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Organizational

Lectures:

R1

TuI

R: Release
D: Discussion
H: Hand In

Tutorials:

Pre-recorded videos (as you see here)
Release date: One week before the lecture
Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton
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Submit solutions online

Recommend LaTeX (template provided)
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Books

G. Di Battista, . Eades, R. Tamassia, 1. Tollis:
Graph Drawing: Algorithms for the Visualization of Graphs
Prentice Hall, 1998

M. Kaufmann, D. Wagner:
Drawing Graphs: Methods and Models
Springer, 2001

T. Nishizeki, Md. S. Rahman:
Planar Graph Drawing
World Scientific, 2004

R. Tamassia:

Handbook of Graph Drawing and Visualization
CRC Press, 2013

http://cs.brown.edu/people/rtamassi/gdhandbook/
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[DG] Springer, 2001
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Planar Graph Drawing
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What is this course about?

Learning objectives
B Overview of graph visualization

B Improved knowledge of modeling and solving problems via graph algorithms
Visualization problem:
B Given a graph G, visualize it with a drawing I

Here:
B Reducing the visualisation problem to its algorithmic core

graph class = layout style = algorithm = analysis

B modeling B divide & conquer, incremental B proofs
B data structures B combinatorial optimization (flows, ILPs)

B force-based algorithm



What is this course about?

Topics

Drawing Trees and Series-Parallel Graphs
Straight-Line Drawings of Planar Graphs
Orthogonal Grid Drawings

Octilinear Drawings for Metro Maps
Upwards Planar Drawings

Hierarchical Layouts of Directed Graphs
Contact Representations

Visibility Representations

The Crossing Lemma

Beyond Planarity
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Why draw graphs?

Graphs are a mathematical representation of
real physical and abstract networks.

Abstract networks Physical networks

Social networks B Metro systems
Communication networks Road networks
Power grids

Metabolic networks Telecommunication networks

Class/Object Relation Di-
graphs (UML)

]
]
B Phylogenetic networks
O
O

Integrated circuits
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Why draw graphs?

Graphs are a mathematical representation of
real physical and abstract networks.

B People think visually — complex graphs are hard to grasp
without good visualizations!

B Visualizations help with the communication and explorati-
on of networks.

B Some graphs are too big to draw them by hand.

We need algorithms that draw graphs automatically to make
networks more accessible to humans.
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The layout problem?

B Here restricted to the standard representation,
so-called node-link diagrams.

(Graph Visualization Problem

in: Graph G = (V,E)
out: nice drawing I' of G
mI:V — R? vertex v — point I'(0)

m I': E— curves in R?, edge {u,v} — simple, open
curve I'({u, v}) with endpoints I'(#) und T'(v)

But what is a nice drawing?
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Social networks - family trees
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J. Klawitter, T. Mchedlidze, Link: go.uniwue.de/myth-poster Ahnentafel Herzog Ludwig von Wiirttemberg, 1585



Social network — citation graph

Da Ye, Link: https:/ /go.uniwue.de/citation-graph
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Social network - organisational chart
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Social network - world finance corporation
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Iransp

ortation network — European high spee

Networks of Major High Speed

Rail Operators in Europe
Situation July 2019
Only services which run at least 5 tmes
per week, per direction are included.
Seasonal services not included.
== Allegro (Karelian Trains)
= [talo (NTV)*
== Frecce (Trenitalia)
=== Thello*
== FlixTrain (Leo Express)*
=== Eurostar**
— Thalys**
= Railjet™
== |CE/ECE (Deutsche Bahn)=*=**
== TGV InOui (SNCF)
=== Quigo (SNCF)
= Sapsan (RZD / Russian Railways)
m— AVE/Alvia/Avant (RENFEy™
= X 2000 / SJ 3000 (SJ)
== Pendolino (VR)
=== Westbahn*
= MTR Express*®
=== Alfa Pendular (Comboios de Portugal)
= |nterCity (Virgin Trains)
«= InterCity (East Midlands)
== [nterCity (First Great Western)
= |nterCity (LNER)
== InterCity Direct (NS}
= Snilltiget*
== |nterCity (OSE)
= Southeastern High Speed
=== Yilksek Hizh Tren (TCDD / Turkish Railways)
= Experess InterCity Premium (PKP)
=== Qther rail lines / operators (Selection)
* Open access operalor .
** Joint operation between OBB, DB, SBB, €D and MAY
*** Includes other RENFE services on high speed rail
e E‘lﬁnlly awned by SNCF, independently operated
***** International services operated by various partnerships
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Transportation network — London Underground

Source: Wiki Commons: London Underground full map - CC BY-SA 3.0
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Transportation network — London Underground
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Transportation network — London Underground




Bioinformatics — disease interaction

Source: Wiki Commons: Human disease network - CC BY-SA 4.0
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Bioinformatics — molecular metabolic network
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Bioinformatics — phylogenetic trees & networks

CNO2 CN93

CN97 CN73

CN94
CN78 cNgo

CN79 CNosg
CN?S CNR7 CN91
1 ) CNT77
rCRS CN81
A ROazh
1 ® - Rob| o | w
N i »
o, . g U7 CNs8
' : B .
o @ !
"-@ & ROalb ™ . ® 5 : A
o - . k . e o ]
ﬂn‘ D o -
PR ".'_" o @ & |l .
& —Y R v N g &
. % /A -
et {1
g » -~ e .
- L - & -y il ‘.
e le = — .
. w1 ®
l‘ * 1‘:‘"‘" h h‘u g
® Pl
$ ;». - Iy Zf.u AR S ) e s
o - - c =
L L . .‘xﬂ‘,‘M gk o | o ; Q\ =
oo P S [
3/ ® -
° Ros2 o ..// P | O ‘I' iy
* L e ROa2bl| . '»
W g A
- P / ) ROazb2
i o @ o]
= o ROa2f1b
B ) , [ !
e
@ . - " ROaZ2
RDa2c+ROaZo @ | ROa2f

Rbala

Source: Wiki Commons: Phylogenetic network of HVS-I variation - CC BY 4.0



Technical network — very large-scale integration (VLSI)
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echnical network — transistor diagram,
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Technical networks — offshore wind farms
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Technical network — UML diagram
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Temporal graph layout — storylines

THESE CHARTS SHOW MOVIE CHARACTER INTERACTIONS.
THE HORIZONTAL AXIS 1S TIME. THE VERTICAL GROUPING OF THE
LINES INDICATES WHICH CHARACTERS ARE TOGETHER AT AGIVEN TIME.

LORD oF THE RINGS

Source and more: xkcd Comic 657 — xked.com/657/

24



25

Large graphs — object mesh




General graphs — micro-macro layout
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Alternative representations — treemap
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Alternative representations — contact graphs
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Alternative representations — contact graphs

B For more examples see visualcomplexity.com
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Basic Definitions
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Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B 1 v end vertices of ¢ v reachable from u: There is a u-v-path
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Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B 1 v end vertices of ¢ v reachable from u: There is a u-v-path

B u adjacent to v subgraph: graph G' = (V/,E') with V' C Vand E' C E
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degree deg(v):
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Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.




32-24

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B u, v end vertices of ¢ f>v reachable from u: There is a u-v-path

B u adjacent to v subgraph: graph G' = (V/,E') with V' C Vand E' C E

B u and v are neighbors , Y
induced subgraph: subgraph with E' = (7, )N E

degree deg(v):

number of edges incident to v \_ connected component: maximal connected subgraph

Handshaking-Lemma. | [ Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.
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Directed Graphs
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Directed Graphs

G=(V,E) directed u-v-path:
u—(u,01) —v1 — -+ =01 — (vp-1,0) — 0

directed cycle: directed u-u-path
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B u is source of ¢

B v is target of e

indegree deg™ (v):
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Directed Graphs
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Directed Graphs

G=(V,E) directed u-v-path:
u—(u,01) —v1 — -+ =01 — (vp-1,0) — 0

directed cycle: directed u-u-path

acyclic: no directed cycles
Edge ¢ = (u,v) € E:

. connected: There is a directed u-v-path
B u is source of ¢

or v-u-path for every u,v € V
B v is target of e

indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E‘
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Directed Graphs

G=(V,E) directed u-v-path:
u—(u,01) —v1 — -+ =01 — (vp-1,0) — 0

directed cycle: directed u-u-path

acyclic: no directed cycles
Edge ¢ = (u,v) € E:

_ connected: There is a directed u-v-path
B u is source of ¢

or v-u-path for every u,v € V
B v is target of ¢ v reachable from u: There is a directed u-v-path

indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E‘
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Directed Graphs

G=(V,E) directed u-v-path:
u—(u,01) —v1 — -+ =01 — (vp-1,0) — 0

directed cycle: directed u-u-path

acyclic: no directed cycles
Edge ¢ = (u,v) € E:

. connected: There is a directed u-v-path
B u is source of ¢

or v-u-path for every u,v € V
B v is target of ¢ v reachable from u: There is a directed u-v-path

indegree deg™ (v): ‘S,
number of edges for which v is the target connected component

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E‘
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it can be drawn in such a way bounded by edges
that no edges cross each other. Euler’s polyhedra formula. )
planar embedding: #faces - #edges + #vertices = #conn.comp. + 1
Clockwise orientation of adjacent f - m + n = C + 1
. J
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planar embeddings.

A planar embedding can have
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Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent

vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!
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bounded by edges
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Proof. By induction on m:
m=0=f=1landc=mn
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G is planar:
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planar embedding:
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G is planar:
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planar embedding:
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G is planar:
it can be drawn in such a way
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planar embedding:
Clockwise orientation of adjacent
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planar embeddings.

A planar embedding can have
many planar drawings!
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G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
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A planar graph can have many
planar embeddings.

A planar embedding can have
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planar embedding:
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planar embeddings.
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complete bipartite graph on n = ny 4 n, vertices.
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Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

[Theorem. K5 and K33 are not planar. J

Proof.
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Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Ky ny = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(})=23=10>9=3-5-6=3n—6
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Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Ky ny = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
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Complete graphs @I@
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Ky ny = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4
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Proof.
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Ky ny = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(3)=32=10>9=3-5-6=31-6 v

K33: m=3-3=9<12=3-6—-6=3n—6
= no contradiction to the theorem!
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Complete graphs @m—,

1 W

o O

2
Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (V)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—6
= 1o contradiction to the theorem!
There is no cycle of length 3.
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Complete graphs @1@

1 W

Ky ny = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| =1y 1S a Oiz K33

complete bipartite graph on n = ny 4 n, vertices. 0

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(3)=32=10>9=3-5-6=31-6 v

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
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Complete graphs @1@

1 W

o O

2
Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (V)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)

= 4f < 2m
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Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1V

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
= 8<4c+4<4f —4m+4n
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Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1V

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m +4n
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Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1V

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
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Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
=>m<2n-—4
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Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—-4
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Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
=>m<2n—4 =2-6—-4 =38
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Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m
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Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m
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Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m v
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Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

([Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T

3. There is a vertex of degree at most five

Proof.
5 5.4 ‘Theorem. G simp. pl. bipartite graph, n > 3.
Ks: m=(3)="2=10>9=3.5-6=3n—6 « |[L.m=2n-—4 2 f<n-2

2 1.2 3. There is a vertex of degree at most three

K3z3: m=3-3=9<12=3-6-6=3n—-26

= no contradiction to the theorem!

There is no cycle of length 3.

Every face incident to > 4 edges (in hypothetical planar drawing)

= 4f < 2m

=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m

>m<2n—4 =2-6—4=8<9=m v




Complete graphs Ks What about
K4 and Kzlg?
V

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.
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([Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T

3. There is a vertex of degree at most five

Proof.
5 5.4 ‘Theorem. G simp. pl. bipartite graph, n > 3.
Ks: m=(3)="2=10>9=3.5-6=3n—6 « |[L.m=2n-—4 2 f<n-2

2 1.2 3. There is a vertex of degree at most three

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.

Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m

=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m v

36
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Complete graphs Ks What about
K4 and Kzlg?
V

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

37 -

([Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T

3. There is a vertex of degree at most five

Proof.
5 5.4 ‘Theorem. G simp. pl. bipartite graph, n > 3.
Ks: m=(3)="2=10>9=3.5-6=3n—6 « |[L.m=2n-—4 2 f<n-2

2 1.2 3. There is a vertex of degree at most three

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.

Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m

=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m v

37
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Complete graphs @1@ What about

K4 and K2 37
K, = (V, (‘2/)) is the complete graph on 7 vertices.

1
Ky ny = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| =1y 1S a Oi\] K33 @
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

37 -

([Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T

3. There is a vertex of degree at most five

Proof.
5 5.4 ‘Theorem. G simp. pl. bipartite graph, n > 3.
Ks: m=(3)="2=10>9=3.5-6=3n—6 « |[L.m=2n-—4 2 f<n-2

2 1.2 3. There is a vertex of degree at most three

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.

Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m

=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m v
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G simple graph and ¢ = uv € E
Contracting ¢ gives the graph G’ = (V', E’)
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Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u, v}

GW o) O O oG
u 0

e

38 -



Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

G o) O O oG
—>
u 0 — O

e uo

38 - -



Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo
E' = E\ (Uyev{uw, vw})

GW o0——o0—0—o G
u 0 — O

e uo

38 -



Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo
E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

G (VQ‘V) Q: : :SZ o G/
u e % uv

38 -



Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (VQ‘V) Q: : :IZ o G/
u e % uv
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Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (V?V Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.
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Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (V?V Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

O{_OS/EVO
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Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (V?V Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

o{_ogciioo




38 -11

Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (V?V Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

SERRE
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Contractions and Minors

G simple graph and ¢ = uv € E Observation.
G planar, H < G = H planar

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo
E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (VQ‘V) Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

SERRE
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Contractions and Minors

G simple graph and ¢ = uv € E Observation.
G planar, H < G = H planar

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo
E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X H

(multi-edges are merged)

G (VQ‘V) Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

SERRE
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Contractions and Minors

G simple graph and ¢ = uv € E Observation.
G planar, H < G = H planar

Contracting ¢ gives the graph G’ = (V', E’)

V=V \{u,v}Uuo
E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X >_< > /E‘é

(multi-edges are merged)

G (VQ‘V Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

SERRE
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Contractions and Minors

G simple graph and ¢ = uv € E [Observation. ]

Contracting ¢ gives the graph G' = (V/, E/) G planar, H < G = H planar

V=V \{u,v}Uuo
E' = E\ (Upevinw, vw}) UUyeadi(u)uadi(e) #0X >_< > /E‘é

(multi-edges are merged)

G G'  [Theorem. [Kuratowski 1930]\
—>
G planar &
m ; v D neither K5 nor K33 minor of G

J

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

+ < O—X—I—o o
Kazimierz Kuratowski

Warschau 1896-1980 Warschau
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
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G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

Leaf: Vertex of degree 1
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(Rooted) Trees

G is a tree if the following equivalent conditions hold: U
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

root

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

Parent: Neighbor on path to root
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(Rooted) Trees

G is a tree if the following equivalent conditions hold: U
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected

3. G cycle-freeand m =n — 1 7

root

4. G connected and m =n — 1
ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root
Ancestor: Vertex on path to root
Parent: Neighbor on path to root



(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

Leaf: Vertex of degree 1

Rooted tree: tree with designated root
Ancestor: Vertex on path to root
Parent: Neighbor on path to root

parent(u)

|

ancestors(u)

root

40 -
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected

3. G cycle-freeand m =n — 1 7

parent(u)

root

4. G connected and m =n — 1
ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root
Vertex not on path to root
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

|

ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root
Vertex not on path to root

Child: Neighbor not on path to root
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3

|

ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root
Vertex not on path to root

Child: Neighbor not on path to root

Depth: Length of path to root



(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V

2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m =n — 1

Leaf: Vertex of degree 1

Rooted tree: tree with designated root
Ancestor: Vertex on path to root
Parent: Neighbor on path to root
Vertex not on path to root
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

40 -13

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V

parent(u)

2. G cycle-free and connected oot " children(u)
3. G cycle-freeand m =n —1 depth(u) — 3
4. G connected and m =n — 1 hgight(lé)_: .

ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root
Vertex not on path to root

Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V

parent(u)

2. G cycle-free and connected oot " children(u)
3. G cycle-freeand m =n —1 depth(u) — 3
4. G connected and m =n — 1 hgight(lé)_: .

ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root
Ancestor: Vertex on path to root
Parent: Neighbor on path to root

Vertex not on path to root
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V

parent(u)

2. G cycle-free and connected oot " children(u)
3. G cycle-freeand m =n —1 depth(u) — 3
4. G connected and m =n — 1 hgight(lé)_: .

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root
Parent: Neighbor on path to root

Vertex not on path to root
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)



40 - 17

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)



40 - 36

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)
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(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)
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