W Universitit Trier

Visualization of Graphs
16 2 Lecture 1:
w The Graph Visualization Problem

Part I
Organizational & Overview

Philipp Kindermann

Organizational

Lectures: W Pre-recorded videos (as you see here)

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture
B Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture
B Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton
B Questions/Tasks in the Videos

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture
B Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton
B Questions/Tasks in the Videos

Tutorials: m One sheet per lecture

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture
B Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton
B Questions/Tasks in the Videos

I

e P

e T

I

el]

Tutorials: m One sheet per lecture

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture
B Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton
B Questions/Tasks in the Videos

R1 D1 H1

v RN L .

R: Release
D: Discussion
H: Hand In

Tutorials: m One sheet per lecture

I

el]

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture
B Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton
B Questions/Tasks in the Videos

R2 D2 H2
R1 D1 H1
s T

v RN L .

R: Release
D: Discussion
H: Hand In

Tutorials: m One sheet per lecture

el]

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture
B Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton
B Questions/Tasks in the Videos

R3 D3 H3
R2 D2 H2
R1 D1 H1

TuI

R: Release
D: Discussion
H: Hand In

Tutorials: m One sheet per lecture

e P

e T

I

el]

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture
B Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton

B Questions/Tasks in the Videos RS
R4 D4
R3 D3 H3
R2 D2 H2
R1 D1 H1

TuI

R: Release
D: Discussion
H: Hand In

Tutorials: m One sheet per lecture

e P

e T

I

el]

- 10

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture
B Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton

B Questions/Tasks in the Videos RS
R4 D4
R3 D3 H3
R2 D2 H2
R1 D1 H1

TuI

R: Release
D: Discussion
H: Hand In

Tutorials: m One sheet per lecture

e P

e T

I

el]

B Submit solutions online

-11

Organizational

Lectures: W Pre-recorded videos (as you see here)
B Release date: One week before the lecture
B Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton

B Questions/Tasks in the Videos RS
R4 D4
R3 D3 H3
R2 D2 H2
R1 D1 H1

TuI

R: Release
D: Discussion
H: Hand In

Tutorials: m One sheet per lecture

e P

e T

I

el]

B Submit solutions online
B Recommend LaTeX (template provided)

-12

Organizational

Lectures:

R1

TuI

R: Release
D: Discussion
H: Hand In

Tutorials:

Pre-recorded videos (as you see here)
Release date: One week before the lecture
Tue 08:30 — 10:00: Questions/Discussion in BigBlueButton

Questions/Tasks in the Videos
R4

R3 D3
R2 D2 H2
D1 H1

e P

e T

I

One sheet per lecture

Submit solutions online

Recommend LaTeX (template provided)

Discussion and Solutions in BigBlueButton (Date: ?)

R5
D4
H3

el]

Books

G. Di Battista, . Eades, R. Tamassia, 1. Tollis:
Graph Drawing: Algorithms for the Visualization of Graphs
Prentice Hall, 1998

M. Kaufmann, D. Wagner:
Drawing Graphs: Methods and Models
Springer, 2001

T. Nishizeki, Md. S. Rahman:
Planar Graph Drawing
World Scientific, 2004

R. Tamassia:

Handbook of Graph Drawing and Visualization
CRC Press, 2013

http://cs.brown.edu/people/rtamassi/gdhandbook/

=mi <5
g
el

(] lg-a

e -

.
A |
g

Books

T G. Di Battista, . Eades, R. Tamassia, 1. Tollis:
| Graph Drawing: Algorithms for the Visualization of Graphs

|GD] Prentice Hall, 1998

M. Kaufmann, D. Wagner:
Drawing Graphs: Methods and Models

[DG] Springer, 2001

T. Nishizeki, Md. S. Rahman:
Planar Graph Drawing

[PGD] World Scientific, 2004

R. Tamassia:

Handbook of Graph Drawing and Visualization
CRC Press, 2013

http://cs.brown.edu/people/rtamassi/gdhandbook/

1=Hi

m g A
=3 %I

1=l

a
e I|II IIIII
1l ISHL I

[HGDV]

——— - —
g ol I=miy <
(e u

°I| |

What is this course about?

Learning objectives

What is this course about?

Learning objectives
B Overview of graph visualization

What is this course about?

Learning objectives
B Overview of graph visualization

B Improved knowledge of modeling and solving problems via graph algorithms

What is this course about?

Learning objectives
B Overview of graph visualization

B Improved knowledge of modeling and solving problems via graph algorithms
Visualization problem:

B Given a graph G, visualize it with a drawing I

What is this course about?

Learning objectives
B Overview of graph visualization

B Improved knowledge of modeling and solving problems via graph algorithms
Visualization problem:
B Given a graph G, visualize it with a drawing I

Here:
B Reducing the visualisation problem to its algorithmic core

What is this course about?

Learning objectives
B Overview of graph visualization

B Improved knowledge of modeling and solving problems via graph algorithms
Visualization problem:

B Given a graph G, visualize it with a drawing I

Here:
B Reducing the visualisation problem to its algorithmic core

graph class = layout style = algorithm = analysis

What is this course about?

Learning objectives
B Overview of graph visualization

B Improved knowledge of modeling and solving problems via graph algorithms
Visualization problem:

B Given a graph G, visualize it with a drawing I

Here:
B Reducing the visualisation problem to its algorithmic core

graph class = layout style = algorithm = analysis

B modeling

B data structures

What is this course about?

Learning objectives
B Overview of graph visualization

B Improved knowledge of modeling and solving problems via graph algorithms
Visualization problem:
B Given a graph G, visualize it with a drawing I

Here:
B Reducing the visualisation problem to its algorithmic core

graph class = layout style = algorithm = analysis

B modeling B divide & conquer, incremental
B data structures B combinatorial optimization (flows, ILPs)

B force-based algorithm

What is this course about?

Learning objectives
B Overview of graph visualization

B Improved knowledge of modeling and solving problems via graph algorithms
Visualization problem:
B Given a graph G, visualize it with a drawing I

Here:
B Reducing the visualisation problem to its algorithmic core

graph class = layout style = algorithm = analysis

B modeling B divide & conquer, incremental B proofs
B data structures B combinatorial optimization (flows, ILPs)

B force-based algorithm

What is this course about?

Topics

Drawing Trees and Series-Parallel Graphs
Straight-Line Drawings of Planar Graphs
Orthogonal Grid Drawings

Octilinear Drawings for Metro Maps
Upwards Planar Drawings

Hierarchical Layouts of Directed Graphs
Contact Representations

Visibility Representations

The Crossing Lemma

Beyond Planarity

- 10

W Universitit Trier

Visualization of Graphs
16 2 Lecture 1:
w The Graph Visualization Problem

Part II:
The Layout Problem

Philipp Kindermann

Graphs and their representations

What is a graph?

B graph G = (V,E)

B vertices V = {vq,0p,...,0,}
B edge E={e1,e2,...,6m}

Graphs and their representations

What is a graph?

B graph G = (V,E)

B vertices V = {vq,0p,...,0,}
B edge E={e1,e2,...,6m}

Representation?

Graphs and their representations

What is a graph?

B graph G = (V,E)

B vertices V = {vq,0p,...,0,}
B edge E={e1,e2,...,6m}

Representation?

B Set notation

V = {v1,v3,v3,04,05,v6,v7,08,09,v10 }

E = {{v1,02},{v1, 08} {v2,v3},{v3,05}, {v3,09},
{v3,v10} {04,051} {v4, 06}, {vg,09},{vs5, 08},
{ve.vg} {vg,v9}, {v7,v8} {v7, 09}, {vg, v10}
{vg,v10}}

Graphs and their representations

What is a graph?

B graph G = (V,E)

B vertices V = {vq,0p,...,0,}
B edge E={e1,e2,...,6m}

Representation?

B Set notation

V = {v1,v3,v3,04,05,v6,v7,08,09,v10 }

E = {{v1,02},{v1, 08} {v2,v3},{v3,05}, {v3,09},
{v3,v10} {04,051} {v4, 06}, {vg,09},{vs5, 08},
{ve.vg} {vg,v9}, {v7,v8} {v7, 09}, {vg, v10}
{vg,v10}}

B Adjacency list

Z)l: 7)2,08 7)6. 2)4,2)8,7)9

022 01,03 7)7: 08,7}9

U3+ 02,05,09,010 vg: v1,05,06,07,09,010
7)42 05,”06,7)9 092 03,04,7)6,07,08,010

05: 7)3,04,2)8 0102 03,08,7)9

Graphs and their representations

What is a graph?

B graph G = (V,E)

B vertices V = {vq,0p,...,0,}
B edge E={e1,e2,...,6m}

Representation?

B Set notation

V = {v1,v3,v3,04,05,v6,v7,08,09,v10 }

E = {{v1,02},{v1, 08} {v2,v3},{v3,05}, {v3,09},
{v3,v10} {04,051} {v4, 06}, {vg,09},{vs5, 08},
{ve.vg} {vg,v9}, {v7,v8} {v7, 09}, {vg, v10}
{vg,v10}}

B Adjacency list

01: 7)2,08 7)6. 04,2)8,7)9

022 01,03 2272 08,7}9

U3+ 02,05,09,010 vg: v1,05,06,07,09,010
7)42 05,”06,7)9 092 03,04,06,07,08,010
05: 7)3,04,2)8 0102 03,08,7)9

(

OO R OO OOOoO RO

—_

SO OO OO OO —O

@)

P, OOk OO

e

O RPR OO R R, OOO

SO O R OOO R, OO

OSrRrPrPOOORrrOoOoOo

e}

O R PR OO oo o

R P OR PP OOCO R

R ORrRPRPPRPORFRPRLROO

B Adjacency matrix

S RPrPRPOOOOoORFrOOo

Graphs and their representations

What is a graph?

B graph G = (V,E)

B vertices V = {vq,0p,...,0,}
B edge E={e1,e2,...,6m}

Representation?

B Set notation

V = {v1,v3,v3,04,05,v6,v7,08,09,v10 }

E = {{v1,02},{v1, 08} {v2,v3},{v3,05}, {v3,09},
{v3,v10} {04,051} {v4, 06}, {vg,09},{vs5, 08},
{ve.vg} {vg,v9}, {v7,v8} {v7, 09}, {vg, v10}
{vg,v10}}

B Adjacency list

01: 7)2,08 7)6. 04,2)8,7)9

022 01,03 2272 08,7]9

U3+ 02,05,09,010 vg: v1,05,06,07,09,010
7)42 05,”06,09 1)92 03,04,06,07,08,010

05: 7)3,04,2)8 0101 03,08,7)9

B Adjacency

—_
(@)
(@)

(

OO R OO OOOoO RO
SO O R OOO R, OO

SO OO OO OO —O
R, OO O OO
O RPR OO R R, OOO

B Drawing

OSrRrPrPOOORrrOoOoOo

m
0
0
0
0
0
0
0
1
1
0

R P OR PP OOCO R

R ORrRPRPPRPORFRPRLROO

atrix

S RPrPRPOOOOoORFrOOo

Graphs and their representations

What is a graph?

B graph G = (V,E)

B vertices V = {vq,0p,...,0,}
B edge E={e1,e2,...,6m}

Representation?

B Set notation

V = {v1,v3,v3,04,05,v6,v7,08,09,v10 }

E = {{v1,02},{v1, 08} {v2,v3},{v3,05}, {v3,09},
{v3,v10} {04,051} {v4, 06}, {vg,09},{vs5, 08},
{ve.vg} {vg,v9}, {v7,v8} {v7, 09}, {vg, v10}
{vg,v10}}

B Adjacency list

01: 7)2,08 7)6. 04,2)8,7)9

022 01,03 2272 08,7]9

U3+ 02,05,09,010 vg: v1,05,06,07,09,010
7)42 05,”06,09 1)92 03,04,06,07,08,’010

05: 7)3,04,2)8 7)10: 03,08,7)9

B Adjacency matrix

—_
(@)
(@)

(

OO R OO OOOoO RO
SO OO OO OO —O
R, OO O OO
OFRr OO R,k OOO
SO O R OOO R, OO

\

B Drawing

OSrRrPrPOOORrrOoOoOo

e}

O R PR OO oo o

R P OR PP OOCO R

R ORrRPRPPRPORFRPRLROO

S RPrPRPOOOOoORFrOOo

_—

N—

Why draw graphs?

Why draw graphs?

Graphs are a mathematical representation of
real physical and abstract networks.

Why draw graphs?

Graphs are a mathematical representation of
real physical and abstract networks.

Abstract networks
Social networks

Communication networks

Metabolic networks

Class/Object Relation Di-
graphs (UML)

]
]
B Phylogenetic networks
O
O

Why draw graphs?

Graphs are a mathematical representation of
real physical and abstract networks.

Abstract networks Physical networks

Social networks B Metro systems
Communication networks Road networks
Power grids

Metabolic networks Telecommunication networks

Class/Object Relation Di-
graphs (UML)

]
]
B Phylogenetic networks
O
O

Integrated circuits

Why draw graphs?

Graphs are a mathematical representation of
real physical and abstract networks.

B People think visually — complex graphs are hard to grasp
without good visualizations!

Why draw graphs?
Graphs are a mathematical representation of
real physical and abstract networks.
B People think visually — complex graphs are hard to grasp

without good visualizations!

B Visualizations help with the communication and explorati-
on of networks.

Why draw graphs?

Graphs are a mathematical representation of
real physical and abstract networks.

B People think visually — complex graphs are hard to grasp
without good visualizations!

B Visualizations help with the communication and explorati-
on of networks.

B Some graphs are too big to draw them by hand.

Why draw graphs?

Graphs are a mathematical representation of
real physical and abstract networks.

B People think visually — complex graphs are hard to grasp
without good visualizations!

B Visualizations help with the communication and explorati-
on of networks.

B Some graphs are too big to draw them by hand.

We need algorithms that draw graphs automatically to make
networks more accessible to humans.

What are we interested in?

What are we interested in?

B Jacques Bertin defined visualising variables (1967)

What are we interested in?

B Jacques Bertin defined visualising variables (1967)

Shape

Orientatio

"‘A.

n//

Size

Position

r

Colour

Il

Texture

What are we interested in?

B Jacques Bertin defined visualising variables (1967)

— Layoutproblem

What are we interested in?

B Jacques Bertin defined visualising variables (1967)

— Layoutproblem

The layout problem

B Here restricted to the standard representation,
so-called node-link diagrams.

The layout problem

B Here restricted to the standard representation,
so-called node-link diagrams.

The layout problem

B Here restricted to the standard representation,
so-called node-link diagrams.

(Graph Visualization Problem

in: Graph G = (V,E)
out: nice drawing I' of G
mI:V — R? vertex v — point I'(0)

m I': E— curves in R?, edge {u,v} — simple, open
curve I'({u, v}) with endpoints I'(#) und T'(v)

The layout problem?

B Here restricted to the standard representation,
so-called node-link diagrams.

(Graph Visualization Problem

in: Graph G = (V,E)
out: nice drawing I' of G
mI:V — R? vertex v — point I'(0)

m I': E— curves in R?, edge {u,v} — simple, open
curve I'({u, v}) with endpoints I'(#) und T'(v)

But what is a nice drawing?

Tree of virtues and tree of vices
ca. 1200

Briie verei pars Joeqie Sanel SpRpRA Y il e —
X _\, G .

J 4l d
A
£ - .
S ‘s
e
i M
f

LS

rrrrr

10

11

Social networks - family trees

STMAETHIS AN ARIADNE |

ADSS | LATRAMTS

J. Klawitter, T. Mchedlidze, Link: go.uniwue.de/myth-poster Ahnentafel Herzog Ludwig von Wiirttemberg, 1585

Social network — citation graph

Da Ye, Link: https:/ /go.uniwue.de/citation-graph

12

Social network - organisational chart

Bundesversammlung E 2

Bundesverfassungsgericht| . .
Wmsﬂunﬁ&nﬂhtﬂf L hh}:nn.-i'.ru-r_:

“EPItENe: OPPHS
e WAH LBERECHTIGTE Lo

Hoarrang Peerat] gt ‘Wahborgan

13

Social network - world finance corporation

e =
\I. —a .,
e "'-.;
= fo= i
L =L - =
- o ey LS R
..... N — %, -
— o /z' I ., Ny
i i U =
- F Ct o
- 0 Sl Py o
X Paaaa | |1 —
)3 4]
Hos = = el
-+ I (— =
- by : = i]
= e -,
..... - ,
[
—. 0 . kil P LA
o = = = el \ ==
A f | \
= i o \
—t £ e o < (= 101 \
B = : - =, i
F = r. W e
Fa o i
T o B
| ; = -y
- N = J . =
= = .~
\ — L et £ = \
= L
Ao, - 15 H.‘,
X s - =N T 5
-y o7 5,
AR —
B B =g - =

E wan .
-k el
Sk T Lopratiom of Faes, Pordm o - i a5 #
gt — h
] [" i
[—_—
4) e
e =
k3

© Mark Lombardi

Iransp

ortation network — European high spee

Networks of Major High Speed

Rail Operators in Europe
Situation July 2019
Only services which run at least 5 tmes
per week, per direction are included.
Seasonal services not included.
== Allegro (Karelian Trains)
= [talo (NTV)*
== Frecce (Trenitalia)
=== Thello*
== FlixTrain (Leo Express)*
=== Eurostar**
— Thalys**
= Railjet™
== |CE/ECE (Deutsche Bahn)=*=**
== TGV InOui (SNCF)
=== Quigo (SNCF)
= Sapsan (RZD / Russian Railways)
m— AVE/Alvia/Avant (RENFEy™
= X 2000 / SJ 3000 (SJ)
== Pendolino (VR)
=== Westbahn*
= MTR Express*®
=== Alfa Pendular (Comboios de Portugal)
= |nterCity (Virgin Trains)
«= InterCity (East Midlands)
== [nterCity (First Great Western)
= |nterCity (LNER)
== InterCity Direct (NS}
= Snilltiget*
== |nterCity (OSE)
= Southeastern High Speed
=== Yilksek Hizh Tren (TCDD / Turkish Railways)
= Experess InterCity Premium (PKP)
=== Qther rail lines / operators (Selection)
* Open access operalor .
** Joint operation between OBB, DB, SBB, €D and MAY
*** Includes other RENFE services on high speed rail
e E‘lﬁnlly awned by SNCF, independently operated
***** International services operated by various partnerships

A

U

/

/

Kristiansand Ggteborg
iGothgnburg

Imd

"Kob lavn/Copenhagen
.. Warng- gBinz
mul o
alsun

Cherbourg

Lannion,
Bre:

Quimp

Saint-Nazaire
Marits

Les Sables
La Rochelle

Arcachon
Santander B
Bilbao/Bilba,
[l

~

i «-r\h Marseille
de Carol
~r

Istanbul

W=

.
oniki
Barcelona !

~

l‘-\

&ﬁp A hens

Palermo Messina Grinthos/Corinth i
eggio di Calabria

R _dnine A 4 L

Almeria

Source: Wiki Commons: Networks of Major High Speed Rail Operators in Europe - CC BY-SA 3.0

d railroa

ds

Transportation network — London Underground

Source: Wiki Commons: London Underground full map - CC BY-SA 3.0

16 -

Transportation network — London Underground

Route map of i Railway and Eli Epping ==

Theydon Bois

Enfield Town

Theobalds Grove

Cockfosters Turkey St Debden
i urkey Strest
Fare zone 1. Journey viathis zone charges significantly more. Oakwood Bush Hill Fark A southb v Roding
High Barnet Southgate / o ury Loughton \«'a]lay Chigwell Grange Hill
) - &) Edmonton Green)
) Watford Junction Totteridge & Whetstone Arnos Grove Silver Strest Chingford Buckhurst Hill Shenfield
= Silver Stre:
Chesham i Bounds G i Brentwood
= Watfaord High Street Woodside Park ounds tareen L. White Hart Lane L Highams Park Woodford Hainauh rErtwWoo

Amersham West Finchley Wood Green

Fairlop Harold Wood

. = Bruce Grove South Woodford .
) Wattord & Bushey FincHley Central Turnpike Lane s Blaknorse |- Wood Street _ Newbury | Barkingside Gide= Fark
Chalfort & Latimer Harringay cven Sisters Walth Snareshrook Redbridge Park Romford
Chorleywood \ Carpenders Fark Crouch Hil Green Lanes / Tmenham Hale U fieta i line %\ Central Wanstead Gams Hil | Chadwell Heath
Rickmansworth = - Svergrmund || ra "
o , Walthamstow Leyton Goodmayes .
 Hateh End Stanmore Upper Holloway Manor House St. James Street| Queen’s Road Midiand Road J\-CYionstone Seven Kings Upminster
Tufnell Park Finsbury Park . Leytonstone g
Morthwood Hils | Headstone Canons Park Stamford Hil High Road
) L Kentish Town Arsenal) N Clapton
Finner Queensbury Holloway Foad Stoke Mewington -) Leyton
North H. Harrow & Rectory Road A
st orth Harrow Wealdstone L Kingshury et 3 2
- uislip Ruislip Rayners Harrow-an- Highbury & Dalston %, Stratford
Hilingcon Ianor Lane the-Hil Kenton Awembley Park y.cpoion ine LHa:npstead Hea:h Caledonian Road | joph a y King % yDowns wa Internaional
| Belsize Chak Camden Q O =

Caledonian Road |
Mornington § & Barnshury
Crescent

Uxbridge

T O
West Horthwick
Harrow Park

Ruislip Park Farm Town

Q'Flnl:hley Road & Frognal
N\

Canonbury

Dalston
Junction

T 5 . . \
Preston Hackney Homerton Hackney
" Central Wick Stratford Waryland

Ruislip Gardens

King's Cross Stratford

5L Fancras

« London Fields

Euston
South Harrow « South Kerton r

I}mndeshury0 Hamps“g:asdt

Owerground

Haggerston X ing %
South Ruislip North Wembley S, Brondeshury Park Hoxton % Cambridge Heath mf’fg}%
Wembley Ceplral _ Kensal Rise Swiss Cottage ™2 i * Euston Shoreditch Bow Church
Sudbury Hill Stonebridge Park P Square High Street Bethnal Green
. i : 021
 Harlesden South Hampstead Goodge Strest e E:ﬁgreg Liverpool Bromley-by-Bow w:zt
. Mortholt Willesden Junction’) St. John's Street
Reading Sudb — . Kilburn ‘Wood D Poad
ucbury Town o ensal High Foad k Devons Ro
| Twytord Greenford Sk 2 Green parn WMarylebone Green k Langdon Park Star Lane Beckton
ueen's Parl -
f Edgware Road b i "
&3 Maidenhead Aperon 4= Kilburn Park gwa iy All Saints =) Galions Reach
g . Paddington Fenchurch Steet, ¢ Canmng Foyal Frince
Taplow Perivale Maida Vale O el Westferry Poplar East India \«'lctorla Reg-em Becktt:n Park
Warwick Avenue - ; = ¥
Burnham e selcesher Mansion numemTuwer Tower ”*" Limehouse West '“d'ﬂ Blackwall HU Royal Cyprus
quare House ustom House
Hanger Lane'Q), Westhourne Hill Gateway L Wapping Sllvenown for ExCeL & Alliert
£ Slough Park Royal O \ Park Royal Oak) Can_arm Pontoon Dock g
Langley North Ealing . \ Bayswater b L\ Rotherhithe < Heron Quays Canary Londen City K
Ladbroke Grove . i = (5 Wharf GreenWIch Airport
Iver West Hayes & Ealing Shepherd's Notii e London Bermondsey Canada South Quay = = = "
Drayton Harlington Hanwel Broadviay Bupsh Hillljganmg Bridge H King George ’ =
5 s ™ 3 - = Hydce Park L Borough Surrey Quays Crossharbour = Hgoolmgjh
THL Rail "'" orner - 5 rsen
[Reading ““o:'] y Southall é’:fng ing Lnne Holland Park ol Queensway Mudchute = =
= Common Shepherd's 4 Knightsbridge I & Castle B
Goldhawk Kensingto Kensington | Cutty Sark for London Underground:
South g d
Higher fires agply Road (Olympia) E? Kensington [Mariime Greenwich Bakerloo line Metropolitan ling
iz mﬁlﬂ"\«"ﬁﬁ H Hammersmith 5 Queens Road Greenwich Central line Northern ling
_ o —
- hl = — Kennington Feckham = Deptford Bridge Circle line Piccadiily ine
Kew Gardens Ravenscourt Barons West Earls Gloucester i i ictoria i
Heathrowt Park Court Kensington Court Road Peckham Rye = Elverson Road District line Victorialine
Eathrow Richmond R - Harnmersmith & City line Waterloo & City line
Termzlnglg F ounsiow West West Brompton c & #* Honor Oak Park @) Lewisham Jubilee line e
A Imperial Battersea Park & D
T Hatton Cross Fulham Broachway Wharf Denmark Hil London Overground:
Heathrow + | M P Clapham North Key to symbols -
Termi » Watford Junction—Euston
erminal 5 L Heathrow Terminal 4 Farzons Green Clapham Clapham Common X 5
Junction Clapham South Crystal Palace @—— (o Beckena Interchange = Richmond/Clapham Junction—-Stratford
Putney Bridge % Junction stations + Gospel Oak—-Barking
“P 1 between all il stmtions within Heath 7
m‘;:;‘%::’:f:’;z”:m’”‘:‘"‘l’;m’:‘:;‘:‘:’r":om:";‘u:“:::" East Putney * Penge West . (. Interchanges for . Dalston/Highbury & Islington—Clapham Junction!
regandless ofLondon Underground , T4 Feail or Heathrow Espress . Southfields Anerl B pibeck C National Rail * West Croydon/Crystal Palace/lew Cross
Passengers may also use Hation Cross fr changing trains Tooting Broadway neriey ”) « Liverpool Street-Enfield Town/CheshuntiChingford
backts Ehnﬂm::mi ort vithout exdting the m-oﬁ ¢ Wirnbledon Park af & Elmerz End Out-of-station .
i 9 - Colliers Wood WestC Norwood Junction interchanges + Romford—Jpminster
. - lest Croydon
Wimbledon South Wimbledon yd__] - et B e Docklands Light Failway (DLR)
WMorden . Trumlink d Hew limited service
N . S L i
e e —e—e—e—e—e—e [l pp—)
Junct c Airport
uncion roydon p _

Source: Wiki Commons: London Underground Overground DLR Crossrail map - CC BY-SA 4.0

16 -2

Transportation network — London Underground

Bioinformatics — disease interaction

Source: Wiki Commons: Human disease network - CC BY-SA 4.0

17

Bioinformatics — molecular metabolic network

A B Cc D E F
ruRT———
! ==
1 . e
(N
| — S|
i:/ egen P I VL T e e Ao TR IET S e
B b Pyruvate ‘#' | E . E S ey gt = i BT H i _'* {;‘ﬁ"mﬂ-uttf?:&?.lh

[coa |SH+ MAD* o Hypdrogen o/l Adenosine
%@ éyruvaie dehydrogenase @@ & © tarbo 2 qh”,
@‘ . CO+NADH, H* a = 9 =m= ._}\?{.x;_‘}”m,
b e (@) Sufur o

Acetyl-Cod SH
(Acevi-con]) o foemymea Cuemeyme &

Weter | NADH icotinamide adenine dimclectile
Pyruvatz dehydrogenase

T Aconitase =
g Q o
%? 'é'e """ N ;.DH,H‘ ""-*=

Q i
X >
-

NAD" + [Eoa |SH

p-ketoglutarate dehydrogenase

Succinic dehydrogenase

Source: Wiki Commons: Citric acid cycle with aconitate 2 - CC BY-SA 3.0 Source: Thiele et al., Nature Biotechnology 31, 419425 (2013)

19

Bioinformatics — phylogenetic trees & networks

CNO2 CN93

CN97 CN73

CN94
CN78 cNgo

CN79 CNosg
CN?S CNR7 CN91
1) CNT77
rCRS CN81
A ROazh
1 ® - Rob| o | w
N i »
o, . g U7 CNs8
' : B .
o @ !
"-@ & ROalb ™ . ® 5 : A
o - . k . e o]
ﬂn‘ D o -
PR ".'_" o @ & |l .
& —Y R v N g &
. % /A -
et {1
g » -~ e .
- L - & -y il ‘.
e le = — .
. w1 ®
l‘ * 1‘:‘"‘" h h‘u g
® Pl
$;». - Iy Zf.u AR S) e s
o - - c =
L L . .‘xﬂ‘,‘M gk o | o ; Q\ =
oo P S [
3/ ® -
° Ros2 o ..// P | O ‘I' iy
* L e ROa2bl| . '»
W g A
- P /) ROazb2
i o @ o]
= o ROa2f1b
B) , [!
e
@ . - " ROaZ2
RDa2c+ROaZo @ | ROa2f

Rbala

Source: Wiki Commons: Phylogenetic network of HVS-I variation - CC BY 4.0

Technical network — very large-scale integration (VLSI)

N -

lﬁ‘ ;
Source: Pixabay

“TENREREENNE

NN

'
' oy
= |
: I N o
\ [IR

- e oW
ST E T RMmRER

s o™ ow

Source: Wiki Commons: Diopsis - CC BY-SA 3.0

. -
L L

20

echnical network — transistor diagram,

[CRI
R [T 11
F3 ' DETECTOR
i

o=t T
RE ® |
g3l 3300 = et 2200
4TH \rEMovED M | 19K
LATE PROC

I
£
|

FERRITE 4 __]
LOOP aNT] |

AMTEMNA ASSEMBLY

COLOR
CoDING

08, CoilL
T1
]
T¥PES i
234 B 235

ES

TRANSISTOR SOCKET COMKNECTIONS

TEAMINAL COMMECTIONS

w FOR T2, T3 & T4.

&

WOLTAGES WEASURED WITH “VOL
SHOULD HOLD WITHIN £20% Wi
o000, ALL RESISTANCE VAL
ALL CAPACITANCE VALUES LE®
LD & ABOVE IM MMF EECEPT

BATTERY Cu

TYPE MO SIGHAL - - .
2o 50 Mw. OUTPUT -

— | expoeing O7F

TE
OUTPUT

_ aan
" TRITHL

|| wik

EE SLUONNARY SCmpoL

WI1rin

8Lk 3@

Mo of Fipe

Fiewse Dotz Dt tio locations S
plazts indicared on this pliR m_wm.

ATl the SingTel’s plant in e vicinity pisiended |
eqrtirworks of devel v oy ba-dosaied BY

o

bales. o —
The mionmation ided 5 based o0 t:
gusiiabie ai the time of enquiry and is subjected

|y *hjc_bmmvhmsuhmﬂﬁgé
me\!wtwvmumwm

" | diseiaims apy Esbility foy 2y damage or
Sb':ﬂ;m,maqumdww

imcurred Jy any person lrectly o indirectly 36 1

ricsiyit ol By eoaf oF omissicn.
Tl AW

muuf-'mm_ |

i T

21

Technical networks — offshore wind farms

(¥

(%)

Oftshore Substation Onshore Substation < E
:) 2 x 132kV \

Cable Joint Ven

Source: Wiki Commons: Alpha Ventus Windmills - CC BY-SA 3.0

22

Technical network — UML diagram

) 4 =
PCDQ class diagram T Product v] trventory
PCDQ System Product_ID INT Inwentory_ID INT] Warehouse v
2 1 1w,
] Query library Audit_criteria Analysis_plan Product_Name VARCHAR(45) Product_ID INT Warehouse_ID INT
el Dat Proloct 5 n > Destription TINYTEXT house IDINT - HO- +€ ' Location 10 INT
! o -Date -Projec -Projec
I ! € : > Quantity_on_Hand INT Wiarehouse_Name VARCHAR(45)
i Aggregate I ; -Topic -Tapic Categary T S
1 relationship —L Text Text Weght_Class INT Quentity_Awallabie INT
' —— | Project_query 1 1 1 > Warranty_Period INT | - W0 =
v -Project name 1 PCT Supplier_ID INT
: i T i > Status VARGHAR{1S) i bocalion i INT
i Association : ' 1 1 [PcT_D ! .] Order_Ttem ¥ Country_ID INT
L 1 -Name ; St pres Order_lem_ID INT
L =] * i SPSS_syntax Mindmunm_Price DECIMAL - Addres Lne_LVARGHIRLIE)
[4 ! Data_set -population = - ¥ Order_ID INT Adéress_Line_2 VARCHAR(45)
| i ! — n -Title > Price_Currency VARCHAR(S)
; Composntg i Domographic - -contact P » Coog LR VAREHAR(L2) T Product_ID INT City VARCHAR(45)
: relationship 2 ﬂt Diagnosis GP practice -oyntax 5 = Unit_Price DECIMAL State VARCHAR(24)
'; e -Risk factors -PraclD 2 Quankity DOLBLE District VARCHAR(24)
i Binend HQL_query -Treament 'ggl:lrt;g " Postal_cade wa::.:a:rm)
1 Dependency - B - . Location_type_code IN
E +§nqu:rer -Population Local PCT Project - = Destripton VARCHAR(128)
Ezzzzzazesazaas —Ti%r;eme nt Responses -GPSystem _PraciD -PCT_ID "] Customer_Company v Mq—':“:n z:'r Shipping_notes VARCHAR(256)
' - Phane_num
s * Company_[D INT Orders v = = ¥ Countries_Country_ID INT
| Generalisation i _SetlD Header i - ¥ Persens_Perssn_ID INT
| relationship i Company_Name VARCHAR(45) Order_ID INT >
\ H (Drcer ~Query copy Company_Credit_Limit INT Customer_ID INT ¥ tocabens tocu DI
'.-_---._-_.-_-_.---J -Write Date -respose text Data collection - e Phane_num ber INT
.Coding Scheme - Credit_Limit_Currency VARCHAR(S) 1 Sales_Rep 10 INT
9 +Authorise() -Collecter ~ Country_code INT
-Query text 7 2 Order_Date DATE ~
\ +Export() -Practice Ordes. Code THT 7 Phanie.Type_I0 INT |) Person_Location ¥
[Fupdate() *+Template() -Date) 1 Persans_Person_ID INT
---------- +import() 7~ i |Time i Orer_SBRA VRCRARGS) 5 I
+authorise() o = _Status e — > Crder_Total INT | Locations_Locatien_ID INT
+execute() custom m;ﬁ DT Qrger_Currency VARCHAR(S) Sub_ddress VARCHAR(35)
i L8
+details() j? ¢ C:mwv'm mm > Promation_Code VARCHAR(45) Location Usage VARCHAR(...

> Notes TINYTEXT

Badge_Number VARCHAR(20) m| =
Job_Tifle VARCHAR(45) el

' >
-Age {collection schedule} -Title Deoartment VARCHAREAS) Persan_ID INT '
-Sex 1 -Task red Ik INT First_name V ARCHAR(20)
Generic_query | | EMIS_query 'g"ap'l" . Cret timit_Currency VARTHAR(S) > Last_name VARCHAR(20)
-Conclusion -
Collection_issues > Middle_nam es VARGHAR(45)
ot X = > Nicknam e VARCHAR(20)
-PraclD Floppyidiskttg

I
]
]
]
|
l
I
1
I
1
1
1
1
1
1
]
1
|
2 -Collectn
i
I
1
1

Patient_case
-Refference 1 |\ [||[analysis_Output

#Nat_lang_code INT
Triplet Comment! -Project * i l Culture_code INT] Country v
i -PraciD ; ' ,
Pilot_data -Date -.. \ | Date H] Customer v Gender VARCHAR(12) Country_ID INT
7777777777777 1| [Code | setld ¥ Customer_ID INT Country_Neme VARGHAR(24)
-Value 1 ¥ person_ID INT > Country_Code VARCHAR(3)
1 ¥ Cusomer_Employee ID INT > PHist | onp_Code INT
Practice_data_set m -] Employment ¥ y Currency_Code VARCHAR{10)
‘ ' < = o'e::t - ; Project_data_set “‘“W';‘j"‘g'l—"’m B Employee_ID INT ’ -
. L = wal * n Incom ¢_level INT
Pilot data used for Numericle value — -F'rajc 1D -Project = } T Person_ID INT
query modification optional for triplet < | 1 HR _Job_iD INT F 1
Restricted A
i | T Manager_Employee 1. ':: » M""’" 3 =
s0N,
__ s L 44| staet_pote pare erson] Employment_Jobs
' 7 -y : 2 - e 'l-_{ 'L_ Date_of Sirth DATE HR&_Job_ID INT
+ Queries have a dependency I__\‘ generic gry & to emis qry L No classes or associations for i Needs one-to-many N End_Date DATE
0 i i i [P 1 it . N # Date_of Death DATE ¥ Countries_Country_ID INT
+ on pilot data. w should be compared and validated. 1 activity issues, system issues, 1 type relationship Salary INT

Government_ID VARCHAR(24) bl 5 Job_Tile VARCHAR{45)

)
:
E Careful analysis helps ii Their parent class is influential. |1 data entry issues,query issues. Ei fot better planning E Commiion_Pescan’0... N 1D VARCHAR(24)
! to improve the predictability it Any errors would get propogated " i Suploim e Eal YAtH — @ .
H 1}
' ' S Hire_Date DATE > Max_Salary INT
y > Seniority_Code INT >
>

© AWS

Temporal graph layout — storylines

THESE CHARTS SHOW MOVIE CHARACTER INTERACTIONS.
THE HORIZONTAL AXIS 1S TIME. THE VERTICAL GROUPING OF THE
LINES INDICATES WHICH CHARACTERS ARE TOGETHER AT AGIVEN TIME.

LORD oF THE RINGS

Source and more: xkcd Comic 657 — xked.com/657/

24

25

Large graphs — object mesh

General graphs — micro-macro layout

=
~
=

(1 J. A. Simons S

3

]

=

QL. ipf .
Schlipf =

=
\ (2 A. Schulz
I .
’ 0}' :
(,f,,?’
\\‘.\
v -

7
R"ff(,.

D T. Mchedlidze

) M. Radermacher

AT
Y- AN}
Nt
5. B

L. Hollinder

Source: Angori et al.,, ChordLink: A New Hybrid Visualization Model, GD’19 (2019)

26

Alternative representations — treemap

MName

» B bin
» [include
» [lib
» [libexec
v [local
» B bin
v [etc
» [] ImageMagick
¥ [include
» [CGAL
¥ [juniper
¥ [nc
i 7.4.6
v [install
M fwk_reference_tool
M installer.common
M ncinstallhelper
2 NCJarVerify.jar
" uninstall_nc.sh
Version

Eww

-

v [lib
v [CGAL
» [2.6.2-10-2.8.1
5 CCAL CheckCXXFileRuns.crmake

CGAL Common.cmake
CCAL_CreateSingleSourceCGALProgrd
CGAL FindPackageHandleStandardAr
CGAL_GeneratorSpecificsettings.cma
CCAL Locate CGAL TAUCS.cmake
CGAL _Macros.cmake

|r| | rI | rI |

Alternative representations — contact graphs

28 -

Alternative representations — contact graphs

B For more examples see visualcomplexity.com

28 -

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

29 -

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
B straight edges with I'(uv) = I'(u)T'(v)

29 -

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
B straight edges with I'(uv) = I'(u)T'(v)
B orthogonal edges (i.e. with bends)

29 -

4()—

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
B straight edges with I'(uv) = I'(u)T'(v)
B orthogonal edges (i.e. with bends)

B grid drawings

29 - £

4()—

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
B straight edges with I'(uv) = I'(u)T'(v) 2
B orthogonal edges (i.e. with bends)

B grid drawings

B without crossing

29 - ¢

4()—

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
B straight edges with I'(uv) = I'(u)T'(v)
B orthogonal edges (i.e. with bends)

B grid drawings

B without crossing

29 -

4¢

Requirements of a graph layout

29 -

1. Drawing conventions and requirements, e.g.,
B straight edges with I'(uv) = I'(u)T'(v) 2
B orthogonal edges (i.e. with bends)

4()—

B grid drawings
B without crossing
2. Aesthetics to be optimized, e.g.

Requirements of a graph layout

29 -8

1. Drawing conventions and requirements, e.g.,
B straight edges with I'(uv) = I'(u)T'(v) 2
B orthogonal edges (i.e. with bends)

4()—

B grid drawings
B without crossing

2. Aesthetics to be optimized, e.g.
B crossing/bend minimization

B

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
B straight edges with I'(uv) = I'(u)T'(v)
B orthogonal edges (i.e. with bends)

B grid drawings
B without crossing

2. Aesthetics to be optimized, e.g.
B crossing/bend minimization

29 -

4¢

Requirements of a graph layout : |

4 3
1. Drawing conventions and requirements, e.g., 3
40— —0
B straight edges with I'(uv) = I'(u)T'(v) : 2 5
B orthogonal edges (i.e. with bends) 7

B grid drawings
B without crossing

2. Aesthetics to be optimized, e.g.
B crossing/bend minimization

B edge length uniformity

O/O-O-O-O-O-O-O-O-O-O\O

5 29 - 11

Requirements of a graph layout ;
1. Drawing conventions and requirements, e.g., "
2
1

—— 53
B straight edges with I'(uv) = I'(u)T'(v) 5
B orthogonal edges (i.e. with bends) 7
B grid drawings 3

B without crossing

2. Aesthetics to be optimized, e.g.
B crossing/bend minimization

B edge length uniformity
B minimizing total edge length/drawing area

Requirements of a graph layout

1.

29 - 12

Drawing conventions and requirements, e.g.,
straight edges with I'(uv) = I'(u)T'(v) 2
orthogonal edges (i.e. with bends)

4()—

grid drawings
without crossing

Aesthetics to be optimized, e.g.
crossing /bend minimization

edge length uniformity

minimizing total edge length /drawing area

S K

angular resolution

Requirements of a graph layout

1.

29 -13

Drawing conventions and requirements, e.g.,
straight edges with I'(uv) = I'(u)T'(v) 2
orthogonal edges (i.e. with bends)

4()—

grid drawings
without crossing

Aesthetics to be optimized, e.g.
crossing /bend minimization

edge length uniformity
minimizing total edge length /drawing area

angular resolution

Requirements of a graph layout

1.

29 -14

Drawing conventions and requirements, e.g.,
straight edges with I'(uv) = I'(u)T'(v) 2
orthogonal edges (i.e. with bends)

4()—

grid drawings
without crossing

Aesthetics to be optimized, e.g.
crossing /bend minimization

edge length uniformity

minimizing total edge length /drawing area
angular resolution
symmetry/structure ‘ % - % ‘

Requirements of a graph layout

1.

5 29 - 15

4 3
Drawing conventions and requirements, e.g., 3
. . 40— —0
straight edges with I'(uv) = I'(u)T'(v) : 2 5
orthogonal edges (i.e. with bends) 7

grid drawings
without crossing
Aesthetics to be optimized, e.g.

crossing /bend minimization
edge length uniformity — lead to NP-hard
minimizing total edge length/drawing area optimization problems

angular resolution

symmetry/structure

Requirements of a graph layout

1.

5 29 - 16

4 3
Drawing conventions and requirements, e.g., 3
40— —0
straight edges with I'(uv) = I'(u)T'(v) : 2 5
orthogonal edges (i.e. with bends) 7

grid drawings
without crossing
Aesthetics to be optimized, e.g.

crossing /bend minimization
edge length uniformity — lead to NP-hard
minimizing total edge length/drawing area optimization problems

— such criteria are often

angular resolution .
inversely related

symmetry/structure

Requirements of a graph layout :

4 3
1. Drawing conventions and requirements, e.g., 3
40— —0
B straight edges with I'(uv) = I'(u)T'(v) : 2 5
B orthogonal edges (i.e. with bends) 7
B grid drawings 3
B without crossing

2. Aesthetics to be optimized, e.g.

crossing /bend minimization
edge length uniformity — lead to NP-hard
minimizing total edge length/drawing area optimization problems

— such criteria are often

angular resolution .
inversely related

symmetry/structure
3. Local Constraints, e.g.

Requirements of a graph layout :

4 3
1. Drawing conventions and requirements, e.g., 3
40— —0
B straight edges with I'(uv) = I'(u)T'(v) : 2 5
B orthogonal edges (i.e. with bends) 7
B grid drawings 3
B without crossing

2. Aesthetics to be optimized, e.g.

crossing /bend minimization
edge length uniformity — lead to NP-hard
minimizing total edge length/drawing area optimization problems

— such criteria are often

angular resolution .
inversely related

symmetry/structure

3. Local Constraints, e.g.
restrictions on neighboring vertices (e.g., “upward”).

restrictions on groups of vertices/edges (e.g., “clustered”).

The layout problem

The layout problem

The layout problem

The layout problem

W Universitit Trier

Visualization of Graphs
16 2 Lecture 1:
w The Graph Visualization Problem

Part I1I:
Basics

Philipp Kindermann
Summer Semester 2021

Basic Definitions
G = (V,E)

32 -

Basic Definitions

Edge ¢ = {u,v} € E:

32 -

Basic Definitions

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

32 -

Basic Definitions

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

B 1, v end vertices of ¢

32 -

Basic Definitions

Edge ¢ = {u,v} € E:
B ¢ incident to u and v
B 1, v end vertices of ¢

B u adjacent to v

32 -

Basic Definitions

Edge ¢ = {u,v} € E:
B ¢ incident to u and v
B 1, v end vertices of ¢
B u adjacent to v

B u and v are neighbors

32 -

Basic Definitions

Edge ¢ = {u,v} € E:
B ¢ incident to ¥ and v
B 1, v end vertices of ¢
B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

32 -

Basic Definitions

us (sometimes ¢ = uv or e = (u,v)
Edge ¢ = {u,v} € E:
B ¢ incident to ¥ and v
B 1, v end vertices of ¢
B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

32 -

Basic Definitions

us (sometimes ¢ = uv or e = (u,v)
Edge ¢ = {u,v} € E:
B ¢ incident to u and v
B 1, v end vertices of ¢
B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
Y oev deg(v) =

32 -

Basic Definitions

us (sometimes ¢ = uv or e = (u,v)
Edge ¢ = {u,v} € E:
B ¢ incident to u and v
B 1, v end vertices of ¢
B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma.
) oeV deg(v) = 2|E|

32-10

32 -11

Basic Definitions

us (sometimes ¢ = uv or e = (u,v)
Edge ¢ = {u,v} € E:
B ¢ incident to u and v
B 1, v end vertices of ¢
B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-12

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

us (sometimes ¢ = uv or e = (u,v)
Edge ¢ = {u,v} € E:
B ¢ incident to u and v
B 1, v end vertices of ¢
B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-13

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

B 1, v end vertices of ¢
B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-14

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

B 1, v end vertices of ¢
B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-15

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

B 1, v end vertices of ¢
B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-16

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B 1, v end vertices of ¢
B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32 -17

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B 1 v end vertices of ¢ v reachable from u: There is a u-v-path

B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-18

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B 1 v end vertices of ¢ v reachable from u: There is a u-v-path

B u adjacent to v
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-19

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B 1 v end vertices of ¢ v reachable from u: There is a u-v-path

B u adjacent to v subgraph: graph G' = (V/,E') with V' C Vand E' C E
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-20

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B 1 v end vertices of ¢ v reachable from u: There is a u-v-path

B u adjacent to v subgraph: graph G' = (V/,E') with V' C Vand E' C E
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-21

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B 1 v end vertices of ¢ v reachable from u: There is a u-v-path

B u adjacent to v subgraph: graph G' = (V/,E') with V' C Vand E' C E
B u and v are neighbors

degree deg(v):
number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-22

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B 1 v end vertices of ¢ v reachable from u: There is a u-v-path

B u adjacent to v subgraph: graph G' = (V/,E') with V' C Vand E' C E

B u and v are neighbors , Y
induced subgraph: subgraph with E' = (7,)N E

degree deg(v):

number of edges incident to v

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-23

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B 1 v end vertices of ¢ v reachable from u: There is a u-v-path

B u adjacent to v subgraph: graph G' = (V/,E') with V' C Vand E' C E
B u and v are neighbors , Y
induced subgraph: subgraph with E' = (7,)N E
degree deg(v):

number of edges incident to v ~ connected component: maximal connected subgraph

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

32-24

Basic Definitions

u-v-path of length ¢:

Sequence of ¢ + 1 distinct adjacent vertices (and ¢
connecting edges), starting with u# and ending with v:

u—{wvp—vg—-—vp 1 —{v1,0} -0

simple cycle: u-u-path

Edge ¢ = {u,v} € E:
B ¢ incident to u and v

connected: There is a u-v-path for every u,v € V

B u, v end vertices of ¢ f>v reachable from u: There is a u-v-path

B u adjacent to v subgraph: graph G' = (V/,E') with V' C Vand E' C E

B u and v are neighbors , Y
induced subgraph: subgraph with E' = (7,)N E

degree deg(v):

number of edges incident to v _ connected component: maximal connected subgraph

Handshaking-Lemma. | [Corollary.
Y ocv deg(v) = 2|E| The number of odd-degree vertices is even.

Directed Graphs

G = (V,E)

o

Directed Graphs
(V,E)
KT

N

,0
Edge ¢ = (u,v) € E:

u

Directed Graphs

G = (V,E)

Edge ¢ = (u,v) € E:
B 1 is source of ¢

Directed Graphs

Edge ¢ = (u,v) € E:
B 1 is source of ¢

B v is target of e

Directed Graphs

Edge ¢ = (u,v) € E:
B 1 is source of ¢
B v is target of e

indegree deg™ (v):
number of edges for which v is the target

33 -8

Directed Graphs

Edge ¢ = (u,v) € E:
B u is source of e
B v is target of e
indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

33 -

Directed Graphs

Edge ¢ = (u,v) € E:
B 1 is source of ¢
B v is target of e

indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E‘

33 -

Directed Graphs

u—(u,v1) —v1 —

Edge ¢ = (u,v) € E:
B 1 is source of ¢

B v is target of e

indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E‘

directed u-v-path:

vy~ (9p-1,0) ~ @

33 -

Directed Graphs

u—(u,v1) —v1 —

Edge ¢ = (u,v) € E:
B u is source of e
B v is target of e
indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E|

G=(V,E) directed u-v-path:

vy~ (9p-1,0) ~ @

33 -

33-10

Directed Graphs

G=(V,E) directed u-v-path:
u—(u,01) —v1 — -+ =01 — (vp-1,0) — 0

directed cycle: directed u-u-path

Edge ¢ = (u,v) € E:
B u is source of ¢
B v is target of e

indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E|

33-11

Directed Graphs

G=(V,E) directed u-v-path:
u—(u,01) —v1 — -+ =01 — (vp-1,0) — 0

directed cycle: directed u-u-path
acyclic: no directed cycles

Edge ¢ = (u,v) € E:

B u is source of ¢

B v is target of e

indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E|

33-12

Directed Graphs

G=(V,E) directed u-v-path:
u—(u,01) —v1 — -+ =01 — (vp-1,0) — 0

directed cycle: directed u-u-path
acyclic: no directed cycles

Edge ¢ = (u,v) € E:

B u is source of ¢

B v is target of e

indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E|

33-13

Directed Graphs

G=(V,E) directed u-v-path:
u—(u,01) —v1 — -+ =01 — (vp-1,0) — 0

directed cycle: directed u-u-path

acyclic: no directed cycles
Edge ¢ = (u,v) € E:

. connected: There is a directed u-v-path
B u is source of ¢

or v-u-path for every u,v € V
B v is target of e

indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E‘

33-14

Directed Graphs

G=(V,E) directed u-v-path:
u—(u,01) —v1 — -+ =01 — (vp-1,0) — 0

directed cycle: directed u-u-path

acyclic: no directed cycles
Edge ¢ = (u,v) € E:

_ connected: There is a directed u-v-path
B u is source of ¢

or v-u-path for every u,v € V
B v is target of ¢ v reachable from u: There is a directed u-v-path

indegree deg™ (v):
number of edges for which v is the target

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E‘

33-15

Directed Graphs

G=(V,E) directed u-v-path:
u—(u,01) —v1 — -+ =01 — (vp-1,0) — 0

directed cycle: directed u-u-path

acyclic: no directed cycles
Edge ¢ = (u,v) € E:

. connected: There is a directed u-v-path
B u is source of ¢

or v-u-path for every u,v € V
B v is target of ¢ v reachable from u: There is a directed u-v-path

indegree deg™ (v): ‘S,
number of edges for which v is the target connected component

outdegree deg™ (v):
number of edges for which v is the source

Handshaking-Lemma.
ZUEV deg_ (U) — Z’()EV deg+ (U) — |E‘

W Universitit Trier

Visualization of Graphs

1€ 2 w Lecture 1:

The Graph Visualization Problem

Part IV:
Planarity

Philipp Kindermann
Summer Semester 2021

Planar Graphs

G = (V,E)

N

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

35 -

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

35-3

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

35 - -

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

35 -8

Planar Graphs

G = (V,E)

1—(2,3,5)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

35-6

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

35 -

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

35-8

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

35 -6

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

1—(2,3,5)
2 — (3,1,4)
3—(4,1,2)
4— (5,3,2)
5— (1,4)

Clockwise orientation of adjacent

vertices around each vertex.

35-10

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

1—(2,3,5)
2 — (3,1,4)
3—(4,1,2)
4— (5,3,2)
5— (1,4)

Clockwise orientation of adjacent

vertices around each vertex.

35-11

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

1—(2,3,5)
2 — (3,1,4)
3—(4,1,2)
4— (5,3,2)
5— (1,4)

Clockwise orientation of adjacent

vertices around each vertex.

1—(2,5,3)
25 (3,4,1)
3 (4,2,1)
4— (5,2,3)
5 (1,4)

35-12

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

1—(2,3,5)
2 — (3,1,4)
3—(4,1,2)
4 — (5,3,2)
5— (1,4)

Clockwise orientation of adjacent

vertices around each vertex.

A planar graph can have many
planar embeddings.

1—(2,5,3)
25 (3,4,1)
3 (4,2,1)
4— (5,2,3)
5 (1,4)

Planar Graphs

G is planar:
it can be drawn in such a way

that no edges cross each other.

planar embedding:

1—(2,3,5)
2 — (3,1,4)
3—(4,1,2)
4 — (5,3,2)
5— (1,4)

Clockwise orientation of adjacent

vertices around each vertex.

A planar graph can have many

planar embeddings.

A planar embedding can have

many planar drawings!

1—(2,5,3)
25 (3,4,1)
3 (4,2,1)
4— (5,2,3)
5 (1,4)

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

1—(2,3,5)
2 — (3,1,4)
3—(4,1,2)
4 — (5,3,2)
5— (1,4)

Clockwise orientation of adjacent

vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

5

1—(2,5,3)
25 (3,4,1)
3 (4,2,1)
4— (5,2,3)
5 (1,4)

Connected region of the plane
bounded by edges

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

1—(2,3,5)
2 — (3,1,4)
3—(4,1,2)
4 — (5,3,2)
5— (1,4)

Clockwise orientation of adjacent

vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

5

1—(2,5,3)
25 (3,4,1)
3 (4,2,1)
4— (5,2,3)
5 (1,4)

Connected region of the plane
bounded by edges

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

1—(2,3,5)
2 — (3,1,4)
3—(4,1,2)
4 — (5,3,2)
5— (1,4)

Clockwise orientation of adjacent

vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

5

1—(2,5,3)
25 (3,4,1)
3 (4,2,1)
4— (5,2,3)
5 (1,4)

Connected region of the plane
bounded by edges

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

1—(2,3,5)
2 — (3,1,4)
3—(4,1,2)
4 — (5,3,2)
5— (1,4)

Clockwise orientation of adjacent

vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

5

1—(2,5,3)
25 (3,4,1)
3 (4,2,1)
4— (5,2,3)
5 (1,4)

Connected region of the plane
bounded by edges

Planar Graphs

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

1—(2,3,5)
2 — (3,1,4)
3—(4,1,2)
4 — (5,3,2)
5— (1,4)

Clockwise orientation of adjacent

vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

5

1—(2,5,3)
25 (3,4,1)
3 (4,2,1)
4— (5,2,3)
5 (1,4)

Connected region of the plane
bounded by edges

35 -20

Planar Graphs /t f\,

G = (V,E)

1—(23,5) 1— (2
2 — (3,1,4) 2 — (3,
1 3—(4,1,2) 1 3 — (4,
4 — (5,3,2) 4 — (5,
5— (1,4) 5— (1,
> inner faces
G is planar: Connected region of the plane
it can be drawn in such a way bounded by edges
that no edges cross each other. Euler’s polyhedra formula.)
planar embedding: #faces - #edges + #vertices = #conn.comp. + 1
Clockwise orientation of adjacent f - m + n = C + 1
. J

vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

35-21

Planar Graphs /t f\,

G = (V,E)

1—(23,5) 1— (2
2 — (3,1,4) 2 — (3,
1 3—(4,1,2) 1 3 — (4,
4 — (5,3,2) 4 — (5,
5— (1,4) 5— (1,
> inner faces
G is planar: Connected region of the plane
it can be drawn in such a way bounded by edges
that no edges cross each other. Euler's polyhedra formula.,)
planar embedding: #faces - #edges + #vertices = #conn.comp. + 1
Clockwise orientation of adjacent f - m + n = C + 1
vertices around each vertex.) ’
Proof.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

35-22

Planar Graphs /t f\,

G = (V,E)

1—(23,5) 1— (2
2 — (3,1,4) 2 — (3,
1 3—(4,1,2) 1 3 — (4,
4 — (5,3,2) 4 — (5,
5— (1,4) 5— (1,
> inner faces
G is planar: Connected region of the plane
it can be drawn in such a way bounded by edges
that no edges cross each other. Euler’s polyhedra formula.)
planar embedding: #faces - #edges + #vertices = #conn.comp. + 1
Clockwise orientation of adjacent f - m + n = C + 1
. J

vertices around each vertex. : :
Proof. By induction on m:

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

35-23

Planar Graphs /t f\,

G = (V,E)

1—(23,5) 1— (2
2 — (3,1,4) 2 — (3,
1 3—(4,1,2) 1 3 — (4,
4 — (5,3,2) 4 — (5,
5— (1,4) 5— (1,
> inner faces
G is planar: Connected region of the plane
it can be drawn in such a way bounded by edges
that no edges cross each other. Euler’s polyhedra formula.)
planar embedding: #faces - #edges + #vertices = #conn.comp. + 1
Clockwise orientation of adjacent f - m + n = C + 1
. J

vertices around each vertex. : :
Proof. By induction on m:

A planar graph can have many m =0 =
planar embeddings.

A planar embedding can have
many planar drawings!

35 - 24

Planar Graphs /t f\,

G = (V,E)

1—(23,5) 1— (2
2 — (3,1,4) 2 — (3,
1 3—(4,1,2) 1 3 — (4,
4 — (5,3,2) 4 — (5,
5— (1,4) 5— (1,
> inner faces
G is planar: Connected region of the plane
it can be drawn in such a way bounded by edges
that no edges cross each other. Euler’s polyhedra formula.)
planar embedding: #faces - #edges + #vertices = #conn.comp. + 1
Clockwise orientation of adjacent f - m + n = C + 1
. J

vertices around each vertex. : :
Proof. By induction on m:

A planar graph can have many m=0=f=2andc="
planar embeddings. ' '

A planar embedding can have
many planar drawings!

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:

Clockwise orientation of adjacent

vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

/ outer face
\v 2

1—(2,3,5) 1— (2
2 — (3,1,4) 2 — (3,
3—(4,1,2) 1 3 — (4,
4 — (5,3,2) 4 — (5,
5— (1,4) 5— (1,

inner faces

Connected region of the plane
bounded by edges

35-25

(Euler’s polyhedra formula.

f - m + n = C

\.

#faces - #edges + #vertices = #conn.comp. + 1

J

Proof. By induction on m:
m=0=f=1landc=mn

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

1—
2 —
3 —
4 —
5—

= SUES £ 4

3,5) 1— (2,
1,4) 2 — (3,
1,2) 1 3 — (4,
3,2) 4 — (5,
4) 5— (1,

N N NN N

/ outer face
\v 2

inner faces

Connected region of the plane
bounded by edges

35 -26

(Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = C + 1

\.

J

Proof. By induction on m:
m=0=f=1andc=mn
=0—-—0+c=c+1

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

1—
2 —
3 —
4 —
5—

= SUES £ 4

3,5) 1— (2,
1,4) 2 — (3,
1,2) 1 3 — (4,
3,2) 4 — (5,
4) 5— (1,

N N NN N

/ outer face
\v 2

inner faces

Connected region of the plane
bounded by edges

35-27

(Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = C + 1

\.

J

Proof. By induction on m:
m=0=f=1landc=mn
—0-0+c=c+1v

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

1—
2 —
3 —
4 —
5—

= SUES £ 4

3,5) 1— (2,
1,4) 2 — (3,
1,2) 1 3 — (4,
3,2) 4 — (5,
4) 5— (1,

N N NN N

/ outer face
\v 2

inner faces

Connected region of the plane
bounded by edges

35 - 28

(Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = C + 1

\.

J

Proof. By induction on m:
m=0=f=1andc=mn

—0-0+c=c+1v
m>1=

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

1—
2 —
3 —
4 —
5—

= SUES £ 4

3,5) 1— (2,
1,4) 2 — (3,
1,2) 1 3 — (4,
3,2) 4 — (5,
4) 5— (1,

N N NN N

/ outer face
\v 2

inner faces

Connected region of the plane
bounded by edges

35-29

(Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = C + 1

\.

J

Proof. By induction on m:

m=0=f=1andc=mn
—0-0+c=c+1v

m > 1 = remove 1 edge ¢

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

1—
2 —
3 —
4 —
5—

= SUES £ 4

3,5) 1— (2,
1,4) 2 — (3,
1,2) 1 3 — (4,
3,2) 4 — (5,
4) 5— (1,

N N NN N

/ outer face
\v 2

inner faces

Connected region of the plane
bounded by edges

35 -30

(Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = C + 1

\.

J

Proof. By induction on m:
m=0=f=1landc=mn

- 0-0+c=c+1v
m >1=remove 1 edgee = m —1

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

1—
2 —
3 —
4 —
5—

= SUES £ 4

3,5) 1— (2,
1,4) 2 — (3,
1,2) 1 3 — (4,
3,2) 4 — (5,
4) 5— (1,

N N NN N

inner faces

Connected region of the plane
bounded by edges

(Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = C + 1

\.

J

Proof. By induction on m:
m=0=f=1landc=mn

- 0-0+c=c+1v
m >1=remove 1 edgee = m —1

JPo=—oc]

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

1—
2 —
3 —
4 —
5—

= SUES £ 4

3,5) 1— (2,
1,4) 2 — (3,
1,2) 1 3 — (4,
3,2) 4 — (5,
4) 5— (1,

N N NN N

inner faces

Connected region of the plane
bounded by edges

(Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = C + 1

\.

J

Proof. By induction on m:
m=0=f=1landc=mn

- 0-0+c=c+1v
m >1=remove 1 edgee = m —1

Po—o} = c+1

Planar Graphs

G = (V,E)

G is planar:
it can be drawn in such a way
that no edges cross each other.

planar embedding:
Clockwise orientation of adjacent
vertices around each vertex.

A planar graph can have many
planar embeddings.

A planar embedding can have
many planar drawings!

1—
2 —
3 —
4 —
5—

= SUES £ 4

3,5) 1— (2,
1,4) 2 — (3,
1,2) 1 3 — (4,
3,2) 4 — (5,
4) 5— (1,

N N NN N

inner faces

Connected region of the plane
bounded by edges

(Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = C + 1

\.

J

Proof. By induction on m:
m=0=f=1landc=mn

- 0-0+c=c+1v
m >1=remove 1 edgee = m —1

Po—o] = c+1 — = f+1

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices
f - m + n

.

= ficonn.comp. + 1
= C +1

J

Properties of Planar Graphs

Properties of Planar Graphs

Properties of Planar Graphs

Proof. 1.

36 -

Properties of Planar Graphs

Proof. 1. Every edge incident to < 2 faces

36 -

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = C +1
.

‘Theorem. G simple planar graph with n > 3.
1.m<3n-6

.

Proof. 1. Every edge incident to < 2 faces
Every face incident to > 3 edges

36 -

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1

f - m + n = C +1
.

‘Theorem. G simple planar graph with n > 3.
1.m<3n-6

.

Proof. 1. Every edge incident to < 2 faces
Every face incident to > 3 edges

= 3f <2m

36 -

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = C + 1

(\

‘Theorem. G simple planar graph with n > 3.
1.m<3n-6

.

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges
k = 3f <2m
- =6<3c+3<3f-3m+3n

36 -

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = C + 1

(\

‘Theorem. G simple planar graph with n > 3.
1.m<3n-6

.

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges
k = 3f <2m
- =6<3c+3<3f-3m+3n

36 -

36 - 10

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = C + 1
& ’
\

‘Theorem. G simple planar graph with n > 3.

1.m<3n—-6
. J °
1
Proof. 1. Every edge incident to < 2 faces
Every face incident to > 3 edges 4
k = 3f <2m :
~=>6<3c+3<3f-3m+3n <2m—3m—+3n

36 - 11

Properties of Planar Graphs

‘Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
f f - m + n = C +1
‘Theorem. G simple planar graph with n > 3.)
1.m <3n—6

S J 1

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
k = 3f <2m :
+=>6<3c+3<3f-3m+3n <2m—-3m—+3n=3n—m

36 - 12

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = C + 1

[J
\

(Theorem. G simple planar graph with n > 3.
1.m <3n—6
\. y 3
1
Proof. 1. Every edge incident to < 2 faces
Every face incident to > 3 edges ¢
k = 3f <2m :
+=>6<3c+3<3f-3m+3n <2m—-3m—+3n=3n—m

> m<3n-—6

36 - 13

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = C + 1

[J
\

(Theorem. G simple planar graph with n > 3.
1.m < 3n-—6 2. f <2n—4
\. y 3
1
Proof. 1. Every edge incident to < 2 faces
Every face incident to > 3 edges ¢
k = 3f <2m :
+=>6<3c+3<3f-3m+3n <2m—-3m—+3n=3n—m

> m<3n-—6

36 - 14

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = C + 1

[J
\

‘Theorem. G simple planar graph with n > 3.
1.m < 3n-—6 2. f <2n—4

3
\ 7 1

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m :
= 6<3c+3<3f—-3m+3n <2m—3m+3n=3n—m

> m<3n-—6
2. 3f <2m

36 - 15

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = C + 1

[J
\

‘Theorem. G simple planar graph with n > 3.
1.m < 3n-—6 2. f <2n—4

3
\ 7 1

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m :
= 6<3c+3<3f—-3m+3n <2m—3m+3n=3n—m

> m<3n-—6
2. 3f <2m < 6n—12

36 - 16

Properties of Planar Graphs

‘Euler’s polyhedra formula.
#faces - #edges + #vertices = #conn.comp. + 1
f - m + n = C + 1

[J
\

‘Theorem. G simple planar graph with n > 3.
1.m < 3n-—6 2. f <2n—4

3
\ 7 1

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m :
= 6<3c+3<3f—-3m+3n <2m—3m+3n=3n—m

> m<3n-—6
22.3f<2m<6bn—-12 = f <2n—4

36 -17

Properties of Planar Graphs

‘Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
k f - m + n = C + 1)
((Theorem. G simple planar graph with n > 3.)
1.m < 3n-—6 2. f <2n—4

3. There is a vertex of degree at most five 3

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m :
= 6<3c+3<3f—-3m+3n <2m—3m+3n=3n—m

> m<3n-—6
22.3f<2m<6bn—-12 = f <2n—4

36 - 18

Properties of Planar Graphs

‘Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
\ f - m + n = C + 1)
((Theorem. G simple planar graph with n > 3.)
1.m < 3n-—6 2. f <2n—4

3. There is a vertex of degree at most five 3

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m :
-=>6<3c+3<3f-3m+3n <2m—3m+3n=3n—m

> m<3n-—6
22.3f<2m<6bn—-12 = f <2n—4

3. Yoev deg(v)

36 - 19

Properties of Planar Graphs

‘Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
k f - m + n = C + 1)
ffTheorem. G simple planar graph with n > 3.)
1.m < 3n-—6 2. f <2n—4

3. There is a vertex of degree at most five 3

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m :
= 6<3c+3<3f—-3m+3n <2m—3m+3n=3n—m

= m < 3n—6 Handshaking-Lemma.
2.3f <2m<6n-12 = f <2n—-4 |y ., deg(v) = 2|E]

3. Yoev deg(v)

36 - 20

Properties of Planar Graphs

‘Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
k f - m + n = C + 1)
ffTheorem. G simple planar graph with n > 3.)
1.m < 3n-—6 2. f <2n—4

3. There is a vertex of degree at most five 3

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m :
= 6<3c+3<3f—-3m+3n <2m—3m+3n=3n—m

= m < 3n—6 Handshaking-Lemma.
2.3f <2m<6n-12 = f <2n—-4 |y _,deg(v) = 2|E]

3. YLoey deg(v) = 2m

36 - 21

Properties of Planar Graphs

‘Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
k f - m + n = C + 1)
ffTheorem. G simple planar graph with n > 3.)
1.m < 3n-—6 2. f <2n—4

3. There is a vertex of degree at most five 3

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m :
= 6<3c+3<3f—-3m+3n <2m—3m+3n=3n—m

= m < 3n—6 Handshaking-Lemma.
2.3f <2m<6n-12 = f <2n—-4 |y _,deg(v) = 2|E]

3. Y ey deg(v) ~2m < 6n — 12

36 - 22

Properties of Planar Graphs

‘Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
k f - m + n = C + 1)
((Theorem. G simple planar graph with n > 3.)
1.m < 3n-—6 2. f <2n—4

3. There is a vertex of degree at most five 3

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m 5
= 6<3c+3<3f—-3m+3n <2m—3m+3n=3n—m
= m < 3n—6 [Handshaking-Lemma.]
2.3f <2m<én—12 = f <2n—-4 |y _y deg(v)=2|E]
3. Y ey deg(v) = 2m < 6n — 12
= min,cy deg(v)

36 - 23

Properties of Planar Graphs

‘Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
k f - m + n = C + 1)
((Theorem. G simple planar graph with n > 3.)
1.m < 3n-—6 2. f <2n—4

3. There is a vertex of degree at most five 3

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m 5
= 6<3c+3<3f—-3m+3n <2m—3m+3n=3n—m
= m < 3n—6 Handshaking-Lemma.
2.3f <2m<én—12 = f <2n—-4 |y _y deg(v)=2|E]
3. Y ey deg(v) = 2m < 6n — 12

= mingcy deg(v) < 1/nY vy deg(v)

36 -24

Properties of Planar Graphs

‘Euler’s polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1
k f - m + n = C + 1)
((Theorem. G simple planar graph with n > 3.)
1.m < 3n-—6 2. f <2n—4

3. There is a vertex of degree at most five 3

Proof. 1. Every edge incident to < 2 faces

Every face incident to > 3 edges ¢
& = 3f <2m 5
= 6<3c+3<3f—-3m+3n <2m—3m+3n=3n—m
= m < 3n—6 Handshaking-Lemma.
2.3f <2m<én—12 = f <2n—-4 |y _y deg(v)=2|E]

3. Y ey deg(v) = 2m < 6n — 12
= min,cy deg(v) < 1/n) v deg(v) < 6

Complete graphs

Complete graphs

K, = (V,(

%4
2

)) is the complete graph on n vertices.

b

37 -

Complete graphs

K, = (V,(

%4
2

)) is the complete graph on n vertices.

b

% K3’3

37 -3

Complete graphs @1@

K, = (V, (‘2/)) is the complete graph on n vertices.

Kﬂ1,”2 = (V1 U Vz, V1 X Vz) with ‘V1| — M and ‘V2| — My 1S a
complete bipartite graph on n = ny 4 n, vertices.

1 W

% K3’3

37 - 4

Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 — (V1 U Vz, V1 X Vz) with ‘V1| = M and ‘V2| = Ny 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

37 - &

Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

[Theorem. K5 and K33 are not planar. J

37 -

Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

[Theorem. K5 and K33 are not planar. J

Proof.
K5Z

37 -

Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

[Theorem. K5 and K33 are not planar. J

Proof.
Ks: m=(3)

37 -

Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

[Theorem. K5 and K33 are not planar. J
Proof.

. __(b\y _ 54
Ks: m=(3) =15

37 -

37 -10

Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

[Theorem. K5 and K33 are not planar. J

Proof.
Ks: m=(3) =22 =10

37 - 11

Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

[Theorem. K5 and K33 are not planar. J
Proof.
Ks: m=(3) =23 =10 3n—6

37 -12

Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

[Theorem. K5 and K33 are not planar. J
Proof.
Ks: m=(3) =22 =10 3.-5—6=3n—6

37 -13

Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

[Theorem. K5 and K33 are not planar. J

Proof.

Ks: m=(})=23=10>9=3-5-6=3n—6

37 - 14

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Ky ny = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(})=23=10>9=3-5-6=3n—6

37 -15

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Ky ny = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(})=23=10>9=3-5-6=3n—-6 V

37 -16

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Ky ny = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(})=23=10>9=3-5-6=3n—-6 V
K3,3I

37 -17

Complete graphs @m—,

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| —1nyis a % K33
complete bipartite graph on n = ny 4 n, vertices.
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
Ks: m=(3)="2=10>9=3-5-6=31—-6 V
K3,3I m=23-3

37 - 18

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Ky ny = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(3)=32=10>9=3-5-6=31-6 v
K3,3I m=3-3=9

37 -19

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Ky ny = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(})=23=10>9=3-5-6=3n—-6 V
K3,3:m:3-3:9 3n—6

37 -20

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Ky ny = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(})=23=10>9=3-5-6=3n—-6 V
K3,3:m:3-3:9 3:6—-6=3n—6

37 -21

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Ky ny = (V1 U Vs, V1 X Vz) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=()="2=10>9=3.5-6=3n—-6 v
Ksg: m=3-3=9<12=3-6—6=23n—6

37 -22

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Ky ny = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| =1y 1S a % K33
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(3)=32=10>9=3-5-6=31-6 v

K33: m=3-3=9<12=3-6—-6=3n—6
= no contradiction to the theorem!

37 -23

Complete graphs @m—,

1 W

o O

2
Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (V)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—6
= 1o contradiction to the theorem!
There is no cycle of length 3.

37 -24

Complete graphs @1@

1 W

Ky ny = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| =1y 1S a Oiz K33

complete bipartite graph on n = ny 4 n, vertices. 0

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

J [Theorem. G simple planar graph with n > 3.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

[Theorem. K5 and K33 are not planar. L < 30— 6 2 F < on—4

3. There is a vertex of degree at most five

Proof.
Ks: m=(3)=32=10>9=3-5-6=31-6 v

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)

37 -25

Complete graphs @1@

1 W

o O

2
Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (V)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)

= 4f < 2m

37 - 26

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1V

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
= 8<4c+4<4f —4m+4n

37 - 27

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1V

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m +4n

37 - 28

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1V

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m

37 -29

Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
=>m<2n-—4

37 - 30

Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—-4

37 - 31

Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

K33: m=3-3=9<12=3-6—-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
=>m<2n—4 =2-6—-4 =38

37 - 32

Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m

37 - 33

Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m

37 -34

Complete graphs @1@

1 W

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

K, = (V, (‘2/)) is the complete graph on 7 vertices.

Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T
3. There is a vertex of degree at most five
Proof.
: _ (5 5-4 —
Ks: m=(3)=32=10>9=3-5—6=3n1—6

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.
Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m
=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m v

37 - 35

Complete graphs @I@

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| —1nyis a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

([Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T

3. There is a vertex of degree at most five

Proof.
5 5.4 ‘Theorem. G simp. pl. bipartite graph, n > 3.
Ks: m=(3)="2=10>9=3.5-6=3n—6 « |[L.m=2n-—4 2 f<n-2

2 1.2 3. There is a vertex of degree at most three

K3z3: m=3-3=9<12=3-6-6=3n—-26

= no contradiction to the theorem!

There is no cycle of length 3.

Every face incident to > 4 edges (in hypothetical planar drawing)

= 4f < 2m

=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m

>m<2n—4 =2-6—4=8<9=m v

Complete graphs Ks What about
K4 and Kzlg?
V

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

37 -

([Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T

3. There is a vertex of degree at most five

Proof.
5 5.4 ‘Theorem. G simp. pl. bipartite graph, n > 3.
Ks: m=(3)="2=10>9=3.5-6=3n—6 « |[L.m=2n-—4 2 f<n-2

2 1.2 3. There is a vertex of degree at most three

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.

Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m

=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m v

36

Ky

Complete graphs Ks What about
K4 and Kzlg?
V

Ky = (V, (‘2/)) is the complete graph on n vertices. 1 V2

Kﬂ1,n2 = (V1 U Vo, V1 X V2) with ‘V1| = M and ‘V2| — 1y 1S a Oiz K33
complete bipartite graph on n = ny 4 n, vertices. 0
A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

37 -

([Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T

3. There is a vertex of degree at most five

Proof.
5 5.4 ‘Theorem. G simp. pl. bipartite graph, n > 3.
Ks: m=(3)="2=10>9=3.5-6=3n—6 « |[L.m=2n-—4 2 f<n-2

2 1.2 3. There is a vertex of degree at most three

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.

Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m

=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m v

37

Ky

Complete graphs @1@ What about

K4 and K2 37
K, = (V, (‘2/)) is the complete graph on 7 vertices.

1
Ky ny = (V1 U Vs, V1 X V2) with ‘V1| — n1 and ‘V2| =1y 1S a Oi\] K33 @
complete bipartite graph on n = ny 4 n, vertices.

A bipartite graph is a subgraph of a K, »,; V1 and V, are called bipartitions.

37 -

([Theorem. G simple planar graph with n > 3.
[Theorem. K5 and K33 are not planar. J Lt G T

3. There is a vertex of degree at most five

Proof.
5 5.4 ‘Theorem. G simp. pl. bipartite graph, n > 3.
Ks: m=(3)="2=10>9=3.5-6=3n—6 « |[L.m=2n-—4 2 f<n-2

2 1.2 3. There is a vertex of degree at most three

Kz3: m=3-3=9<12=3-6-6=3n—-6
= no contradiction to the theorem!
There is no cycle of length 3.

Every face incident to > 4 edges (in hypothetical planar drawing)
= 4f < 2m

=8 <4c+4<4f —4m+4n <2m —4m+4n=4n —2m
>m<2n—4 =2-6—4=8<9=m v

38

Contractions and Minors

G simple graph and ¢ = uv € E

YAV

38 -

Contractions and Minors

G simple graph and ¢ = uv € E
Contracting ¢ gives the graph G’ = (V', E’)

GW
u v

e

38 -

Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u, v}

GW o) O O oG
u 0

e

38 -

Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

G o) O O oG
—>
u 0 — O

e uo

38 - -

Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo
E' = E\ (Uyev{uw, vw})

GW o0——o0—0—o G
u 0 — O

e uo

38 -

Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo
E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

G (VQ‘V) Q: : :SZ o G/
u e % uv

38 -

Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (VQ‘V) Q: : :IZ o G/
u e % uv

38 -

Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (V?V Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

38 -

Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (V?V Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

O{_OS/EVO

38 -

38 -10

Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (V?V Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

o{_ogciioo

38 -11

Contractions and Minors

G simple graph and ¢ = uv € E

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo

E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (V?V Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

SERRE

38 -12

Contractions and Minors

G simple graph and ¢ = uv € E Observation.
G planar, H < G = H planar

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo
E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X

(multi-edges are merged)

G (VQ‘V) Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

SERRE

38 - 13

Contractions and Minors

G simple graph and ¢ = uv € E Observation.
G planar, H < G = H planar

Contracting ¢ gives the graph G’ = (V', E’)
V=V \{u,v}Uuo
E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X H

(multi-edges are merged)

G (VQ‘V) Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

SERRE

38-14

Contractions and Minors

G simple graph and ¢ = uv € E Observation.
G planar, H < G = H planar

Contracting ¢ gives the graph G’ = (V', E’)

V=V \{u,v}Uuo
E' = E\ (Uwev{nw, vw}) UUreadiw)uadis) #0X >_< > /E‘é

(multi-edges are merged)

G (VQ‘V Q: : :IZ o G/
u e % uv

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

SERRE

38 - 15

Contractions and Minors

G simple graph and ¢ = uv € E [Observation.]

Contracting ¢ gives the graph G' = (V/, E/) G planar, H < G = H planar

V=V \{u,v}Uuo
E' = E\ (Upevinw, vw}) UUyeadi(u)uadi(e) #0X >_< > /E‘é

(multi-edges are merged)

G G' [Theorem. [Kuratowski 1930]\
—>
G planar &
m ; v D neither K5 nor K33 minor of G

J

A graph H is a minor of G (write H < G)
if it is obtained by a set of contractions
from a subgraph of G.

+ < O—X—I—o o
Kazimierz Kuratowski

Warschau 1896-1980 Warschau

W Universitit Trier

Visualization of Graphs

1€ 2 w Lecture 1:

The Graph Visualization Problem

Part V:
Binary Search Trees

Philipp Kindermann
Summer Semester 2021

40 -1

(Rooted) Trees

G is a tree if the following equivalent conditions hold:

40 -2

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V

40-3

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected

40 - 4

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1

40 -5

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

40 - 6

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

Leaf: Vertex of degree 1

40 -7

(Rooted) Trees

G is a tree if the following equivalent conditions hold: U
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

root

Leaf: Vertex of degree 1
Rooted tree: tree with designated root

Parent: Neighbor on path to root

40 -8

(Rooted) Trees

G is a tree if the following equivalent conditions hold: U
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected

3. G cycle-freeand m =n — 1 7

root

4. G connected and m =n — 1
ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root
Ancestor: Vertex on path to root
Parent: Neighbor on path to root

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

Leaf: Vertex of degree 1

Rooted tree: tree with designated root
Ancestor: Vertex on path to root
Parent: Neighbor on path to root

parent(u)

|

ancestors(u)

root

40 -

40 -10

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected

3. G cycle-freeand m =n — 1 7

parent(u)

root

4. G connected and m =n — 1
ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root
Vertex not on path to root

40 - 11

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

|

ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root
Vertex not on path to root

Child: Neighbor not on path to root

40 -12

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3

|

ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root
Vertex not on path to root

Child: Neighbor not on path to root

Depth: Length of path to root

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V

2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m =n — 1

Leaf: Vertex of degree 1

Rooted tree: tree with designated root
Ancestor: Vertex on path to root
Parent: Neighbor on path to root
Vertex not on path to root
Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

40 -13

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)

40 - 14

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V

parent(u)

2. G cycle-free and connected oot " children(u)
3. G cycle-freeand m =n —1 depth(u) — 3
4. G connected and m =n — 1 hgight(lé)_: .

ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root
Vertex not on path to root

Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 15

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V

parent(u)

2. G cycle-free and connected oot " children(u)
3. G cycle-freeand m =n —1 depth(u) — 3
4. G connected and m =n — 1 hgight(lé)_: .

ancestors(u)

Leaf: Vertex of degree 1

Rooted tree: tree with designated root
Ancestor: Vertex on path to root
Parent: Neighbor on path to root

Vertex not on path to root
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 16

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V

parent(u)

2. G cycle-free and connected oot " children(u)
3. G cycle-freeand m =n —1 depth(u) — 3
4. G connected and m =n — 1 hgight(lé)_: .

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root
Parent: Neighbor on path to root

Vertex not on path to root
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 17

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 18

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 -19

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 20

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 21

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 22

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 23

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 24

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 25

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 26

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder
Parent: Neighbor on path to root

Vertex not on path to root node — left - right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 27

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 28

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 29

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 30

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 31

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 32

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 33

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 34

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 35

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 36

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on p ath to root node — left — right left — node — right
Child: Neighbor not on path to root
Depth: Length of path to root
Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

40 - 37

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)

40 - 38

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)

40 - 39

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)

40 - 40

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)

40 - 41

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)

40 - 42

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)

40 - 43

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)

40 - 44

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)

40 - 45

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)

40 - 46

(Rooted) Trees

G is a tree if the following equivalent conditions hold:
1. there is exactly one v-w-path between any v, w € V
2. G cycle-free and connected
3. G cycle-freeand m =n — 1
4. G connected and m = n — 1

parent(u)

root

\Children(u)

depth(u) =3
height(G) =5

|

ancestors(u)
Leaf: Vertex of degree 1
3 traversals:

Rooted tree: tree with designated root
Ancestor: Vertex on path to root preorder inorder
Parent: Neighbor on path to root

Vertex not on P ath to root node — left — right left — node — right

Child: Neighbor not on path to root ostorder
Depth: Length of path to root P

Height: Maximum depth of a leaf left - right — node

Binary Tree: At most two children per vertex (left / right child)

First Grid Layout of Binary Trees

1. Choose y-coordinates:

41 -

First Grid Layout of Binary Trees

1. Choose y-coordinates:

41 -

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

41-3

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

el

41 - ¢

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

W N = O

4] - ¢

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

41 -

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O

41 -

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

O

W N = O

W N = O

41 -

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

™o

W N = O

W N = O

41 -

41 -10

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O

41 -11

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O

41 -12

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O

41 -13

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O

41 - 14

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O

41 -15

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O

41 -16

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O

41 -17

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O

41 -18

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O

41 -19

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N RO
WN = O
O

41 -20

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O

41 -21

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O

41 - 22

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O

41 -23

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

o

W N = O

W N = O
LW - O

41 - 24

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O

Wi

41 -25

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder

W N = O

AR

postorder

W N = O
LW - O

41 - 26

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O

41 - 27

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O

41 - 28

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O

41 -29

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O
WN = O

41 - 30

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N~ O

WN = O

W N~ O
O

41 - 31

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N~ O
WN = O
W N~ O
O
O

41 - 32

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O
WN = O

41 - 33

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

O

W N = O

W N = O
LW - O
WN = O

41 - 34

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

o0

W N = O

W N = O
LW - O
WN = O

41 - 35

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O
WN = O

i

41 - 36

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O
WN = O

0400

41 - 37

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O
WN = O

v

41 - 38

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O
WN = O

41 - 39

First Grid Layout of Binary Trees

1. Choose y-coordinates: y(u) =depth(u)

=

2. Choose x-coordinates:

preorder % inorder % postorder %

W N = O

W N = O
LW - O
WN = O

	Organizational & Overview
	Organizational
	Books
	What is this course about?

	The Layout Problem
	Graphs and their representations
	Why draw graphs?
	What are we interested in?
	The layout problem?
	Examples
	Requirements of a graph layout
	The layout problem

	Basics
	Basic Definitions
	Directed Graphs

	Planarity
	Planar Graphs
	Properties of Planar Graphs
	Complete graphs
	Contractions and Minors

	Binary Search Trees
	(Rooted) Trees
	First Grid Layout of Binary Trees

