis, it is necessary to
identify each of the 46 chromosomes of the cell. The medical community refers to
the process of identifying which chromosomes belong to which of the 23 chromosome
classes as karyotyping.

We consider the process of karyotyping a female cell. In this case each of the
23 chromosome classes consists of two homologous chromosomes. (Karyotyping of
male cells is identical except for the treatment of the sex chromosomes.) The chro
mosomes of a suitably stained cell, when viewed under a microscope, exhibit a series
of characteristic bands along the length of the cell. For each chromosome i of a cell
and for each chromosome classj, we can assign a measure Pij which is the probability
that chromosome i is a member of classj. In some settings, a clinician measures the
characteristic bands used to determi!1e the pij's. In other settings, a commercially
available imaging machine, such as the Cytoscan system, uses a mechanical scanning
device (known as a linear CCD array) to measure the bands.

The assignment of chromosomes to classes is easy if Pij is nearly 1 for all correct
assignments; however, in practice, the values of pij'S might be far from 1 for some
correct assignments. An important task in karyotyping is to assign the chromosomes
to classes in order to maximize the expected number of correct assignments, or,
equivalently, to minimize the number of incorrect assignments.

We let Xij = 1 if we assign chromosome i to class j, and Xij = 0 otherwise.
U sing this notation we can formulate the problem of minimizing the expect~d number
of incorrect assignments of chromosomes to chromosome classes as {he following
transportation problem:

46 23

Minimize ~ ~ (1 - Pi)Xij
i=1 j= 1

subject to

Sec. 19.4 Science Applications 731

.L Xu =
j= i

46

.L Xu = 2
i=i

for i = 1 to 46,

for j = 1 to 23,

Xu ;:::: 0 and integer.

19.5 PROJECT MANAGEMENT

An important class of network problems centers around the planning and scheduling
oflarge projects, such as constructing a building or a highway, planning and launch
ing a new product, installing and debugging a computer system, or developing and
implementing a space exploration program. This application context was among the
earliest successes of network optimization, and the network flow models of project
management continue to be an important management tool used in numerous in
dustries every day. In this section we consider three basic models of project man
agement: a shortest path technique for scheduling projects to achieve the earliest
possible completion and two network flow models for (1) just-in-time scheduling of
jobs in a project and (2) deciding where to allocate additional resources to reduce
a project's overall duration.

Application 19.9 Determining Minimum Project
Duration

For the purpose of modeling, we envision a project as a set of jobs and a set A of
precedence relations between the jobs. If (i, j) E A, we need to complete job i before
beginning job j. In addition, each job j has a known duration 'Tj. The problem is to
identify the project schedule (i.e., the start time of each job) that will satisfy the
precedence relations between the jobs and complete the project in the least possible
amount of time (alternatively, that gives the least possible project duration). Con
sider, for example, the project planning problem given in Figure 19.11.

We can formulate this project planning problem as a shortest path problem; in

Job Duration Immediate predecessors

a 14 -

b 3 -

c 3 a, b

d 7 a

e 4 d

f 10 C, e
Figure 19.11 Project planning problem.

732 Additional Applications Chap. 19

fact, there are two alternative methods for doing so. In the first method we represent
jobs by arcs, and in the second method we represent jobs by nodes. Although the
first of these approaches is more popular in the literature, we adopt the latter ap
proach in this discussion because it is conceptually simpler.

To formulate the project planning problem as a shortest path problem, we define
a project network by associating a node j with each job j, and by including arc
(i, j) whenever job i is an immediate predecessor of job j. We set the length Cij of
arc (i,j) equal to 7'i, the duration of job i. We also introduce a source node s, denoting
the beginning of the project, and connect it to every node that has no incoming arc
(corresponding to jobs without any predecessors) by zero-length arcs. Similarly, we
introduce a sink node t, denoting the end of the project, and connect every node i
with no outgoing arc to this sink node by an arc (i, t) whose length equals the duration
of job i. Figure 19.12 gives the network corresponding to the project planning ex
ample shown in Figure 19.12. Note that the network corresponding to any project
planning model must be acyclic because we could never complete a network con
taining a cycle (why?).

o

14 4

o

3

Figure 19.12 Shortest path formulation of the project planning problem.

Let u(j) denote the earliest possible start time of job j in a project planning
schedule that satisfies the precedence constraints. Notice that with respect to quan
tities u(j), the project duration is u(t) - u(s). We can state the project planning
problem as the following optimization model:

Minimize u(t) - u(s), (19.11a)

subject to

u(j) - u(i) ;::: Cij, for all (i, j) E A,

u(j) unrestricted.

(19. 11 b)

(19.11c)

The inequalities (19.11b) model the precedence constraints by stating that if job i is
an immediate predecessor of job j, then job j can start only after Cij =Ui units of
time have elapsed since the start of job i.

To bring (19.11) into a familiar network flow form, we take its dual. If we
associate the dual variables Xij with the constraints (19.11b), the dual linear program
is

Maximize ~ cijxij
{j: U.j)EA}

Sec. 19.5 Project Management 733

subject to

~ Xji - ~ Xu = {-6
{j:(j,i)EA} {j:(i,j)EA} 1

for i = s, ~

for all i E N - {s, t},
for i = t,

for all (i, j) E A.

Clearly, this is a longest path problem with Cij as the length of arc (i, j); we
wish to send 1 unit of flow from node s to node t along the longest path. To solve
the problem we mUltiply each arc length by - 1 and then solve a shortest path
problem. Note that since the project planning network is acyclic, by multiplying the
arc lengths by - 1, we do not create any negative cycle. Let dO denote the vector
of shortest path distances for this problem. Then by setting u(i) = - d(i) for each
i E N, we obtain an optimal solution of (19.11).

Application 19.10 Just-in-Time Scheduling

The just-in-time scheduling problem is an extension of the project planning problem
that we discussed in the last application. In the just-in-time scheduling problem, we
determine the minimum project duration subject to both the precedence constraints
and some additional "just-in-time constraints." In this problem we are given a subset
S ~ A and a number au for each (i, j) E S. The just-in-time constraints state that
for each (i, j) E S, job j must start within au units of time from the start of job i.
Notice that if aij = Cij, the just-in-time scheduling constraint for arc (i, j) says that
job i must start exactly Cij units before the start of job j, which is the latest possible
start time for this job. Just-in-time is a management philosophy that has become
very popular in recent years; it attempts to eliminate waste by reducing slack times
and buffers, such as inventory between distribution, production, and scheduling
activities.

If u(·) denotes the earliest start times of the jobs, the just-in-time constraints
require that

u (j) ::; u (i) + aij for all (i, j) E S,

or, equivalently,

u(i) - u(j) ~ - au for all (i, j) E S. (19.12)

The start times must also satisfy the usual precedence constraints:

u(j) - u(i) ~ Cij for all (i, j) E A. (19.13)

In the just-in-time scheduling problem, we wish to minimize [u(t) - u(s)]
subject to the inequalities (19.12) and (19.13). Just as we noted in our discussion in
the last application, we can solve this problem as a longest path problem, in this
case on an augmented network G' = (N, A') whose arc set A' includes an arc
(i, j) of cost Cij for each (i, j) E A and an arc (j, i) of cost - aij for each (i, j) E S.
To transform this longest path problem into a shortest path problem, we multiply
each arc cost by -1. Notice that in this case the augmented network G' might not

734 Additional Applications Chap. 19

be acyclic, and the resulting shortest path problem might contain a negative cycle.
The presence of a negative cycle indicates that the just-in-time scheduling problem
has no feasible solution (why?). When the resulting shortest path problem has no
negative cycle, the negative of the shortest path distances provide optimal start times
for the jobs.

As a variant of the just-in-time scheduling problem, suppose that instead of
imposing an upper bound on when job j should start after the start of job i, we
penalize the time difference between the completion of job i and the start of job j
using a penalty factor of dij. We wish to determine start times of jobs that will
minimize this penalty and yet satisfy the restriction that the project duration is at
most 'A (a specified constant). The following linear program models this problem:

subject to

Minimize L (u(j) - u(i) - cij)dij,

(i,j)EA

-u(t) + u(s) ~ -'A,

u(j) - u(i) ~ Cij for all (i,j)E A,

u(j) unrestricted for allj EN.

(19. 14a)

(19. 14b)

(19.14c)

(19. 14d)

Let D; = L{j: (j,i)EA} d ji - LU:(i,j)EA} d ij • The following linear program is the dual
of this model.

Maximize
{j: (i,j)EA}

subject to

L Xjs - L Xsj + Xts = Ds,
{j: (j,s)EA} {j: (s,j)EA}

L Xji - L Xij = D; for all i ¥- s or t,
{j:(j,;)EA} {j:(i,j)EA}

L Xjt - L '''''Xtj - Xts = Dr,
{j: (j,t)EA} {j: (tJ)EA}

for all (i, j) E A.

Note that this problem is a minimum cost network flow problem with an arc (t, s)
from the end node t to the start node s.

Application 19.11 Time-Cost Trade-off
in Project Management

Project scheduling problems provide celebrated applications of minimum cost flow
duality theory. In the basic project scheduling problem that we examined in the
preceding applications, we showed how we could represent an interrelated set of
jobs as a network. As we noted in that discussion, whenever the time to perform
each job is fixed, we can determine the minimum project duration by solving a
shortest path problem. Many project managers would argue that they could reduce

Sec. 19.5 Project Management 735

the duration of most jobs by allocating extra resources (people, machines, or money)
to them. Although the use of the added resources typically inqeases the cost of
carrying out any particular job, expediting or crashing the job might permit the
project team to complete the entire project more quickly. There might, however, be
no reason to shorten the length of some jobs if they have a generous amount of slack
(i.e., the time between the earliest and latest possible start times for the job that
would not delay the project); the project team should perform this job at its normal
pace, without any added resources. Thus we need not crash all jobs to complete a
project faster; only certain "critical" jobs that have no slack need to be crashed.
As we will see, we can formulate the problem of identifying which jobs to expedite,
and by what amount, to complete the project within a specified time A, as a minimum
cost flow problem.

With job (i) in the network we associate a time-cost trade-off curve, which
represents the cost of performing the job as a function of its duration. We assuxe
that the time-cost trade-off curve is linear, as shown in Figure 19.13. We use three
numbers to specify the trade-off curve for any job (0: Its "normal" completion time
ai, its "crash" completion time hi, and the cost di of shortening the job duration by
1 unit. To assess the overall project cost, we would also need to know the normal
cost of performing a job. But since we must perform every job, the normal cost
contributes a constant to the objective function value; therefore, we ignore it from
the analysis.

Cost

hi

~SIope
di

ai
Time--."

Figure 19.13 Time-cost trade-off
curve of job i.

We would like to determine the optimal reduction, if any, in eachjob time that
would permit us to reduce the project duration to a given value A while incurring
the least possible cost in reducing one or more of the job durations. To formulate
this problem as a network flow model, we introduce some notation. As in the last
application, we let node s designate the beginning of the project and node t designate
its completion. The formulation uses two decision variables for each job: (1) u(i),
which denotes the start time of job i (i.e., the start time of all the jobs emanating
from node i) and (2) ~i' which represents the reduction in time required to complete
job i. Mter we reduce the duration of the jobs, the time required to complete job i
will be ai - ~i. Using this notation, we state the project scheduling problem mathe
matically as follows:

736

Minimize L di~i
iEN

Additional Applications

(19. 15a)

Chap. 19

subject to

u(t) - u(s) :5 x.,
u(j) ~ u(i) + (ai - ~i) for all (i, j) E A,

for all i E N,

u(i) unrestricted for all i E N.

(19. 15b)

(19. 15c)

(19. 15d)

(19. 15e)

In this formulation, the constraint (19. 15a) assures that the project duration is
at most x., constraint (19.15b) ensures that the jobs satisfy their precedence con
straints, and (19. 15c) imposes lower and upper bounds on the reductions injob times.
We next make a substitution of variables to simplify (19.15). Let ~i = u(i) - ~;for
all i E N. Substituting~: in (19.15) in the place of ~i' we obtain the following modified
formulation:

subject to

Minimize ~ diu(i) - ~ di~i
iEN iEN

u(t) - u(s) :5 x.,
u(j) - ~i ~ ai

u(i) - ~: ~ 0

u(i) - ~i :5 ai - hi

for all (i, j) E A,

for all i E N,

for all i E N,

u(i) and ~i are unrestricted for all i E N.

(19. 16a)

(19. 16b)

(19. 16c)

(19. 16d)

(19. 16e)

(19.161)

In this formulation, each row has at most one + 1 and at most one - 1; con
sequently, our discussion in Section 9.4 shows that this model is the dual of a min
imum cost flow problem. Consequently, we can obtain an optimal solution of (19.16)
using any minimum cost flow algorithm.

19.6 DYNAMIC FLOWS

Much of our discussion in this book has focused on static models, that is, problems
that have no underlying temporal dimensions. As we have seen, static network
models provide good mathematical representations of a great many applications. In
some other applications, however, such as scheduling of people, jobs, or projects,
or the carryover of inventory of a product from one time period to another, time is
an essential ingredient. In these instances, to account properly for the evolution of
the underlying system over time, we need to use dynamic network flow models. We
might view these models as being composed of mUltiple copies of an underlying
network, one at each point in time: arcs that link these static "snapsq.ots" of the
underlying network describe temporal linkages in the system. Since each node in
the network now has an associated time, we refer to the dynamic networks as time
expanded networks. Dynamic network models arise in many problem settings, in
cluding production-distribution systems, economic planning, energy systems, traffic
systems, and building evacuation systems. In the following discussion we describe
two applications of dynamic network flow models.

Sec. 19.6 Dynamic Flows 737

Application 19.12 Maximum Dynamic Flows

The maximum dynamic flow problem is a variant of the maximum flow problem that
arises, for example, in the following scenario. In a war between two countries, A
and B, suppose that the generals of army A have decided to launch a major offensive
in the next 24 hours using their major infantry units based at location s against enemy
troops at location t. The generals would like to send a maximum number of units
from location s to location t within 24 hours while honoring the arc capacities and
traversal times of the arcs.

In the maximum flow problem, we maximize the number of flow units that can
pass through the network from node s to node t per unit time while satisfying the
arc capacities Uij. In the dynamic flow problem, we maximize the total number of
flow units that can be sent from node s to node t in p time periods while satisfying
arc capacities uij and the arc traversal times 'Tij. In other words, the maximum flow
problem determines the maximum steady state flow per unit time between two nodes,
so we might refer to this problem as the static flow problem. On the other hand, the
maximum dynamic flow problem maximizes the total (transient) flow that we can
send between two nodes within a given period. We will show how to transform the
maximum dynamic flow problem into a maximum flow problem on a new network
GP = (NP, AP), called the time-expanded replica of G. We illustrate our transfor
mation on the example shown in Figure 19. 14(a) with the time-expanded replica for
p = 6 shown in Figure 19.14(b).

For a given network G = (N, A), we form the network GP as follows. We
make p copies it, i2, ... , ip of each node i. Node ik in the time-expanded network
represents node i of the original network at time k. We include arc (ik,j[) of capacity
Uij in the time-expanded network whenever (i, j) E A and I - k = 'Tij; the arc
Uk> j[) in the time-expanded network represents the potential movement of a com
modity from node i to node j in time 'Tij. It is easy to see that any static flow in GP
from the source nodes St, S2, ... , Sp to the sink nodes h, t2, ... , tp is equivalent
to a dynamic flow in G, and vice versa. We can further reduce the multiple-source,
multiple-sink problem in the time-expanded network to the single-source, single-sink
problem by introducing a super-source node s* and a super-sink node t*. Conse
quently, we can solve the maximum dynamic flow problem in G by solving an (or
dinary) maximum flow problem in GP.

Application 19.13 Models for Building Evacuation

In large metropolitan areas, among the criteria used to design large buildings, ar
chitects must ensure sufficient capabilities to evacuate buildings quickly: to respond,
for example, to a fire, an earthquake, a toxic or natural gas leak, a power blackout,
a bomb threat, or a civil defense emergency. As an aid to their design efforts, the
architects would like to be able to develop an evacuation plan and assess the evac
uation time for any particular design. We show how to model this building evacuation
problem as a dynamic flow problem and solve it using a minimum cost flow algorithm.
In our description we present a highly simplified version of the building evacuation
problem. The references cited at the end of this chapter provide a more realistic
description of the problem.

738 Additional Applications Chap. 19

(a)

(b)

Figure 19.14 (a) Network G; (b) time-expanded replica of G. All capacities equal 2
in both the networks.

We first construct a static network for the building. The nodes of this network
represent locations of the building such as work centers, offices, hallways, elevator
stops, staircases, and building exits; the arcs represent passages between locations.
Those locations of the building that house a significant number of people are source
nodes in the network, and the building exits are the sink nodes. The supply of a
source node equals an estimate of the number of people in the location that the node
represents. The capacity of an arc is the number of people that can pass through
the associated passage way per unit time. For example, if we anticipate that at most
60 people per minute can pass by every point in a stairwell, and the length of the
time period in our model is 10 seconds, the capacity of the stairwell is (60)(i) = 10

Sec. 19.6 Dynamic Flows 739

units. We estimate the travel time of an arc and represent it as an integral number
of time periods. For example, specifying two time periods for descending one floor
in a stairwell means that we allow 20 seconds.

Although the static model might have multiple sources and mUltiple sinks
(exits), we can transform it into a model with single source and single sink by using
the standard technique of introducing a super-source node and a super-sink node.
Therefore, we assume that the network contains a single source s with a given supply,
say B, and a single sink t.

We construct the time-expanded replica of the static model as described in the
last application. The time-expanded replica of the network contains p nodes iI, i2,
i 3 , ••• , iP for each node i in the static network; we choose p to be suitably large
to ensure that we can evacuate the building within p time periods. The minimum
time required to evacuate the building is the smallest index r satisfying the property
that the maximum flow from the nodes Sl, S2, ..• , sY to the nodes tl, t

2
, .•. , r

is at least B people (B is given data). As shown in Exercise 19.11, we can solve this
problem by a single application of any minimum cost flow algorithm or repeated
application of any maximum flow algorithm.

19.7 ARC ROUTING PROBLEMS

Leaving from his or her home post office, a postal carrier needs to visit the house
holds on each block in the carrier's route, delivering and collecting letters, and then
returning to the post office. The carrier would like to cover this route by traveling
the minimum possible distance. Mathematically, this problem has the following form:
Given a network G = (N, A) whose arcs (i, j) have an associated nonnegative length
cij, we wish to identify a walk of minimum length that starts at some node (the post
office), visits each arc of the network at least once, and returns to the starting node.
This problem has become known as the Chinese postman problem because it was
first discussed by a Chinese mathematician, K. Mei-Ko. The Chinese postman prob
lem arises in other application settings as well; for instance, in patrolling streets by
police, routing of street sweepers and household refuse collection vehicles, fuel oil
delivery to households, and the spraying of roads with sand during snowstorms.

We discuss the Chinese postman problem on directed and undirected networks
separately. We will show how to reduce the Chinese postman problem on a directed
network to a minimum cost flow problem and how to solve the Chinese postman
problem on an undirected network as a nonbipartite weighted matching problem.
Interestingly, the Chinese postman problem on a mixed network (i.e., some arcs are
directed and the others are undirected) is ,N0'>-complete.

Application 19.14 Directed Chinese Postman Problem

In the Chinese postman problem on directed networks, we are interested in a closed
(directed) walk that traverses each arc of the network at least once. The network
need not contain any such walk! Figure 19.15 shows an example. The network con
tains the desired walk if and only if every node in the network is reachable from
every other node; that is, it is strongly connected. In Section 3.4 we showed how

740 Additional Applications Chap. 19

Figure 19.15 Network with no feasible
solution for the Chinese postman
problem.

to determine whether or not the graph is strongly connected within Oem) time. In
the remainder of our discussion we assume that the network G is strongly connected.

In an optimal walk, a postal carrier might traverse arcs more than once. The
minimum length walk minimizes the sum of lengths of the repeated arc traversals.
Let Xu denote the number of times the postal carrier traverses arc (i, j) in a walk.
Any carrier walk must satisfy the following conditions:

L Xu - L Xji = 0 for all i E N, (19. 17a)
{j: (i,j)EA} {j:(j,i)EA}

for all (i, j) E A. (19. 17b)

The constraints (19.17a) state that the carrier enters a node the same number
of times that he or she leaves it. The constraints (19. 17b) state that the carrier must
visit each arc at least once. Any solution X satisfying (19. 17a) and (19. 17b) defines
a carrier's walk. We can construct such a walk in the following manner. We replace
each arc (i, j) with flow Xu with Xu copies of the arc, each carrying a unit flow. Let
A I denote the resulting arc set. Since the outflow equals inflow for each node in the,.
flow x, once we have transformed the network, the outdegree of each node will equal
its indegree. The flow decomposition theorem (i.e., Theorem 3.5) implies that we
can decompose the arc setA into a set of at most m directed cycles. We can connect
these cycles together to form a closed walk as follows. The carrier starts at some
node in one of the cycles, say WI, and visits the nodes (and arcs) of WI in order
until returning to his or her starting node, or encountering a node that also lies in a
directed cycle not yet visited, say W2 :-In the former case, the walk is complete; and
in the latter case, the carrier visits cycle W2 first before resuming his or her visit of
the nodes in WI. While visiting nodes in W2 , the carrier follows the same policy,
i.e., if he/she encounters a node lying on another directed cycle W3 not yet visited,
he/she visits W3 first before visiting the remaining nodes in W2 , and so on. We
illustrate this method on a numerical example. Let A' be as indicated in Figure
19. 16(a). This solution decomposes into three directed cycles, WI, W2 , and W3 • As
shown in Figure 19.16(b), the carrier starts at node a and visits the nodes in the
following order: a-b-d-g-h-c-d-e-b-c-f-a.

This discussion shows that the solution X defined by a feasible \Valk for the
carrier satisfies (19.17), and, conversely, every feasible solution of (19.17) defines
a walk of the postman. The length of a walk equals LU,j)EA cuxu. Therefore, the
Chinese postman problem seeks a solution X that minimizes L(i,j)EA CuXu, subject
to the set of constraints (19.17). This problem is clearly an instance of the minimum
cost flow problem.

One particular instance of the directed Chinese postman problem deserves

Sec. 19.7 Arc Routing Problems 741

(a)

(b)

Figure 19.16 Constructing a closed walk for the postal carrier.

special mention. Suppose that the indegree of each node in G equals its outdegree.
In that case, by setting Xij = 1 for each arc (i, j) E A, we define a feasible solution
of (19.17) that is also a minimum cost solution (why?). Consequently, whenever the
indegree of each node in a network equals its outdegree, the network contains a
walk that traverses each arc exactly once (i.e., the walk has no arc repetitions). If
the network contains a node whose indegree differs from its outdegree, the walk
must necessarily repeat some arcs (why?). This result is the directed version of the
well-known Euler's theorem for undirected graphs that we discussed in Exercise
3.45.

Application 19.15 Undirected Chinese
Postman Problem

The undirected version of the Chinese postman problem is more complicated than
the directed version; as we will see, rather than solving this problem as a minimum
cost flow problem, we will solve it by using both an all-pairs shortest path algorithm
and a non bipartite weighted matching algorithm.

As we observed in the directed case, a network contains a directed walk visiting
each arc exactly once if and only if the indegree of each node equals its outdegree.
For the undirected case, we have an analogous result, which is known as Euler's
theorem. This theorem states that a graph contains a closed walk that visits each
arc exactly once if and only if every node in the graph has an even degree (i.e.,
the graph is even). In Euler's honor, the research community often refers to even
graphs as Eulerian graphs and to closed walks that visit each arc exactly once as
Eulerian tours.

742 Additional Applications Chap. 19

Euler's theorem is very easy to establish. Note that since any closed walk in
an undirected network enters and leaves any node the same number of times, the
subgraph composed of the arcs in any closed walk is even. Therefore, if the network
contains a closed walk visiting each arc exactly once, the graph must be even. The
converse statement-that is, if the graph is even, then it contains an Eulerian tour
is an easy consequence of a simple probing algorithm that we discussed in the pre
vious application. Since all Eulerian tours have the same cost (the sum of the arc
costs), solving the Chinese postman problem on an even graph does not involve any
optimization. We simply need to find any Eulerian tour.

If the graph is not even, a closed walk on a graph must repeat some arcs.
Consequently, identifying a minimum length closed walk requires an optimization
technique; we must determine which arcs to repeat. Suppose that a feasible carrier
tour is a closed walk W that traverses arc (i, j), Xij times. Suppose that we replace
each arc (i, j) by Xij copies of the same arc and refer to the resulting graph as the
traversal graph. Notice that since the degree of each node in the traversal graph is
even, it contains a closed walk visiting each arc exactly once. We now delete one
copy of each arc (i, j) in the traversal graph and refer to the remaining graph as the
repetition graph, which we represent as G" = (N, A"). Observe that the arc set
A U A" defines the traversal graph.

We now focus on the optimal repetition graph G" = (N, A"). A node i in
Gil = (N, A") has an odd degree if and only if i has an odd degree in G = (N, A),
because A U A" defines even degrees for all nodes. We claim that the repetition
graph can be decomposed into an arc-disjoint union of cycles and paths satisfying
the following properties: (1) each path starts and ends at odd-degree nodes in Gil,
and (2) each odd-degree node in Gil is the start node or the end node of exactly 0ge
path. We can establish this claim by using an argument similar to the one we used
in the proof of the flow decomposition theorem (i.e., Theorem 3.5).

Consider now the optimal repetition graph G* (i.e., the repetition graph cor
responding to an optimal solution of the Chinese postman problem). We can assume
without any loss of generality that G* does not contain any cycle because each such
cycle must have zero length (because arc lengths are nonnegative, any cycle length
is nonnegative; hence, G* would not be optimal if it contained a positive length
cycle). We can eliminate any zero length cycle without affecting the objective func
tion value. Therefore, we can assume that the optimal repetition graph G* consists
of arc-disjoint paths between odd-degree nodes. Each odd-degree node is paired to
another odd-degree node by a path, and collectively these paths contain all the arcs
in G*. Notice that for a given pairing of odd-degree nodes, the path between them
must be a shortest path; otherwise, we could improve the solution.

The preceding discussion implies the following procedure for solving the
Chinese postman problem. We first solve an all-pairs shortest path problem in G =
(N, A) to compute shortest path distances dij between all pairs of nodes. We then
construct a graph G' = (N', A') whose node set consists of all odd-degree nodes
in N and whose arc set contains arcs between every pair of nodes in Nt. We set the
cost of the arc (i, j) E A' to the shortest path distance dij. The network G' is
nonbipartite. Next we identify a minimum weight (nonbipartite) matching M of G'
to identify an optimal pairing of the nodes. For each arc (i, j) E M in the optimal

Sec. 19.7 Arc Routing Problems 743

matching, we add one copy of every arc in the shortest path from node i to node j
to A. We can then decompose the resulting even graph into the carrier's closed walk
by the procedure described in the previous application.

19.8 FACILITY LAYOUT AND LOCATION

Facility layout and location problems offer two perspectives on a similar set of issues.
In facility layout problems we would like to determine the best internal configuration
of an office building, plant, or warehouse. Where should we put offices, equipment,
storage locations, and any support facilities, such as material handling equipment,
heating and ventilation, a mailroom, dining rooms, and rest rooms? In answering
this question, we would like to configure the facility for maximum benefit (e.g., most
efficient interactions between the occupants) at the least possible cost, while rec
ognizing building codes and other externally imposed regulations (e.g., evacuation
codes). Facility location models typically are more macroscopic and consider the
interactions between, rather than within, facilities: for example, between plants,
warehouses, and retail outlets; or between libraries, fire houses, service facilities
(e.g., drugstores, fast-food restaurants), and the populations that they serve. Many
facility layout and facility location problems are integer programming models with
embedded network flow structure since we either locate a facility at a particular
location or not (a zero-one variable) and once we have decided on the location of
the facilities, we wish to route people or goods between them at the least possible
cost. Some facility location and layout problems, however, such as the two that we
consider in this section, are pure network flow models.

Application 19.16 Discrete Location Problems

This application is concerned with the optimal location of p new, facilities to be
selected from an available set of q 2:: P sites. The new facilities interact with the r
existing facilities. The objective is to locate the facilities to minimize the total trans
portation cost between the new and existing facilities. One example of this problem
is the location of hospitals, fire station's, or libraries in a metropolitan area; in this
setting, we can treat population concentrations as the existing facilities. Other ex
amples of this problem are the locations of new airfields used to provide supplies
for a number of military bases, new components on a control panel, and water
fountains iIi an office building.

The data of this problem consist of (1) dkj , the distance between existing facility
k and site j; and (2) Wik, the total transportation cost per unit distance (for some
given time period) incurred between the new facility i and the existing facility k. If
we use the same medium of transportation between all the facilities, we can let Wik

be the number of trips per unit time (day, week, month) made between the new
facility i and the existing facility k. The objective is to assign each new facility i to
an available site j, denoted by a binary variable Xu' to minimize the total cost of
transportation between new and existing facilities. For a given assignment X,

Wik 2:J= 1 dkjXu is the cost of transportation between the new facility i and the existing
facility k. Thus the total transportation cost is given by

744 Additional Applications Chap. 19

or, equivalently,

In this expression Cij = Lk~ 1 Wikdkj is the cost of locating the new facility i at site
j. This model is an instance of the assignment problem.

Notice that in this model, the new facilities are independent of each other in
the sense that the transportation cost (as measured by number of trips) between new
facility i and old facility k does not depend upon the location of other new facilities.
When the demand (and the transportation cost) between facilities depends on the
location of other facilities (e.g., when the new facilities provide the same service
and any old facility will travel to the least cost or closest facility), the models become
more complicated, and typically are integer programming models.

Application 19.17 Warehouse Layout

A warehouse typically is configured with docks for loading and unloading goods and
with open areas (or bins) for storing the goods. Trucks that deliver or pick up goods
arrive at anyone of the loading docks (typically, at random). The warehouse op
erators must collect or deliver the required items from their storage locations. In
managing the warehouse, the operating staff must decide where to locate each of
the goods-the closer a good is to any dock, the lower is the cost of (1) accessing
that good and transferring it to the dock for loading, or (2) unloading the good from
the dock and transporting it to its storage area. Consequently, the items "compete"
for the storage areas that are closest to the docks . .suppose that a company is using
a warehouse to store p items. The warehouse has r loading and unloading docks.
Let Wik be a known total cost per foot incurred in transporting item i between dock
k and its storage region (this cost might be just the cost of the time of a forklift
operator-the transport time mighfoepend on the item being moved, because some
items are heavier or bulkier than others). Typically, the warehouse will store items
on pallets (small wooden platforms) and Wik is directly proportional to the number
of pallet loads of item i moving between dock k and the storage region of the item.
The warehouse layout problem is to determine the region(s) for storing each of the
p items that will minimize the total transportation cost between the items and the
docks.

We first discretize this problem by subdividing the floor area into q square
grids of equal size, numbered in any convenient manner from 1 to q. Since we
represent the distance between each grid and each dock by a single (average) number,
we will be approximating the travel distances and associated loading and unloading
costs; the accuracy of the approximation depends on the size of the grids. Choosing
a smaller grid size improves the accuracy of the approximation but increases the
problem size; therefore, we must make a trade-off between accuracy and solution
cost. Let Fi be the total number of grids required to store item i. For simplicity, we

Sec. 19.8 Facility Layout and Location 745

assume that Lf~ I Fi = q. Let dkj denote the distance between dock k and the center
of grid j. MUltiplying this quantity by Wik, we obtain the transp..ortation cost Wikdkj

for item i between grid locationj and dock k. Since we are assuming that each item
is equally likely to be loaded and unloaded from each dock, the average cost for
locating item i in grid j is

We convert the warehousing problem to a standard transportation problem by de
fining the variables Xij, for all i = 1, ... , p andj = 1,2, ... , q, as follows:

Xu = {01 if we store item i in grid square j,
if we do not store item i in grid square j.

In terms of the variables Xij, the warehouse layout problem becomes

subject to
q

L Xu = Fi
j~1

p

L Xu =
i~l

Xu 2':: 0,

p q

Minimize L L CijXij
i~1 j~1

for i = 1, ... , p,

for j = 1, ... , q,

for all i = 1, . . . ,p, j = 1, . . . , q,

which is clearly an instance of the transportation problem.

Application 19.18 Rectilinear Distance
Facility Location

In this application we model a rectilinear distance facility location as the dual of a
minimum cost flow problem. Suppose that r existing facilities (e.g., hospitals that
offer different medical expertise) are located at distinct points in a two-dimensional
plane: The ith facility has the coordinates CUi, Vi). We wish to locate p new facilities.
Let (xj, Yj), which are the decision variables, denote the coordinates of thejth new
facility. For each set of locations of the new facilities, we incur transportation costs
that are proportional to the rectilinear distances between the new facilities and be
tween the new and existing facilities. The rectilinear distance between any two points
in the xy-plane is the shortest distance between the points if we restrict travel to be
parallel to the two axes (i.e., x-axis and y-axis). Therefore, the rectilinear distance
between the two points (XI, yd and (X2' Y2) is (I XI - x21 + 1 YI - Y21). Because
rectilinear distances model distances on many urban street networks, they are some
times also called manhattan distances.

746 Additional Applications Chap. 19

In our location problem, we want to determine the coordinates (Xj, Yj) for all
j = 1, ... , r that optimize the following objective function:

p p

Minimize L L ajk(1 Xj - Xk I + I Yj - Yk I)
j=1 k= 1

(19.18)
r p

+ L L du(1 Xj - Ui I + I Yj - Vi I)·
i=1 j=1

In this expression, ajk and d ij are constants that represent the cost (per unit
time) per unit distance traveled between the two facilities. It might be useful to think
of dij as the number of trips made between the existing facility i and the new facility
j. With this interpretation, the term ajk (as well as akj) would represent half of the
number of trips made between the new facilities j and k (because the summation
counts the interaction between the new facilities j and k twice). In the first term,
we should, in fact, be summing over all indices j and k with j ¥- k; since I Xj - Xj I
= I Yj - Yj I = 0, for eachj we can set ajj to any value, e.g., ajj = 0 for allj.

First, we notice that the objective function (19.18) consists of two parts; the
first part contains the x-coordinates of the new facilities and the second part contains
the y-coordinates. Since these two parts are independent of each other, we can
optimize them separately. In view of this observation, we assume that our location
problem has the following form:

p p p

Minimize L L ajk I Xj - Xk I + L L dij I Xj - Ui I· (19.19)
j=! k=1 i=1 j=!

We have a similar problem for the y variables. To solve the location problem,
we first convert it into a linear program. To do so, we use a standard technique for
converting a function with absolute value functions to a linear programming problem
[i.e., we replace the term "minimize I <X - ~ I" by the term "minimize (c + d),
subject to the constraints <X - ~ = c - d, c ;::: 0, and d ;::: 0"] (we discuss this
transformation in Exercise 19.1). Using this technique, we convert (19.19) into the
following equivalent problem, which we state in the form of a maximization problem:

p p r p

Maximize L L (-ajk)(ejk + fjk) + L L (-di)(gij + h;j) (19.20a)

subject to

j=1 k=! ;=1 j=1

for all j and all k,

for all i and all j,

ejk ;::: 0, fjk ;::: 0, gij ;::: 0, hu ;::: 0, and Xj unrestricted. ~

(19.20b)

(19.20c)

(19.20d)

We next make a transformation of variables to simplify (19.20). Let elk =
ejk + Xk. flk = fjk + Xj, and hij = hu + Xj. Substituting these variables in (19.20)
gives

Sec. 19.8 Facility Layout and Location 747

iJk - eJk = 0 for all j and all k, (19.21a)

hij - gij = Uij for all i and all j, (19.21b)

eJk - Xk 2':: 0 for all j and all k, (19.21c)

iJk - Xj 2':: 0 for all j and all k, (19.21d)

h[j-Xj2'::O for all i and all j, (19.21e)

gij 2':: 0; eJk. iJk, h!j. and Xj are unrestricted. (19.210

Now notice that (19.21a) implies that iJk = eJk and (19.21b) implies that gij =
h!j - uij. Making this substitution in (19.21c) to (19.210 shows that

eJk - Xk 2':: 0 for allj and all k, (19.22a)

iJk - Xj 2':: 0 for allj and all k, (19.22b)

for all i and all j;

for all i and all j,

eJk, iJk, h,j-, and Xj are unrestricted.

(19.22c)

(19.22d)

(19.22e)

Observe that in (19.22), each constraint has at most one + 1 and at most one
-1. In Section 9.4 (see Theorem 9.9) we have shown that a linear program with at
most + 1 and at most one - 1 in each constraint is the linear programming dual of
a minimum cost flow problem. Consequently, we can solve the rectilinear distance
location problem by taking the dual of (19.20a) and (19.22) and solving the resulting
minimum cost flow problem. The optimal node potentials of this minimum cost flow
problem will be an optimal solution of the (transformed) location problem.

19.9 PRODUCTION AND INVENTORY PLANNING

Many optimization problems in production and inventory planning are network flow
problems. In fact, many of the earliest contributions of operations research to the
field of management were network flow models for this class of applications. To
illustrate the range of applications of network flow models in this problem domain,
we consider several deterministic production-inventory planning problems involving
multiple periods, single or multiple stages, and single or multiple products. All of
these models address a basic economic order quantity issue: When we plan a pro
duction run of any particular product, how much should we produce? Producing in
large quantities reduces the time and cost required to set up equipment for the
individual production runs; on the other hand, producing in large quantities also
means that we will carry many items in inventory awaiting purchase by customers.
The economic order quantity strikes a balance between the setup and inventory
costs to find the production plan that achieves the lowest overall costs. The models
that we consider in this section all attempt to balance the production and inventory
carrying costs while meeting known demands that vary throughout a given planning
horizon. We first study the simplest model of this genre: a single-product, single-

748 Additional Applications Chap. 19

stage model without backordering, which is known as the dynamic lot-size prob
lem.

Application 19.19 Dynamic Lot Sizing

In the dynamic lot-size problem, we wish to meet prescribed demand dj for each of
K periods j = 1, 2, ... , K by either producing an amount Xj in period j and/or by
drawing upon the inventory I j - l carried from the previous period. Figure 19.17 shows
the network for modeling this problem. The network has K + 1 nodes: thejth node,
for j = 1, 2, ... , K, represents the jth planning period; node 0 represents the
"source" of all production. The flow on the production arc (0, j) prescribes the
production level Xj in period j, and the flow on inventory carrying arc (j, j + 1)
prescribes the inventory level Ij to be carried from period j to period j + 1. The
mass balance equation for each period j models the basic accounting equation: In
coming inventory plus production in that period must equal the period's demand
plus the final inventory at the end of the period. The mass balance equation for node
o indicates that during the planning periods 1, 2, ... , K, we must produce all of
the demand (we are assuming zero beginning and zero final inventory over the plan
ning horizon).

Figure 19.17 Network flow model of the dynamic lot-size problem.

If the production and inventory carrying costs are linear, we can easily solve
the dynamic lot-size problem as a shortest path problem as follows. We determine
a shortest path from node 0 to each node j and send dj units of flow along that path;
this path gives the minimum cost production-inventory schedule that satisfies'the
demand in periodj. If we impose capacities on the production and inventory in each
period, the dynamic lot-size problem no longer separates into independent shortest
path problems. For example, if the costs are linear and we impose production or
inventory capacities, the problem becomes a minimum cost flow model. We next
consider situations with nonlinear production costs.

Sec. 19.9 Production and Inventory Planning 749

Application 19.20 Dynamic Lot Sizing
with Concave Costs

In practice, the production Xj in the jth period frequently incurs a fixed cost Fj

(independent of the level of production) and a per unit production cost Cj. Therefore,
for each period j, the flow cost on the production arc (0, j) is 0 if Xj = 0 and Fj +
Cj Xj if Xj > 0, which is a concave function ofthe production level Xj. (The production
cost might also be concave, due to other economies of scale in production.) We
assume that the inventory carrying cost is linear and that we have no capacity im
posed upon production and inventory. So this problem is an instance of the concave
cost flow problem. -

In Exercise 14.13 we showed that any concave cost flow problem always has
an optimal spanning tree solution (i.e., for some spanning tree, the tree arcs may
carry nonzero flows and nontree arcs have zero flow). As we saw in Chapter 11,
the fact that the spanning tree arcs must carry nonnegative flows, restricts our choice
of spanning trees: Only some of them define a feasible solution of the dynamic lot
size problem. Any such feasible spanning tree decomposes into disjoint directed
paths from the source node 0; the first arc on each path is a production arc and
every other arc is an inventory carrying arc (see Figure 19.18). This observation
implies the following production property: In the solution, each time we produce,
we produce enough to meet the demand for an integral number of contiguous periods.
Moreover, in no period do we both carry inventory from the previous period and
produce.

Figure 19.18 Illustrating the production property.

The production property permits us to solve the problem very efficiently as a
shortest path problem on an auxiliary network G' defined as follows. The network
G' consists of nodes 1 through K + 1 and contains an arc (i, j) for every pair of
nodes i andj satisfying i <j. We set the cost of each arc (i, j) equal to the production
and inventory carrying costs incurred in satisfying the demands of periods i, i + 1,
... ,j - 1 by the production in period i. Observe that for every production schedule
satisfying the production property, G' contains a directed path from node 1 to node
K + 1 with the same objective function value, and vice versa. Therefore, we can
obtain the optimal production schedule by solving a shortest path problem.

750 Additional Applications Chap. 19

Application 19.21 Dynamic Lot Sizing with Backorders

In the preceding model we obtained the optimal production-inventory schedule as
suming that we must satisfy the demands exactly in each period. In a more general
version of this model, we permit backordering, which implies that we might not fully
satisfy the demand of any period from the production in that period or from current
inventory, but could fulfill the demand from production in future periods. In this
model we assume that we do not lose any customer whose demand is not satisfied
on time and who must wait until his or her order materializes. Instead, we assume
that we incur a penalty cost for backordering any item. Figure 19.19 shows the
network flow model for this situation. This model is the same as that of the dynamic
lot-size model, except that we have additional backorder carrying arcs (j, j - 1)

for eachj = 2, 3, ... , K, which represent the flow of backorders.
As in the preceding model, we assume that production costs are concave, and

inventory carrying costs are linear, as are the costs of backordering. (Backordering
does not affect the demand but incurs intangible cost in the form of lost goodwill of
the customer.) We also assume that production, inventory, and backordering (and
so the corresponding arcs) have no capacity limitations. This problem, again, is a

Sec. 19.9

K

"iA
i=l

~
(b)

Figure 19.19 Dynamic lot-size problem with backorders: (a) network for the dynamic
lot-size problem; (b) graphical structure of a spanning tree solution.

Production and Inventory Planning 751

concave cost flow problem and has an optimal spanning tree solution. A feasible
spanning tree solution in this case could, however, be different from the no-backorder
case that we discussed in the last application. Although tlie optimal solution still
satisfies the production property, we can use the production in period j to satisfy
previous as well as future demands. Figure 19.19(b) shows an instance of the spanning
tree solution.

The shortest patq network G' for this problem is the same as the case without
backorders except'ihat we define the cost of arc (i, j) differently. In the case with
backorders, we set the cost of arc (i, j) equal to the sum of the production, inventory
carrying, and backorder carrying costs incurred in satisfying the demands of periods
i, i + 1, ... ,j ,- 1 by producing in some period k between i andj - 1; we select
the period k that gives the least possible cost. In other words, we vary k from i to
j - 1, and for each k, we compute the cbst incurred in satisfying the demands of
periods i throughj - 1 by the production in period k; the minimum of these values
defiries the cost of arc (i, j) in the auxiliary network G'. (Recall that in the situation
without backordering, we always chose period i as the production perjod for meeting
the demand in the periods between i and j - 1.)

Application 19.22 Multistage Production-Inventory
Planning

In the dynamic lot-size model, we considered a simple produCtion process with a
single stage of production. Often to produce a product, we must perform a sequence
of operations, possibly performed on different machines at different times. If these
machines have different production capaCities that possibly vary from period to
period, a multistage model would be a better approximation of this planning situation.
In this case we treat each production operation as a separate stage and require that
the product pass through each of the stages before its production is complete. We
will use the following notation:

dj : demand of the product in periodj

Xkj: amount of the product produced at stage k in period j
hj: inventory of the product carried from period j to j + 1 at stage k

P kj: production capacity at stage k in period j
Ukj: upper limit on inventory holding from period j to j + 1 at stage k

Ckj: unit production cost at stage k in period j
hkj : inventory carrying cost from period j to j + 1 at stage k

Figure 19.20 shows a minimum cost flow model of this problem. The network
has KT + 1 nodes: For each k = 1, ... , K, and for eachj = 1, ... , T, the node
jk represents the kth stage in period j. The decision variable next to each arc in the
network models the flow on that arc; Ckj and Pkj are the cost and capacity for the
arc representing the production Xkj at stage kin periodj; hkj and Ukj are the cost and
capacity for the arc representing the inventory hj carried from period j to j + 1 at
stage k. As is evident from the construction of the network, there is one-to-one

752 Additional Applications Chap. 19

Figure 19.20 Network model for the multistage production-inventory planning problem.

correspondence between feasible flows in the network and production schedules.
Consequently, we can obtain a minimum cost production-inventory schedule by
finding a minimum cost flow in the network.

The model we have considered assumes that the production cost in each period
is linear in the production quantity. If these costs are concave (e.g., because of fixed
production costs for producing any quantity in any period), the model becomes a
more complex (NP-hard) mixed integer programming model.

Application 19.23 Multiproduct Multistage Production-
Inventory Planning

The multistage model that we just -discussed modeled the production and inventory
operations of only a single item. In more general situations we would need to consider
not only multiple stages but also multiple products. Suppose that r different products
share the common manufacturing facilities in p stages, and we want to meet the
prescribed demands of the products in each period. The underlying network model
is the same as that shown in Figure 19.20 with the exception that H distinct com
modities flow on each arc. Consequently, the resulting model is an integer minimum
cost multicommodity flow model. Clearly, the multiproduct multistage model is sig
nificantly more difficult than the single-product multistage model. Accordingly, to
solve the model, we might use heuristic procedures that exploit the underlying net
work structure, or we might use general-purpose solution methods from integer
programming and combinatorial optimization. For example, as shown in Chapter
16, where we examine a multiproduct, single-stage version of this problem, we might
use Lagrangian relaxation and solve a sequence of single-product subproblems as
shortest path problems.

Sec. 19.9 Production and Inventory Planning 753

Application 19.24 Mold Allocation

This application concerns a mold allocation problem that arises in the tire industry.
A manufacturing plant in this industry consists of w cavities (or presses). At the
beginning of eacl;l scheduling period, the manufacturing plant will insert different
mold types (assume that the plant has p different mold types, one for each type of
tire) into the cavities and subsequently use each mold to produce a fixed number of
tires in that scheduling period. In the next scheduling period, depending on the
demand requirements and cost structure, the plant might change some mold types
in the cavities. In the mold allocation problem, we would like to assign molds to
cavities over a scheduling horizon of T scheduling periods in order to satisfy the
following conditions:

1. Changeover restrictions. We incur a setup cost whenever we place a mold in
a cavity. This cost includes the cost of setting the mold in the cavity and
performing quality control testing of the initial output of the mold. Highly skilled
personnel perform these operations using specialized equipment; the limited
availability of these personnel and of the specialized equipment normally re
stricts the number of setups that we can perform at the beginning of any sched
uling period. Let Rj denote the maximum number of setups that we can perform
at the beginning of thejth scheduling period. Let Ci denote the cost of placing
a mold of type i in a cavity. In the mold allocation problem, our objective is
to assign molds to cavities in a way that minimizes the total cost of placing the
molds in the cavities.

2. Minimum tire requirements. The number of molds of a given type in place in
the cavities during each scheduling period must meet a management-specified
minimum. These limits originate from agreements assuring independent dis
tributors with minimum production quantities in each period. Let rij denote the
minimum number of molds of type i required in the jth scheduling period.

3. Mold availability constraints. The number of molds of a given type in place in
the cavities during a given scheduling period is limited by the number of molds
of that type available during that scheduling period. Mold availability might
vary from period to period because of the planned arrival of new molds and
the "reworking" of molds to convert them from one type to another. Let aij
denote the molds of type i available in the jth scheduling period.

4. Plant capacity limitations. The total number of molds in place in the cavities
during any scheduling period cannot exceed the number w of available cavities.

Figure 19.21 shows the minimum cost flow formulation of the mold allocation
problem for p = 2 and T = 2. Next to each arc, we give the cost, lower bound, and
capacity for the arc; for those arcs without any accompanying data, (cij, lij, Uij) =

(0, 0, 00). This formulation has T layers of nodes, one for each scheduling period.
In our example, the first layer has nodes Ie, 11, 12

, 1*, and the second layer has
nodes 2°, 21

, 22
, 2*. In general, the layer i has p + 2 nodes numbered iO, iI, i2

, i3
,

... , iP , i*. The network essentially represents the flow of cavities. Initially, assume
that Vi cavities contain mold i, and Vo of the cavities are empty. Notice that Vo +
VI + ... + Vp = w. We represent this relationship by introducing for each mold

754 Additional Applications Chap. 19

Figure 19.21 Minimum cost flow formulation of the mold allocation problem.

type i, arcs (s, 1 i) whose lower and upper bounds are equal to Vi; node s has a
throughput capacity of w. At the beginning of the first scheduling period, we might
change molds in the existing cavities. We accomplish this by using the node 1 *, which
collects all such cavities (including the empty ones) through the arcs (0°, 1*),
W, 1 *), and (02

, 1 *), retains some of these cavities as empty [by sending flow on
arc (1 *, 1°»), and changes the molds in the remaining cavities [by sending flow· on
arcs (1 *, 11) and (1 *, 12)]. We allow a maximum of R I changes in the first scheduling
period. We impose this restriction by setting the capacity of the node 1* equal to
R I. The arc (1 *, 11) carries the cavities in which we place mold 1; therefore, this
arc has cost CI. Similarly, the arc (1 *, 12) carries the cavities in which we place
mold 2, and so has cost C2. Since the flow on the arc (11, 21) is the total number of
cavities that contain mold 1 in the first scheduling period, we impose a lower bound
of'l1 and an upper bound of all on this arc. Similarly, the flow on the arc (12, 22)
represents the number of cavities that contain mold 2, and flow on the arc (10, 2°)
represents the number of empty cavities. This network has capacities on some nodes;
we can transform node capacities into arc capacities by performing the node splitting
transformation described in Section 2.4.

This discussion shows that there is one-to-one correspondence between feasible
flows in the network and feasible mold allocations. Consequently, a minimum cost
flow would prescribe a minimum cost mold allocation plan.

19.10 SUMMARY

This chapter complements our discussion in previous chapters by introducing a num
ber of additional applications of network flows. The applications are of two types:
(1) broad generic problem types (the maximum weight closure of a graph, data scal
ing, dynamic flows, and arc routing), and (2) contextual applications (DNA sequenc
ing, automatic karyotyping of chromosomes, facility layout and location, project

Sec. 19.10 Summary 755

management, and production and inventory planning): Within the generic problem
types, we have considered a number of more specific applica!ions: open pit mining,
selecting freight handling terminals, optimal destruction of military targets, the fly
away kit problem, scaling linear programming constraint matrices; in addition, build
ing evacuations, patrolling streets by police cars, routing of street sweepers and
household refuse collection vehicles, fuel oil delivery, and spraying roads during
snowstorms. As part of this discussion we have also examined some classical net
work optimization models, including the directed and undirected Chinese postman
problems, critical path scheduling, and various dynamic models of economic lot
sizing.

As shown by the following tables, these applications, when combined with
those that we have examined in previous chapters, demonstrate the ability of network
flows to model an extraordinarily wide range of problems met in practice. Our choice
of the categories in these tables is somewhat arbitrary, yet does provide at least one

Engineering

1. Leveling mountainous terrain (Application 1.4)

2. Rewiring of typewriters (Application 1.5)

3. Measuring homogeneity of bimetallic objects
(Application 1.7)

4. Electrical networks (Application 1.8)

5. The paragraph problem (Exercise 1.7)

6. Network reliability testing (Application 8.2)

7. Equipment replacement (Application 9.6)

B. Phasing out capital equipment (Exercise 9.6)

9. Terminal assignment problem (Exercise 9.7)

10. Capacity expansion of a network (Exercise
14.4)

11. Dual completion of oil wells (Application 12.4)

12. Cabling electrical panels (Application 13.1)

13. Constructing pipeline networks (Application
13.1)

14. Managing energy or mineral networks (Appli-
cation 15.1)

15. Stick percolation problem (Application 14.4)

16. Machine loading (Application 15.2)

17. Network design (Application 16.4)

lB. Open pit mining (Application 19.1)

19. Flyaway kit problem (Application 19.4)

756

Manufacturing, production, and inventory planning

1. Assortment of structural steel beams (Applica
tion 1.2)

2. Allocating inspection effort on a production
line (Application 4.2)

3. Machine setup problem (Exercise 6.19)

4. Entrepreneur's problem (Exercise 9.1)

5. Caterer problem (Exercises 11.2 and 15.1)

6. Optimal depletion of inventory (Application
12.8)

7. Two-duty operator scheduling (Application
16.5)

8. Multi-item production planning (Application
16.7)

9. Warehousing of seasonal products (Application
17.2)

10. Warehouse layout (Application 19.17)

II. Determining minimum project duration (Appli
cation 19.9)

12. Just-in-time scheduling (Application 19.10)

13. Time-cost trade-off in project management
(Application 19.11)

14. Dynamic lot sizing (Application 19.19)

15. Dynamic lot sizing with concave costs (Appli
cation 19.20)

16. Dynamic lot sizing with backorders (Applica
tion 19.21)

17. Multistage production-inventory planning (Ap
plication 19.22)

lB. Multiproduct multistage production-inventory
planning (Application 19.23)

19. Mold allocation (Application 19.24)

Additional Applications Chap. 19

Scheduling

1. Police patrol problem (Exercise 1.9)

2. Telephone operator scheduling (Application
4.6)

3. Single-duty crew scheduling (Exercise 4.13)

4. Scheduling on uniform parallel machines (Ap
plication 6.4)

5. Tanker scheduling problem (Application 6.6)

6. Nurse scheduling problem (Exercises 6.2 and
11.1)

7. Airline scheduling problem (Exercise 6.32)

8. Scheduling with deferral costs (Application 9.5)

9. Optimal capacity scheduling (Application 9.6)

10. Employment scheduling (Application 9.6)

11. Scheduling on parallel machines (Application
12.9)

12. School bus driver assignment (Exercise 12.1)

13. Multivehicle tanker scheduling (Application
17.3)

Physical and medical sciences

1. Disease categorization (Exercise 4.6 and Appli
cation 13 .5)

2. Reconstructing the left ventricle from X-ray
projections (Application 9.2)

3. Determining chemical bonds (Application 12.5)

4. Storing sequences of amino acids in proteins
(Application 13.4)

5. DNA sequence alignment (Application 19.7)

6. Automatic karyotyping of chromosomes (Appli
cation 19.8)

Defense

1. Locating objects in space (Application 12.6)

2. Matching moving objects (Application 12.7)

3. Optimal destruction of military targets (Applica
tion 19.3)

4. Network interdiction problem (Exercise 19.18)

Sec. 19.10 Summary

Management science

1. Compact book storage in libraries (Exercise
4.3)

2. Personnel planning (Exercise 4.9)

3. Optimal storage policy for libraries (Exercise
9.3)

4. Zoned warehousing (Exercise 9.4)

5. Project assignment (Exercise 11.3)

6. Faculty-course assignment (Exercise 11.6)

7. Bipartite personnel assignment (Application
12.1)

8. Nonbipartite personnel assignment (Applica
tion 12.2)

9. Managing financial investments (Application
15.1)

10. Managing warehousing goods and funds flows
(Application 15.3)

11. Managing foodgrain imports-exports (Applica
tion 17.1)

Computer science and communication systems

1. Concentrator location on a line (Exercises 4.7
and 4.8)

2. Distributed computing on a two-processor com
puter (Application 6.5)

3. Allocating receivers to transmitters (Exercise
11.5)

4. Constructing digital computer systems (Applica
tion 13.1)

5. Designing computer networks (Application 13.1)

6. Area transfers in communication. networks (Ap
plication 14.2)

7. Message routing in computer and communica
tion networks (Application 17.1)

8. Reducing data storage (Application 13.4)

757

Social sciences and public policy

1. Reallocation of housing (Application 1.1)

2. Determining an optimal energy policy (Applica
tion 1.9)

3. Racial balancing of schools (Applications 1.10
and 9.3)

4. Police patrol problem (Exercise 1.9)

5. Forest scheduling problem (Exercise 1.10)

6. Large-scale personnel assignment (Exercise
1.4)

7. Problem of representatives (Application 6.2)

S. Matrix rounding problem (Application 6.3)

9. Statistical security of data (Exercise 6.5 and
Application 8.3)

10. Allocation of contractors to public works (Ex
ercise 9.5)

11. Assigning medical school graduates to hospi-
tals (Application 12.3)

12. Optimal message passing (Application 13.2)

13. Designing physical systems (Application 13.1)

14. Matrix balancing problems (Application 14.3)

15. Land management (Application 15.4)

16. Optimal deployment of resources (Exercise
17.1)

17. Models for building evacuation (Application
19.13)

IS. Parking model (Exercise 19.17)

19. Optimal deployment of firefighting companies
(Exercise 19.21)

Applied mathematics

1. Approximating piecewise linear functions (Ap
plication 4.1)

2. Knapsack problem (Application 4.3)

3. Cluster analysis (Exercise 4.6 and Application
13.5)

4. System of difference constraints (Application
4.5)

5. Finding feasible network flows (Application
6.1)

6. Matrix rounding problem (Application 6.3)

7. Solving a system of equations (Exercise 6.4)

S. Linear programs with consecutive ones in col
umns (Application 9.6)

9. Capacitated minimum spanning tree problem
(Exercise 9.54)

10. Fractional b-matching problem (Exercise 9.55)

11. Bottleneck transportation problem (Exercise
9.56)

12. Linear programs with consecutive l's in rows
(Exercise 9.S)

13. Linear programs with circular l's in rows (Ex
ercise 9.9)

14. Optimal rounding of a matrix (Exercise 11. 7)

15. All pairs minimax path problem (Application
13.3)

16. Traveling salesman problem (Application 16.2)

17. Degree-constrained minimum spanning trees
(Application 16.6) .

IS. Asymmetric data scaling with lower and upper
bounds (Application 19.5)

19. Minimum ratio asymmetric data scaling (Appli
cation 19.6)

20. Symmetric data scaling problems (Exercise
19.6)

21. Maximum dynamic flows (Application 19.12)

plausible way to group the various applications. Several of the applications in these
tables fit into several of the categories; rather than attempting to capture all such
overlaps, with only a few exceptions we have placed each application into a single
table, usually reflecting the application's primary application context. (In a few
cases, an application combines several problems contexts; to help us obtain a better
picture of the application contexts, we have included citations to several of these
applications more than once.) We encourage readers to scan all of these tables to
obtain a broad picture of the applications we have considered and to discover con
nections between the various categories.

We note that these tables underestimate the full range of applications that we
have considered in our discussion throughout the text. For example, the tables con-

758 Additional Applications Chap. 19

Distribution and transportation

1. Tramp steamer problem (Application 4.4)

2. Minimax transportation problem (Exercise 6.6)

3. Optimal loading of a hopping airplane (Applica-
tion 9.4)

4. Distribution problems (Application 9.1)

5. Vehicle fleet planning (Exercise 9.2)

6. Passenger routing (Exercise 11.4)

7. Pilot assignments (Application 12.2)

8. Designing rural road networks (Application
13.1)

9. Aircraft assignment (Application 15.2)

10. Vehicle routing problem (Application 16.3)

11. Routing of railcars (Application 17.1)

12. Distribution systems planning for mUltiple
products (Application 17.1)

13. Selecting freight handling terminals (Applica
tion 19.2)

14. Directed Chinese postman problem (Applica
tion 19.14)

15. Undirected Chinese postman problem (Appli
cation 19.15)

16. Discrete location problems (Application 19.16)

17. Rectilinear distance facility location (Applica
tion 19.18)

18. Truck scheduling problem (Exercises 19.19 and
19.20)

19. Dynamic facility location (Exercise 19.22)

Miscellaneous

1. Pruned chessboard problem (Exercise 1.6)

2. Dating problem (Exercise 1.5)

3. Seat-sharing problem (Exercise 1.8)

4. Bridges of Konigsberg (Exercise 2.6)

5. Knight's tour problem (Exercise 3.25)

6. Maze problem (EXercise 3.26)

7. Wine division problem (Exercise 3.27)

8. Money-changing problem (Exercise 4.5)

9. Dining problem (Exercise 6.1)

10. Ski instructor's problem (Exercise 12.2)

11. Dancing problem (Exercise 12.12)

12. Tournament problem (Application 1.3)

13. Optimal coverage of sports events (Exercise
6.41)

14. Baseball elimination problem (Application 8.1)

15. Balanced assignment problem (Exercise 12.24)

16. Optimal message passing (Application 13.2)

17. Urban traffic flows (Application 14.1)

tain a single entry for discrete location problems, even though, as pointed out in
this chapter, this application class applies to problem contexts in (1) the public and
service sectors such as hospitals, fite stations, libraries, and air field locations, (2)
technical arenas such as the layout of the component of a control panel, and (3)
architectural design, such as the location of water fountains in an office building.

We also note that the coverage of applications in this book, as broad as it is,
is not intended to be exhaustive. The applications we have discussed typically are
classical, are easy to describe, or are representative of a broad class of probleins.
The literature contains many other applications, some that amplify on the themes
we have presented and some that treat new problem domains. We hope that when
viewed in its entirety, our coverage in this book gives an appreciation for the power
of network flows as a field that not only has substantial intellectual content, but also
has an important impact on practice.

REFERENCE NOTES

In this chapter we described many applications of network flow problems. We have
adapted these applications from the following papers:

Chap. 19 Reference Notes 759

1. Open pit mining (Johnson [1968])
2. Selecting freight handling terminals (Rhys [1970])
3. Optimal destruction of military targets (Orlin [1987])
4. Flyaway kit problem (Marner and Smith [1982])
5. Asymmetric data scaling with lower and upper bounds (Orlin and Rothblum

[1985])
6. Minimum ratio asymmetric data scaling (Orlin and Rothblum [1985])
7. DNA sequence alignment (Waterman [1988])
8. Automatic karyotyping of chromosomes (Tso, Kleinschmidt, Mitterreiter, and

Graham [1991])
9. Determining minimum project duration (Elmaghraby [1978])

10. Just-in-time scheduling (Elmaghraby [1978], Levner and Nemirovsky [1991])
11. Time-cost trade-off in project management (Fulkerson [1961a], Kelley [1961])
12. Maximum dynamic flows (Ford and Fulkerson [1958a])
13. Models for building evacuation (Chalmet, Francis, and Saunders [1982])
14. Directed Chinese postman problem (Edmonds and Johnson [1973])
15. Undirected Chinese postman problem (Edmonds and Johnson [1973])
16. Discrete location problem (Francis and White [1976])
17. Warehouse layout (Francis and White [1976])
18. Rectilinear distance facility location (Cabot, Francis, and Stary [1970])
19. Dynamic lot sizing (Veinott and Wagner [1962])
20. Dynamic lot sizing with concave costs (Zangwill [1969])
21. Dynamic lot sizing with backorders (Zangwill [1969])
22. Multistage production-inventory planning (Zangwill [1969])
23. Multiproduct multistage production-inventory planning (Evans [1977])
24. Mold allocation (Love and Vemuganti [1978])

Additional applications of network flow problems can be found throughout this
book, in the text and in the exercises. We provide numerous citations to the literature
in the reference notes of Chapters 1, 4, 6, 9, 12, 13, 14, 15, 16, and 17. We have
adapted many applications in this book from the paper of Ahuja, Magnanti, Orlin,
and Reddy [1992]. Since the applications of network flow models are so pervasive,
no single source provides a comprehensive account of network flow models and their
impact on practice. Several researchers have prepared general surveys of selected
application areas. Notable among these are the papers ,by Bennington [1974], Glover
and Klingman [1976], Bodin, Golden, Assad, and Ball [1983], Aronson [1989],
Bazaraa, Jarvis, and Sherali [1990], and Glover, Klingman, and Phillips [1990].
The book by Gondran and Minoux [1984] also describes a variety of applications of
network flow problems.

EXERCISES
19.1. Show that minimizing I ex - 13 I is equivalent to minimizing (c + d), subject to the

conditions ex - 13 = c - d, c 2: 0, and d 2: O. (Hint: Consider the cases when ex 2:

13 and ex ~ 13·)

760 Additional Applications Chap. 19

19.2. Write a linear programming formulation of the maximum weight closure problem.
Show that the dual of this linear program is a minimum cost flow problem.

19.3. This exercise concerns the least cost interdiction of a physical transportation network
for carrying supplies, troops, or arms during a large-scale conventional war. Let
G = (N, A) denote a transportation network with two distinguished nodes sand t
and let cij denote the cost of destroying arc (i, j) in this network.
(a) Suggest a method for identifying the cheapest way to destroy a subset of arcs that

will disconnect nodes s and t.
(b) Suppose that besides destroying arcs of the transportation network, we could also

destroy nodes of the network. Destroying a node in the network is equivalent to
destroying all the arcs incident to that node. Let Cj denote the cost of destroying
a node i in N. Identify the cheapest way to disconnect node s from node t.

19.4. This exercise concern the flyaway kit problem that we discussed in Application 19.4.
(a) Suppose that the penalty cost for all jobs is the same; that is, for all j, Lj = a for

some constant a. Then what is the optimal policy when a = 0 or when a = oo?
(b) Our formulation assumes that each job requires at most one item of each part type.

Modify the formulation so that it allows mUltiple parts of the same type. Justify
your modification.

19.5. This exercise concerns the asymmetric data scaling problem with lower and upper
flow bounds that we discussed in Application 19.5. Suppose that you want to find the
row multipliers ai and the column mUltipliers pj so that I :5 aj I au I / pj :5 U for all
matrix elements and, moreover, among all such multipliers, you want the ones withe
the smallest possible product II{(i,j):aijT'O} aj I au I / pj. How would you solve this prob
lem as a network flow problem?

19.6. In'this exercise we study a restriction of the asymmetric data scaling problem (dis
cussed in Section 19.3) known as the symmetric data scaling problem. In this problem
the matrix A is a p x p square matrix and we want to scale the data so that the diagonal
elements of the matrix do not change. This implies that if the multiplier of row i is aj,
the multiplier of column i is lIaj.,
(a) Describe how you would solve the symmetric data scaling problem with lower

and upper flow bounds.
(b) Describe how you would solve the minimum ratio symmetric data scaling problem.

19.7. In the project scheduling problem that we discussed in Application 19.11, we assumed
that the cost of each job (i, j) is a linear function of its duration. Suppose, instead,
that the cost of job (i; j) is a piecewise linear convex function of its duration, with
breakpoints at the job durations 0 = d~ :5 db:5 ... :5 dlij; assume that the cost function
has a slope of ct in the interval--[dt- I

, dt]. Specify a linear programming formulation
of this problem and show that its dual is a convex cost flow problem.

19.8. Battle of the Marne (Berge and Ghouila-Houri [1962]). From the different towns ai,
a2, ... , an, buses leave to go to a single destination b. For any direct road joining
town aj and town aj, we are given the number Cu of buses that can leave town aj for
aj in a unit of time; we also know the time tu required to make this journey. Given
the number Sj of buses available at town ai at the start of our planning horizon and
the number Cj of buses that can be parked at town aj, we want to organize traffic
routes so that in a given interval of time T, the number of buses arriving at b will be
as large as possible. Formulate this problem as a network flow problem.

19.9. This exercise is related to the maximum dynamic flow problem discussed in Appli
cation 19.12.
(a) Can the time-expanded replica of a network contain a directed cycle?
(b) Can you solve the maximum dynamic flow problem if arc capacities change from

one time period to another? If yes, how?
(e) Show that the maximum dynamic flow problem can have multiple optimal solu

tions.
(d) For any optimal solution of the maximum dynamic flow problem, let v be a

p-element vector whose kth element denotes the flow reaching the sink node at

Chap. 19 Exercises 761

time k. Suggest a method for identifying a solution with the lexicographically max
imum vector v from among all solutions.

19.10. In a maximum dynamic flow x, let v(k), for every k = 1,2, ... , p, denote the amount
of flow reaching the sink up to time period k. Clearly, v(1) ::s v(2) ::s ... ::s v(p). Show
that if p is sufficiently large, then for some index I, v(i) - v(i - 1) = a for every
I ::s i ::s p. What is a?

19.11. Consider the time-expanded replica GP of a network G. Let sI, S2, ••• , sP denote
the sources and t 1

, t2
, ••• , tP denote the sinks in different time periods 1, 2, ... ,

p. In this expanded network GP, we wish to determine the smallest index r so that
the maximum flow from the nodes in s 1, S2, ••• , sP to the nodes in t 1

, t 2
, ••• , tP is

at least B.
(a) Show how you can solve this problem in polynomial time using any maximum

flow algorithm.
(b) Show how you can solve this problem by a single application of any minimum

cost flow algorithm.
19.12. In our study of the dynamic maximum flow problem in Application 19.12, we assumed

that capacities do not change over time. Explain how to model situations when the
capacities are functions of time and change from period to period.

19.13. In a transportation network, let Ci) represent the time required to traverse arc (i, j)
and assume, therefore, that cij 2:: 0 for all arcs (i, j) E A. In this network we wish to
identify a directed path with the least possible traversal time from node s to node t.
In the shortest path algorithms studied in Chapter 4, we assumed that all arc traversal
times are fixed and do not change with time. But often in practice traversal times are
functions of time: They are higher during rush hours and lower at other times. Explain
how you could model the situation in which the traversal times vary with the time of
the day. Assume that you want to obtain a shortest directed walk from node s to node
t (the walk might sometimes be shorter than the directed path). State your assumptions.

19.14. Constrained shortest path problem. In a network G we associate two numbers with
each arc: its length Cij and its traversal time 'Ti). We would like to determine a shortest
length path from the source node s to the sink node t with the additional constraint
that the traversal time of the path does not exceed 'T. Formulate this problem as a
shortest path problem in a time-expanded network.

19.15. Consider an undirected graph G = (N, A) with arc costs cu. For any given subset
S k N, we want to find a minimum cost subgraph of G that has an odd number of
arcs incident to the nodes in S and an even number (possibly, zero) of arcs incident
to the nodes in N - S. Describe a method for solving this problem. (Hint: Use the
results in Application 19.15.) .

19.16. As we discussed in Application 19.14, the optimal Chinese postman tour for directed
network might traverse some arcs several times. Suppose that we can traverse no arc
more than k times for some fixed k 2:: 2. How would you solve this problem? Will this
problem always have a feasible carrier tour?

19.17. Parking model (Dirickx and Jennergren [1975]). Develop a network model to solve the
following parking problem that arises in the downtown area of a busy district. You
are given a city district consisting of I blocks. Every block i has a daily demand Dik

for parking places of class k = 1, ... , K and each class k has its own time length
(0-1 hours, 1-2 hours, etc.). We measure the demand Dik in physical parking places,
which should be understood to mean that somewhere we must reserve Dik parking
places for vehicles whose drivers and passengers have their final destination in block
i. Drivers might have to park in some other block and then walk by foot to block i.
Suppose that the downtown area contains several public parking facilities (offstreet
parking, garages, etc.). Let Sj denote the capacity of the jth parking facility. Our
objective is to assign users to the parking facilities in order to minimize the total societal
cost. The societal cost has two elements: walking costs, and the cost of maintaining

762 Additional Applications Chap. 19

the parking facilities. Formulate this problem as a minimum cost flow problem. De
scribe your notation and state your assumptions.

19.18. Network interdiction problem (Fulkerson and Harding [1977]). Let G = (N, A) rep
resent the transportation network of a military opponent. Suppose that node s is our
opponent's supply point, that node t is his demand point, and the length of arc
(i, j) E A is Cij. We can increase the length of any arc (i, j) E A by any positive amount
Yij 2:: 0 units by spending dijYij units of resources. Our task is to increase the difficulty
of our opponent's supply task by increasing the length of the shortest path from node
s to node t.
(a) Suppose that our objective is to increase the length of the shortest path from node

s to node t to a value of at least 'At while spending the least possible amount of
resources. Show that we can solve this problem by solving a minimum cost flow
problem. (Hint: Write the linear programming formulation and take its dual.)

(b) Suppose that our task requires that we design the network so that the length of
the shortest path from node s to node i be 'Ai, for all i E N - {s}. How could we
achieve this objective while spending the least amount of resources?

19.19. Truck scheduling problem (Gavish and Schweitzer [1974]). In this exercise we study
a generalization of the tanker scheduling problem that we discussed in Application
6.6. A large trucking company must decide on a weekly basis how best to meet the
demands for truck trips from its customers during the next week. Each customer
demand is specified by the following information: (1) a quantity of cargo (in terms of
the numbers of trucks), (2) a starting place and time for the job, and (3) the terminating
place and time for completing the job. The company has a truck depot within its area
of operation and a fleet of trucks adequate to meet the demands. The decision problem
is to assign trucks from the depot to meet the demand at minimum cost. Explain how
you would formulate this problem as a minimum cost flow problem. Use the following
data in your formulation: (1) job j begins at time tJ, ends at time tJ, and requires rj
trucks; (2) Cj is the cost of (one-way) driving between the depot and the origin of job
j; (3) dj is the cost of performing job j; and (4) fu is the cost of driving from tqe
destination of job i to the origin of job j; this trip requires 'Tij time. Assume that all
trucks start at the depot and return to it after completing their jobs.

19.20. This exercise studies some generalizations of the truck scheduling problem that we
considered in Exercise 19.19. Explain how you would incorporate the following ad
ditional constraints in the model. Consider each of these constraints independently.
(a) The trucking company has several, say k, depots for the supply of trucks. Let Sk

denote the number of trucks available at the kth depot at the beginning of the
week. You can assume that-tpe trucks need not return to their own depot.

(b) Allow a "safety margin" of hij time for the direct driving time from the destination
of job i to the origin of job j.

(c) The same truck cannot perform jobs i andj if doing so would mean that the truck
would arrive too early at job j. We forbid any truck to wait more than L units of
time to prevent the drivers from becoming accustomed to too much idle time.

(d) Certain jobs cannot be combined. For example, we cannot carry food directly
after we have transported garbage.

19.21. Optimal deployment of firefighting companies (Denardo, Rothblum, and Swersey
[1988]). This exercise studies an application of the transportation problem that arises
in the deployment of firefighting companies. Its special nature results from the fact
that the benefit obtained from the firefighting companies depends on their order of
arrival. The company arriving at the scene first offers the greatest benefit, and as
further companies arrive their benefits decrease.

We assume that q incidents are in hand and we want to assign firefighting com
panies located at p company locations to them. Let Ui denote the number of companies
available at location i and Vj denote the number of companies required at incident j.
We assume that Lf~1 Ui 2:: LJ~1 Vj. Let 'Tij denote the travel time from company

Chap. 19 Exercises 763

location ito incidentj. Furthermore, let aJk denote the cost per unit time delay in the
arrival of the kth company at incidentj; assume that ajl> ajr for I < r. If, for instance,
the first two arrivals at incident j have identical travel times, one is given a cost of
ajl and the other is given a cost of aj2. The objective is to assign frrefighting companies
to fire incidents to minimize the total cost. Formulate this problem as a minimum cost
flow problem. Justify your formulation.

19.22. Dynamic facility location problem. A manufacturing facility supplies K consumer re
gions. The demand of each consumer region changes from period to period and is
known in advance for each period in a planning horizon consisting of T periods. The
company transports goods produced at its manufacturing facility to the consumer re
gions. The manufacturing facility is always located at one of the consumer regions,
and due to fluctuating demands, the company might profitably relocate this facility
occasionally. We wish to determine where to locate the manufacturing facility in each
period of the planning horizon to minimize the total cost of transporting the goods
and relocating the facility. Formulate this problem as a shortest path problem in a
time-expanded network for the data shown in Figure 19.22 for which T = 4 and K =
4. Figure 19.22(a) gives the demand of the product in the next four periods, and Figure
19.22(b) gives the cost of transporting 1 unit of the product between consumer regions.
Assume that the cost of relocating the facility is 300 times the cost of transporting 1
unit of the product. Moreover, assume that at the beginning of period I, the facility
is located in region 1.

764

1

Consumer 2
region

3

4

Time period

1 2 3 4

100 50 50 80

200 300 250 150

100 50 200 250

75 125 125 200

(a)

Consumer 2
region

3

4

1

-

5

2

3

Consumer region

2 3

5 2

- 1

1 -

6 4

(b)

Figure 19.22 Dynamic facility location problem.

Additional Applications

4

3

6

4

-

Chap. 19

Appendix A
DATA STRUCTURES

Knowledge is of two kinds. We know a subject ourselves or we
know where we can find information on it.

-Samuel Johnson

Chapter Outline

A.I Introduction
A.2 Elementary Data Structures
A.3 d-Heaps
AA Fibonacci Heaps

A.I INTRODUCTION

Most network algorithms require the manipulation of data, particularly sets repre
senting arc and node information, or representing trees or other network structur~s.
Over the years, analysts have studied many different ways to store and manipulate
data within computer memory; these investigations have shown, both empirically
and in theory, that the choice of storage schemes often has a considerable effect on
algorithmic performance. Indeed, by storing and manipulating sets more cleverly,
we can often improve the worst-case complexity of an algorithm. In this appendix
we describe some of the more common ways of storing and manipulating sets.

Often, elements of a set are -()rdered; following customary practice, we refer
to such sets as lists. We typically perform several basic operations on lists: for
example, inserting elements, deleting elements, determining whether a list contains
a certain element. In Section A.2 we describe some of the more popular ways for
storing lists and for performing these operations on them. The discussion focuses
on data structures known as arrays, singly linked lists, doubly linked lists, queues,
and stacks.

Sometimes we associate a number, or key, with each element of a set. We
often need to perform some of the following operations on a set and its associated
keys: finding an element in the set with the minimum key, inserting an element in
the set, deleting an element, decreasing the key of an element. A -heap is a data
structure for sets that allows us to perform these operations efficiently. In Section
A.3 we discuss binary and d-heaps. In Section A.4 we describe a more efficient
(and, also, more sophisticated) heap known as the Fibonacci heap.

765

A.2 ELEMENTARY DATA STRUCTURES

In this section we discuss some of the most popular ways of storing lists (i.e., ordered
sets).

Arrays

An array is the simplest data structure used to store an ordered set. This represen
tation uses an array of size n, called list; the ith position- (or index) of the array
contains the ith element of the set, which we denote by list[i). Figure A.l shows an
array representation of the ordered set {10, 5, 8, 9, 7}. To keep track of the size of
the array that contains data elements, we also use a variable last which we set equal
to the number of elements in the list. For our example, last = 5, indicating that list
contains no data elements in the positions 6, 7, ... , n.

1

2

3

4

last~5

6

n

list

Figure A.I Storing a set as an array.

Some operations are very convenient to perform using the array representation
of a list. To determine the kth element of the list, we simply access the data element
list(k). To establish whether list contains a given element a, we vary the index i
from 1 to last and check whether list(i) = a. This operation requires time proportional
to the number of elements in the set. In fact, all the storage methods described in
this section require time proportional to the number of elements in a list to check
for membership of any element. If we wish to insert an element at the end of the
list, we increment last by one and store the new element as list(last).

An array is not very well suited for performing some other set operations. For
example, suppose that we wish to delete the kth element of the set and k < last.
Deleting the kth element from the list changes the position of the elements stored
at indices k + 1, k + 2, ... ,last; we must shift each element back by one position.
In the worst case, deleting the element and revising the list requires as many op
erations as the number of elements in the list, which is quite unattractive. Inserting
an element in the middle of the list requires a similar amount of work. The linked
list representations, discussed next, perform these operations much more efficiently
but at the expense of using more storage.

766 Data Structures App.A

Singly Linked Lists

Rather than store the elements of an ordered set sequentially as in an array, a singly
linked list may store elements in an arbitrary order; however, it then requires ad
ditional information that permits us to access the data in the order specified in the
ordered set.

A cell is the basic building block of linked lists. We can picture a cell as a box
that is capable of holding several values, called fields. A singly linked list, then, is
a collection of cells that are linked together. Each cell in the singly linked list has
two fields: a data field and a link field. The data field holds the element of the list
and the link field stores a pointer to the location of the next element in the list.
Figure A.2(a) shows a geometric representation of a linked list for the set LIST =
{5, 8, 9, 10}. The computer science community uses two popular methods for im
plementing linked lists: a pointer-based implementation and an array-based imple
mentation. In this section we describe array-based implementations; in several ref
en~nces the reference notes of this appendix describe pointer-based implementations.

We can store a singly linked list by defining two arrays of size n, data and link.
These two arrays define n cells, indexed from 1 through n: the kth cell consists of
the fields data(k) and link(k). The data field of a cell contains an element of the set
LIST and the link field contains the index of the cell containing the next element of
the set. We also maintain a scalar called first that stores the index of the cell con
taining the first element of LIST. We set first to zero if the set is empty. Figure
A.2(b) shows the array form of the linked list, LIST = {5, 8, 9, 10}. Because the
list contains the element 9 in position 4 and next element 10 in position 2, data(4) =
9, link(4) = 2, and data(link(4» = data(2) = 10. .

It is fairly easy to manipulate singly linked lists. Suppose that we wish to scan
all the elements of a set to determine membership of an element. We define a variable
next = first. If next = 0, the set is empty and we stop. Otherwise, the first element
of the set is data(next). Notice that link(next) gives the index of the following element
in the set. Therefore, we update next = link(next) and check whether next equals

fIrst~
data link

(a)

I

2
fIrst~ 3

4

5

6

7

8

Figure A.2 Example of a singly linked list: (a) pointer representation; (b) array represen
tation.

Sec. A.2 Elementary Data Structures

(b)

767

zero. If so, we stop; otherwise, the second element of the set is data(next). We
repeat this process until next becomes zero. We suggest that the reader use this
method to scan through the elements of the linked list shown in Figure A.2(b).

Now consider the insertion of an element into a linked list. Suppose, for ex
ample, that we wish to insert the element 6 into the linked list shown in Figure
A.3(a). We first identify an unused cell with index new,and set data(new) = 6. If
we wish to insert the element at the beginning of the list, we set link(new) = first
and set first = new [as depicted in Figure A.3(a)]. If we wish to insert the element
after the cell with index prev, we set link (new) = link(prev), link(prev) = new [as
depicted in Figure A.3(b)]. This discussion shows that we can add an element to a
linked list in 0(1) time.

fust
I
I
I
t

,--6--1-_-'+ -
new (a)

new
(b)

Figure A.3 Inserting an element in a linked list: (a) insertion at the beginning of the
iist; (b) insertion in the middle of the list.

Now consider the deletion of an element from the linked list; let us illustrate
the process using the same example. As shown in Figure A.4(a), the deletion of the
first element in the list is rather easy: We simply set next = first, and redefine first =

768

fust
(a)

(b)

Figure A.4 Deleting an element from a linked list: (a) deletion from the beginning
of the list; (b) deletion from the middle of the list.

Data Structures App.A

link(next); therefore, first now points to the position of the second element of the
original list. The deletion of an element from the middle of the list is more difficult.
As shown in Figure A.4(b), to delete the element 8, we must modify the link field
of the preceding cell so that its link array now points to the index of the cell following
the element 8. So if we knew the preceding cell of the element to be deleted, we
could easily perform the deletion in 0(1) time; otherwise, we will need to scan the
linked list starting at the first element until we reach the element preceding the one
to be deleted. The later operation in the worst case would require O(n) time. To
make deletion more efficient, we need to represent LIST as a doubly linked list, a
data structure that we will discuss in the next subsection.

Some algorithms described in this book require the storage of sets LIST(1),
LIST(2), ... , LIST(n) of disjoint elements, each with a value between land n.
For example, for n = 6, we might have LIST(1) = {5, 4}, LrST(3) = {l, 2, 3},
LIST(4) = {6}, and LIST(2) = LIST(5) = LIST(6) = 0. In these situations we will
always add or delete elements from the front of any list. One plausible way to store
this information would be by maintaining n different singly linked lists or n different
arrays, but this method is not space efficient. In fact, we can store these n different
sets using two n-dimensional arrays: first and link. Figure A.5 illustrates this storage
scheme on this example data.

2

3

4

5

6

fIrst link

Figure A.S Storing multiple singly
linked lists of disjoint elements.

In this storage scheme, first(k) stores the first element in the set LIST(k). If
first(k) = 0; then LIST(k) is empty; otherwise, LIST(k) contains one or more ele
ments. For example, first(l) = 5. Therefore, the first element in LIST(l) is 5. We
then look at link(5), which is 4. --Consequently, the second element in LIST(1)
is 4. We then look at link(4), which is 0, indicating the end of the list. Therefore,
LIST(1) = {5, 4}.

Suppose that we wish to insert an elementp into LIST(k). Observe that because
these lists are mutually disjoint, none of them can contain p. We insert element
p to the beginning of LIST(k) by executing the statements link(p) = first(k) and
first (k) = p. To delete the first element from LIST(k), we execute the statement
first (k) = first(link(k». .

Doubly Linked Lists

A doubly linked list is the same as a singly linked list except that each cell has two
links, one to the preceding cell and the other to the succeeding cell. Maintaining
two links allows us to traverse the list easily in both directions and perform an
arbitrary deletion of an element in 0(1) time.

Sec. A.2 Elementary Data Structures 769

A cell of the doubly linked list consists of three fields: data, !link (denoting left
link), and rlink (denoting right link), which store the data element, the index of the
preceding cell, and the index of the succeeding cell. For the-set LIST = {5, 8, 9,
to}, Figure A.6(a) and (b) shows the pointer form and array form representations of
the doubly linked lists.

fIrst ------..

(a)

index data Ilink rlink

1

2

fIrst ------.. 3

4

5

6

7

8

(b)

Figure A.6 Example of a doubly linked list: (a) geometric representation; (b) array rep
resentation.

We manipUlate a doubly linked list in almost the same way in which we ma
nipUlate a singly linked list. We scan elements of the list in the same fashion, except
that we can traverse the list in two directions: forward as well as backward. Using
rlinks, we traverse the list in the forward direction (i.e., from left to right), and using
llinks, we traverse the list in the backward direction (i.e., from right to left). Inser
tions and deletions from the doubly linked lists are easy to perform. Figure A.7

fIrst ------..

770

(a)

(b)

Figure A.7 Addition and deletion from a doubly linked list: (a) adding an element in the
middle of the list; (b) deleting an element from the middle of the list.

Data Structures App.A

shows how to apply these operations to the middle ofa linked list. We ask the reader
to show how to perform insertions and deletions from the beginning of the list. In
each case, an insertion or deletion requires 0(1) time.

The doubly linked list allows us to traverse the list in either direction. Starting
at some element i, by traversing rlinks, we can identify all the subsequent elements
in the set. Traversing llinks allows us to identify all the elements preceding any
element i. However, in some applications of doubly linked lists, we need to examine
all the elements of the set starting at some arbitrary element i. We can do so by
storing the elements in wraparound fashion (i.e., we set the rlink of the last element
of the set equal to the index of the cell storing the first element and we set the llink
of the first element of the set equal to the index of the cell storing the last element).
We refer to this modification of the doubly linked list as a circular doubly linked
list.

Finally, consider the storage of mUltiple doubly linked lists of disjoint elements,
namely LIST(1), LIST(2), ... , LIST(n). As in our earlier discussion, the value of
each element lies between 1 and n. We can store these n different sets using three
n-dimensional arrays: first, rlink, and llink. Figure A.8 illustrates this storage scheme
for the previous example for which n = 6, LIST(1) = {5, 4}, LIST(3) = {l, 2, 3},
LIST(4) = {6}, and LIST(2) = LIST(5) = LIST(6) = 0.

Stacks

index fIrst llink rlink

1

2

3

4

5

6
Figure A.S Storing multiple doubly
linked list of disjoint elements.

A stack is a special kind of ordered list (or set) in which all insertions and deletions
take place at one end, called the top. The intuitive model of a stack is a pile of poker
chips or a pile of dishes on a table; accordingly, we can conveniently remove only
the top object on the pile or add a new one to the top. We can store a stack as an
array or as a linked list. We shall discuss the array implementation of a stack.

A stack is represented by an n-dimensional array, list, that stores the element
of a set, and a scalar top that denotes the index of the last entry to the array list. If
the stack is empty, then top = O. For example, suppose that we start with an empty
list, and insert elements in the order 5, 4, 8, 7, 10; then at the end of the last step,
the stack will appear as shown in Figure A.9. Since we have inserted. five elements,
when we have completed these operations, top = 5.

The most frequent operations performed on a stack are insertions and deletions.
To insert a new element i on the stack, we increment top by 1 and set list(top) =
i. To delete the topmost element i from the stack, we set i = list(top) and decrease
top by 1. Clearly, both of these steps require 0(1) time. Notice that in a stack, we
always remove the element that we added last. Consequently, if we store elements

Sec. A.2 Elementary Data Structures 771

n

6
top----" 5

4

3

2

list

Figure A.9 Example of a stack.

using a stack and examine them one by one, we inspect the elements in a last-in,
first-out (LIFO) order. Therefore, whenever we need to examine the elements of a
dynamically changing set in the LIFO order, it is very natural to store the set as a
stack.

Queues

A queue is another special kind of list, with elements inserted at one end (the rear)
and deleted from the other end (the front). The operations for a queue are similar
to those for a stack, the substantial difference being that insertions take place at the
end of the list rather than the beginning. We see physical examples of queues every
where since they are an integral part of contemporary society. Examples include
lines at banks and at grocery stores, or items in a manufacturing plant waiting to be
processed by a machine. A less apparent example is telephone calls waiting in a
buffer for a telephone trunk to become available.

We represent a queue by an array list of size n that contains elements of the
set. Figure A.I0(a) gives an example of the queue. As shown in this example, we
maintain a pointer called front, which is the index of the first position of the array

n-l 0

front rear

+ +
2 3 4 5 6 7 n 3

4

(a) (b)

Figure A.10 Example of a queue: (a) sequential representation; (b) circular representation.

772 Data Structures App.A

minus one, and maintain another pointer called rear, which is the index of the last
position of the array.

We perform operations on a queue as follows. To check if the queue is empty,
we simply check whether front equals rear. If so, the queue is empty; otherwise, it
is nonempty. The frontmost element in the queue is list(front+ 1). To insert a new
element i in the queue, we increment rear by 1 and set list(rear) = i. To delete an
element i from the queue, we set front = front + 1 and set i = list(front). Clearly,
both the steps require 0(1) time. Notice that in a queue, the first element we remove
is the one we added first. Consequently, if we store elements using a queue and
examine the elements one by one, then we inspect the elements in a first-in, first
out (FIFO) order. Consequently, whenever we want to examine the elements of a
dynamically changing set in the FIFO order, it is very natural to store the set as a
queue.

Notice that if we keep adding elements to the rear of the queue and keep deleting
elements from the front, eventually rear becomes equal to n and we cannot add any
more elements to the queue. The queue at this point might not be "full" because
the earlier part of the queue might be empty. We can overcome this difficulty by
representing the elements of the list in the wraparound fashion, as shown in Figure
A.I0(a). In this representation, we perform the operations in exactly the same way
as earlier except that while adding an element to the list we increment rear as
(rear + l)mod n, and while deleting an element from the list we increment front as
(front + 1)mod n.

Summary

In this appendix we studied three important ways to store and manipulate sets:
arrays, singly linked lists, and doubly linked lists. Figure A.II summarizes the time
complexity for performing various set operations on these data structures. Stacks
and queues are special types of sets that perform operations either at the beginning
or at the end of a list. To implement stacks and queues, we can use either arrays
or linked lists; we have described only the array implementation.

I. Inserting element at the end

2. Inserting element at an arbitrary place

3. Deleting element from the end

4. Deleting element from an arbitrary place

5. Determining kth element of the list

6. Determining membership of an
element in the set

A.a d·HEAPS

Singly Doubly
linked linked

Array list list

0(1) 0(1) 0(1)

O(n) 0(1) 0(1)

0(1) 0(1) 0(1)

O(n) O(n) 0(1)

0(1) O(k) O(k)

O(n) O(n) O(n)

Figure A.ll Time complexity of
various set operations for arrays and
linked lists.

A heap (or, a priority queue) is a data structure for efficiently storing and manip
ulating a collection H of elements (or objects) when each element i E H has an
associated real number, denoted by key(i). We want to perform the following op
erations on the elements in the heap H:

Sec. A.3 d-Heaps 773

create(H). Create an empty heap H.
insert(i, H). Insert an element i in the heap.
find-min(i, H). Find an element i with the minimum key in the heap.
delete-min(i, H). Delete the element i with the minimum key from the heap.
delete(i, H). Delete an arbitrary element i from the heap.
decrease-key(i, value, H). Decrease the key of element i to a smaller value,
denoted by value.
increase-key(i, value, H). Increase the key of element i to a larger value, de
noted by value.

In this section we discuss the d-heap and binary heap data structures (the binary
heap is a well-known special case of the d-heap with d = 2). In the next section we
describe a more efficient (and also more complex) heap known as the Fibonacci
heap.

In most applications of heaps to network flow algorithms, the elements are
nodes and their keys are node labels. Therefore, in our discussion of heaps, we shall
use the word "element" and "node" interchangeably. Moreover, to be consistent
with the conventions we have adopted for networks, we shall assume that the heap
stores a maximum of n nodes.

Heaps find a variety of applications in network flow algorithms. Two such
applications are Dijkstra's algorithm for the shortest path problem discussed in Sec
tion 4.7, and Prim's algorithm for the minimum spanning tree problem described in
Section 13.5. Another important application of heaps is the sorting of n numbers in
a nondecreasing order. We can sort n numbers using a heap as follows. First, we
create an empty heap. Then, one by one, we add n numbers to the heap by performing
n insert operations, letting the key for the ith entry be one of the numbers we wish
to sort. Next, we repeat the following step iteratively: Select an element i with the
minimum key using the operation find-min and then delete it from the heap using
the operation delete-min. We terminate this procedure when the heap is empty. It
is easy to see that we delete the elements from the heap in a nondecreasing order
of their values.

Definition and Properties of ad-Heap

In a d-heap, we store the nodes of the heap as a rooted tree whose arcs represent
a predecessor-successor (or parent-child) relationship. We store the rooted tree
using predecessor indices and sets of successors, as follows:

pred(i): the predecessor (or the parent) of node i in the d-heap. The root node
has no predecessor, so we set its predecessor equal to zero.
SUCCO).· the set of successors (or children) of node i in the d-heap.

In the d-heap we define the depth of a node i as the number of arcs in the
unique path from node i to the root. For example, in the d-heap shown in Figure
A.12, node 5 has a depth of 0 and nodes 9, 8, and 15 have a depth of 1.

774 Data Structures App.A

Root

Figure A.12 Example of a d-heap for d = 3.

Each node in the d-heap has at most d successors, which we assume to be
ordered from left to right. We refer to the successors of a node as siblings (of each
other). The d-heap always satisfies the following property that we maintain induc
tively. We add nodes to the heap in an increasing order of depth values, and for the
same depth value we add nodes from left to right. We refer to this property as the
contiguity property. Figure A.12 gives an example of the d-heap for d = 3. In this
example, we assume for convenience that key(i) = i for each i = 1 to n (in this
case n = 50). In this particular example, we have stored only a subset of the nodes
in the heap. Note that nodes 12, 29, and 15 have the predecessors 9, 8, and 5,
respectively.

The contiguity property implies the following results:

Property A.I
(a) At most d k nodes have depth k.
(b) At most (d k + 1 - 1)/(d - 1) nodes have depth between 0 and k.
(c) The depth of a d-heap containing n nodes is at most llogdnJ.

We leave the proof of this property as an exercise to the reader.

Storing ad-Heap

The structure of a d-heap permits us to store it as an array and manipulate it quite
efficiently. We order the nodes in the increasing values of their depths, and we order
the nodes with the same depth from left to right. We then store the nodes, in order,
in an array DHEAP. For example, if we apply this method to the d-heap shown in
Figure A.12, then DHEAP = {5, 9, 8, 15,21, 12, 16, 18,29, 10,31,22,27,28,36,
32, 14, 13, 20, 38, 17, 41, 52, 42, 48, 39}. We also maintain an array position that
contains the position of each node. For this example, position(9) = 2 and
position(15) = 4. We maintain an additional parameter last that specifies the number
of nodes stored in the array DHEAP. For this example, last = 26. This storage

Sec. A.3 d-Heaps 775

scheme has one rather nice property that permits us to easily access the predecessors
and successors of any node:

Property A.2
(a) The predecessor of the node in position i is contained in position r(i - l)/d1.
(b) The successors of the node in position i are contained in positions id - d + 2,

... , id + 1.

We leave the proof of this property as an exercise to the reader; it is instructive
to verify this result on our numerical example. For example, node 18 is in position
8, so its predecessor is in position r(8 - 1)/31 = 3 and its successors are in positions
3(8) - 3 + 2 = 23 to 3(8) + 1 = 25. This property implies that if we maintain the
array DHEAP, we need not explicitly maintain the predecessor index and the set
of successor indices of a node. We can compute these when required during the
course of an algorithm. For the sake of exposition, we continue using predecessors
and successors, but ignore the time required to update these data structures when
ever the d-heap changes.

Heap Order Property

A heap always satisfies the following invariant, which we subsequently refer to as
the heap order property.

Property A.3 (Invariant 1). The key of node i in the heap is less than or equal
to the key of each of its successors. That is, for each node i, key (0 :::; key(j) for
every j E SUCC(i).

We note that we might violate Invariant 1 while performing a heap operation
but will always satisfy it at the end of any heap operation. The reader can verify
that the example shown in Figure A.12 satisfies the heap order property if for every
node in the heap we assume that key(i) = i.

The following result is an immediate consequence of the heap order property.

Property A.4. The root node of the d-heap has the smallest key.

Swapping

In the d-heap data structure, we reduce each heap operation into a sequence of a
fundamental operation, each called swap(i, j). The operation swap(i, j) swaps (or
interchanges) nodes i and j. Figure A. 13 gives an example of a swap. In terms of
the array used to store a d-heap, as a result of applying swap(i, j), we store node i
at the position where nodej was stored, and store nodej at the position where node
i was stored. For example, if we perform swap(4,6) in the DHEAP = {5, 6, 7, 4, 8,
11, 12, 9}, as shown in Figure A. 13, then the new array representation of the d-heap
becomes DHEAP = {5, 4, 7, 6, 8, 11, 12, 9}. Clearly, the swap operation requires
0(1) time.

776 Data Structures App.A

(a) (b)

Figure A.13 Example of swap (4, 6): (a) heap before the swap; (b) heap after the
swap.

Restoring the Heap Order Property

In the course of applying an algorithm, we wiiI frequently change the value of some"
key and so temporarily violate the heap order property. How can we restore this
property? Suppose that we decrease the key of some node i. Letj = pred(i). If after
the change in the value of key(i), key (j) :::; key(i), the heap still satisfies the heap
order property and we are done. However, if key(j) > key(i) , we need to restore
the heap order property. The procedure siftup(i) described in Figure A.14 accom
plishes this task.

procedure siftup(i);
begin

while i is not a root node and key(i) < key(pred(i)) do swap(i, pred(i));
end;

Figure A.14 Procedure siftup(i).

Inductive arguments show that at the termination of the siftup procedure, the
heap satisfies the heap order property. The procedure siftup requires o (lOgdn) time
because each execution of the while loop decreases the depth of node i by one unit
and, by Property A.l, its original depth is O(lOgdn).

Suppose next that we increase the key of some node i. If after the change in
the value of key(i) , key(i) :::; key(j) for allj E SUCC(i), the heap still satisfies the
heap order property and we are done; otherwise, we need to restore the heap order
property. The procedure siftdown(i) described in Figure A.15 accomplishes this task.
In the description we let minchild(i) denote the node with smallest key in SUCC(i).

procedure siftdown(i);
begin

while i is not a leaf node and key(i) > key(minchild(i)) do swap(i, minchild(i));
end;

Figure A.IS Procedure siftdown(i).

Sec. A.3 d-Heaps 777

An inductive argument will again show that at the termination of the siftdown
procedure, the heap satisfies the heap order property. The procedure requires
O(d logdn) time because each execution of the while loop increases the depth of
node i by one unit and each execution requires O(d) time to compute minchild(i).

Performing Heap Operations

Weare now in a position to describe how we can perform various operations in the
d-heap.

find-min(i, H). The root node of the heap is the node with the minimum key
and it is located at the first position of the array DREAP. Therefore, this
operation requires 0(1) time.
insert(i, H). We increment last by one and store the new node i at the last
position of the array DREAP. Then we execute the procedure siftup(i) to re
store the heap order property. Clearly, this operation requires O(lOgdn) time.
decrease-key(i, value, H). We decrease the key of node i and execute the
procedure siftup(i) to restore the heap order property. This operation requires
O(lOgdn) time.
delete-min(i, H). Clearly, node i is the root node of the heap. Let node j be
the node stored at the last position of the array DREAP. We first perform
swap(i,j) and then decrease last by 1. Next, we perform siftdown(j) to restore
the heap order property. Clearly, this heap operation requires O(d logdn) time.

We ask the reader to show as an exercise how to perform the remaining two
heap operations, delete(i, H) and increase-key(i, value, H), in O(d logdn) time. We
summarize our discussion as follows:

Theorem A.S. The d-heap data structure requires 0(1) time to perform the
operation find-min, O(lOgdn) time to perform the operations insert and decrease
key, and O(d logdn) time to perform the operations delete-min, delete, and increase-
key. •

Recall that a binary heap is a d-heap with d = 2. For binary heaps, this theorem
assumes the following special form.

Theorem A.6. The binary heap data structure requires 0(1) time to perform
the operation find-min, and O(log n) time to perform each of the operations insert,
delete, delete-min, decrease-key, and increase-key. •

As an example of applying heaps, consider a sorting algorithm. Recall from
our prior discussion that while sorting n numbers, we perform n inserts, n find-mins,
and n delete-mins. Consequently, the running time of the sorting algorithm using
d-heaps is O(nd logdn), which is O(n log n) for any fixed value of d.

778 l)ata Structures App.A

A.4 FIBONACCI HEAPS

The Fibonacci heap is a novel data structure that allows the heap operations to be
performed more efficiently than d-heaps. This data structure performs the operations
insert, find-min, and decrease-key in 0(1) amortized time and the operations delete
min, delete, and increase-key in O(log n) amortized time. Recall from Section 3.2
that the amortized complexity of an operation is the average worst-case complexity
of performing that operation. In other words, the amortized complexity of an op
eration is O(g(n» iffor a sequence of k (sufficiently large) operations, the total time
required by these operations is O(kg(n». For our purpose, k 2: n is sufficiently large.

Properties of Fibonacci Numbers

Researchers have given the Fibonacci heap data structure its name because the proof
of its time bounds uses properties of the well-known Fibonacci numbers. Before
discussing the data structure, we first discuss these properties. The Fibonacci num
bers are defined recursively as F(1) = 1, F(2) = 1, and F(k) = F(k - 1) +
F(k - 2), for all k 2: 3. These numbers satisfy the following properties:

Property A.7
(a) For k 2: 3, F(k) 2: 2(k-1)/2.
(b) F(k) = 1 + FO) + F(2) + .. , + F(k - 2).

Proof. The facts that F(k) = F(k -1) + F(k - 2) and F(k - 1) 2: F(k - 2)
imply that F(k) 2: 2F(k - 2). Consequently, if k is odd, F(k) 2: 2F(k - 2) 2: 22
F(k - 4) 2: 23 F(k - 6) 2: 2(k-1)/2 F(1) = 2(k-1)/2. If k is even, we argue by induction.
The claim is true if k = 4. Suppose it is true for even numbers less than k. The
F(k) 2: F(k - 1) + F(k - 2) 2: 2(k-2)/2 + 2(k-3)/2 by the result for k odd and the
induction hypothesis. But thenF(k) 2: 2(k-3)12 [2 112 + 1] 2: 2(k-1)12 and so by induction
the conclusion is true for all k 2: 3.

To prove part (b), let us define ';"series of numbers G'(·) as G'(1) = 1, G'(2) =
1, and G'(k) = 1 + G'(1) + G'(2) + ... + G'(k - 2) for all k 2: 3. Then G'(k -
1) = 1 + G'(1) + G'(2) + .. , + G'(k - 3) and G'(k) - G'(k - 1) = G'(k - 2).
Alternatively, G' (k) = G' (k - 1) + G' (k - 2), which is the same manner in which
Fibonacci numbers are defined. Therefore, G'(k) = F(k) for all k. •

Property A.8. Suppose that a series of numbers G(') satisfies the properties
that G(1) = 1, G(2) = 1, and G(k) 2: 1 + G(1) + G(2) + + G(k - 2) for all
k 2: 3. Then G(k) 2: F(k).

Proof. We prove inductively that G(k) 2: F(k) for all k. This claim cer
tainly is true for k = 1 and k = 2. Let us assume that it is true for all values of k
from 1 through q - 1. Then G(q) 2: 1 + G(1) + G(2) + .~. + G(q - 2) 2: 1 +
F(1) + F(2) + .. , + F(q - 2) == F(q), the equality following from Property
A.7(b). •

Sec. A.4 Fibonacci Heaps 779

i

pred(i)

SUCC(i)

rank(i)

Defining and Storing a Fibonacci Heap

As we noted earlier, a heap stores a set of elements, each with a real-valued key.
A Fibonacci heap is a collection of directed rooted in-trees: each node i in the tree
represents an element i and each arc (i, j) represents a predecessor-successor
(parent-child) relationship: node j is the predecessor (parent) of node i. Figure A.16
gives an example of a Fibonacci heap.

(a)

1 2 3 4 5 6 7 8 9 lO 11 12 13

0 0 2 2 0 5 0 2 5 7 4 3 3

0 {3,8,4} {B,I2} {ll} {6,9} 0 {lO} 0 0 0 0 0 0

0 3 2 1 2 0 1 0 0 0 0 0 0

(b)

Figure A.16 Fibonacci heap: (a) rooted trees; (b) corresponding data structure.

To represent a Fibonacci heap numerically (i.e., in a computer) and to manip
ulate it effectively, we need the following data structure:

pred(i): the predecessor (or the parent) of node i in the Fibonacci heap.

We refer to a node with no parent as a root node and we set its predecessor
to zero. This convention permits us to determine whether a node is a root node or
a nonroot node by looking at the node's predecessors index. We also need the
following data structures:

SUCC(i): the set of successors (or children) of node i. We maintain this set as
a doubly linked list.
rank(i): the number of successors of node i [Le., rank(i) = I SUCC(i) 11.
minkey: the node with the minimum key.

Figure A.16(b) shows this data structure for the rooted trees given in Figure
A.16(a). We need additional data structures to support various heap operations; we
will introduce these data structures later, when we require them.

We need one additional piece of notation. A subtree hanging at any node i of
any rooted tree contains the node i, its successors, successors of its successors, and

780 Data Structures App.A

so on. For example, in Figure A.16, the subtree hanging at node 5 contains the nodes
5, 6, and 9, and the subtree hanging at node 7 contains the nodes 7 and 10.

Linking and Cutting

In using the Fibonacci heap data structure, we reduce each heap operation into a
sequence of two fundamental operations: link(i,j) and cut(i). We apply the operation
Iink(i, j) to two (distinct) root nodes i and j of equal rank; it merges the two trees
rooted at these nodes into a single tree. The operation cut(i) cuts node i from its
predecessor and makes i a root node.

link(i, j). If key(j) ::5 key(i) , then add arc (i, j) to the Fibonacci heap (thus
making node i the predecessor of node j). If key(j) > key(i) , then add arc
(j, i) to the heap.
cut(i). Delete arc (i, pred(i) from the heap (thus making node i a root node).

We illustrate these two operations on the examples shown in Figure A.17. For
simplicity, we assume that for every node i, key(i) = i. Notice that the link operation
increases the rank of node i or of node j by 1. Moreover, each of these operations

(a)

(b)

(c)

Figure A.17 Illustrating link and cut operations: (a) original heap; (b) heap after the
operation link (3, 6); (c) heap after the operation cut(lO).

Sec. A.4 Fibonacci Heaps 781

changes the pred and SUCC and rank information for at most two nodes; conse
quently, we can perform them in 0(1) time. Later in this section we describe the
additional data structures that we maintain to manipulate the ~Fibonacci heap effec
tively; we can also modify them in constant time as we perform a link and a cut
operation. We record this result formally for ease of future reference.

Property A.9. The operations link(i,j) and cut(i) require 0(1) time to execute.

While manipUlating the Fibonacci heap data structure, we perform a sequence
of links and cuts. There is a close relationship between the number of links and cuts.
To observe this relationship, consider a potential function <I> defined as the number
of rooted trees. Each link operation decreases <I> by I and each cut operation in
creases <I> by 1. The total decrease in <I> is bounded by its initial value (which is n)
plus the total increase in <I>. The following result is now evident.

Property A.I0. The number of links is at most n plus the number of cuts.

Inva,riants in Fibonacci Heaps

The Fibonacci heap data structure maintains a set of rooted trees that change dy
namically as we perform various linking and cutting operations. These rooted trees
satisfy certain invariants that are essential for deriving the claimed time bounds for
the heap operations. The nodes of the Fibonacci heap always satisfy the heap order
property (i.e., Invariant 1), which states that the key of a node is less than or equal
to the keys of its successors. The Fibonacci heap also satisfies the following two
invariants:

Property A.ll (Invariant 2). Each nonroot node has lost at most one successor
after becoming a nonroot node.

Property A.12 (Invariant 3). No two root nodes have the same rank.

As before, although we might violate these invariants at intermediate steps of
some heap operations, the heap will satisfy them at the conclusion of each heap
operation. One important consequence of Invariants 2 and 3 is that the maximum
possible rank of any node is 2 log n + 1. We establish this result next.

Lemma A.13. Any node in the Fibonacci heap has rank at most 210g n + 1.

Proof Let G(k) denote the minimum number of nodes contained in a subtree
hanging at a node of rank k in a Fibonacci heap. We shall prove that G(k) ;;:: F(k).
Since no subtree can contain more than n nodes, Properties A.7 and A.8 imply that
n ;::: G(k) ;::: F(k) ;::: 2(k-I)!2, which implies that k :s 2 log n + 1.

Let w be a node in a Fibonacci heap with rank k. Arrange the successors of
node w in the same order in which the previous operations linked them to w, from
the earliest to the latest. We claim that the rank of the ith successor of w is at least
i - 2. To establish this result, let y be the ith successor of node wand consider
the moment when y was linked to w. Just before this link operation, w had at least

782 Data Structures App.A

i-I successors. (It might have had more than i-I successors at that time, some
having been cut since then.) Since at the time of this link operation, nodes y and w
both have the same rank, node y had at least i-I successors just before we per
formed this link operation. Furthermore, notice that since that time node y has lost
at most one successor (from Invariant 2). Therefore, node y (which is the ith suc
cessor of node w) has rank at least i - 2. As a result, the subtree hanging at node
w contained at least 1 + G(1) + G(2) + ... + G(k - 2) nodes. To summarize, we
have shown that G(k) ;;:: 1 + G(1) + G(2) + ... + G(k - 2), which in view of
Property A.8 implies that G(k) ;;:: F(k). From our prior observation, this conclusion
establishes the lemma. •

The following property follows directly from Invariant 3 and Lemma A.13.

Property A.14. A Fibonacci heap contains at most 1 + 2 log n rooted trees.

We next discuss how we restore Invariants 2 and 3 if they become violated at
intermediate steps of a heap operation.

Restoring Invariant 2

To restore Invariant 2, we maintain an additional index lost(i) for every node i,
defined as follows.

lost(i): For a nonroot i, lost(i) represents the number of successors the node
has lost after it became a nonroot node. For a root node i, lost(i) = O.

Suppose that while manipulating a Fibonacci heap, we perform the operation
cut(i). We refer to this cut as the actual cut. Letj = pred(i). In this operation, node
j loses a successor. If node j is a nonroot node, we increment lost(j) by 1. If lost(j)
becomes two, Invariant 2 requires that we make nodej a root node. In that case we
perform cut(j) and make j a root node. Let k = pred(j). This cut increases lost(k)
by 1. If k is a nonroot node and lcrst(k) = 2, we must make it a root node as well,
and so on. Thus an actual cut might lead to several cuts due to a cascading effect:
We keep performing these cuts until we reach a node that has not lost any successor
so far or is a root node. We refer to these additional cuts that are triggered by an
actual cut as cascading cuts, and the entire sequence of steps following an actual
cut as multicascading.

We illustrate this process on the Fibonacci heap shown in Figure A.18(a). In
this figure we represent nonroot nodes with lost(i) = 1 by shaded circles. Suppose
that we cut node 17 from its predecessor. This operation also requires that we also
cut nodes 11 and 8 from their predecessors. Figure A.18(b) shows the resulting
Fibonacci heap that satisfies Invariant 2. We now summarize the preceding discus
sion.

Property A.IS. If we perform an actual cut, we might also need to perform
several cascading cuts so that the heap again satisfies Invariant 2; the time needed
for these operations is proportional to the total number of cuts performed.

Sec. A.4 Fibonacci Heaps 783

(a) (b)

Figure A.IS Illustrating how we satisfy invariant 2. (Unshaded nodes have already lost a
child.)

Suppose that we perform a number of actual cuts at different times while ma
nipulating a Fibonacci heap and that these cuts cause additional cascading cuts.
What is the relationship between the total number of actual cuts and the total number
of cascading cuts? We shall show that the total number of cascading cuts cannot
exceed the total number of actual cuts. To prove this result, consider the potential
function <I> = Li in heap lost(i). Suppose that we perform cut(i) and j = pred(i).
This operation sets lost(i) to zero and increases lost(j) by one ifj is a nonroot node.
If the cut is an actual cut, 10st(0 equals 0 or 1 before the cut, and if it is a cascading
cut, 10st(0 equals 2 before the cut. Therefore, an actual cut increases 10st(0 + lost(j),
and hence the value of the potential function <I> by at most one, and a cascading cut
decreases lost(i) + lost(j) by at least one. If we start with a potential value of zero,
the total decreases in the potential function are bounded by the total increases. The
following property is now apparent.

Property A.16. The total number of cascading cuts is less than or equal to
the total number of actual cuts.

Restoring Invariant 8

The Invariant 3 requires that no two root nodes have the same rank. To maintain
this property, we need the following index for every possible rank k = 1, . . . ,K =
2 log n + 1.

bucket(k). If the Fibonacci heap contains no root node with rank equal to k, then
bucket(k) = 0; and if some root node i has a rank equal to k, then bucket(k) = i.

Suppose that while manipulating a Fibonacci heap, we create a root nodej of
rank k and the heap already contains another root node i with the same rank. Then
we repeat the following procedure to restore Invariant 3. We perform the operation
link(i,j), which merges the two rooted trees into a new tree of rank k + 1. Suppose
that node I is the root of the new tree. Then by looking at bucket(k + 1), we check
to see whether the heap already contains a root node of rank k + 1. If not, we are

784 l)ata'Structures App.A

done. Otherwise, we perform another link operation to create another rooted tree
of rank k + 2 and check whether the heap already contains a root node of rank
k + 2. We repeat this process until we satisfy Invariant 3. We refer to this sequence
of steps following the addition of a new root as multilinking.

We illustrate this process ofre-establishing Invariant 3 on antiinerical example.
Consider the Fibonacci heap shown in Figure A.19(a), assuming that the key of node
i equals i. Suppose that we add a new rooted tree containing a singleton node 10.
The heap already contains another root node of rank 0, namely node 9. Thus we
perform a link operation on nodes 9 and 10, obtaining the rooted trees shown in
Figure A. 19(b). Now two trees in the heap contains, with roots 7 and 9, have rank
1. We perform another link operation, producing the structure shown in Figure
A.19(c). But now two trees, with roots 1 and 7, have rank 2. We perform another
link operation, producing the structure shown in Figure A.19(d). At this point, the
rooted trees satisfy Invariant 3 and we terminate.

We summarize the preceding discussion in the form of a property.

Property A.17. If we add a new rooted tree to the Fibonacci heap, we might
need to perform several links to restore Invariant 3; the time needed for these op
erations is proportional to the total number of links.

I
,', I"" ::':[':' ~:~t:,

'>/:' ''':;',;::.-

1~t~ '~\q~

(a) (b)

(c)

(d)

Figure A.19 Illustrating how we satisfy invariant 3.

Sec. A.4 Fibonacci Heaps 785

Heap Operations

Finally, we show how we perform various heap operations using the Fibonacci heap
data structure and indicate the amount of time they take.

find-min(i, H). We simply return i = minkey, since the variable minkey contains
the node with the minimum key.
insert(i, H). We create a new singleton root node i and add it to H. Mter we
have performed this operation, the heap might violate Invariant 3, in which
case we perform multilinking to restore the invariant.
decrease-key(i, value, H). We first decrease the key of node i and set it equal
to value. After we have decreased the key of node i, every node in the subtree \
hanging at node i still satisfies the heap order property; the predecessor of node
i might, however, violate this property. Letj = pred(i). If key(j) :::; value, we
are done. Otherwise, we perform an actual cut, cut(i), make node i a root node,
and update minkey. After we have performed the cut, the heap might violate
Invariant 2, so we perform multi cascading to restore this invariant. The re
suiting cascading cuts generate new rooted trees whose roots we store in a list,
LIST. Then one by one, we remove a root node from LIST, add it to the
previous set of roots, and perform multilinking to satisfy Invariant 3. We
terminate when LIST becomes empty.
delete-min(i, H). We first set i = minkey. Then one by one, we scan each node
I E SUCC(i), perform an ~ctual cut, cut(l) , and update minkey. We apply
multilinking after performing each such actual cut. When we have cut each
node in SUCC(i), we scan through all root nodes [which are stored in bucket(k),
for k = 0, 1, ... , 2 log n + 1], identify the root node h with minimum key,
and set minkey = h. Recall that I SUCC(i) I :::; 2 log n + 1, because Lemma
A.13 implies that each node has at most 2 log n + 1 successors. Therefore,
the delete-min operation performs O(log n) actual cuts, followed by a number
of cascading cuts and links. Then we scan through O(log n) root nodes to
identify the root with the minimum key.

Figure A.20, which lists the sequence of steps and the associated running time
for each heap operation, summarizes the preceding discussion. Since we do not, as
yet, know the time required for multicascading and multilinking, we write "?" for
the times of these steps.

We now consider the time required for multicascading and multilinking. We
claim that we can ignore the time taken by these two steps. To establish this claim,
we use the following facts: (1) Property A.16, which states that the number of cas
cading cuts is no more than the number of actual cuts; and (2) Property A.to, which
states that the number of links is'no more than n plus the number of actual and
cascading cuts. Consequently, if we perform a sufficiently large number of operations
(i.e., more than n), the number of actual cuts will count the number of links and
cascading cuts within a constant factor; therefore, we can ignore the time required
for the latter operations.

We illustrate this idea further by considering Dijkstra's algorithm for the short-

786 Data Structures App.A

Heap operation Sequence of steps Time taken

find-min(i, H) (a) Return i = minkey. 00)

insert(i, H) (a) Add a new singleton node i. 0(1)
(b) Perform multilinking. ?

decrease-key(i, value, H) (a) Decrease the key of node i. 00)
(b) If node i violates Invariant I then

(b.I) Perform cut(i) and update minkey. 0(1)
(b.2) Perform multicascading. ?
(b.3) Perform multilinking. ?

delete-min(i, H) (a) For each node I E SUCC(i) do
(a. I) Perform cut(/). O(log n)
(a.2) Perform multilinking. ?

(b) Compute minkey by scanning all root nodes. O(log n)

Figure A.20 Summary of heap operations in a Fibonacci heap.

est path problem as described in Section 4.7. In that discussion we showed that
Dijkstra's algorithm performs n inserts, n find-mins, n delete-mins, and at most m
decrease-key operations. The time requirements of the heap operations listed in
Figure A.20 imply that the algorithm requires O(m + n log n) time, plus the time
for O(n log n) actual cuts, plus the time for multicascading and multilinking. Usip.g
the facts that the number of cascading cuts and links are no more than twice the
number of actual cuts, and that each actual cut requires 0(1) time, we immediately
see that the shortest path algorithm runs in O(m + n log n) time ..

So, if we ignore the time for multicascading and multilinking, it is clear from
Figure A.20 that the operations find-min, insert, and decrease-key require 0(1) am
ortized time, and the operation delete-min requires O(log n) amortized time. We ask
the reader to prove that the operatiQn delete and increase-key also require O(log n)
amortized time. We summarize the discussion in this section as follows:

Theorem A.IB. The Fibonacci heap data structure requires 0(1) amortized
time to perform each of the operations insert, find-min, and decrease-key, and O(log
n) amortized time to perform each of the operations delete-min, delete, and increase-
~. .
REFERENCE NOTES

/

The role of data structure is critical in designing efficient algorithms and in writing
computer programs for implementing algorithms. In this appendix we have presented
some of the most elementary data structures and the ones that we use frequently in
network flow algorithms. The following books provide much additional information
on data structures: Knuth [1973a, 1973b], Aho, Hopcroft, and Ullman [1983], Mehl
horn [1984], and Cormen, Leiserson, and Rivest [1990].

App.A Reference Notes 787

Appendix B
Xlja·COMPLETENESS

Chapter Outline

B.l Introduction

Seek not out the things that are too hard for thee. neither
search the things that are above thy strength.

-The Apocrypha (The Hidden Books)

B.2 Problem Reductions and Transformations
B.3 Problem Classes 'lJ', .N'lJ', .N'lJ'-Complete, and .N'lJ'-Hard
B.4 Proving .N'lJ'-Completeness Results
B.5 Concluding Remarks

B.1 INTRODUCTION

One of the primary purposes of scientific inquiry is to help structure the world around
us so that we can better understand it. For example, in physics and chemistry, the
periodic chart of the elements helps us to understand and categorize the relationship
between the basic elements of the universe; in biology, the genus/species nomen
clature helps us to understand the commonalties and differences among animals and
plants. Computer science, mathematics, and operations research are no different;
we often classify these fields in a variety of ways-for example, simply into sub
specialties such as discrete and continuous mathematics-that helps us to discern
their underlying structure. This idea of using classification as an organizing tool
prompts the following basic question: Is there a way to develop a structural under
standing of algorithms or for the problems to which we wish to apply them? Perhaps
surprisingly, the research community had not proposed an approach for resolving
this question until the early 1970s, when the field began in earnest to develop a topic
known as computational complexity theory which attempts to categorize the com
putational requiremerits of both algorithms and important classes of problems met
in practice. In this appendix, we discuss one cornerstone of this development, a
topic known as .N'~-completeness.

We call a class of optimization problems easy if we can develop an algorithm
to solve every instance of the problem class in polynomial time (i.e., by an algorithm
that requires a number of operations that is polynomial in the size of the input data
for the problem). We also refer to a polynomial-time algorithm as an efficient al
gorithm. A majority of the network flow problems studied in this book-the shortest
path problem, the maximum flow problem, the minimum cost flow problem, to name
a few-are easy. Despite the best efforts of thousands of researchers across the

788

globe spanning several decades, the research community has been unable to show
that many other network and combinatorial optimization problems (e.g., the knap
sack problem and the traveling salesman problem) are easy because no one has been
able to develop any efficient algorithm for solving these problems. These unsuc
cessful attempts have led some researchers to question whether these problems are
inherently hard in the sense that no efficient algorithm could possibly ever solve
these problems. The theory of N~-completeness is an outgrowth of these inquiries.
Although this theory has been unable to prove that these difficult problems admit
no efficient algorithms, the theory has shown that the majority of these problems
are equivalent to each other in the sense that if we could develop an efficient al
gorithm for one problem in this class, we would then be able to develop an efficient
algorithm for every other problem in this class. We refer to this broad class of
"computationally equivalent" problems as N~-complete problems (later in this ap
pendix we give a formal definition of this class of problems). This class now includes
thousands of problems and possesses the remarkable property (which is somewhat
difficult to believe initially) that each problem in this class can be transformed to
every other problem in polynomial time; as a consequence, each problem is "just
as hard" as every other problem. This relationship suggests that N~-complete prob
lems share some generic difficulty that is beyond the reach of polynomial-time al
gorithms. Indeed, the research community widely believes that N~-complete prob
lems cannot be solved efficiently. This is the bad news about difficult problems.

The theory of N~-completeness also has its positive aspects. To capture its
usefulness, consider the following story. Suppose that your boss asks you to develop
an algorithm for a complex design problem. Despite weeks of sincere efforts y~J.l
do not succeed in developing an efficient algorithm for solving this problem. Every
algorithm that you are able to construct is substantially no better than searching
through all possible designs: There are so many of them that this enumeration would
require several years of computer time on the fastest computers owned by your
company. Surely, you are intelligent enough not to return to your boss's office and
report, ttl can't find an efficient algorithm, I guess I am just too dumb."

Although you did not succeed.Jn developing an efficient algorithm, you were
convinced that the design problem is inherently difficult and that no one, no matter
how smart and creative, could possibly develop an efficient algorithm for this design
problem. However, you cannot prove your conjecture, because proving it could be
as difficult as finding an efficient algorithm. Therefore, you cannot walk into your
boss's office and declare, ttl can't find an efficient algorithm because no such al
gorithm is possible!"

The theory of N~-completeness provides many techniques for proving that a
given problem is just as hard as a large number of other problems that have defied
solution by an efficient algorithm despite decades of efforts of the brighte.st re
searchers. Using these techniques, you might be able to show thai your design
problem is N~-complete. Then you can confidently march into your boss's office
and announce, ttl can't find an efficient algorithm, but neither can these famous
people." This statement might be sufficient to save your job.

As illustrated by this story, the theory of N~-completeness has the following
utility in practice. Whenever we encounter a new problem of some practical or
theoretical interest, we try to develop an efficient algorithm for solving it. If we do

Sec. B.l Introduction 789

succeed, clearly the problem is easy and we and others might make further attempts
to develop an even more efficient algorithm. However, if we do not succeed in
developing an efficient algorithm for the problem, we might begin to wonder whether
our problem is an .N'~-complete problem. The theory of .N'~-completeness provides
us with several tools for establishing that a problem is .N'~-complete. If we do succeed
in showing the problem is .N'~-complete, we have sufficient reason to believe that
the problem is hard and no efficient algorithm can ever be developed to solve it.
We should thus abandon our quest for an efficient algorithm and direct our efforts
at developing efficient heuristics (i.e., algorithms that give solutions that are not
guaranteed to be optimal), or at developing various types of enumeration algorithms
or other algorithms that will generally run in exponential time. If we cannot prove
that our problem is .N'~-complete, the status of the problem is inconclusive and
remains so until someone settles it either way. Indeed, many interesting problems
live in this never-never land: for example, the important problem of recognizing
whether two graphs are isomorphic.

This appendix provides the basic tools for carrying out this program and is
organized as follows. In Section B.2 we describe problem reductions and transfor
mations, an important construct in the theory of .N'~-completeness. In Section B.3
we describe several problem classes, such as ~, .N'~, and .N'~-complete. In Section
B.4 we study a method for showing that a problem is .N'~-complete and illustrate
this approach on a variety of simple optimization problems. Needless to say, our
discussion of the theory of .N'~-completeness is intended to be very elementary. For
a deeper study of this topic, we refer the reader to the literature discussed in the
reference notes.

B.2 PROBLEM REDUCTIONS AND TRANSFORMATIONS

The theory of .N'~-completeness helps us to classify a given problem into two broad
classes: (1) easy problems that can be solved by polynomial-time algorithms, and
(2) hard problems that are not likely to be solved in polynomial time and for which
all known algorithms require exponential running time. Notice that in this classifi
cation we want to determine only whether a problem can or cannot be solved in
polynomial time; the order of the polynomial is irrelevant. We should keep this point
in mind throughout our subsequent discussion.

In almost all the problems studied in this book, we have been concerned with
determining some type of an optimal solution. The theory of .N'~-completeness re
quires that problems be stated so that we can answer them with a yes or no; we
refer to this yes-no version of a problem as a recognition version of it. We illustrate
this notion using the traveling salesman problem (TSP).

790

TSP-optimization. Given a directed graph G = (N, A) and an integer arc length
Cij associated with every arc (i, j) E A, determine a tour W (i.e., a directed
cycle that visits each node in the network exactly once) with the smallest
possible value of the tour length ~(i,j)EW Cij'

TSP-recognition-[. Given a directed graph G = (N, A), an integer arc length
Cij associated with every arc (i, j) E A, and an integer k*, does the network
contain a tour W satisfying the condition ~(i,j)EW Cij ::; k*?

.N'lJ'-Completeness App.B

It is easy to see that if we have a polynomial-time algorithm for TSP-optimi
zation, we can use it to solve TSP-recognition-I. To do so, we use an algorithm for
the TSP-optimization to determine an optimal tour W*, and then we check to see
whether ~(i.j)EW* Cij is less than or equal to k*. The answer to this question is an
answer of TSP-recognition-I. Interestingly, the converse is also true: If we have a
polynomial-time algorithm for TSP-recognition-I, we can use it, although applied
several times, to solve TSP-optimization in polynomial time. First, we perform bi
nary search (see Section 3.3 for details of binary search methods) on the possible
tour lengths and solve TSP-recognition-I at each search point to identify the optimal
tour length, say k*, of TSP-optimization. If C denotes the largest arc length in the
network, then using the binary search, we require O(log(nC» executions of TSP
recognition-I to identify the optimal tour length k*. Next we determine the optimal
tour, again by executing the TSP-recognition-I algorithm repeatedly. We consider
every arc (i, j) E A, and one by one, apply the TSP-recognition-I algorithm to find
whether the network G(N, A - {(i,j)}) contains a tour with length less than or equal
to k*. Ifthe answer is yes, we delete the arc. After we have considered all the arcs,
the remaining graph is an optimal tour of TSP-optimization.

The preceding discussion showed that we could solve TSP-optimization in poly
nomial time if we could solve TSP-recognition-I in polynomial time. Thus the op
timization and recognition versions are equivalent in terms of whether or not they
can be solved in polynomial time. Alternatively, we say that these two problems
are polynomially equivalent. We point out that recognition problems are not always
polynomially equivalent to the corresponding optimization problems. To illustrate
this point, consider the following two alternative recognition problems for the trav
eling salesman problem:

TSP-recognition-II. Given a directed graph G = (N, A), an integer k*, and an
integer arc length Cij associated with every arc (i, j) E A, does the network
contain a tour W for which ~(i.j)EW cij 2: k*?
TSP-recognition-III. Given a directed graph G = (N, A), an integer k*, and
an integer arc length Cij asso'fiated with every arc (i, j) E A, does every tour
Win G satisfy the condition ~(i.j)EW cij 2: k*?

Note that TSP-recognition-III has a no instance if and only TSP-recognition-I
has a yes instance, so we can use TSP-recognition-III, like TSP-recognition-I, to
solve TSP-optimization. Can we solve the TSP-optimization by solving a polynomial
number of instances ofTSP-recognition-II? Perhaps. But the problem has no obvious
solution. In general, each optimization problem has several associated recognition
problems and we want to select a recognition problem that is polynomially equivalent
to the optimization problem. For all optimization problems considered in this book,
and for most problems that ever arise, some recognition version is polynomially
equivalent to the optimization version. For this reason the theory of .N'~-complete
ness, even though it applies formally only to recognition problems, is also suitable
for assessing the complexity of optimization problems.

The preceding discussion also illustrates an important technique known as prob
lem reduction. We say that a problem PI reduces to problem P2 if we can solve
problem PI using an algorithm for P2 as a subroutine. We have shown in the preceding

Sec. B.2 Problem Reductions and Transformations 791

discussion that the TSP-optimization reduces to TSP-recognition. We say that the
problem PI polynomially reduces to problem P 2 if some polynomial-time algorithm
that solves PI uses the algorithm for solving P 2 at unit cost. A point of central
importance in this definition is the unit cost clause, which implies that the algorithm
for P2 requires unit time to execute. Naturally, in almost all cases, this assumption
will be very unrealistic. Its usefulness, however, is apparent because of the following
property, whose proof is left to the reader.

Property B.l. If a problem PI polynomially reduces to problem P2 and some
polynomial-time algorithm solves P2 , some polynomial-time algorithm solves PI.

We refer to an instance of the recognition problem as a yes instance if the
answer to this problem instance is yes, and a no instance otherwise. A special type
of problem reduction is of significant interest, which we call problem transformation.
We say that a problem PI polynomially transforms to another problem P2 iffor every
instance II of problem PI we can construct in polynomial time (e.g., polynomial in
terms of the size of II) an instance lz of problem P2 so that II is a yes instance of
PI if and only if lz is a yes instance of P2 • In the subsequent discussion, we consider
several examples of polynomial-time transformations.

Polynomial reductions and polynomial transformations are useful in the fol
lowing sense. If problem PI polynomially transforms to problem P2 , problem P2 is
at least as hard as PI: Given an algorithm for problem P2 , we can always use it to
solve problem PI with comparable (i.e., polynomial or not) running times. If the
algorithm for P2 is polynomial-time, then by using it (and the polynomial transfor
mation), we can also solve PI in polynomial time. If PI is polynomially transformable
to P2 , then P2 is at least as hard as PI. The possibility of making this transformation
does not imply that PI is as hard as P2 • In fact, PI might be easy, while P2 is hard.
As an example, we can transform the minimum cost flow problem PI to an integer
linear programming problem P2 • Although no known algorithm will solve the integer
linear programming problem in polynomial time, as we have seen in the text, several
algorithms will solve the minimum cost flow problem in polynomial time. As shown
by this example, even though we might be able to polynomially reduce (or transform)
an easy problem to a more difficult problem, this transformation does not imply that
the easy problem is difficult. Whenever we can polynomially reduce a given problem
to an easy problem, though, we can be assured that the given problem is easy.

B.a PROBLEMCLASSES~, .N~, .N~-COMPLETE, AND
.N~-HARD

In this section we study the problem classes CJ>, .NCJ>, and .NCJ>-complete and discuss
relationships among these classes.

Class~

We say that a recognition problem PI belongs to class CJ> if some polynomial-time
algorithm solves problem PI. In this book we have seen several examples of problems
that belong to class CJ>; the recognition versions of the following problems belong to

792 Nr;;>-Completeness App.B

class g>: the shortest path problem, the maximum flow problem, the minimum cost
flow problem, assignment and matching problems, and the minimum spanning tree
problem.

Class.N~

Roughly speaking, we say that a recognition problem PI is in the class J{g>, if for
every yes instance I of PI, there is a short (i.e., polynomial length) verification that
the instance is a yes instance.

Throughout this book, our standard measure of complexity of a problem has
been the difficulty of solving the problem. However, the class J{g> deals with another
measure of complexity that is more closely related to the idea of a proof. Consider,
for example, the TSP-recognition-I. If someone hands you a yes instance and a tour
W of length at most k* and asks you to verify whether the problem instance is a yes
instance, you can do sp rapidly in D(n) time by examining the tour and checking
whether it passes through every node exactly once and has a length of no more than
k*.

Next, suppose that you are handed a no instance of TSP-recognition-I and
you are asked to prove that it is no instance; then you are in serious trouble. There
is no obvious proof other than (1) enumerating all possible tours and verifying that
each tour length is greater than k*, or (2) using any algorithm for TSP-optimization
to determine the optimal tour length L and verifying that L > k*. Unfortunately,
the time to implement either of these approaches is not polynomial in the size of the
instance I. Indeed, a proof of a no instance might (in the worst case) require an
exponential amount of time. We therefore see a peculiar asymmetry in TSP-rec~
ognition-I. Although we might require the same amount of time to determine whether
a given instance is a yes instance or a no instance, and need only polynomial time
to prove the correctness of a given yes instance, we might require exponential time
to prove that an instance is a no instance.

This situation is somewhat akin to proving theorems. When we ask a student
to prove or disprove a conjecture, she focuses on how long it takes to find a proof.
Thus we might view a conjecture to 'Be quite difficult if the student requires a very
long time to settle it either way. In contrast, suppose that we hand her a theorem
along with its proof and ask her to verify the proof. Here the student's task is easy
if she can quickly verify the proof. Thus the student's measure of difficulty of the
theorem is hpw long it takes to verify the correctness of the given proof, not how
long it takes her to develop the proof on her own. Needless to say, verifying a given
proof of a difficult theorem is substantially easier than developing its proof.

We now make these notions more formal. Let PI be a recognition problem.
For an instance I of PI, let I I I denote the size of the instance (i.e., the number of
digits or bits needed to represent I; see Section 3.2 for a discussion of how to measure
problem sizes). We refer to a proof that an instance is a yes instance as its certificate.
For example, for the TSP-optimization-I, the certificate of a yes instance is a tour
W whose length is at most k*. Let CR(l) denote the certificate of a yes instance I,
and let ICR(l) I denote its size. We refer to an algorithm that can verify the cor
rectness of a given certificate, that is, that the certificate establishes the instance as
a yes instance,as a certificate checking algorithm. For example, for TSP-optimi-

Sec. B.3 Problem Classes P, ,NrJ>, ,NrJ>-Complete, and ,NrJ>-Hard 793

zation-I, the certificate checking algorithm might be an algorithm that scans the nodes
in a given certificate and verifies that each node is visited exactly once and that the
length of the tour is at most k*. We can now give a formal definition of the class
.N~.

We say that a recognition problem PI is in the class .N~ if some certificate
checking algorithm .sI1:£ and polynomial p(.) satisfy the following properties:

1. Every yes instance I of PI has a certificate CR(I).
2. The algorithm .sI1:£ can verify the correctness of CR(!) in at most p(1 I I) steps.

We say that a certificate is succinct if it, together with some polynomial p(.),
satisfies these conditions. Note that since the time to verify the correctness of the
certificate CR(l) must be polynomial in 1 I I, ICR(!) 1 must also be polynomial in 1 I I.

Observe that the definition of the class .N~ implies that every problem in
the class ~ is also in .N~. Let PI be a problem in the class .N~ and let .sI1:£1 be a
polynomial-time algorithm for solving Pl. In this case we could choose the null set
as the certificate and choose the algorithm .sI1:£1 itself as the certificate checking
algorithm. Then for any given yes instance I of PI, the algorithm .sI1:£1 can verify
the correctness of I in polynomial time.

We next introduce some additional problems that are in the class .N~.

1. Hamiltonian cycle problem. Does a given directed network G = (N, A) contain
a directed cycle that visits each node in the network exactly once?

2. Partition problem. Given a finite set N of elements with element values
w(·), does some subset S s N satisfy the property that LiES w(i) =
LiEN-s w(i)?

3. 3-cover problem. Given a collection of m (possibly overlapping) sets S I,
S2, ... , Sm, each with three elements in a ground set {I, 2, ... , n}, do n/3
pairwise disjoint sets from this collection span the entire ground set (i.e., the
union of the sets is {I, 2, ... , n})?

4. Integer programming feasibility problem. Given a p x q constraint matrix .sI1
and a p-vector b, does some nonnegative integer q-vector x satisfy the equations
.sI1x = b?

We now prove that some of these problems are in the class .N~.

TSP-recognition-II. In this case the certificate of a yes instance is a tour
W of length at least k*. The certificate checking algorithm can easily verify the
correctness of W in O(n) steps. Consequently, TSP-recognition-II is in the class
.N~.

TSP-recognition-m. In this case there is no obvious succinct certificate of
a yes instance (enumerating all the tours of the network G requires an exponential
amount of space and time), although there is a succinct certificate for a no instance.
Therefore, we cannot conclude that TSP-recognition-III is in the class .N~. (It prob
ably is not in the class .N~, although no one has yet been able to prove this fact.)

794 .N'lJ'-Completeness App.B

Integer programming feasibility problem. At first glance this problem
appears to be in the class ,Ntzl>. If the integer programming problem has a feasible
solution x, then x is a certificate and we can easily verify the correctness of this
certificate in time that is polynomial in 1 II and x. The potential difficulty is that the
size of x might not be polynomial in 1 I 1 and the definition of the class .NCJ> requires
that the certificate be polynomially bounded in 1 I I. Nevertheless, the integer pro
gramming feasibility problem is in the class .NCJ>, because a deep theorem of integer
programming states that if an instance I is feasible, some feasible solution has a size
that is polynomially bounded in the size of 1 I I.

We ask the reader to prove that the remaining problems we have introduced
in this appendix are in the class .NCJ>.

Class J(C!}-Complete

A recognition problem P I is said to be .Ncg>-complete if (1) PIE .NCJ>, and (2) all other
problems in the class .NCJ> polynomially transform to PI.

Property B.t implies that if there is an efficient algorithm for some .NCJ>-complete
problem PI, there is an efficient algorithm for every problem in the class .NCJ>. As a
result, an .NCJ>-complete problem is (in a certain technical sense) at least as hard as
every other problem in the class .NCJ>. The class .NCJ> is a broad class of problems that
includes all the "hard nuts" of combinatorial optimization such as the TSP, the
3-cover problem, and the Hamiltonian cycle problem. At first glance, the definition
of .NCJ>-complete problems might appear to be so restrictive that we might be tempted
to think that very few problems are .NCJ>-complete, and that proving a problem to be
.NCJ>-complete would be a remarkable feat. Nevertheless, researchers have shown
that many problems are .NCJ>-complete, including all three problems in .NCJ> that we
listed earlier: the Hamiltonian cycle problem, the partition problem, and the 3-cover
problem. Since we will be using these ,NCJ>-completeness results in our subsequent
discussion, we state these results as a theorem (which we do not prove).

Theorem B.2. Each of the following problems is ,Ntzl>-complete:
(a) The Hamiltonian cycle probleTiz
(b) The partition problem
(c) The 3-cover problem •

Consider two .NCJ>-complete problems PI and P2 • By definition, PI polynomially
transforms to P2 and P2 polynomially transforms to Pl. This observation implies
that each .NCJ>-complete problem polynomially transforms to every other .NCJ>
complete problem. Therefore, all .NCJ>-complete problems are in some sense com
parable in their computational difficulty. If we succeed in developing an efficient
algorithm for one .NCJ>-complete problem, we know that every problem in tb.e class
.NCJ> is polynomially solvable, and CJ> = ,NCJ>. Most researchers today conjecture that
no polynomial-time algorithm could possibly solve any ,NCJ>-complete problem.
Equivalently, most researchers believe that CJ> ¥- .NCJ>, but the issue remains unre
solved.

Figure B.t gives a schematic representation of relationships between different
problem classes studied in the section.

Sec. B.3 Problem Classes P, NIJ>, NIJ>-Complete, and NIJ>-Hard 795

Class .N~-Hard

Figure B.I Relationship between
various problem classes.

A recognition problem PI is said to be .N~-hard if all other problems in the class
.N~ polynomially reduce to PI.

The class .N~-hard is broader than the class ~-complete because it includes
the class .N~ as well as problems that are not in class .N~.

B.4 PROVING .N~-COMPLETENESS RESULTS

Proving the existence ofthe first .N~-complete problem was indeed quite challenging,
but once researchers discovered one (or a few) .N~-complete problems, showing
that some other problems are .N~-complete was much easier. To prove that a problem
Pz is .N~-complete, we must establish two facts:

1. Pz is in .N~.
2. All other problems in .N~ polynomially transform to Pz .

In practice we establish part (b) by showing that a known .N~-complete prob
lem, say PI, polynomially transforms to P z . Since PI is a .N~-complete problem,
every other problem in.N~ polynomially transforms to PI. Moreover, since PI poly
nomially transforms to Pz , every problem in the class .N~ polynomially transforms
to Pz.

For most problems encountered in practice, we can find recognition versions
that are in .N~. Showing that problem Pz is in .N~ is generally (but not always)
straightforward. However, identifying a known .N~-complete problem P I that would
polynomially transform to Pz frequently is more challenging. The selection of the
problem PI, for which this transformation is simple and direct, requires some skill,
experience, and insight. Indeed, proving .N~-completeness results is more of an art
than a science. In the following discussion we illustrate briefly how to establish .N~
completeness results by selecting a few problems and proving that they are .N~
complete. We have selected problems related to the network flow problems dis
cussed in this book and for which the resulting transformations are direct. In this
discussion, we use the fact that the Hamiltonian cycle, partition, and 3-cover prob-

796 ,Nr;;-Completeness App. B

lems that we have discussed earlier in this appendix are .N'~-complete. We do not
prove that these problems are in .N'~, because doing so is straightforward in each
case.

Traveling salesman problem. We show that the Hamiltonian cycle prob
lem polynomially transforms to the TSP. Suppose that we wish to solve the Ham
iltonian cycle problem in the graph G = (N, A). We construct a complete directed
graph G' = (N, A') with arc lengths defined as follows: cij = 1 if (i, j) E A and
Cij = 2 otherwise. We define k* = n. With this definition of arc lengths, the tour
constraint Lu,j)EW Cij :s; k* is satisfied if and only if W belongs to A and thus W is
a Hamiltonian cycle of the original problem. Consequently, TSP has a yes instance
if and only if G contains some tour of length n, and this occurs if and only if G has
a Hamiltonian cycle. Notice that for every triple i,j, k, Cik :s; Cij + Cjk, and thus the
arc costs satisfy the triangle inequality. We have therefore shown that the traveling
salesman problem is .N'~-complete even if arc costs satisfy the triangle inequality.

Hamiltonian path problem. Does a given directed network G = (N, A)
contain a directed path that visits every node exactly once (the path can start at any
node and can end at any other node)?

We transform the Hamiltonian cycle problem to the Hamiltonian path problem.
Suppose that we want to determine whether the graph G contains a Hamiltonian
cycle. From G we construct a new graph G' as follows. We add a new node n + 1
and redirect every incoming arc at node 1 to node n + 1 (i.e., we replace arc (i, 1)
by the arc (i, n + 1). We prove that G contains a Hamiltonian cycle if and only if
G' contains a Hamiltonian path. Consider a Hamiltonian cycle 1 = i} - i2 - .;. -
in - i} in G; this cycle corresponds to a Hamiltonian path 1 = i} - i2 - ... - in -
(n + 1) in G'. To see the converse, notice that every Hamiltonian path in G' must
begin at node 1 (because this node has no incoming arc) and must end at node n +
1 (because this node has no outgoing arc). Moreover, every Hamiltonian path of the
form 1 = j} - j2 - ... - jn - (n + 1) in G' corresponds to the Hamiltonian cycle
1 = j} - j2 - '" - jn - j} in G._This conclusion establishes that we can solve the
Hamiltonian cycle problem in G by solving a Hamiltonian path problem in G'.

Longest path problem. Does a given network G = (N,A) contain a (simple)
path from node s to node t with at least L arcs?

If L = n - 1, a path of length L from node s to node t is a Hamiltonian path.
We have already seen that this problem is .N'~-complete.

Knapsack problem. Given a finite set N of elements, the integers v* and
w*, and a value v(i) and a weight w(i) associated with every element i E N, does
some subset S k N satisfy the property that LiES v(i);::: v* and LiES w(i):s; w*?

We show that the knapsack problem is .N'~-complete using a transformation
from the partition problem. Given a partition problem on a set N with element values
s('), we construct a knapsack problem on the same set as follows. We define
v(i) = w(i) = s(i) for every element i E N, and v* = w* = K = (LiEs s(i»/2. The
knapsack problem then finds a set S for which LiES s(i) :s; K and LiES s(i) ;::: K,

Sec. B.4 Proving ,NW'-Completeness Results 797

SO ~iES s(i) = K. Now notice that ~iEN-S s(i) = ~iEN s(i) - ~iES s(i) = 2K -
K = K. Therefore, the set S is a partition.

Constrained shortest path problem. Given a graph G = (N, A), integers
C and 'T, and an arc length Cij and a traversal time 'Tij associated with every arc
(i,j) E A, does the graph contain a directed path from node s to node t whose length
is at most c and whose traversal time is at most 'T?

We show that the constrained shortest path problem is .N'~-complete by trans
forming the knapsack problem to it. For a given knapsack problem, consider the
constrained shortest path problem shown in Figure B.2 with C = -v and 'T = w.
As is easy to verify, the knapsack problem has a feasible solution if and only if the
graph in Figure B.2 contains a path whose length is at most -v = C and whose
traversal time is at most w. Therefore, we can solve the knapsack problem by solving
a constrained shortest path problem.

. .

. .

(-v., w.)

Figure B.2 Transforming the knapsack problem into the constrained shortest path
problems. (Arcs without any data have zero cost and zero traversal time.)

Integer generalized flow problem. Given a network G = (N, A), a number
v*, and an arc multiplier /J-ij and an arc capacity uij associated with every arc
(i, j) E A (the network has no associated arc costs), does the network contain an
integer generalized flow with a total flow of value of at least v* into the sink?

We will show that 3-cover problem reduces to an integer generalized flow
problem in an appropriately defined network. For a given 3-cover problem, we con
sider the integer generalized flow problem shown in Figure B.3. In this network a
node representing the set Si has three outgoing arcs directed toward the nodes rep
resenting the three elements of the set Si; these arcs have unit multipliers and unit
capacities. Now notice that if we send a un~t flow on the arc (s, Si) from node s, 3
units arrive at node Si, which in tum sends 1 unit along each of the outgoing arcs.
Using this observation, we can easily establish a one-to-one correspondence between
3-covers and integer generalized flows. This correspondence implies that the 3-cover
problem has a yes instance if and only if the integer generalized flow problem has
a yes instance.

798 .N'lJ'-Completeness App.B

(1, 1)

(3,1) Figure B.3 Transforming a 3-cover
problem into an integer generalized flow
problem.

0-1 integer programming problem. Given an p x q matrix .st1 and an
integer p-vector b, does some integer q-vector x, whose components are all 0 or 1,
satisfy the inequality system .st1x :s; b?

The fact that the 0-1 integer programming problem is .N'~-complete is fairly
straightforward to establish because we can formulate most of the problems dis~
cussed'previously as 0-1 integer programs. Consider, for instance, the knapsack
problem which can be formulated as determining binary variables x/ s satisfying the
following constraints:

and

n

L Vj Xj :s; -V*

j=1

n

L Wj Xj :s; w*,
j=!

which is a 0-1 integer programming problem.

Weak and Strong J(Cf}-Completeness and the Similarity
Assumption

Throughout much of this book, we have emphasized that data for network flow
problems typically satisfies the similarity assumption in practice, i.e., for some fixed
integer k, C = O(nk) and U = O(nk). We have also pointed out that algorithms
with running times involving C or U rather than log C or log U should be considered
pseudo-polynomial and not polynomial. For example, Dial's algorithm for the short
est path problem requires time O(m + nC) and is thus a pseudo-polynomial algo
rithm. However, if the data is known to satisfy the similarity assumption, any pseudo
polynomial time algorithm becomes a polynomial time algorithm. For example, if C
= O(nk) then the running time for Dial's algorithm would become O(m + nk+!).

If a problem is .N'~-complete even when the similarity assumption is satisfied,
we say that the problem is strongly .N'~-complete. If a problem is .N'~-complete but

Sec. B.4 Proving .N'lJ'-Completeness Results 799

it fails to be .N'~-complete when the similarity assumption is satisfied, then we call
it weakly .N~-complete. For example, the knapsack problem. and the constrained
shortest path problem are both weakly .N'~-complete. The traveling salesman prob
lem, the Hamiltonian path problem, the longest path problem, the integer generalized
flow problem, and 0-1 integer programming are all strongly .N'~-complete.

An an aside, we showed that integer programming is .N'~-complete by showing
that the knapsack problem is a special case. While this proof is very simple, it has
the disadvantage of showing only weak .N'~-completeness of integer programming
(why?). In fact, we could also have showed that the traveling salesman problem is
a special case of 0-1 integer programming, and this transformation would show the
strong .N~-completeness of integer programming (assuming that we had already es
tablished the strong .N~-completeness of the traveling salesman problem).

B.5 CONCLUDING REMARKS

In this book we have discussed a variety of network flow problems and developed
many polynomial-time algorithms for solving these problems. It is interesting to
observe that simple generalizations of these problems often are .N~-complete. The
shortest path problem is polynomially solvable, but the constrained shortest path
problem is .N'~-complete. The maximum flow problem in directed networks with
nonnegative lower bounds is polynomially solvable (see Section 6.5), but the max
imum flow problem in undirected networks with nonnegative lower bounds on arc
flows is .N'~-complete. We have seen how to find a minimum cut in a network ef
ficiently, but the maximum cut problem is .N'~-complete. Several efficient algorithms
will solve the two-dimensional matching problem (Le., the matching of objects two
at a time), but a three-dimensional version of the problem is .N~-hard. In Chapter
19 we have shown how to solve the Chinese postman problem efficiently in directed
as well as undirected networks; in mixed networks (i.e., those whose arcs can both
be directed and undirected) this problem is .N'~-complete. The generalized network
flow problem and the multicommodity flow problem are polynomially solvable, since
they are special cases of the linear programming problem, which has several po
lynomial-time algorithms. Unfortunately, integer versions of both the problems are
.N~-complete. The literature cited in the reference notes contains proof of some of
these results. We do not intend to imply that every single generalization of network
flow problems studied in this book is .N~-complete. Nevertheless, most generali
zations are .N'~-complete, except some generalizations that happen to be linear pro
gramming problems.

Like worst-case complexity theory, the theory of .N'~-completeness is pessi
mistic: It always focuses on what happens in the worst case. The worst-case behavior
of an algorithm might be markedly different than its behavior in practice. For ex
ample, from a worst-case perspective a problem whose best available algorithm runs
in time O(n IOO

) is an easy problem, despite the fact that the O(n IOO
) time is terrible

running time in practice. Similarly, the theory will regard an .N'~-complete problem
with an O(no.o l log n) time bound as a hard problem, even though for n ::; 2100 , the
running time is better than linear. Indeed, several .N'~-complete problems can be
solved very efficiently in practice, possibly faster than some problems in class ~ of
comparable size. However, we can safely say that .N'~-complete problems "some-

800 ,Nr;;>-Completeness App.B

times" do not have algorithms that can solve large practical instances in reasonable
time, whereas problems in class '!P "often" have.

In concluding this discussion of H'!P-completeness proofs, we might note that
we have considered just one set of issues within the very broad field of computational
complexity. Many other issues and refinements arise when we try to understand the
structure of algorithms and of computers and the computations they perform. In
particular, it is possible to classify algorithms in terms of the space they require and
it is possible to distinguish algorithms and problems by imposing more structure on
the underlying data.

REFERENCE NOTES

The field of H'!P-completeness is vast and replete with deep results. In this appendix
we have discussed only some of the most elementary results. Cobham [1964] and,
independently, Edmonds [1965a] introduced the class '!P. Cook [1971] introduced the
notion of H'!P-completeness and proved that the satisfiability problem is H'!P
complete. Independently, Leyin [1973] developed this notion. Karp [1972] showed
that a rich class of problems, including the traveling salesman problem and the
knapsack problem, is H'!P-complete. The set of problems known to be in the class
H'!P-complete grew at a phenomenal pace; this set now contains thousands of prob
lems. The book by Garey and Johnson [1979] is still the best guide to H'!P-complete
ness results. The story given in Section B.l has also been adapted from this book.
Books by Papadimitriou and Steiglitz [1982] and by Cormen, Leiserson, and Rivest
[1990] are good additional references on this topic. .

App.B Reference Notes 801

Appendix C
LINEAR PROGRAMMING

Cb.apter Outline

C.l Introduction
C.2 Graphical Solution Procedure
C.3 Basic Feasible Solutions
CA Simplex Method
C.5 Bounded Variable Simplex Method
C.6 Linear Programming Duality

C.l INTRODUCTION

Inequality is the cause of all local movements.
-Leonardo da Vinci

Linear programming is perhaps the core model of constrained optimization; and the
simplex method for solving linear programming has been one of the most significant
algorithmic discoveries of this century. Developed in 1947, the simplex method has
stood the test of time, having been applied to thousands of applications in fields as
diverse as agriculture, communications, computer science, engineering design, fi
nance, industrial and military logistics, manufacturing, transportation, and urban
planning. Moreover, methods and concepts developed for linear programming-such
as duality theory, decomposition methods, and sensitivity analysis-have served as
important base methodologies for stimulating discoveries in many other fields within
the sphere of optimization. For these reasons, linear programming rightly deserves
its position as one of the basic cornerstones of applied mathematics, computer sci
ence, and operations research.

In this appendix we summarize some of the basic ideas of linear programming
and the simplex method. We do so for at least two reasons. First, a great majority
of the models that we have developed in this book, and indeed most of the models
encountered in the field of network optimization, are either linear programs or integer
programming extensions of linear programs. Therefore, a firm understanding of lin
ear programming is valuable for understanding the structure of the models we have
been studying. Second, although we have attempted to develop much of network
flows from first principles and to use basic combinatorial ideas rather than more
general methodologies and concepts of linear programming, we have, by necessity,
needed to invoke ideas from linear programming on many occasions, sometimes as
a basic tool in our development and at other times to make appropriate connections
between the ideas we have been developing and more general concepts. Therefore,

802

we have needed to rely on several central ideas oflinear programming. This appendix
serves to make our coverage as complete as possible; it functions both (1) as an
introduction to linear programming for those who have only passing familiarity with
this topic, and(2) as a review oflinear programming for those readers who are already
conversant with this topic.

A linear program is an optimization problem with a linear objective function,
a set of linear constraints, and a set of nonnegativity restrictions imposed upon the
underlying decision variables; that is, it is an optimization model of the form

subject to
q

L aij Xj = b(i)
j=\

Xj 2: 0

q

Minimize L Cj Xj
j=\

for all i = 1, ... ,p,

for allj = 1, ... , q.

(C.1a)

(C.1b)

(C.1c)

This problem has q nonnegative decision variables Xj andp equality constraints
(C.1b). (In many texts, m denotes the number of equality constraints and n denotes
the number of decision variables. This notation, unfortunately, is the reverse of the
convention in network flows, since network flow systems contain one constraint per
node and one variable per arc. For this reason we do not use the notation of m and
n to denote the number of constraints and variables of a linear program.)

We assume, by multiplying the ith equation by - 1, if necessary, that the right
hand-side coefficient b(i) of each constrainti = 1, ... ,p is nonnegative. We mi8ht
note that we could formulate a linear program in several alternative ways; for ex
ample, the objective function could be stated in maximization form, or the constraints
could be in a less than or equal to or greater than or equal to form. The linear
programming literature frequently refers to the formulation (C. l)-a model with
equality constraints, nonnegative variables, and a minimization form of the objective
function-as the standard form of a linear program.

In economic planning, each decision variable models one particqlar production
activity (Xj is the level of that activity), each constraint corresponds to a scarce
resource, and the coefficient aij indicates the amount of the ith resource consumed
per unit of the jth production activity. In this instance the model seeks the "best"
use of the scarce resources, that is, the production plan that uses the available
resources to produce the maximum possible revenue (assuming a maximization form
of the objective function).

In matrix notation, the linear programming model has the following form:

Minimize cx

subject to

.st1x = b,

X 2: O.

(C.2a)

(C.2b)

(C.2c)

In this formulation the matrix.st1 = (aij) has p rows and q columns, the vector
C = (cJ is a q-dimensional row vector, the vectors x = (xJ and b = (b(i» are q-

Sec. C.l Introduction 803

and p-dimensional column vectors, respectively. We let.91j denote the column of .91.
corresponding to the variable Xj. We assume that the rows of the I!1atrix are linearly
independent; thus the system.91x = b contains no redundant equations. In terms of
linear and matrix algebra (we assume modest background concerning these topics),
this assumption states that the rows of the matrix .91. are linearly independent; that
is, the matrix .91. has full row rank.

For the special case of the minimum cost network flow problem, each com
ponent of the decision variable x corresponds to the flow on an arc and the matrix
.91. has one row for each node of the underlying network. In this case the matrix .91.
is the node-arc incident matrix .N' that we introduced in Chapter 1.

In the following sections we describe the rudiments of linear programming
theory. We begin by illustrating the underlying geometry of linear programs and by
introducing the fundamental concepts of extreme points and basic feasible solutions.
Then we describe the key features ofthe simplex method and of a variant that permits
us to efficiently handle upper bounds on the decision variables. We conclude this
appendix by introducing the basic features and key results of linear programming
duality theory.

C.2 GRAPHICAL SOLUTION PROCEDURE

Linear programs involving only two or three variables have a convenient graphical
representation that helps in understanding the nature of linear programming and of
the simplex method. We illustrate this procedure using the following example, stated
in inequality form with a maximization objective:

Maximize z = XI + X2

subject to

2xI + 3X2 :s; 12,

XI :s; 4,

X2 :s; 3,

XI, X2 ;::: o.

(C.3a)

(C.3b)

(C.3c)

. (C.3d)

(C.3e)

The shaded region in Figure C.l is the set offeasible solutions for this problem.
The set of feasible solutions for the linear programming problem is generally referred
to as a polyhedron. The points A, B, C, D, and E are the extreme points of the
polyhedron; these points are formed by the intersection of the lines corresponding
to various constraints. Note that extreme points do not lie on any line segment joining
two other points in the polyhedron. More formally, a vector X is a strict convex
combination of distinct vectors X I , x 2, • • . , Xk if X = (I I X I + (12 x 2 + ... + (lk Xk for
a set of weights (Ii > 0 satisfying the condition Lf= I (Ii = 1. A vector X is an extreme
point of a polyhedron if it is not a strict convex combination of two distinct points
in the polyhedron, that is, cannot be represented as x = (Ix I + (1 - O)x2 for some
weight 0 < (I < 1 and two distinct points Xl and x 2 of the polyhedron. It is an easy
exercise to show that if x is a strict convex combination of k > 2 distinct points in
the polyhedron, it is not an extreme point. .

804 Linear Programming App. C

5

4

5 6
Figure C.I Set of feasible solutions
for a linear program.

The linear programming problem seeks a point (XI, X2) in the polyhedron
ABCDEA that achieves the maximum possible value of XI + X2. Equivalently, we
wish to determine the largest value of w for which the line XI + X2 = z has at
least one point in common with the polyhedron ABCDEA. The lines obtained for
different values of z are parallel to each other. Since these lines move farther away
from the origin as z becomes larger, to maximize XI + X2 we need to slide the
line Xl + X2 = Z away from the origin as far as possible so that it has some point
in common with the polyhedron ABCDEA. We can do so until we reach some extreme·
point, point D in our case, at which point the line has only one point in common
with the polyhedron; at this point, for any further translation of the line away from
the origin, no matter how small, the line has no point in common with the polyhedron.
Thus point D is an optimal solution of our linear programming problem; its objective
function value equals 16/3.

This graphical solution procedure illustrates an important property of linear
programs, namely that every linear program always has an extreme point solution
as one of its optimal solutions. Therefore, to solve a linear programming problem,
we can focus only on the extreme point solutions. Consequently, we need to consider
only a finite number of solutions. The simplex method, described in the next section,
makes use of this extreme point property. It starts at some feasible extreme point
and visits "adjacent" extreme points, improving the objective function values of
the solution at each step, until it reaches an optimal extreme point. For instance,
in our example, if the simplex method starts at point A, it might visit the points B
and C before reaching the optimal extreme point D. Alternatively, it might follow
the path A, E, D.

C.s BASIC FEASIBLE SOLUTIONS

Our description of the simplex method requires that the linear program to be solved
be stated in the standard form (C.l); that is, the objective function is in the min
imization form; each constraint, except for the nonnegative condition imposed on

Sec. C.3 Basic Feasible Solutions 805

the decision variables, is an equality; and each right-hand-side coefficient b(i) is
nonnegative. Any linear program not in the standard form can be brought into stan
dare form through simple transformations. For example, maximizing 2:J~ I CjXj

is equivalent to minimizing - 2:J~ I CjXj. To model an inequality constraint
2:J~ I aijXj :5 b(i) as an equality constraint, we could add a new nonnegative "slack
variable" Yi, with zero cost, and writing the inequality as 2:J~1 aijXj + Yi = b(i).

During its execution, the simplex method modifies the original linear program
stated in the standard form by performing a series of one or more of the following
elementary row operations:

1. Multiplying a row (Le., constraint) by a constant, or
2. Adding one row to another row or to the objective function.

Since we have stated all the constraints in the equality form, row operations
do not affect the set of feasible solutions of the linear program. As an illustration,
consider the following linear program:

subject to

Minimize z(x) = XI + X2 - 8X3 + 6X4

2xI + X2 - 14x3 + lOx4 = 16,

XI + X2 - llx3 + 7X4 = 10,

(C.4a)

(C.4b)

(C.4c)

(C.4d)

Subtracting (C.4c) from (C.4a) and (C.4b) gives the following equivalent linear pro
gram:

Minimize z(x) = OXI + OX2 + 3X3 - X4 + 10

subject to

XI + X2 -llx3 + 7X4 = 10,

, (C.Sa)

(C.Sb)

(C.Sc)

(C.Sd)

Subtracting (C.Sb) from (C.Sc) gives another equivalent formulation of this linear
program:

Minimize z(x) = OXI + OX2 - 3X3 + X4 + 10

subject to

(C.6a)

(C.6b)

(C.6c)

(C.6d)

Since the linear program (C.6) is equivalent to (C.4), both have the same optimal
solutions. A linear program like (C.6) is said to be in the canonicalform if it satisfies
the following canonical property. '

806 Linear Programming App. C

Canonical Property. The formulation has one decision variable isolated in
each constraint; the variable isolated in a given constraint has a coefficient of + 1
in that constraint and does not appear in any other constraint, nor does it appear
in the objective function.

The previous formulation satisfies the canonical property because XI is isolated
in constraint (C.6b) and X2 in constraint (C.6c).

A linear program typically has a large number of canonical forms since there
are many ways to isolate decision variables in the constraints. The canonical form
in (C.6) has the following attractive feature. Assigning any values to X3 and X4

uniquely determines the values of Xl and X2. In fact, setting X3 = X4 = 0 immediately
gives the solution XI = 6 and X2 = 4. Solutions such as these, known as basic feasible
solutions, playa central role in the simplex method. In general, given a canonical
form for any linear program, we obtain a basic solution by setting the variable isolated
in constraint i, called the ith basic variable, equal to the right-hand side of the ith
constraint, and by setting the remaining variables, called nonbasic, all to value zero.
Collectively, the basic variables are known as a basis.

In general, we obt!\in a basic feasible solution as follows. We isolate a variable
in each constraint. For simplicity, assume that we have isolated the variable Xi in
the ith constraint. Let B = {I, 2, ... , p} denote the index set of basic variables
and let L = {p + 1, p + 2, ... , q} denote the index set of non basic variables (we
choose the mnemonic L for the index set of non basic variables because we set the
value of the corresponding variables to their lower bound-that is, value O-in the
basic solution defined by this index set). We refer to the pair (B, L) as a basis structure
ofthe linear problem. For a given basis structure (B,L), we can compatibly partition
the columns of the constraint matrix.sa. Let ga == [.sal, .sa2 , ••• ,.sap] and 9; = [.sap + I,

.sap+ 2 , ••• , .saq]. We refer to the p x p matrix ga as a basis matrix. We also let
XB = [Xi: i E B] and XL = [Xj : j E L] be a partitioning of the variables into subvectors
corresponding to the index sets Band L. With this notation, we can rewrite the
constraint matrix .sax = b as

(C.7)

We can convert (C.7) to the canonical form by premultiplying each term by
ga-I, the inverse of the basis matrix, giving

XB + ga-l9;xL = ga-I b. (C.S)

We obtain a basic solution from (C.S) by setting each nonbasic variable to value
zero. The resulting solution is

XB = ga-Ib and XL = O.

We refer to this solution as a basic feasible solution if the value of each basic
variable is nonnegative (i.e., XB 2:: 0). We also say that the basis structure (B, L) is
feasible if its associated basic solution is feasible. For some choices of the basis
matrix, the corresponding basic solution will be feasible, and for some other choices
it will not be feasible.

Converting a linear program to a canonical form requires that we invert the
basis matrix, which is possible only if the columns associated with the basic variables

Sec. C.3 Basic Feasible Solutions 807

are linearly independent. If the associated columns are linearly dependent, the basis
matrix is singular (Le., its determinant is zero) and we cannot invert it. We shall
therefore henceforth refer to a basis as a subset of p variables whose corresponding
columns are linearly independent.

During its execution, the simplex method requires information about \%-1 Slj,
the updated column corresponding to the nonbasic variable Xj. We let dlj = \%-1 Slj
and call this vector the representation of dlj with respect to the basis matrix \%-1 (or,
alternatively, basis B). We refer to this column vector as a representation because
by premultiplying both sides of the equations dlj = \%-1 Slj by \%, we obtain \%dlj =
Slj, which implies that we can interpret the elements in the vector Slj as weights that
we use to multiply the columns of the basis matrix \% in order to obtain the column
Slj. For notational convenience, we let dlL denote the matrix \%-I3! containing the
column representations of all the nonbasic variables and let Ii = \%-1 b; we refer to
the vector Ii as the modified right-hand side. Finally, let CB = (cj, C2, .•• , cp) and
CL = (Cp+I' Cp +2, ••• , cq) denote the cost vectors associated with the basic and
nonbasic variables, respectively.

In a canonical form of a linear program, each basic variable has a zero coef
ficient in the objective function. We can obtain this special form of the objective
function by performing a sequence of elementary row operations (i.e., multiplying
constraints by some multipliers and subtracting them from the objective function).
Any sequence of elementary row operations is equivalent to the following: Multi
ply each constraint i by a number 'IT(i) and subtract it from the objective func
tion. This operation gives the equivalent objective function 2:1= 1 CjXj -
Lf=I'IT(i)L~t=1 aijxj - b(i)], or, collecting terms and letting Zo = Lf=1 'IT(i)bU),

p p q p

z(x) = L [Cj - L 'ITU)aij]xj + L [Cj - L 'IT(i)aij]xj + Zoo (C.9)
j=1 ;=1 j=p+1 ;=1

To obtain a canonical form, we select the vector 'IT so that
p

Cj - L 'IT(i)aij = 0 for each j E B. (C. to)
;=1

In matrix notation we select 'IT so that

'IT\% = CB.

In this expression, CB = (cl, C2, ..• , cp) is the cost vector associated with the basic
variables. We refer to

'IT = CB~-I

as the simplex multipliers associated with the basis B and refer to C]' =
~j - Lf= 1 'IT(i)aij as the reduced cost of the variable Xj. Note that Zo = 'ITb =
CB\%-I b = CBXB, which since (XL = 0) is the value of the objective function corre
sponding to the basis B.

In Section C.2 we observed that linear programs always have extreme-point
solutions and in this section we have focused on basic solutions. Are these concepts
related? Indeed, they are. To conclude this section we show that extreme points
and basic solutions are geometric and algebraic manifestations of the same concept.

808 Linear Programming App. C

Therefore, by finding an optimal basic solution, we are obtaining an optimal extreme
point solution, and vice versa. Recall that columns of the constraint matrix si cor
responding to the basis B are linearly independent.

Theorem C.l (Extreme Points and Basic Feasible Solutions). Afeasible solution
x to a linear program (C.l) is an extreme point if and only if the columns {sij : Xj >
O} of the constraint matrix corresponding to the strictly positive variables are linearly
independent.

Proof To simplify our notation, suppose that XI > 0, X2 > 0, ... ,Xk > 0 and
Xk+ I = Xk+2 == ... = Xq = O. Suppose that the columns si l , si2, ... , sik are linearly
dependent. Then there exist constants WI, W2, ... , Wk (not all zero), satisfying the
condition

silwl + si2W2 + ... + sikWk = O.

Let us define Wk+l = Wk+2 ... = Wq = 0 and let W denote the vector (WI,

W2, ... ,Wq). Then since each of the first k components of the solution x are positive,
for some sufficiently small value of the scalar e,

x + ew 2:: 0 and x - ew 2:: o.
Also, since siw = 0, si(x + ew) = si(x - ew) = six = b. Therefore, both

x + ew and x - ew are feasible for the linear program. But then x = l(x + ew) +
l(x - ew), which implies that x is not an extreme point (because it lies on the line
joining the points x + ew and x - ew). Therefore, we have shown that if x is an
extreme point, the columns si l , si2, . . . , sik must be linearly independent.'

To establish the converse, suppose that x = exl + (1 - e)x2 for some scalar
o < e < 1 and two feasible points Xl and x 2 to the linear program (C.l). Since
Xj = ex) + (1 - e)x] for any j 2:: k + 1, and both x) and x] are nonnegative, both
x} and x] must have value zero. Therefore, since both these points are feasible
solutions to the linear program, they satisfy

silxl + si'zx! + ... + sikx! = b,

and

silxr + si2X~ + ... + sikX~ = b.

Subtracting these equations from each other shows that

sil(xl - x1) + si2(x! - x~) + '" + sik(x! - xD = o.
But since the columns si l , si2, . . . , sik are linearly independent, each component
of Xl and x 2 must be the same. But then we cannot represent x = exl + (1 ::- e)x2

in terms of two distinct feasible points of the linear program and therefore x is an
extreme point. •

Although we have not stated this theorem as "x is a basic feasible solution if
and only if it is an extreme point," the theorem easily implies this statement. Notice
that if k = p in this proof, the columns Sill. si2, ... , sik form a basis of the linear
program, so x is a basic feasible solution. On the other hand, if k < p, we can add

Sec, C3 Basic Feasible Solutions 809

p - k other linearly independent columns to sill, sIlz , ... , silk to form a basis ~.
In this case x still is a basic feasible solution, but with some basic variables at value
zero (those corresponding to the columns we have added). Therefore, these obser
vations and Theorem C.1 imply that basic feasible solutions and extreme points are
identical.

C.4 SIMPLEX METHOD

The simplex method maintains a basic feasible solution at every step. Given a basic
feasible solution, the method first applies the optimality criteria to test the optimality
of the current solution. If the current solution does not fulfill this condition, the
algorithm performs an operation, known as a pivot operation, to obtain another basis
structure with a lower or identical cost. The simplex method repeats this process
until the current basic feasible solution satisfies the optimality criteria. Before de
scribing the details of these steps, we consider some preliminary issues.

Obtaining an Initial Basis Structure

Recall from our preceding discussion that a basic solution might not be feasible.
Therefore, identifying a basic feasible solution requires specifying a set of basic
variables so that the columns associated with these variables are linearly independent
and the solution XB, XL obtained by setting XB = <!]3-lb and XL = 0 is nonnegative.
Unfortunately, there is no simple method for identifying any such coll~ction of basic
variables. In fact, finding a feasible solution of a linear program (or a basic feasible
solution) is almost as difficult as finding an optimal solution. Nevertheless, using a
simple technique, we can find a basic feasible solution of a related linear program
and use it to initiate the simplex method. This technique consists of introducing an
artificial variable Xq+i with a sufficiently large cost M for each constraint i and
defining an augmented linear program as:

subject to

q q+p

Minimize 2: CjXj + 2. MXj
j= I j=q+1

q

2. aijXj + Xq+i = b(i)
j=!

for all i = 1, ... , p,

Xj;::: 0 for allj = 1, ... , q.

(C.lla)

(C.11b)

(C.llc)

It is easy to show that the original linear program (C.l) has a feasible solution
if and only if each artificial variable has value zero in every optimal solution of the
augmented linear program (C .11). (The large cost coefficient associated with each
artificial variable ensures that it has value zero in an optimal solution if the original
problem has a feasible solution.) As a consequence, solving the augmented linear
program solves the original linear program. For the augmented linear program, the
set of all artificial variables constitutes an initial basis and the value of the ith basic
variable is b(i) ;::: O.

810 Linear Programming App. C

Optimality Criteria

Let (B, L) denote a feasible basis structure of the linear program. Assume, for sim
plicity, that B = {I, 2, ... , p}. Consider the canonical form associated with this
basis structure. In this canonical form the objective function is

q

Minimize z(x) = Zo + L c]'Xj.
j=p+1

(C.12)

The coefficient c]' = Cj - If= I 7r(i)aij is the reduced cost of the nonbasic variable
Xj with respect to the current simplex multipliers 7r. We claim that if C]' ;;::: 0 for each
nonbasic variables Xj, the current basic feasible solution x is an optimal solution of
the linear program. To see this, observe that in any feasible solution of the linear
program, Xj ;;::: 0 for all j E L. Therefore, if C]' ;;::: 0 for each nonbasic variables Xh

then Zo is a lower bound on the optimal objective value. As we noted in the preceding
section, the current solution x, which sets Xj = 0 for all j E L, achieves this lower
bound and, therefore it must be optimal.

Pivot Operation

If c]' < 0 for some nonbasic variable Xj, the current basic feasible solution might
not be optimal. The expression (C.12) implies that c]' is the rate of decrease in the
objective function value per unit increase in the value of Xj. The simplex method
selects one such nonbasic variable, say xs , as the entering variable and tries to
increase its value. As we will see, when the simplex method increases Xs as much
as possible while keeping all the other nonbasic variable at value zero, some basic
variable, say Xn reaches value zero. The simplex method replaces the basic vailable
Xr by xs , defining a new basis structure. It then updates the inverse of the basis and
repeats the computations.

If we increase the value of the entering variable Xs to value a and keep all other
nonbasic variables at zero value, expression (C.S) implies that the basic variables
XB change in the following manner:

-- XB + a.<IIs = b.

In this expression b = ~-I b ;;::: 0, .<lIs = ~-I .<lIs, and XB
.<lIs = [als, a2s, ... , aps]. We can restate (C. B) as

(C.B)

[XI, X2, ... , xp]. Let

Xi = bU) - allis for all i = 1, ... ,p. (C.14)

If ais :5 0 and we increase a, then Xi either remains unchanged or increases. If
ais > 0 and we increase a, then Xi decreases and eventually it will become zero.
Consequently, (C.14) implies that ifais > 0, then the scalar a must satisfy the con
dition a :5 bU)/ais in order for Xi to remain nonnegative. As a result,

a = min {b(i)/lliS: llis > O},
l$;i:Sp

is the largest value of a that we can assign to Xs while remaining feasible. What if
ais :5 0 for each i = 1, . . . ,p? Then we can assign an arbitrarily large value to the
entering variable Xs and the solution remains feasible. Since c-: < 0, by setting Xs
as large as we like, we can make the objective function arbitrarily small, and make

Sec. C.4 Simplex Method 811

it approach - 00. In this instance we say that the linear program has an unbounded
solution.

We next focus on situations in which e is finite. If we set Xs = e, one of the
basic variables, say Xn becomes zero. Note that b(r)/ars = e. We refer to Xr as the
leaving variable and refer to the rule we have described for identifying e and the
corresponding leaving variable as the minimum ratio rule. Next, we designate Xs a
basic variable, Xr a nonbasic variable, and update the canonical form of the linear
program so that it satisfies the canonical property with respect to the new basis. We
do so by performing a sequence of elementary row operations.

Updating the Simplex Tableau

Recall from Section C.3 that in the canonical form with respect to the basis B, the
equations of the linear program assume the form

(C.15)

In the new basis, the entering variable Xs becomes the basic variable for the
rth row, which requires that in the new canonical form the variable Xs should have
a coefficient + 1 in the rth row, and a coefficient 0 in all other rows. We achieve
this new canonical form by first dividing the rth row byars; the variable Xs then has
a + 1 coefficient in this row. Then, for each 1 ::5 i.::5 p, i ¥= r, we mUltiply the rth
row by the constant - ais and add it to the ith row so that the updated value of Qis
becomes zero. We also mUltiply the rth row by a constant - c; and add it to the
objective function so that the objective function coefficient of Xs becomes zero. We
refer to this set of computations as a pivot operation.

To illustrate these steps of the simplex method, consider the linear program
ming example given in (C.6). For convenience, we state the example again.

subject to

Minimize z(x) = OXI + OX2 + 3X3 - X4 + 10

-3X3 + 3X4 = 6,

X2 - 8X3 + 4X4 = 4,

(C. 16a)

(C.16b)

(C.16c)

(C.16d)

The nonbasic variable X4 has a negative reduced cost, and we select it as the en
tering variable. Applying the minimum ratio rule, we find that e = min{6/3, 4/4} = 1,
the minimum being achieved in the second row, which contains the basic variable
X2. The variable X2 is the leaving variable. In the next basis, XI and X4 are the basic
variables, so we need to modify the canonical form. Since X4 is the new basic variable
for the constraint (C. 16c), we divide this constraint by 4 so that X4 has a + 1 coef
ficient. We then mUltiply the modified constraint by - 3 and add it to (C. 16b), and
multiply it by + 1 and add it to (C.16a). These operations produce the following
(equivalent) formulation of the linear program:

Minimize z(x) = OXI + OX4 + ! X2 + X3 + 9

subject to

812 Linear Programming App. C

X4 + t X2 - 2X3 = 1,

In this canonical form, the reduced costs of both nonbasic variables X2 and
X3 are nonnegative, so the current basic feasible solution, XI = 3, X4 = 1, and
X2 = X3 = 0, is optimal. This solution has an objective function value of 9.

One way to perform the pivot operation is by updating the full matrix dl, that
is, by performing the explicit set of pivot computations iteratively on the matrix dl.
This set of computations can be very expensive for linear programs that contain
many variables (as is typical in practice). The revised simplex method is a particular
implementation of the simplex method that permits us to avoid many of these com
putations. To describe the basic approach of the revised simplex method, suppose
that we (conceptually) append a set of fictitious variables y to the original linear
program and form a new linear program with the constraints:

dlx + !Jy = b,

X 2:: 0, Y 2:: O.

In this formulation, !J is an identity matrix; that is, its diagonal elements all
have value 1 and its elements off the diagonal all have value zero. Then to obtain
the canonical form (C. B) with respect to the basis (%, we premultiply this system
by the basis inverse (%-1. With the fictitious variables y, the system becomes

XB + (%-I~XL + (%-I y = (%-Ib.

As shown by this expression, if we were to perform the pivot operation on the
entire matrix dl from step to step, the coefficients of fictitious variables y would be
the basis inverse. This observation shows that we need not carry out the pivot
operations on the entire matrix dl. Instead, we can perform these operations on the
columns associated with the initial identity matrix !J (we do not formally introduce
the variables y). Since the resulting'computations give us the basis inverse (%-1, we
can use this matrix to compute the simplex mUltipliers 1T = CB(%-I and then use them
to compute the reduced cost of each variable. Once we have determined the variable
Xs to introduce into the basis, we compute its representation dls = (%-I.<As and then
use this information to perform the ratio test to identify the variable Xr to leave the
basis. We next perform the row elementary operations on the current \%-1 matrix
and obtain the updated basis inverse.

The advantage of this approach is that we use only the original data dl in
computing the reduced costs [using the formula cJ = Cj - Lf=1 1T(i)aij] and de
termine the modified data dl for only one column s of dl and perform row elementary
operations only on the basis inverse matrix. This apparently modest change in the
algorithm often has dramatic effects on its efficiency because the original data dl for
most problems met in practice is very sparse in the sense that most (90 percent or
more) of its coefficients are zero. On the other hand, the modified matrix dl typically
becomes very dense as we perform the iterations of the simplex algorithm. In the
revised simplex method, by using appropriate data structures, we can avoid all the

Sec. C.4 Simplex Method 813

computations corresponding to the zero elements. As a consequence, by imple
menting the revised simplex method, we usually achieve great economies in our
computations. The vast linear programming literature and many standard texts spec
ify more details about this approach and about other ways to improve the empirical
efficiency of the simplex method.

Finite Termination

The simplex method moves from one basic feasible solution to another by performing
a pivot operation. In each iteration, the solution value improves by the amount
c;e. If e > 0, we say that the pivot is nondegenerate; otherwise, we refer to it as
degenerate. A nondegenerate pivot strictly decreases the value of the objective func
tion associated with the basic feasible solution. If every pivot is nondegenerate, the
simplex method will terminate finitely because a linear program has at most qcP

distinct basic feasible solutions and the algorithm can never repeat any basic feasible
solution (since the objective function value is strictly decreasing). However, the
simplex method might perform degenerate pivots, and without further modifications
it might repeat a basic feasible solution and therefore not terminate finitely. For
tunately, researchers have developed several ways for implementing the simplex
method so that it converges finitely. We refer the reader to linear programming
textbooks for a discussion of these techniques.

The simplex method terminates with one of the following three outcomes:

Case 1. The method terminates with an unbounded solution. In this case the
linear program has no optimal solution with a finite solution value.

Case 2. The method terminates with a finite solution in which some artificial
variable has a positive value. In this case the original linear program has no feasible
solution.

Case 3. The method terminates with a finite solution in which all the artificial
variables have zero value. This solution is an optimal solution of the original linear
program.

c.s BOUNDED VARIABLE SIMPLEX METHOD

Often linear programming problems have upper as well as lower bounds imposed
on the variables. Network flow problems with arc capacities on the arc flows belong
to this class. We refer to this class of linear programs, formulated as follows, as
bounded variable linear programs.

subject to

814

q

q

Minimize 2: CjXj
j=i

2: aijXj = b(i)
j=i

for all i = 1, ... , p,

Linear Programming

(c. 17a)

(C.17b)

App. C

for all j = 1, ... , q,

for all j = 1, ... , q.

(C.17c)

(C.17d)

The simplest way to handle the upper bound constraints (C.17c) is to treat them
like the other constraints (by adding slack variables to convert them into equality
constraints). However, doing so increases the size of the linear program substantially
and is therefore undesirable. In this section we describe a generalization of the
simplex method, called the bounded variable simplex method, that treats these upper
bound constraints implicitly, very much like the lower bound constraints (C.17d).

In our previous discussion we defined a basic feasible solution in the simplex
method by a pair (B, L), consisting of a set B of basic variables and a set L of
nonbasic variables at their lower bounds. We define a basic feasible solution in the
bounded variable simplex method by a triplet (B, L, D), consisting of a set B of basic
variables, a set L of non basic variables at their lower bounds, and a set D of non basic
variables at their upper bounds. Let (%, 3!, and UU denote a compatible partitioning
of the constraint matrix A corresponding to the sets B, L, and D. Then

(%XB + 3!XL + UUxu = b.

In a basic feasible solution we set the value of each non basic variable to its
appropriate bound, depending on whether the variable is contained in L or D. Let
Uu denote the vector of upper bounds for variables in D. Then, setting XL = 0 and
Xu = Uu, we find that

(%XB = b - UUuu,

or

XB = (%-1 b - (%-1 [UUuu].

As before, (%-1 is the inverse of the basis (%. For the bounded variable simplex
method, we define the simplex multipliers 1T in the same way as in the simplex method
(i.e., as the multipliers to apply to the constraints to create the reduced cost of zero
for each basic variable). We now discuss, one by one, various steps of the simplex
method and point out any changes-required in the bounded variable simplex method.

Optimality Criteria

In a canonical form of the linear program with respect to the basis B, we can write
the objective function as

z(x) = L c]'Xj + L c]'Xj + Zoo
jEL JEU

U sing arguments similar to those used earlier for the case without upper
bounds, we can easily show that if c]' 2:: 0 for eachj ELand c]' :5 0 for eachj E
D, then Zo + kEu c]'Uj is a lower bound on the optimal value of the objective
function. We refer to these conditions as the optimality conditions for bounded
variable linear programs. If the basic feasible solution sat~sfies these optimality con
ditions, the objective function achieves this lower bound, and hence it must be
optimal. Observe that the optimality conditions imply that it is not cost-effective to

Sec. C.5 Bounded Variable Simplex Method 815

increase the value of any non basic variable at its lower bound or decrease the value
of any nonbasic variable at its upper bound.

Entering Arc Criteria

The bourided variable simplex method selects any non basic variable violating its
optimality condition as the entering arc. In other words, a nonbasic variable Xj is
eligible to be an entering arc if (1) j ELand c]' < 0, or (2) j E U and c]' > O.

Leaving Arc Criteria

If the entering variable Xs is a non basic variable at its lower bound, the method
attempts to increase the value of Xs by the largest possible amount, and if the entering
variable Xs is at its upper bound, the method atteinpts to decrease its value by the
largest possible amount. The maximum change is determined by the requirement
that the value of every basic variable and of the nonbasic variable Xs remains between
(or at) its lower and upper bounds. The expression (C.14) implies that if ai; < 0,
then by increasing e, we increase the value of the basic variable Xi. In this case the
maximum change allowed by the upper bound constraint of Xi is ei = (Ui - b(i»/
(- ais)' If ais > 0, then by increasing e, we decrease the value of the basic variable
Xi. In this case the maximum change allowed by the lower bound constraint of Xi is
ei = b(i)/aiS' We let ei = +00 ifais = 0. Finally, the maximum change allowed by
the upper and lower bound constraints of Xs is Iusl. The maximum value of e that
we can assign to Xs will be the minimum of lusl and min{ei : 1 :5 i :5 p}. In the former
case the basis remains unchanged; Xs simply moves from the set L to U or from the
set U to L. In the latter case the basis changes and so does the canonical form. The
method of updating the canonical form is same as for the case without upper bounds.
Conceivably, we might find that e = 00, in which case the linear programming prob
lem has an unbounded solution. The case, when the entering variable Xs is a nonbasic
variable at its upper bound, is left as an exercise to the reader.

Termination of the Method

Under the nondegeneracy assumption, the bounded variable simplex method ter
minates finitely because it strictly decreases the objective function value of the basic
feasible solution at each step and any linear program has a finite number of basic
feasible solutions. Without the nondegeneracy assumption, we need some additional
technique to ensure finite termination of the method. For a discussion of these tech
niques, we refer the reader to linear programming textbooks.

C.6 LINEAR PROGRAMMING DUALITY

Each linear programming problem, which for the purposes of this discussion we call
the primal problem, has a closely related associated linear programming problem,
called the dual problem, and together these two problems define a duality theory
that lies at the heart of linear programming and many other areas in the field of
constrained optimization. In this section we review briefly some of the most salient
features of duality theory.

816 Linear Programming App. C

While discussing duality theory, we assume that the linear program has been
stated in the following form:

subject to
q

q

Minimize :L CjXj
j=1

:L aijxj 2:: b(i)
j=1

for all i = 1, ... ,p,

for all j = 1, ... , q.

(C.18a)

(C. 18b)

(C. 18c)

In this formulation, we permit b(i) to have an arbitrary sign. We refer to this form
as the symmetric form of a linear program. It is possible to show that we can convert
any linear program in a nonsymmetric form into the symmetric form. To define the
dual problem, we associate a dual variable 'Tl"(i) with the ith constraint in (C.18b).
With respect to these variables, the dual problem is:

p

Maximize :L b(i)'Tl"(i) (C. 19a}
i=1

subject to
p

:L aij'Tl"(i) :5 Cj for allj = 1, ... , q, (C. 19b)
i=1

'Tl"(i) 2:: 0 for all i = 1, ... ,p. (C. 19c)

Notice that each constraint in the primal has an associated variable in the dual
and that the right-hand side of this constraint becomes the cost coefficient of the
associated variable. Moreover, each variable in the primal has an associated con
straint in the dual and the cost coefficient of this variable becomes the right-hand
side of the associated constraint. It is easy to verify that the dual of the dual is the
primal.

In the linear programming problem, whose dual we want to form, if some
constraint :LJ= 1 aijXj = b(i) is in the equality form, we form the dual exactly as
described earlier, except that the dual variable 'Tl"(i) becomes unrestricted in sign.
Similarly, in the primal, if some primal variable Xi is unrestricted in sign, then in the
dual the constraint corresponding to Xi is an equality constraint. Our first result
concerning the primal-dual pair is known as the weak duality theorem.

Theorem C.2 (Weak Duality Theorem). ffx is any feaSible solution of the primal
problem and 'Tl" is any feasible solution of the dual problem, then :Lf= 1 b(i)'Tl"(i) :5

:LJ=I CjXj.

Proof MUltiplying the ith constraint in (C. 18b) by 'Tl"(i) and adding yields

p p r q]

i~1 b(i)'Tl"(i) :5 i~l 'Tl"(i) L~I aijXj , (C.20)

while mUltiplying the jth constraint in (C . 19b) by Xj and adding yields

Sec. C.6 Linear Programming Duality 817

(C.21)

Since the right-hand side of (C. 20) equals the left-hand side of (C.21), together these
two constraints imply that

p q

L b(i)7r(i) :::; L CjXj,
i=1 j=1

which is the conclusion of the lemma. •
The weak duality theorem has a number of immediate consequences, which

we state next.

Property C.3
(a) The objective function value of any feasible dual solution is a lower bound on

the objective function value of every feasible primal solution.
(b) If the primal problem has an unbounded solution, the dual problem is infeasible.
(c) If the dual problem has an unbounded solution, the primal problem is infeasible.
(d) If the primal problem has a feasible solution x and the dual problem has a

feasible solution 7r and Lf= 1 b(i)7r(i) = LJ= 1 CjXj, then x is an optimal solution
of the primal problem and 7r is an optimal solution of the dual problem.

Theorem C.4 (Strong Duality Theorem). If anyone of the pair of primal and
dual problems has a finite optimal solution, so does the other one and both have
the same objective function values.

Proof Assume without any loss of generality that the primal problem has a
finite optimal solution. We can convert the primal problem into standard form (in
which all constraints have equalities instead of inequalities) by adding slack vari
ables. Suppose that we apply the simplex method to this standard form and let
(B, L) be the optimal basis structure. Let x be the optimal solution and 7r be the
simplex multipliers associated with the optimal basis structure. Recall from our pre
vious discussion that the simplex multipliers 7r are the multipliers associated with
the constraints (C.l b), which when subtracted from the original form of the objective
function yield the objective function in the final canonical form. Therefore,

and

p

z(x*) = L c]'Xj + L c]'Xj + L b(i)7rU) ,
jEB jEL i=1

p

C]' = Cj - L aij7r(i).
i=1

(C.22)

Since x is a basic feasible solution, c]' = 0 for allj E B, and Xj = 0 for all j
E L. Consequently, z(x*) = ~f=1 b(i)7r(i). Moreover, since the basis structure
(B, L) satisfies the optimality criteria (i.e., c]' === 0 for allj E B U L), the expressions
(C.22) and (C.19b) imply that 7r is a feasible solution to the dual problem. The ob
jective function value of this dual solution is Lf= 1 b(i)7r(i), which is same as that

818 Linear Programming App. C

of the primal solution x. Property C.3(d) implies that 1T is an optimal dual solution,
completing the proof of the theorem. •

The weak and strong duality theorems imply several fundamental results con
cerning relationships between the primal and dual problems. The following comple
mentary slackness property, which is another way of relating the two problems,
makes some of these relationships more explicit.

Complementary Slackness Property. A pair (x, 1T) of the primal and dualfeasible
solutions is said to satisfy the complementary slackness property if

for each i = 1, ... ,p, (C.23a)

and

for eachj = 1, ... , q. (C.23b)

Observe from the formulation (C.18) of the primal problem that LL1= 1 aijXj -

b(i)] is the amount of slack in the ith primal constraint and 1T(i) is the dual variable
associated with this constraint. Similarly, [Cj - Lf = 1 aij1T(i)] is the amount of slack
in the jth dual constraint and Xj is the primal variable associated with this constraint.
The complementary slackness property states that for every primal and dual con
straint, the product of the slack in the constraint and its associated primal or dual
variable is zero. In other words, if a constraint has a positive slack, the associated
primal or dual variable must have value zero, and alternatively, if a primal or dual
variable has a positive value, the dual solution must satisfy the corresponding con
straint as an ~quality.

Theorem C.S (Complementary Slackness Optimality Conditions). A primal fea
sible solution x and a dual feasibie solution 1T are optimal solutions of the primal
and dual problems if and only if they satisfy the complementary slackness property.

Proof We first prove that if x and 1T are optimal primal and dual solutions,
they must satisfy the complementary slackness property. While proving the weak
duality theorem, we observed that

p p q q

~ b(i)1T(i) ::::; ~ ~ aij1T(i)Xj ::::; ~ CjXj. (C.24)
i=1 j=1

Since x and 1T are optimal primal and dual solutions, the strong duality theorem
implies that both of the inequalities in (C.24) must be satisfied as equalities. We can
rewrite the first equality in (C.23) as

i~1 1T(i) L~, aijXj - b(i)] = o. (C.2S)

Since x and 1T are feasible in the primal and dual problems, each term in (C.2S)

Sec. C.6 Linear Programming Duality 819

is nonnegative. Consequently, the sum of these terms can be zero only if each term
is individually zero. This observation shows that the solutions satisfy (C.23a). Sim
ilarly, the second equality in (C.24) implies that the solutions satisfy (C.23b).

We next prove the converse result: namely, if the solutions x and 1T satisfy the
complementary slackness property, they must be optimal in the primal and dual
problems. Adding (C.23a) for all i yields

q p p

L L aij1T(i)Xj = L b(i)1T(i).
j= 1 ;=1

Similarly, adding (C.23b) for allj yields
q p q

LL aij1T(i)xj = L CjXj.
j=1

Therefore, Lf= 1 b(i)1T(i) = 2:1= 1 CjXj, and by Property C.3(c), x is an optimal
primal solution and 1T is an optimal dual solution, concluding the proof of the
theorem. •

REFERENCE NOTES

Dantzig, who conducted the pioneering work in linear programming, developed the
simplex method in 1947 to solve several military planning problems. The optimization
community introduced a steady stream of developments since then and now the
theory of linear programming includes a vast body of knowledge. Books by Dantzig
[1962], Bradley, Hax, and Magnanti [1977], Chvatal [1983], Schrijver [1986], and
Winston [1991] are excellent references on the history, applications, and theory of
this topic.

820 Linear Programming App. C

REFERENCES

AASHTIANI, H. A., and T. L. MAGNANT!. 1976. Implementing primal-dual network flow algorithms. Tech
nical Report OR 055-76, Operations Research Center, MIT, Cambridge, MA.

ABDALLAOUl, G. 1987. Maintainability of a grade structure as a transportation problem. Journal of the
Operational Research Society 38, 367-369.

ADEL'SON-VEL'SKI, G. M., E. A. DINIC, and E. V. KARZANOV. 1975. Flow Algorithms. Science, Moscow.
(In Russian.)

AHLFELD, D. P., R. S. DEMBO, J. M. MULVEY, and S. A. ZENIOS. 1987. Nonlinear programming on
generalized networks. ACM Transactions on Mathematical Software 13, 350-367.

AHO, A. V., J. E. HOPCROFT, and J. D. ULLMAN. 1974. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA.

AHO, A. V., J. E. HOPCROFT, and J. D. ULLMAN. 1983. Data Structures and Algorithms. Addison-Wesley,
Reading, MA.

AHUJA, R. K. 1986. Algorithms for the minimax transportation problem. Naval Research Logistics Quar
terly 33, 725-740.

AHUJA, R. K., and J. B. ORLIN. 1989. A fast and simple algorithm for the maximum flow problem.
Operations Research 37, 748-759.

AHUJA, R. K., and J. B. ORLIN. 1991. Distance-directed augmenting path algorithms for maximum flow
and parametric maximum flow problems. Naval Research Logistics Quarterly 38, 413-430.

AHUJA, R. K., and J. B. ORLIN. 1992a. The scaling network simplex algorithm. Operations Research 40,
Supplement 1, S5-S13.

AHUJA, R. K., and J. B. ORLIN. 1992b. Use of representative counts in computational testings of algo
rithms. Sloan Working Paper, Sloan School of Management, MIT, Cambridge, MA.

AHUJA, R. K., J. L. BATRA, and S. K. GUPTA. 1984. A parametric algorithm for the convex cost network
flow and related problems. European Journal of Operational Research 16, 222-235.

AHUJA, R. K., A. V. GOLDBERG, J. B. ORLfN, and R. E. TARJAN. 1992. Finding minimum-cost flows by
double scaling. Mathematical Programming 53, 243-266.

AHUJA, R. K., M. KODIALAM, A. K. MISHRA, and J. B. ORLIN. 1992. Computational testing of maximum
flow algorithms. Sloan Working Paper, Sloan School of Management, MIT, Cambridge, MA.

AHUJA, R. K., T. L. MAGNANTI, and J. B. ORLIN. 1989. Network flows. In Handbooks in Operations
Research and Management Science. Vol. 1: Optimization, edited by G. L. Nemhauser, A. H. G.
Rinnooy Kan, and M. J. Todd. North-Holland, Amsterdam, pp. 211-369.

AHUJA, R. K., T. L. MAGNANTI, and J. B. ORLIN. 1991. Some recent advances in network flows. SIAM
Review 33, 175-219.

AHUJA, R. K., T. L. MAGNANT!, J. B. ORLlN, and M. R. REDDY. 1992. Applications of network optim
ization. Sloan Working Paper, Sloan School of Management, MIT, Cambridge, MA.

AHUJA, R. K., K. MEHLHORN, J. B. ORLlN, and R. E. TARJAN. 1990. Faster algorithms for the'shortest
path problem. Journal of ACM 37,213-223.

AHUJA, R. K., J. B. ORLlN, C. STEIN, and R. E. TARJAN. 1990. Improved algorithms for bipartite network
flow problems. Technical Report, Sloan School of Management, MIT, Cambridge, MA. Submitted
to SIAM Journal on Computing.

AHUJA, R. K., J. B. ORLIN, andR. E. TARJAN. 1989. Improved time bounds for the maximum flow problem.
SIAM Journal on Computing 18, 939-954.

AKGUL, M. 1985a. Shortest path and simplex method. Research Report, Department of Computer Science
and Operations Research, North Carolina State University, Raleigh, NC.

821

AKGUL, M. 1985b. A genuinely polynomial primal simplex algorithm for the assignment problem. Research
Report, Department of Computer Science and Operations Research, North Carolina State University,
Raleigh, NC.

ALI, A. I., E. P. ALLEN, R. S. BARR, and J. L. KENNINGTON. 1986. Reoptimization procedures for bounded
variable primal simplex network algorithms. European Journal of Operational Research 23, 256-
ill. .

ALI, A. 1., D. BARNETT, K. FARHANGIAN, J. L. KENNINGTON, B. PATTY, B. SHETTY, B. MCCARL, and
P. WONG. 1984. Multicommodity network problems: Applications and computations. lIE Transac
tions 16, 127-134.

ALI, A. 1., R. V. HELGA SON, and J. L. KENNINGTON. 1978. The convex cost network flow problem: A
state-of-the-art survey. Technical Report OREM 78001, Southern Methodist University, Dallas, TX.

ALI, A.!., R. PADMAN, and H. THIAGARAJAN. 1989. Dual algorithms for pure network problems. Oper
ations Research 37, 159-171.

ALON, N. 1990. Generating pseudo-random permutations and maximum flow algorithms. In/ormation
Processing Letters 35, 201-204.

ANDERSON, W. N. 1975. Maximum matching and the rank of a matrix. SIAM Journal on Applied Math
ematics 28, 114-123.

ARISAWA, S., and S. E. ELMAGHRABY. 1977. The "hub" and "wheel" scheduling problems. Transportation
Science 11, 124-146.

ARONSON, J. E. 1989. A survey of dynamic network flows. Annals o/Operations Research 20, 1-66.
ASSAD, A. A. 1978. Multicommodity network flows: A survey. Networks 8, 37-91.
ASSAD, A. A. 1980a. Models for rail transportation. Transportation Research 14A, 205-220.
ASSAD, A. A. 1980b. Solving linear multicommodity flow problems. Proceedings of the IEEE International

Con/erence on Circuits and Computers, pp. 157-161. .
BACHARACH, M. 1966. Matrix rounding problems. Management Science 9, 732-742.
BALACHANDRAN, V., and G. L. THOMPSON. 1975. An operator theory of parametric programming for the

generalized transportation problems. Parts I-IV. Naval Research Logistics Quarterly 22, 79-125,
297-340.

BALAKRISHNAN, A., T. L. MAGNANTI, and R. T. WONG. 1989. A dual-ascent procedure for large scale
uncapacitated network design. Operations Research 37, 716-740.

BALAKRISHNAN, A., T. L. MAGNANTI, A. SHULMAN, and R. T. WONG. 1991. Models for capacity expansion
in local access telecommunication networks. Annals of Operations Research 33, 239-284.

BALAKRISHNAN, A., T. L. MAGNANT!, and R. T. WONG. 1991. A decomposition algorithm for local access
telecommunications network expansion planning. Working Paper, Operations Research Center, MIT,
Cambridge, MA.

BALINSKI, M. L. 1986. A competitive (dual) simplex method for the assignment problem. Mathematical
Programming 34, 125-141.

BALL, M. 0., and U. DERIGS. 1983. An analysis of alternative strategies for implementing matching
algorithms. Networks 13, 517-549.

BARAHONA, F., and :E. TARDOS. 1989. Note on Weintraub's minimum cost circulation algorithm. SIAM
Journal on Computing 18, 579-583.

BARNHART, C. 1988. A network-based primal-dual solution methodology for the multicommodity network
flow problem. Ph.D. dissertation, Department of Civil Engineering, MIT, Cambridge, MA.

BARR, R. S., F. GLOVER, and D. KLINGMAN. 1977. The alternating path basis algorithm for the assignment
problem. Mathematical Programming 13, 1-13.

BARR, R. S., and J. S. TURNER. 1981. Microdata file merging through large scale network technology.
Mathematical Programming Study 15, 1-22.

BARROS, 0., and A. WEINTRAUB. 1986. Spatial market equilibrium problems as network models. Discrete
Applied Mathematics 13, 109-130.

BARTHOLDI, J. J., J. B. ORLlN, and H. D. RATLIFF. 1980. Cyclic scheduling via integer programs with
circular ones. Operations Research 28, 1074-1085.

BARZILAI, J., W. D. COOK, and M. KRESS. 1986. A generalized network formulation of the pairwise
comparison consensus ranking model. Management Science 32, 1007-1014.

BAZARAA, M. S., J. J. JARVIS, and H. D. SHERALI. 1990. Linear Programming and Network Flows, 2nd
ed. Wiley, New York.

822 References

BELFORD, P. C., and H. D. RATLIFF. 1972. A network-flow model for racially balancing schools. Operations
Research 20, 619-628.

BELLMAN, R. E. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ.
BELLMAN, R. 1958. On a routing problem. Quarterly of Applied Mathematics 16, 87-90.
BELLMORE, M., G. BENNINGTON, and S. LUBORE. 1971. A multivehicle tanker scheduling problem. Trans

portation Science 5, 36-47.
BENNINGTON, G. E. 1974. Applying network analysis. Industrial Engineering 6, 17-25.
BENTLEY, J. L. 1990. Experiments on geometric traveling salesman heuristics. Computing Science Tech

nical Report 151, AT&T Bell Laboratories, Holmdel, NY.
BENTLEY, J. L., and B. W. KERNIGHAN. 1990. A system for algorithm animation: Tutorial and algorithm

animation. Unix Research System Paper, 10th ed., Vol. II. Saunders College Publishing, Philadelphia,
pp. 451-475.

BERGE, C. 1957. Two theorems in graph theory. Proceedings of the National Academy of Sciences USA
43, 842-844.

BERGE, C., and A. GHOUILA-HoURI. 1962. Programming, Games and Transportation Networks. Wiley,
New York.

BERRISFORD, H. G. 1960. The economic distribution of coal supplies in the gas industry: An application
of the linear programming transport theory. Operations Research Quarterly 11, 139-150.

BERTSEKAS, D. P. 1976. Dynamic Programming and Stochastic Control. Academic Press, New York.
BERTSEKAS, D. P. 1979. A distributed algorithm for the assignment problem. Working Paper, Laboratory

for Information and Decision Systems, MIT, Cambridge, MA.
BERTSEKAS, D. P. 1988. The auction algorithm: A distributed relaxation method for the assignment prob

lem. Annals of Operations Research 14, 105-123.
BERTSEKAS, D. P., and D. E. BAz. 1987. Distributed asynchronous relaxation methods for convex network

flow problems. SIAM Journal on Control and Optimization 25, 74-85.
BERTSEKAS, D. P., and J. ECKSTEIN. 1988. Dual coordinate step methods for linear network flow problems.

Mathematical Programming B 42, 203-243.
BERTSEKAS, D. P., P. A. HOSEIN, and P. TSENG. 1987. Relaxation methods for network flow problems

with convex arc costs. SIAM Journal on Control and Optimization 25, 1219-1243.
BERTSEKAS, D. P., and P. TSENG. 1988a. The relax codes for linear minimum cost network flow problems.

In FORTRAN Codes for Network Optimization, edited by B. Simeone, P. Toth, G. Gallo, F. Maffioli,
and S. Pallottino. Annals of Operations Research 13, 125-190.

BERTSEKAS, D. P., and P. TSENG. 1988b. Relaxation methods for minimum cost ordinary and generalized
network flow problems. Operations Research 36, 93-114.

BERTSIMAS, D., and J. B. ORLIN. 1991. A technique for speeding up the solution of the Lagrangian dual.
Working Paper OR 248-91, Operations Research Center, MIT, Cambridge, MA.

BIXBY, R. E. 1982. Matroids and operatio)!s research. In Advanced Techniques in the Practice of Op
erations Research, edited by H. J. Greenberg, F. H. Murphy, and S. H. Shaw. North-Holland,
Amsterdam, pp. 433-458.

BIXBY, R. E. 1991. The simplex method: It keeps getting better. Presented at the 14th International
Symposium on Mathematical Programming, Amsterdam,. The Netherlands.

BLAND, R. G., and D. L. JENSEN. 1992. On the computational behavior of a polynomial-time network
flow algorithm. Mathematical Programming 54, 1-39.

BOAS, P. V. E., R. KAAs, and E. ZIJLSTRA. 1977. Design and implementation of an efficient priority queue.
Mathematical Systems Theory 10, 99-127.

BODIN, L. D., B. L. GOLDEN, A. D. SCHUSTER, and W. ROWING. 1980. A model for the bloc kings of
trains. Transportation Research 14B, 115-120.

BODIN, L. D., B. L. GOLDEN, A. A. ASSAD, and M. O. BALL. 1983. Routing and scheduling of vehicles
and crews: The state of the art. Computers and Operations Research 10, 69-211.

BONDY, J. A., and U. S. R. MURTY. 1976. Graph Theory with Applications. American Elsevier, New
York.

BORUVKA, O. 1926, Prfspevek k resenf otazky ekonomicke stavby elektrovodnfch sftf. Elektrotechnicky
Obzor 15, 153-154.

BRADLEY, G., G. BROWN, and G. GRAVES. 1977. Design and implementation of large scale primal trans
shipment algorithms. Management Science 21, 1-38.

References 823

BRADLEY, S. P., A. C. HAx, and T. L. MAGNANTI. 1977. Applied Mathematical Programming. Addison
Wesley, Reading, MA.

BROGAN, W. L. 1989. Algorithm for ranked assignments with application to multiobject tracking. Journal
of Guidance, 357-364.

BROWN, M. H. 1988. Algorithm Animation. MIT Press, Cambridge, MA.
BROWN, G. G., and R. D. McBRIDE. 1984. Solving generalized networks. Management Science 30,1497-

1523.
BRUYNOOGHE, M., A. GIBERT, and M. SAKAROVITCH. 1968. Une methode d'affection du traffic. In: Fourth

International Symposium on the Theory of Traffic Flow, Karlsruhe, 1968, W. Lentzback and P.
Barons (eds.), Beitrage Theorie des Verkehrsflusses Strassenbau und Strassenkehrstechnik Heft 86,
Herausgeben von Bunderesminister fur Verkehr, Abteilung Strassenbau, Bonn, Germany.

BUSAKER, R. G., and P. J. GOWEN. 1961. A procedure for determining minimal-cost network flow patterns.
ORO Technical Report 15, Operational Research Office, Johns Hopkins University, Baltimore, MD.

BUSACKER, R. G., and T. L. SAATY. 1965. Finite Graphs and Networks. McGraw-Hili, New York.
CABOT, A. V., R. L. FRANCIS, and M. A. STARY. 1970. A network flow solution to a rectilinear distance

facility location problem. AIlE Transactions 2, 132-141.
CAHN, A. S. 1948. The warehouse problem (Abstract). Bulletin of the American Mathematical Society

54, 1073.
CARPENTO, G., S. MARTELLO, and P. TOTH. 1988. Algorithms and codes for the assignment problem. In

FORTRAN Codes for Network Optimization, edited by B. Simeone, P. Toth, G. Gallo, F. Maffioli,
and S. Pallottino. Annals of Operations Research 13, 193-224.

CARRARESI, P., and G. GALLO. 1984. Network models for vehicle and crew scheduling. European Journal
of Operational Research 16, 139-151.

CHALMET, L.G., R. L. FRANCIS, and P. B. SAUNDERS. 1982. Network models for building evacuation.
Management Science 28, 86-105.

CHANDRASEKARAN, R. 1977. Minimum ratio spanning trees. Networks 7,335-342.
CHANG, M. D., and C. J. CHEN. 1989. An improved primal simplex variant for pure processing networks.

ACM Transactions on Mathematical Software 15, 64-78.
CHARNES, A., and D. KLINGMAN. 1971. The "more for less" paradox in the distribution model. Cahiers

du Centre D' Etudes de Recherche Operationne{[e 13, 11-22.
CHEN, H., and C. G. DEWALD. 1974. A generalized chain labeling algorithm for solving multicommodity

flow problems. Computers and Operations Research 1,437-465.
CHENG, C. K., and T. C. Hu: 1990. Ancestor tree for arbitrary multi-terminal cut functions. Proceedings

of a Conference on "Integer Programming and Combinatorial Optimization," edited by R. Kannan
and W. R. Pulleyblank. University of Waterloo, Waterloo, Canada.

CHERIYAN, J., and T. HAGERUP. 1989. A randomized maximum-flow algorithm. Proceedings of the 30th
IEEE Conference on the Foundations of Computer Science, pp. 1I8-123.

CHERIY AN, J., T. HAGER up, and K. MEHLHORN. 1990. Can a maximum flow be computed in O(nm) time?
Proceedings of the 17th International Colloquium on Automata, Languages and Programming, pp.
235-248.

CHERIYAN, J., and S. N. MAHESHWARI. 1989. Analysis of pre flow push algorithms for maximum network
flow. SIAM Journal on Computing 18, 1057-1086.

CHESHIRE, M., K. 1. M. McKINNON, and H. P. WILLIAMS. 1984. The efficient allocation of private con
tractors to public works. Journal of the Operational Research Quarterly 35, 705-709.

CHIN, F., and D. HOUCH. 1978. Algorithms for updating spanning trees. Journal of Computer and System
Sciences 16, 333-344.

CHRISTOPHIDES, N. 1975. Graph Theory: An Algorithmic Approach. Academic Press, New York.
CHvATAL, V. 1983. Linear Programming. W. H. Freeman, New York.
CLARK, J. A., and N. A. J. HASTINGS. 1977. Decision networks. Operational Research Quarterly 20,51-

68.
CLARKE, S., and J. SURKIS. 1968. An operations research approach to racial desegregation of school

systems. Socio-Economic Planning Sciences 1; 259-272.
COBHAM, A. 1964. The intrinsic computational difficulty of functions. Proceedings of the 1964 Congress

for Logic, Methodology, and the Philosophy of Science, North-Holland, Amsterdam, pp. 24-30.
COLLINS, M., L. COOPER, R. HELGA SON , J. KENNINGTON, and L. LEB LANC. 1978. Solving the pipe network

analysis problem using optimization techniques. Management Science 24,747-760.

824 References

COOK, S. 1971. The complexity of theorem proving procedures. Proceedings 0/ the 3rd Annual ACM
Symposium on Theory o/Computing, pp. 151-158.

CORMEN, T. H., C. L. LEISERSON, and R. L. RIVEST. 1990. Introduction to Algorithms. MIT Press and
McGraw-Hill, New York.

Cox, L. H., and L. R. ERNST. 1982. Controlled rounding. INFOR 20, 423-432.
CRAINIC, T., J. A. FERLAND, and J. M. ROUSSEAU. 1984. A tactical planning model for rail freight trans

portation. Transportation Science 18, 165-184.
CREMEANS, J. E., R. A. SMITH, and G. R. TYNDALL. 1970. Optimal multicommodity network flows with

resource allocation. Naval Research Logistics Quarterly 17, 269-280.
CROWDER, H. P., R. S. DEMBO, and J. M. MULVEY. 1978. Reporting computational experiments in mathe

matical programming. Mathematical Programming 15, 316-329.
CROWDER, H. P., R. S. DEMBO, and J. M. MULVEY. 1979. On reporting computational experiments with

mathematical software. ACM Transactions on Mathematical Software 5, 193-203.
CROWDER, H. P., and P. B. SAUNDERS. 1980. Results of a survey on MP performance indicators. COAL

Newsletter, January, pp. 2-6.
CRUM, R. L., and D. J. NYE: 1981. A network model of insurance company cash flow management.

Mathematical Programming 15, 86-101.
CUNNINGHAM, W. H. 1976. A network simplex method. Mathematical Programming 11, 105-116.
CUNNINGHAM, W. H. 1979. Theoretical properties of the network simplex method. Mathematics 0/ Op

erations Research 4, 196-208.
DAFERMOS, S., and A. NAGURNEY. 1984. A network formulation of market equilibrium problems and

variational inequalities. Operations Research Letters 5, 247-250.
DANIEL, R. C. 1973. Phasing out capital equipment. Operations Research Quarterly 24, 113-116.
DANTZIG, G. B. 1951. Application of the simplex method to a transportation problem. In Activity Analysis

and Production and Allocation, edited by T. C. Koopmans. Wiley, New York, pp. 359-373.
DANTZIG, G. B. 1960. On the shortest route through a network. Management Science 6, 187-190.
DANTZIG, G. B. 1962. Linear Programming and Extensions. Princeton University Press, Princeton, NJ.
DANTZIG, G. B., W. BLATTNER, and M. R. RAO. 1966. Finding a cycle in a graph with minimum cost to

time ratio with application to a ship routing problem. In Theory o/Graphs.International Symposium.
Dunod, Paris, and Gordon and Breach, New York, pp. 209-213. ."

DANTZIG, G. B., and D. R. FULKERSON. 1954. Minimizing the number of tankers to meet a fixed schedule.
Naval Research Logistics Quarterly 1, 217-222.

DANTZIG, G. B., and P. WOLFE. 1960. Decomposition principle for linear programs. Operations Research
8,101-11L

DANTZIG, G. B., and P. WOLFE. 1961. The decomposition method for linear programming. Econometrica
29, 767-778.

DEARING, P. M., and R. L. FRANCIS. 1974. A network flow solution to a multifacility minimax location
problem involving rectilinear distances~-Transportation Science 8, 126-141.

DEMBO, R. S.', J. M. MULVEY, and S. A. ZENIOS. 1989. Large-scale nonlinear network models and their
applications. Operations Research 37, 353-372.

DENARDO, E. V. 1982. Dynamic Programming: Models and Applications. Prentice Hall, Englewood Cliffs,
NJ.

DENARDO, E. V., and B. L. Fox. 1979. Shortest-route methods: 1. Reaching, pruning and buckets. Op
erations Research 27, 161-186.

DENARDO, E. V., U. G. ROTHBLUM, and A. J. SWERSEY. 1988. A transportation problem in which costs
depend on the order of arrival. Management Science 34, 774-783.

DEO, N., and C. PANG. 1984. Shortest path algorithms: Taxonomy and annotation. Networks 14, 275-
323.

DERIG'S, U. 1988. Programming in Networks and Graphs. Lecture Notes in Economics and Mathematical
Systems, Vol. 300. Springer-Verlag, New York.

DERIGS, U., and W. MEIER. 1989. Implementing Goldberg's max-flow algorithm: A computational in
vestigation, Zeitschrift fur Operations Research 33, 383-403.

DERMAN, C., and M. KLEIN. 1959, A note on the optimal depletion of inventory. Management Science
5, 210-214.

DEVINE, M. V. 1973. A model for minimizing the cost of drilling dual completion oil wells. Management
Science 20, 532-535.

References 825

DEWAR, M. S. J., and H. C. LONGUET-HIGGINS. 1952. The correspondence between the resonance and
molecular orbital theories. Proceedings of the Royal Society of London A214, 482-493.

DIAL, R. 1969. Algorithm 360: Shortest path forest with topological ordering. Communications of ACM
12, 632-633.

DIAL, R., F. GLOVER, D. KARNEY, and D. KLINGMAN. 1979. A computational analysis of alternative
algorithms and labeling techniques for finding shortest path trees. Networks 9, 215-248.

DIJKSTRA, E. 1959. A note on two problems in connexion with graphs. Numeriche Mathematics 1, 269-
271.

DINIC, E. A. 1970. Algorithm for solution of a problem of maximum flow in networks with power esti
mation. Soviet Mathematics Doklady 11, 1277-1280.

DINIC, E. A. 1973. The method of scaling and transportation problems. Issled. Diskret. Mat. Science,
Moscow. (In Russian.)

DIRICKX, Y. M.' I., and L. P. JENNERGREN. 1975. An analysis of the parking situation in the downtown
area of West Berlin. Transportation Research 9, 1-11.

DIVOKY, J. J., and M. S. HUNG. 1990. Performance of shortest path algorithms in network flow problems.
Management Science 36, 661-673.

DORSEY, R. C., T. J. HODGSON, and H. D. RATLIFF. 1974. A production scheduling problem with batch
processing. Operations Research 22, 1271-1279.

DORSEY, R. C., T. J. HODGSON, and H. D. RATLIFF. 1975. A network approach to a multi-facility, multi
product production scheduling problem without backordering. Management Science 21, 813-822.

DRESS, A. W. M., and T. F. HAVEL. 1988. Shortest path problems and molecular conformation. Discrete
Applied Mathematics 19, 129-144.

DROR, M., P. TRUDEAU, and S. P. LADANY. 1988. Network models for seat allocation on flights. Trans-
portation Research 22B, 239-250.

DUDE, R. 0., and P. E. HART. 1973. Pattern Classification and Science Analysis. Wiley, New York.
EDMONDS, J. 1965a. Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449-467.
EDMONDS, J. 1965b. Maximum matchings and a polyhedran with 0, 1 vertices. Journal of Research of

the National Bureau of Standards 69B, 125-130.
EDMONDS, J. 1965c. Minimum partition of a matroid into independent subsets. Journal of Research of

the National Bureau of Standards 69B, 67-72.
EDMONDS, J. 1967. An introduction to matching. Mimeographed notes, Engineering Summer Conference,

The University of Michigan, Ann Arbor, MI.
EDMONDS, J. 1971. Matroids and the greedy algorithm. Mathematical Programming 1, 127-136.
EDMONDS, J., and E. L. JOHNSON. 1973. Matching, Euler tours and the Chinese postman. Mathematical

Programming 5, 88-124.
EDMONDS, J., and R. M. KARP. 1972. Theoretical improvements in algorithmic efficiency for network

flow problems. Journal of ACM 19,248-264.
ELAM, J., F. GLOVER, and D. KLINGMAN. 1979. A strongly convergent primal simplex algorithm for

generalized networks. Mathematics of Operations Research 4, 39-59.
ELIAS, P., A. FEINSTEIN, and C. E. SHANNON. 1956. Note on maximum flow through a network. IRE

Transactions on Information Theory IT-2, 117-119.
ELMAGHRABY, S. E. 1978. Activity Networks: Project Planning and Control by Network Models. Wiley

Interscience, New York.
ERLENKOITER, D. 1978. A dual-based procedure for uncapacitated facility location. Operations Research

26, 992-1009.
ERVOLINA, T. R., and S. T. MCCORMICK. 1990a. Cancelling most helpful cuts for minimum cost network

flow. Faculty of Commerce Working Paper 90-MSC-O 18, University of British Columbia, Vancouver,
Canada.

ERVOLlNA, T. R., and S. T. MCCORMICK. 1990b. Two strongly polynomial cut cancelling algorithms for
minimum cost network flow. Technical Report, Faculty of Commerce and Business Administration,
University of British Columbia, Vancouver, Canada.

ESAU, L. R., and K. C. WILLIAMS. 1966. On teleprocessing system design II. IBM Systems Journal 5,
142-147.

EVANS, J. R. 1977. Some network flow models and heuristics for multiproduct production and inventory
planning. AIlE Transactions 9, 75-81.

EVANS, J. R. 1984. The factored transportation problem. Management Science 30, 1021-1024.

826 References

EVEN, S. 1979. Graph Algorithms. Computer Science Press, Rockville, MD.
EVEN, S., and O. KARIV. 1975. An O(n2

.
5

) algorithm for maximum matching in general graphs. Proceedings
of the 16th Annual Symposium on Foundations of Computer Science, pp. 100-112.

EVEN, S., and R. E. TARJAN. 1975. Network flow and testing graph connectivity. SIAM Journal on
Computing 4, 507-518.

EVERETT, H., III. 1963. Generalized Lagrange multiplier method for solving problems of optimal allocation
of resources. Operations Research 11, 399-417.

EWASHKO, T. A., and R. C. DUDDING. 1971. Application of Kuhn's Hungarian assignment algorithm to
posting servicemen. Operations Research 19, 991.

FARINA, R. F., and F. W. GLOVER. 1983. The application of generalized networks to choice of raw materials
for fuels and petrochemicals. In Energy Models and Studies, edited by B. Lev. North-Holland,
Amsterdam.

FARLEY, A. R. 1980. Levelling terrain trees: A transshipment problem. Information Processing Letters
10, 189-192.

FARVOLDEN, J. M., and W. B. POWELL. 1990. A primal partitioning solution for multicommodity network
flow problems. Working Paper 90-04, Department of Industrial Engineering, University of Toronto,
Toronto, Canada.

FEDERGRUEN, A., and H. GROENEVELT. 1986. Preemptive scheduling of uniform machines by ordinary
network flow techniques. Management Science 32, 341-349.

FERNANDEZ-BACA, D., and C. U. MARTEL. 1989. On the efficiency of maximum flow algorithms on net
works with small integer capacities. Algorithmica 4, 173-189.

FILLIBEN, J. J., K. KAFADAR, and D. R. SHIER. 1983. Testing for homogeneity of two-dimensional surfaces,_
Mathematical Modelling 4, 167-189.

FISHER, M. L. 1981. The Lagrangian relaxation methods for solving integer programming problems. Man
agement Science 27, 1-18.

FISHER, M. L. 1985. An applications oriented guide to Lagrangian relaxation. Interfaces 15, 10-21.
FLORIAN, M. 1986. Nonlinear cost network models in transportation analysis. Mathematical Programming

Study 26, 167-196.
FLOYD, R. W. 1962. Algorithm 97: Shortest path. Communications of ACM 5,345.
FORD, L. R. 1956. Network flow theory. Report P-923, Rand Corp., Santa Monica, CA.
FORD, L. R., and D. R. FULKERSON. 1956a. Maximal flow through a network. Canadian Journal of

Mathematics 8, 399-404.
FORD, L. R., and D. R. FULKERSON. 1956b. Solving the transportation problem. Management Science

3,24-32.
FORD, L. R., and D. R. FULKERSON. 1957. A primal-dual algorithm for the capacitated Hitchcock problem.

Naval Research Logistics Quarterly 4, 47-54.
FORD, L. R., and D. R. FULKERSON. 1958a. Constructing maximum dynamic flows from static flows.

Operations Research 6, 419-433. ..~,

FORD, L. R., and D. R. FULKERSON. 1958b. A suggested computation for maximal multicommodity net
work flows. Management Science 5, 97-101.

FORD, L. R., and D. R. FULKERSON. 1962. Flows in Networks. Princeton University Press, Princeton,
NJ.

FORD, L. R., and S. M. JOHNSON. 1959. A tournament problem. The American Mathematical Monthly
66, 387-389.

FRANCIS, R. L., and J. A. WHITE. 1976. Facility Layout and Location. Prentice Hall, Englewood Cliffs,
NJ.

FRANK, C. R. 1965. A note on the assortment problem. Management Science 11, 724-726.
FRANK, H., and I. T. FRISCH. 1971. Communication, Transmission, and Transportation Networks. Ad

dison-Wesley, Reading, MA.
FREDMAN, M. L., and R. E. TARJAN. 1984. Fibonacci heaps and their uses in improved network optim

ization algorithms. Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer
Science, pp. 338-346. Full paper in Journal of ACM 34(1987), 596-615.

FUJII, M., T. KASAMI, and K. NINOMIYA. 1969. Optimal sequencing of two equivalent processors. SIAM
Journal on Applied Mathematics 17, 784-789. Erratum, same journal 18, 141.

FUJISHlGE, S. 1986. A capacity-rounding algorithm for the minimum cost circulation problem: A dual
framework of Tardos' algorithm. Mathematical Programming 35, 298-308.

References 827

FULKERSON, D. R. 1961a. A network flow computation for project cost curve. Management Science 7,
167-178.

FULKERSON, D. R. 1961b. An out-of-kilter method for minimal cost flow problems. SIAM Journal on
Applied Mathematics 9, 18-27.

FULKERSON, D. R. 1963. Flows in networks. In Recent Advances in Mathematical Programming, edited
by R. L. Graves and P. Wolfe. McGraw-Hill, New York, pp. 319-332.

FULKERSON, D. R. 1965. Upsets in a round robin tournament. Canadian Journal of Mathematics 17,957-
969.

FULKERSON, D. R. 1966. Flow networks and combinatorial operations research. American Mathematical
Monthly 73, 115-138.

FULKERSON, D. R., and G. B. DANTZIG. 1955. Computation of maximum flow in networks. Naval Research
Logistics Quarterly 2, 277-283.

FULKERSON, D. R., and G. C. HARDING. 1977. Maximizing the minimum source-sink path subject to a
budget constraint. Mathematical Programming 13, 116-118.

GABOW, H. N. 1975. An efficient implementation of Edmond's algorithm for maximum matchings on
graphs. Journal of ACM 23,221-234.

GABOW, H. N. 1985. Scaling algorithms for network problems. Journal of Computer and System Sciences
31, 148-168.

GABOW, H. N. 1990. Data structures for weighted matching and nearest common ancestors with linking.
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadel
phia, pp. 434-443.

GABOW, H. N., Z. GALIL, T. SPENCER, and R. E. TARJAN. 1986. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs. Combinatorica 6, 109-122.

GABOW, H. N., and R. E. TARIAN. 1989a. Faster scaling algorithms for network problems. SIAM Journal
on Computing 18, 1013-1036.

GABOW, H. N., and R. E. TARJAN. 1989b. Faster scaling algorithms for general graph matching problems.
Technical Report CU-CS-432-89, Department of Computer Science, University of Colorado, Boulder,
CO.

GALE, D. 1957. A theorem on flows in networks. Pacific Journal of Mathematics 7, 1073-1082.
GALE, D., and L. S. SHAPLEY. 1962. College admissions and the stability of marriage. American Mathe

matical Monthly 69, 9-14.
GALIL, Z. 1981. On the theoretical efficiency of various network flow algorithms. Theoretical Computer

Science 14, 103-111.
GALIL, Z., and E. TARDOS. 1986. An O(n 2(m + n log n) log n) min-cost flow algorithm. Proceedings of

the 27th Annual Symposium on the Foundations of Computer Science, pp. 136-146. Full paper in
Journal of ACM 35(1987),374-386.

GALLO, G., M. D. GRIGORIADIS, and R. E. TARJAN. 1989. A fast parametric maximum flow algorithm and
applications. SIAM Journal on Computing 18, 30-55.

GALLO, G., and S. PALLOTTINO. 1984. Shortest path methods in transportation models. In Transportation
Planning Models, edited by M. Florian. Elsevier/North-Holland, Amsterdam.

GALLO, G., and S. PALLOTTINO. 1986. Shortest path methods: A unifying approach. Mathematical Pro
gramming Study 26, 38-64.

GALLO, G., and S. PALLOTTINO. 1988. Shortest path algorithms. In Fortran Codes for Network Optimi
zation, edited by B. Simeone, P. Toth, G. Gallo, F. Maffioli, and S. Pallottino. Annals of Operations
Research 13, 3-79.

GAREY, M. S., and D. S. JOHNSON. 1979. Computers and Intractability: A Guide to the Theory of NP
Completeness. W. H. Freeman, New York.

GAVISH, B. 1985. Augmented Lagrangian based algorithms for centralized network design. IEEE Trans
actions on Communications COM-33, 1247-1257.

GAVISH, B., and P. SCHWEITZER. 1974. An algorithm for combining truck trips. Transportation Science
8,13-23.

GAVISH, B., and K. N. SRIKANTH. 1979. O(n2
) algorithms for sensitivity analysis of minimal spanning

trees and related subgraphs. Working Paper 8003, Graduate School of Management, University of
Rochester, Rochester, NY.

GEOFFRION, A. 1974. Lagrangian relaxations for integer programming. Mathematical Programming Study
2, 82-114.

828 References

GEOFFRION, A. M., and G. W. GRAVES. 1974. Multicommodity distribution system design by Benders
decomposition. Management Science 20,822-844.

GERSHT, A., and A. SHULMAN. 1987. A new algorithm for the solution of the minimum cost multicom
modity flow problem. Proceedings of the IEEE Conference on Decision and Control 26, 748-758.

GILMORE, P. C., and R. E. GOMORY. 1964. Sequencing a one state-variable machine: A solvable case of
the travelling salesman problem. Operations Research 12, 655-679.

GLOVER, F., R. GLOVER, and F. K. MARTINSON. 1984. A netform system for resource p'lanning in the
U.S. Bureau of Land Management. Journal of the Operational Research Society 35,605-616.

GLOVER, F., R. GLOVER, and D. J. SHIELDS. 1988. Microcomputer-based model of international mineral
market. In Operational Research '87, edited by G. K. Rand. Elsevier, Amsterdam.

GLOVER, F., J. HULTZ, D. KLINGMAN, and J. STUTZ. 1978. Generalized networks: A fundamental computer
based planning tool. Management Science 24, 1209-1220.

GLOVER, F., D. KARNEY, and D. KLINGMAN. 1974. Implementation and computational comparisons of
primal, dual and primal-dual computer codes for minimum cost network flow problem. Networks 4,
191-212.

GLOVER, F., D. KARNEY, D. KLINGMAN, and A. NAPIER. 1974. A computational study on start procedures,
basis change criteria, and solution algorithms for transportation problem. Management Science 20,
793-813.

GLOVER, F., and D. KLINGMAN. 1977. Network applications in industry and government. AIlE Trans
actions 9, 363-376.

GLOVER, F., D. KLINGMAN, J. MOTE, and D. WHITMAN. 1984. A primal simplex variant for the maximum
flow problem. Naval Research Logistics Quarterly 31, 41-61.

GLOVER, F., D. KLINGMAN, and N. PHILLIPS. 1985. A new polynomially bounded shortest path algorithm.
Operations Research 33, 65-73.

GLOVER, F., D. KLINGMAN, and N. PHILLIPS. 1990. Netform modeling and applications. Interfaces 20,
7-27.

GLOVER, F., D. KLINGMAN, N. PHILLIPS, and R. F. SCHNEIDER. 1985. New polynomial shortest path
algorithms and their computational attributes. Management Science 31, 1106-1128.

GLOVER, F., and J. ROGOZINSKI. 1982. Resort development: A network-related model for optimizing sites
and visits. Journal of Leisure Research, 235-247.

GOETSCHALCKX, M., and H. D. RATLIFF. 1988. Order picking in an aisle. lIE Transactions 20, 53-62.
GOLDBERG, A. V. 1985. A new max-flow algorithm. Technical Report MIT/LCS/TM-291, Laboratory for

Computer Science, MIT, Cambridge, MA.
GOLDBERG, A. V., M. D. GRIGORIADIS, and R. E. TARJAN. 1988. Efficiency of the network simplex al

gorithm for the maximum flow problem. Technical Report, Department of Computer Science, Stan
ford University, Stanford, CA.

GOLDBERG, A. V., S. A. PLOTKIN, and E. TARDOS. 1991. Combinatorial algorithms for the generalized
circulation problem. Mathematics of Operations Research 16, 351-381.

GOLDBERG, A. V., E. TARDOS, and R. E. TARJAN. 1989. Network flow algorithms. Technical Report 860,
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY.

GOLDBERG, A. V., and R. E. TARJAN. 1986. A new approach to the maximum flow problem. Proceedings
of the 18th ACM Symposium on the Theory of Computing, pp. 136-146. Full paper in Journal of
ACM 35(1988), 921-940.

GOLDBERG, A. V., and R. E. TARJAN. 1987. Solving minimum cost flow problem by successive approx
imation. Proceedings of the 19thACM Symposium on the Theory of Computing, pp. 7-18. Full paper
in Mathematics of Operations Research 15(1990), 430-466.

GOLDBERG, A. V., and R. E. TARJAN. 1988. Finding minimum-cost circulations by cancelling negative
cycles. Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 388-397. Full
paper in Journal of ACM 36(1989), 873-886.

GOLDEN, B. L. 1975. A minimum cost multicommodity network flow problem concerning imports and
exports. Networks 5, 331-356.

GOLDEN, B. L., A. A. ASSAD, E. A. WASIL, and E. BAKER. 1986. Experiments in optimization. Working
Paper Series MS/S 86-004, University of Maryland, College Park, MD.

GOLDEN, B. L., M. LIBERATORE, and C. LIEBERMAN. 1979. Models and solution techniques for cash flow
management. Computers and Operations Research 6, 13-20.

GOLDEN, B. L., and T. L. MAGNANTI. 1977. Deterministic network optimization: A bibliography. Networks
7, 149-183.

References 829

GOLDFARB, D. 1985. Efficient dual simplex algorithms for the assignment problem. Mathematical Pro
gramming 33, 187-203.

GOLDFARB, D., and J. HAO. 1988. Polynomial-time primal simplex algorithms for the minimum cost net
work flow problem. Technical Report, Department of Industrial Engineering and Operations Re
search, Columbia University, New York.

GOLDFARB, D., and J. HAO. 1990. A primal simplex algorithm that solves the maximum flow problem in
at most nm pivots and O(n2m) time. Mathematical Programming 47, 353-365.

GOLDFARB, D., J. HAO, and S. KAI. 1990a. Efficient shortest path simplex algorithms. Operations Research
38, 624-628.

GOLDFARB, D., J. HAO, and S. KAI. 199Ob. Anti-staHing pivot rules for the network simplex algorithm.
Networks 20, 79-91.

GOLDMAN, A. J., and G. L. NEMHAUSER. 1967. A transport improvement problem transformable to a
best-path problem. Transportation Science 1, 295-307.

GOLITSCHEK, M. V., and H. SCHNEIDER. 1984. Applic ations of shortest path algorithms to matrix scalings.
Numerische Mathematik 44, 111-126.

GOMORY, R. E., and T. C. Hu. 1961. Multi-terminal network flows. Journal of SIAM 9,551-570.
GONDRAN, M., and M. MINOUX. 1984. Graphs and Algorithms. Wiley-Interscience, New York.
GORHAM, W. 1963. An application of a network flow model to personnel planning. IEEE Transactions

on Engineering Management 10, 113-123.
GOWER, J. C., and G. J. S. Ross. 1969. Minimum spanning trees and single linkage cluster analysis.

Applied Statistics 18, 54-64.
GRAHAM, R. L., anti P. HELL. 1985. On the history of minimum spanning tree problem. Annals of the

History of Computing 7, 43-57.
GRAVES, S. C. 1982. Using Lagrangian techniques to solve hierarchical production planning problems.

Management Science 28, 260-275.
GRAVES, G. W., and R. D. McBRIDE. 1976. The factorization approach to large scale linear programming.

Mathematical Programming 10, 91-110.
GREENBERG, H. 1990. Computational testing: Why, how, and how much. ORSA Journal of Computing

2,94-97.
GRIGORIADIS, M. D. 1986. An efficient implementation of the network simplex method. Mathematical

Programming Study 26, 83-111.
GRIGORIADIS, M. D., and Y. Hsu. 1979. The Rutgers minimum cost network flow subroutines. SIGMAP

Bulletin of the ACM 26, 17-18.
GROTSCHEL, M., and O. HOLLAND. 1985. Solving matching problems with linear programming. Mathe

matical Programming 33, 243-259.
GUIGNARD, M., and S. KIM. 1987a. Lagrangian decomposition: A model yielding stronger Lagrangian

bounds. Mathematical Programming 39, 215-228.
GUIGNARD, M., and S. KIM. 1987b. Lagrangian decomposition for integer programming: Theory and

applications. Technical Report 93, Department of Statistics, The Wharton School, University of
Pennsylvania, Philadelphia, PA.

GUPTA, S. K. 1985. Linear Programming and Network Models. Affiliated East-West Press, New Delhi,
India.

GUSFIELD, D. 1988. A graph theoretic approach to statistical data security. SIAM Journal on Computing
17, 552-571.

GUSFIELD, D. 1990. Very simple methods for all pairs network flow analysis. SIAM Journal on Computing
19, 143-155.

GUSFIELD, D., and R. W. IRVING. 1989. The Stable Marriage Problem: Structure and Algorithms. MIT
Press, Cambridge, MA.

GUSFIELD, D., and C. MARTEL. 1989. A fast algorithm for the generalized parametric minimum cut problem
and applications. Technical Report CSE-89-21, Computer Science Division, University of California,
Davis, CA.

Gus FIELD, D., C. MARTEL, and D. FERNANDEZ-BACA. 1987. Fast algorithms for bipartite network flow.
SIAM Journal on Computing 16, 237-251.

GUTJAHR, A. L., and G. L. NEMHAUSER. 1964. An algorithm for the line balancing problem. Management
Science 11, 308-315.

HALL, M. 1956. An algorithm for distinct representatives. American Mathematical Monthly 63, 716-717.

830 References

HAMACHER, H. W., and S. TUFEKCI. 1987. On the use of lexicographic min cost flows in evacuation
modelling. Naval Research Logistics Quarterly 34, 487-504.

HANDLER, G. Y. 1973. Minimax location of a facility in an undirected graph. Transportation Science 7,
287-293.

HANDLER, G., and 1. ZANG. 1980. A dual algorithm for the constrained shortest path problem. Networks
10,293-309.

HASSIN, R. 1981. Maximum flow in (s, t)-planar networks. Information Processing Letters 13, 107.
HASSIN, R., and D. B. JOHNSON. 1985. An O(n log2 n) algorithm for maximum flow in undirected planar

networks. SIAM Journal on Computing 14, 612-624.
HAUSMAN, H. 1978. Integer Programming and Related Areas: A Classified Bibliography. Lecture Notes

in Economics and Mathematical Systems, Vol. 160. Springer-Verlag, Berlin.
HAX, A. C., and C. CANDEA. 1984. Production and Inventory Management. Prentice Hall, Englewood

Cliffs, NJ.
HAYMOND, R. E., J. P. JARVIS, and D. R. SHIER. 1980. Computational methods for minimum spanning

tree problems. Technical Report 354, Department of Mathematical Sciences, Clemson University,
Clemson, SC.

HAYMOND, R. E., J. R. THORNTON, and D. D. WARNER. 1988. A shortest path algorithm in robotics and
its implementation on the FPS T-20 hypercube. Annals of Operations Research 14, 305-320.

HELD, M., and R. KARP. 1970. The traveling salesman problem and minimum spanning trees. Operations
Research 18, 1138-1162.

HELD, M., and R. KARP. 1971. The traveling salesman problem and minimum spanning trees, Part II.
Mathemqtical Programming 6, 62-88.

HELGASON, 'R. V., J. L. KENNINGTON, and B. D. STEWART. 1988. Dijkstra's two-tree shortest path al
gorithm. Technical Report, Department of Operations Research and Engineering Management, South
ern Methodist University, Dallas, TX.

HITCHCOCK, F. L. 1941. The distribution of a product from several sources to numerous facilities. Journal
of Mathematical Physics 20, 224-230.

HOCHBAUM, D. S., and J. G. SHANTHIKUMAR. 1990. Convex separable optimization is not much harder
than linear optimization. Journal of ACM 37, 843-862.

HOFFMAN. A. J. 1960. Some recent applications of the theory of linear inequalities to extremal combi
natorial analysis. In Combinatorial Analysis, edited by R. Bellman and M. Hall. American Mathe
matical Society, Providence, RI, pp. 113-128.

HOFFMAN, K. L., and R. H. F. JACKSON. 1982. In pursuit of a methodology for testing mathematical
programming software. In Evaluating Mathematical Programming Techniques, Lecture Notes in
Economics and Mathematical Systems, Vol. 199, edited by J. M. Mulvey et aI., Springer-Verlag,
New York. .

HOFFMAN, A. J., and J. B. KRUSKAL. 1956. Integral boundary points of convex polyhedra. In Linear
Inequalities and Related Systems, edited~fjy H. W. Kuhn and A. W. Tucker. Princeton University
Press, Princeton, NJ, pp. 233-246.

HOFFMAN, A. J., and H. M. MARKOWITZ. 1963. A note on shortest path, assignment and transportation
problems. Naval Research Logistics Quarterly 10, 375-379.

HOFFMAN, A. J., and S. T. MCCORMICK. 1984. A fast algorithm that makes matrices optimally sparse. In
Progress in Combinatorial Optimization. Academic Press Canada, Don Mills, Ontario, Canada.

HOPCROFT, J. E., and R. M. KARP. 1973. A n512 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing 2, 225-231.

HOPCROFT, J. E., and R. E. TARJAN. 1974. Efficient planarity testing. Journal of ACM 21,549-568.
HORN, W. A. 1971. Determining optimal container inventory and routing. Transportation Science 5, 225-

231.
HORN, W. A. 1973. Minimizing average flow time with parallel machines. Operations Research 21,846-

847.
Hu, T. C. 1961. The maximum capacity route problem. Operations Research 9, 898-900.
Hu, T. C. 1963. Multi-commodity network flows. Operations Research 11, 344-360.
Hu, T. C. 1966. Minimum cost flows in convex cost networks. Naval Research Logistics Quarterly 13,

1-9.
Hu, T. C. 1967. Laplace's equation and network flows. Operations Research 15, 348-354.
Hu, T. C. 1969. Integer Programming and Network Flows. Addison-Wesley, Reading, MA.

References 831

Hu, T. C. 1974. Optimum communication spanning trees. SIAM Journal on Computing 3, 188-195.
HUNG, M. S. 1983. A polynomial simplex method for the assignment problem. Operations Research 31,

595-600.
HUNG, M. S., and J. J. DIVOKY. 1988. A computational study of efficient shortest path algorithms. Com

puters and Operations Research 15, 567-576.
IMAI, H. 1983. On the practical efficiency of various maximum flow algorithms. Journal of the Operations

Research Society of Japan 26, 61-82.
IMAI, H., and M. IRI. 1986. Computational-geometric methods for polygonal approximations of a curve.

Computer Vision, Graphics and Image Processing 36,31-41.
IRI, M. 1960. A new method of solving transportation-network problems. Journal of the Operations

Research Society of Japan 3, 27-87.
IRI, M. 1969. Network Flow, Transportation and Scheduling. Academic Press, New York.
ITAI, A., and Y. SHlLOACH. 1979. Maximum flow in planar networks. SIAM Journal on Computing 8,

135-150.
JACKSON, R. H. B., P. T. BOGGs, S. G. NASH, and S. POWELL. 1989. Report of the ad hoc committee to

revise the guidelines for reporting computational experiments in mathematical programming. COAL
Newsletter 18, 3-14. .

JACKSON, R. H. B., and J. M. MULVEY. 1978. A critical review of comparisons of mathematical pro
gramming algorithms and software (1953-1977). Journal of Research of the National Bureau of
Standards 83, 563-584.

JACOBS, W. W. 1954. The caterer problem. Naval Research Logistics Quarterly 1, 154-165.
JARNicK, V. 1930. 0 jistem problemu minimalnfm. Acta Societatis Scientiarum Natur. Moravicae 6,57-

63.
JARVIS, J. P., and D. E. WHITE. 1983. Computational experience with minimum spanning tree algorithms.

Operations Research Letters 2, 36-41.
JENSEN, P. A., and W. BARNES. 1980. Network Flow Programming. Wiley, New York.
JENSEN, P., and G. BHAUMIK. 1977. A flow augmentation approach to the network with gains minimum

cost flew problem. Management Science 23, 631-643.
JEWELL, W. S. 1957. Warehousing and distribution of a seasonal product. Naval Research Logistics

Quarterly 4, 29-34.
JEWELL, W. S. 1958. Optimal flow through networks. Interim Technical Report 8, Operations Research

Center, MIT, Cambridge, MA.
JEWELL, W. S. 1962. Optimal flow through networks with gains. Operations Research 10, 476-499.
JOHNSON, E. L. 1966. Networks and basic solutions. Operations Research 14, 619-624.
JOHNSON, T. B. 1968. Optimum pit mine production scheduling. Technical Report, University of Cali

fornia, Berkeley, CA.
JOHNSON, D. B. 1982. A priority queue in which initialization and queue operations take O(log log D)

time. Mathematical Systems Theory 15, 295-309.
JOHNSON,D. S. 1990. Local optimization and the traveling salesman problem. Proceedings of the 17th

Colloquium on Automata, Languages, and Programming. Springer-Verlag, New York, pp. 446-461.
JOHNSON, D. B., and S. VENKATESAN. 1982. Using divide and conquer to find flows in directed planar

networks in 0(n312 log n) time. Proceedings of the 20th Annual Allerton Conference on Communi
cation, Control, and Computing, University of Illinois, Urbana-Champaign, IL, pp. 898-905.

KAMEDA, T., and!. MUNRO. 1974. A 0(1 VI. 1 E I) algorithm for maximum matching of graphs. Computing
12,91-98.

KANG, A. N. C., R. C. T. LEE, C. L. CHANG, and S. K. CHANG. 1977. Storage reduction through minimal
spanning trees and spanning forests. IEEE Transactions on Computers C-26, 425-434.

KANTOROVICH, L. V. 1939. Mathematical methods in the organization and planning of production. Pub
lication House of the Leningrad University. Translated in Management Science 6(1960), 366-422.

KAPLAN, S. 1973. Readiness and the optimal redeployment of resources. Naval Research Logistics Quar
terly 20, 625-638.

KARP, R. M. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations,
edited by R. E. Miller and J. W. Thacher. Plenum Press, New York, pp. 83-103.

KARP, R. M. 1978. A characterization of the minimum cycle mean in a diagraph. Discrete Mathematics
23, 309-311.

832 References

KARP, R. M., and J. B. ORLIN. 1981. Parametric shortest path algorithms with an application to cyclic
staffing. Discrete Applied Mathematics 3, 37-45.

KARZANOV, A. V. 1974. Determining the maximal flow in a network by the method of preflows. Soviet
Mathematics Doklady 15, 434-437.

KASTNING, C. 1976. Integer Programming and Related Areas: A Classified Bibliography. Lecture Notes
in Economics and Mathematical Systems, Vol. 128, Springer-Verlag, Berlin.

KELLY, J. R. 1961. Critical path planning and scheduling: Mathematical basis. Operations Research 9,
296-320.

KELLY, J. P., B. L. GOLDEN, and A. A. ASSAD. 1992. Cell suppression: Disclosure protection for sensitive
tabular data. Networks 22, 397-412.

KENNINGTON, J. L. 1978. A survey of linear cost rnulticommodity network flows. Operations Research
26, 209-236.

KENNINGTON, J. L., and R. V. HELGASON. 1980. Algorithms for Network Programming. Wiley-Intersci
ence, New York.

KENNINGTON, J. L., and M. SHALABY. 1977. An effective subgradient procedure for minimal cost mul
ticommodity flow problems. Management Science 23,994-1004.

KENNINGTON, J. L., and Z. WANG. 1990. The shortest augmenting path algorithm for the transportation
problem. Technical Report 90-CSE-10, Southern Methodist University, Dallas, TX.

KHAN, M. R. 1979. A capacitated network formulation for manpower scheduling. Industrial Management
21,24-28.

KHAN, M. R., and D. A. LEWIS. 1987. A network model for nursing staff scheduling. ZeitschriJt fur
Operations Research 31, BI61-BI71.

KLEIN, M. 1967. A primal method for minimal cost flows with application to the assignment and trans
portation problems. Management Science 14, 205-220.

KLINCEWICZ, J. G. 1983. A Newton method for convex separable network flow problems. Networks 13,
427-442.

KLINGMAN, D., A. NAPIER, and J. STUTZ. 1974. NETGEN: A program for generating large scale capac
itated assignment, transportation, and minimum cost flow network problems. Management Science
20, 814-821.

KNUTH, D. E. 1973a. The Art of Computer Programming. Vol. 1: Fundamental Algorithms, 2nd' ed.
Addison-Wesley, Reading, MA.

KNUTH, D. E. 1973b. The Art of Computer Programming. Vol. III: Sorting and Searching. Addison
Wesley, Reading, MA.

KOLITZ, S. 1991. Personal communication.
KOOPMANS, T. C. 1947. Optimum utilization of the transportation system. Proceedings of the International

Statistical Conference, Washington, DC. Also in Econometrica 17(1949).

KORTE, B. 1988. Applications of combinatorial optimization. Technical Report 88541-0R, Institute fiir
Okonometrie und Operations Research, Bonn, Germany.

KOURTZ, P. 1984. A network approach to least cost daily transfers of forest fire control resources. INFOR
22, 283-290.

KRUSKAL, J. B. 1956. On the shortest spanning tree of graph and the traveling salesman problem. Pro
ceedings of the American Mathematical Society 7, 48-50.

KUHN, H. W. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quar
terly 2, 83-97.

LAPORTE, G., and Y. NOBERT. 1987. Exact algorithms for the vehicle routing problem. In Surveys in
Combinatorial Optimization, edited by S. Martello, G. Laporte, M. Minoux, and C. Ribeiro. North-
Holland, Amsterdam. .

LARSON, R. C., and A. R. ODONI. 1981. Urban Operations Research. Prentice Hall, Englewood Cliffs,
NJ.

LAWANIA, A. K. 1990. Personal communication.
LAWLER, E. L. 1964. On scheduling problems with deferral costs. Management Science 11, 280-287.
LAWLER, E. L. 1966. Optimal cycles in doubly weighted linear graphs. In Theory of Graphs: International

Symposium, Dunod, Paris, and Gordon and Breach, New York, pp. 209-213.
LAWLER, E. L. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston,

New York.

References 833

LAWLER, E. L., J. K. LENSTRA, A. H. G. RINNOOY KAN, and D. B. SHMOYS (eds.). 1985. The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, :New York.

LEUNG, J., T. L. MAGNANTI, and V. SINGHAL. 1990. Routing in point to point delivery systems. Trans
portation Science 24, 245-260.

LEVIN, L. A. 1973. Universal sorting problems. Problemy Peredachi Informatsii 9,265-266. (In Russian.)
LEVNER, E. V., and A. S. NEMIROVSKY. 1991. A network flow algorithm for just-in-time project scheduling.

Memorandum COS OR 91-21, Department of Mathematics and Computing Science, Eindhoven Uni
versity of Technology, Eindhoven, The Netherlands.

LIN, T. F. 1986. A system of linear equations related to the transportation problem with application to
probability theory. Discrete Applied Mathematics 14,47-56.

LOB ERMAN, H., and A. WEINBERGER. 1957. Formal procedures for connecting terminals with a minimum
total wire length. Journal of ACM 4,428-437.

LovAsz, L., and M. D. PLUMMER. 1986. Matching Theory. North-Holland, Amsterdam.
LOVE, R. R., and R. R. VEMUGANTI. 1978. The single-plant mold allocation problem with capacity and

changeover restriction. Operations Research 26, 159-165.
LOWE, T. J., R. L. FRANCIS, andE. W. REINHARDT. 1979. A greedy network flow algorithm for a warehouse

leasing problem. AIlE Transactions 11, 170-182.
Luss, H. 1979. A capacity expansion model for two facilities. Naval Research Logistics Quarterly 26,

291-303.
MACHOL, R. E. 1961. An application of the assignment problem. Operations Research 9, 585-586.
MACHOL, R. E. 1970. An application of the assignment problem. Operations Research 18, 745-746.
MAGNANTI, T. L. 1981. Combinatorial optimization and vehicle fleet planning: Perspectives and prospects.

Networks 11, 179-214.
MAGNANTI, T. L. 1984. Models and algorithms for predicting urban traffic equilibria. In Transportation

Planning Models, edited by M. Florian. North-Holland, Amsterdam, pp. 153-186.
MAGNANTI, T. L., P. MIRCHANDANI, and R. VACHANJ. 1991. Modeling and solving the capacitated network

loading problem. Working Paper, Operations Research Center, MIT, Cambridge, MA.
MAGNANTI, T. L., J. SHAPIRO, and M. WAGNER. 1976. Generalized linear programming solves the dual.

Management Science 22, 1195-1203.
MAGNANTI, T. L., L. A. WOLSEY, and R. T. WONG. 1992. Optimal Trees. To appear in Handbooks in

Operations Research and Management Science. Vol. 6: Networks, edited by M. Ball, T. L. Magnanti,
C. L. Monma, and G. L. Nemhauser. North-Holland, Amsterdam.

MAGNANTI, T. L., L. A. WOLSEY, and R. T. WONG. 1992. Network design. To appear in Handbooks in
Operations Research and Management Science, Vol. 6: Networks, edited by M. Ball, T. L. Magnanti,
C. L. Monma, and G. L. Nemhauser. North-Holland, Amsterdam.

MAGNANTI, T. L., and R. T. WONG. 1984. Network design and transportation planning: Models and
algorithms. Transportation Science 18, 1-55.

MALIK, K., A. K. MITrAL, and S. K. GUPTA. 1989. The k most vital arcs in the shortest path problem.
Operations Research Letters 8, 223-227. Erratum: Same journal 9(1990) 283.

MAMER, J. W., and S. A. SMITH. 1982. Optimizing field repair kits based on job completion rate. Man
agement Science 28, 1328-1334.

MANNE, A. S. 1958. A target-assignment problem. Operations Research 6, 346-351.
MANSOUR, Y., and B. SCHIEBER. 1988. Finding the edge connectivity of directed graphs. Research Report

RC 13556, IBM Thomas J. Watson Research Center, Yorktown Heights, NY.
MARTEL, C. 1982. Preemptive scheduling with release times, deadlines, and due times. Journal of ACM

29, 812-829.
MARTELLO, S., W. R. PULLEYBLANK, P. TOTH, and D. DE WERRA. 1984. Balanced optimization problems.

Operations Research Letters 3, 275-278.
MASON, A. J., and A. B. PHILPOTT. 1988. Pairing stereo speakers using matching algorithms. Asia-Pacific

Journal of Operational Research 5, 101-116.
MATSUMOTO, K., T. NISHIZEKI, and N. SAITO. 1985. An efficient algorithm for finding multicommodity

flows in planar networks. SIAM Journal on Computing 14, 289-302.
MATULA, D. W. 1987. Determining edge connectivity in O(nm). Proceedings of the 28th Symposium on

Foundations of Computer Science, pp. 249-251.
MAXWELL, W. L., and R. C. WILSON. 1981. Dynamic network flow modelling of fixed path material

handling systems. AIlE Transactions 13, 12-21.

834 References

MCGEOCH, C. C. 1986. Experimental Analysis of Algorithms. Unpublished Ph.D. dissertation, Department
of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

MCGEOCH, C. C. 1992. Analysis of algorithms by simulation: Variance reduction techniques and simulation
speedups. Computing Surveys 24, June issue.

MCGINNIS, L. F., and H. L. W. NUTILE. 1978. The project coordinators problem. OMEGA 6, 325-
330.

MEGGIDO, N. 1979. Combinatorial optimization with rational objective functions. Mathematics of Op
erations Research 4, 414-424.

MEGGIDO, N., and A. TAMIR. 1978. An O(n log n) algorithm for a class of matching problems. SIAM
Journal on Computing 7, 154-157.

MEHLHORN, K. 1984. Data Structures and Algorithms, Vol. I: Searching and Sorting. Springer-Verlag,
New York.

MICALI, S., and V. V. VAZIRANI. 1980. An O(vfVl . lEi) algorithm for finding maximum matching in
general graphs. Proceedings of the 21 st Annual Symposium on the Foundations of Computer Science,
pp. 17-27.

MINIEKA, E. 1978. Optimization Algorithms for Networks and Graphs. Marcel Dekker, New York.
MINOUX, M. 1984. A polynomial algorithm for minimum quadratic cost flow problems. European Journal

of Operational Research 18, 377-387.
MINOUX, M. 1986. Solving integer minimum cost flows with separable convex cost objective polynomially.

Mathematical Programming Study 26, 237-239.
MINOUX, M. 1989. Network synthesis and optimal network design problems: Models, solution methods,

and applications. Networks 19, 313-360.
MINTY, G. J. 1960. Monotone networks. Proceedings of the Royal Society of London 257A, 194-212.
MONMA, C. L., and M. SEGAL. 1982. A primal algorithm for finding minimum-cost flows in capacitated

networks with applications. Bell System Technical Journal 61, 449-468.
MOORE, E. F. 1957. The shortest path through a maze. In Proceedings of the International Symposium

on the Theory of Switching, Part II; The Annals ofthe Computation Laboratory of Harvard University
30, Harvard University Press, pp. 285-292.

MULVEY, J. 1978. Pivot strategies for primal-simplex network codes. Journal of ACM 25,266-270.
MULVEY, J. M. 1979. Strategies in modeling: A personal scheduling example. Interfaces 9, 66-76 .. '
NEMHAUSER, G. L., and L. A. WOLSEY. 1988. Integer and Combinatorial Optimization. Wiley, New

York.
ORLIN, D. 1987. Optimal weapons allocation against layered defenses. Naval Research Logistics Quarterly

34, 605-617.
ORLIN, J. B. 1984. Genuinely polynomial simplex and non-simplex algorithms for the minimum cost flow

problem. Technical Report 1615-84, Sloan School of Management, MIT, Cambridge, MA.
ORLIN, J. B. 1985. On the simplex algorithm for networks and generalized networks. Mathematical Pro-

gramming Study 24, 166-178. ~--

ORLIN, J. B. 1988. A faster strongly polynomial minimum cost flow algorithm. Proceedings of the 20th
ACM Symposium on the Theory of Computing, pp. 377-387. Full paper to appear in Operations
Research.

ORLIN, J. B., and R. K. AHUJA. 1992. New scaling algorithms for the assignment and minimum cycle
mean problems. Mathematical Programming 54,41-56.

ORLIN, J. B., and U. G. ROTHBLUM. 1985. Computing optimal scalings by parametric network algorithms.
Mathematical Programming 32, 1-10.

OSTEEN, R. E., and P. P. LIN. 1974. Picture skeletons based on eccentricities of points of minimum
spanning trees. SIAM Journal on Computing 3, 23-40.

PALLOTIINO, S. 1991. Personal communications.
PAPADIMITRIOU, C. H., and K. STEIGLITZ. 1982. Combinatorial Optimization: Algorithms and Complexity.

Prentice Hall, Englewood Cliffs, NJ.
PAPE, U. 1974. Implementation and efficiency of Moore-algorithms for the shortest route problem. Mathe

matical Programming 7,212-222.
PAPE, U. 1980. Algorithm 562: Shortest path lengths. ACM Transactions on Mathematical Software 6,

450-455.
PHILLIPS, D. T., and A. GARCIA-DIAZ. 1981. Fundamentals of Network Analysis. Prentice Hall, Englewood

Cliffs, NJ.

References 835

PICARD, J. C., and M. QUEYRANNE. 1982. Selected applications of minimum cuts in networks. INFOR
20,394-422.

PICARD, J. C., and H. D. RATLIFF. 1973. Minimal cost cut equivalent networks. Management Science
19, 1087-1092.

PICARD, J. C., and H. D. RATLIFF. 1978. A cut approach to the rectilinear distance facility location problem.
Operations Research 26, 422-433.

PINAR, M. C., and S. A. ZENIOS. 1990. Parallel decomposition of multicommodity network flows using
smooth penalty functions. Technical Report 90-12-06, Department of Decision Sciences, Wharton
School, University of Pennsylvania, Philadelphia, PA.

PINTO, Y., and R. SHAMIR. 1990. Efficient algorithms for minimum cost flow problems with convex costs.
Technical Report, Department of Computer Science, Tel Aviv University, Tel Aviv, Israel.

PLOTKIN, S., and E. TARDos. 1990. Improved dual network simplex. Proceedings of the First ACM-
SIAM Symposium on Discrete Algorithms, pp. 367-376.

POTTS, R. B., and R. M. OLIVER. 1972. Flows in Transportation Networks. Academic Press, New York.
PRAGER, W. 1957. On warehousing problems. Operations Research 5, 504-512.
PRIM, R. C. 1957. Shortest connection networks and some generalizations. Bell System Technical Journal

36, 1389-1401.
RATLIFF, H. D. 1978. Network models for production scheduling problems with convex cost and batch

processing. AlJE Transactions 10, 104-108.
RAVINDRAN, A. 1971. On compact book storage in libraries. Opsearch 8, 245-252.
RECSKI, A. 1988. Matroid Theory and Its Applications. Springer-Verlag, New York.
RHYS, J. M. W. 1970. A selection problem of shared fixed costs and network flows. Management Science

17, 200-207.
ROCK, H. 1980. Scaling techniques for minimal cost network flows. In Discrete Structures and Algorithms.

Edited by V. Page. Carl Hanser, Munich, pp. 181-191.
ROCKAFELLAR, R. T. 1970. Convex Analysis. Princeton University Press, Princeton, NJ.
ROCKAFELLAR, R. T. 1984. Network Flows and Monotropic Optimization. John Wiley & Sons, New York.
ROOHy-LALEH, E. 1980. Improvements to the Theoretical Efficiency of the Network Simplex Method.

Unpublished Ph.D. dissertation, Carleton University, Ottawa, Canada.
ROSENTHAL, R. E. 1981. A nonlinear network flow algorithm for maximization of benefits in a hydroelectric

power system. Operations Research 29, 763-786.
Ross, G. T., and R. M. SOLAND. 1975. A branch and bound algorithm for the generalized assignment

problem. Mathematical Programming 8, 91-103.
ROTH, A. E., U. G. ROTHBLUM, and J. H. VANDE VATE. 1990. Stable matchings, optimal assignments

and linear programming. Rutcor Research Report 23-90, The State University of New Jersey, Rutgers,
NJ.

ROTHFARB, B., N. P. SHEIN, and 1. T. FRISCH. 1968. Common terminal multicommodity flow. Operations
Research 16, 202-205.

SAKAROVITCH, M. 1973. Two commodity network flows and linear programming. Mathematical Pro
gramming 4, 1-20.

SAPOUNTZIS, C. 1984. Allocating blood to hospitals from a central blood bank. European Journal of
Operational Research 16, 157-162.

SCHMIDT, S. R., P. A. JENSEN, andJ. W. BARNES. 1982. An advanced dual incremental network algorithm.
Networks 12, 475-492.

SCHNEIDER, M. H., and S. A. ZENIOS. 1990. A comparative study of algorithms for matrix balancing.
Operations Research 38, 439-455.

SCHNEUR, R. 1991. Scaling algorithms for multicommodity flow problems and network flow problems
with side constraints. Ph.D. dissertation, Department of Civil Engineering, MIT, Cambridge, MA.

SCHNORR, C. P. 1979. Bottlenecks and edge connectivity in unsymmetrical networks. SIAM Journal on
Computing 8, 265-274.

SCHRIJVER, A. 1986. Theory of Linear and Integer Programming. Wiley, New York.

SCHWARTZ, B. L. 1966. Possible winners in partially completed tournaments. SIAM Review 8, 302-308.

SCHWARTZ, M., and T. E. STERN. 1980. Routing techniques used in computer communication networks.
IEEE Transactions on Communications COM-28, 539-552.

836 References

SEGAL, M. 1974. The operator-scheduling problem: A network flow approach. Operations Research 22,
808-823.

SERVI, L. D. 1989. A network flow approach to a satellite scheduling problem. Research Report, GTE
Laboratories, Waltham, MA.

SHAPIRO, J. F. 1979. Mathematical Programming: Structures and Algorithms. Wiley, New York.
SHAPIRO, J. F. 1992. Mathematical programming models and methods for production planning and sched

uling. To appear in Handbooks in Operations Research and Management Science, Vol. 4: Logistics
of Production and Inventory, edited by S. C. Graves, A. H. G. Rinnooy Kan, and P. Zipkin. North
Holland, Amsterdam.

SHEPARDSON, F., and R. E. MARSTEN. 1980. A Lagrangian relaxation algorithm for the two-duty scheduling
problem. Management Science 26, 274-281.

SHIER, D. R. 1982. Testing for homogeneity using minimum spanning trees. The UMAP Journal 3, 273-
283.

SHiLOACH, Y., and U. VISHKIN. 1982. An O(n2 log n) parallel max-flow algorithm. Journal of Algorithms
, 3, 128-146.

SLEATOR, D. D., and R. E. TARJAN. 1983. A data structure for dynamic trees. Journal of Computer and
System Sciences 24, 362-391.

SLUMP, C. H., and J. J. GERBRANDS. 1982. A network flow approach to reconstruction of the left ventricle
from two projections. Computer Graphics and Image Processing 18, 18-36.

SRINIVASAN, V. 1974. A transshipment model for cash management decisions. Management Science 20,
1350-1363.

SRINIVASAN, V. 1979. Network models for estimating brand-specific effects in multiattribute marketing
models. Management Science 25, 11-21.

SRINIVASAN, V., and G. L. THOMPSON. 1972. An operator theory of parametric programming for the
transportation problem. Naval Research Logistics Quarterly 19, 205-252.

SRINIVASAN, V., and G. L. THOMPSON. 1973. Benefit-cost analysis of coding techniques for primal trans
portation algorithm. Journal of ACM 20, 194-213.

STILLINGER, F. H. 1967. Physical clusters, surface tension, and critical phenomenon. Journal of Chemical
Physics 47, 2513-2533.

STOER, J., and C. WITZGALL. 1970. Convexity and Optimiz.ation in Finite Dimensions. Springer-Verlag,
New York.

STONE, H. S. 1977. Multiprocessor scheduling with the aid of network flow algorithms. IEEE Transactions
on Software Engineering 3, 85-93.

SWOVELAND, C. 1971. Decomposition algorithms for the multi-commodity distribution problem. Working
Paper 184, Western Management Science Institute, University of California, Los Angeles, CA.

SYSLO, M. M., N. DEO, and J. S. KOWALIK. 1983. Discrete Optimiz.ation Algorithms. Prentice Hall,
Englewood Cliffs, NJ.

SZADKOWSKI, S. 1970. An approach to machining process optimization. International Journal of Pro
duction Research 9, 371-376.

T ALLURI, K. T. 1991. Issues in the design of survivable networks. Ph.D. dissertation, Operations Research
Center, MIT, Cambridge, MA.

TARDos, E. 1985. A strongly polynomial minimum cost circulation algorithm. Combinatorica 5, 247-255.
TARDos, E. 1986. A strongly polynomial algorithm to solve combinatorial linear programs. Operations

Research 34, 250-256.
TARJAN, R. E. 1982. Sensitivity analysis of minimum spanning trees and shortest path trees. Information

Processing Letters 14, 30-33.
TARJAN, R. E. 1983. Data Structures and Network Algorithms. SIAM, Philadelphia, PA.
T ARJAN, R. E. 1984. A simple version of Karzanov' s blocking flow algorithm. Operations Research Letters

2,265-268.
TARJAN, R. E. 1991. Efficiency of the primal network simplex algorithm for the minimum-cost circulation

problem. Mathematics of Operations Research 16, 272-291.
TOMIZA VA, N. 1972. On some techniques usefulfor solution of transportation network problems. Networks

1, 173-194.
TOMLIN, J. A. 1966. A linear programming model for the assignment of traffic. Proceedings of the 3rd

Conference of the Australian Road Research Board 3, 263-271.

References 837

TRUEMPER, K. 1977. On max flow with gains and pure min-cost flows. SIAM Journal on Applied Math
ematics 32, 450-456.

Tso, M. 1986. Network flow models in image processing. Journal of the Operational Research Society
37,31-34.

Tso, M., P. KLEINSCHMIDT, 1. MITTERREITER, and J. GRAHAM. 1991. An efficient transportation algorithm
for automatic chromosome karotyping. Pattern Recognition Letters 12, II7-126.

TUTTE, W. T. 1971. Introduction to the Theory of Matroids. American Elsevier, New York.
VAIDYA, P. M. 1989. Speeding up linear programming using fast matrix mUltiplication. Proceedings of

the 30th Annual Symposium on the Foundations of Computer Science, pp. 332-337.
VAN SLYKE, R., and H. FRANK. 1972. Network reliability analysis: Part 1. Networks 1,279-290.
VAZIRANI, V. V. 1989. A theory of alternating paths and blossoms for proving correctness of the

0(n Il2 m) general graph matching algorithm. Technical Report 89-1035, Department of Computer
Science, Cornell University, Ithaca, NY.

VEINOTT, A. F., and O. B. DANTZIG. 1968. Integer extreme points. SIAM Review 10, 371-372.
VEINOTT, A. F., and H. M. WAGNER. 1962. Optimal capacity scheduling: Parts I and II. Operations

Research 10, 518-547.
VOLGENANT, A. 1989. A Lagrangian approach to the degree-constrained minimum spanning tree problem.

European Journal of Operational Research 39,325-331.
VON RANDOW, R. 1982. Integer Programming and Related Areas: A Classified Bibliography 1978-1981.

Lecture Notes in Economics and Mathematical Systems, Vol. 197. Springer-Verlag, Berlin.
VON RANDOW, R. 1985. Integer Programming and Related Areas: A Classified Bibliography 1981-1984.

Lecture Notes in Economics and Mathematical Systems, Vol. 243. Springer-Verlag, Berlin.
WAGNER, R. A. 1976. A shortest path algorithm for edge-sparse graphs. Journal of ACM 23,50-57.
WAGNER, D. K. 1990. Disjoint (s, f)-cuts in a network. Networks 20, 361-371.
WALLACHER, C., and U. T. ZIMMERMANN. 1991. A combinatorial interior point method for network flow

problems. Presented at the 14th International Symposium on Mathematical Programming, Amster
dam, The Netherlands.

WARSHALL, S. 1962. A theorem on boolean matrices. Journal of ACM 9, II-12.
WATERMAN, M. S. 1988. Mathematical Methods for DNA Sequences. CRC Press, Boca Raton, FL.
WEINTRAUB, A. 1974. A primal algorithm to solve network flow problems with convex costs. Management

Science 21, 87-97.
WELSH, D. J. A. 1976. Matroid Theory. Academic Press, New York.
WHrrE, L. S. 1969. Shortest route models for the allocation of inspection effort on a production line.

Management Science 15, 249-259.
WHITE, W. W. 1972. Dynamic transshipment networks: An algorithm and its application to the distribution

of empty containers. Networks 2, 211-230.
WHITING, P. D., and J. A. HILLIER. 1960. A method for finding the shortest route through a road network.

Operations Research Quarterly 11, 37-40.
WHITNEY, H. 1935. On the abstract properties of linear dependence. American Journal of Mathematics

57, 509-533.
WINSTON, W. L. 1991. Operations Research: Applications and Algorithms. PWS-Kent, Boston, MA.
WITZGALL, C., and C. T. ZAHN. 1965. Modification of Edmonds maximum matching algorithm. Journal

of Research of the National Bureau of Standards 69B, 91-98.
WONG, R. T. 1980. Integer programming formulations of the traveling salesman problem. Proceedings of

the 1980 IEEE International Conference on Circuits and Computers, pp. 149-152.
WRIGHT, J. W. 1975. Reallocation of housing by use of network analysis. Operational Research Quarterly

26, 253-258.
Y AO, A. 1975. An 0(1 E 1 log log 1 V I) algorithm for finding minimum spanning trees. Information Pro

cessing Letters 4, 21-23.
YOUNG, N. E., R. E. TARJAN, and J. B. ORLIN. 1990. Faster parametric shortest path and minimum

balance algorithms. Working Paper 3112-90-MS, Sloan School of Management, MIT, Cambridge,
MA.

ZADEH, N. 1973a. A bad network problem for the simplex method and other minimum cost flow algorithms.
Mathematical Programming 5, 255-266.

ZADEH, N. 1973b. More pathological examples for network flow problems. Mathematical Programming
5, 217-224.

838 References

ZADEH, N. 1979. Near equivalence of network flow algorithms. Technical Report 26, Department of
Operations Research, Stanford University, Stanford, CA.

ZAHN, C. T. 1971. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans
actions on Computing C20, 68-86.

ZAKI, H. 1990. A comparison of two algorithms for the assignment problem. Technical Report ORL
90-002, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana
Champaign, Urbana, IL.

ZANGWILL, W. I. 1969. A backlogging model and a multi-echelon model of a dynamic economic lot size
production system: A network approach. Management Science 15, 506-527.

ZAWACK, D. J., and G. L. THOMPSON. 1987. A dynamic space-time network flow model for city traffic
congestion. Transportation Science 21, 153-162.

ZENIOS, S. A., and J. M. MULVEY. 1986. Relaxation techniques for strictly convex network problems.
Annals of Operations Research 5, 517-538.

References 839

INDEX

I-forest, 541
I-tree, 541
3-cover problem, 794-95
~-residual network, 211-12,

557-58
~-scaling phase, 211, 238, 360,

373,557-60
E-optimality conditions, 363

A* algorithm, 130
Active node, 224
Acyclic networks, 51

applications of, 368-69, 444
definition, 27
determination of, 77-79
properties, 51

Adjacency lists, 25, 34-35,46
Adjacency matrix representations,

33-34,46
Admissible arcs, 74, 210, 364
Admissible networks, 324, 368
Admissible paths, 210
Aircraft assignment, 570
Airline scheduling problem, 204
Algorithms

animation, 714-15
bad,54
easy, 788
efficient, 54, 788
good,54

All pairs label correcting
algorithms, 146-50

All-pairs minimum value cut
problem, 277-86

All-pairs shortest path problem,
144-50, 155-56

Allocating contractors to public
works, 345

Allocating receivers to
transmitters, 454

Alternating paths, 476
Alternating tree, 479-80
Amortized complexity, 63-65
Analog solution of shortest paths,

96

840

Applications
of convex cost flows, 562
of generalized flow problems,

592
of maximum flow problem,

197-98
of matchings and assignments,

501
of minimum cost flow problem,

342-44
of minimum cut problem,

197-98
of minimum spanning trees, 536
of multi commodity flow

problems, 685-86
of shortest path problem,

123-24
Applications of network models

in computer science and
communication systems, 757

in defense, 757
in distribution and

transportation, 759
in engineering, 756
in management science, 757
in manufacturing, production

and inventory planning, 756
in physical and medical

sciences, 757
in scheduling, 757
in social sciences and public

policy, 758
Approximate optimality, 362-63
Approximating piecewise linear

functions, 98-99, 131
Arborescence, 511
Arc adjacency list, 25, 34
Arc coloring problem, 504
Arc connectivity, 273-74, 292-93
Arc reversal transformation, 40
Arc routing problems, 740-44
Arc tolerances, 130-31
Assigning medical school

graduates to hospitals, 465
Assignment problem, 7, 470-73

Assortment of structural steel
beams, 11,21

Asymptotic bottleneck operations,
702-07

Augmented forest structures,
572-90

Augmented tree, 575
Augmenting cycle theorem, 83
Augmenting path algorithm,

180-84,223
Augmenting path theorem, 185,

478
Average-case analysis, 56-57

Backward arc, 26
Balanced assignment problem,

505-06
Balanced nodes, 80, 320
Balanced spanning tree problem,

540
Baseball elimination problem,

258-59, 289
Basic feasible solutions

for generalized flows, 582-83
for linear programs, 805-10
for minimum cost flows, 445
for multicommodity flows,

679-82
Basis property

for generalized flows, 582-83
for minimum cost flows, 442-46

Bellman's equations, 158
Berge's theorem, 508
Bicycles, 587-89
Big n notation, 59-60
Big 0 notation, 63
Bin packing problem, 87
Binary heaps

applications, 116, 525
data structure, 778

Binary search
applications, 88, 152, 791
technique, 72-73

Binomial coefficients, 70

Bipartite matching algorithm,
469-73,478-81

Bipartite networks, 49, 51, 288
applications, 41

-definition, 31
in matching algorithms, 189-91
in maximum flow algorithms,

255-59,286
in minimum cost flow

algorithms, 373, 399-400
in shortest path algorithms, 159
properties, 31, 49, 51

Bit-scaling algorithms
basic approach, 68-70
for maximum flow problem, 246
for minimum cost flow

problem, 400
for shortest path problem, 164

Blocking arc, 418
Blocking flows, 221-22
Blossoms, 483-94
Book storage in libraries, 124-25
Bottleneck assignment problem,

505
Bottleneck operations, 704-07
Bottleneck spanning tree problem,

540
Bottleneck transportation

problem, 355
Branch and bound technique,

602-04
Breadth-first search, 76, 90, 107
Breakeven cycle, 574
Bridges of Konigsberg, 48
Bubble sort algorithm, 86
Buckets, 113-14, 116-21
Building evacuation models,

738-39

Candidate list pivot rule, 417
Capacitated minimum spanning

tree problem, 354, 647
Capacity expansion problems,

562-64, 641
Capacity of a cut, 178
Capacity scaling algorithms

for convex cost flows, 555-60
for maximum flows, 210-12,

220, 240, 246
for minimum cost flows,

360-62, 373-76, 382-95, 400
Caterer problem, 453, 593
Certificate checking algorithm,

793-94
Chinese postman problems

undirected version, 742-44

Index

Circulation problem, 7, 20, 81, 92
feasibility conditions, 195
for multi commodity flows,

687-88
Class N'2Jl, 793-96
Class N'2Jl-complete, 795-801

strong N'2Jl-completeness,
799-800

Class N'2Jl-hard, 796
Class '2Jl, 792-95
Clique, 50
Cluster analysis, 125,515-16
Coloring problems, 49, 504
Column generation approach,

665-70
Comparison of algorithms, 707
Complementary slackness

conditions
for generalized flows, 576-77
for Lagrangian relaxation, 607
for linear programs, 819-20
for minimum cost flows,

309-14,330
for minimum spanning trees,

531-32
for multicommodity flows, 658,

667-68
Complexity analysis, 56-66
Components of a graph, 27
Computational testing of

algorithms, 695-716
Concentrator location problem,

125-26
Concurrent flow problem, 691
Connectivity

algorithms, 273-77, 286, 292-93
arc, 273-74, 292-93
biconnectiVity, 288
definition, 27
node, 273, 293

Constrained maximum flows,
400-01

Constrained minimum cost flows,
460,621-22

Constrained minimum spanning
trees, 631-33

Constrained shortest paths,
599-600, 762, 798

Contractions, 384-85, 492
Conversion of physical entities,

568-69
Convex cost flow problem, 7,

543-65
Convexification, 618, 646
Cost scaling algorithms

for assignment problem, 472-73

for convex cost flows, 565
for minimum cost flows,

362-72,399
Coverage of sporting events, 205
Crew scheduling, 127
Currency conversion problem,

593
Current-arc data structure, 75, 82,

216-17, 365-72
Current forest, 234
Cuts, 27

s-t cuts, 28
Cycle-canceling algorithms

for convex cost flows, 555-56
for minimum cost flows,

317-19,340,376-82
specific implementations, 319,

376-82
Cycle free solutions, 405-09
Cycles, 26
Cyclic scheduling problem, 622
Cyclic staff scheduling problem,

346-47

d-heaps
applications, 116, 525
data structure, 773-78

Dancing problem, 504
Dantzig-Wolfe decomposition,

652-53,671-73 "
Data scaling, 725-28
Data structures

arrays, 766
binary heaps, 778
current-arc, 75
d-heaps, 773-78
Fibonacci heaps, 779-87
linked lists, 767-71

Dating problem, 21
Deficit of a node, 80, 320
Degrees, 25
Degeneracy

in dual network simplex
method, 438-39

in network simplex method,
418,420-25

in simplex method, 814
Deployment of firefighting

companies, 763-64
Deployment of resources, 686
Depth-first search

applications, 410
technique, 76, 90

Depth index, 410
Dequeue, 143
Descendants, 29

841

Designing physical systems,
512-13

Destruction of military targets,
723

Determining an optimal energy
policy, 16

Determining chemical bonds, 466
Dial's implementation

algorithm, 113-14, 129
applications, 122, 700

Dijkstra's algorithm, 108-22
bidirectional implementation,

112-13,132
Dial's implementation, 113-14,

122, 129, 700
Johnson's implementation, 116
original implementation,

108-12, 122
radix heap implementation,

116-22
reiationship to label correcting

algorithms, 141
reverse implementation, 112

Dinie's algorithm, 221-23
Dining problem, 198
Directed cycles, 27
Directed in-trees, 30
Directed networks

defmitions,24-31
representation, 31-38

Directed out-trees, 29
Directed path, 26
Directed walk, 26
Distance labels, 209-10, 221-23
Distribution problems, 298-99,

654
DNA sequence alignment, 728-31
Double scaling algorithm, 373-76,

399
Doubly linked lists

applications, 113,229,372,527
data structure, 769-71, 773

Doubly stochastic matrix, 504
Distributed computing on

computers, 174-75
Dual completion of oil wells, 465
Dual integrality property, 413
Dual networks, 262-65, 291
Duality gap, 614, 620
Duality theory

for linear programming, 816-20
for minimum cost flows,

310-15, 384
for multieommodity flows,

657-58
Dynamic flow problems, 737-40

842

Dynamic lot sizing, 749-52
Dynamic programming

applications, 88, 102, 107, 148,
153, 162, 729-31

technique, 70-72
Dynamic trees

applications, 372
data structure, 265-73,286

Economic order quantity, 748
Electrical networks, 15
Eligible arcs, 416, 585-86

in dual network simplex, 438
in network simplex, 416
in parametric network simplex,

434
Empirical analysis of algorithms,

56-57, 695-716
Employment scheduling, 306
Endpoints, 25
Equipment replacement problem,

306,347
Euler's formula, 261
Euler's theorem, 742-43
Euler's tour, 91
Excess dominator, 237
Excess of a node, 80, 224, 320
Exponential-time algorithms,

60-62
Extreme point solutions, 533
Extreme points, 804-05, 809-10

Factored assignment problems,
505

Factored minimum spanning tree
problem, 539-40

Factored transportation problem,
345

Faculty-course assignment, 454
Feasible flow problem

algorithm, 169-70
applications, 170-74, 194,

258-59,563
feasibility conditions, 196, 205
max and min arc flows, 283-85

Feasibility of perfect matchings,
503

Fibonacci heaps
applications, 116, 122, 525
data structure, 779-87

Fibonacci numbers, 779
FIFO label correcting algorithm,

142-44, 155, 159, 429, 700
FIFO preflow-push algorithm,

231-32, 696
Flow across a cut, 179

Flow bound constraints, 5
Flow decomposition.

applications of, 92, 183-84,
188-90, 228, 308, 398, 470,
596-97, 666, 741, 743

theory, 79-83
Flow property, 388
Flowers, 483
Floyd-Warshall algorithm,

147-50, 156, 162
Flyaway kit problem, 724-25
Forest, 28-29, 49
Forest scheduling problem, 22
Forward arc, 26
Forward star representation,

35-37,46
Fractional b-matching problem,

354
Fundamental cuts, 30
Fundamental cycles, 30

Gainy are, 8, 568, 574
Gainy cycle, 574
Generalized assignment problem,

639-40
Generalized flow problems, 8,

566-97,800,596
Generalized upper bounding

simplex method, 666-67
Geometric improvement approach

applications, 211, 377
basic ideas, 67-68

Good algorithm, 54
Greedy algorithm, 528-30, 541

Hamiltonian cycle problem,
794-95

Hamiltonian path problem, 797
Hard problems, 789
Head nodes, 25
Heaps, 773-87
Hungarian algorithm, 471-72

Imbalance of a node, 80, 320
Imbalance property, 388
Incidence matrix, 5, 32-33, 46
Incoming arc, 25
Indegree, 25
Independent arcs, 190, 205
Independent nodes, 50
Insights into 1llgorithms, 709-11
Inspection of a production line,

99-100
Instance of a problem, 56
Integer programming, 531-33,

598-648, 794-95, 799

Index

Integrality assumption, 6
Integrality property

for Lagrangian relaxation,
619-20

for maximum flows, 186
for minimum cost flows, 318,

413, 415, 447-49
Isomorphic graphs, 49, 790

Just-in-time scheduling, 734-35

Karyotyping of chromosomes, 731
Kilter diagram, 327
Kilter number, 327-31
Knapsack problem, 71-72, 88,

100-02, 127, 131, 697
Knight's tour problem, 89
Kruskal's algorithm, 520-23,

530-34

Label correcting algorithms,
136-65

and network simplex algorithm,
427-28

dequeue implementation, 143,
155, 161

FIFO implementation, 142-44,
155, 159,317

for finding negative cycles,
143-44, 159

generic implementation,
136-41, 155, 159, 161

Labeling algorithm, 70, 184-87,
240, 252-55, 274, 700

pathological example, 205-06
Lagrangian decomposition,

647-48
Lagrangian multiplier problem,

607-15
Lagrangian relaxation, 598-648

for minimum cost flows, 332
for multicommodity flows,

660-65
Land management, 571-72
Layered networks, 88, 221-23
Leaving arc rule, 423
Leveling mountainous terrain, 12
Linear programming, 802-20

and assignment problem, 471
and convex cost flows, 552-53
and generalized flow, 567-68,

582-83
and greedy algorithm, 541
and Lagrangian relaxation,

615-20, 638-39
and m:atroids, 541-42

Index

and maximum flows, 168
and minimum cost flows, 296,

304-06, 310-15
and minimum ratio cycle

problem, 163-64
and multicommodity flows,

649-50,666
and primal-dual algorithm, 326
and shortest paths, 94, 136
and spanning trees, 530-33

Linear programs
canocial form, 806
standard form, 803
symmetric form, 817
with consecutive l's in

columns, 304-06, 314-15, 344
with consecutive l's in rows,

314-15, 346-47, 737, 748
Linked lists

applications, 34-35, 233, 239,
521, 527

data structure, 767-69, 773
Loading of a hopping airplane,

302
Locating objects in space, 466
Location and layout problems,

163,640-41,744-48,764
Longest path problem, 91, 102,

129,797
Loops, 25
Lossy arc, 8, 568
Lossy cycle, 574

Machine loading problem, 569-70
Machine scheduling, 172-74,

303-04,468-69
Mass balanc.s: constraints, 5
Matching problems, 9, 461-509

and Chinese Postman, 743-44
and maximum flows, 189-191
and shortest paths, 494-98
three-dimensional, 800

Matrix balancing, 548-49
Matrix manipulation algorithms,

150
Matrix rounding problems,

171-72, 454-55
Matroids, 528-30, 533, 541-42
Max-flow min-cut theorem,

184-85
combinatorial implications,

188-191
for nonzero lower bounds, 193
linear programming proof, 432

Maximum capacity augmenting
path algorithm, 210-11

Maximum capacity path problem,
129

Maximum cut problem, 800
Maximum dynamic flow problem,

738
Maximum flow problem, 6,

69-70, 166-293
Maximum flows

and minimum cost flows,
324-26, 339

and primal-dual algorithm,
324-26

in bipartite networks, 255-59
in planar networks, 260-65
in unit capacity networks,

252-55
with nonzero lower bounds,

191-96
Maximum preflow, 245
Maximum spanning tree problem,

278, 519-20
Maximum weight closure, 719-25
Maze problem, 89
Measuring homogeneity of

bimetallic objects, 14
Min-cost max-flow problem, 352
Min-value max-cut theorem, 202
Minimax path problem, 513-14
Minimax transportation problem,

199 "
Minimum cost flow problem, 4-5,

52, 83, 294-460
Minimum cost flows

and assignment problem,
470-73

and convex cost flow problem,
552-53

and maximum flow problem,
324-26,339

and shortest path problem, 316,
320-32, 360-62, 382-94

Minimum cut problem, 167, 178,
184-85, 204

all-pairs, 277-86
applications, 174-76,283-85
in planar networks, 262-63
with fewest arcs, 247

Minimum disconnecting set,
273-77

Minimum flow problem
algorithm, 202
min-value max-cut theorem, 202

Minimum mean cycle problem,
152-54

application to data scaling, 728
application to minimum cost

flow algorithms, 319, 376-82

843

Minimum ratio cycle problem,
150-54, 163-64

Minimum ratio rule, 812
Minimumratio spanning trees,

541
Minimum spanning trees, 8,

510-42
and all-pairs min cut problem,

278
applications, 536

Minimum value problem. See
Minimum flow problem

Mold allocation, 754
Money-changing problem, 125
More-for-less paradox, 354
Multiarcs, 25
Multicommodity flows, 8, 649-94

funnel problem, 688-89
in two-commodity networks,

690
in undirected networks, 689-90
maximum flow version, 690-91
multisink problem, 688
multisource problem, 688

Multidrop terminal layout
problem, 632

Multipliers of arcs, 568
Multipliers of paths and cycles,

573-74

Negative cycle detection
algorithms, 136, 143-44, 149,

162, 428, 495
applications, 103-04, 151-52,

317,727
Negative cycle optimality

conditions, 307-08
Negative cycle optimality

theorem, 83
Network connectivity, 188-91,

273-77
Network decomposition

algorithms, 79-83
Network design problems,

627-28,642
Network flow books, 19-20
Network interdiction problem,

763
Network reliability testing, 259
Network representations, 31-38,

46
Network simplex algorithms,

402-60
degeneracy in, 421
empirical analysis, 702-12

Network transformations, 38-46

844

Network types
communication, 10,654
computer, 10, 654
energy, 569
financial, 568
hydraulic, 10
mechanical, 10
transportation, 10

Node-arc incidence matrix, 5, 32,
46,50,449

Node adjacency list, 25, 34
Node capacities, 42, 203
N ode coloring, 49
Node connectivity, 273, 279
Node cover, 50, 189-91
Node-node adjacency matrix, 33,

46, 50, 51
Node potentials, 308
N ode splitting transformation

applications, 189,497-98
technique, 41

Nonbipartite matching problem,
475-494, 498

Nonsaturating push, 225, 364
Nontree arcs, 30
NP-completeness, 788-801
Nurse scheduling problem, 453
Nurse staff scheduling, 198

Open pit mining, 721-23
Operator scheduling, 628-31
Optimal capacity scheduling, 306
Optimal depletion of inventory,

468
Optimal message passing, 513
Optimality conditions

for all-pairs shortest paths, 146
for generalized flows, 576-77,

597
for Lagrangian relaxation, 606
for minimum cost flows,

306-10, 408-09
for minimum spanning trees,

516-19, 531-32
for multicommodity flows,

657-58, 667-68
for shortest paths, 135-36,

306-07
Out-of-kilter algorithm, 326-31,

340
Outdegree, 25
Outgoing arc, 25

Painted network theorem, 203
Pairing stereo speakers, 14
Paragraph problem, 21

Parallel arcs, 25, 37-38, 128, 203
representation, 37-38

Parameter balancing
applications, 87, 116, 525
technique, 65-66, 87

Parametric analysis
for maximum flows, 248
for minimum cost flows, 459-60
for minimum spanning trees,

540
for shortest paths, 164-65,

433-37
Parking model, 762-63
Partition problem, 794-95
Partitioning algorithm

for shortest paths, 160-61
Partitioning methods

for multicommodity flows, 653,
678-88

Passenger routing, 454
Path and cycle flow, 80-83
Path flow formulation, 665-66
Path optimality conditions, 519
Path problems

maximum capacity, 129, 162
maximum multiplier, 160, 162
maximum reliability, 130
minimax, 513-14
with additional constraints, 131
with resource constraints, 131
with turn penalties, 130

Pathological examples, 161,
205-06

Paths, 26
Penalty approach, 692-93
Perfect b-matching, 496-97
Performance measures, 714
Permanently labeled node, 109
Permutation matrix, 504
Personnel assignment, 21, 463-64

bipartite, 463-64
nonbipartite, 464-65

Personnel planning problem, 126
Perturbation

and strongly feasible solutions,
457

for generalized flows, 590
for minimum cost flows, 457-59

Phasing out capital equipment,
345

Physical networks, 9-10
Pivot operations

for dual network simplex
method, 434-35

for linear programming, 811-13
for network simplex method,

418-20,711

Index

Pivot rules
for generalized flows, 585
for minimum cost flows, 416-17
for shortest paths, 428-29

Planar networks, 260-65, 286-87
Police patrol problem, 21-22
Policemen's problem, 509
Polyhedron, 804:....05
Polynomial reductions, 790-92
Polynomial-time algorithms,

60-62
pseudopolynomial, 61
strongly polynomial, 61

Polynomial-time algorithms for
all-pairs shortest paths, 147-48
assignment problem, 470-73
bipartite matchings, 469-70,

478-80
convex cost flows, 556-60
maximum flows, 210-40
minimum cost flows, 360-95
non bipartite matchings, 475-94
shortest paths, 108-112,

115-22, 141-43,429-30
spanning trees, 520-28

Polynomial transformations,
792-801

Polynomially equivalent, 791
Potential functions

applications, 165,228-29, 232,
235-37, 239, 257-58, 369-70,
430, 782, 784

technique, 63-65
Potential of a node, 43
Practical improvements

for cost scaling algorithms,
365-66

for Dial's implementation, 129
for preflow-push algorithms,

229-30
for shortest augmenting path

algorithm, 219-20
for successive shortest path

algorithm, 323-24
Predecessor graph, 137-39
Predecessor index, 26, 29, 410
Preflow, 224
Preflow push· algorithms

empirical testing, 700
excess scaling implementation,

237-40,247
FIFO implementation, 230-34,

240,246
for bipartite networks, 255-58,

290
generic version, 223-31, 240,

255-58

Index

highest label implementation,
233-36, 240, 246

Preorder travers.al, 76
Price-directive decomposition, 652
Prim's algorithm, 523-26, 534
Primal-dual algorithm, 324-26,

340
Priority queue, 773-87
Problem of queens, 50
Problem of representatives,

170-71
Problem size, 57-58
Production-inventory planning

models, 748-53
Production planning, 633-35
Production property, 750
Production scheduling problem,

593
Project assignment, 453-54
Project management, 732-37
Pseudoflow, 320
Pseudo polynomial-time

algorithms, 113-14, 140, 143,
136, 317-37, 554-56

Pushes, 223

Queues
applications, 142, 231
data structure, 772-73

Racial balancing of schools, 17,
301-02,347,563

Radix heaps, 116-21
Reallocation of housing, 10, 163
Recognition problems, 790-91
Reconstructing left ventricle from

X-ray projections, 299-300
Reduced cost optimality

conditions, 308-09
Reduced costs, 43-44, 308, 808
Reducing data storage, 514
Relabel operation, 213, 225, 364
Relaxation algorithm, 332-37,

340,472
Repeated shortest path algorithm,

144-45, 156
Reporting computational

experiments, 714
Representative operation counts,

698-716
Residual capacity, 44
Residual capacity of a cut, 178
Residual networks, 44-46, 51, 83,

177, 298, 554-55
Resource-directive

decomposition, 652, 674-78

Reverse search algorithm, 76
Reverse star representation,

35-37
Revised simplex method, 813-14
Rewiring of typewriters, 13
Rooted trees, 29
Routing multiple commodities,

653
Running time of algorithms, 58-66
Ryser's theorem, 248-49

s-t cut, 177-78
s-t planar networks, 263-65
Saturating push, 225, 364
Scaling algorithms

basic ideas, 68-70
for convex cost flows, 556-61
for maximum flows, 210-12,

237-39, 246
for minimum cost flows,

360-94,400
for shortest paths, 164

Scheduling problems, 172-74,
303-04, 468-69

School bus driver assignment, 501
Search algorithms

basic approaches, 73-79
Search trees, 74, 76, 90, 107,479
Seat-sharing problem, 21
Selecting freight terminals, 722
Semi-bipartite networks, 132, 290
Sensitivity analysis

for maximum flows, 204
for minimum cost flows,

337-39, 353, 439-40
for minimum spanning trees,

539
for shortest paths, 159-60, 163

Separable functions, 544
Separator tree, 279-83
Sequencial search algorithm,

151-52
Sharp distance labels, 160
Shortest augmenting path

algorithm, 213-23, 240,
252-55, 265-73

Shortest path tree, 106-07, 139
Shortest paths, 6, 93-165

application to min cost flows,
262-63, 320-56, 360-62,
382-94

enumerating all paths, 160
in acyclic networks, 107-08
in bipartite networks, 132, 159
in layered networks, 88

Similarity assumption, 60,
799-800

845

Simplex method,
for bounded variables, 814-15
for generalized flows, 583-89
for linear programming, 810-19
for maximum flows, 430-33
for minimum cost flows, 415-21
for shortest paths, 425-30
generalized upper bounding,

666-67
revised, 813-14

Simplex multipliers
for linear programs, 808
for minimum cost flows, 445-46

Ski instructor's problem, 501
Small-capacity networks, 289
SoUin's algorithm, 526-28, 534
Solving systems of equations, 199
Sorting, 86, 521, 774, 778
Spanning subgraph, 26
Spanning tree, 30
Spanning tree solutions, 405-09
Spanning tree structures, 408-09
Stable marriage problem, 473-75
Stable matchings, 475
Stable university admissions, 507
Stacks

applications, 64-65
Statistical security of data, 199,

283-85
Steiner tree problem, 642
Stick percolation problem, 550-51
Storage policy for libraries,

344-45
Strong connectivity

algorithm, 77
definition, 27

Strong duality theorem
for linear programs, 818-19
for minimum cost flows, 312-13

Strongly feasible solutions,
421-25, 432, 457, 590

and perturbation, 457
Subgradient optimization

application to multicommodity
flows, 663-65

technique, 611-15
Subgraph, 26
Subset systems, 528-30
Subtour breaking constraints, 626

846

Successive shortest path
algorithm

applications, 360, 437, 471, 556,
639,701

basic approach, 320-24, 340
Succint certificate, 794
Symmetric difference, 477
System of difference constraints,

103-05, 127,726-28

Tail nodes, 25
Tanker scheduling problems,

176-77,347,656
Telephone operator scheduling,

105-06, 127
Teleprocessing design problem,

632
Temporarily labeled nodes, 109
Terminal assignment problem, 346
Thread index, 410-14, 443-46
Threshold algorithm, 161
Time complexity function, 58
Time-cost trade-off problem,

735-37
Time-expanded networks, 737-40
Topological ordering

algorithm, 77-79
applications, 11, 107-08,

371-72
Totally unimodular matrices,

,448-49
Tournament problem, 12
Traffic flows, 547
Tramp steamer problem, 103, 150
Transfers in communication

networks, 547-48
Transformations

for removing arc capacities, 40
for removing nonzero lower

bounds, 39
for removing undirected arcs,

39
node splitting, 41-43

Transitive closure, 90, 91
Transportation problem, 7, 9, 20,

294
Travelling salesman problem. See

TSP

Tree arcs, 30
Tree indices, 410-14, 419, 576
Tree of shortest paths, 106, 139
Trees, 28-30
Triangularity property, 443-47
Triple operation, 147
Truck scheduling problem, 763
TSP, 623-25, 643-44, 790-91,

794,797

Uncapacitated networks, 40-41
Undirected networks

definitions, 25, 31
representations, 38
transformation, 39

Unimodular matrices, 447-49
Unimodularity property, 447-49
Union-find operation, 522
Unique label property, 481-82
U nit capacity networks

and bipartite matchings, 469-70
and minimum cost flows, 399
and network connectivity,

188-91, 274
maximum flows in, 252-55,

285, 289
Unstable roommates, 507

Validity conditions, 209
Variable splitting, 630
Variational principle, 16, 547
Vehicle fleet planning, 344
Vehicle routing, 625-27, 645-47
Virtual running times, 707-09
Vital arcs, 128-29, 244

Walk,26
Warehousing problem, 570, 655
Wave algorithm, 246
Weak duality theorem

for Lagrangian relaxation, 606
for linear programs, 817-18
for minimum cost flow, 312

Wine division problem, 90
Worst-case complexity, 56-66

Zero length cycle, 151, 160
Zoned warehousing, 345

Index

	ebooksclub.org__Network_Flows__Theory__Algorithms__and_Applications_part1
	Cover
	NETWORK FLOWS: Theory, Algorithms, and Applications
	Copyright
	CONTENTS
	PREFACE
	1 INTRODUCTION,����������������������
	1.1 Introduction,������������������������
	1.2 Network Flow Problems,���������������������������������
	1.3 Applications,������������������������
	1.4 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	2 PATHS, TREES, AND CYCLES,����������������������������������
	2.1 Introduction,������������������������
	2.2 Notation and Definitions,������������������������������������
	2.3 Network Representations,�����������������������������������
	2.4 Network Transformations,�����������������������������������
	2.5 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	3 ALGORITHM DESIGN AND ANALYSIS,
	3.1 Introduction,������������������������
	3.2 Complexity Analysis,�������������������������������
	3.3 Developing Polynomial-Time Algorithms,���
	3.4 Search Algorithms,�����������������������������
	3.5 Flow Decomposition Algorithms,���
	3.6 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	4 SHORTEST PATHS: LABEL-SETTING ALGORITHMS,
	4.1 Introduction,������������������������
	4.2 Applications,������������������������
	4.3 Tree of Shortest Paths,����������������������������������
	4.4 Shortest Path Problems in Acyclic Networks,��
	4.5 Dijkstra's Algorithm,��������������������������������
	4.6 Dial's Implementation,���������������������������������
	4.7 Heap Implementations,��������������������������������
	4.8 Radix Heap Implementation,�������������������������������������
	4.9 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	5 SHORTEST PATHS: LABEL-CORRECTING ALGORITHMS,
	5.1 Introduction,������������������������
	5.2 Optimality Conditions,���������������������������������
	5.3 Generic Label-Correcting Algorithms,���
	5.4 Special Implementations of the Modified Label-Correcting Algorithm,��
	5.5 Detecting Negative Cycles,�������������������������������������
	5.6 All-Pairs Shortest Path Problem,���
	5.7 Minimum Cost-to-Time Ratio Cycle Problem,��
	5.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	6 MAXIMUM FLOWS: BASIC IDEAS,
	6.1 Introduction,������������������������
	6.2 Applications,������������������������
	6.3 Flows and Cuts,��������������������������
	6.4 Generic Augmenting Path Algorithm,���
	6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem,���
	6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem,��
	6.7 Flows with Lower Bounds,�����������������������������������
	6.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	7 MAXIMUM FLOWS: POLYNOMIAL ALGORITHM
	7.1 Introduction,������������������������
	7.2 Distance Labels,���������������������������
	7.3 Capacity Scaling Algorithm,��������������������������������������
	7.4 Shortest Augmenting Path Algorithm,��
	7.5 Distance Labels and Layered Networks,��
	7.6 Generic Preflow-Push Algorithm,��
	7.7 FIFO Preflow-Push Algorithm,���������������������������������������
	7.8 Highest-Label Preflow-Push Algorithm,��
	7.9 Excess Scaling Algorithm,������������������������������������
	7.10 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	8 MAXIMUM FLOWS: ADDITIONAL TOPICS,
	8.1 Introduction,������������������������
	8.2 Flows in Unit Capacity Networks,���
	8.3 Flows in Bipartite Networks,���������������������������������������
	8.4 Flows in Planar Undirected Networks,���
	8.5 Dynamic Tree Implementations,��
	8.6 Network Connectivity,��������������������������������
	8.7 All-Pairs Minimum Value Cut Problem,���
	8.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	9 MINIMUM COST FLOWS: BASIC ALGORITHMS,
	9.1 Introduction,
	9.2 Applications,������������������������
	9.3 Optimality Conditions,���������������������������������
	9.4 Minimum Cost Flow Duality,�������������������������������������
	9.5 Relating Optimal Flows to Optimal Node Potentials,���
	9.6 Cycle-Canceling Algorithm and the Integrality Property,��
	9.7 Successive Shortest Path Algorithm,��
	9.8 Primal-Dual Algorithm,���������������������������������
	9.9 Out-of-Kilter Algorithm,�����������������������������������
	9.10 Relaxation Algorithm,���������������������������������
	9.11 Sensitivity Analysis,���������������������������������
	9.12 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	10 MINIMUM COST FLOWS: POLYNOMIAL ALGORITHMS,
	10.1 Introduction,�������������������������
	10.2 Capacity Scaling Algorithm,���������������������������������������
	10.3 Cost Scaling Algorithm,�����������������������������������
	10.4 Double Scaling Algorithm,�������������������������������������
	10.5 Minimum Mean Cycle-Canceling Algorithm,���
	10.6 Repeated Capacity Scaling Algorithm,��
	10.7 Enhanced Capacity Scaling Algorithm,��
	10.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	11 MINIMUM COST FLOWS: NETWORK SIMPLEX ALGORITHMS,
	11.1 Introduction,�������������������������
	11.2 Cycle Free and Spanning Tree Solutions,���
	11.3 Maintaining a Spanning Tree Structure,��
	11.4 Computing Node Potentials and Flows,��
	11.5 Network Simplex Algorithm,
	11.6 Strongly Feasible Spanning Trees,���
	11.7 Network Simplex Algorithm for the Shortest Path Problem,��
	11.8 Network Simplex Algorithm for the Maximum Flow Problem,���
	11.9 Related Network Simplex Algorithms,���
	11.10 Sensitivity Analysis,����������������������������������
	11.11 Relationship to Simplex Method,��
	11.12 Unimodularity Property,
	11.13 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	12 ASSIGNMENTS AND MATCHINGS,
	12.1 Introduction,�������������������������
	12.2 Applications,�������������������������
	12.3 Bipartite Cardinality Matching Problem,���
	12.4 Bipartite Weighted Matching Problem,��
	12.S Stable Marriage Problem,������������������������������������
	12.6 Nonbipartite Cardinality Matching Problem,��
	12.7 Matchings and Paths,��������������������������������
	12.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	13 MINIMUM SPANNING TREES,
	13.1 Introduction,�������������������������
	13.2 Applications,�������������������������
	13.3 Optimality Conditions,����������������������������������
	13.4 Kruskal's Algorithm,��������������������������������
	13.S Prim's Algorithm,�����������������������������
	13.6 Sollin's Algorithm,�������������������������������
	13.7 Minimum Spanning Trees and Matroids,��
	13.8 Minimum Spanning Trees and Linear Programming,��
	13.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	14 CONVEX COST FLOWS,
	14.1 Introduction,�������������������������
	14.2 Applications,�������������������������
	14.3 Transformation to a Minimum Cost Flow Problem,��
	14.4 Pseudopolynomial-Time Algorithms,���
	14.5 Polynomial-Time Algorithm,
	14.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	15 GENERALIZED FLOWS,
	15.1 Introduction,
	15.2 Applications,
	15.3 Augmented Forest Structures,��
	15.4 Determining Potentials and Flows for an Augmented Forest Structure,
	15.5 Good Augmented Forests and Linear Programming Bases,
	15.6 Generalized Network Simplex Algorithm,
	15.7 Summary,
	Reference Notes,�����������������������
	Exercises,�����������������

	16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION,
	16.1 Introduction,�������������������������
	16.2 Problem Relaxations and Branch and Bound,���
	16.3 Lagrangian Relaxation Technique,��
	16.4 Lagrangian Relaxation and Linear Programming,���
	16.5 Applications of Lagrangian Relaxation,��
	16.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	17 MULTICOMMODITY FLOWS,
	17.1 Introduction,�������������������������
	17.2 Applications,�������������������������
	17.3 Optimality Conditions,����������������������������������
	17.4 Lagrangian Relaxation,����������������������������������
	17.5 Column Generation Approach,���������������������������������������
	17.6 Dantzig-Wolfe Decomposition,��
	17.7 Resource-Directive Decomposition,���
	17.8 Basis Partitioning,�������������������������������
	17.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	18 COMPUTATIONAL TESTING OF ALGORITHMS,
	18.1 Introduction,�������������������������
	18.2 Representative Operation Counts,��
	18.3 Application to Network Simplex Algorithm,���
	18.4 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	19 ADDITIONAL APPLICATIONS,����������������������������������
	19.1 Introduction,�������������������������
	19.2 Maximum Weight Closure of a Graph,��
	19.3 Data Scaling,�������������������������
	19.4 Science Applications,���������������������������������
	19.5 Project Management,�������������������������������
	19.6 Dynamic Flows,��������������������������
	19.7 Arc Routing Problems,���������������������������������
	19.8 Facility Layout and Location,���
	19.9 Production and Inventory Planning,��
	19.10 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	APPENDIX A: DATA STRUCTURES,
	A.1 Introduction,
	A.2 Elementary Data Structures,��������������������������������������
	A.3 d-Heaps,�������������������
	A.4 Fibonacci Heaps,���������������������������
	Reference Notes,�����������������������

	APPENDIX B: NP-COMPLETENESS,
	B.1 Introduction,
	B.2 Problem Reductions and Transformations,��
	B.3 Problem Classes P, NP, NP-Complete, and NP-Hard,
	B.4 Proving NP-Completeness Results,
	B.5 Concluding Remarks,������������������������������
	Reference Notes,�����������������������

	APPENDIX C: LINEAR PROGRAMMING,
	C.1 Introduction,
	C.2 Graphical Solution Procedure,��
	C.3 Basic Feasible Solutions,������������������������������������
	C.4 Simplex Method,��������������������������
	C.5 Bounded Variable Simplex Method,
	C.6 Linear Programming Duality,��������������������������������������
	Reference Notes,�����������������������

	REFERENCES,
	INDEX,�������������

	ebooksclub.org__Network_Flows__Theory__Algorithms__and_Applications_part2
	Cover
	NETWORK FLOWS: Theory, Algorithms, and Applications
	Copyright
	CONTENTS
	PREFACE
	1 INTRODUCTION,����������������������
	1.1 Introduction,������������������������
	1.2 Network Flow Problems,���������������������������������
	1.3 Applications,������������������������
	1.4 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	2 PATHS, TREES, AND CYCLES,����������������������������������
	2.1 Introduction,������������������������
	2.2 Notation and Definitions,������������������������������������
	2.3 Network Representations,�����������������������������������
	2.4 Network Transformations,�����������������������������������
	2.5 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	3 ALGORITHM DESIGN AND ANALYSIS,
	3.1 Introduction,������������������������
	3.2 Complexity Analysis,�������������������������������
	3.3 Developing Polynomial-Time Algorithms,���
	3.4 Search Algorithms,�����������������������������
	3.5 Flow Decomposition Algorithms,���
	3.6 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	4 SHORTEST PATHS: LABEL-SETTING ALGORITHMS,
	4.1 Introduction,������������������������
	4.2 Applications,������������������������
	4.3 Tree of Shortest Paths,����������������������������������
	4.4 Shortest Path Problems in Acyclic Networks,��
	4.5 Dijkstra's Algorithm,��������������������������������
	4.6 Dial's Implementation,���������������������������������
	4.7 Heap Implementations,��������������������������������
	4.8 Radix Heap Implementation,�������������������������������������
	4.9 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	5 SHORTEST PATHS: LABEL-CORRECTING ALGORITHMS,
	5.1 Introduction,������������������������
	5.2 Optimality Conditions,���������������������������������
	5.3 Generic Label-Correcting Algorithms,���
	5.4 Special Implementations of the Modified Label-Correcting Algorithm,��
	5.5 Detecting Negative Cycles,�������������������������������������
	5.6 All-Pairs Shortest Path Problem,���
	5.7 Minimum Cost-to-Time Ratio Cycle Problem,��
	5.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	6 MAXIMUM FLOWS: BASIC IDEAS,
	6.1 Introduction,������������������������
	6.2 Applications,������������������������
	6.3 Flows and Cuts,��������������������������
	6.4 Generic Augmenting Path Algorithm,���
	6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem,���
	6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem,��
	6.7 Flows with Lower Bounds,�����������������������������������
	6.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	7 MAXIMUM FLOWS: POLYNOMIAL ALGORITHM
	7.1 Introduction,������������������������
	7.2 Distance Labels,���������������������������
	7.3 Capacity Scaling Algorithm,��������������������������������������
	7.4 Shortest Augmenting Path Algorithm,��
	7.5 Distance Labels and Layered Networks,��
	7.6 Generic Preflow-Push Algorithm,��
	7.7 FIFO Preflow-Push Algorithm,���������������������������������������
	7.8 Highest-Label Preflow-Push Algorithm,��
	7.9 Excess Scaling Algorithm,������������������������������������
	7.10 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	8 MAXIMUM FLOWS: ADDITIONAL TOPICS,
	8.1 Introduction,������������������������
	8.2 Flows in Unit Capacity Networks,���
	8.3 Flows in Bipartite Networks,���������������������������������������
	8.4 Flows in Planar Undirected Networks,���
	8.5 Dynamic Tree Implementations,��
	8.6 Network Connectivity,��������������������������������
	8.7 All-Pairs Minimum Value Cut Problem,���
	8.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	9 MINIMUM COST FLOWS: BASIC ALGORITHMS,
	9.1 Introduction,
	9.2 Applications,������������������������
	9.3 Optimality Conditions,���������������������������������
	9.4 Minimum Cost Flow Duality,�������������������������������������
	9.5 Relating Optimal Flows to Optimal Node Potentials,���
	9.6 Cycle-Canceling Algorithm and the Integrality Property,��
	9.7 Successive Shortest Path Algorithm,��
	9.8 Primal-Dual Algorithm,���������������������������������
	9.9 Out-of-Kilter Algorithm,�����������������������������������
	9.10 Relaxation Algorithm,���������������������������������
	9.11 Sensitivity Analysis,���������������������������������
	9.12 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	10 MINIMUM COST FLOWS: POLYNOMIAL ALGORITHMS,
	10.1 Introduction,�������������������������
	10.2 Capacity Scaling Algorithm,���������������������������������������
	10.3 Cost Scaling Algorithm,�����������������������������������
	10.4 Double Scaling Algorithm,�������������������������������������
	10.5 Minimum Mean Cycle-Canceling Algorithm,���
	10.6 Repeated Capacity Scaling Algorithm,��
	10.7 Enhanced Capacity Scaling Algorithm,��
	10.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	11 MINIMUM COST FLOWS: NETWORK SIMPLEX ALGORITHMS,
	11.1 Introduction,�������������������������
	11.2 Cycle Free and Spanning Tree Solutions,���
	11.3 Maintaining a Spanning Tree Structure,��
	11.4 Computing Node Potentials and Flows,��
	11.5 Network Simplex Algorithm,
	11.6 Strongly Feasible Spanning Trees,���
	11.7 Network Simplex Algorithm for the Shortest Path Problem,��
	11.8 Network Simplex Algorithm for the Maximum Flow Problem,���
	11.9 Related Network Simplex Algorithms,���
	11.10 Sensitivity Analysis,����������������������������������
	11.11 Relationship to Simplex Method,��
	11.12 Unimodularity Property,
	11.13 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	12 ASSIGNMENTS AND MATCHINGS,
	12.1 Introduction,�������������������������
	12.2 Applications,�������������������������
	12.3 Bipartite Cardinality Matching Problem,���
	12.4 Bipartite Weighted Matching Problem,��
	12.S Stable Marriage Problem,������������������������������������
	12.6 Nonbipartite Cardinality Matching Problem,��
	12.7 Matchings and Paths,��������������������������������
	12.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	13 MINIMUM SPANNING TREES,
	13.1 Introduction,�������������������������
	13.2 Applications,�������������������������
	13.3 Optimality Conditions,����������������������������������
	13.4 Kruskal's Algorithm,��������������������������������
	13.S Prim's Algorithm,�����������������������������
	13.6 Sollin's Algorithm,�������������������������������
	13.7 Minimum Spanning Trees and Matroids,��
	13.8 Minimum Spanning Trees and Linear Programming,��
	13.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	14 CONVEX COST FLOWS,
	14.1 Introduction,�������������������������
	14.2 Applications,�������������������������
	14.3 Transformation to a Minimum Cost Flow Problem,��
	14.4 Pseudopolynomial-Time Algorithms,���
	14.5 Polynomial-Time Algorithm,
	14.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	15 GENERALIZED FLOWS,
	15.1 Introduction,
	15.2 Applications,
	15.3 Augmented Forest Structures,��
	15.4 Determining Potentials and Flows for an Augmented Forest Structure,
	15.5 Good Augmented Forests and Linear Programming Bases,
	15.6 Generalized Network Simplex Algorithm,
	15.7 Summary,
	Reference Notes,�����������������������
	Exercises,�����������������

	16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION,
	16.1 Introduction,�������������������������
	16.2 Problem Relaxations and Branch and Bound,���
	16.3 Lagrangian Relaxation Technique,��
	16.4 Lagrangian Relaxation and Linear Programming,���
	16.5 Applications of Lagrangian Relaxation,��
	16.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	17 MULTICOMMODITY FLOWS,
	17.1 Introduction,�������������������������
	17.2 Applications,�������������������������
	17.3 Optimality Conditions,����������������������������������
	17.4 Lagrangian Relaxation,����������������������������������
	17.5 Column Generation Approach,���������������������������������������
	17.6 Dantzig-Wolfe Decomposition,��
	17.7 Resource-Directive Decomposition,���
	17.8 Basis Partitioning,�������������������������������
	17.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	18 COMPUTATIONAL TESTING OF ALGORITHMS,
	18.1 Introduction,�������������������������
	18.2 Representative Operation Counts,��
	18.3 Application to Network Simplex Algorithm,���
	18.4 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	19 ADDITIONAL APPLICATIONS,����������������������������������
	19.1 Introduction,�������������������������
	19.2 Maximum Weight Closure of a Graph,��
	19.3 Data Scaling,�������������������������
	19.4 Science Applications,���������������������������������
	19.5 Project Management,�������������������������������
	19.6 Dynamic Flows,��������������������������
	19.7 Arc Routing Problems,���������������������������������
	19.8 Facility Layout and Location,���
	19.9 Production and Inventory Planning,��
	19.10 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	APPENDIX A: DATA STRUCTURES,
	A.1 Introduction,
	A.2 Elementary Data Structures,��������������������������������������
	A.3 d-Heaps,�������������������
	A.4 Fibonacci Heaps,���������������������������
	Reference Notes,�����������������������

	APPENDIX B: NP-COMPLETENESS,
	B.1 Introduction,
	B.2 Problem Reductions and Transformations,��
	B.3 Problem Classes P, NP, NP-Complete, and NP-Hard,
	B.4 Proving NP-Completeness Results,
	B.5 Concluding Remarks,������������������������������
	Reference Notes,�����������������������

	APPENDIX C: LINEAR PROGRAMMING,
	C.1 Introduction,
	C.2 Graphical Solution Procedure,��
	C.3 Basic Feasible Solutions,������������������������������������
	C.4 Simplex Method,��������������������������
	C.5 Bounded Variable Simplex Method,
	C.6 Linear Programming Duality,��������������������������������������
	Reference Notes,�����������������������

	REFERENCES,
	INDEX,�������������

	Binder1.pdf
	ebooksclub.org__Network_Flows__Theory__Algorithms__and_Applications_part3.pdf
	Cover
	NETWORK FLOWS: Theory, Algorithms, and Applications
	Copyright
	CONTENTS
	PREFACE
	1 INTRODUCTION,����������������������
	1.1 Introduction,������������������������
	1.2 Network Flow Problems,���������������������������������
	1.3 Applications,������������������������
	1.4 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	2 PATHS, TREES, AND CYCLES,����������������������������������
	2.1 Introduction,������������������������
	2.2 Notation and Definitions,������������������������������������
	2.3 Network Representations,�����������������������������������
	2.4 Network Transformations,�����������������������������������
	2.5 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	3 ALGORITHM DESIGN AND ANALYSIS,
	3.1 Introduction,������������������������
	3.2 Complexity Analysis,�������������������������������
	3.3 Developing Polynomial-Time Algorithms,���
	3.4 Search Algorithms,�����������������������������
	3.5 Flow Decomposition Algorithms,���
	3.6 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	4 SHORTEST PATHS: LABEL-SETTING ALGORITHMS,
	4.1 Introduction,������������������������
	4.2 Applications,������������������������
	4.3 Tree of Shortest Paths,����������������������������������
	4.4 Shortest Path Problems in Acyclic Networks,��
	4.5 Dijkstra's Algorithm,��������������������������������
	4.6 Dial's Implementation,���������������������������������
	4.7 Heap Implementations,��������������������������������
	4.8 Radix Heap Implementation,�������������������������������������
	4.9 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	5 SHORTEST PATHS: LABEL-CORRECTING ALGORITHMS,
	5.1 Introduction,������������������������
	5.2 Optimality Conditions,���������������������������������
	5.3 Generic Label-Correcting Algorithms,���
	5.4 Special Implementations of the Modified Label-Correcting Algorithm,��
	5.5 Detecting Negative Cycles,�������������������������������������
	5.6 All-Pairs Shortest Path Problem,���
	5.7 Minimum Cost-to-Time Ratio Cycle Problem,��
	5.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	6 MAXIMUM FLOWS: BASIC IDEAS,
	6.1 Introduction,������������������������
	6.2 Applications,������������������������
	6.3 Flows and Cuts,��������������������������
	6.4 Generic Augmenting Path Algorithm,���
	6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem,���
	6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem,��
	6.7 Flows with Lower Bounds,�����������������������������������
	6.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	7 MAXIMUM FLOWS: POLYNOMIAL ALGORITHM
	7.1 Introduction,������������������������
	7.2 Distance Labels,���������������������������
	7.3 Capacity Scaling Algorithm,��������������������������������������
	7.4 Shortest Augmenting Path Algorithm,��
	7.5 Distance Labels and Layered Networks,��
	7.6 Generic Preflow-Push Algorithm,��
	7.7 FIFO Preflow-Push Algorithm,���������������������������������������
	7.8 Highest-Label Preflow-Push Algorithm,��
	7.9 Excess Scaling Algorithm,������������������������������������
	7.10 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	8 MAXIMUM FLOWS: ADDITIONAL TOPICS,
	8.1 Introduction,������������������������
	8.2 Flows in Unit Capacity Networks,���
	8.3 Flows in Bipartite Networks,���������������������������������������
	8.4 Flows in Planar Undirected Networks,���
	8.5 Dynamic Tree Implementations,��
	8.6 Network Connectivity,��������������������������������
	8.7 All-Pairs Minimum Value Cut Problem,���
	8.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	9 MINIMUM COST FLOWS: BASIC ALGORITHMS,
	9.1 Introduction,
	9.2 Applications,������������������������
	9.3 Optimality Conditions,���������������������������������
	9.4 Minimum Cost Flow Duality,�������������������������������������
	9.5 Relating Optimal Flows to Optimal Node Potentials,���
	9.6 Cycle-Canceling Algorithm and the Integrality Property,��
	9.7 Successive Shortest Path Algorithm,��
	9.8 Primal-Dual Algorithm,���������������������������������
	9.9 Out-of-Kilter Algorithm,�����������������������������������
	9.10 Relaxation Algorithm,���������������������������������
	9.11 Sensitivity Analysis,���������������������������������
	9.12 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	10 MINIMUM COST FLOWS: POLYNOMIAL ALGORITHMS,
	10.1 Introduction,�������������������������
	10.2 Capacity Scaling Algorithm,���������������������������������������
	10.3 Cost Scaling Algorithm,�����������������������������������
	10.4 Double Scaling Algorithm,�������������������������������������
	10.5 Minimum Mean Cycle-Canceling Algorithm,���
	10.6 Repeated Capacity Scaling Algorithm,��
	10.7 Enhanced Capacity Scaling Algorithm,��
	10.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	11 MINIMUM COST FLOWS: NETWORK SIMPLEX ALGORITHMS,
	11.1 Introduction,�������������������������
	11.2 Cycle Free and Spanning Tree Solutions,���
	11.3 Maintaining a Spanning Tree Structure,��
	11.4 Computing Node Potentials and Flows,��
	11.5 Network Simplex Algorithm,
	11.6 Strongly Feasible Spanning Trees,���
	11.7 Network Simplex Algorithm for the Shortest Path Problem,��
	11.8 Network Simplex Algorithm for the Maximum Flow Problem,���
	11.9 Related Network Simplex Algorithms,���
	11.10 Sensitivity Analysis,����������������������������������
	11.11 Relationship to Simplex Method,��
	11.12 Unimodularity Property,
	11.13 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	12 ASSIGNMENTS AND MATCHINGS,
	12.1 Introduction,�������������������������
	12.2 Applications,�������������������������
	12.3 Bipartite Cardinality Matching Problem,���
	12.4 Bipartite Weighted Matching Problem,��
	12.S Stable Marriage Problem,������������������������������������
	12.6 Nonbipartite Cardinality Matching Problem,��
	12.7 Matchings and Paths,��������������������������������
	12.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	13 MINIMUM SPANNING TREES,
	13.1 Introduction,�������������������������
	13.2 Applications,�������������������������
	13.3 Optimality Conditions,����������������������������������
	13.4 Kruskal's Algorithm,��������������������������������
	13.S Prim's Algorithm,�����������������������������
	13.6 Sollin's Algorithm,�������������������������������
	13.7 Minimum Spanning Trees and Matroids,��
	13.8 Minimum Spanning Trees and Linear Programming,��
	13.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	14 CONVEX COST FLOWS,
	14.1 Introduction,�������������������������
	14.2 Applications,�������������������������
	14.3 Transformation to a Minimum Cost Flow Problem,��
	14.4 Pseudopolynomial-Time Algorithms,���
	14.5 Polynomial-Time Algorithm,
	14.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	15 GENERALIZED FLOWS,
	15.1 Introduction,
	15.2 Applications,
	15.3 Augmented Forest Structures,��
	15.4 Determining Potentials and Flows for an Augmented Forest Structure,
	15.5 Good Augmented Forests and Linear Programming Bases,
	15.6 Generalized Network Simplex Algorithm,
	15.7 Summary,
	Reference Notes,�����������������������
	Exercises,�����������������

	16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION,
	16.1 Introduction,�������������������������
	16.2 Problem Relaxations and Branch and Bound,���
	16.3 Lagrangian Relaxation Technique,��
	16.4 Lagrangian Relaxation and Linear Programming,���
	16.5 Applications of Lagrangian Relaxation,��
	16.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	17 MULTICOMMODITY FLOWS,
	17.1 Introduction,�������������������������
	17.2 Applications,�������������������������
	17.3 Optimality Conditions,����������������������������������
	17.4 Lagrangian Relaxation,����������������������������������
	17.5 Column Generation Approach,���������������������������������������
	17.6 Dantzig-Wolfe Decomposition,��
	17.7 Resource-Directive Decomposition,���
	17.8 Basis Partitioning,�������������������������������
	17.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	18 COMPUTATIONAL TESTING OF ALGORITHMS,
	18.1 Introduction,�������������������������
	18.2 Representative Operation Counts,��
	18.3 Application to Network Simplex Algorithm,���
	18.4 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	19 ADDITIONAL APPLICATIONS,����������������������������������
	19.1 Introduction,�������������������������
	19.2 Maximum Weight Closure of a Graph,��
	19.3 Data Scaling,�������������������������
	19.4 Science Applications,���������������������������������
	19.5 Project Management,�������������������������������
	19.6 Dynamic Flows,��������������������������
	19.7 Arc Routing Problems,���������������������������������
	19.8 Facility Layout and Location,���
	19.9 Production and Inventory Planning,��
	19.10 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	APPENDIX A: DATA STRUCTURES,
	A.1 Introduction,
	A.2 Elementary Data Structures,��������������������������������������
	A.3 d-Heaps,�������������������
	A.4 Fibonacci Heaps,���������������������������
	Reference Notes,�����������������������

	APPENDIX B: NP-COMPLETENESS,
	B.1 Introduction,
	B.2 Problem Reductions and Transformations,��
	B.3 Problem Classes P, NP, NP-Complete, and NP-Hard,
	B.4 Proving NP-Completeness Results,
	B.5 Concluding Remarks,������������������������������
	Reference Notes,�����������������������

	APPENDIX C: LINEAR PROGRAMMING,
	C.1 Introduction,
	C.2 Graphical Solution Procedure,��
	C.3 Basic Feasible Solutions,������������������������������������
	C.4 Simplex Method,��������������������������
	C.5 Bounded Variable Simplex Method,
	C.6 Linear Programming Duality,��������������������������������������
	Reference Notes,�����������������������

	REFERENCES,
	INDEX,�������������

