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Visualization of Graphs
Lecture 1:

The Graph Visualization Problem

Philipp Kindermann

Part I:
Organizational & Overview
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Books

M. Kaufmann, D. Wagner:
Drawing Graphs: Methods and Models
Springer, 2001

G. Di Battista, P. Eades, R. Tamassia, I. Tollis:
Graph Drawing: Algorithms for the Visualization of Graphs
Prentice Hall, 1998

T. Nishizeki, Md. S. Rahman:
Planar Graph Drawing
World Scientific, 2004

R. Tamassia:
Handbook of Graph Drawing and Visualization
CRC Press, 2013
http://cs.brown.edu/people/rtamassi/gdhandbook/
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What is this course about?
Learning objectives
� Overview of graph visualization
� Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

� Given a graph G, visualize it with a drawing Γ

Here:
� Reducing the visualisation problem to its algorithmic core
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What is this course about?
Topics
� Drawing Trees and Series-Parallel Graphs
� Straight-Line Drawings of Planar Graphs
� Orthogonal Grid Drawings
� Octilinear Drawings for Metro Maps
� Upwards Planar Drawings
� Hierarchical Layouts of Directed Graphs
� Contact Representations
� Visibility Representations
� The Crossing Lemma
� Beyond Planarity
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Why draw graphs?
Graphs are a mathematical representation of

real physical and abstract networks.

Abstract networks Physical networks
� Social networks
� Communication networks
� Phylogenetic networks
� Metabolic networks
� Class/Object Relation Di-

graphs (UML)
� . . .

� Metro systems
� Road networks
� Power grids
� Telecommunication networks
� Integrated circuits
� . . .
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Why draw graphs?
Graphs are a mathematical representation of

real physical and abstract networks.

� People think visually – complex graphs are hard to grasp
without good visualizations!

� Visualizations help with the communication and explorati-
on of networks.

We need algorithms that draw graphs automatically to make
networks more accessible to humans.

� Some graphs are too big to draw them by hand.
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The layout problem?

� Here restricted to the standard representation,
so-called node-link diagrams.

But what is a nice drawing?

Graph Visualization Problem

Graph G = (V, E)
nice drawing Γ of G
� Γ : V → R2, vertex v 7→ point Γ(v)
� Γ : E→ curves in R2, edge {u, v} 7→ simple, open

curve Γ({u, v}) with endpoints Γ(u) und Γ(v)

in:
out:
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Tree of virtues and tree of vices
ca. 1200
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Social networks - family trees

J. Klawitter, T. Mchedlidze, Link: go.uniwue.de/myth-poster Ahnentafel Herzog Ludwig von Württemberg, 1585
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Social network – citation graph

Da Ye, Link: https://go.uniwue.de/citation-graph
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Social network - organisational chart
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Social network - world finance corporation

© Mark Lombardi



15

Transportation network – European high speed railroads

Source: Wiki Commons: Networks of Major High Speed Rail Operators in Europe - CC BY-SA 3.0
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Transportation network – London Underground

Source: Wiki Commons: London Underground full map - CC BY-SA 3.0
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Transportation network – London Underground

Source: Wiki Commons: London Underground Overground DLR Crossrail map - CC BY-SA 4.0
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Transportation network – London Underground
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Bioinformatics – disease interaction

Source: Wiki Commons: Human disease network - CC BY-SA 4.0
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Bioinformatics – molecular metabolic network

Source: Wiki Commons: Citric acid cycle with aconitate 2 - CC BY-SA 3.0 Source: Thiele et al., Nature Biotechnology 31, 419–425 (2013)
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Bioinformatics – phylogenetic trees & networks

Source: Wiki Commons: Phylogenetic network of HVS-I variation - CC BY 4.0
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Technical network – very large-scale integration (VLSI)

Source: Wiki Commons: Diopsis - CC BY-SA 3.0

Source: Pixabay
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Technical network – transistor diagram, wiring
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Technical networks – offshore wind farms

Source: Wiki Commons: Alpha Ventus Windmills - CC BY-SA 3.0
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Technical network – UML diagram

© AWS
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Temporal graph layout – storylines

Source and more: xkcd Comic 657 – xkcd.com/657/
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Large graphs – object mesh
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General graphs – micro-macro layout

Source: Angori et al., ChordLink: A New Hybrid Visualization Model, GD’19 (2019)
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Alternative representations – treemap
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Alternative representations – contact graphs
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Alternative representations – contact graphs

� For more examples see visualcomplexity.com
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that no edges cross each other.

planar embedding:
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vertices around each vertex.
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G = (V, E)
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it can be drawn in such a way
that no edges cross each other.

planar embedding:
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G = (V, E)
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it can be drawn in such a way
that no edges cross each other.

planar embedding:
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vertices around each vertex.
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G is planar:
it can be drawn in such a way
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it can be drawn in such a way
that no edges cross each other.
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it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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3
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G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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3
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Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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A planar graph can have many
planar embeddings.

2
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Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
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Euler’s polyhedra formula.
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G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof.
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G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
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Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒
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Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n? ?
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Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n
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Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 1
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G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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A planar graph can have many
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A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13
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Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒
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Planar Graphs
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G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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A planar graph can have many
planar embeddings.
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3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒ remove 1 edge e
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Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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3→ (4, 1, 2)
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4
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5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒ remove 1 edge e ⇒ m− 1
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G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)
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4
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1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13
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Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.
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4
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1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1
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4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒ remove 1 edge e ⇒ m− 1

e ⇒ c + 1
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Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1
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4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒ remove 1 edge e ⇒ m− 1

e ⇒ c + 1 e ⇒ f + 1
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Properties of Planar Graphs
Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
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3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
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What about
K4 and K2,3?
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V1 V2

K4

K2,3
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3. There is a vertex of degree at most three

What about
K4 and K2,3?



38 - 1
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G simple graph and e = uv ∈ E
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Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx
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if it is obtained by a set of contractions
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(multi-edges are merged)
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Theorem. [Kuratowski 1930]
G planar⇔
neither K5 nor K3,3 minor of G

Observation.
G planar, H ≤ G ⇒ H planar

Kazimierz Kuratowski
Warschau 1896–1980 Warschau
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G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

u
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

u

Ancestor: Vertex on path to root

ancestors(u)
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Ancestor: Vertex on path to root

ancestors(u)
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)



40 - 11

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node



40 - 40

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node
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(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root
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