
1

Visualization of Graphs
Lecture 1:

The Graph Visualization Problem

Philipp Kindermann

Part I:
Organizational & Overview

1

9

10 8

4

6

3

7

2 5

2 31 4 5

2 - 1

Organizational
Lectures: � Pre-recorded videos (as you see here)

2 - 2

Organizational
Lectures: � Pre-recorded videos (as you see here)

� Release date: One week before the lecture

2 - 3

Organizational
Lectures: � Pre-recorded videos (as you see here)

� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton

2 - 4

Organizational
Lectures: � Pre-recorded videos (as you see here)

� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton
� Questions/Tasks in the Videos

2 - 5

Organizational
Lectures:

Tutorials: � One sheet per lecture

� Pre-recorded videos (as you see here)
� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton
� Questions/Tasks in the Videos

2 - 6

Organizational
Lectures:

Tutorials: � One sheet per lecture

� Pre-recorded videos (as you see here)
� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton

Tu Tu TuTu

� Questions/Tasks in the Videos

Tu

2 - 7

Organizational
Lectures:

Tutorials: � One sheet per lecture

� Pre-recorded videos (as you see here)
� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton

R1 D1

R: Release
D: Discussion
H: Hand In

Tu Tu TuTu

� Questions/Tasks in the Videos

Tu

H1

2 - 8

Organizational
Lectures:

Tutorials: � One sheet per lecture

� Pre-recorded videos (as you see here)
� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton

R1 D1
R2 D2

R: Release
D: Discussion
H: Hand In

Tu Tu TuTu

� Questions/Tasks in the Videos

Tu

H1
H2

2 - 9

Organizational
Lectures:

Tutorials: � One sheet per lecture

� Pre-recorded videos (as you see here)
� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton

R1 D1
R2

R3
D2

D3

R: Release
D: Discussion
H: Hand In

Tu Tu TuTu

� Questions/Tasks in the Videos

Tu

H1
H2

H3

2 - 10

Organizational
Lectures:

Tutorials: � One sheet per lecture

� Pre-recorded videos (as you see here)
� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton

R1 D1
R2

R3
D2

D3
R4

R: Release
D: Discussion
H: Hand In

Tu Tu TuTu

� Questions/Tasks in the Videos

Tu

D4
R5

H1
H2

H3

2 - 11

Organizational
Lectures:

Tutorials: � One sheet per lecture

� Pre-recorded videos (as you see here)
� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton

R1 D1
R2

R3
D2

D3
R4

R: Release
D: Discussion
H: Hand In

Tu Tu TuTu

� Questions/Tasks in the Videos

Tu

D4
R5

� Submit solutions online

H1
H2

H3

2 - 12

Organizational
Lectures:

Tutorials: � One sheet per lecture

� Recommend LaTeX (template provided)

� Pre-recorded videos (as you see here)
� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton

R1 D1
R2

R3
D2

D3
R4

R: Release
D: Discussion
H: Hand In

Tu Tu TuTu

� Questions/Tasks in the Videos

Tu

D4
R5

� Submit solutions online

H1
H2

H3

2 - 13

Organizational
Lectures:

Tutorials: � One sheet per lecture

� Recommend LaTeX (template provided)

� Pre-recorded videos (as you see here)
� Release date: One week before the lecture
� Tue 08:30 – 10:00: Questions/Discussion in BigBlueButton

R1 D1
R2

R3
D2

D3
R4

R: Release
D: Discussion
H: Hand In

Tu Tu TuTu

� Questions/Tasks in the Videos

Tu

D4
R5

� Submit solutions online

H1
H2

H3

� Discussion and Solutions in BigBlueButton (Date: ?)

3 - 1

Books

M. Kaufmann, D. Wagner:
Drawing Graphs: Methods and Models
Springer, 2001

G. Di Battista, P. Eades, R. Tamassia, I. Tollis:
Graph Drawing: Algorithms for the Visualization of Graphs
Prentice Hall, 1998

T. Nishizeki, Md. S. Rahman:
Planar Graph Drawing
World Scientific, 2004

R. Tamassia:
Handbook of Graph Drawing and Visualization
CRC Press, 2013
http://cs.brown.edu/people/rtamassi/gdhandbook/

3 - 2

Books

M. Kaufmann, D. Wagner:
Drawing Graphs: Methods and Models
Springer, 2001

G. Di Battista, P. Eades, R. Tamassia, I. Tollis:
Graph Drawing: Algorithms for the Visualization of Graphs
Prentice Hall, 1998

T. Nishizeki, Md. S. Rahman:
Planar Graph Drawing
World Scientific, 2004

R. Tamassia:
Handbook of Graph Drawing and Visualization
CRC Press, 2013
http://cs.brown.edu/people/rtamassi/gdhandbook/

[GD]

[DG]

[PGD]

[HGDV]

4 - 1

What is this course about?
Learning objectives
� Overview of graph visualization
� Improved knowledge of modeling and solving problems via graph algorithms

4 - 2

What is this course about?
Learning objectives
� Overview of graph visualization
� Improved knowledge of modeling and solving problems via graph algorithms

4 - 3

What is this course about?
Learning objectives
� Overview of graph visualization
� Improved knowledge of modeling and solving problems via graph algorithms

4 - 4

What is this course about?
Learning objectives
� Overview of graph visualization
� Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

� Given a graph G, visualize it with a drawing Γ

4 - 5

What is this course about?
Learning objectives
� Overview of graph visualization
� Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

� Given a graph G, visualize it with a drawing Γ

Here:
� Reducing the visualisation problem to its algorithmic core

4 - 6

What is this course about?
Learning objectives
� Overview of graph visualization
� Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

� Given a graph G, visualize it with a drawing Γ

Here:
� Reducing the visualisation problem to its algorithmic core

graph class⇒ layout style⇒ algorithm⇒ analysis

4 - 7

What is this course about?
Learning objectives
� Overview of graph visualization
� Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

� Given a graph G, visualize it with a drawing Γ

Here:
� Reducing the visualisation problem to its algorithmic core

graph class⇒ layout style⇒ algorithm⇒ analysis

� modeling
� data structures

4 - 8

What is this course about?
Learning objectives
� Overview of graph visualization
� Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

� Given a graph G, visualize it with a drawing Γ

Here:
� Reducing the visualisation problem to its algorithmic core

graph class⇒ layout style⇒ algorithm⇒ analysis

� divide & conquer, incremental
� combinatorial optimization (flows, ILPs)
� force-based algorithm

� modeling
� data structures

4 - 9

What is this course about?
Learning objectives
� Overview of graph visualization
� Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

� Given a graph G, visualize it with a drawing Γ

Here:
� Reducing the visualisation problem to its algorithmic core

graph class⇒ layout style⇒ algorithm⇒ analysis

� divide & conquer, incremental
� combinatorial optimization (flows, ILPs)
� force-based algorithm

� modeling
� data structures

� proofs

4 - 10

What is this course about?
Topics
� Drawing Trees and Series-Parallel Graphs
� Straight-Line Drawings of Planar Graphs
� Orthogonal Grid Drawings
� Octilinear Drawings for Metro Maps
� Upwards Planar Drawings
� Hierarchical Layouts of Directed Graphs
� Contact Representations
� Visibility Representations
� The Crossing Lemma
� Beyond Planarity

5

Visualization of Graphs
Lecture 1:

The Graph Visualization Problem

Philipp Kindermann

Part II:
The Layout Problem

1

9

10 8

4

6

3

7

2 5

2 31 4 5

6 - 1

Graphs and their representations
What is a graph?

� graph G = (V, E)
� vertices V = {v1, v2, . . . , vn}
� edge E = {e1, e2, . . . , em}

6 - 2

Graphs and their representations
What is a graph?

� graph G = (V, E)
� vertices V = {v1, v2, . . . , vn}
� edge E = {e1, e2, . . . , em}

Representation?

6 - 3

Graphs and their representations
What is a graph?

� graph G = (V, E)
� vertices V = {v1, v2, . . . , vn}
� edge E = {e1, e2, . . . , em}

Representation?

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10}
E = {{v1, v2}, {v1, v8}, {v2, v3}, {v3, v5}, {v3, v9},

{v3, v10}, {v4, v5}, {v4, v6}, {v4, v9}, {v5, v8},
{v6, v8}, {v6, v9}, {v7, v8}, {v7, v9}, {v8, v10},
{v9, v10}}

� Set notation

6 - 4

Graphs and their representations
What is a graph?

� graph G = (V, E)
� vertices V = {v1, v2, . . . , vn}
� edge E = {e1, e2, . . . , em}

Representation?

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10}
E = {{v1, v2}, {v1, v8}, {v2, v3}, {v3, v5}, {v3, v9},

{v3, v10}, {v4, v5}, {v4, v6}, {v4, v9}, {v5, v8},
{v6, v8}, {v6, v9}, {v7, v8}, {v7, v9}, {v8, v10},
{v9, v10}}

� Set notation

� Adjacency list
v1 : v2, v8
v2 : v1, v3
v3 : v2, v5, v9, v10
v4 : v5, v6, v9
v5 : v3, v4, v8

v6 : v4, v8, v9
v7 : v8, v9
v8 : v1, v5, v6, v7, v9, v10
v9 : v3, v4, v6, v7, v8, v10
v10 : v3, v8, v9

6 - 5

Graphs and their representations
What is a graph?

� graph G = (V, E)
� vertices V = {v1, v2, . . . , vn}
� edge E = {e1, e2, . . . , em}

Representation?

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10}
E = {{v1, v2}, {v1, v8}, {v2, v3}, {v3, v5}, {v3, v9},

{v3, v10}, {v4, v5}, {v4, v6}, {v4, v9}, {v5, v8},
{v6, v8}, {v6, v9}, {v7, v8}, {v7, v9}, {v8, v10},
{v9, v10}}

� Set notation

� Adjacency list
v1 : v2, v8
v2 : v1, v3
v3 : v2, v5, v9, v10
v4 : v5, v6, v9
v5 : v3, v4, v8

v6 : v4, v8, v9
v7 : v8, v9
v8 : v1, v5, v6, v7, v9, v10
v9 : v3, v4, v6, v7, v8, v10
v10 : v3, v8, v9

� Adjacency matrix

0 1 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 1
0 0 0 0 1 1 0 0 1 0
0 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 0
1 0 0 0 1 1 1 0 1 1
0 0 1 1 0 1 1 1 0 1
0 0 1 0 0 0 0 1 1 0



6 - 6

Graphs and their representations
What is a graph?

� graph G = (V, E)
� vertices V = {v1, v2, . . . , vn}
� edge E = {e1, e2, . . . , em}

Representation?

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10}
E = {{v1, v2}, {v1, v8}, {v2, v3}, {v3, v5}, {v3, v9},

{v3, v10}, {v4, v5}, {v4, v6}, {v4, v9}, {v5, v8},
{v6, v8}, {v6, v9}, {v7, v8}, {v7, v9}, {v8, v10},
{v9, v10}}

� Set notation

� Adjacency list
v1 : v2, v8
v2 : v1, v3
v3 : v2, v5, v9, v10
v4 : v5, v6, v9
v5 : v3, v4, v8

v6 : v4, v8, v9
v7 : v8, v9
v8 : v1, v5, v6, v7, v9, v10
v9 : v3, v4, v6, v7, v8, v10
v10 : v3, v8, v9

� Adjacency matrix

0 1 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 1
0 0 0 0 1 1 0 0 1 0
0 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 0
1 0 0 0 1 1 1 0 1 1
0 0 1 1 0 1 1 1 0 1
0 0 1 0 0 0 0 1 1 0



� Drawing
1 2

7

9

5
10

8

4

6

3

6 - 7

Graphs and their representations
What is a graph?

� graph G = (V, E)
� vertices V = {v1, v2, . . . , vn}
� edge E = {e1, e2, . . . , em}

Representation?

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10}
E = {{v1, v2}, {v1, v8}, {v2, v3}, {v3, v5}, {v3, v9},

{v3, v10}, {v4, v5}, {v4, v6}, {v4, v9}, {v5, v8},
{v6, v8}, {v6, v9}, {v7, v8}, {v7, v9}, {v8, v10},
{v9, v10}}

� Set notation

� Adjacency list
v1 : v2, v8
v2 : v1, v3
v3 : v2, v5, v9, v10
v4 : v5, v6, v9
v5 : v3, v4, v8

v6 : v4, v8, v9
v7 : v8, v9
v8 : v1, v5, v6, v7, v9, v10
v9 : v3, v4, v6, v7, v8, v10
v10 : v3, v8, v9

� Adjacency matrix

0 1 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 1
0 0 0 0 1 1 0 0 1 0
0 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 0
1 0 0 0 1 1 1 0 1 1
0 0 1 1 0 1 1 1 0 1
0 0 1 0 0 0 0 1 1 0



� Drawing
1 2

7

9

5
10

8

4

6

1

9

10 8

4

6

3
3

7

2 5

7 - 1

Why draw graphs?

7 - 2

Why draw graphs?
Graphs are a mathematical representation of

real physical and abstract networks.

7 - 3

Why draw graphs?
Graphs are a mathematical representation of

real physical and abstract networks.

Abstract networks
� Social networks
� Communication networks
� Phylogenetic networks
� Metabolic networks
� Class/Object Relation Di-

graphs (UML)
� . . .

7 - 4

Why draw graphs?
Graphs are a mathematical representation of

real physical and abstract networks.

Abstract networks Physical networks
� Social networks
� Communication networks
� Phylogenetic networks
� Metabolic networks
� Class/Object Relation Di-

graphs (UML)
� . . .

� Metro systems
� Road networks
� Power grids
� Telecommunication networks
� Integrated circuits
� . . .

7 - 5

Why draw graphs?
Graphs are a mathematical representation of

real physical and abstract networks.

� People think visually – complex graphs are hard to grasp
without good visualizations!

7 - 6

Why draw graphs?
Graphs are a mathematical representation of

real physical and abstract networks.

� People think visually – complex graphs are hard to grasp
without good visualizations!

� Visualizations help with the communication and explorati-
on of networks.

7 - 7

Why draw graphs?
Graphs are a mathematical representation of

real physical and abstract networks.

� People think visually – complex graphs are hard to grasp
without good visualizations!

� Visualizations help with the communication and explorati-
on of networks.

� Some graphs are too big to draw them by hand.

7 - 8

Why draw graphs?
Graphs are a mathematical representation of

real physical and abstract networks.

� People think visually – complex graphs are hard to grasp
without good visualizations!

� Visualizations help with the communication and explorati-
on of networks.

We need algorithms that draw graphs automatically to make
networks more accessible to humans.

� Some graphs are too big to draw them by hand.

8 - 1

What are we interested in?

8 - 2

What are we interested in?
� Jacques Bertin defined visualising variables (1967)

8 - 3

What are we interested in?

Shading

Texture
Orientation

Shape

Size

Colour

� Jacques Bertin defined visualising variables (1967)

Position

8 - 4

What are we interested in?

Shading

Texture
Orientation

Shape

Size

Colour

� Jacques Bertin defined visualising variables (1967)

Position
→ Layoutproblem

8 - 5

What are we interested in?

Shading

Texture
Orientation

Shape

Size

Colour

� Jacques Bertin defined visualising variables (1967)

Position
→ Layoutproblem

Shape

9 - 1

The layout problem?

� Here restricted to the standard representation,
so-called node-link diagrams.

9 - 2

The layout problem?

� Here restricted to the standard representation,
so-called node-link diagrams.

Graph Visualization Problem

Graph G = (V, E)
nice drawing Γ of G
� Γ : V → R2, vertex v 7→ point Γ(v)
� Γ : E→ curves in R2, edge {u, v} 7→ simple, open

curve Γ({u, v}) with endpoints Γ(u) und Γ(v)

in:
out:

9 - 3

The layout problem?

� Here restricted to the standard representation,
so-called node-link diagrams.

Graph Visualization Problem

Graph G = (V, E)
nice drawing Γ of G
� Γ : V → R2, vertex v 7→ point Γ(v)
� Γ : E→ curves in R2, edge {u, v} 7→ simple, open

curve Γ({u, v}) with endpoints Γ(u) und Γ(v)

in:
out:

9 - 4

The layout problem?

� Here restricted to the standard representation,
so-called node-link diagrams.

But what is a nice drawing?

Graph Visualization Problem

Graph G = (V, E)
nice drawing Γ of G
� Γ : V → R2, vertex v 7→ point Γ(v)
� Γ : E→ curves in R2, edge {u, v} 7→ simple, open

curve Γ({u, v}) with endpoints Γ(u) und Γ(v)

in:
out:

10

Tree of virtues and tree of vices
ca. 1200

11

Social networks - family trees

J. Klawitter, T. Mchedlidze, Link: go.uniwue.de/myth-poster Ahnentafel Herzog Ludwig von Württemberg, 1585

12

Social network – citation graph

Da Ye, Link: https://go.uniwue.de/citation-graph

13

Social network - organisational chart

14

Social network - world finance corporation

© Mark Lombardi

15

Transportation network – European high speed railroads

Source: Wiki Commons: Networks of Major High Speed Rail Operators in Europe - CC BY-SA 3.0

16 - 1

Transportation network – London Underground

Source: Wiki Commons: London Underground full map - CC BY-SA 3.0

16 - 2

Transportation network – London Underground

Source: Wiki Commons: London Underground Overground DLR Crossrail map - CC BY-SA 4.0

16 - 3

Transportation network – London Underground

17

Bioinformatics – disease interaction

Source: Wiki Commons: Human disease network - CC BY-SA 4.0

18

Bioinformatics – molecular metabolic network

Source: Wiki Commons: Citric acid cycle with aconitate 2 - CC BY-SA 3.0 Source: Thiele et al., Nature Biotechnology 31, 419–425 (2013)

19

Bioinformatics – phylogenetic trees & networks

Source: Wiki Commons: Phylogenetic network of HVS-I variation - CC BY 4.0

20

Technical network – very large-scale integration (VLSI)

Source: Wiki Commons: Diopsis - CC BY-SA 3.0

Source: Pixabay

21

Technical network – transistor diagram, wiring

22

Technical networks – offshore wind farms

Source: Wiki Commons: Alpha Ventus Windmills - CC BY-SA 3.0

23

Technical network – UML diagram

© AWS

24

Temporal graph layout – storylines

Source and more: xkcd Comic 657 – xkcd.com/657/

25

Large graphs – object mesh

26

General graphs – micro-macro layout

Source: Angori et al., ChordLink: A New Hybrid Visualization Model, GD’19 (2019)

27

Alternative representations – treemap

28 - 1

Alternative representations – contact graphs

28 - 2

Alternative representations – contact graphs

� For more examples see visualcomplexity.com

29 - 1

Requirements of a graph layout
1. Drawing conventions and requirements, e.g.,

29 - 2

Requirements of a graph layout
1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

1
2

34

5

29 - 3

Requirements of a graph layout
1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

1
2

34

5

2

3

1

4
5

29 - 4

Requirements of a graph layout
1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

1
2

34

5

2

3

1

4
5

29 - 5

Requirements of a graph layout
1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

1
2

34

5

2

3

1

4
5

29 - 6

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

1
2

34

5

2

3

1

4
5

29 - 7

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.

1
2

34

5

2

3

1

4
5

29 - 8

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

1
2

34

5

2

3

1

4
5

29 - 9

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

1
2

34

5

2

3

1

4
5

29 - 10

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

1
2

34

5

2

3

1

4
5

29 - 11

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

1
2

34

5

2

3

1

4
5

29 - 12

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

1
2

34

5

2

3

1

4
5

29 - 13

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

1
2

34

5

2

3

1

4
5

29 - 14

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

1
2

34

5

2

3

1

4
5

29 - 15

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

→ lead to NP-hard
optimization problems

1
2

34

5

2

3

1

4
5

29 - 16

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

→ lead to NP-hard
optimization problems

1
2

34

5

2

3

1

4
5

→ such criteria are often
inversely related

29 - 17

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

3. Local Constraints, e.g.

→ lead to NP-hard
optimization problems

1
2

34

5

2

3

1

4
5

→ such criteria are often
inversely related

29 - 18

Requirements of a graph layout

2 31 4 5

1. Drawing conventions and requirements, e.g.,
� straight edges with Γ(uv) = Γ(u)Γ(v)
� orthogonal edges (i.e. with bends)
� grid drawings
� without crossing

2. Aesthetics to be optimized, e.g.
� crossing/bend minimization
� edge length uniformity
� minimizing total edge length/drawing area
� angular resolution
� symmetry/structure

3. Local Constraints, e.g.
� restrictions on neighboring vertices (e.g., “upward”).
� restrictions on groups of vertices/edges (e.g., “clustered”).

→ lead to NP-hard
optimization problems

1
2

34

5

2

3

1

4
5

→ such criteria are often
inversely related

30 - 1

The layout problem

Graph Visualization Problem

Graph G = (V, E)
Drawing Γ of G such that
� drawing conventions are met,
� aesthetic criteria are optimised, and
� some additional constraints are satisfied.

in:
out:

30 - 2

The layout problem

Graph Visualization Problem

Graph G = (V, E)
Drawing Γ of G such that
� drawing conventions are met,
� aesthetic criteria are optimised, and
� some additional constraints are satisfied.

in:
out:

30 - 3

The layout problem

Graph Visualization Problem

Graph G = (V, E)
Drawing Γ of G such that
� drawing conventions are met,
� aesthetic criteria are optimised, and
� some additional constraints are satisfied.

in:
out:

30 - 4

The layout problem

Graph Visualization Problem

Graph G = (V, E)
Drawing Γ of G such that
� drawing conventions are met,
� aesthetic criteria are optimised, and
� some additional constraints are satisfied.

in:
out:

31

Visualization of Graphs
Lecture 1:

The Graph Visualization Problem

Philipp Kindermann
Summer Semester 2021

Part III:
Basics

1

9

10 8

4

6

3

7

2 5

2 31 4 5

32 - 1

Basic Definitions
G = (V, E)

32 - 2

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

G = (V, E)

32 - 3

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

G = (V, E)

32 - 4

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

G = (V, E)

32 - 5

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

G = (V, E)

32 - 6

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

G = (V, E)

32 - 7

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

G = (V, E)

32 - 8

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

G = (V, E)

(sometimes e = uv or e = (u, v)

32 - 9

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

G = (V, E)

(sometimes e = uv or e = (u, v)

32 - 10

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

G = (V, E)

(sometimes e = uv or e = (u, v)

32 - 11

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

G = (V, E)

(sometimes e = uv or e = (u, v)

32 - 12

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

(sometimes e = uv or e = (u, v)

32 - 13

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

(sometimes e = uv or e = (u, v)

32 - 14

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

(sometimes e = uv or e = (u, v)

32 - 15

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

simple cycle: u-u-path

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

(sometimes e = uv or e = (u, v)

32 - 16

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

simple cycle: u-u-path

connected: There is a u-v-path for every u, v ∈ V

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

(sometimes e = uv or e = (u, v)

32 - 17

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

simple cycle: u-u-path

connected: There is a u-v-path for every u, v ∈ V

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

v reachable from u: There is a u-v-path

(sometimes e = uv or e = (u, v)

32 - 18

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

simple cycle: u-u-path

connected: There is a u-v-path for every u, v ∈ V

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

v reachable from u: There is a u-v-path

(sometimes e = uv or e = (u, v)

32 - 19

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

simple cycle: u-u-path

connected: There is a u-v-path for every u, v ∈ V

subgraph: graph G′ = (V′, E′) with V′ ⊆ V and E′ ⊆ E

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

v reachable from u: There is a u-v-path

(sometimes e = uv or e = (u, v)

32 - 20

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

simple cycle: u-u-path

connected: There is a u-v-path for every u, v ∈ V

subgraph: graph G′ = (V′, E′) with V′ ⊆ V and E′ ⊆ E

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

v reachable from u: There is a u-v-path

(sometimes e = uv or e = (u, v)

32 - 21

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

simple cycle: u-u-path

connected: There is a u-v-path for every u, v ∈ V

subgraph: graph G′ = (V′, E′) with V′ ⊆ V and E′ ⊆ E

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

v reachable from u: There is a u-v-path

(sometimes e = uv or e = (u, v)

32 - 22

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

simple cycle: u-u-path

connected: There is a u-v-path for every u, v ∈ V

subgraph: graph G′ = (V′, E′) with V′ ⊆ V and E′ ⊆ E

induced subgraph: subgraph with E′ = (V′
2) ∩ E

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

v reachable from u: There is a u-v-path

(sometimes e = uv or e = (u, v)

32 - 23

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

simple cycle: u-u-path

connected: There is a u-v-path for every u, v ∈ V

subgraph: graph G′ = (V′, E′) with V′ ⊆ V and E′ ⊆ E

induced subgraph: subgraph with E′ = (V′
2) ∩ E

connected component: maximal connected subgraph

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

v reachable from u: There is a u-v-path

(sometimes e = uv or e = (u, v)

32 - 24

Basic Definitions

Edge e = {u, v} ∈ E:
� e incident to u and v
� u, v end vertices of e
� u adjacent to v
� u and v are neighbors

u
ve

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|

Corollary.
The number of odd-degree vertices is even.

simple cycle: u-u-path

connected: There is a u-v-path for every u, v ∈ V

subgraph: graph G′ = (V′, E′) with V′ ⊆ V and E′ ⊆ E

induced subgraph: subgraph with E′ = (V′
2) ∩ E

connected component: maximal connected subgraph

u-v-path of length `:
Sequence of `+ 1 distinct adjacent vertices (and `
connecting edges), starting with u and ending with v:
u− {u, v1} − v1 − · · · − v`−1 − {v`−1, v} − v

G = (V, E)

v reachable from u: There is a u-v-path

(sometimes e = uv or e = (u, v)

33 - 1

Directed Graphs
G = (V, E)

33 - 2

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

33 - 3

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

33 - 4

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

33 - 5

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

33 - 6

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

outdegree deg+(v):
number of edges for which v is the source

33 - 7

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

outdegree deg+(v):
number of edges for which v is the source

Handshaking-Lemma.
∑v∈V deg−(v) = ∑v∈V deg+(v) = |E|

33 - 8

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

outdegree deg+(v):
number of edges for which v is the source

Handshaking-Lemma.
∑v∈V deg−(v) = ∑v∈V deg+(v) = |E|

directed u-v-path:
u− (u, v1)− v1 − · · · − v`−1 − (v`−1, v)− v

33 - 9

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

outdegree deg+(v):
number of edges for which v is the source

Handshaking-Lemma.
∑v∈V deg−(v) = ∑v∈V deg+(v) = |E|

directed u-v-path:
u− (u, v1)− v1 − · · · − v`−1 − (v`−1, v)− v

33 - 10

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

outdegree deg+(v):
number of edges for which v is the source

Handshaking-Lemma.
∑v∈V deg−(v) = ∑v∈V deg+(v) = |E|

directed u-v-path:
u− (u, v1)− v1 − · · · − v`−1 − (v`−1, v)− v

directed cycle: directed u-u-path

33 - 11

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

outdegree deg+(v):
number of edges for which v is the source

Handshaking-Lemma.
∑v∈V deg−(v) = ∑v∈V deg+(v) = |E|

directed u-v-path:
u− (u, v1)− v1 − · · · − v`−1 − (v`−1, v)− v

directed cycle: directed u-u-path

acyclic: no directed cycles

33 - 12

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

outdegree deg+(v):
number of edges for which v is the source

Handshaking-Lemma.
∑v∈V deg−(v) = ∑v∈V deg+(v) = |E|

directed u-v-path:
u− (u, v1)− v1 − · · · − v`−1 − (v`−1, v)− v

directed cycle: directed u-u-path

acyclic: no directed cycles

33 - 13

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

outdegree deg+(v):
number of edges for which v is the source

Handshaking-Lemma.
∑v∈V deg−(v) = ∑v∈V deg+(v) = |E|

directed u-v-path:
u− (u, v1)− v1 − · · · − v`−1 − (v`−1, v)− v

directed cycle: directed u-u-path

acyclic: no directed cycles

connected: There is a directed u-v-path
or v-u-path for every u, v ∈ V

33 - 14

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

outdegree deg+(v):
number of edges for which v is the source

Handshaking-Lemma.
∑v∈V deg−(v) = ∑v∈V deg+(v) = |E|

directed u-v-path:
u− (u, v1)− v1 − · · · − v`−1 − (v`−1, v)− v

directed cycle: directed u-u-path

acyclic: no directed cycles

v reachable from u: There is a directed u-v-path

connected: There is a directed u-v-path
or v-u-path for every u, v ∈ V

33 - 15

Directed Graphs
G = (V, E)

Edge e = (u, v) ∈ E:
� u is source of e
� v is target of e

ue
v

indegree deg−(v):
number of edges for which v is the target

outdegree deg+(v):
number of edges for which v is the source

Handshaking-Lemma.
∑v∈V deg−(v) = ∑v∈V deg+(v) = |E|

directed u-v-path:
u− (u, v1)− v1 − · · · − v`−1 − (v`−1, v)− v

directed cycle: directed u-u-path

acyclic: no directed cycles

v reachable from u: There is a directed u-v-path

connected component

connected: There is a directed u-v-path
or v-u-path for every u, v ∈ V

34

Visualization of Graphs
Lecture 1:

The Graph Visualization Problem

Philipp Kindermann
Summer Semester 2021

Part IV:
Planarity

1

9

10 8

4

6

3

7

2 5

2 31 4 5

35 - 1

Planar Graphs
G = (V, E)

35 - 2

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

35 - 3

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

35 - 4

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

35 - 5

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

35 - 6

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

35 - 7

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

35 - 8

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

35 - 9

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

35 - 10

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

35 - 11

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

35 - 12

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

35 - 13

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

5 4

1

35 - 14

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

5 4

1

35 - 15

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

35 - 16

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

35 - 17

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

35 - 18

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

35 - 19

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

35 - 20

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

35 - 21

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof.

35 - 22

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:

35 - 23

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒

35 - 24

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n? ?

35 - 25

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

35 - 26

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 1

35 - 27

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

35 - 28

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒

35 - 29

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒ remove 1 edge e

35 - 30

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒ remove 1 edge e ⇒ m− 1

35 - 31

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒ remove 1 edge e ⇒ m− 1

e

35 - 32

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒ remove 1 edge e ⇒ m− 1

e ⇒ c + 1

35 - 33

Planar Graphs
G = (V, E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4
5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have
many planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

⇒ 0− 0 + c = c + 13

m > 1⇒ remove 1 edge e ⇒ m− 1

e ⇒ c + 1 e ⇒ f + 1

36 - 1

Properties of Planar Graphs
Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

36 - 2

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

36 - 3

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

36 - 4

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

36 - 5

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces

36 - 6

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges

36 - 7

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m

36 - 8

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n

36 - 9

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n

36 - 10

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n

36 - 11

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m

36 - 12

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

36 - 13

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

36 - 14

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m

36 - 15

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m ≤ 6n− 12

36 - 16

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m ≤ 6n− 12 ⇒ f ≤ 2n− 4

36 - 17

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m ≤ 6n− 12 ⇒ f ≤ 2n− 4

36 - 18

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m ≤ 6n− 12

3. ∑v∈V deg(v)
⇒ f ≤ 2n− 4

36 - 19

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m ≤ 6n− 12

3. ∑v∈V deg(v)

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

36 - 20

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m ≤ 6n− 12

3. ∑v∈V deg(v)

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

= 2m

36 - 21

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m ≤ 6n− 12

3. ∑v∈V deg(v)

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

≤ 6n− 12= 2m

36 - 22

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m ≤ 6n− 12

3. ∑v∈V deg(v)

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

≤ 6n− 12

⇒ minv∈V deg(v)
= 2m

36 - 23

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m ≤ 6n− 12

3. ∑v∈V deg(v)

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

≤ 6n− 12

⇒ minv∈V deg(v) ≤ 1/n ∑v∈V deg(v)
= 2m

36 - 24

Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = c + 1

Proof. 1.
1

2

3

4
5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3 f ≤ 2m
⇒ 6 ≤ 3c + 3 ≤ 3 f − 3m + 3n ≤ 2m− 3m + 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3 f ≤ 2m ≤ 6n− 12

3. ∑v∈V deg(v)

Handshaking-Lemma.
∑v∈V deg(v) = 2|E|⇒ f ≤ 2n− 4

≤ 6n− 12

⇒ minv∈V deg(v) ≤ 1/n ∑v∈V deg(v) < 6

= 2m

37 - 1

Complete graphs K5

37 - 2

Complete graphs
Kn =

(
V, (V

2)
)

is the complete graph on n vertices.

K5

37 - 3

Complete graphs
Kn =

(
V, (V

2)
)

is the complete graph on n vertices.

K5

K3,3

37 - 4

Complete graphs
Kn =

(
V, (V

2)
)

is the complete graph on n vertices.

K5

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

V1 V2

37 - 5

Complete graphs
Kn =

(
V, (V

2)
)

is the complete graph on n vertices.

K5

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 6

Complete graphs
Kn =

(
V, (V

2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 7

Complete graphs

Proof.
K5:

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 8

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 9

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 10

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 11

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 12

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 13

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 14

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 15

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

3

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 16

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 17

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 18

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 19

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 20

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 21

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 22

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 23

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 24

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 25

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 26

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 27

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 28

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 29

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m
⇒ m ≤ 2n− 4

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 30

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m
⇒ m ≤ 2n− 4 = 2 · 6− 4

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 31

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m
⇒ m ≤ 2n− 4 = 2 · 6− 4 = 8

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 32

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m
⇒ m ≤ 2n− 4 = 2 · 6− 4 = 8 < 9 = m

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 33

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m
⇒ m ≤ 2n− 4 = 2 · 6− 4 = 8 < 9 = m

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 34

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m
⇒ m ≤ 2n− 4 = 2 · 6− 4 = 8 < 9 = m 3

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

37 - 35

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m
⇒ m ≤ 2n− 4 = 2 · 6− 4 = 8 < 9 = m 3

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

Theorem. G simp. pl. bipartite graph, n ≥ 3.
1. m ≤ 2n− 4 2. f ≤ n− 2
3. There is a vertex of degree at most three

37 - 36

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m
⇒ m ≤ 2n− 4 = 2 · 6− 4 = 8 < 9 = m 3

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

Theorem. G simp. pl. bipartite graph, n ≥ 3.
1. m ≤ 2n− 4 2. f ≤ n− 2
3. There is a vertex of degree at most three

What about
K4 and K2,3?

37 - 37

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m
⇒ m ≤ 2n− 4 = 2 · 6− 4 = 8 < 9 = m 3

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

K4

Theorem. G simp. pl. bipartite graph, n ≥ 3.
1. m ≤ 2n− 4 2. f ≤ n− 2
3. There is a vertex of degree at most three

What about
K4 and K2,3?

37 - 38

Complete graphs

Proof.
K5: m = (5

2) =
5·4
1·2 = 10 > 9 = 3 · 5− 6 = 3n− 6

Theorem. G simple planar graph with n ≥ 3.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most five

K3,3:

3

m = 3 · 3 = 9 < 12 = 3 · 6− 6 = 3n− 6
⇒ no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ 4 f ≤ 2m
⇒ 8 ≤ 4c + 4 ≤ 4 f − 4m + 4n ≤ 2m− 4m + 4n= 4n− 2m
⇒ m ≤ 2n− 4 = 2 · 6− 4 = 8 < 9 = m 3

Kn =
(

V, (V
2)
)

is the complete graph on n vertices.

K5

Theorem. K5 and K3,3 are not planar.

Kn1,n2 = (V1 ∪V2, V1 ×V2) with |V1| = n1 and |V2| = n2 is a
complete bipartite graph on n = n1 + n2 vertices.

K3,3

A bipartite graph is a subgraph of a Kn1,n2 ; V1 and V2 are called bipartitions.

V1 V2

K4

K2,3

Theorem. G simp. pl. bipartite graph, n ≥ 3.
1. m ≤ 2n− 4 2. f ≤ n− 2
3. There is a vertex of degree at most three

What about
K4 and K2,3?

38 - 1

Contractions and Minors
G simple graph and e = uv ∈ E

u v

G

e

38 - 2

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

u v

G

e

38 - 3

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

u v

G′G

e

38 - 4

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

u v uv

G′G

e

38 - 5

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

u v uv

G′G

e

38 - 6

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

u v uv

G′G

e

38 - 7

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

u v uv

(multi-edges are merged)

G′G

e

38 - 8

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

A graph H is a minor of G (write H ≤ G)
if it is obtained by a set of contractions
from a subgraph of G.

u v uv

(multi-edges are merged)

G′G

e

38 - 9

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

A graph H is a minor of G (write H ≤ G)
if it is obtained by a set of contractions
from a subgraph of G.

u v uv

(multi-edges are merged)

G′G

≤

e

38 - 10

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

A graph H is a minor of G (write H ≤ G)
if it is obtained by a set of contractions
from a subgraph of G.

u v uv

(multi-edges are merged)

G′G

≤

e

38 - 11

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

A graph H is a minor of G (write H ≤ G)
if it is obtained by a set of contractions
from a subgraph of G.

u v uv

(multi-edges are merged)

G′G

≤

e

38 - 12

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

A graph H is a minor of G (write H ≤ G)
if it is obtained by a set of contractions
from a subgraph of G.

u v uv

(multi-edges are merged)

G′G

≤

e

Observation.
G planar, H ≤ G ⇒ H planar

38 - 13

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

A graph H is a minor of G (write H ≤ G)
if it is obtained by a set of contractions
from a subgraph of G.

u v uv

(multi-edges are merged)

G′G

≤

e

Observation.
G planar, H ≤ G ⇒ H planar

38 - 14

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

A graph H is a minor of G (write H ≤ G)
if it is obtained by a set of contractions
from a subgraph of G.

u v uv

(multi-edges are merged)

G′G

≤

e

Observation.
G planar, H ≤ G ⇒ H planar

38 - 15

Contractions and Minors
G simple graph and e = uv ∈ E

Contracting e gives the graph G′ = (V′, E′)
V′ = V \ {u, v} ∪ uv
E′ = E \ (⋃w∈V{uw, vw}) ∪⋃x∈Adj(u)∪Adj(v) uvx

A graph H is a minor of G (write H ≤ G)
if it is obtained by a set of contractions
from a subgraph of G.

u v uv

(multi-edges are merged)

G′G

≤

e

Theorem. [Kuratowski 1930]
G planar⇔
neither K5 nor K3,3 minor of G

Observation.
G planar, H ≤ G ⇒ H planar

Kazimierz Kuratowski
Warschau 1896–1980 Warschau

39

Visualization of Graphs
Lecture 1:

The Graph Visualization Problem

Philipp Kindermann
Summer Semester 2021

Part V:
Binary Search Trees

1

9

10 8

4

6

3

7

2 5

2 31 4 5

40 - 1

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

40 - 2

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

40 - 3

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

40 - 4

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

40 - 5

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

40 - 6

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1

40 - 7

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

u

40 - 8

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

u

Ancestor: Vertex on path to root

ancestors(u)

40 - 9

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Ancestor: Vertex on path to root

ancestors(u)

40 - 10

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

40 - 11

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

40 - 12

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

40 - 13

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

40 - 14

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

40 - 15

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

40 - 16

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

40 - 17

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right

40 - 18

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right

40 - 19

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right

40 - 20

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right

40 - 21

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right

40 - 22

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right

40 - 23

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right

40 - 24

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right

40 - 25

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right

40 - 26

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder

node – left – right

40 - 27

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right

40 - 28

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right

40 - 29

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right

40 - 30

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right

40 - 31

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right

40 - 32

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right

40 - 33

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right

40 - 34

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right

40 - 35

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right

40 - 36

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

node – left – right left – node – right

40 - 37

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node

40 - 38

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node

40 - 39

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node

40 - 40

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node

40 - 41

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node

40 - 42

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node

40 - 43

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node

40 - 44

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node

40 - 45

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node

40 - 46

(Rooted) Trees
G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w ∈ V
2. G cycle-free and connected
3. G cycle-free and m = n− 1
4. G connected and m = n− 1

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

root

Parent: Neighbor on path to root

uparent(u)

Child: Neighbor not on path to root

children(u)

Ancestor: Vertex on path to root

ancestors(u)

Successor: Vertex not on path to root

successors(u)

Depth: Length of path to root

depth(u) = 3

Height: Maximum depth of a leaf

height(G) = 5

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

preorder inorder

postorder

node – left – right left – node – right

left – right – node

41 - 1

First Grid Layout of Binary Trees

1. Choose y-coordinates:

41 - 2

First Grid Layout of Binary Trees

1. Choose y-coordinates:

41 - 3

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

41 - 4

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

41 - 5

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

0
1
2
3

41 - 6

First Grid Layout of Binary Trees

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 7

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 8

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 9

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 10

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 11

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 12

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 13

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 14

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 15

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 16

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 17

First Grid Layout of Binary Trees

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 18

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 19

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 20

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 21

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 22

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 23

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 24

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 25

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 26

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 27

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 28

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 29

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 30

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 31

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 32

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 33

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 34

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 35

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 36

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 37

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 38

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

41 - 39

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3

	Organizational & Overview
	Organizational
	Books
	What is this course about?

	The Layout Problem
	Graphs and their representations
	Why draw graphs?
	What are we interested in?
	The layout problem?
	Examples
	Requirements of a graph layout
	The layout problem

	Basics
	Basic Definitions
	Directed Graphs

	Planarity
	Planar Graphs
	Properties of Planar Graphs
	Complete graphs
	Contractions and Minors

	Binary Search Trees
	(Rooted) Trees
	First Grid Layout of Binary Trees

