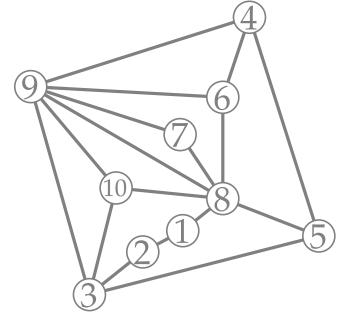


Visualization of Graphs Lecture 1: The Graph Visualization Problem



Part I: Organizational & Overview

Philipp Kindermann

Lectures: Pre-recorded videos (as you see here)

Lectures: Pre-recorded videos (as you see here)

Release date: One week before the lecture

- **Lectures:** Pre-recorded videos (as you see here)
 - Release date: One week before the lecture
 - Tue 08:30 10:00: Questions/Discussion in BigBlueButton

- **Lectures:** Pre-recorded videos (as you see here)
 - Release date: One week before the lecture
 - Tue 08:30 10:00: Questions/Discussion in BigBlueButton
 - Questions/Tasks in the Videos

- **Lectures:** Pre-recorded videos (as you see here)
 - Release date: One week before the lecture
 - Tue 08:30 10:00: Questions/Discussion in BigBlueButton
 - Questions/Tasks in the Videos

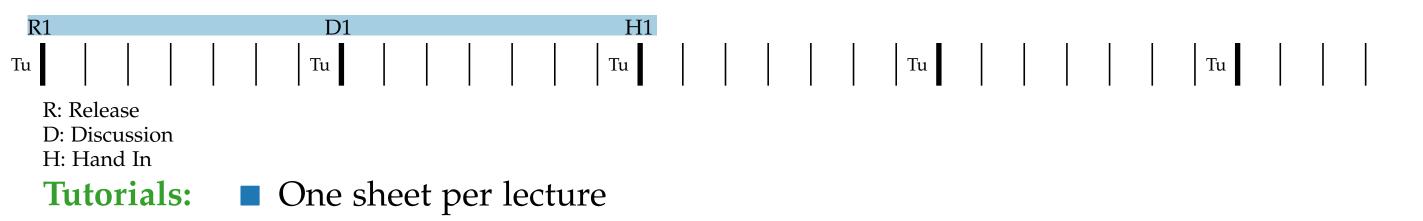
Tutorials: One sheet per lecture

- **Lectures:** Pre-recorded videos (as you see here)
 - Release date: One week before the lecture
 - Tue 08:30 10:00: Questions/Discussion in BigBlueButton
 - Questions/Tasks in the Videos

Tutorials: One sheet per lecture

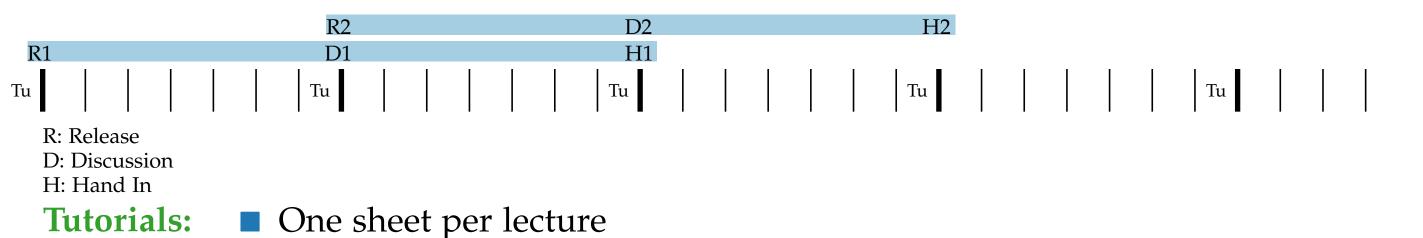
Lectures: Pre-recorded videos (as you see here)

- Release date: One week before the lecture
- Tue 08:30 10:00: Questions/Discussion in BigBlueButton
- Questions/Tasks in the Videos



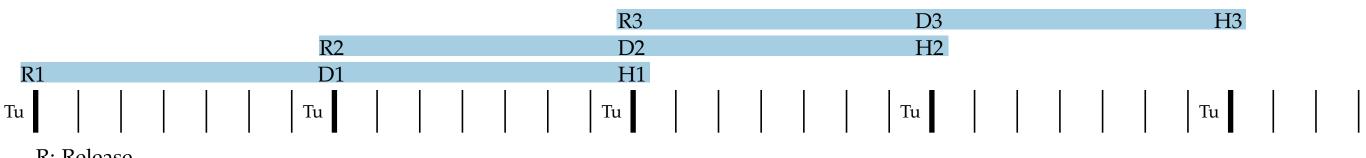
Lectures: Pre-recorded videos (as you see here)

- Release date: One week before the lecture
- Tue 08:30 10:00: Questions/Discussion in BigBlueButton
- Questions/Tasks in the Videos



Lectures: Pre-recorded videos (as you see here)

- Release date: One week before the lecture
- Tue 08:30 10:00: Questions/Discussion in BigBlueButton
- Questions/Tasks in the Videos



R: Release

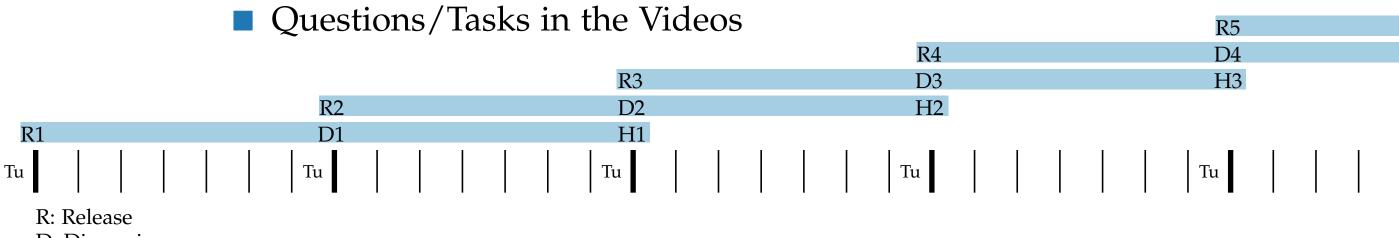
D: Discussion

H: Hand In

Tutorials: One sheet per lecture

Lectures: Pre-recorded videos (as you see here)

- Release date: One week before the lecture
- Tue 08:30 10:00: Questions/Discussion in BigBlueButton



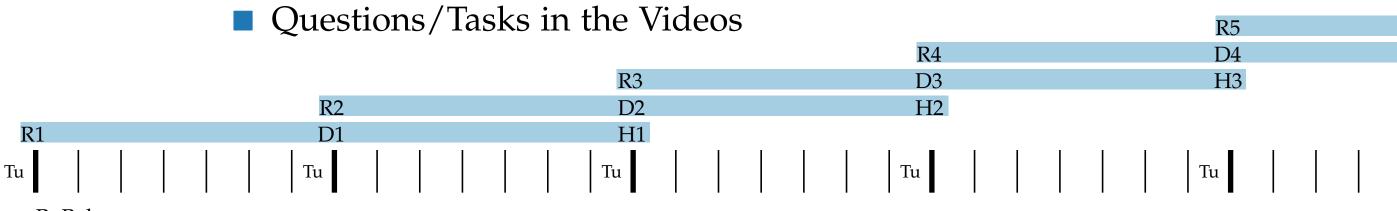
D: Discussion

H: Hand In

Tutorials: One sheet per lecture

Lectures: Pre-recorded videos (as you see here)

- Release date: One week before the lecture
- Tue 08:30 10:00: Questions/Discussion in BigBlueButton



R: Release

D: Discussion

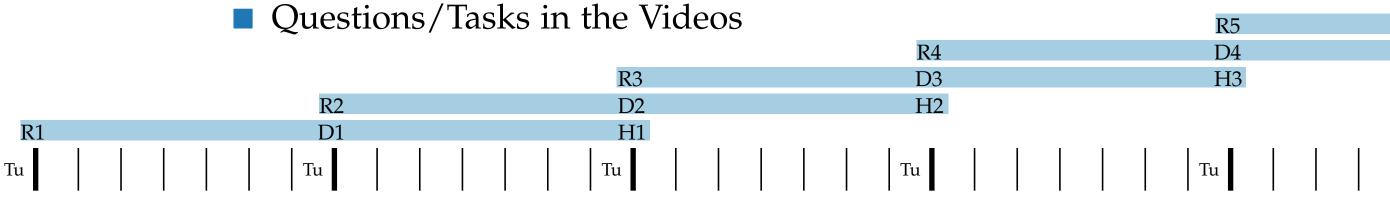
H: Hand In

Tutorials: One sheet per lecture

Submit solutions online

Lectures: Pre-recorded videos (as you see here)

- Release date: One week before the lecture
- Tue 08:30 10:00: Questions/Discussion in BigBlueButton



R: Release

D: Discussion

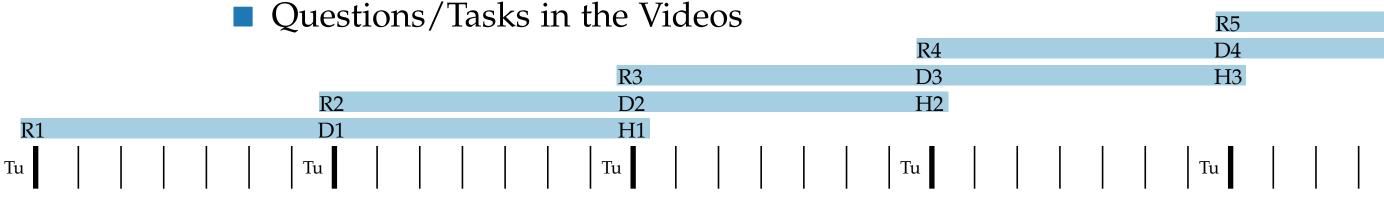
H: Hand In

Tutorials: One sheet per lecture

- Submit solutions online
- Recommend LaTeX (template provided)

Lectures: Pre-recorded videos (as you see here)

- Release date: One week before the lecture
- Tue 08:30 10:00: Questions/Discussion in BigBlueButton



R: Release

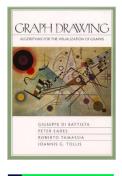
D: Discussion

H: Hand In

Tutorials: One sheet per lecture

- Submit solutions online
- Recommend LaTeX (template provided)
- Discussion and Solutions in BigBlueButton (Date: ?)

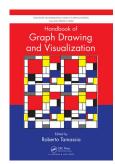
Books



G. Di Battista, P. Eades, R. Tamassia, I. Tollis: Graph Drawing: Algorithms for the Visualization of Graphs Prentice Hall, 1998

M. Kaufmann, D. Wagner: Drawing Graphs: Methods and Models Springer, 2001

T. Nishizeki, Md. S. Rahman: Planar Graph Drawing World Scientific, 2004



R. Tamassia: Handbook of Graph Drawing and Visualization CRC Press, 2013

http://cs.brown.edu/people/rtamassi/gdhandbook/

Books

[DG]

G. Di Battista, P. Eades, R. Tamassia, I. Tollis: Graph Drawing: Algorithms for the Visualization of Graphs Prentice Hall, 1998

M. Kaufmann, D. Wagner: Drawing Graphs: Methods and Models Springer, 2001

[PGD]

T. Nishizeki, Md. S. Rahman: Planar Graph Drawing World Scientific, 2004

[HGDV]



R. Tamassia: Handbook of Graph Drawing and Visualization CRC Press, 2013

http://cs.brown.edu/people/rtamassi/gdhandbook/

Learning objectives

Learning objectives

Overview of graph visualization

Learning objectives

- Overview of graph visualization
- Improved knowledge of modeling and solving problems via graph algorithms

Learning objectives

- Overview of graph visualization
- Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

Given a graph G, visualize it with a drawing Γ

Learning objectives

- Overview of graph visualization
- Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

Given a graph G, visualize it with a drawing Γ

Here:

Reducing the visualisation problem to its algorithmic core

Learning objectives

- Overview of graph visualization
- Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

Given a graph G, visualize it with a drawing Γ

Here:

Reducing the visualisation problem to its algorithmic core

graph class \Rightarrow layout style \Rightarrow algorithm \Rightarrow analysis

Learning objectives

- Overview of graph visualization
- Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

Given a graph *G*, visualize it with a drawing Γ

Here:

Reducing the visualisation problem to its algorithmic core

graph class \Rightarrow layout style \Rightarrow algorithm \Rightarrow analysis

modeling

data structures

Learning objectives

- Overview of graph visualization
- Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

Given a graph G, visualize it with a drawing Γ

Here:

Reducing the visualisation problem to its algorithmic core

graph class \Rightarrow layout style \Rightarrow algorithm \Rightarrow analysis

modeling
 divide & conquer, incremental
 data structures
 combinatorial optimization (flows, ILPs)
 force-based algorithm

Learning objectives

- Overview of graph visualization
- Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

Given a graph *G*, visualize it with a drawing Γ

Here:

Reducing the visualisation problem to its algorithmic core

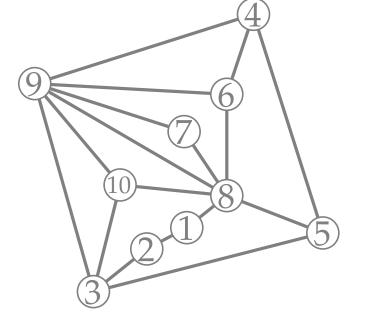
graph class \Rightarrow layout style \Rightarrow algorithm \Rightarrow analysis

modeling
 divide & conquer, incremental
 data structures
 combinatorial optimization (flows, ILPs)
 force-based algorithm

Topics

- Drawing Trees and Series-Parallel Graphs
- Straight-Line Drawings of Planar Graphs
- Orthogonal Grid Drawings
- Octilinear Drawings for Metro Maps
- Upwards Planar Drawings
- Hierarchical Layouts of Directed Graphs
- Contact Representations
- Visibility Representations
- The Crossing Lemma
- Beyond Planarity

Visualization of Graphs Lecture 1: The Graph Visualization Problem



Part II: The Layout Problem

Philipp Kindermann

What is a graph?

graph G = (V, E)
vertices V = {v₁, v₂, ..., v_n}
edge E = {e₁, e₂, ..., e_m}

What is a graph?

graph G = (V, E)
vertices V = {v₁, v₂,..., v_n}
edge E = {e₁, e₂,..., e_m}

Representation?

What is a graph?

graph G = (V, E)
vertices V = {v₁, v₂,..., v_n}
edge E = {e₁, e₂,..., e_m}

Representation?

Set notation

$$\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\} \\ E &= \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \\ \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \\ \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \\ \{v_9, v_{10}\}\} \end{split}$$

What is a graph?

graph G = (V, E)
vertices V = {v₁, v₂,..., v_n}
edge E = {e₁, e₂,..., e_m}

Representation?

Set notation

$$\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\} \\ E &= \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \\ \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \\ \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \\ \{v_9, v_{10}\}\} \end{split}$$

v_1 :	<i>v</i> ₂ , <i>v</i> ₈	<i>v</i> ₆ :	v_4, v_8, v_9
v_2 :	<i>v</i> ₁ , <i>v</i> ₃	v_7 :	<i>v</i> ₈ , <i>v</i> ₉
v_3 :	v_2, v_5, v_9, v_{10}	v_8 :	$v_1, v_5, v_6, v_7, v_9, v_{10}$
v_4 :	v_5, v_6, v_9	v_9 :	$v_3, v_4, v_6, v_7, v_8, v_{10}$
v_5 :	v_3, v_4, v_8	$v_{10}:$	<i>v</i> ₃ , <i>v</i> ₈ , <i>v</i> ₉

What is a graph?

• edge
$$E = \{e_1, e_2, \ldots, e_m\}$$

Representation?

Set notation

$$\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\} \\ E &= \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \\ \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \\ \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \\ \{v_9, v_{10}\}\} \end{split}$$

v_1 :	^v 2, ^v 8	v_6 :	v_4, v_8, v_9
v_2 :	<i>v</i> ₁ , <i>v</i> ₃	v_7 :	v ₈ , v ₉
v_3 :	v_2, v_5, v_9, v_{10}	v_8 :	$v_1, v_5, v_6, v_7, v_9, v_{10}$
v_4 :	<i>v</i> ₅ , <i>v</i> ₆ , <i>v</i> ₉	v_9 :	$v_3, v_4, v_6, v_7, v_8, v_{10}$
v_5 :	v_3, v_4, v_8	$v_{10}:$	<i>v</i> ₃ , <i>v</i> ₈ , <i>v</i> ₉

	A	dj	jac	cei	nc	у	m	at	ri	X	
1	0	1	0	0	0	0	0	1	0	0	١
1	1	0	1	0	0	0	0	0	0	0	
	0	1	0	0	1	0	0	0	1	1	
	0	0	0	0	1	1	0	0	1	0	
	0	0	1	1	0	0	0	1	0	0	
	0	0	0	1	0	0	0	1	1	0	
	0	0	0	0	0	0	0	1	1	0	
	1	0	0	0	1	1	1	0	1	1	
	0	0	1	1	0	1	1	1	0	1	
/	0	0	1	0	0	0	0	1	1	0)

What is a graph?

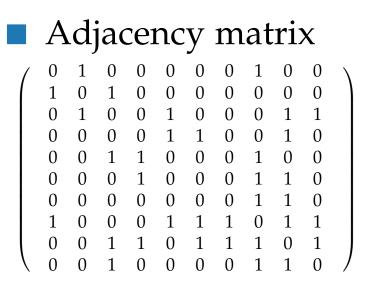
• edge $E = \{e_1, e_2, \ldots, e_m\}$

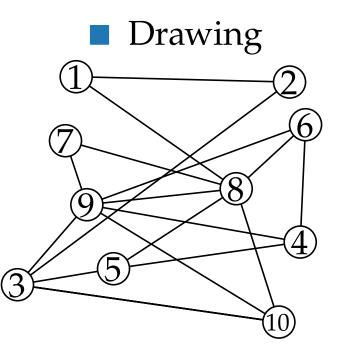
Representation?

Set notation

$$\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\} \\ E &= \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \\ \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \\ \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \\ \{v_9, v_{10}\}\} \end{split}$$

v_1 :	<i>v</i> ₂ , <i>v</i> ₈	v_6 :	v_4, v_8, v_9
v_2 :	<i>v</i> ₁ , <i>v</i> ₃	v_7 :	<i>v</i> ₈ , <i>v</i> ₉
v_3 :	v_2, v_5, v_9, v_{10}	v_8 :	$v_1, v_5, v_6, v_7, v_9, v_{10}$
v_4 :	v_5, v_6, v_9	v_9 :	$v_3, v_4, v_6, v_7, v_8, v_{10}$
v_5 :	v_3, v_4, v_8	$v_{10}:$	<i>v</i> ₃ , <i>v</i> ₈ , <i>v</i> ₉





What is a graph?

graph
$$G = (V, E)$$

vertices $V = \{v_1, v_2, \dots, v_n\}$

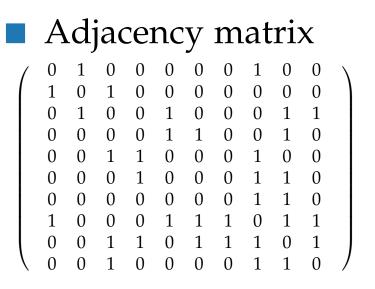
• edge $E = \{e_1, e_2, \dots, e_m\}$

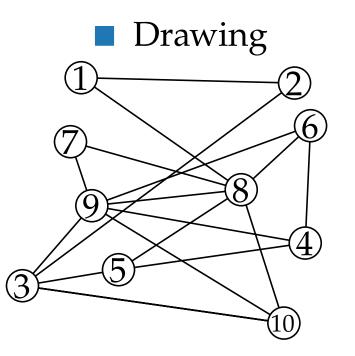
Representation?

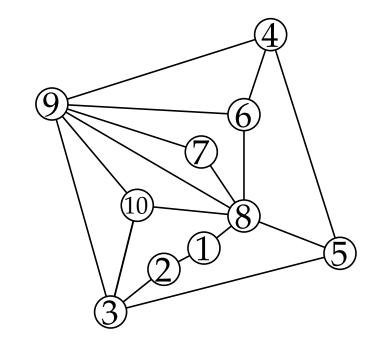
Set notation

$$\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\} \\ E &= \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \\ \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \\ \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \\ \{v_9, v_{10}\}\} \end{split}$$

v_1 :	<i>v</i> ₂ , <i>v</i> ₈	v_6 :	v_4, v_8, v_9
v_2 :	<i>v</i> ₁ , <i>v</i> ₃	v_7 :	<i>v</i> ₈ , <i>v</i> ₉
v_3 :	v_2, v_5, v_9, v_{10}	v_8 :	$v_1, v_5, v_6, v_7, v_9, v_{10}$
v_4 :	v_5, v_6, v_9	v_9 :	$v_3, v_4, v_6, v_7, v_8, v_{10}$
$v_5:$	v_3, v_4, v_8	$v_{10}:$	<i>v</i> ₃ , <i>v</i> ₈ , <i>v</i> ₉







Why draw graphs?

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

Graphs are a mathematical representation of real physical and abstract networks.

7 - 3

Abstract networks

Social networks

•••

- Communication networks
- Phylogenetic networks
- Metabolic networks
- Class/Object Relation Digraphs (UML)

Graphs are a mathematical representation of real physical and abstract networks.

Abstract networks

Social networks

. . .

- Communication networks
- Phylogenetic networks
- Metabolic networks
- Class/Object Relation Digraphs (UML)

Physical networks

- Metro systems
- Road networks
- Power grids
- Telecommunication networks
- Integrated circuits

...

Graphs are a mathematical representation of real physical and abstract networks.

People think visually – complex graphs are hard to grasp without good visualizations!

Graphs are a mathematical representation of real physical and abstract networks.

- People think visually complex graphs are hard to grasp without good visualizations!
- Visualizations help with the communication and exploration of networks.

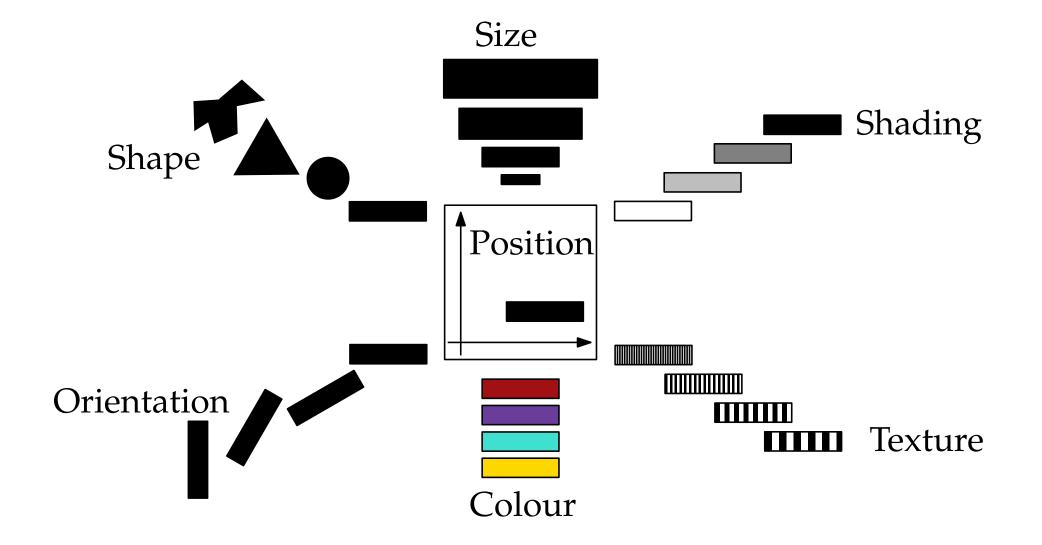
Graphs are a mathematical representation of real physical and abstract networks.

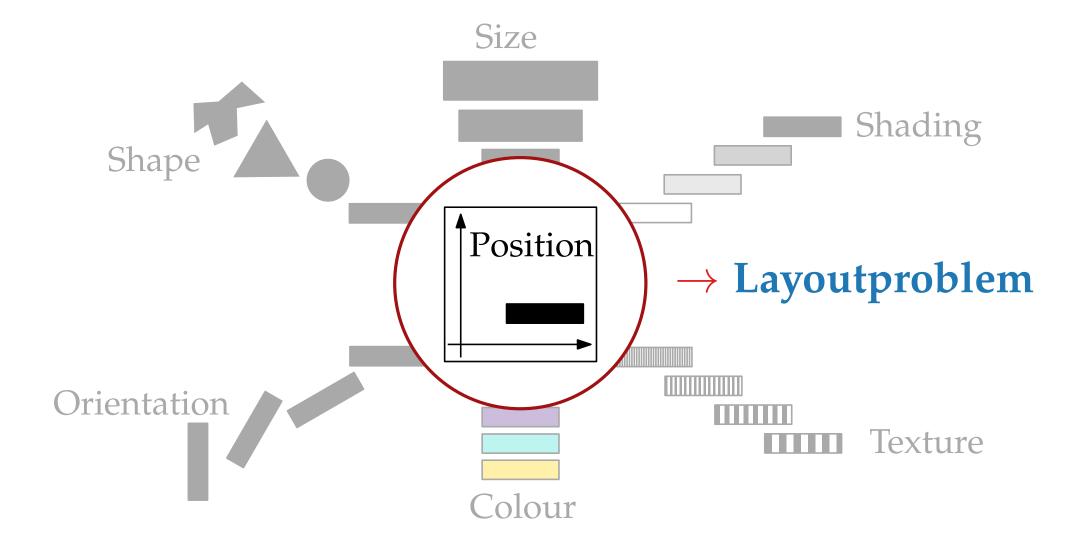
- People think visually complex graphs are hard to grasp without good visualizations!
- Visualizations help with the communication and exploration of networks.
- Some graphs are too big to draw them by hand.

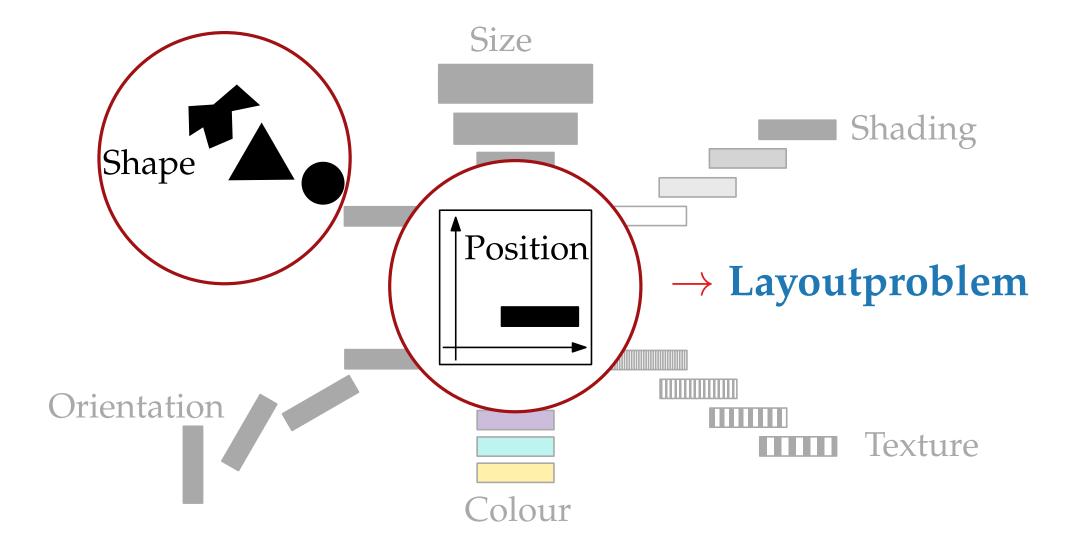
Graphs are a mathematical representation of real physical and abstract networks.

- People think visually complex graphs are hard to grasp without good visualizations!
- Visualizations help with the communication and exploration of networks.
- Some graphs are too big to draw them by hand.

We need algorithms that draw graphs automatically to make networks more accessible to humans.

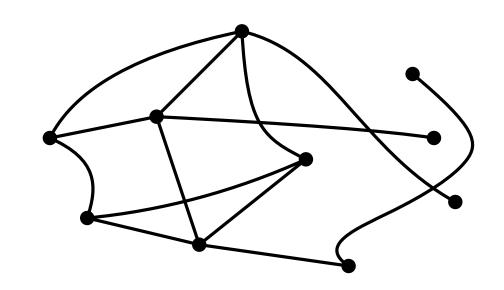






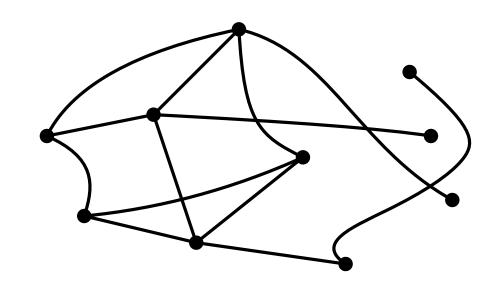
The layout problem

Here restricted to the standard representation, so-called node-link diagrams.



The layout problem

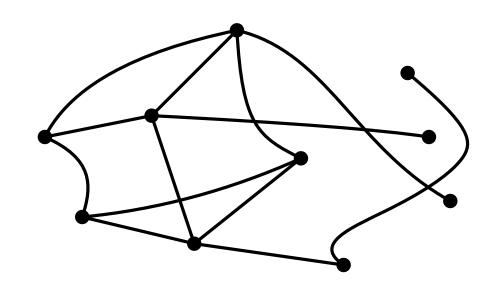
Here restricted to the standard representation, so-called node-link diagrams.



Graph Visualization Problem in: Graph G = (V, E)out:

The layout problem

Here restricted to the standard representation, so-called node-link diagrams.

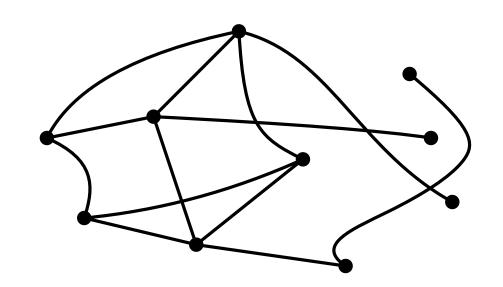


Graph Visualization Problem

in: Graph G = (V, E)out: nice drawing Γ of G $\Gamma: V \to \mathbb{R}^2$, vertex $v \mapsto$ point $\Gamma(v)$ $\Gamma: E \to$ curves in \mathbb{R}^2 , edge $\{u, v\} \mapsto$ simple, open curve $\Gamma(\{u, v\})$ with endpoints $\Gamma(u)$ und $\Gamma(v)$

The layout problem?

Here restricted to the standard representation, so-called node-link diagrams.

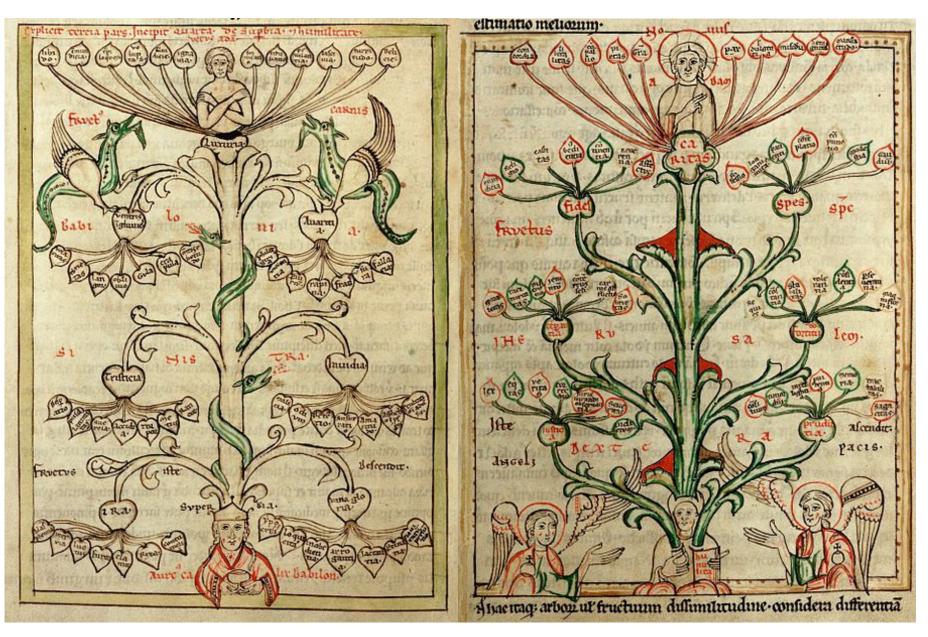


Graph Visualization Problem

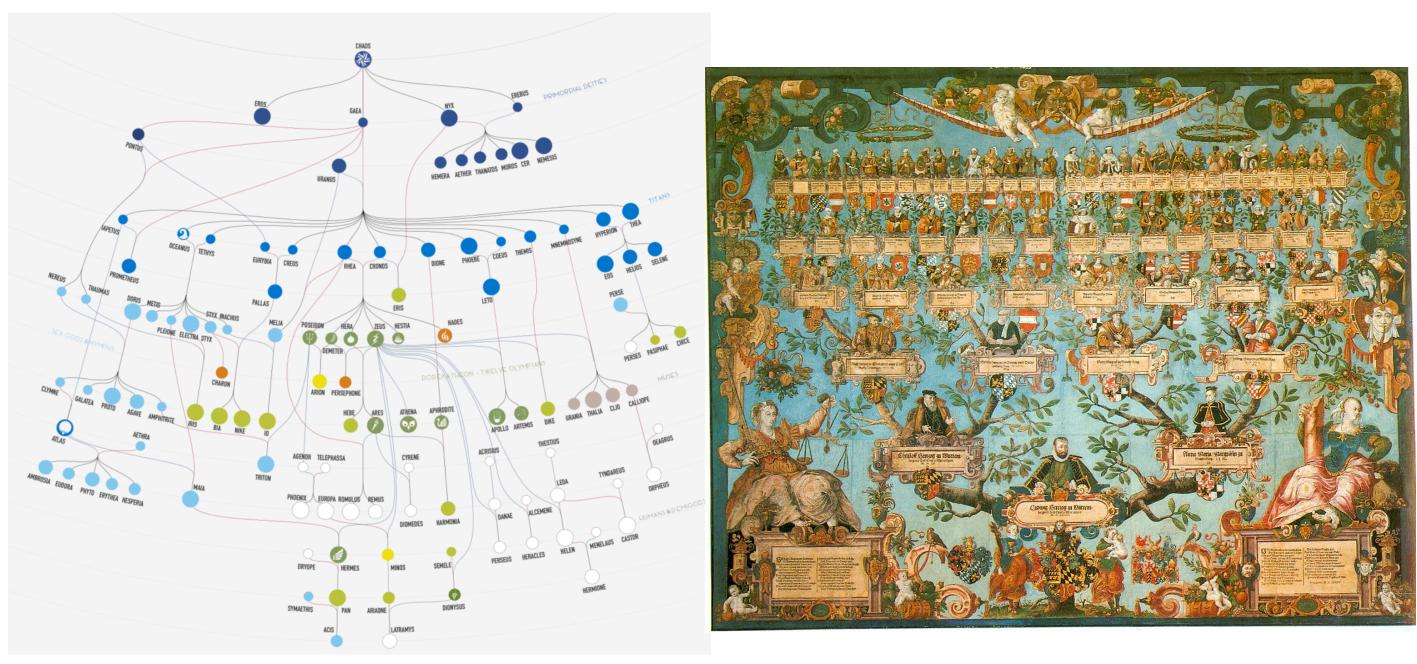
in: Graph G = (V, E)out: nice drawing Γ of G $\Box : V \to \mathbb{R}^2$, vertex $v \mapsto$ point $\Gamma(v)$ $\Box : E \to$ curves in \mathbb{R}^2 , edge $\{u, v\} \mapsto$ simple, open curve $\Gamma(\{u, v\})$ with endpoints $\Gamma(u)$ und $\Gamma(v)$

But what is a **nice** drawing?

Tree of virtues and tree of vices ca. 1200



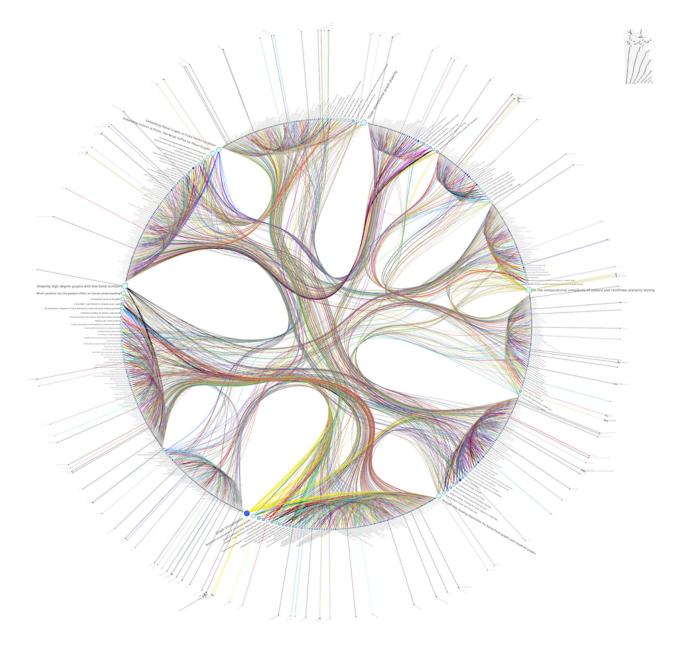
Social networks - family trees



J. Klawitter, T. Mchedlidze, *Link:* go.uniwue.de/myth-poster

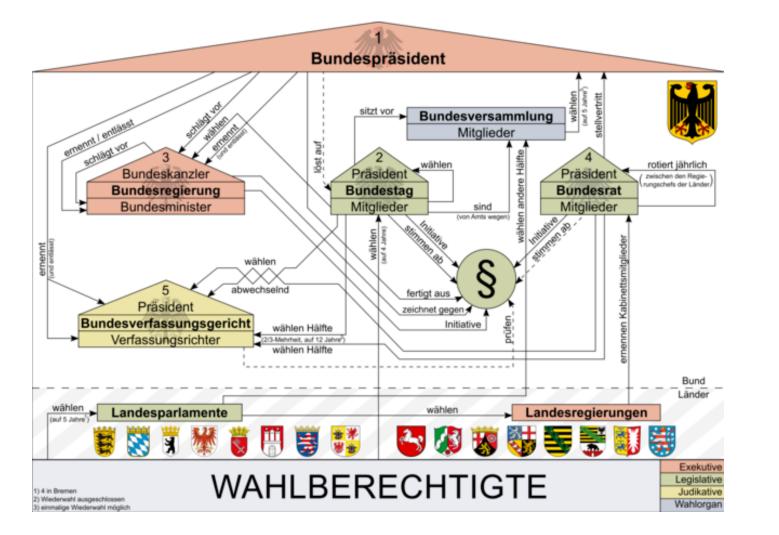
Ahnentafel Herzog Ludwig von Württemberg, 1585

Social network – citation graph

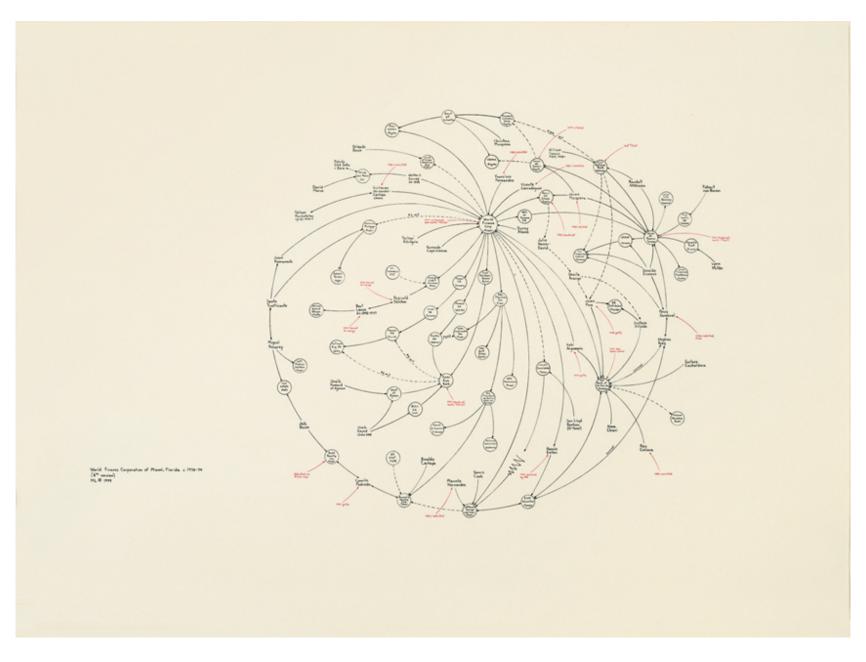


Da Ye, *Link:* https://go.uniwue.de/citation-graph

Social network - organisational chart

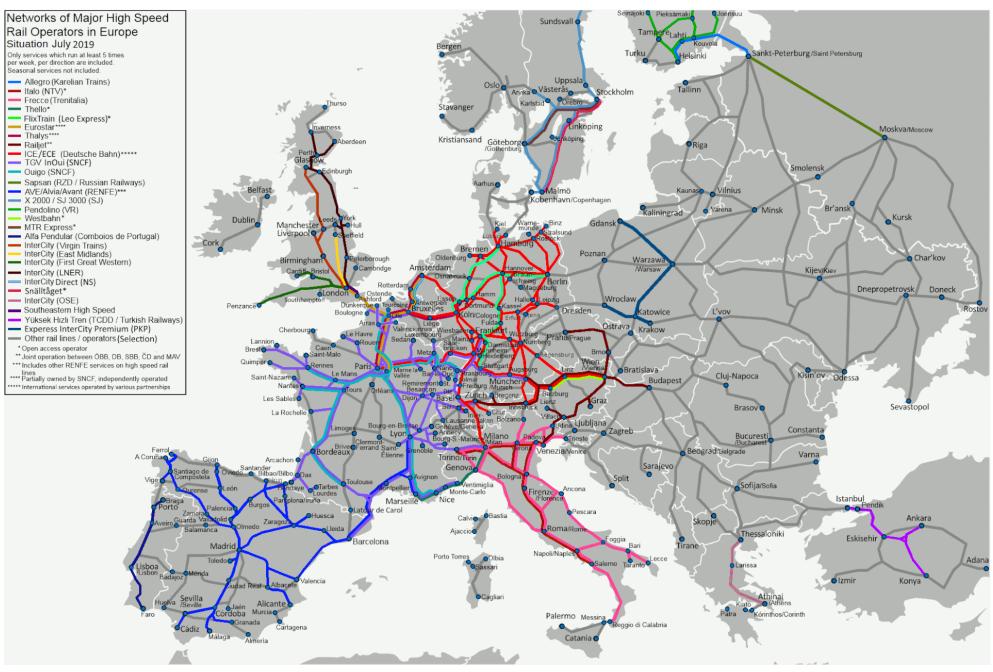


Social network - world finance corporation



© Mark Lombardi

Transportation network – European high speed railroads

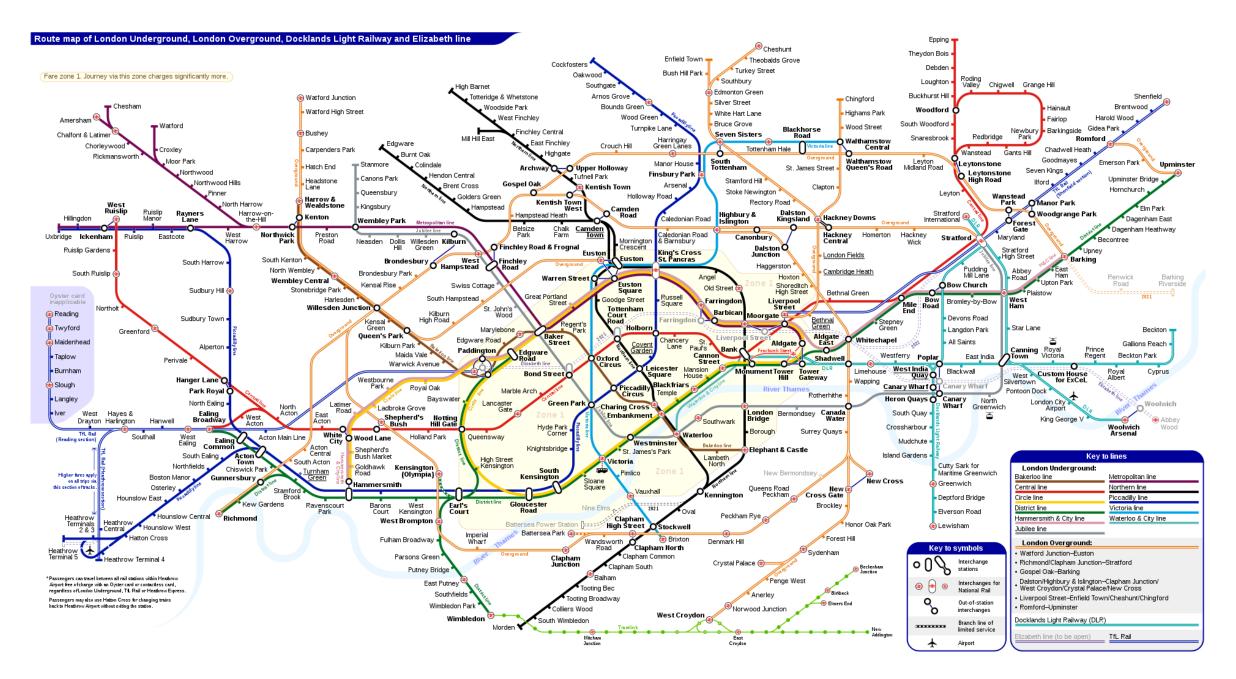


Source: Wiki Commons: Networks of Major High Speed Rail Operators in Europe - CC BY-SA 3.0

Transportation network – London Underground

Source: Wiki Commons: London Underground full map - CC BY-SA 3.0

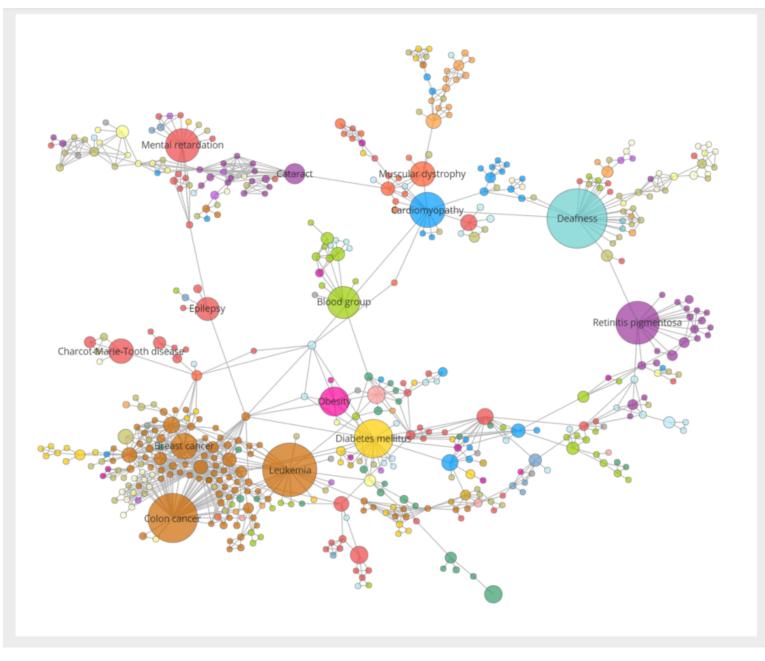
Transportation network – London Underground



Source: Wiki Commons: London Underground Overground DLR Crossrail map - CC BY-SA 4.0

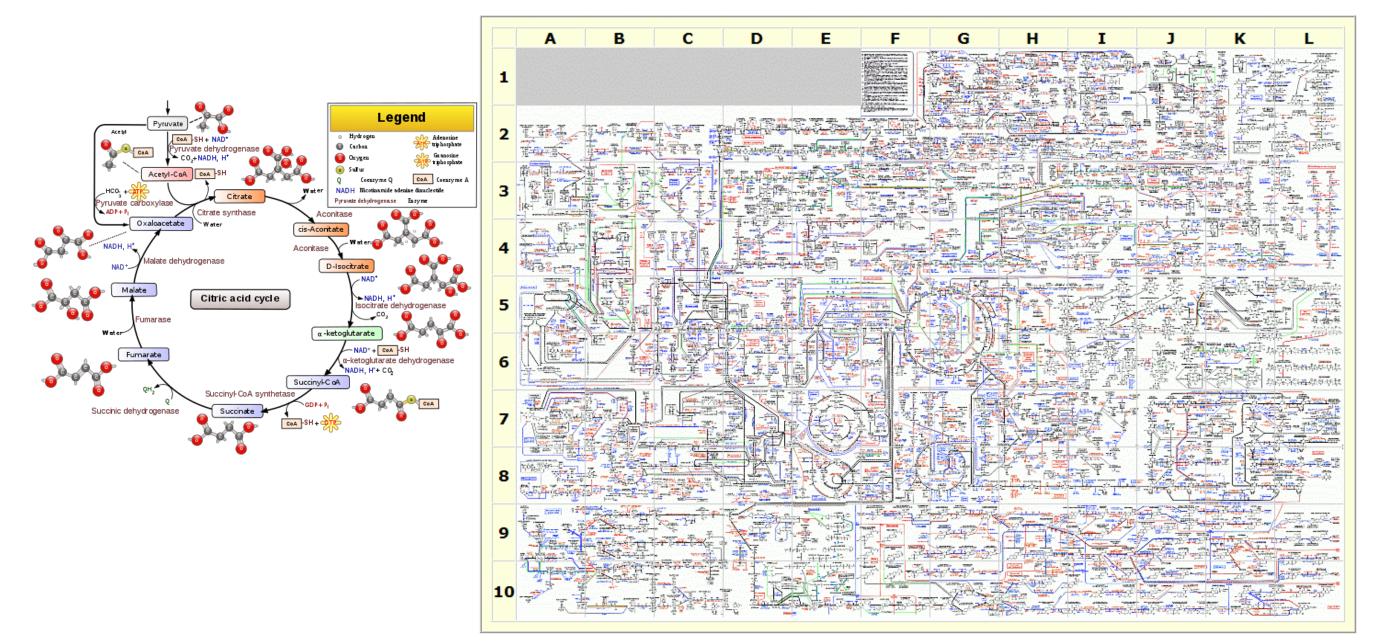
Transportation network – London Underground

Bioinformatics – disease interaction



Source: Wiki Commons: Human disease network - CC BY-SA 4.0

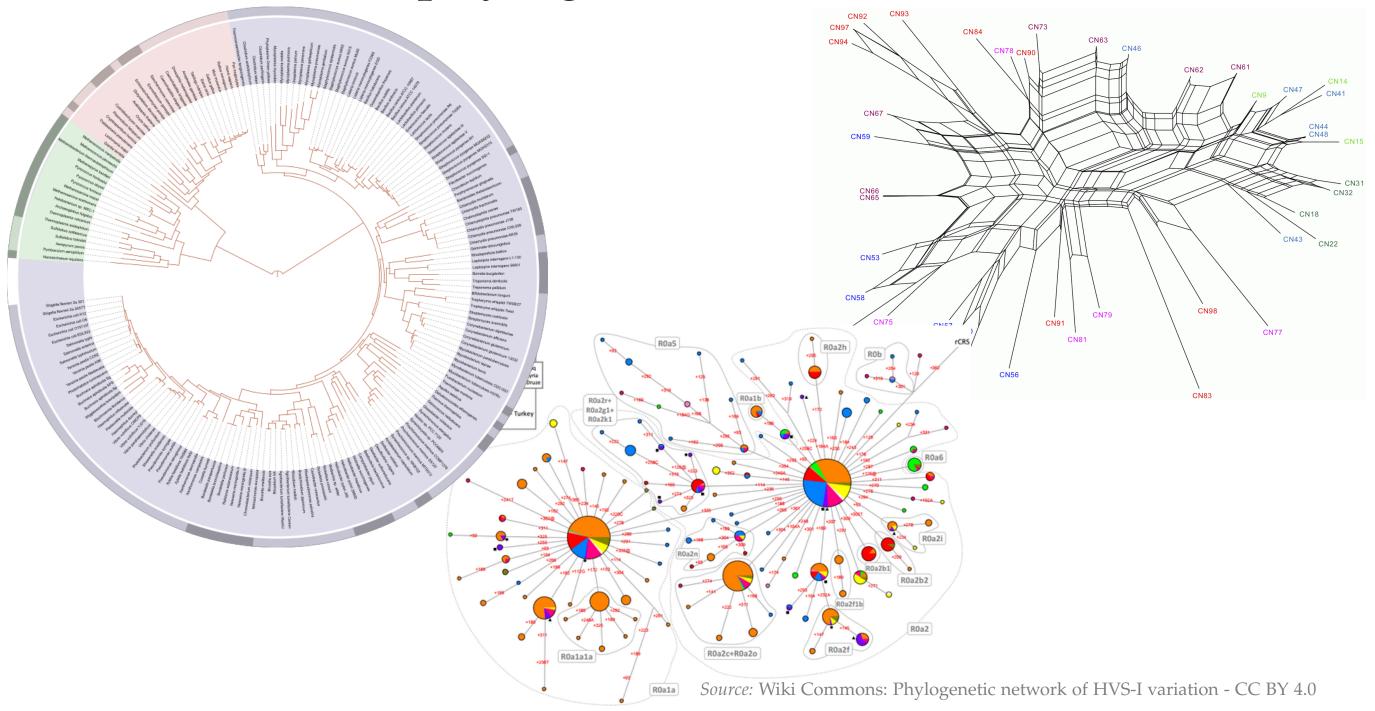
Bioinformatics – molecular metabolic network



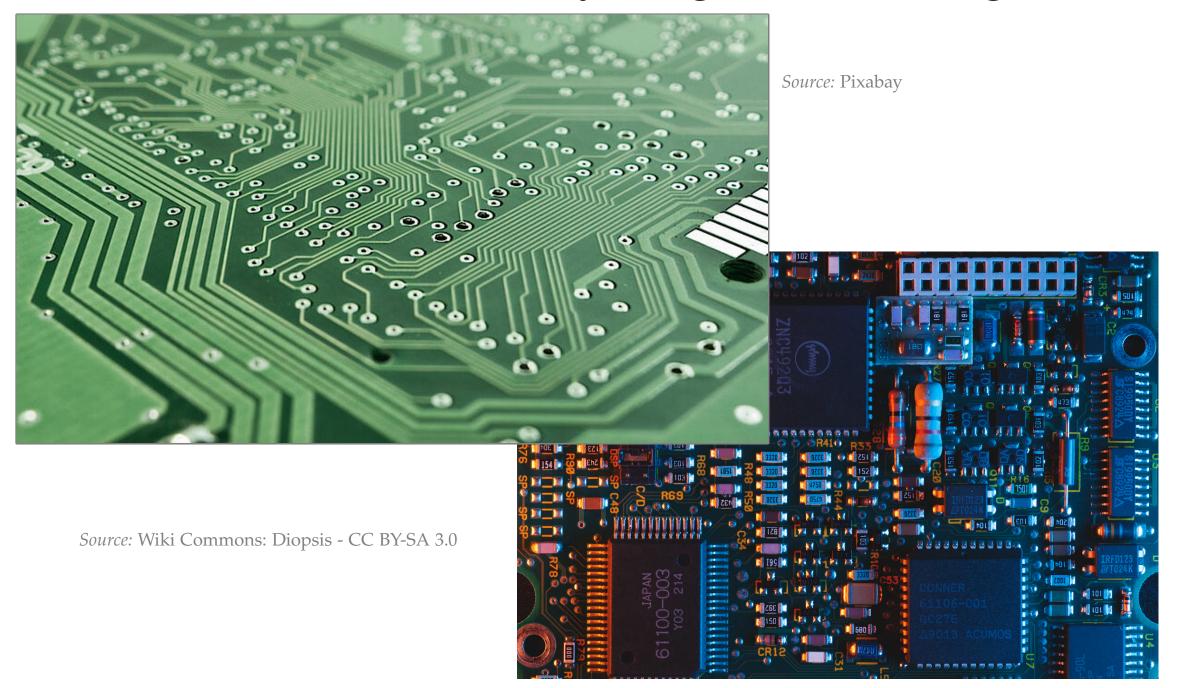
Source: Wiki Commons: Citric acid cycle with aconitate 2 - CC BY-SA 3.0

Source: Thiele et al., Nature Biotechnology 31, 419–425 (2013)

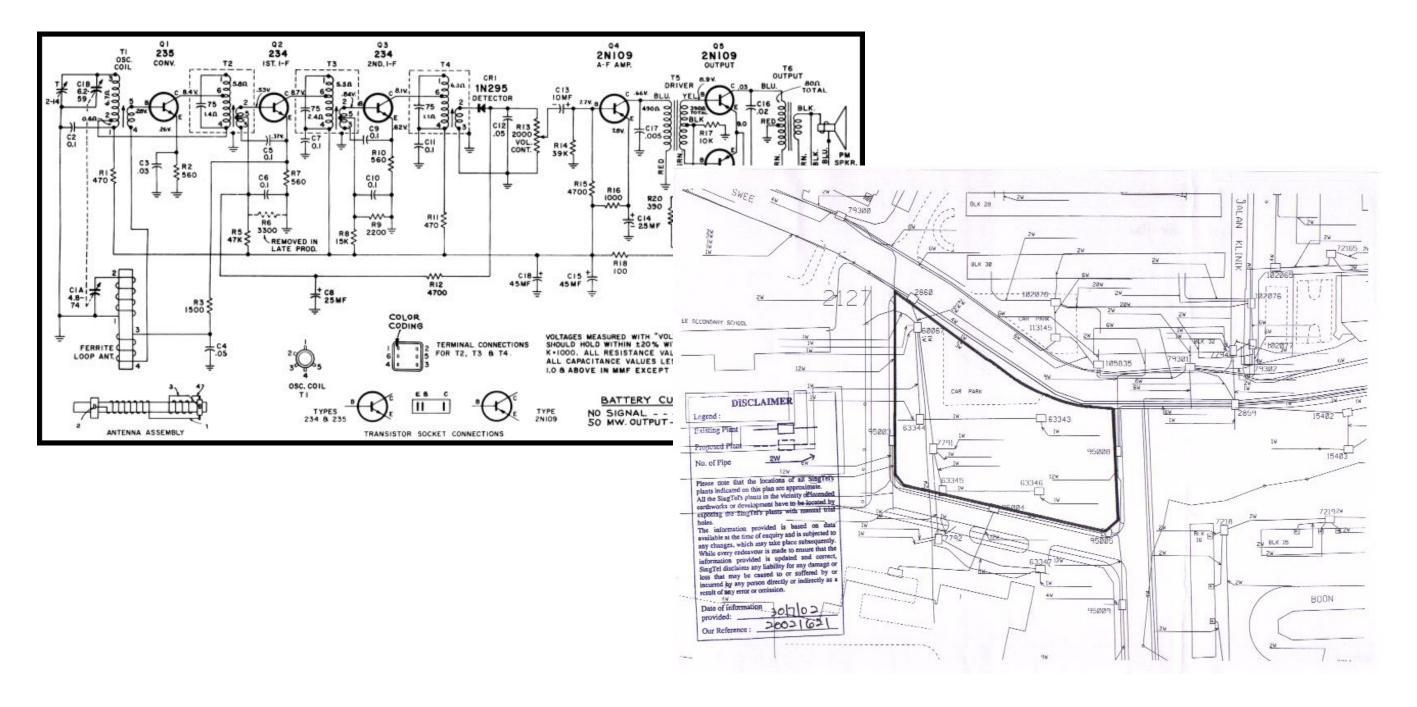
Bioinformatics – phylogenetic trees & networks



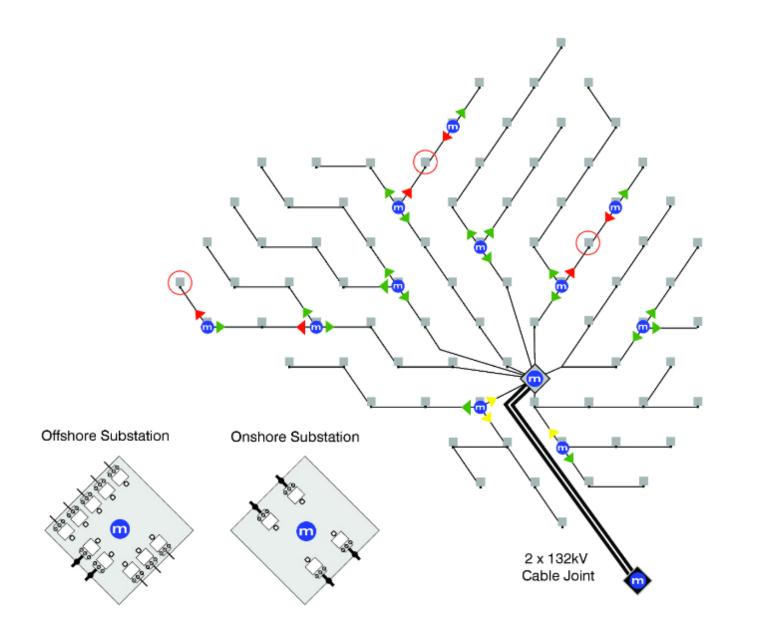
Technical network – very large-scale integration (VLSI)



Technical network – transistor diagram, wiring

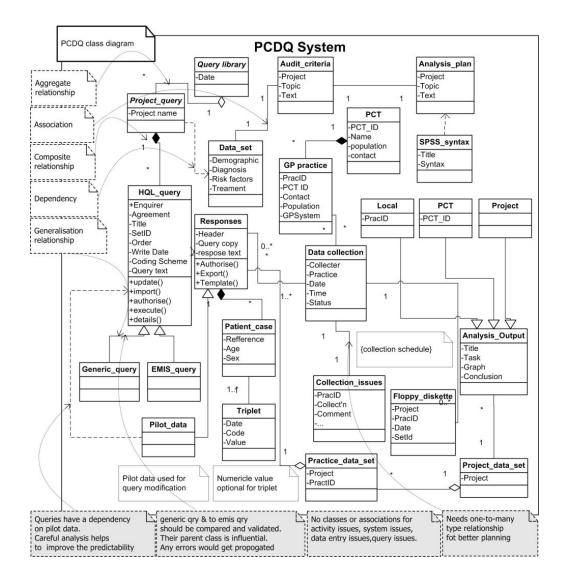


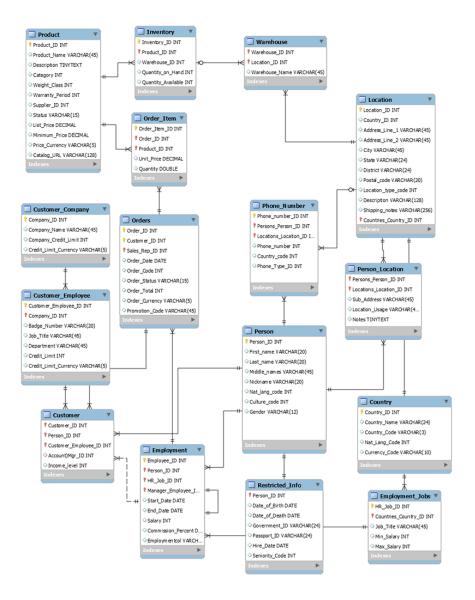
Technical networks – offshore wind farms



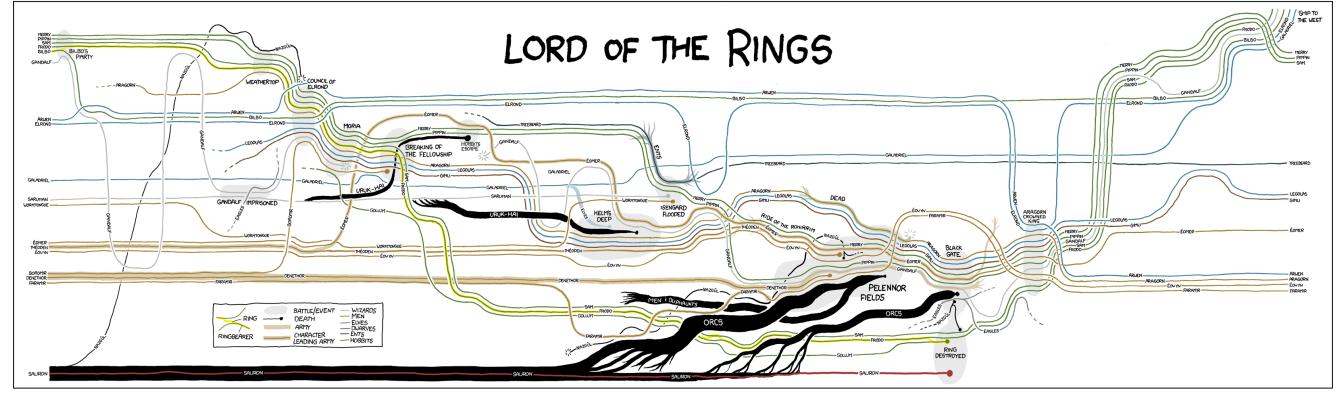
Source: Wiki Commons: Alpha Ventus Windmills - CC BY-SA 3.0

Technical network – UML diagram

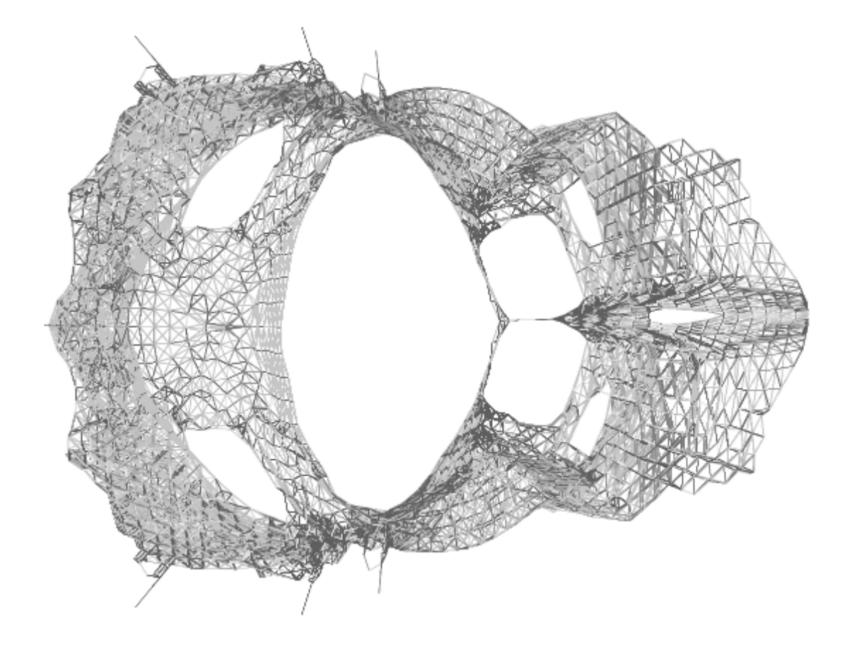




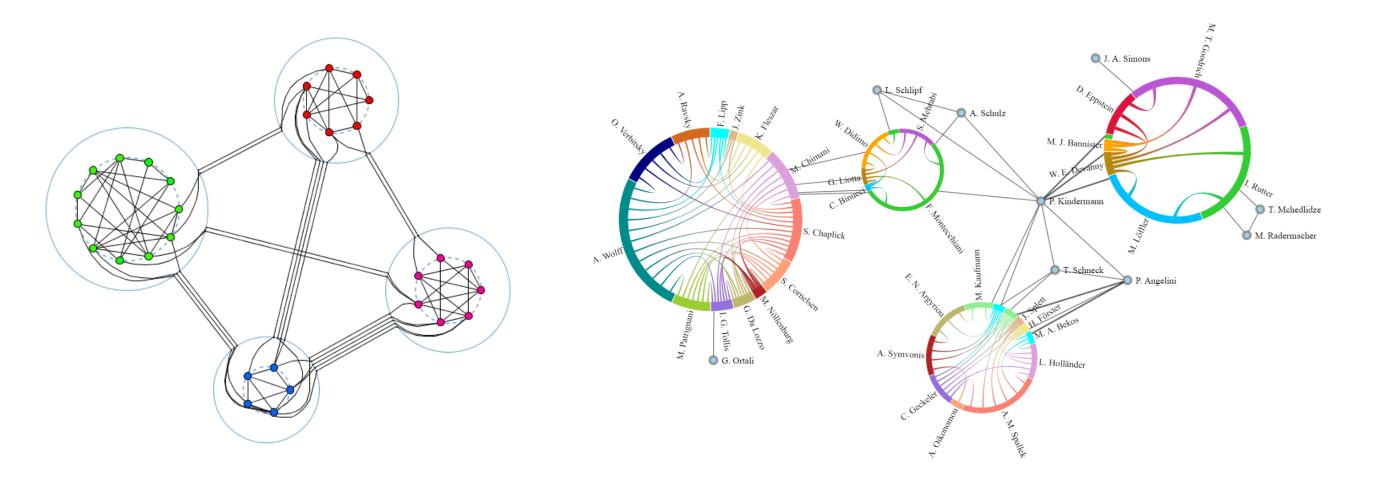
Temporal graph layout – storylines



Large graphs – object mesh

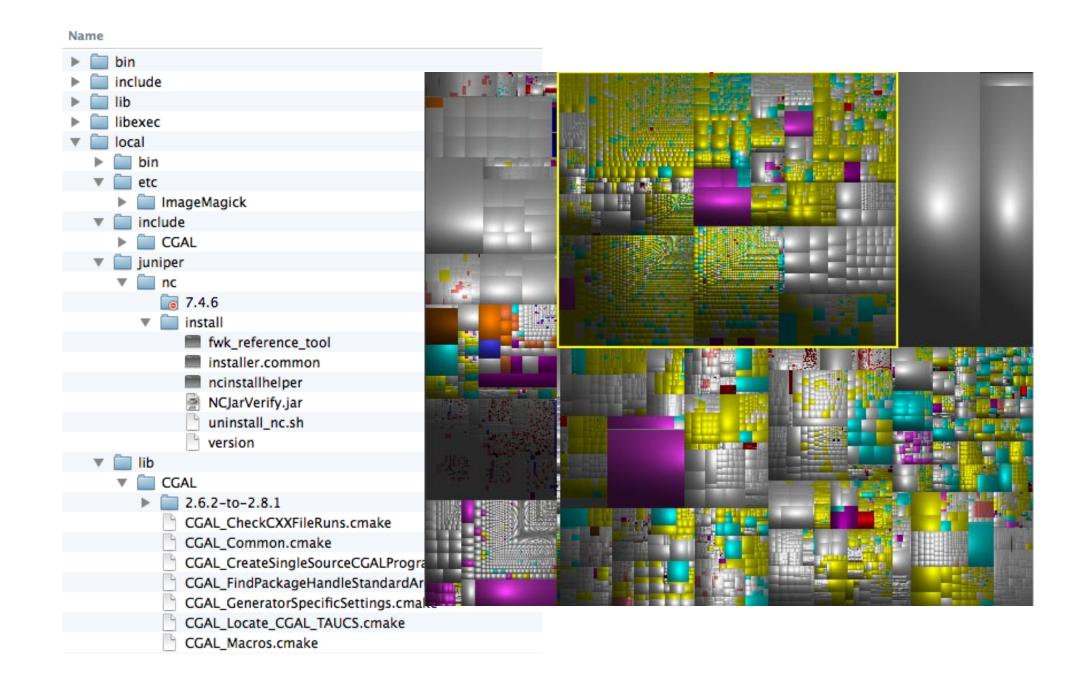


General graphs – micro-macro layout

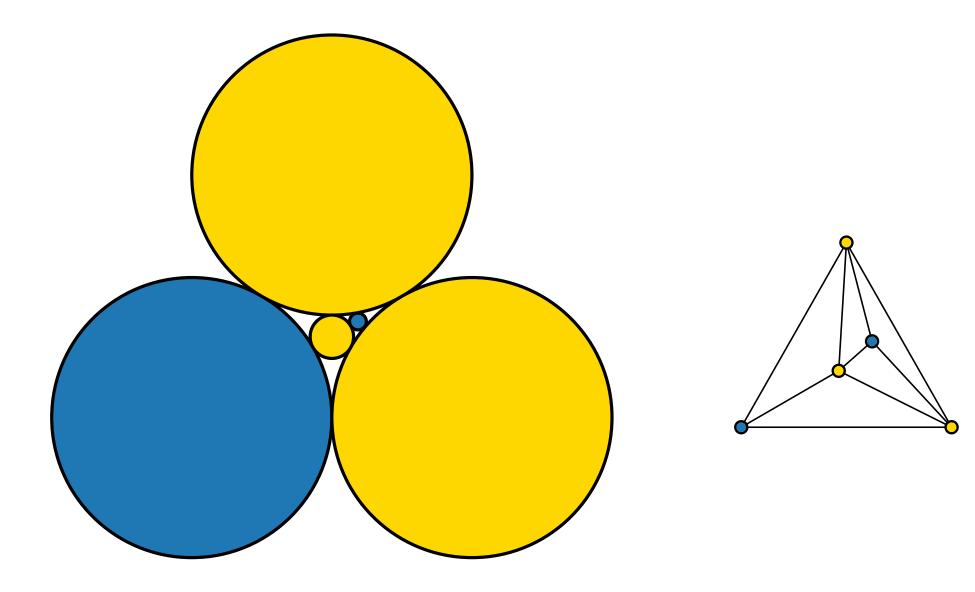


Source: Angori et al., ChordLink: A New Hybrid Visualization Model, GD'19 (2019)

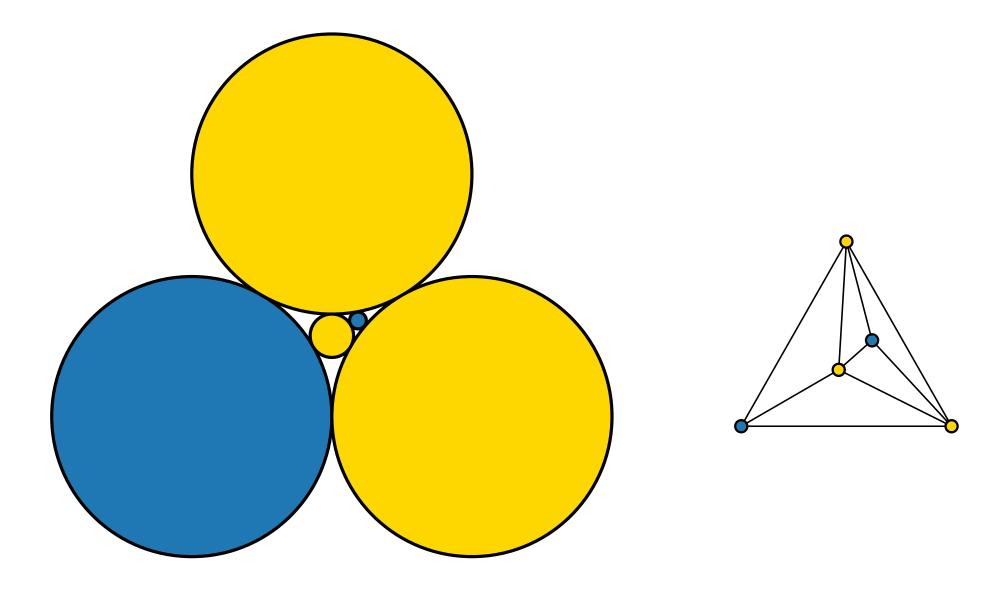
Alternative representations – treemap



Alternative representations – contact graphs



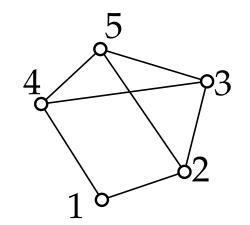
Alternative representations – contact graphs



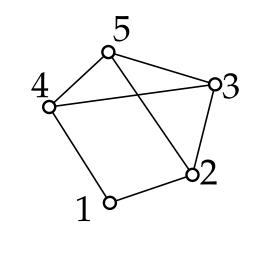
For more examples see visualcomplexity.com

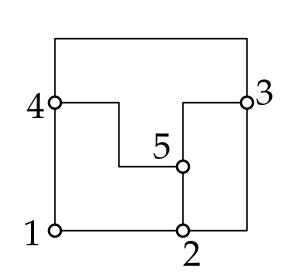
1. Drawing conventions and requirements, e.g.,

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$

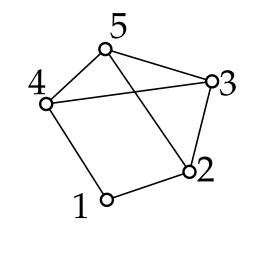


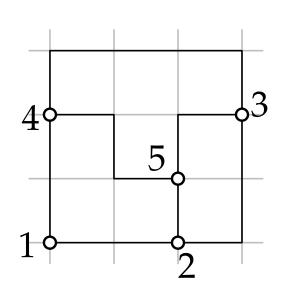
- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)



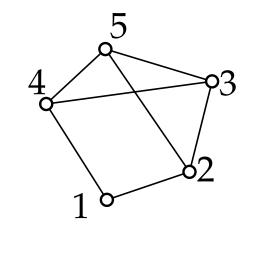


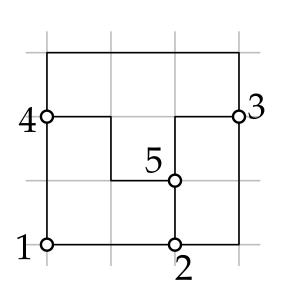
- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings



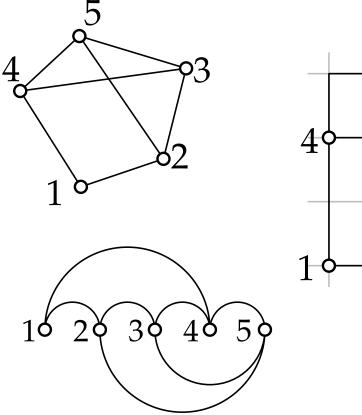


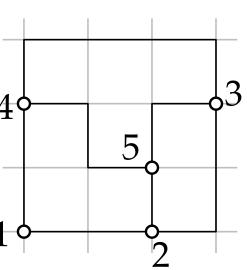
- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing



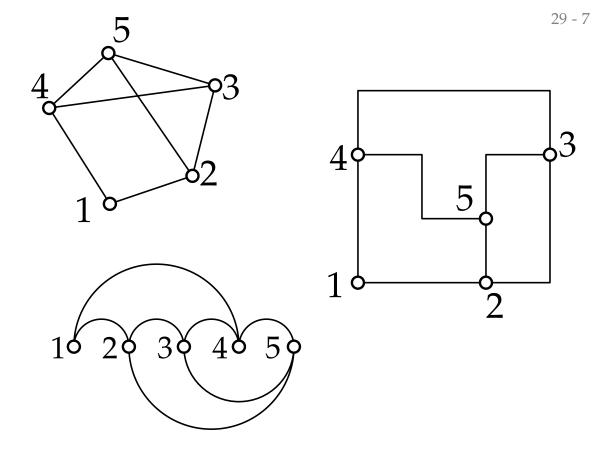


- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing

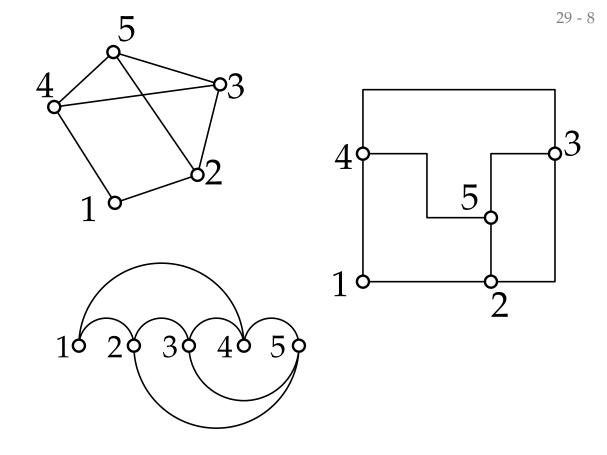


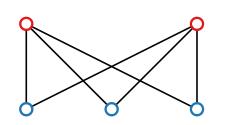


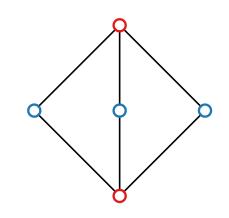
- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.



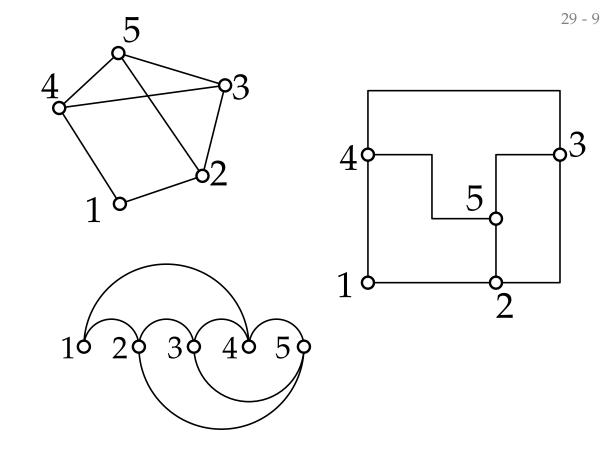
- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization

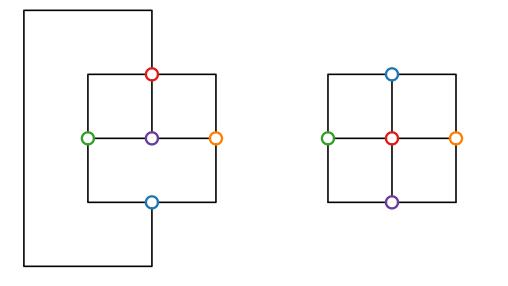




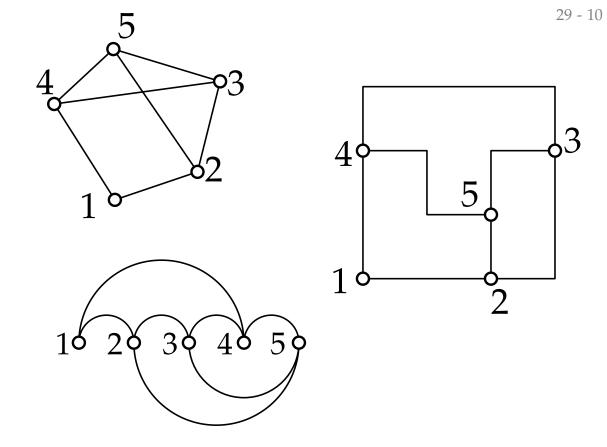


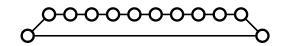
- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization

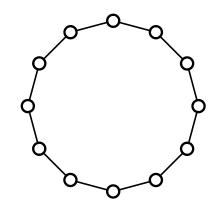




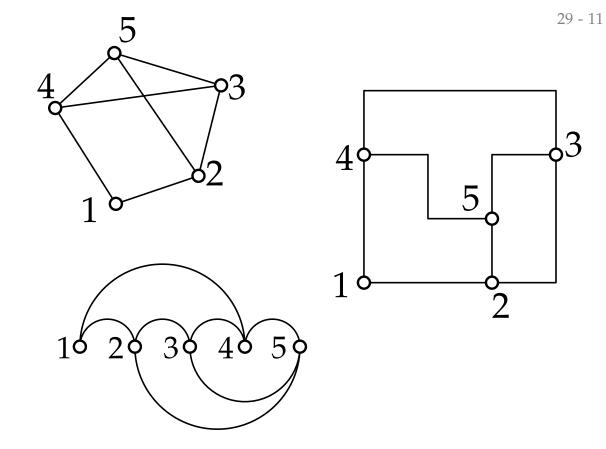
- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization
- edge length uniformity



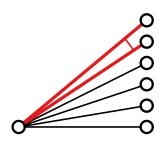


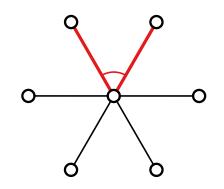


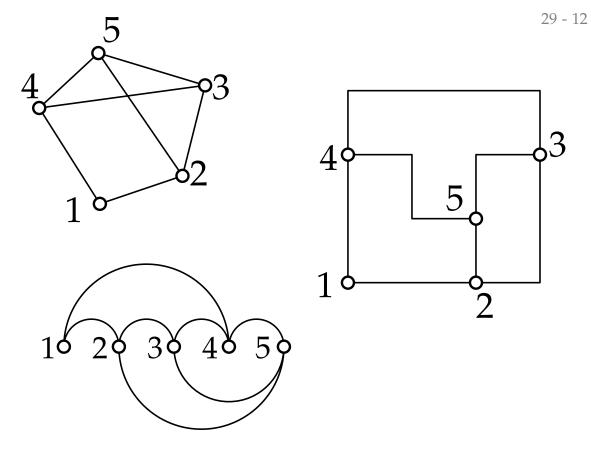
- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area



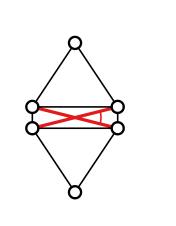
- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution

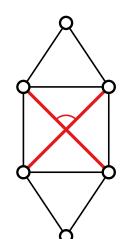


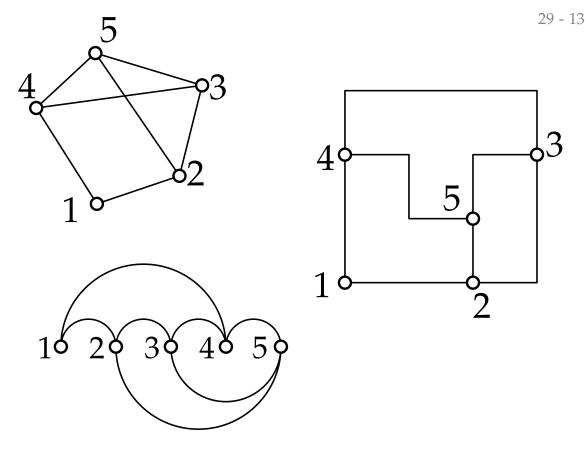




- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution

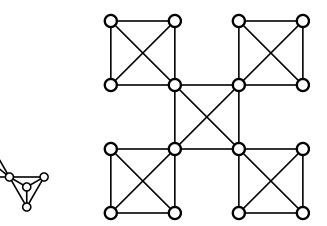


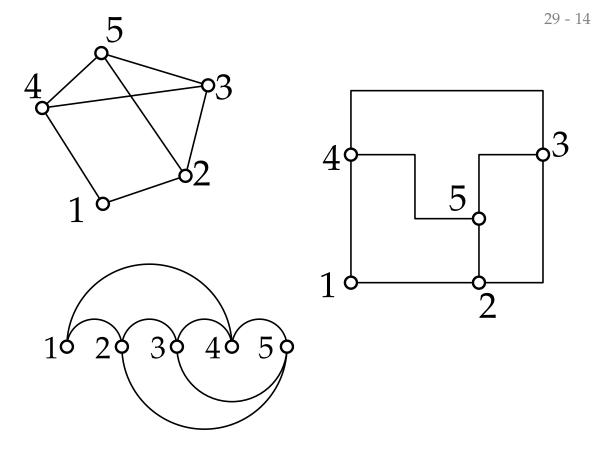




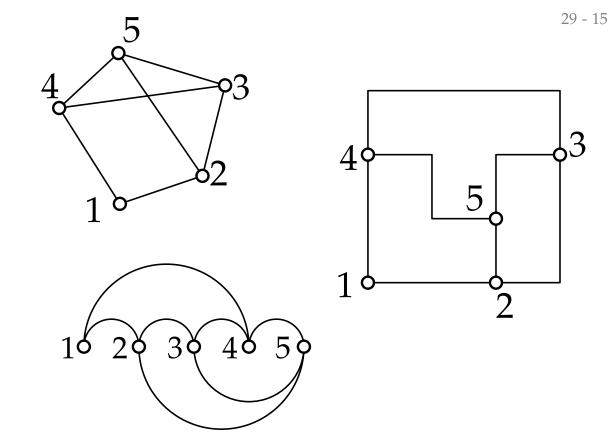
- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area

- angular resolution
- symmetry/structure



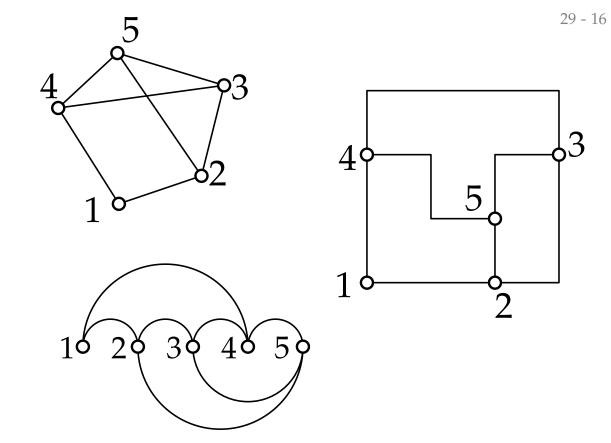


- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution
- symmetry/structure



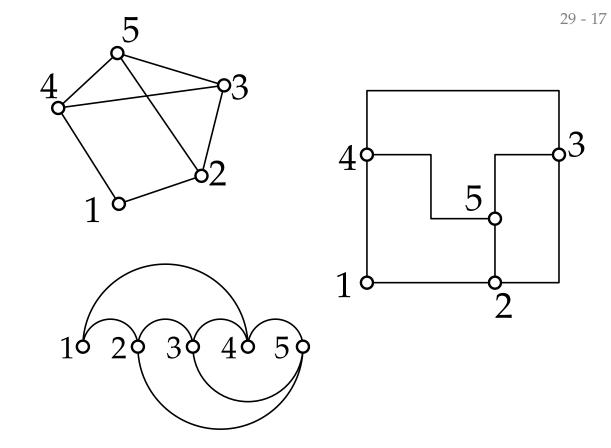
 \rightarrow lead to NP-hard optimization problems

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution
- symmetry/structure



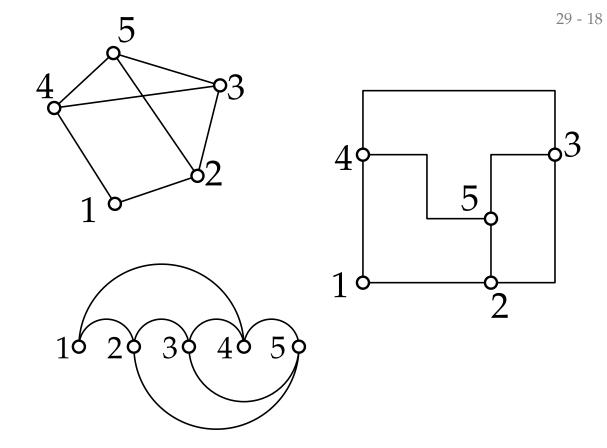
 \rightarrow lead to NP-hard optimization problems \rightarrow such criteria are often inversely related

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution
- symmetry/structure
- 3. Local Constraints, e.g.



 \rightarrow lead to NP-hard optimization problems \rightarrow such criteria are often inversely related

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimized, e.g.crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution
- symmetry/structure
- 3. Local Constraints, e.g.
- restrictions on neighboring vertices (e.g., "upward").
- restrictions on groups of vertices/edges (e.g., "clustered").



 \rightarrow lead to NP-hard optimization problems \rightarrow such criteria are often inversely related

Graph Visualization Problem

in: Graph G = (V, E)out: Drawing Γ of G such that

Graph Visualization Problem

in: Graph G = (V, E)
out: Drawing Γ of G such that
drawing conventions are met,

Graph Visualization Problem

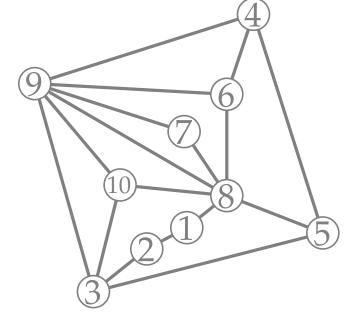
in: Graph G = (V, E)
out: Drawing Γ of G such that
drawing conventions are met,
aesthetic criteria are optimised, and

Graph Visualization Problem

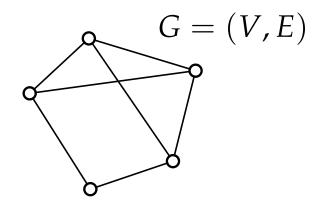
in: Graph G = (V, E)
out: Drawing Γ of G such that
drawing conventions are met,
aesthetic criteria are optimised, and
some additional constraints are satisfied.

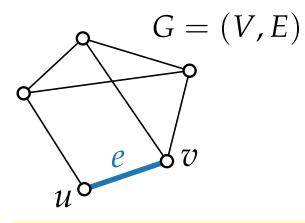
Visualization of Graphs Lecture 1: The Graph Visualization Problem

Part III: Basics

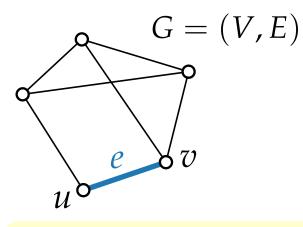


Philipp Kindermann Summer Semester 2021



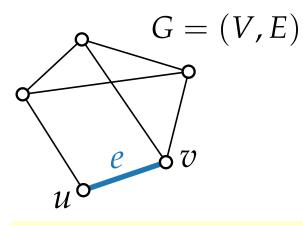


Edge $e = \{u, v\} \in E$:

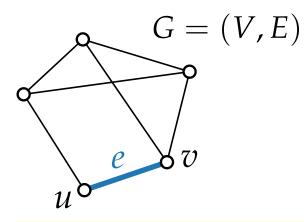


Edge $e = \{u, v\} \in E$: e incident to u and v

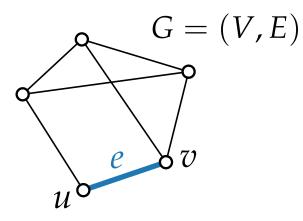
32 - 3



Edge *e* = {*u*, *v*} ∈ *E*: *e* incident to *u* and *v u*, *v* end vertices of *e*

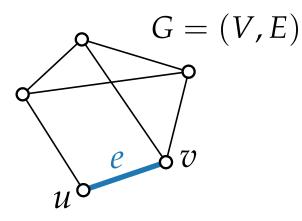


Edge *e* = {*u*, *v*} ∈ *E*: *e* incident to *u* and *v u*, *v* end vertices of *e u* adjacent to *v*



Edge $e = \{u, v\} \in E$:

- *e* incident to *u* and *v*
- *u*, *v* end vertices of *e*
- **u** adjacent to *v*
- *u* and *v* are **neighbors**



Edge $e = \{u, v\} \in E$:

- *e* **incident** to *u* and *v*
- *u*, *v* end vertices of *e*
- **u** adjacent to *v*
- *u* and *v* are **neighbors**

degree deg(v): number of edges incident to v

G = (V, E) \mathcal{D} e (sometimes e = uv or e = (u, v) \mathcal{U} Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e u* adjacent to *v u* and *v* are **neighbors** degree deg(v): number of edges incident to v

G = (V, E)е \mathcal{D} uo (sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e u* adjacent to *v u* and *v* are **neighbors** degree deg(v): number of edges incident to vHandshaking-Lemma. $\sum_{v \in V} \deg(v) =$

G = (V, E)е \mathcal{D} uo (sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e u* adjacent to *v u* and *v* are **neighbors** degree deg(v): number of edges incident to vHandshaking-Lemma. $\sum_{v \in V} \deg(v) = 2|E|$

G = (V, E) \mathcal{D} e и° (sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v u*, *v* end vertices of *e u* adjacent to *v u* and *v* are **neighbors** degree deg(v): number of edges incident to v Handshaking-Lemma. Corollary.

 $\sum_{v \in V} \deg(v) = 2|E|$

The number of odd-degree vertices is even.

G = (V, E)(sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e u* adjacent to *v u* and *v* are **neighbors** degree deg(v): number of edges incident to vHandshaking-Lemma.

 $\sum_{v \in V} \deg(v) = 2|E|$

u-v-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

Corollary. The number of odd-degree vertices is even.

G = (V, E)(sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e u* adjacent to *v u* and *v* are **neighbors** degree deg(v): number of edges incident to v

Handshaking-Lemma.

 $\sum_{v \in V} \deg(v) = 2|E|$

u-v-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

G = (V, E)(sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e u* adjacent to *v u* and *v* are **neighbors** degree deg(v): number of edges incident to v

Handshaking-Lemma.

 $\sum_{v \in V} \deg(v) = 2|E|$

u-v-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with u and ending with v: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

G = (V, E)

(sometimes e = uv or e = (u, v)

Edge $e = \{u, v\} \in E$:

- *e* **incident** to *u* and *v*
- *u*, *v* end vertices of *e*
- **u** adjacent to *v*
- *u* and *v* are **neighbors**
- **degree** deg(v): number of edges incident to v

Handshaking-Lemma. $\sum_{v \in V} \deg(v) = 2|E|$ *u-v*-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

simple cycle: *u-u*-path

G = (V, E)

(sometimes e = uv or e = (u, v)) Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e u* adjacent to *v u* and *v* are **neighbors** degree deg(v): number of edges incident to v

Handshaking-Lemma.

 $\sum_{v \in V} \deg(v) = 2|E|$

u-v-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

simple cycle: *u-u*-path

connected: There is a *u*-*v*-path for every $u, v \in V$

G = (V, E)(sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e u* adjacent to *v u* and *v* are **neighbors** degree deg(v): number of edges incident to vHandshaking-Lemma.

 $\sum_{v \in V} \deg(v) = 2|E|$

u-v-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

simple cycle: *u-u*-path

connected: There is a *u*-*v*-path for every $u, v \in V$

v **reachable** from *u*: There is a *u*-*v*-path

G = (V, E)(sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e u* adjacent to *v u* and *v* are **neighbors** degree deg(v): number of edges incident to v

Handshaking-Lemma.

 $\sum_{v \in V} \deg(v) = 2|E|$

u-v-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

simple cycle: *u-u*-path

connected: There is a *u*-*v*-path for every $u, v \in V$

v **reachable** from *u*: There is a *u*-*v*-path

G = (V, E)(sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e* **u adjacent** to v ■ *u* and *v* are **neighbors** degree deg(v): number of edges incident to v

u-v-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

simple cycle: *u-u*-path

connected: There is a *u*-*v*-path for every $u, v \in V$

v **reachable** from *u*: There is a *u*-*v*-path

subgraph: graph G' = (V', E') with $V' \subseteq V$ and $E' \subseteq E$

Handshaking-Lemma. $\sum_{v \in V} \deg(v) = 2|E|$

G = (V, E)(sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e* **u adjacent** to v ■ *u* and *v* are **neighbors** degree deg(v): number of edges incident to v

Handshaking-Lemma.

 $\sum_{v \in V} \deg(v) = 2|E|$

u-v-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

simple cycle: *u-u*-path

connected: There is a *u*-*v*-path for every $u, v \in V$

v **reachable** from *u*: There is a *u*-*v*-path

subgraph: graph G' = (V', E') with $V' \subseteq V$ and $E' \subseteq E$

Handshaking-Lemma.

 $\sum_{v \in V} \deg(v) = 2|E|$

G = (V, E)(sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e* **u adjacent** to v ■ *u* and *v* are **neighbors** degree deg(v): number of edges incident to v

u-v-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

simple cycle: *u-u*-path

connected: There is a *u*-*v*-path for every $u, v \in V$

v **reachable** from *u*: There is a *u*-*v*-path

subgraph: graph G' = (V', E') with $V' \subseteq V$ and $E' \subseteq E$

Handshaking-Lemma.

 $\sum_{v \in V} \deg(v) = 2|E|$

G = (V, E)(sometimes e = uv or e = (u, v)Edge $e = \{u, v\} \in E$: *e* incident to *u* and *v* ■ *u*, *v* end vertices of *e* **u adjacent** to v ■ *u* and *v* are **neighbors** degree deg(v): number of edges incident to v

u-v-path of length ℓ : Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$

simple cycle: *u-u*-path

connected: There is a *u-v*-path for every $u, v \in V$

v **reachable** from *u*: There is a *u-v*-path

subgraph: graph G' = (V', E') with $V' \subseteq V$ and $E' \subseteq E$

induced subgraph: subgraph with $E' = \binom{V'}{2} \cap E$

G = (V, E)

e **incident** to *u* and *v*

■ *u*, *v* end vertices of *e*

■ *u* and *v* are **neighbors**

Edge $e = \{u, v\} \in E$:

u adjacent to v

degree deg(v):

*u-v-***path of length** *l*: Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$ (sometimes e = uv or e = (u, v)simple cycle: *u-u*-path **connected**: There is a *u*-*v*-path for every $u, v \in V$ *v* reachable from *u*: There is a *u*-*v*-path **subgraph**: graph G' = (V', E') with $V' \subseteq V$ and $E' \subseteq E$ **induced subgraph**: subgraph with $E' = \binom{V'}{2} \cap E$ connected component: maximal connected subgraph number of edges incident to v

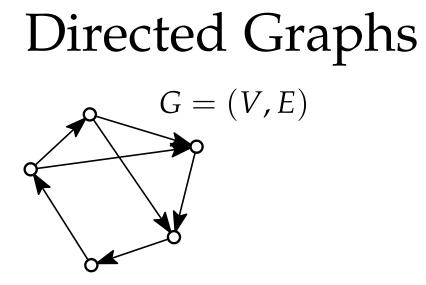
Handshaking-Lemma. $\sum_{v \in V} \deg(v) = 2|E|$

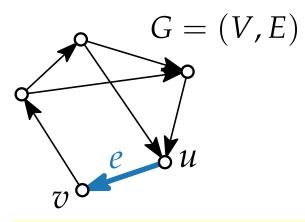
*u-v-***path of length** *l*: G = (V, E)Sequence of $\ell + 1$ distinct adjacent vertices (and ℓ connecting edges), starting with *u* and ending with *v*: $u - \{u, v_1\} - v_1 - \cdots - v_{\ell-1} - \{v_{\ell-1}, v\} - v$ (sometimes e = uv or e = (u, v)simple cycle: *u-u*-path Edge $e = \{u, v\} \in E$: **connected**: There is a *u*-*v*-path for every $u, v \in V$ *e* incident to *u* and *v* ➤ v reachable from u: There is a u-v-path ■ *u*, *v* end vertices of *e* **subgraph**: graph G' = (V', E') with $V' \subseteq V$ and $E' \subseteq E$ **u adjacent** to v ■ *u* and *v* are **neighbors induced subgraph**: subgraph with $E' = \binom{V'}{2} \cap E$ number of edges incident to v **connected component**: maximal connected subgraph

Handshaking-Lemma. **Corollary.** $\sum_{v \in V} \deg(v) = 2|E|$

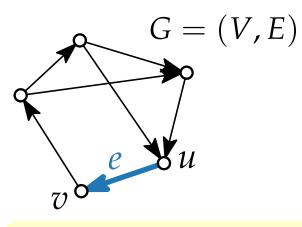
degree deg(v):

The number of odd-degree vertices is even.



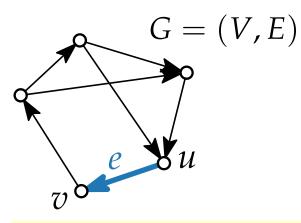


Edge $e = (u, v) \in E$:

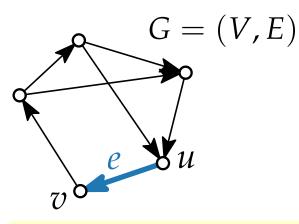


Edge $e = (u, v) \in E$: u is source of e

33 - 3



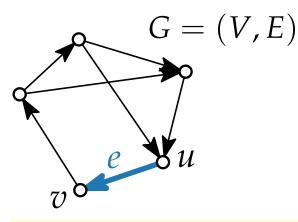
Edge *e* = (*u*, *v*) ∈ *E*: *u* is source of *e v* is target of *e*



Edge $e = (u, v) \in E$: u is source of e

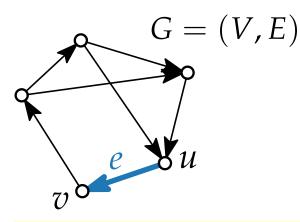
v is target of e

indegree $deg^{-}(v)$: number of edges for which v is the target



- Edge $e = (u, v) \in E$:
 - *u* is **source** of *e*
- *v* is **target** of *e*

```
indegree deg^-(v):number of edges for which v is the targetoutdegree deg^+(v):number of edges for which v is the source
```



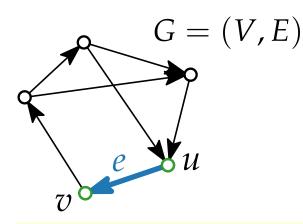
Edge $e = (u, v) \in E$:

u is **source** of *e*

■ *v* is **target** of *e*

indegree $deg^{-}(v)$: number of edges for which v is the target **outdegree** $deg^{+}(v)$: number of edges for which v is the source

Handshaking-Lemma. $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$



Edge $e = (u, v) \in E$:

u is **source** of *e*

■ *v* is **target** of *e*

indegree $deg^{-}(v)$: number of edges for which v is the target

outdegree $deg^+(v)$: number of edges for which v is the source

Handshaking-Lemma. $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$

directed *u*-*v*-**path**:
$$u - (u, v_1) - v_1 - \dots - v_{\ell-1} - (v_{\ell-1}, v) - v$$

G = (V, E)

directed *u*-*v*-**path:** $u - (u, v_1) - v_1 - \dots - v_{\ell-1} - (v_{\ell-1}, v) - v$

Edge $e = (u, v) \in E$: *u* is **source** of *e* v is target of e indegree $deg^{-}(v)$: number of edges for which v is the target outdegree $deg^+(v)$: number of edges for which *v* is the source Handshaking-Lemma

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$$

G = (V, E)

Edge $e = (u, v) \in E$:

u is **source** of *e*

■ *v* is **target** of *e*

indegree $deg^{-}(v)$: number of edges for which v is the target

outdegree $deg^+(v)$: number of edges for which v is the source

Handshaking-Lemma. $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$

directed *u*-*v*-**path**: $u - (u, v_1) - v_1 - \dots - v_{\ell-1} - (v_{\ell-1}, v) - v$

directed cycle: directed *u-u*-path

G = (V, E)

Edge $e = (u, v) \in E$:

u is **source** of *e*

■ *v* is **target** of *e*

indegree $\deg^{-}(v)$: number of edges for which v is the target

outdegree $deg^+(v)$: number of edges for which v is the source

Handshaking-Lemma. $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$

directed *u*-*v*-**path**: $u - (u, v_1) - v_1 - \dots - v_{\ell-1} - (v_{\ell-1}, v) - v$

directed cycle: directed *u-u*-path

acyclic: no directed cycles

G = (V, E)

Edge $e = (u, v) \in E$:

u is **source** of *e*

■ *v* is **target** of *e*

indegree $deg^{-}(v)$: number of edges for which v is the target

outdegree $deg^+(v)$: number of edges for which v is the source

Handshaking-Lemma. $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$

directed *u*-*v*-**path**: $u - (u, v_1) - v_1 - \dots - v_{\ell-1} - (v_{\ell-1}, v) - v$

directed cycle: directed *u-u*-path

acyclic: no directed cycles

G = (V, E)

Edge $e = (u, v) \in E$:

u is **source** of *e*

■ *v* is **target** of *e*

indegree deg⁻(v): number of edges for which v is the target

outdegree $deg^+(v)$: number of edges for which v is the source

Handshaking-Lemma. $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$

directed *u-v*-**path**: $u - (u, v_1) - v_1 - \dots - v_{\ell-1} - (v_{\ell-1}, v) - v$ **directed cycle**: directed *u-u*-path **acyclic**: no directed cycles **connected**: There is a directed *u-v*-path or *v-u*-path for every $u, v \in V$

G = (V, E)Edge $e = (u, v) \in E$: *u* is **source** of *e* v is **target** of *e* indegree $deg^{-}(v)$: number of edges for which *v* is the target

outdegree $deg^+(v)$: number of edges for which v is the source

Handshaking-Lemma. $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$

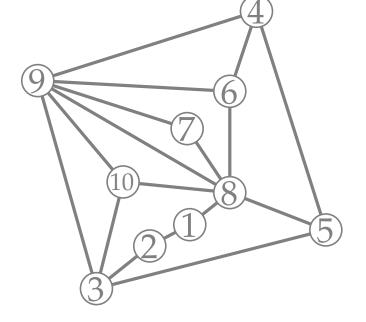
directed *u-v*-**path**: $u - (u, v_1) - v_1 - \dots - v_{\ell-1} - (v_{\ell-1}, v) - v$ **directed cycle:** directed *u-u*-path **acyclic:** no directed cycles **connected:** There is a directed *u-v*-path or *v-u*-path for every $u, v \in V$ *v* **reachable** from *u*: There is a directed *u-v*-path

G = (V, E)directed *u*-*v*-path: $u - (u, v_1) - v_1 - \cdots - v_{\ell-1} - (v_{\ell-1}, v) - v$ **directed cycle:** directed *u-u*-path acyclic: no directed cycles Edge $e = (u, v) \in E$: **connected**: There is a directed *u-v*-path *u* is **source** of *e* or *v*-*u*-path for every $u, v \in V$ v is target of e *v* **reachable** from *u*: There is a directed *u*-*v*-path indegree $deg^{-}(v)$: - connected component number of edges for which *v* is the target outdegree $deg^+(v)$: number of edges for which *v* is the source

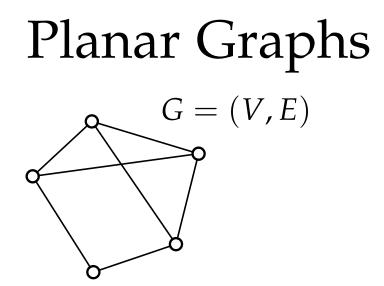
Handshaking-Lemma. $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$

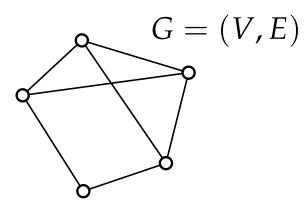
Visualization of Graphs Lecture 1: The Graph Visualization Problem

Part IV: Planarity

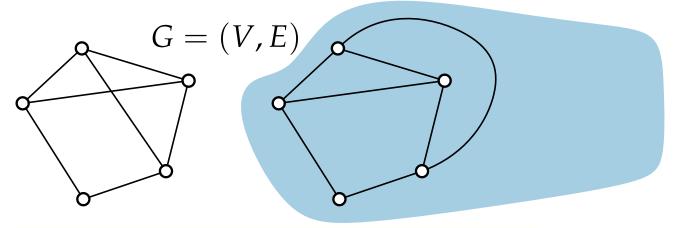


Philipp Kindermann Summer Semester 2021

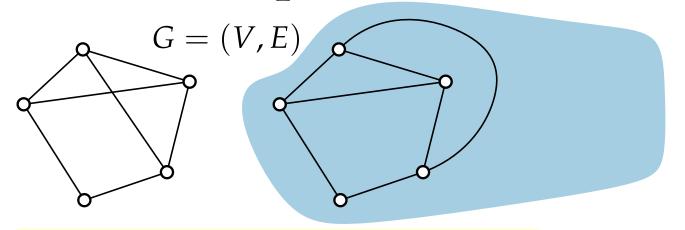




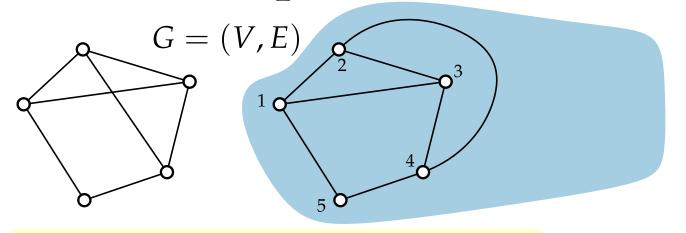
G is **planar**: it can be drawn in such a way that no edges cross each other.



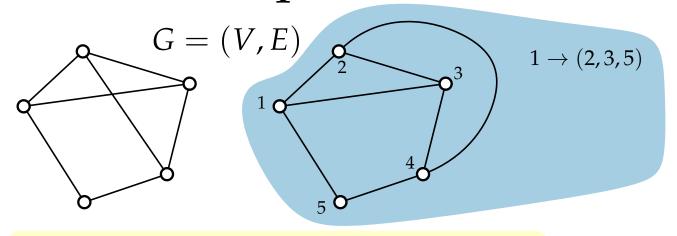
G is **planar**: it can be drawn in such a way that no edges cross each other.



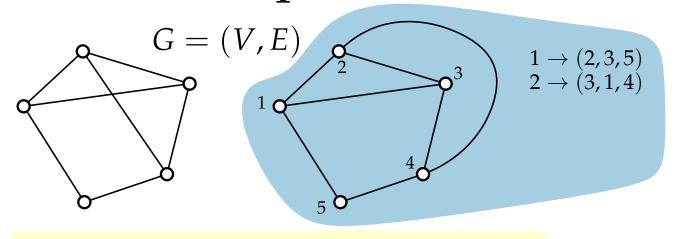
G is **planar**: it can be drawn in such a way that no edges cross each other.



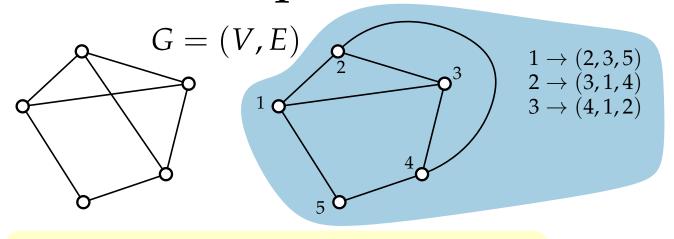
G is **planar**: it can be drawn in such a way that no edges cross each other.



G is **planar**: it can be drawn in such a way that no edges cross each other.

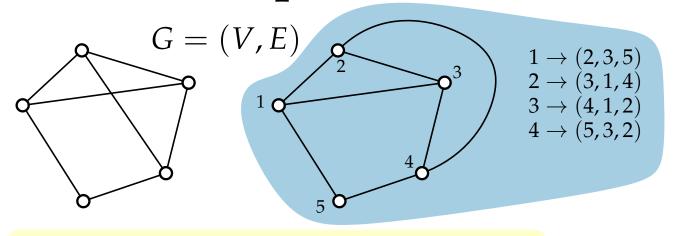


G is **planar**: it can be drawn in such a way that no edges cross each other.

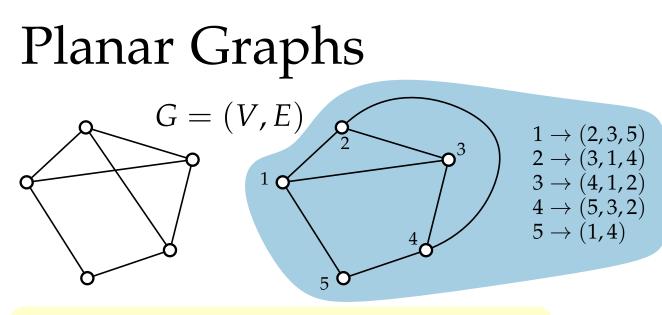


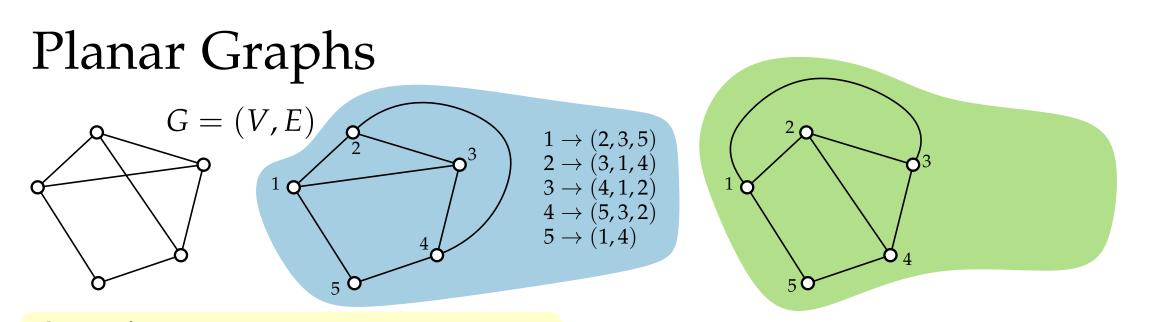
G is **planar**: it can be drawn in such a way that no edges cross each other.

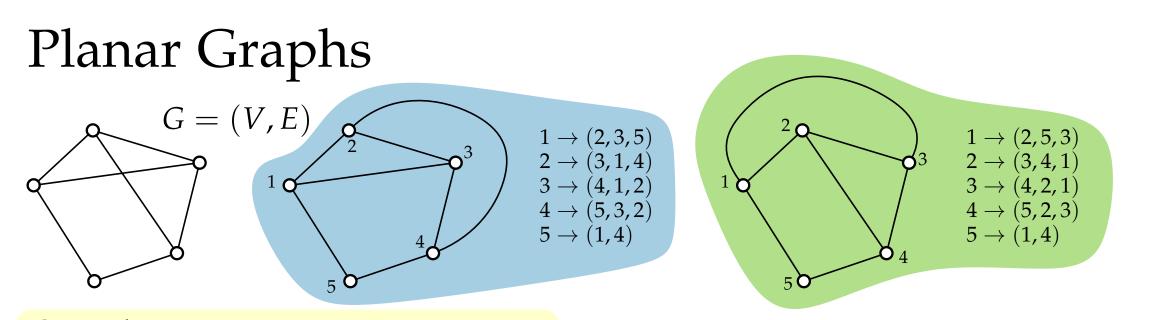
Planar Graphs

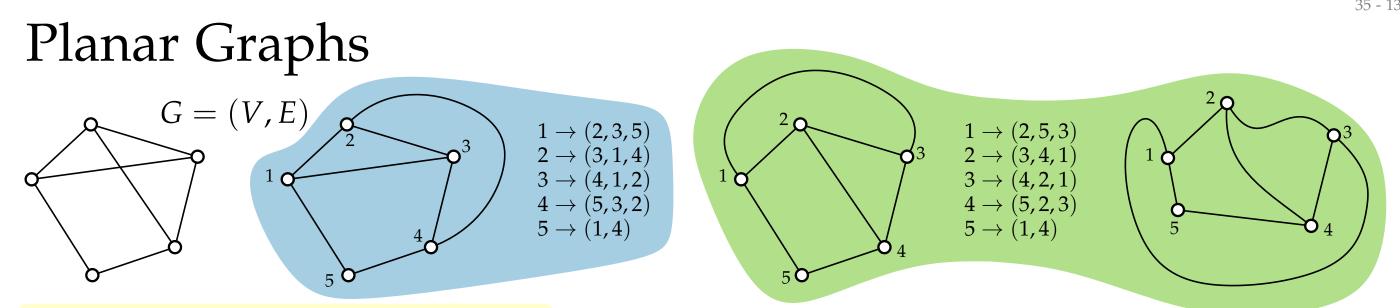


G is **planar**: it can be drawn in such a way that no edges cross each other.





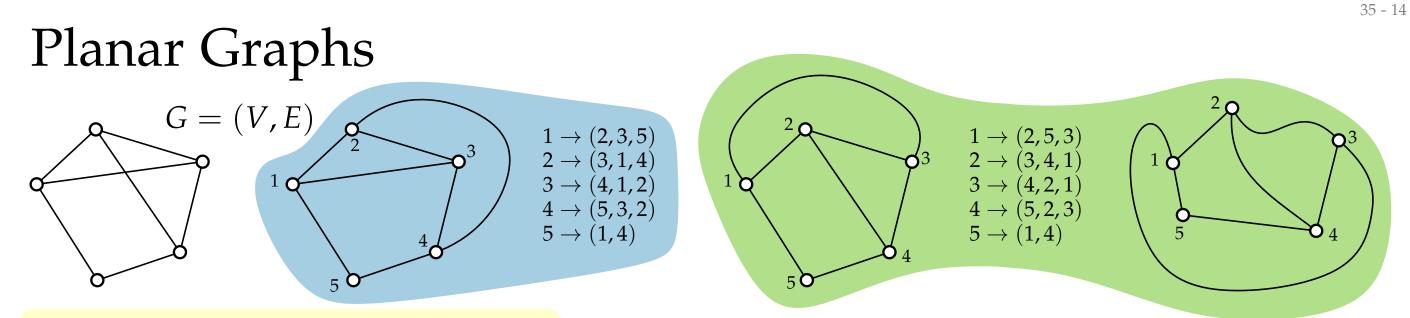




planar embedding: Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

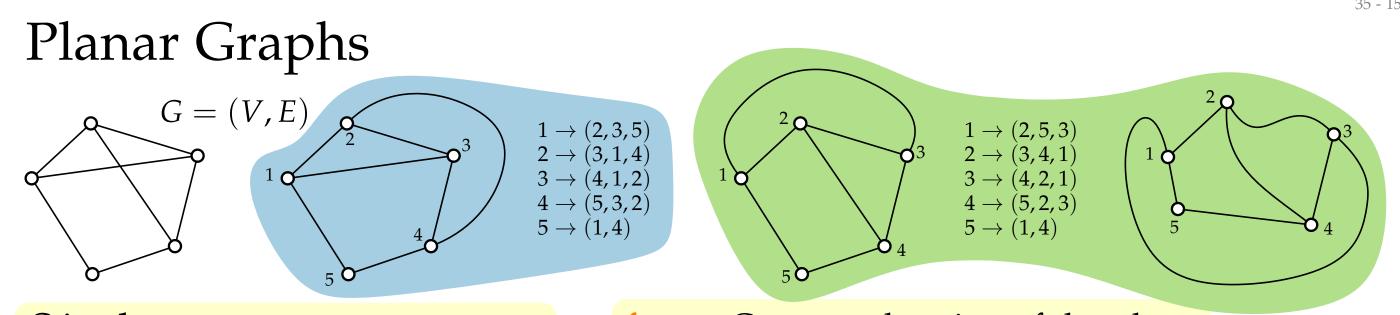
35 - 13



planar embedding: Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

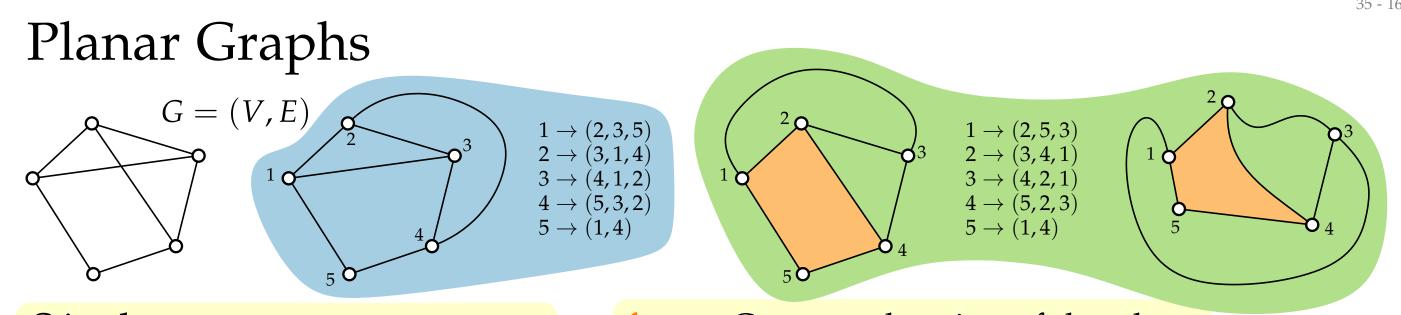


planar embedding: Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

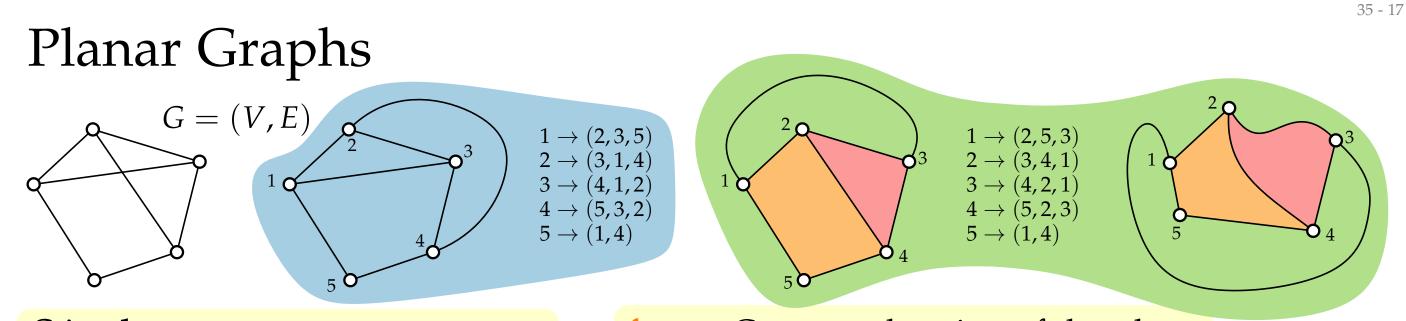


planar embedding: Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

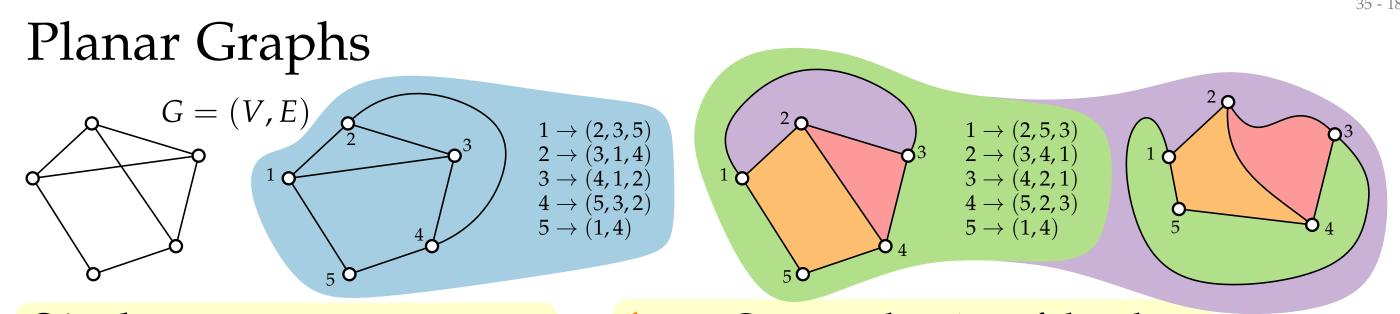


planar embedding: Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

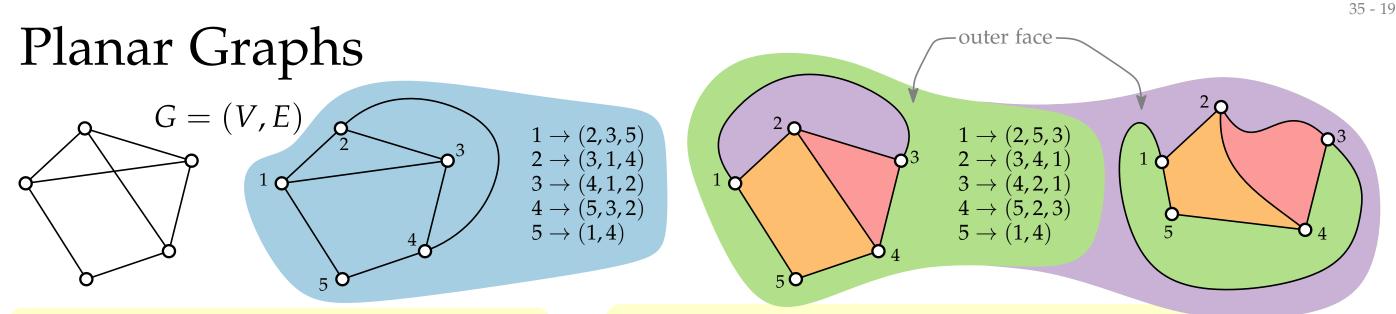


planar embedding: Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

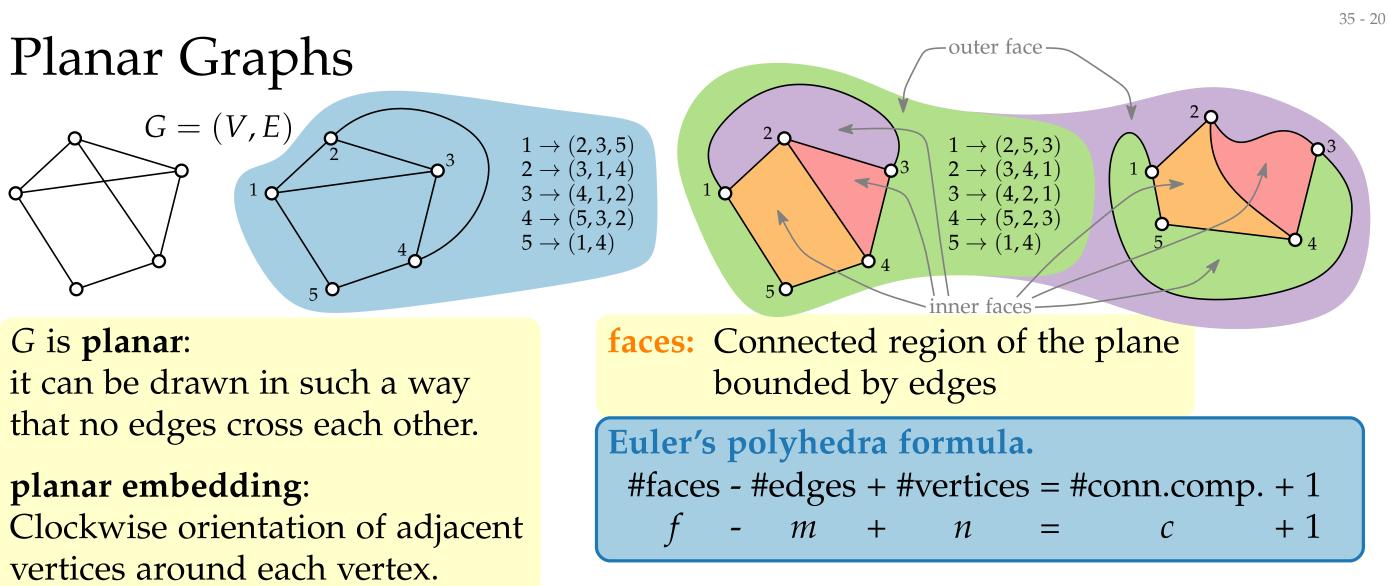


planar embedding: Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

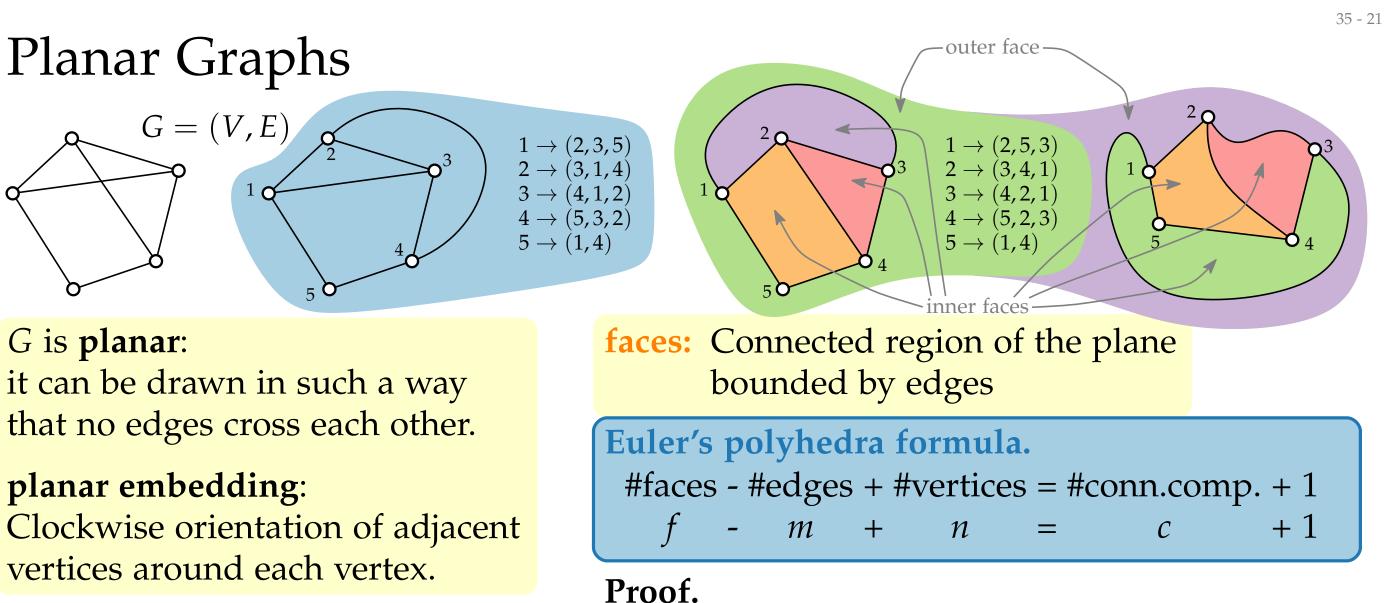
A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges



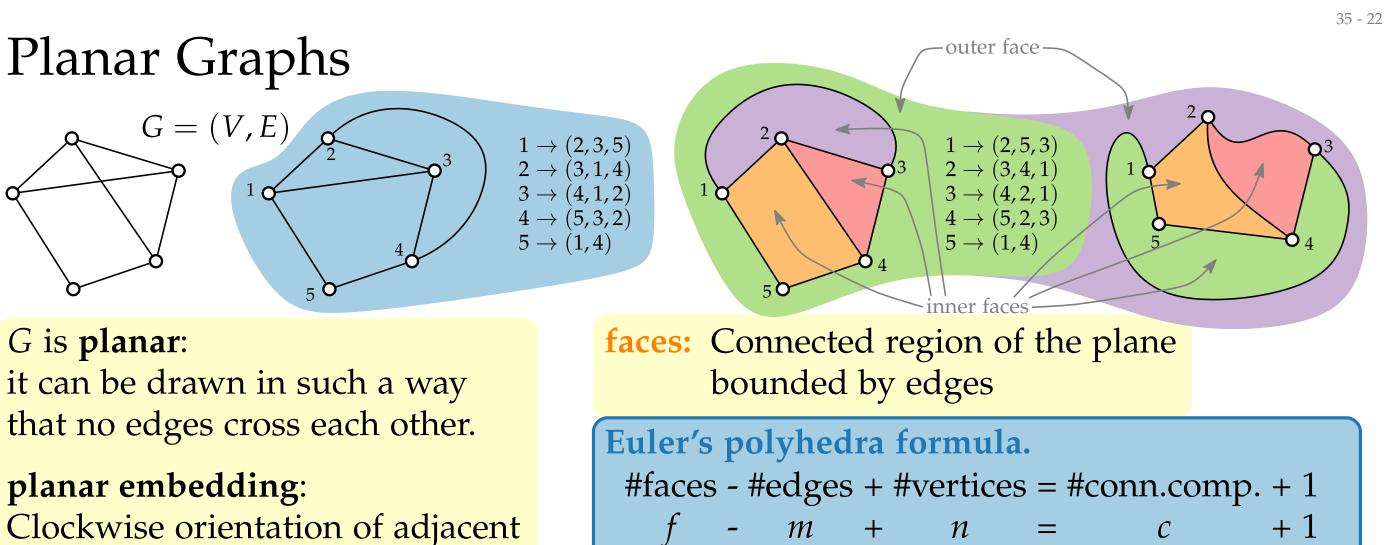
A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!



A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

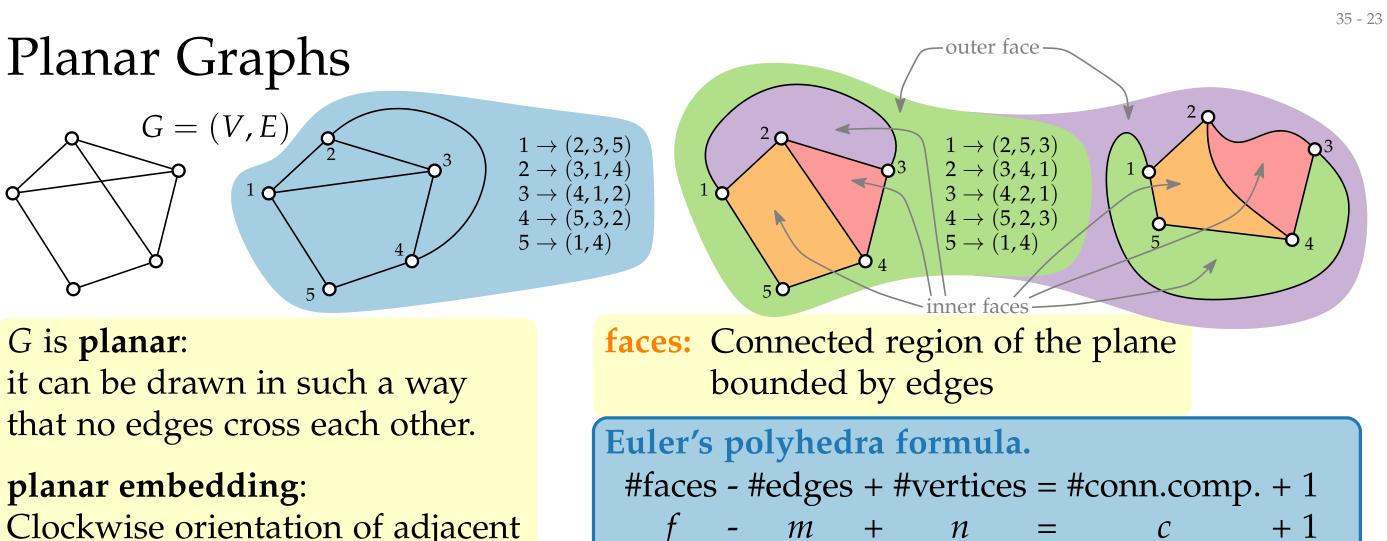


vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

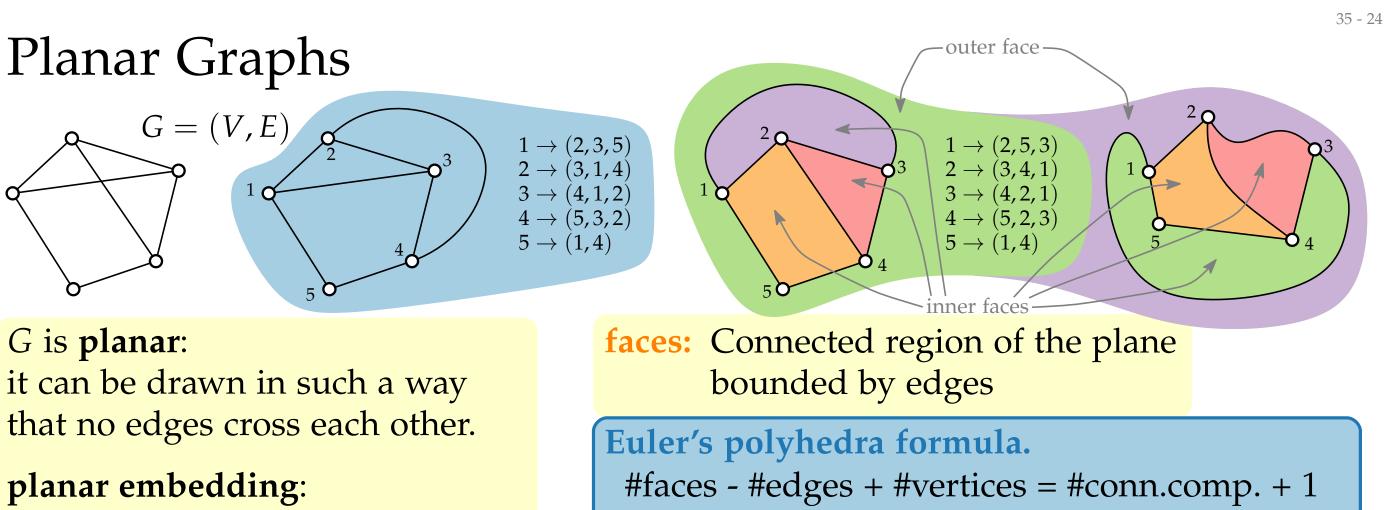
Proof. By induction on *m*:



A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow$



A planar graph can have many planar embeddings.

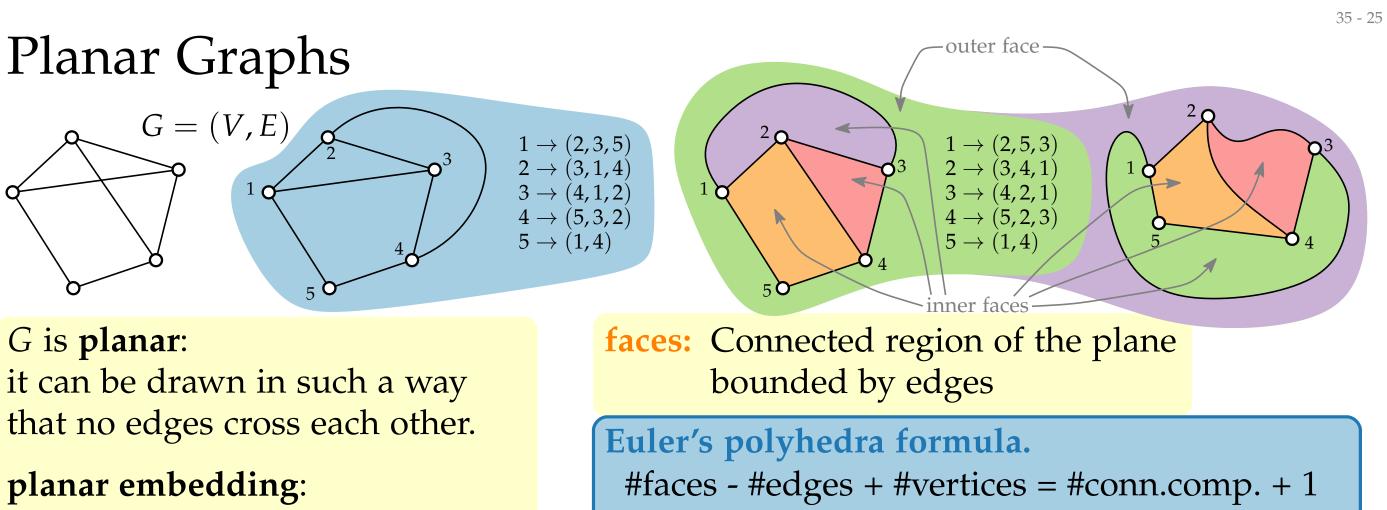
A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow f = ?$ and c = ?

т

+ *n*

+1



A planar graph can have many planar embeddings.

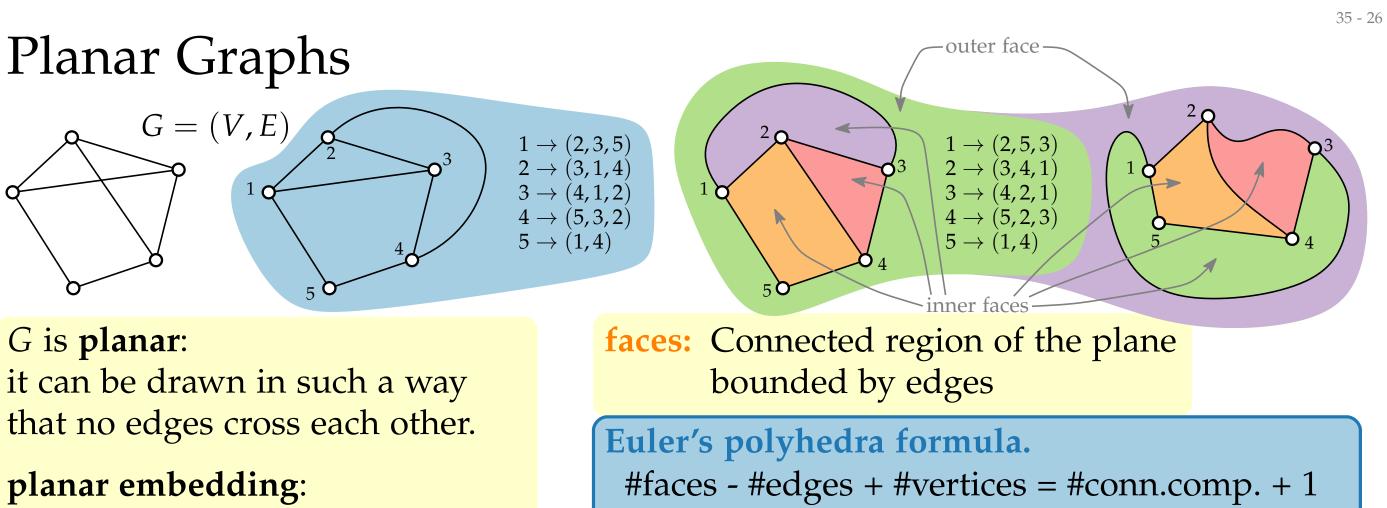
A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow f = 1$ and c = n

т

+ *n*

+1



A planar graph can have many planar embeddings.

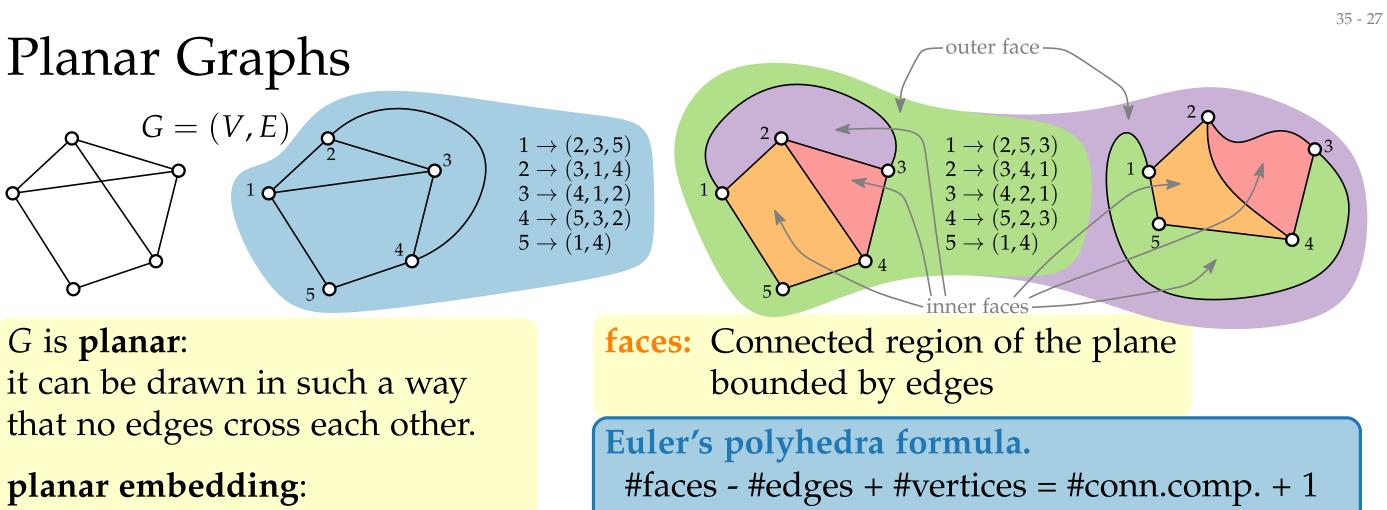
A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow f = 1 \text{ and } c = n$ $\Rightarrow 0 - 0 + c = c + 1$

т

+ n

+1



A planar graph can have many planar embeddings.

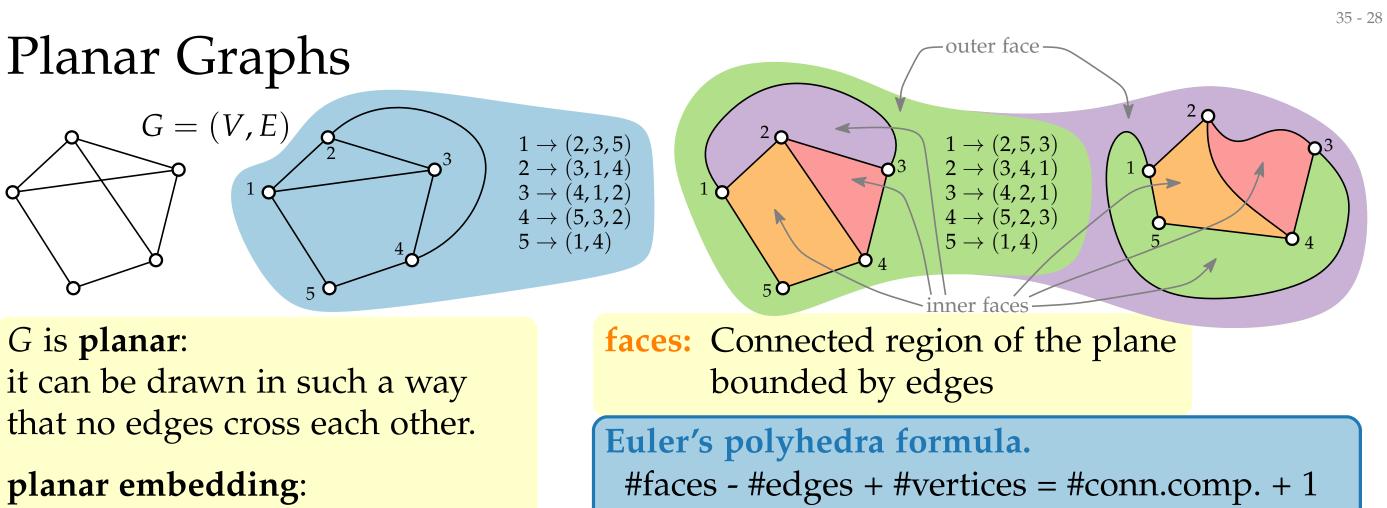
A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow f = 1 \text{ and } c = n$ $\Rightarrow 0 - 0 + c = c + 1\checkmark$

т

+ n

+1



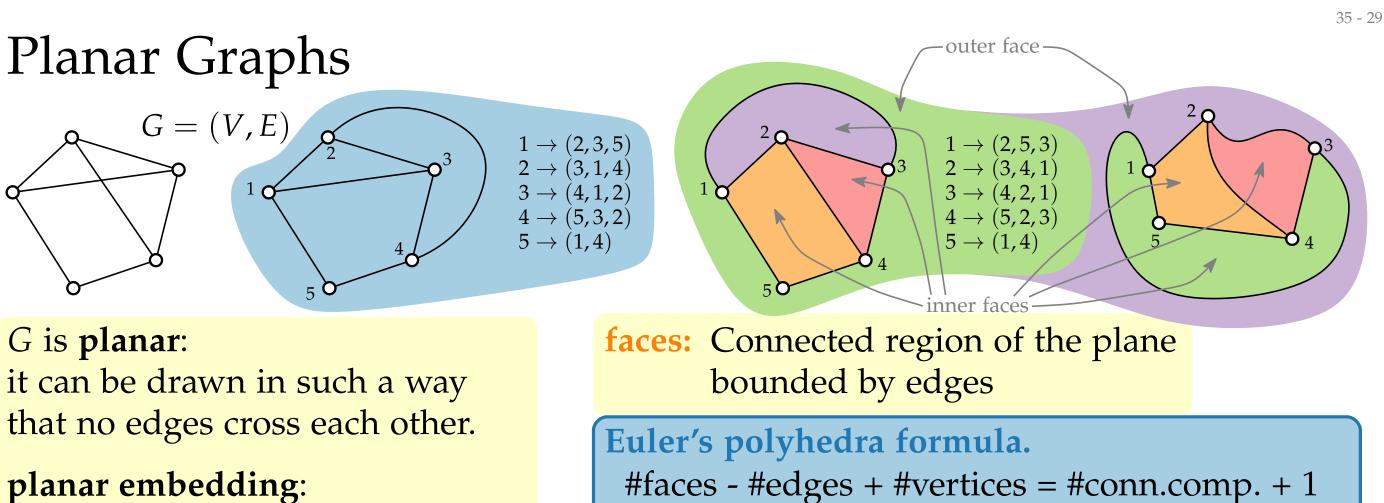
A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow f = 1 \text{ and } c = n$ $\Rightarrow 0 - 0 + c = c + 1\checkmark$ $m > 1 \Rightarrow$

m + n

+1



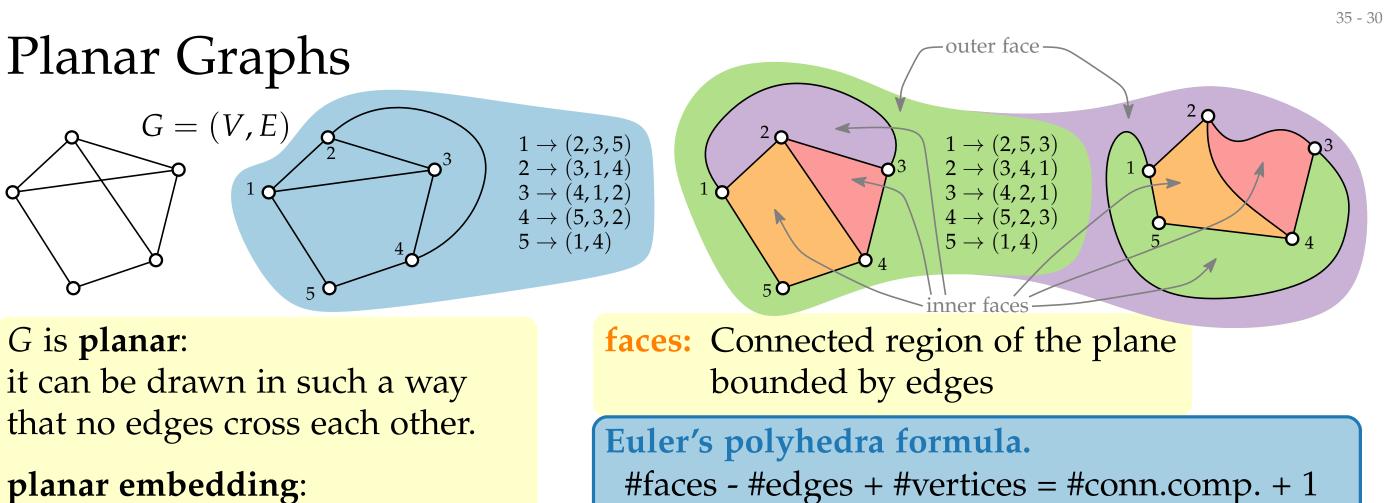
A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow f = 1 \text{ and } c = n$ $\Rightarrow 0 - 0 + c = c + 1\checkmark$ $m > 1 \Rightarrow \text{remove 1 edge } e$

m + n

+1



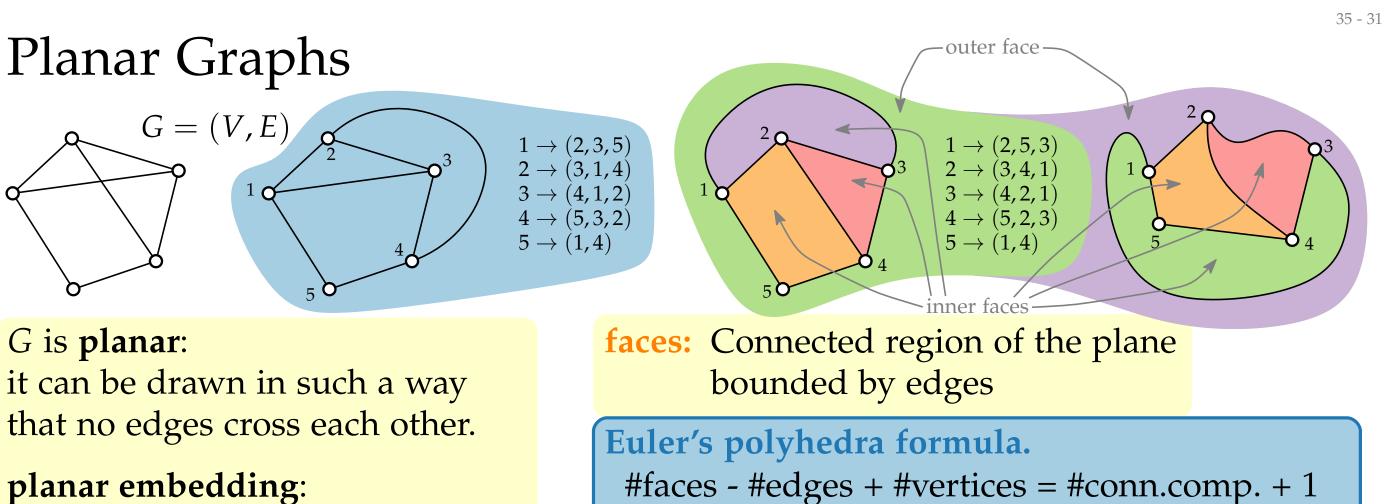
A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow f = 1$ and c = n $\Rightarrow 0 - 0 + c = c + 1\checkmark$ $m > 1 \Rightarrow$ remove 1 edge $e \Rightarrow m - 1$

m + n

+1



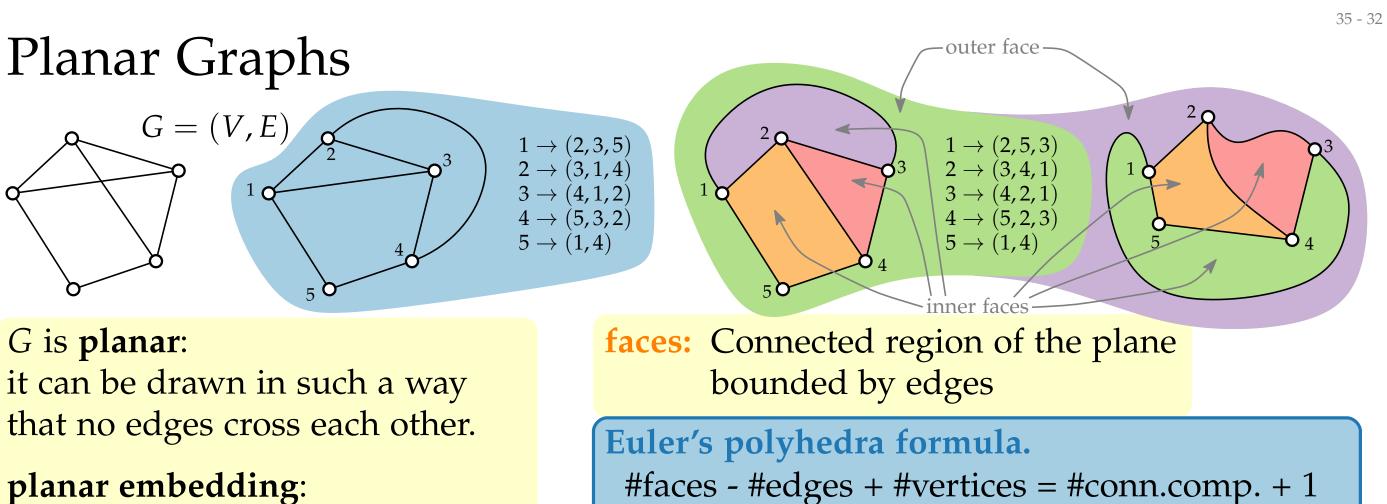
A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow f = 1 \text{ and } c = n$ $\Rightarrow 0 - 0 + c = c + 1 \checkmark$ $m > 1 \Rightarrow \text{remove 1 edge } e \Rightarrow m - 1$

m + n

+1



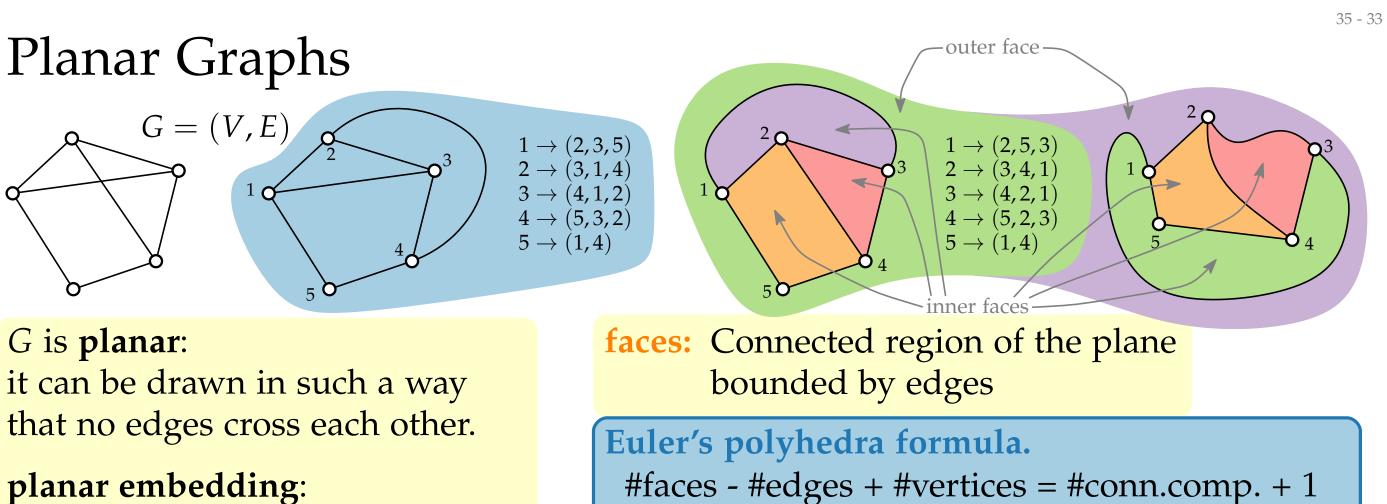
A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow f = 1 \text{ and } c = n$ $\Rightarrow 0 - 0 + c = c + 1 \checkmark$ $m > 1 \Rightarrow \text{remove 1 edge } e \Rightarrow m - 1$ $\Rightarrow c + 1$

m + n

+1



A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

Proof. By induction on *m*: $m = 0 \Rightarrow f = 1 \text{ and } c = n$ $\Rightarrow 0 - 0 + c = c + 1 \checkmark$ $m > 1 \Rightarrow \text{remove 1 edge } e \Rightarrow m - 1$ $\Rightarrow c + 1 \Rightarrow f + 1$

m + n

+1

+ 1

Euler's polyhedra formula. #faces - #edges + #vertices = #conn.comp. + 1 -m+n=cf

Euler's polyhedra formula.

#faces - #edges + #vertices = #conn.comp. + 1 f - m + n = c + 1

Theorem. *G* simple planar graph with $n \ge 3$.

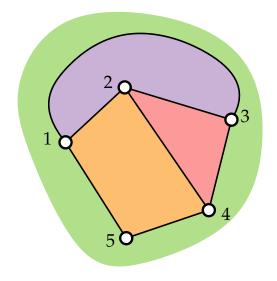
Euler's polyhedra formula.#faces - #edges + #vertices = #conn.comp. + 1f - m + n = c + 1

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$

Euler's polyhedra formula.#faces - #edges + #vertices = #conn.comp. + 1f - m + n = c + 1

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$

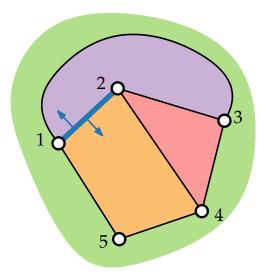
Proof. 1.



Euler's polyhedra formula. #faces - #edges + #vertices = #conn.comp. + 1 f - m + n = c + 1

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$

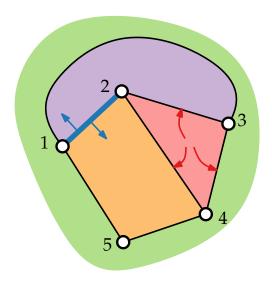
Proof. 1. Every edge incident to \leq 2 faces



Euler's polyhedra formula. #faces - #edges + #vertices = #conn.comp. + 1 f - m + n = c + 1

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$

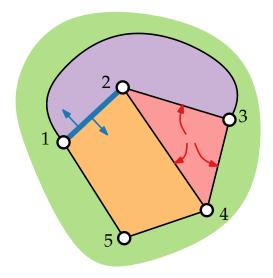
Proof. 1. Every edge incident to \leq 2 faces Every face incident to \geq 3 edges



Euler's polyhedra formula. #faces - #edges + #vertices = #conn.comp. + 1 f - m + n = c + 1

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$

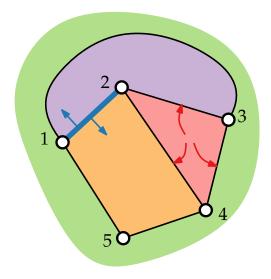
Proof. 1. Every edge incident to \leq 2 faces Every face incident to \geq 3 edges $\Rightarrow 3f \leq 2m$



Euler's polyhedra formula. #faces - #edges + #vertices = #conn.comp. + 1 f - m + n = c + 1

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$

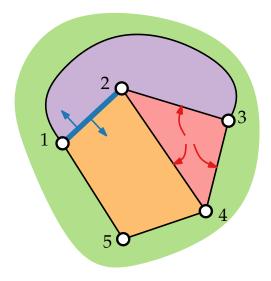
Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges $\Rightarrow 3f \leq 2m$ $\Rightarrow 6 \leq 3c + 3 \leq 3f - 3m + 3n$



Euler's polyhedra formula. #faces - #edges + #vertices = #conn.comp. + 1 f - m + n = c + 1

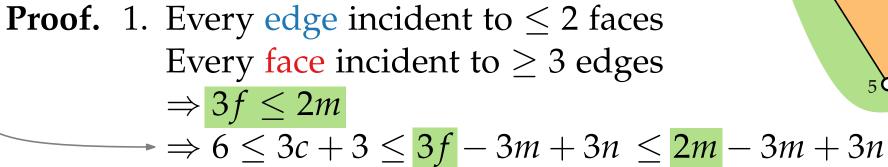
Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$

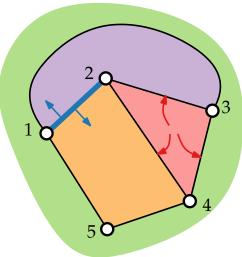
Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges $\Rightarrow 3f \leq 2m$ $\Rightarrow 6 \leq 3c + 3 \leq 3f - 3m + 3n$



Euler's polyhedra formula. #faces - #edges + #vertices = #conn.comp. + 1 f - m + n = c + 1

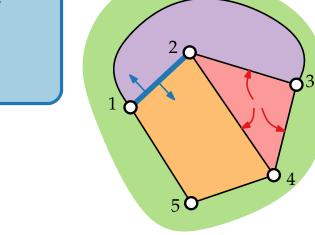
Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$





Euler's polyhedra formula. #faces - #edges + #vertices = #conn.comp. + 1 f - m + n = c + 1

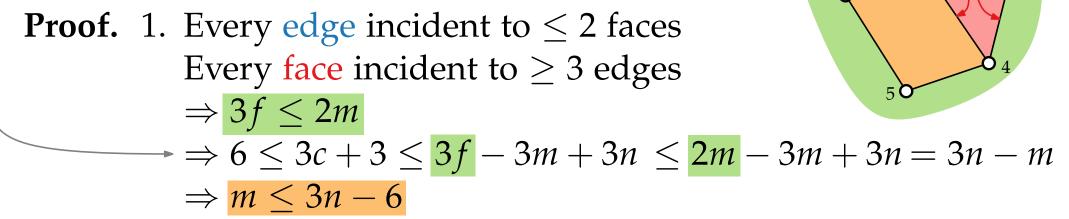
Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$

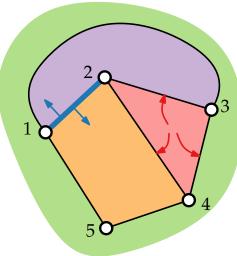


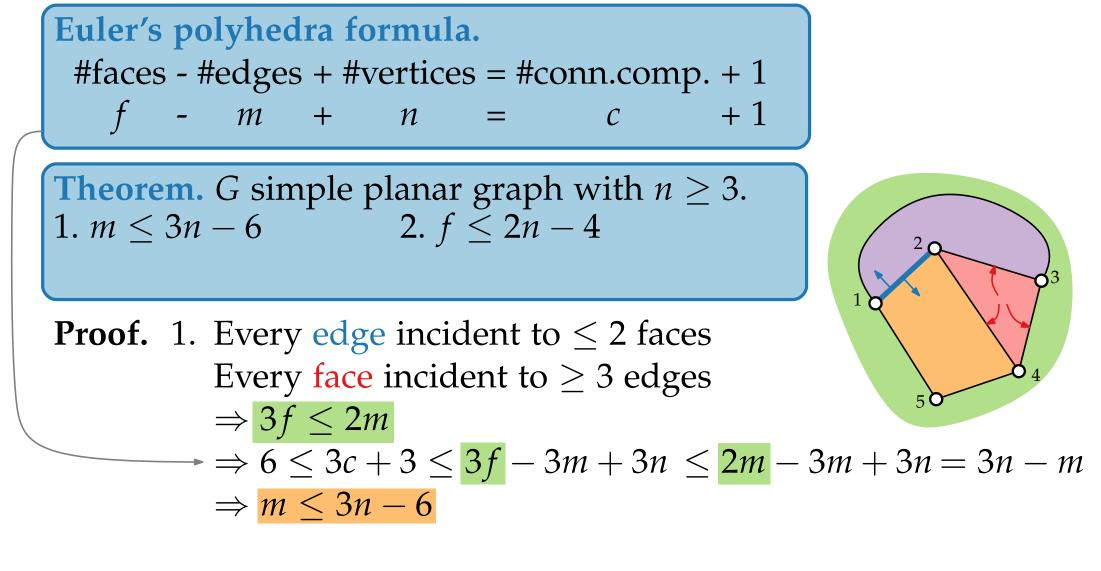
Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges $\Rightarrow 3f \leq 2m$ $\Rightarrow 6 \leq 3c + 3 \leq 3f - 3m + 3n \leq 2m - 3m + 3n = 3n - m$ 36 - 11

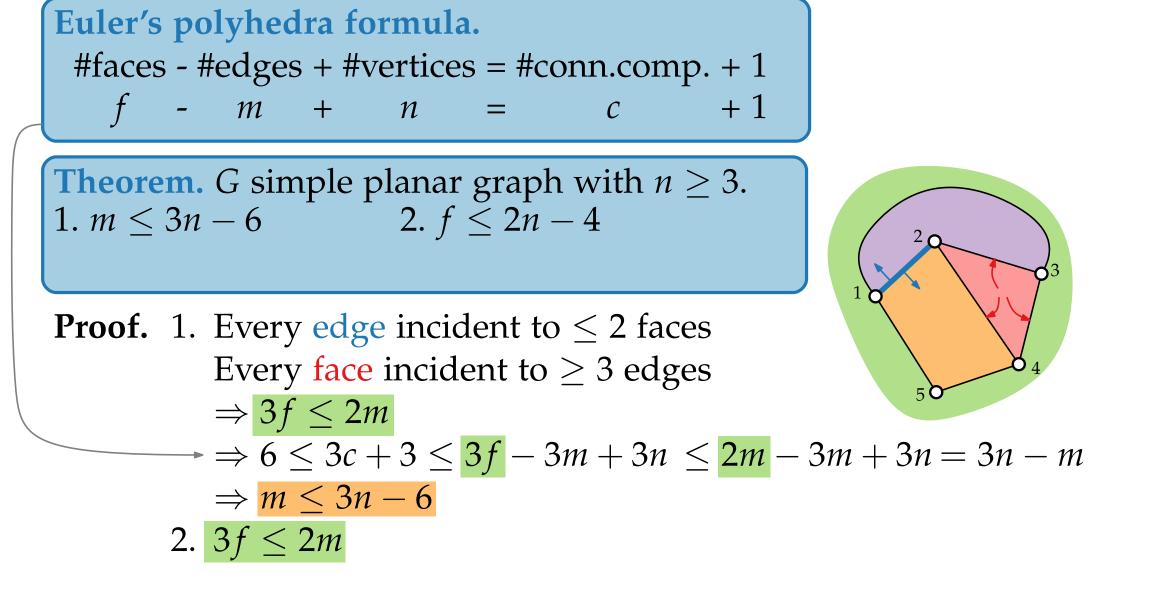
Euler's polyhedra formula. #faces - #edges + #vertices = #conn.comp. + 1 f - m + n = c + 1

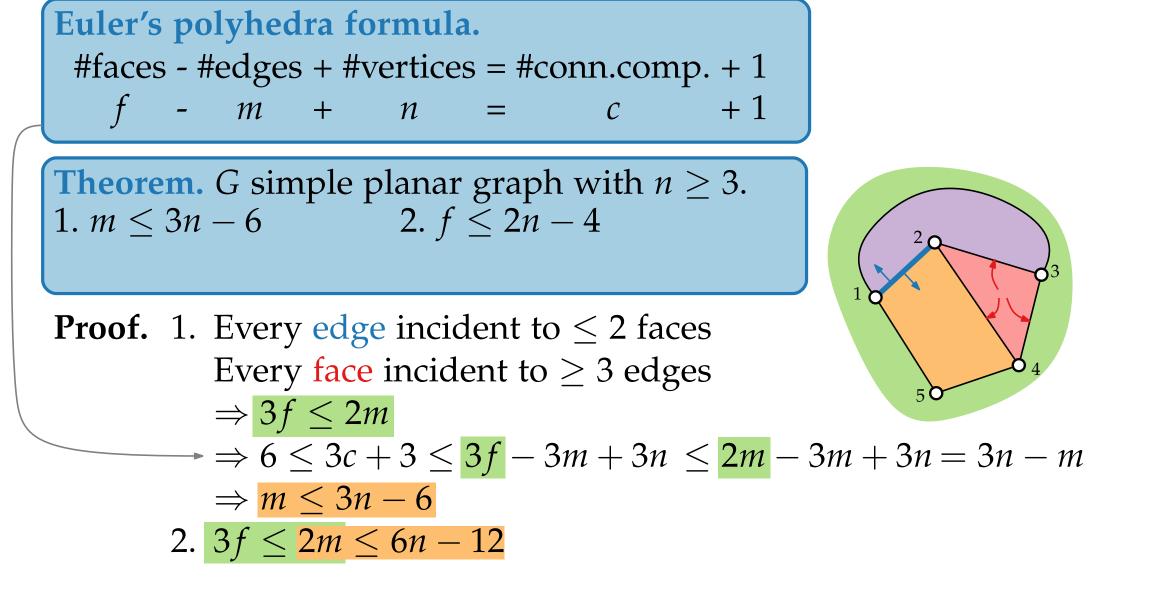
Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$

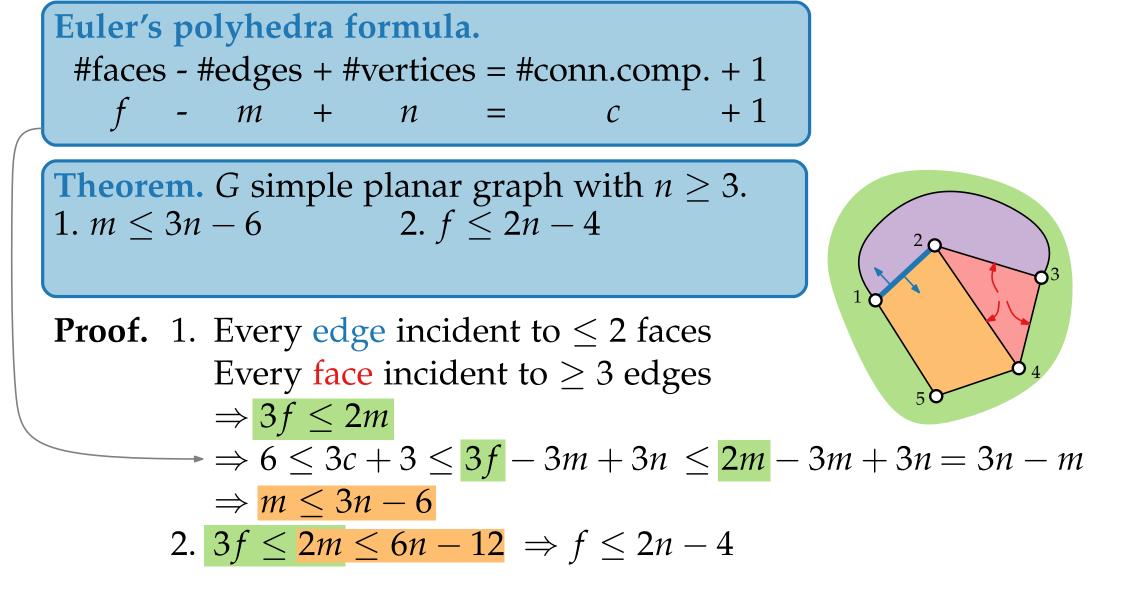


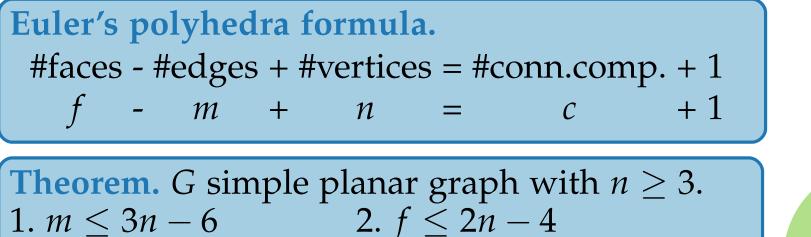






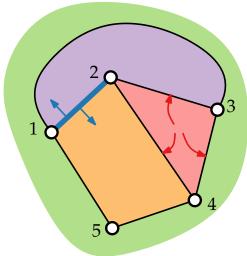


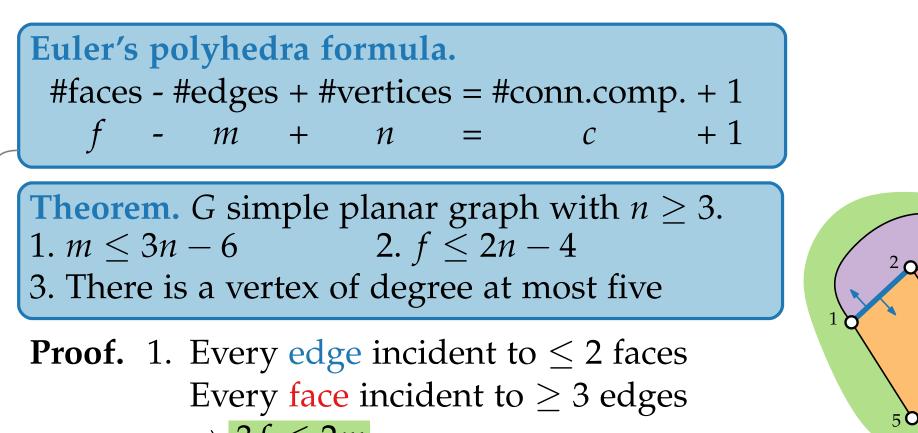




3. There is a vertex of degree at most five

Proof. 1. Every edge incident to ≤ 2 faces Every face incident to ≥ 3 edges $\Rightarrow 3f \leq 2m$ $\Rightarrow 6 \leq 3c + 3 \leq 3f - 3m + 3n \leq 2m - 3m + 3n = 3n - m$ $\Rightarrow m \leq 3n - 6$ 2. $3f \leq 2m \leq 6n - 12 \Rightarrow f \leq 2n - 4$



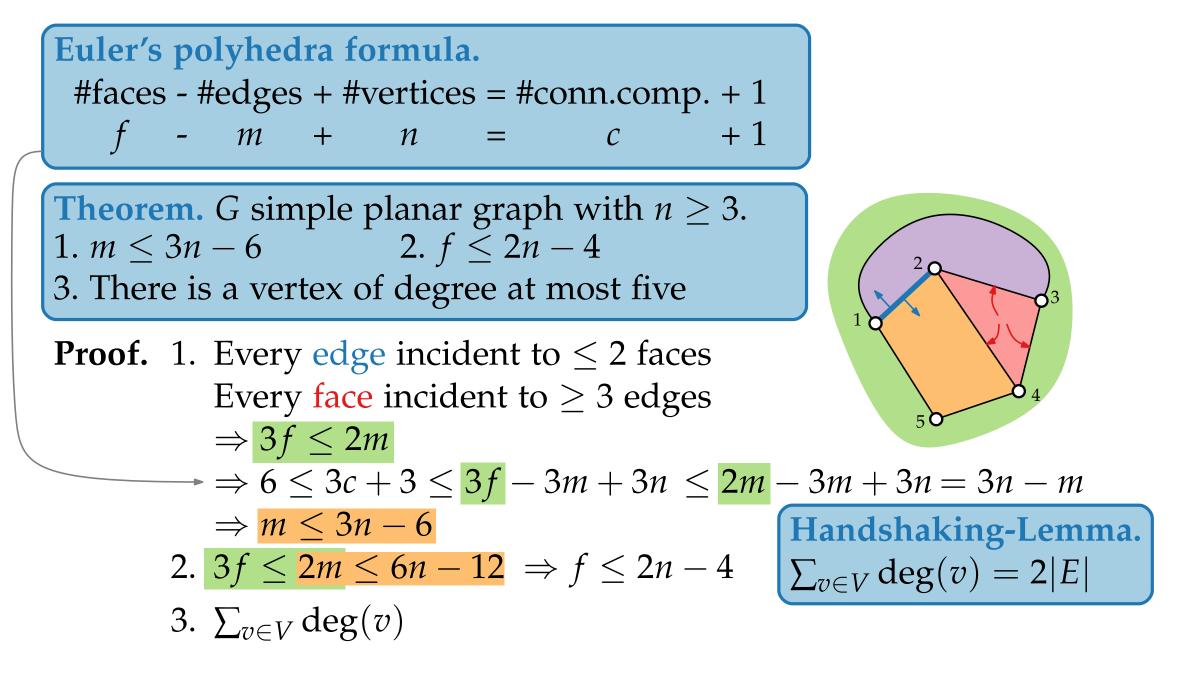


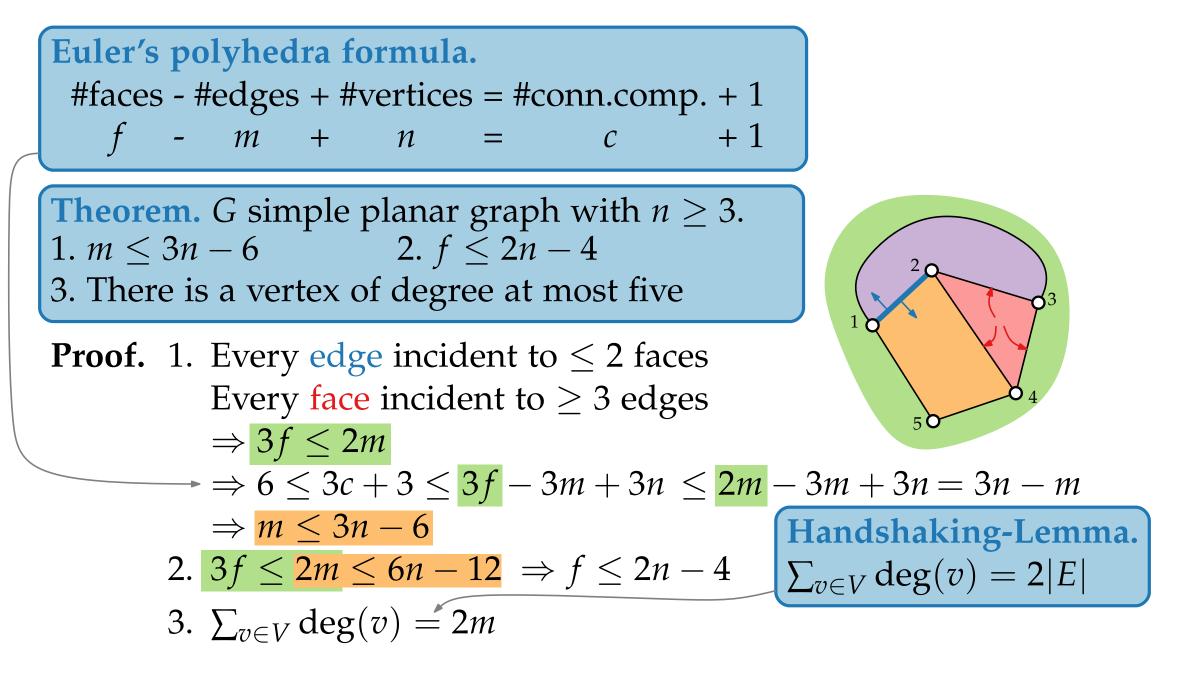
$$\Rightarrow 3f \leq 2m$$

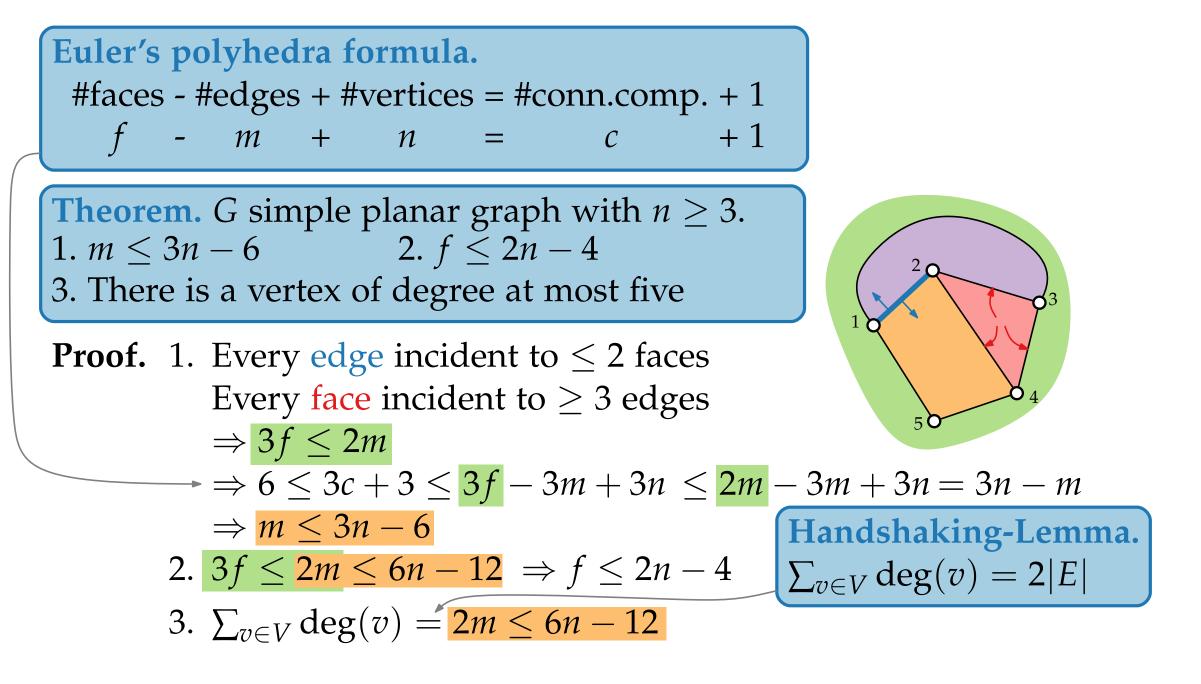
$$\Rightarrow 6 \leq 3c + 3 \leq 3f - 3m + 3n \leq 2m - 3m + 3n = 3n - m$$

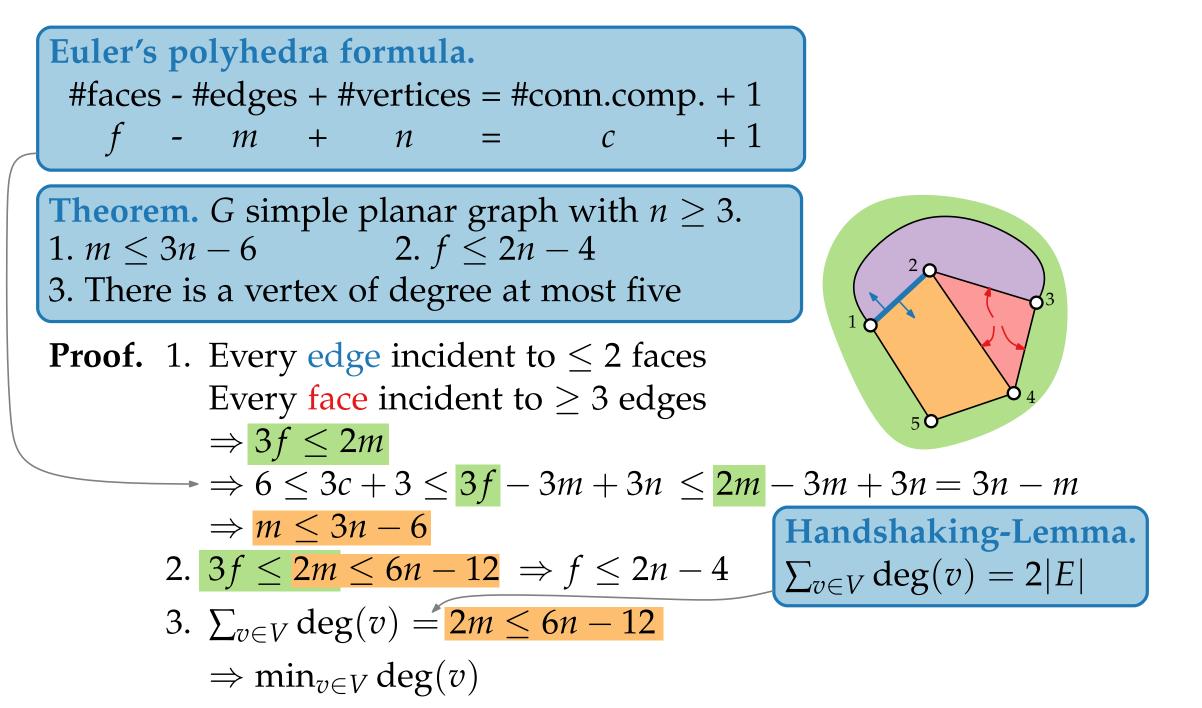
$$\Rightarrow m \leq 3n - 6$$

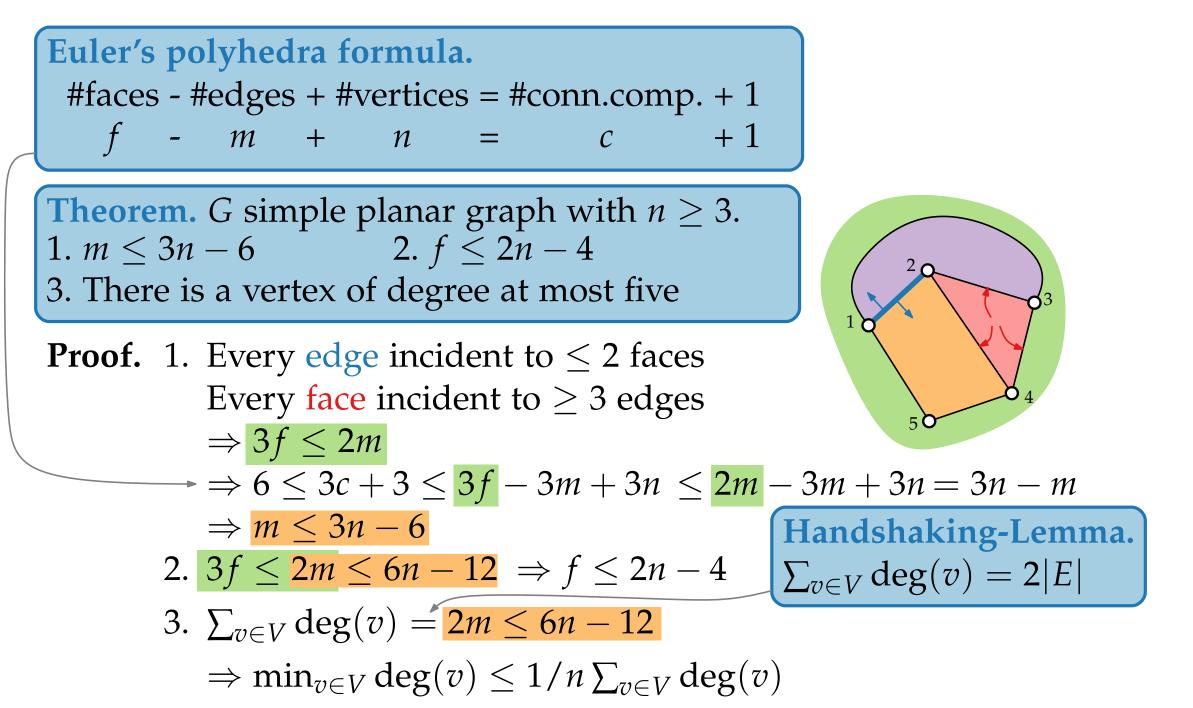
2. $3f \leq 2m \leq 6n - 12 \Rightarrow f \leq 2n - 4$
3. $\sum_{v \in V} \deg(v)$

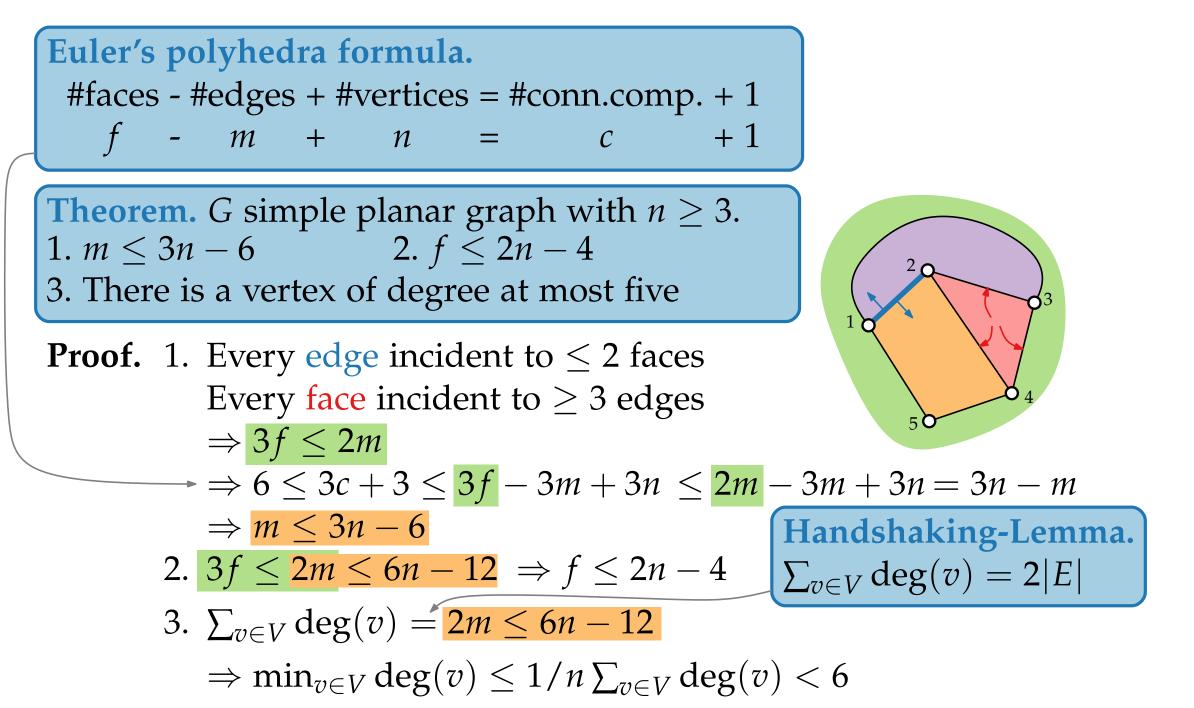


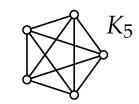








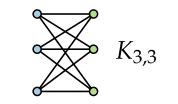




Complete graphs $K_n = \left(V, {V \choose 2}\right)$ is the complete graph on *n* vertices.

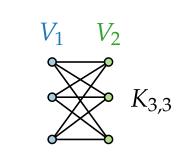
 K_5

Complete graphs $K_n = \left(V, {V \choose 2}\right)$ is the complete graph on *n* vertices.



 K_5

 $K_n = \left(V, \binom{V}{2}\right)$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = \left(V_1 \cup V_2, V_1 \times V_2\right)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



 K_5

 $K_n = \left(V, {V \choose 2}\right)$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

$$V_1 \quad V_2$$

$$K_{3,3}$$

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

$$V_1 \quad V_2$$

$$K_{3,3}$$

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

$$V_1 \quad V_2$$

$$K_{3,3}$$

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Proof.

*K*₅:

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

$$V_1 \quad V_2$$

$$K_{3,3}$$

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

$$K_5: m = \binom{5}{2}$$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

$$V_1 \quad V_2$$

$$K_{3,3}$$

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2}$$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 $V_1 \quad V_2$ $K_{3,3}$

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

$$K_5: \quad m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10$$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10$$
 $3n - 6$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

$$V_1 \quad V_2$$

$$K_{3,3}$$

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10$$
 $3 \cdot 5 - 6 = 3n - 6$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

V₁ V₂

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Theorem. *G* simple planar graph with
$$n \ge 3$$
.
1. $m \le 3n - 6$ 2. $f \le 2n - 4$
3. There is a vertex of degree at most five

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}:

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}: $m = 3 \cdot 3$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}: $m = 3 \cdot 3 = 9$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}: $m = 3 \cdot 3 = 9$ $3n - 6$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}: $m = 3 \cdot 3 = 9$ $3 \cdot 6 - 6 = 3n - 6$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}: $m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

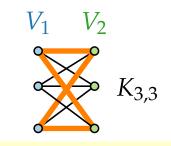
Proof.

K₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$
 ✓
K_{3,3}: $m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$
⇒ mo contradiction to the theorem!

 \Rightarrow *no* contradiction to the theorem!

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



 K_{5}

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

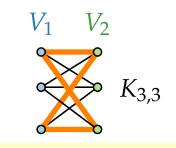
Proof.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}: $m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$

 \Rightarrow *no* contradiction to the theorem! There is no cycle of length 3. **Theorem.** *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



1. $m \le 3n - 6$

Theorem. *G* simple planar graph with $n \ge 3$.

3. There is a vertex of degree at most five

2. $f \le 2n - 4$

 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Proof.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

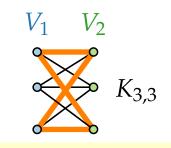
*K*_{3,3}:
$$m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$$

 \Rightarrow *no* contradiction to the theorem!

There is no cycle of length 3.

Every face incident to \geq 4 edges (in hypothetical planar drawing)

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



 K_{5}

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Proof.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}:
$$m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$$

 \Rightarrow *no* contradiction to the theorem!

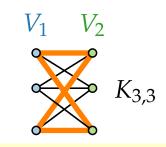
There is no cycle of length 3.

Every face incident to \geq 4 edges (in hypothetical planar drawing)

$$\Rightarrow 4f \leq 2m$$

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



 K_{5}

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Proof.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}:
$$m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$$

 \Rightarrow *no* contradiction to the theorem!

There is no cycle of length 3.

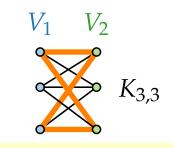
Every face incident to \geq 4 edges (in hypothetical planar drawing)

$$\Rightarrow 4f \le 2m$$

$$\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n$$

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



Theorem. *G* simple planar graph with $n \ge 3$.

3. There is a vertex of degree at most five

2. $f \leq 2n - 4$

 K_5

1. $m \le 3n - 6$

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Proof.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}:
$$m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$$

 \Rightarrow *no* contradiction to the theorem!

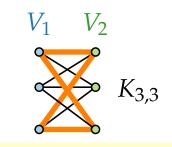
There is no cycle of length 3.

Every face incident to \geq 4 edges (in hypothetical planar drawing)

$$\Rightarrow 4f \le 2m$$

$$\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n$$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



Theorem. *G* simple planar graph with $n \ge 3$.

3. There is a vertex of degree at most five

2. $f \leq 2n - 4$

 K_5

1. $m \le 3n - 6$

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Proof.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}:
$$m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$$

 \Rightarrow *no* contradiction to the theorem!

There is no cycle of length 3.

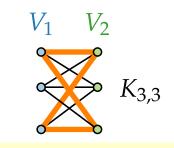
Every face incident to \geq 4 edges (in hypothetical planar drawing)

$$\Rightarrow 4f \le 2m$$

$$\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n = 4n - 2m$$

 $\Rightarrow 41 \sim 2m$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



Theorem. *G* simple planar graph with $n \ge 3$.

3. There is a vertex of degree at most five

2. $f \le 2n - 4$

 K_5

1. $m \le 3n - 6$

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

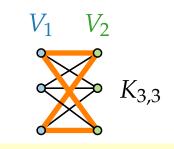
Theorem. K_5 and $K_{3,3}$ are not planar.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}: $m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$
 \Rightarrow *no* contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)

$$\Rightarrow 8 \leq 4c + 4 \leq 4f - 4m + 4n \leq 2m - 4m + 4n = 4n - 2m$$
$$\Rightarrow m \leq 2n - 4$$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



1. $m \le 3n - 6$

Theorem. *G* simple planar graph with $n \ge 3$.

3. There is a vertex of degree at most five

2. $f \le 2n - 4$

 K_5

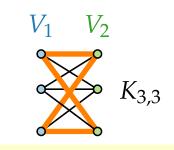
A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

K₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

K_{3,3}: $m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$
 \Rightarrow *no* contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
 $\Rightarrow 4f \le 2m$
 $\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n = 4n - 2m$
 $\Rightarrow m \le 2n - 4 = 2 \cdot 6 - 4$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



1. $m \le 3n - 6$

Theorem. *G* simple planar graph with $n \ge 3$.

3. There is a vertex of degree at most five

2. $f \le 2n - 4$

 K_5

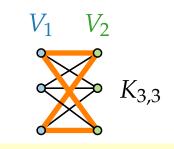
A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

K₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

K_{3,3}: $m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$
 \Rightarrow *no* contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
 $\Rightarrow 4f \le 2m$
 $\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n = 4n - 2m$
 $\Rightarrow m \le 2n - 4 = 2 \cdot 6 - 4 = 8$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



1. $m \le 3n - 6$

Theorem. *G* simple planar graph with $n \ge 3$.

3. There is a vertex of degree at most five

2. $f \le 2n - 4$

 K_5

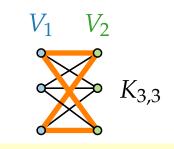
A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

K₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

K_{3,3}: $m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$
 \Rightarrow *no* contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
 $\Rightarrow 4f \le 2m$
 $\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n = 4n - 2m$
 $\Rightarrow m \le 2n - 4 = 2 \cdot 6 - 4 = 8 < 9 = m$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



1. $m \le 3n - 6$

Theorem. *G* simple planar graph with $n \ge 3$.

3. There is a vertex of degree at most five

2. $f \le 2n - 4$

 K_5

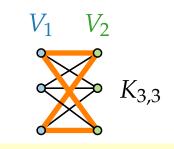
A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

K₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

K_{3,3}: $m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$
 \Rightarrow *no* contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
 $\Rightarrow 4f \le 2m$
 $\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n = 4n - 2m$
 $\Rightarrow m \le 2n - 4 = 2 \cdot 6 - 4 = 8 < 9 = m$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



Theorem. *G* simple planar graph with $n \ge 3$.

3. There is a vertex of degree at most five

2. $f \le 2n - 4$

 K_5

1. $m \le 3n - 6$

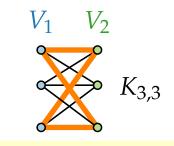
A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

K₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

K_{3,3}: $m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$
⇒ *no* contradiction to the theorem!
There is no cycle of length 3.
Every face incident to ≥ 4 edges (in hypothetical planar drawing)
⇒ $4f \le 2m$
⇒ $8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n = 4n - 2m$
⇒ $m \le 2n - 4 = 2 \cdot 6 - 4 = 8 < 9 = m$

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Proof.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}:
$$m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$$

 \Rightarrow *no* contradiction to the theorem!

There is no cycle of length 3.

Every face incident to \geq 4 edges (in hypothetical planar drawing)

$$\Rightarrow 4f \le 2m$$

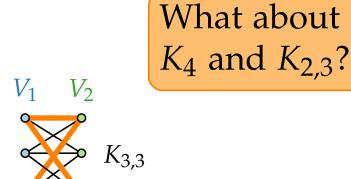
$$\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n = 4n - 2m$$

$$\Rightarrow m \le 2n - 4 = 2 \cdot 6 - 4 = 8 < 9 = m \qquad \checkmark$$

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

Theorem. *G* simp. pl. **bipartite** graph, $n \ge 3$. 1. $m \le 2n - 4$ 2. $f \le n - 2$ 3. There is a vertex of degree at most three

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Proof.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}:
$$m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$$

 \Rightarrow *no* contradiction to the theorem!

There is no cycle of length 3.

Every face incident to \geq 4 edges (in hypothetical planar drawing)

$$\Rightarrow 4f \le 2m$$

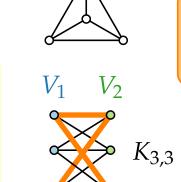
$$\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n = 4n - 2m$$

$$\Rightarrow m \le 2n - 4 = 2 \cdot 6 - 4 = 8 < 9 = m$$

Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

Theorem. *G* simp. pl. **bipartite** graph, $n \ge 3$. 1. $m \le 2n - 4$ 2. $f \le n - 2$ 3. There is a vertex of degree at most three

 $K_n = (V, {V \choose 2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



 K_5

 K_4

What about K_4 and $K_{2,3}$?

37 - 37

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Proof.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}:
$$m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$$

 \Rightarrow *no* contradiction to the theorem!

There is no cycle of length 3.

Every face incident to ≥ 4 edges (in hypothetical planar drawing)

$$\Rightarrow 4f \le 2m$$

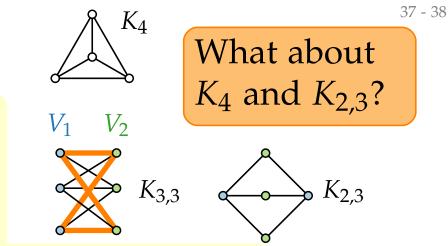
$$\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n = 4n - 2m$$

$$\Rightarrow m \le 2n - 4 = 2 \cdot 6 - 4 = 8 < 9 = m$$

Theorem. *G* simple planar graph with $n \ge 3$. 2. $f \le 2n - 4$ 1. $m \le 3n - 6$ 3. There is a vertex of degree at most five

Theorem. *G* simp. pl. **bipartite** graph, $n \ge 3$. 2. $f \le n - 2$ 1. $m \le 2n - 4$ 3. There is a vertex of degree at most three

 $K_n = (V, \binom{V}{2})$ is the **complete** graph on *n* vertices. $K_{n_1,n_2} = (V_1 \cup V_2, V_1 \times V_2)$ with $|V_1| = n_1$ and $|V_2| = n_2$ is a **complete bipartite** graph on $n = n_1 + n_2$ vertices.



 K_5

A **bipartite** graph is a subgraph of a K_{n_1,n_2} ; V_1 and V_2 are called **bipartitions**.

Theorem. K_5 and $K_{3,3}$ are not planar.

Proof.

*K*₅:
$$m = \binom{5}{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$$

*K*_{3,3}:
$$m = 3 \cdot 3 = 9 < 12 = 3 \cdot 6 - 6 = 3n - 6$$

 \Rightarrow *no* contradiction to the theorem!

There is no cycle of length 3.

Every face incident to \geq 4 edges (in hypothetical planar drawing)

$$\Rightarrow 4f \le 2m$$

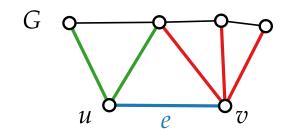
$$\Rightarrow 8 \le 4c + 4 \le 4f - 4m + 4n \le 2m - 4m + 4n = 4n - 2m$$

$$\Rightarrow m \le 2n - 4 = 2 \cdot 6 - 4 = 8 < 9 = m$$

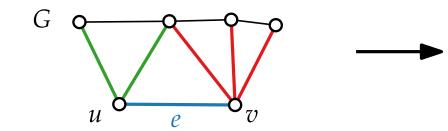
Theorem. *G* simple planar graph with $n \ge 3$. 1. $m \le 3n - 6$ 2. $f \le 2n - 4$ 3. There is a vertex of degree at most five

Theorem. *G* simp. pl. **bipartite** graph, $n \ge 3$. 1. $m \le 2n - 4$ 2. $f \le n - 2$ 3. There is a vertex of degree at most three

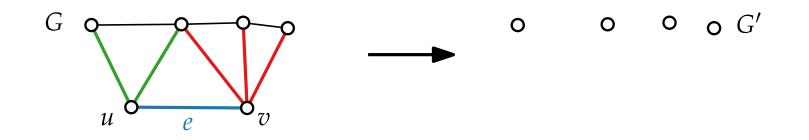
G simple graph and $e = uv \in E$



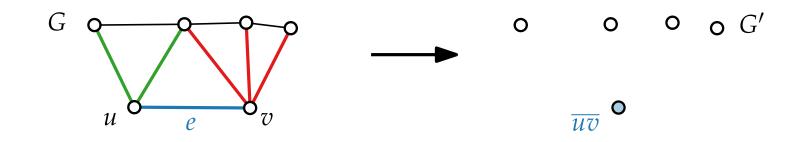
G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E')



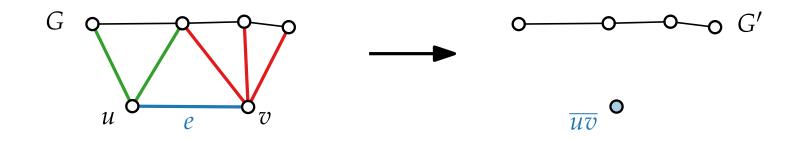
G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\}$



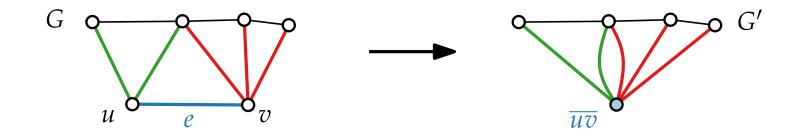
G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$



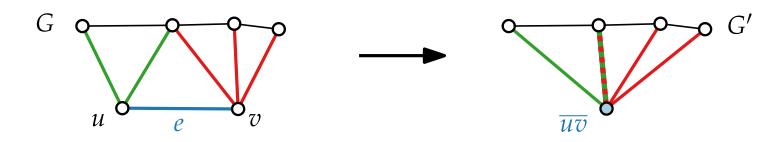
G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\})$



G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\}) \cup \bigcup_{x \in \operatorname{Adj}(u) \cup \operatorname{Adj}(v)} \overline{uv}x$



G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\}) \cup \bigcup_{x \in \operatorname{Adj}(u) \cup \operatorname{Adj}(v)} \overline{uv}x$ (multi-edges are merged)



G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\}) \cup \bigcup_{x \in \mathrm{Adj}(u) \cup \mathrm{Adj}(v)} \overline{uv}x$ (multi-edges are merged) G G'U \overline{uv} P A graph *H* is a **minor** of *G* (write $H \leq G$)

if it is obtained by a set of contractions from a subgraph of G.

G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\}) \cup \bigcup_{x \in \operatorname{Adj}(u) \cup \operatorname{Adj}(v)} \overline{uv}x$ (multi-edges are merged) $G \longrightarrow G'$

 \overline{uv}

A graph *H* is a **minor** of *G* (write $H \le G$) if it is obtained by a set of contractions from a subgraph of *G*.

$$\operatorname{cond}_{\mathrm{cond}} \leq \operatorname{cond}_{\mathrm{cond}}$$

P

U

G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\}) \cup \bigcup_{x \in \operatorname{Adj}(u) \cup \operatorname{Adj}(v)} \overline{uv}x$ (multi-edges are merged) G $\bigcap \bigcap \bigcap G'$

 \overline{uv}

A graph *H* is a **minor** of *G* (write $H \le G$) if it is obtained by a set of contractions from a subgraph of *G*.

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

P

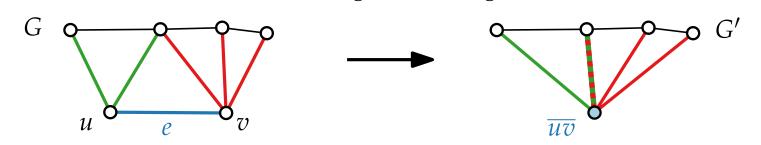
U

 $G \text{ simple graph and } e = uv \in E$ Contracting e gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\}) \cup \bigcup_{x \in \text{Adj}(u) \cup \text{Adj}(v)} \overline{uv}x$ (multi-edges are merged) $G \bigvee_{u \in V} v \bigvee_{v \in V} (uv) \bigvee_{v \in V} (uv)$

A graph *H* is a **minor** of *G* (write $H \le G$) if it is obtained by a set of contractions from a subgraph of *G*.

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\}) \cup \bigcup_{x \in \operatorname{Adj}(u) \cup \operatorname{Adj}(v)} \overline{uv}x$ (multi-edges are merged)



A graph *H* is a **minor** of *G* (write $H \le G$) if it is obtained by a set of contractions from a subgraph of *G*.

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

Observation. *G* planar, $H \le G \Rightarrow H$ planar

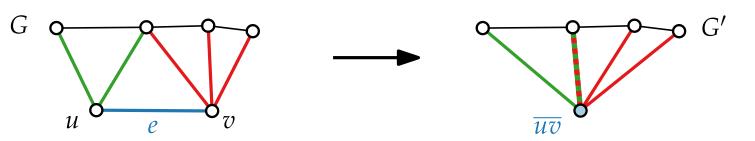
G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\}) \cup \bigcup_{x \in \mathrm{Adj}(u) \cup \mathrm{Adj}(v)} \overline{uvx}$ **Observation.** *G* planar, $H \leq G \Rightarrow H$ planar

(multi-edges are merged)

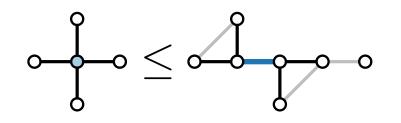
A graph *H* is a **minor** of *G* (write $H \le G$) if it is obtained by a set of contractions from a subgraph of *G*.

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

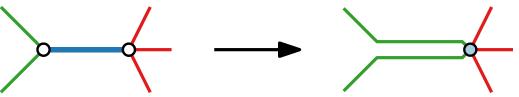
G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\}) \cup \bigcup_{x \in \operatorname{Adj}(u) \cup \operatorname{Adj}(v)} \overline{uv}x$ (multi-edges are merged)



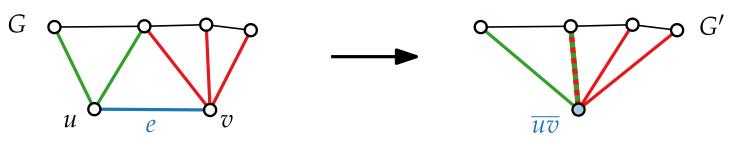
A graph *H* is a **minor** of *G* (write $H \le G$) if it is obtained by a set of contractions from a subgraph of *G*.



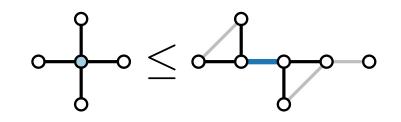
Observation. *G* planar, $H \le G \Rightarrow H$ planar



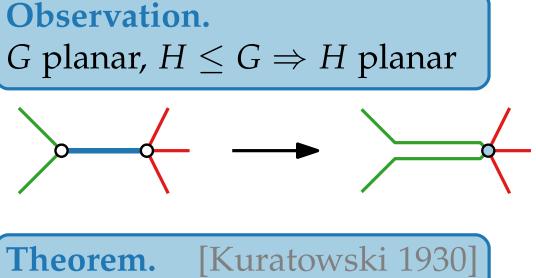
G simple graph and $e = uv \in E$ **Contracting** *e* gives the graph G' = (V', E') $V' = V \setminus \{u, v\} \cup \overline{uv}$ $E' = E \setminus (\bigcup_{w \in V} \{uw, vw\}) \cup \bigcup_{x \in \operatorname{Adj}(u) \cup \operatorname{Adj}(v)} \overline{uv}x$ (multi-edges are merged)



A graph *H* is a **minor** of *G* (write $H \le G$) if it is obtained by a set of contractions from a subgraph of *G*.

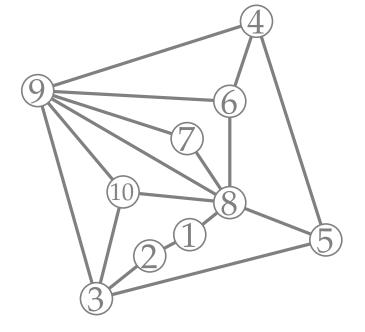


Kazimierz Kuratowski Warschau 1896–1980 Warschau



G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of *G*

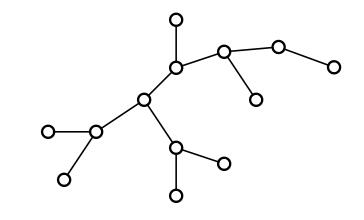
Visualization of Graphs Lecture 1: The Graph Visualization Problem



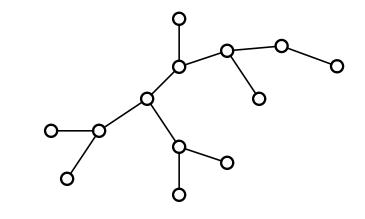
Part V: Binary Search Trees

Philipp Kindermann Summer Semester 2021

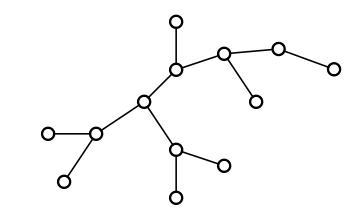
G is a **tree** if the following equivalent conditions hold:



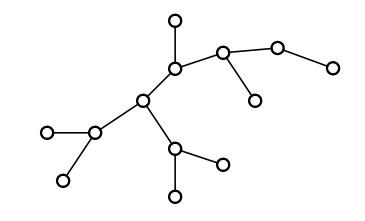
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected

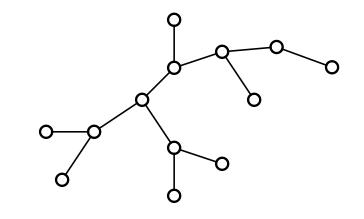


G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 1



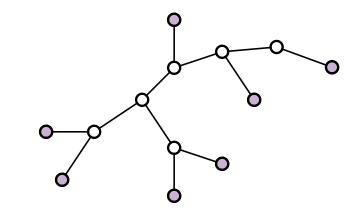
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 1

4. *G* connected and m = n - 1



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

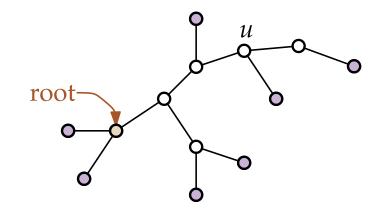
Leaf: Vertex of degree 1



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

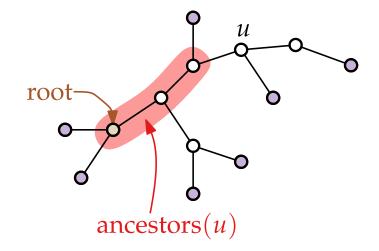
Leaf: Vertex of degree 1 Rooted tree: tree with designated root

Parent: Neighbor on path to root



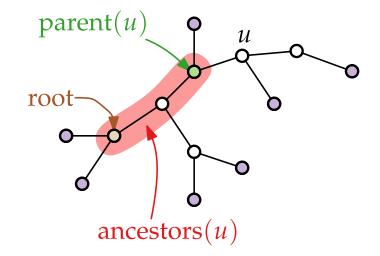
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root



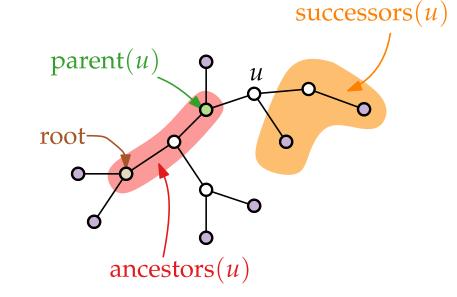
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root



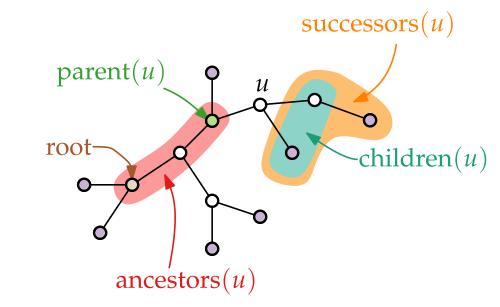
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root



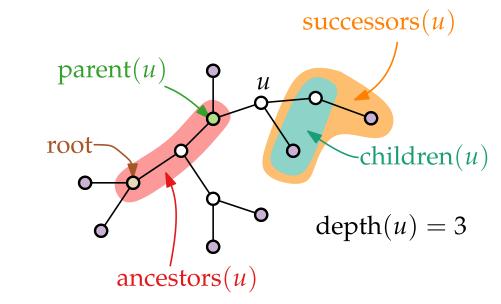
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root



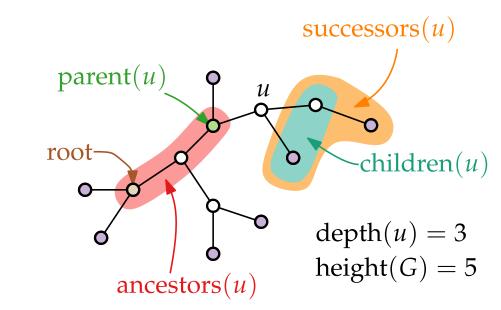
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

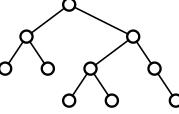


G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

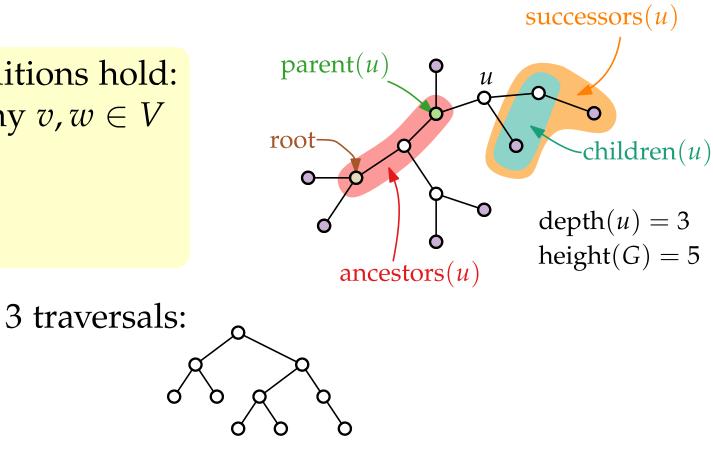
Binary Tree: At most two children per vertex (left / right child)

successors(u) parent(u) u o children(<math>u) root children(u) depth(u) = 3height(G) = 5



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



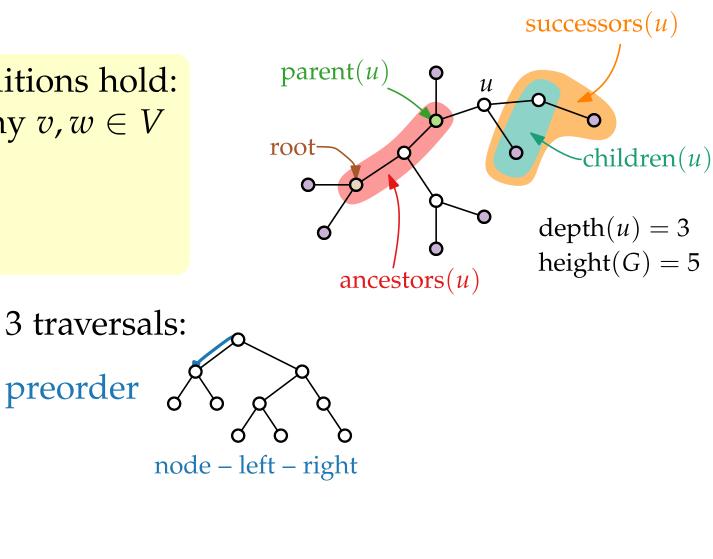
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

successors(u)parent(*u*) root children(u)depth(u) = 3height(G) = 5ancestors(u)3 traversals: preorder node – left – right

G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

successors(u)parent(*u*) root children(u)depth(u) = 3height(G) = 5ancestors(u)3 traversals: preorder node – left – right

G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

successors(u)parent(*u*) root children(u)depth(u) = 3height(G) = 5ancestors(u)3 traversals: preorder node – left – right

G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

successors(u)parent(*u*) root children(u)depth(u) = 3height(G) = 5ancestors(u)3 traversals: preorder node – left – right

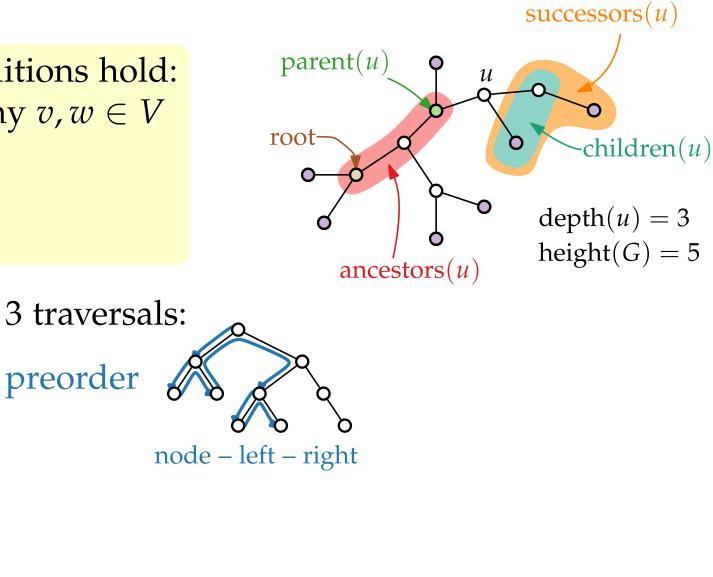
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

successors(u)parent(*u*) root children(u)depth(u) = 3height(G) = 5ancestors(u)3 traversals: preorder node – left – right

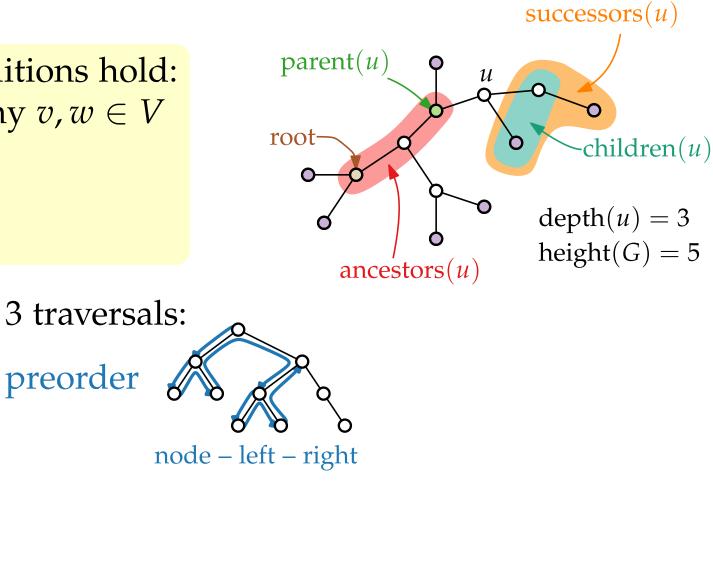
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



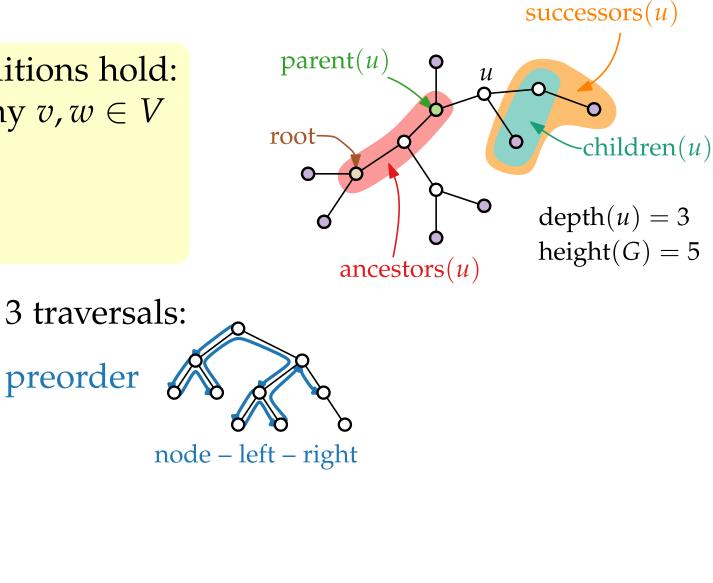
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



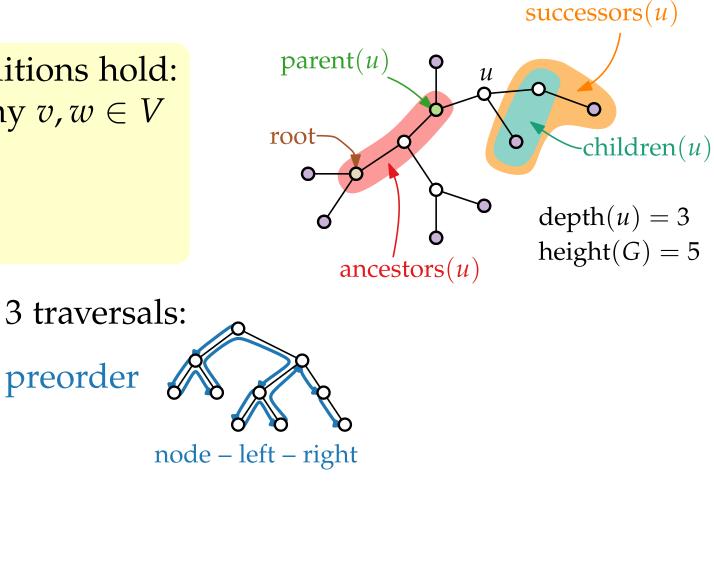
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



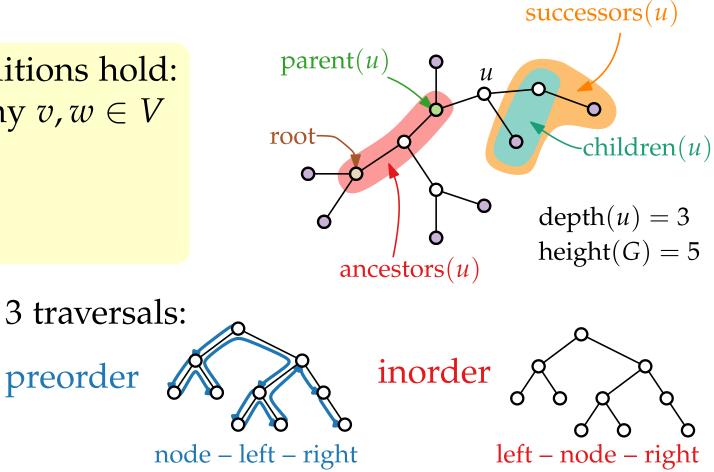
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

parent(*u*) root children(u)depth(u) = 3height(G) = 5ancestors(u)3 traversals: inorder preorder node – left – right left – node – right

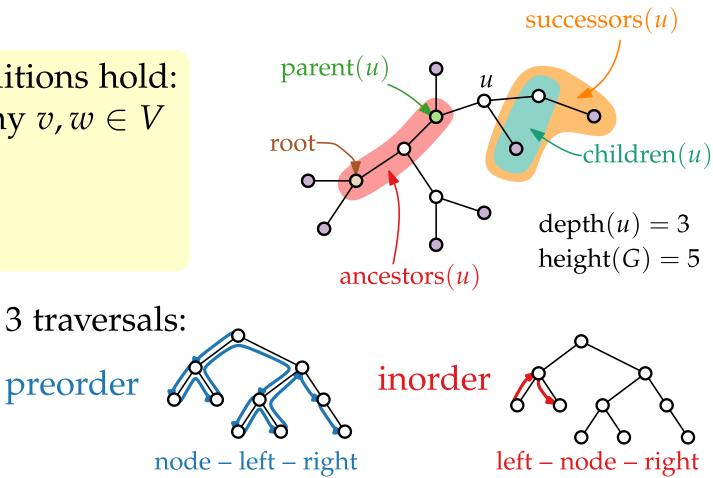
Binary Tree: At most two children per vertex (left / right child)

successors(u)

G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

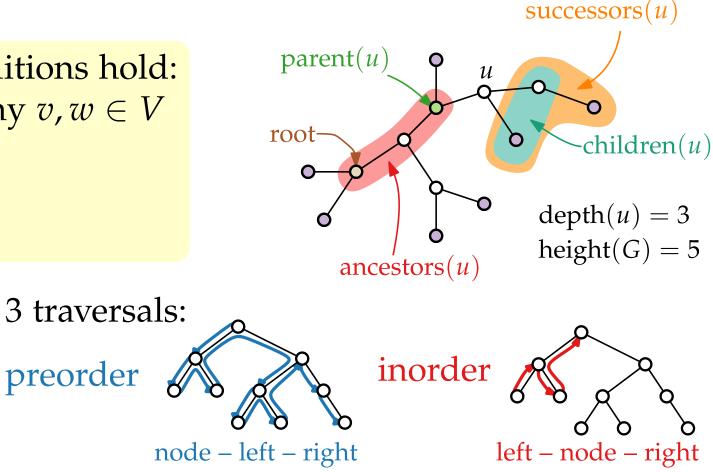
Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

Successor: Vertex not on path to rootnode - left - rightleft - node -Child: Neighbor not on path to rootDepth: Length of path to rootHeight: Maximum depth of a leafBinary Tree: At most two children per vertex (left / right child)



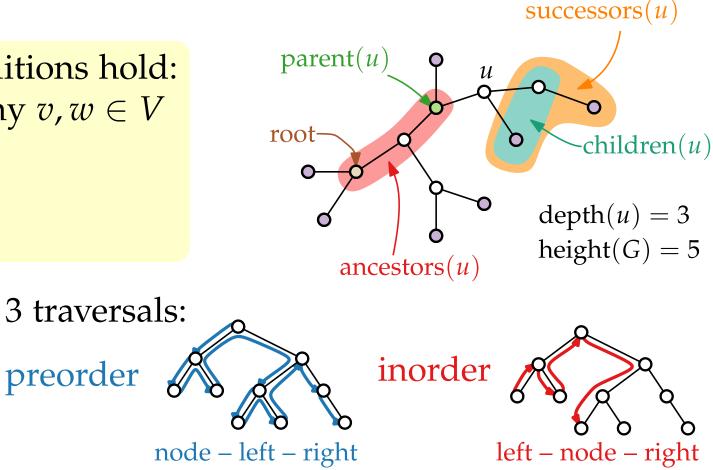
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

successors(u)parent(*u*) root children(u) depth(u) = 3height(G) = 5ancestors(u)3 traversals: inorder preorder left – node – right node – left – right

G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

successors(u)parent(*u*) root children(u)depth(u) = 3height(G) = 5ancestors(u)3 traversals: inorder preorder node – left – right left – node – right

G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

successors(u)parent(*u*) root children(u)depth(u) = 3height(G) = 5ancestors(u)3 traversals: inorder preorder node – left – right left – node – right

G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

successors(u)parent(*u*) root children(u)depth(u) = 3height(G) = 5ancestors(u)3 traversals: inorder preorder node – left – right left – node – right

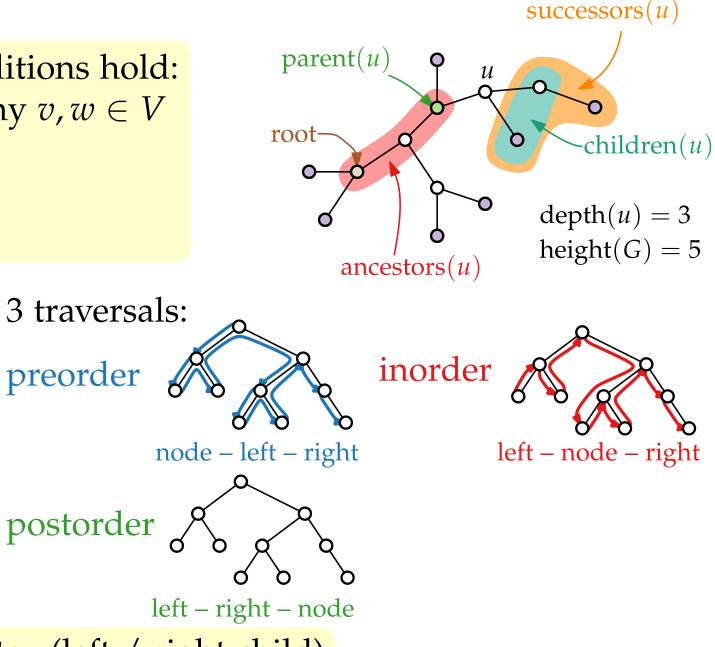
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

successors(u)parent(*u*) root children(u) depth(u) = 3height(G) = 5ancestors(u)3 traversals: inorder preorder node – left – right left – node – right

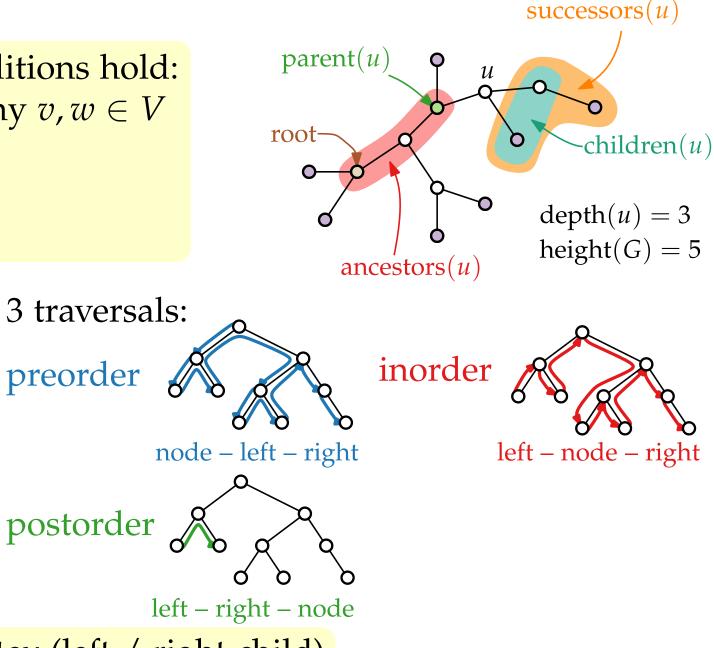
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



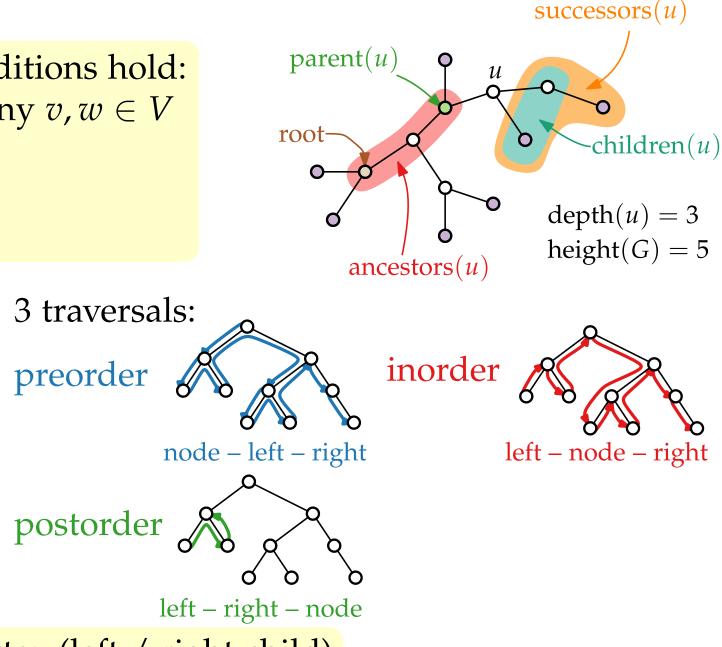
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



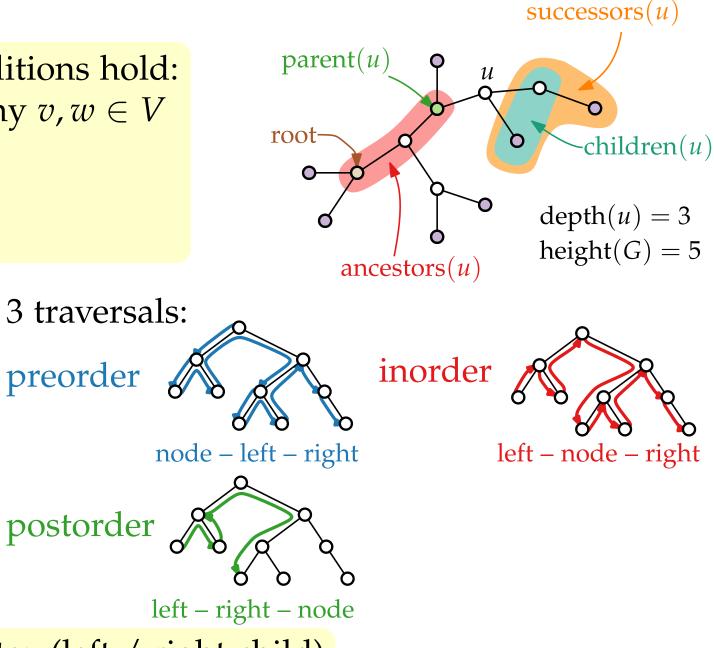
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



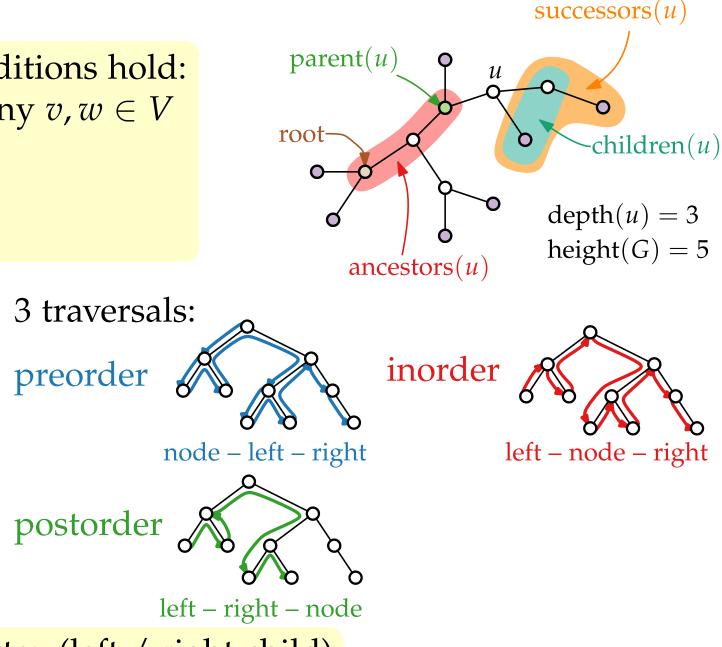
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



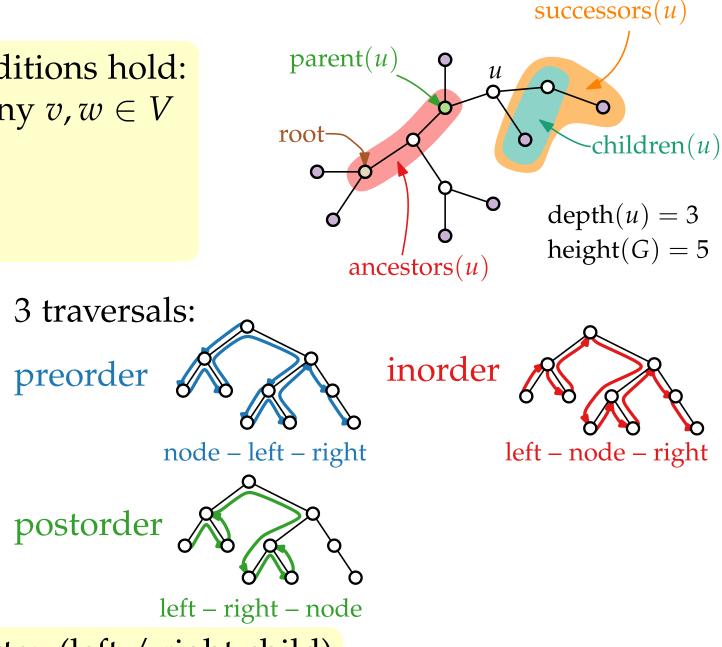
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



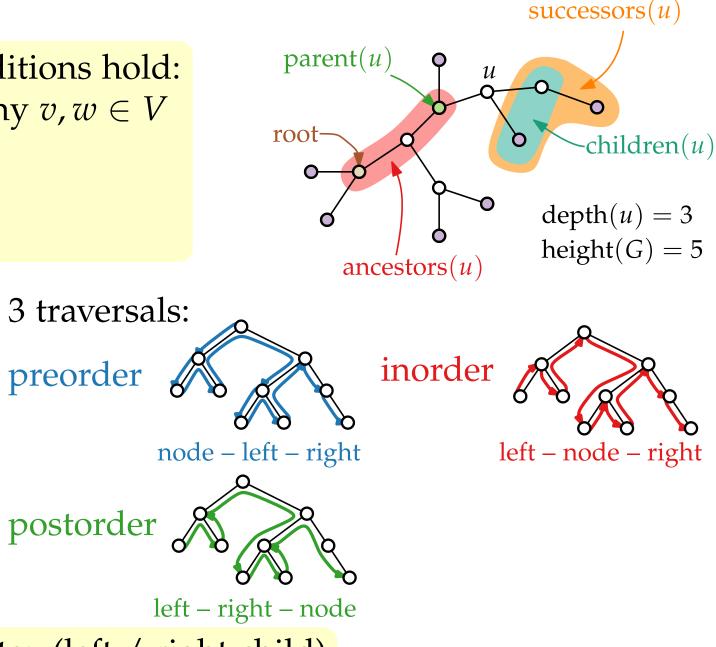
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



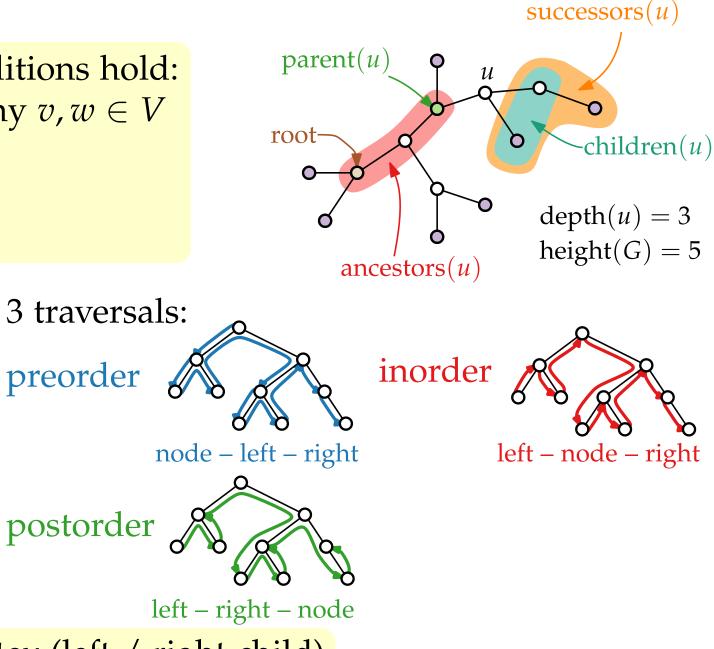
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



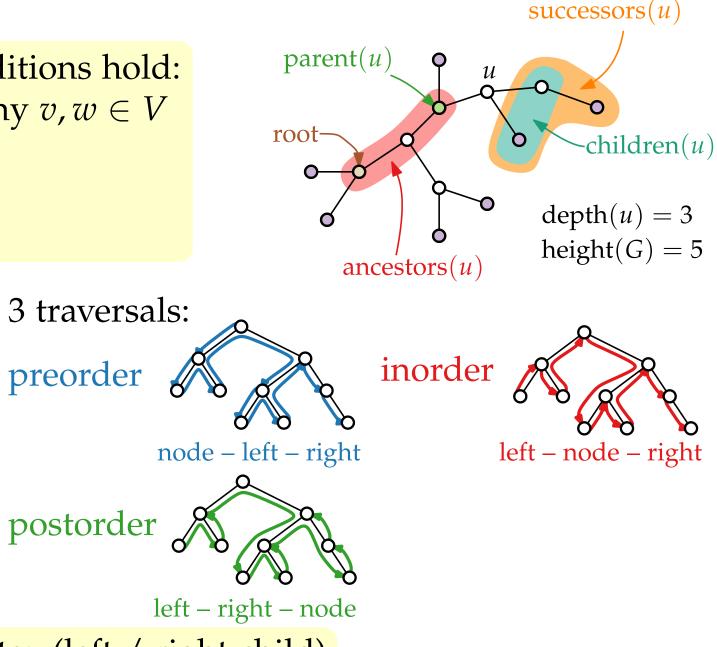
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



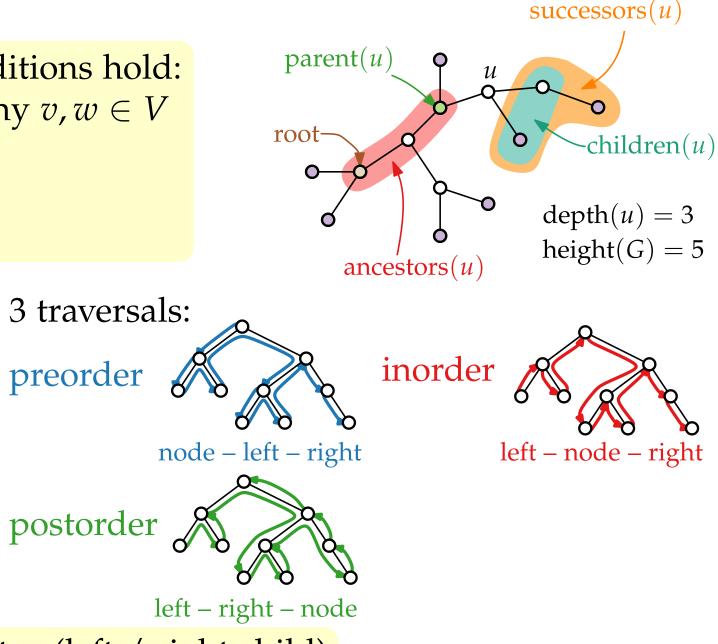
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf



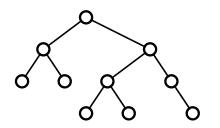
G is a **tree** if the following equivalent conditions hold: 1. there is exactly one *v*-*w*-path between any $v, w \in V$ 2. *G* cycle-free and connected 3. *G* cycle-free and m = n - 14. *G* connected and m = n - 1

Leaf: Vertex of degree 1 Rooted tree: tree with designated root Ancestor: Vertex on path to root Parent: Neighbor on path to root Successor: Vertex not on path to root Child: Neighbor not on path to root Depth: Length of path to root Height: Maximum depth of a leaf

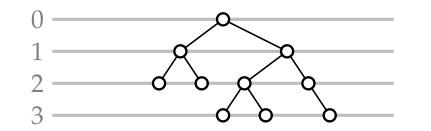


1. Choose *y*-coordinates: y(u) = depth(u)

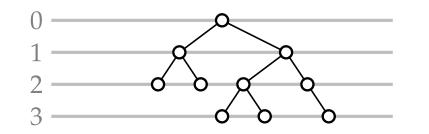
1. Choose *y*-coordinates: y(u) = depth(u)

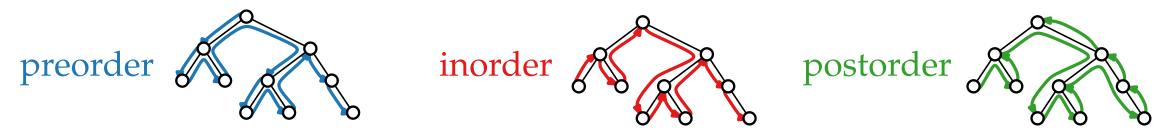


1. Choose *y*-coordinates: y(u) = depth(u)

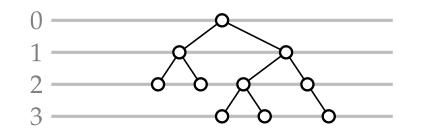


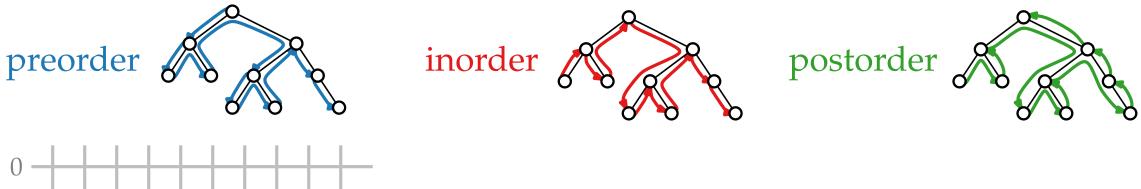
1. Choose *y*-coordinates: y(u) = depth(u)

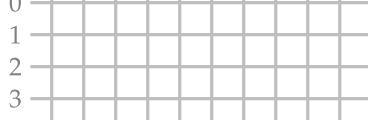




1. Choose *y*-coordinates: y(u) = depth(u)



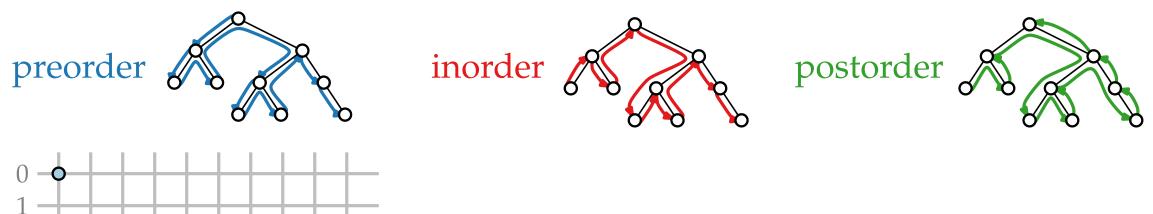




1. Choose *y*-coordinates: y(u) = depth(u)

2. Choose *x*-coordinates:

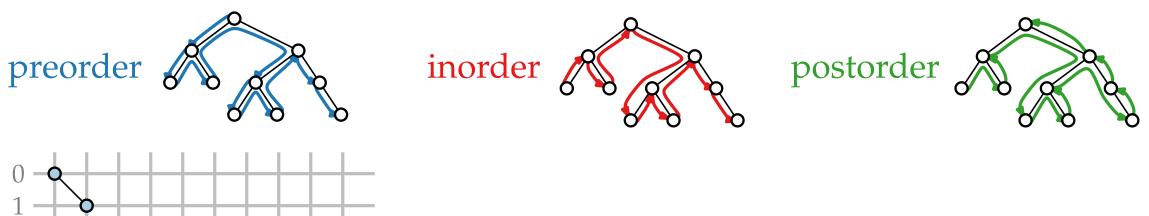
2



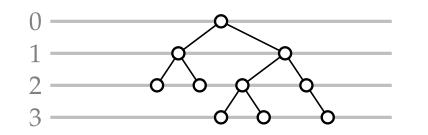
1. Choose *y*-coordinates: y(u) = depth(u)

2. Choose *x*-coordinates:

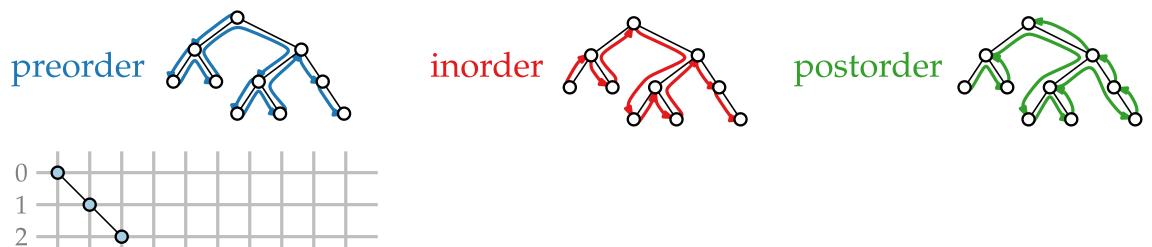
2



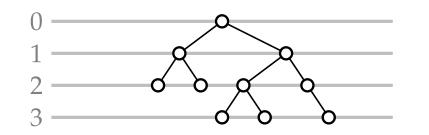
1. Choose *y*-coordinates: y(u) = depth(u)



2. Choose *x*-coordinates:



1. Choose *y*-coordinates: y(u) = depth(u)

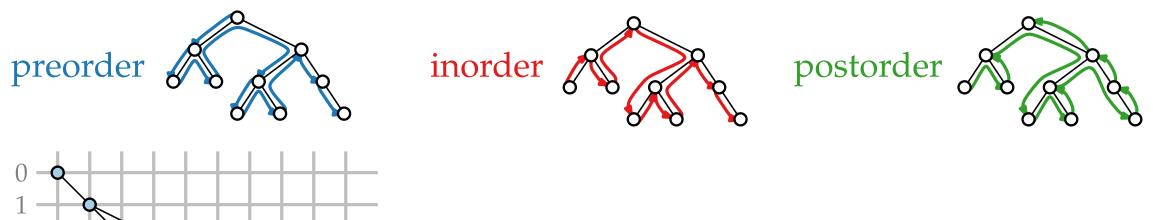


2. Choose *x*-coordinates:

2

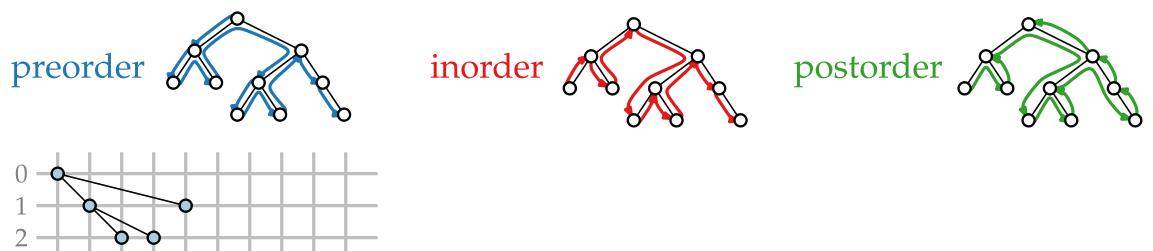
3

 $\infty \sim 0$



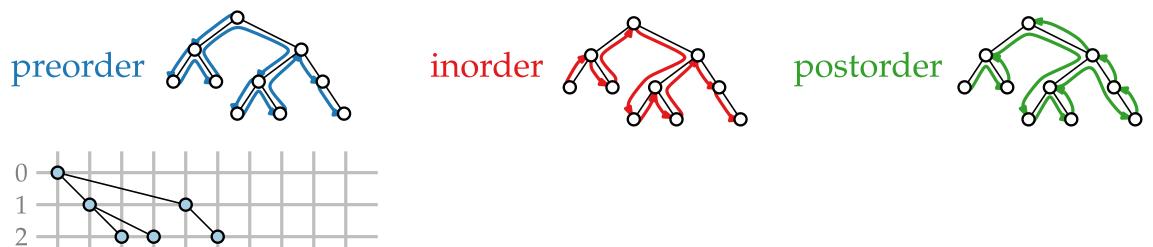
1. Choose *y*-coordinates: y(u) = depth(u)

2. Choose *x*-coordinates:

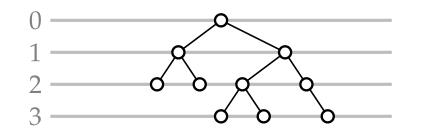


1. Choose *y*-coordinates: y(u) = depth(u)

2. Choose *x*-coordinates:

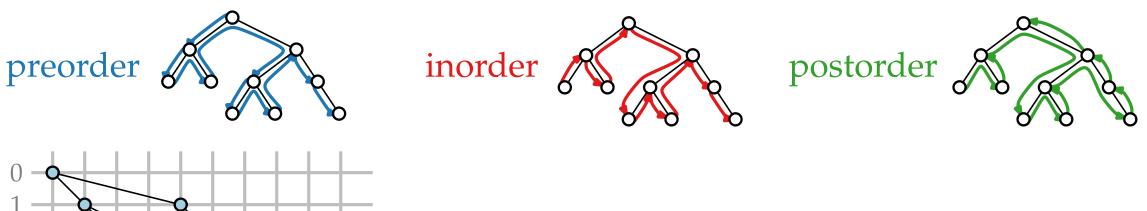


1. Choose *y*-coordinates: y(u) = depth(u)

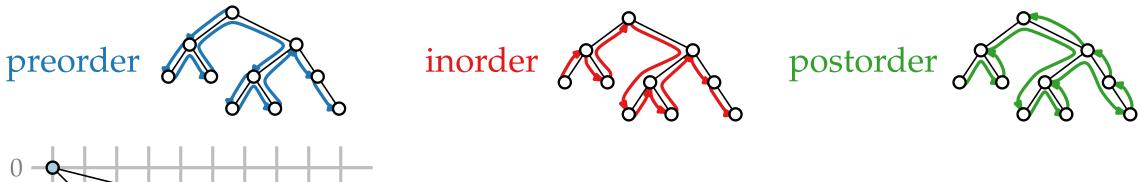


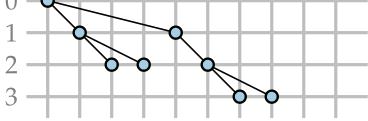
2. Choose *x*-coordinates:

2

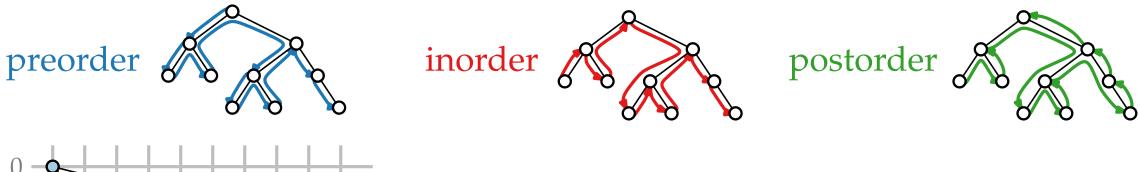


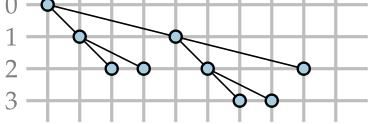
1. Choose *y*-coordinates: y(u) = depth(u)



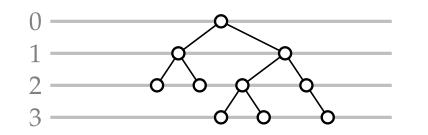


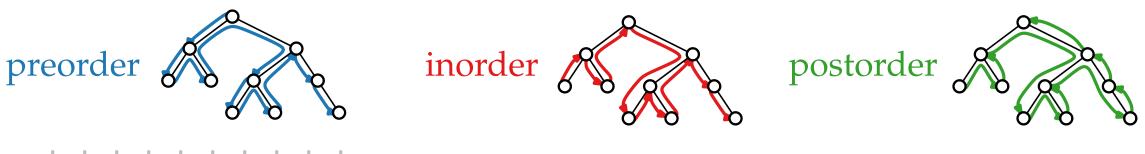
1. Choose *y*-coordinates: y(u) = depth(u)

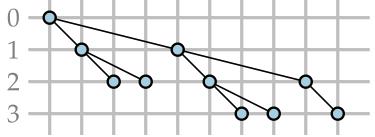




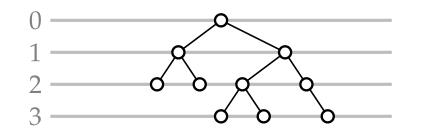
1. Choose *y*-coordinates: y(u) = depth(u)

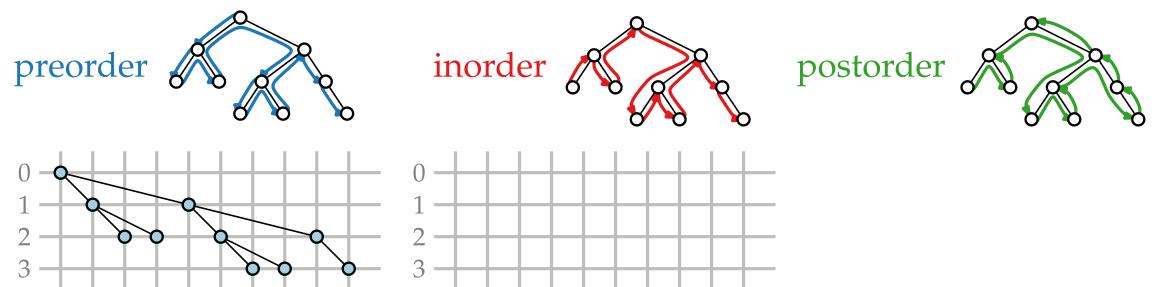




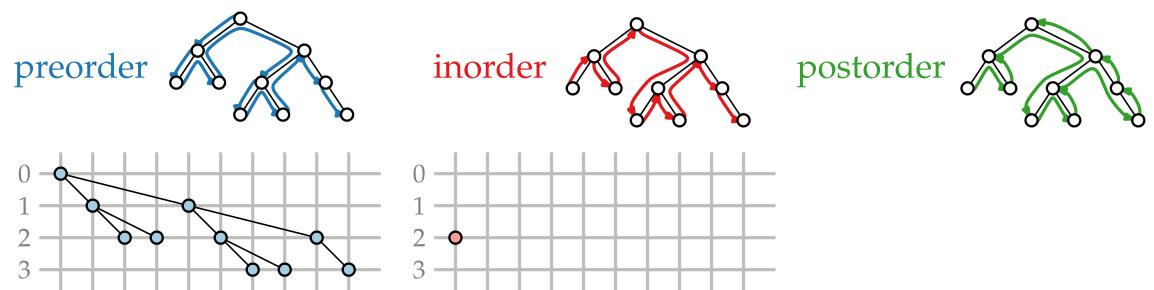


1. Choose *y*-coordinates: y(u) = depth(u)

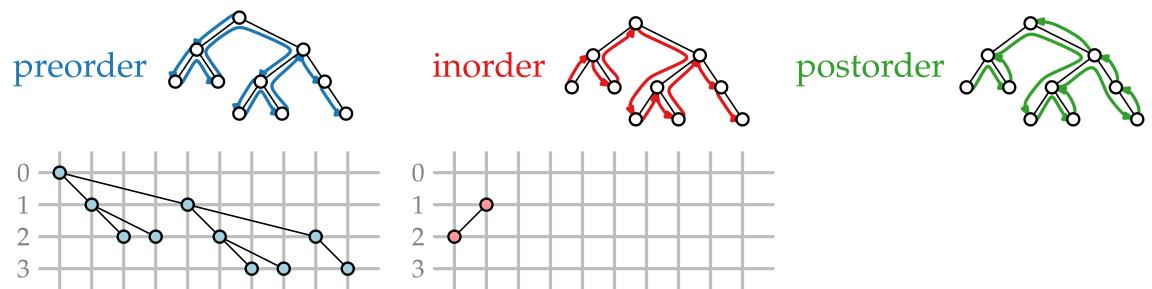




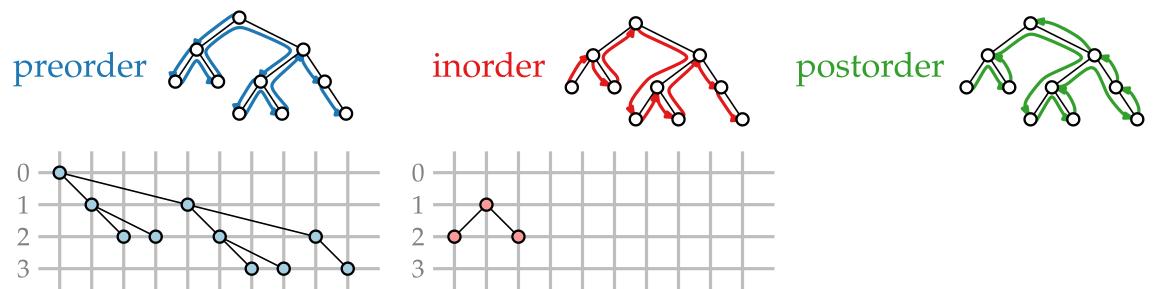
1. Choose *y*-coordinates: y(u) = depth(u)



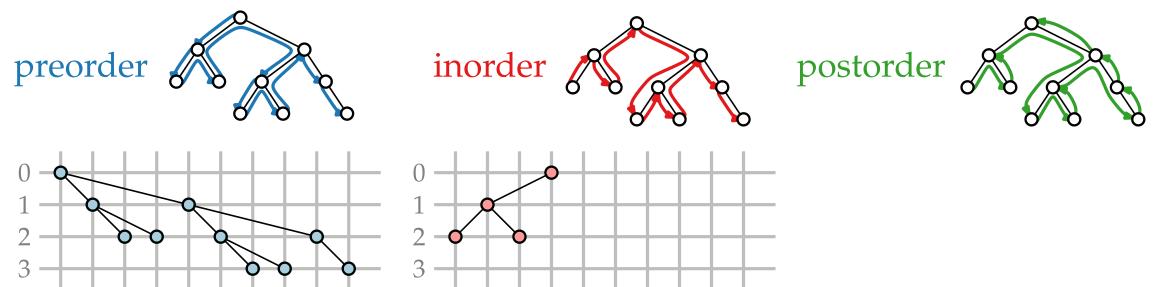
1. Choose *y*-coordinates: y(u) = depth(u)



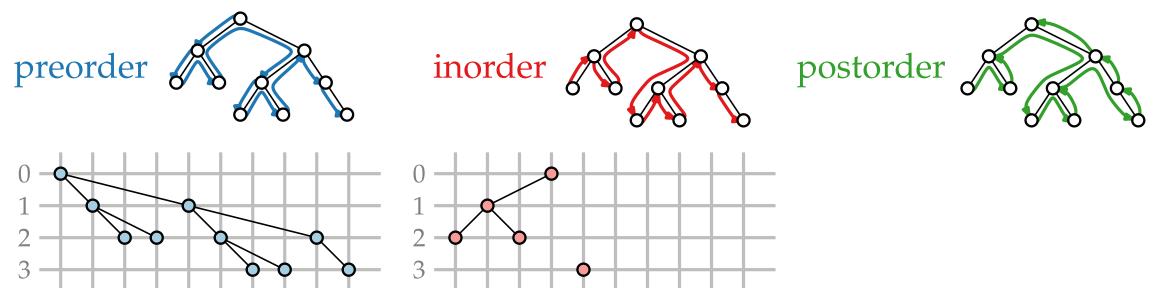
1. Choose *y*-coordinates: y(u) = depth(u)



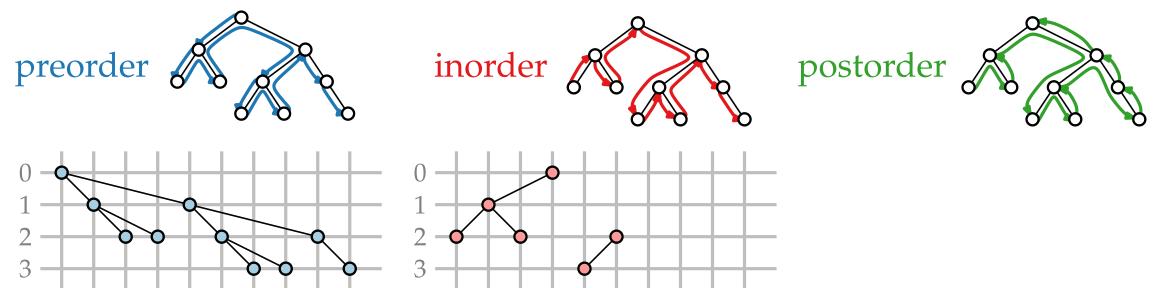
1. Choose *y*-coordinates: y(u) = depth(u)



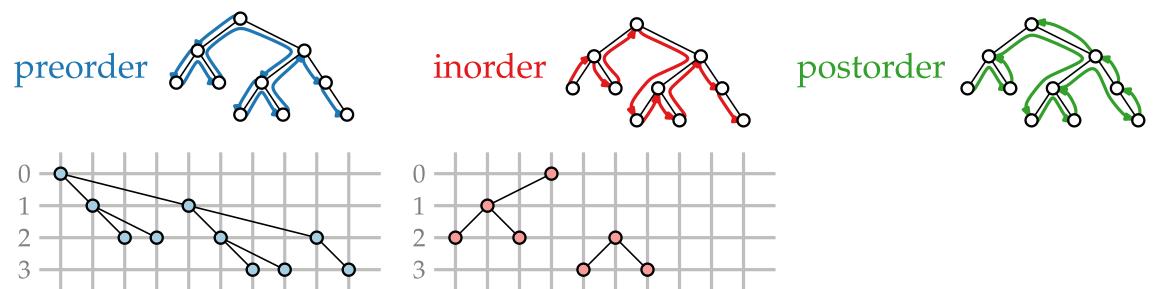
1. Choose *y*-coordinates: y(u) = depth(u)



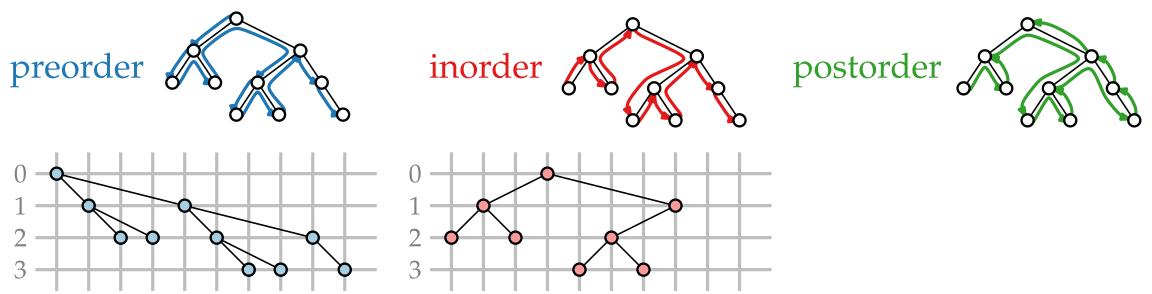
1. Choose *y*-coordinates: y(u) = depth(u)



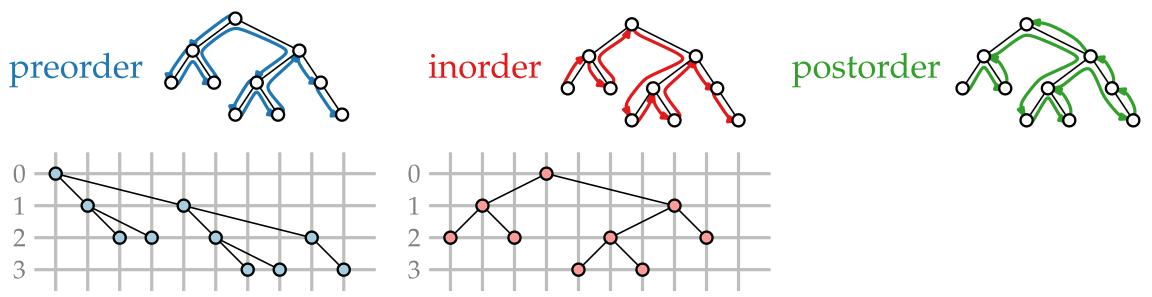
1. Choose *y*-coordinates: y(u) = depth(u)



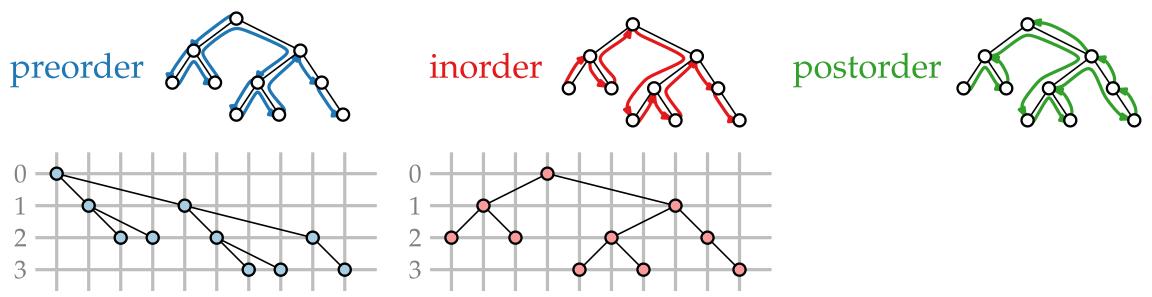
1. Choose *y*-coordinates: y(u) = depth(u)



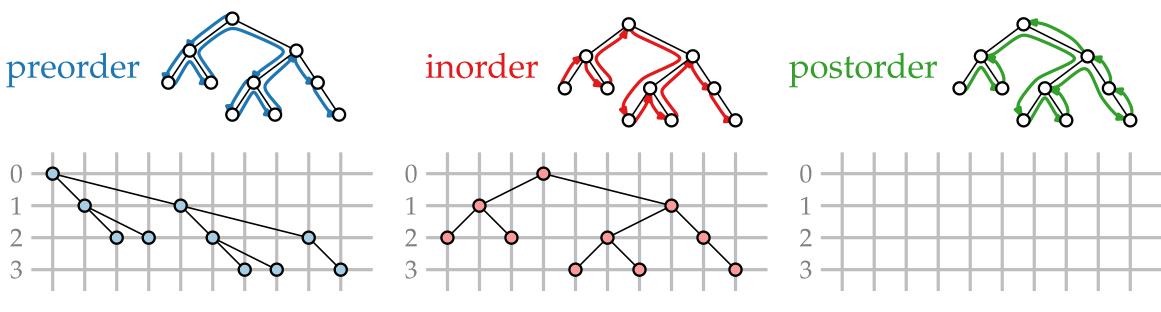
1. Choose *y*-coordinates: y(u) = depth(u)



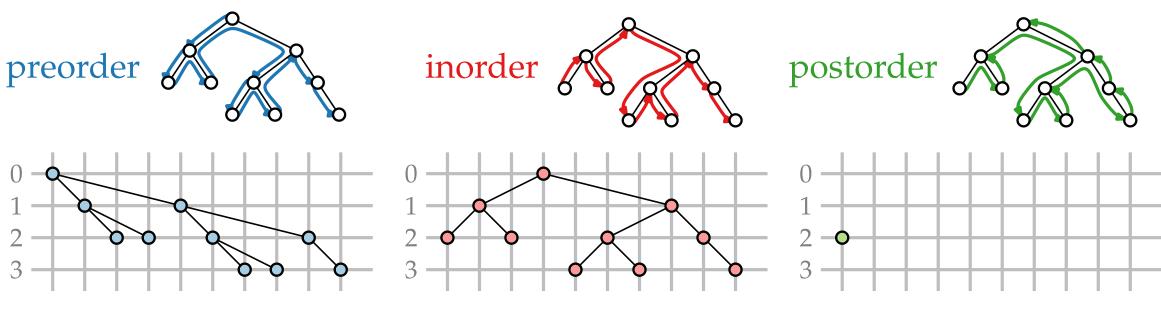
1. Choose *y*-coordinates: y(u) = depth(u)



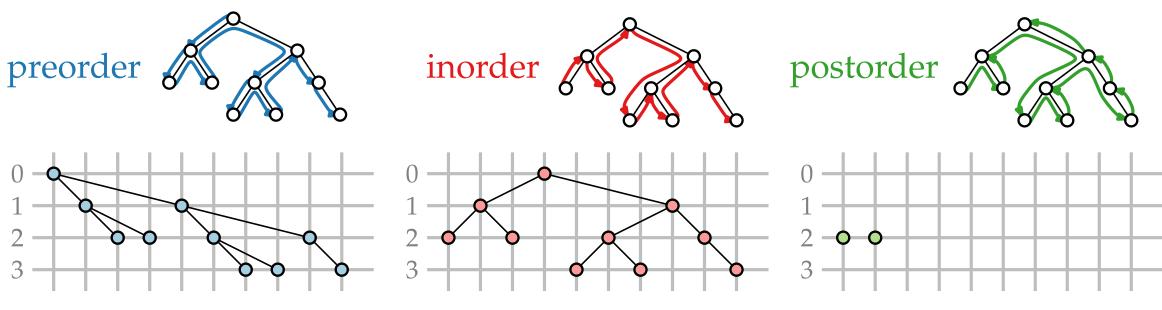
1. Choose *y*-coordinates: y(u) = depth(u)



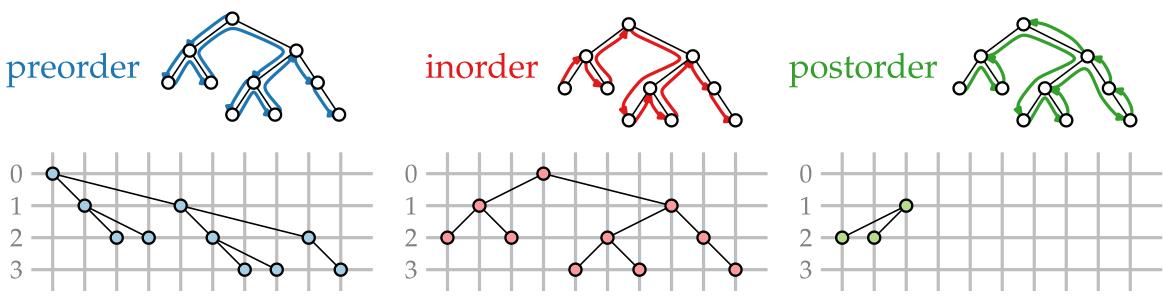
1. Choose *y*-coordinates: y(u) = depth(u)



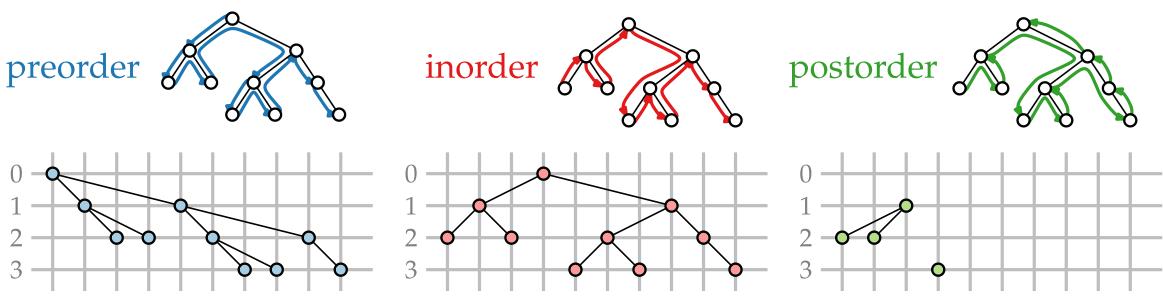
1. Choose *y*-coordinates: y(u) = depth(u)



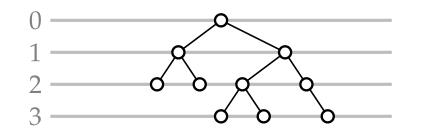
1. Choose *y*-coordinates: y(u) = depth(u)

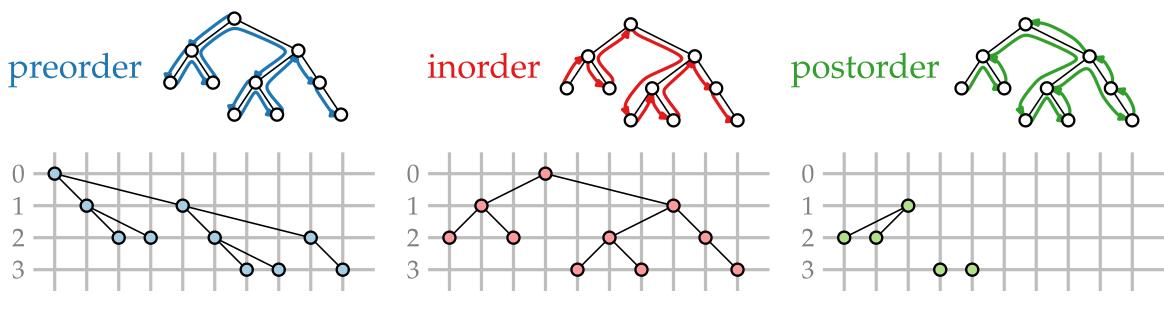


1. Choose *y*-coordinates: y(u) = depth(u)

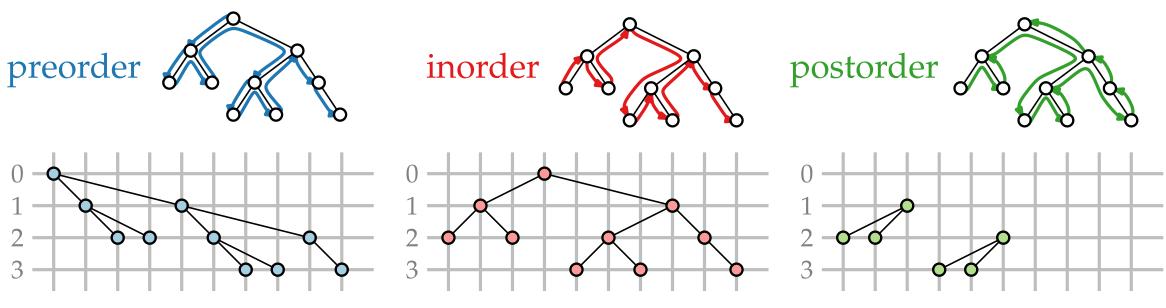


1. Choose *y*-coordinates: y(u) = depth(u)

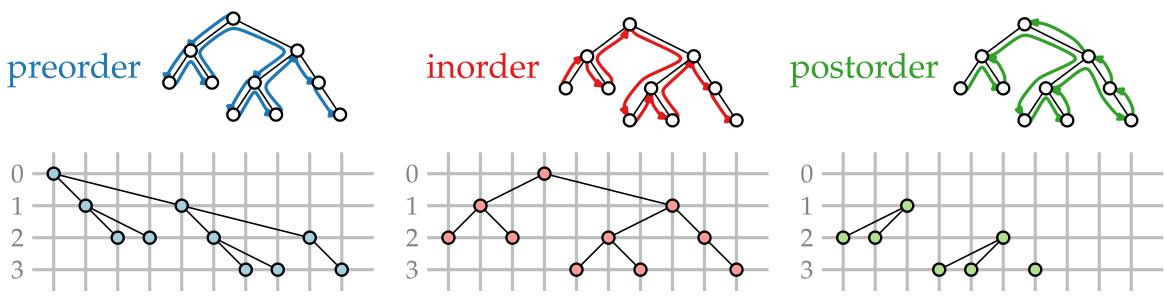




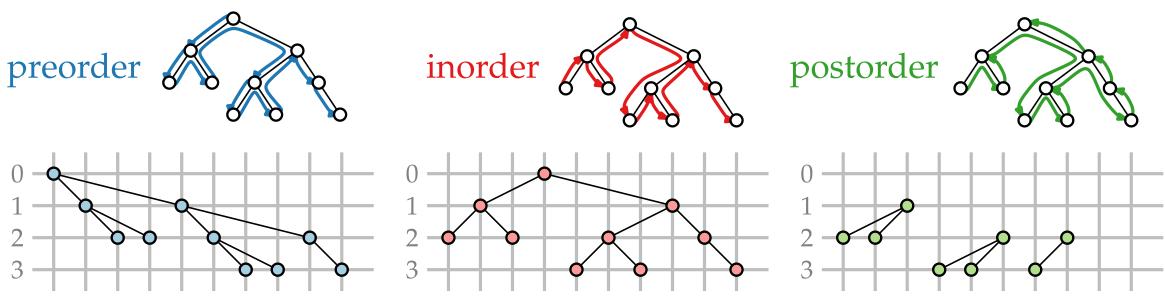
1. Choose *y*-coordinates: y(u) = depth(u)



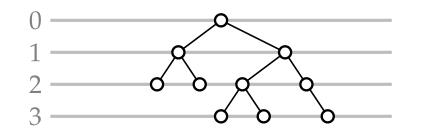
1. Choose *y*-coordinates: y(u) = depth(u)

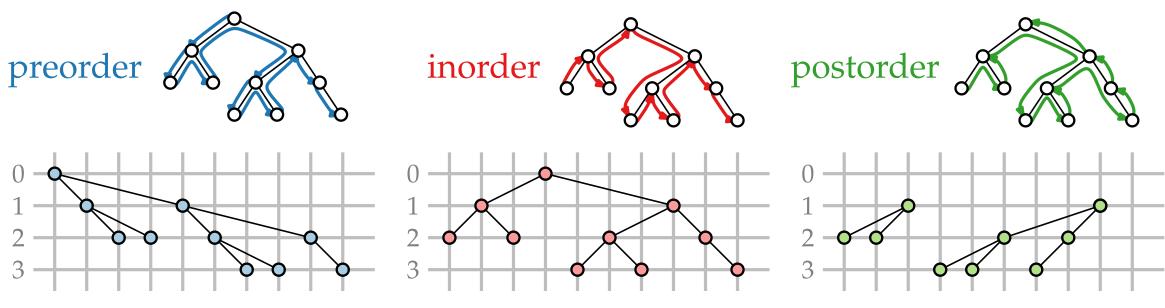


1. Choose *y*-coordinates: y(u) = depth(u)



1. Choose *y*-coordinates: y(u) = depth(u)





1. Choose *y*-coordinates: y(u) = depth(u)

