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Visualization of Graphs
Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part I:
Layered Drawings
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First Grid Layout of Binary Trees
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Layered Drawings – Applications

Decision tree for outcome prediction after traumatic brain injury
Source: Nature Reviews Neurology
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Layered Drawings – Applications

Aloisius Gaultier 1821

Family tree of LOTR
elves and half-elves
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Layered Drawings – Applications

J. Klawitter, T. Mchedlidze, Link: go.uniwue.de/myth-poster
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Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?
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� What are the drawing conventions?
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Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?
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Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

� Edges are straight-line segments

� Isomorphic subtrees have identi-
cal drawings

0
1
2
3



4 - 11

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?
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� Vertices lie on layers
and have integer coordinates

� Parent centered above children
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Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

� Edges are straight-line segments

� Isomorphic subtrees have identi-
cal drawings
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Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

� Edges are straight-line segments

� Isomorphic subtrees have identi-
cal drawings

Drawing aesthetics
� Area
� Symmetries
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Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T
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Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:
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Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:
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parent centered
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Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:

2

some agreed distance

parent centered
wrt to children

sometimes 3 apart for grid drawing!
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Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child
vl vr
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Phase 1 – postorder traversal:
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displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)
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2 e, x-offset(vr) = d dv
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� At vertex u (below v) store left and right contour of
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2 e
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2 e, x-offset(vr) = d dv

2 e
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Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets
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Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection
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Visualization of Graphs
Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part III:
HV-Drawings
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How to implement this
in linear time?
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� Γ is an HV-drawing
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� Simply and axially isomorphic subtrees have congruent

drawings up to translation
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Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part IV:
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Radial Layouts – Applications

Phylogenetic tree
by Colicelli, ScienceSignaling, 2004
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Flare Visualization Toolkit code structure
by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family
by Ribecca, 2011
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Drawing aesthetics
� Distribution of the vertices

How can an algorithm optimize
the distribution of the vertices?
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left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output
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Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output
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Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output
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Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime?
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Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime? O(n)
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Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime? O(n)
Correctness?
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Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime? O(n)
Correctness? X
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Radial Layouts – Result

Theorem.
Let T be a tree with n vertices. The RadialTreeLayout
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is radial drawing
� Vertices lie on circle according to their depth
� Area quadratic in max degree times height of T

(see [GD Ch. 3.1.3] if interested)
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Radial Layouts – Result

Theorem.
Let T be a tree with n vertices. The RadialTreeLayout
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is radial drawing
� Vertices lie on circle according to their depth
� Area quadratic in max degree times height of T

(see [GD Ch. 3.1.3] if interested)
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Other Tree Visualization Styles

Writing Without Words:
The project explores methods
to visualizes the differences in
writing styles of different
authors.

Similar to ballon layout
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Other Tree Visualization Styles

A phylogenetically organised
display of data for all
placental mammal species.

Fractal layout
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Other Tree Visualization Styles

A language family tree – in
pictures

Fractal layout
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Other Tree Visualization Styles
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Other Tree Visualization Styles

treevis.net
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Visualization of Graphs
Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part V:
Series-Parallel Graphs
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Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:
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Series-Parallel Graphs
A graph G is series-parallel, if
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� it consists of two series-parallel graphs G1, G2
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combined using one of the following rules:
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Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

s

t

G1 G2
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Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

s

t

G1

s1

t1

G2

s2

t2
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Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

s

t

G1

s1

t1

G2

s2

t2
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Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition

s

t

G1

s1

t1

G2

s2

t2
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Series-Parallel Graphs

G2

t2

G1

s1

A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition

s

t

G1

s1

t1

G2

s2

t1 = s2

t2
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Series-Parallel Graphs

G2

t2

G1

s1

A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition Parallel composition

s

t

G1

s1

t1

G2

s2

t1 = s2

t2
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Series-Parallel Graphs

G2

t2

G1

s1

A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition Parallel composition

s

t

G1 G2
G1

s1

t1

G2

s2

s1 = s2

t1 = t2

t1 = s2

t2
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Series-Parallel Graphs

G2

t2

G1

s1

A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition Parallel composition

s

t

G1 G2
G1

s1

t1

G2

s2

s1 = s2

t1 = t2

t1 = s2

convince yourself
that series-parallel
graphs are planar

t2
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Series-Parallel Graphs – Decomposition Tree
A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type
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A decomposition tree of G is a binary tree T with nodes of
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� A Q-node represents a single edge

Q
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Series-Parallel Graphs – Decomposition Tree
A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type

� A Q-node represents a single edge

� An S-node represents a series composition;
its children T1 and T2 represent G1 and G2

Q S

T1 T2

G2

G1
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Series-Parallel Graphs – Decomposition Tree

G1 G2

A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type

� A Q-node represents a single edge

� A P-node represents a parallel composition;
its children T1 and T2 represent G1 and G2

� An S-node represents a series composition;
its children T1 and T2 represent G1 and G2

Q S

T1 T2 T1 T2

P

G2

G1
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Series-Parallel Graphs – Decomposition Example
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Series-Parallel Graphs – Decomposition Example
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Series-Parallel Graphs – Decomposition Example
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Series-Parallel Graphs – Decomposition Example
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Series-Parallel Graphs – Decomposition Example
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Series-Parallel Graphs – Decomposition Example
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Series-Parallel Graphs – Decomposition Example
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Series-Parallel Graphs – Decomposition Example
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Series-Parallel Graphs – Decomposition Example
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Series-Parallel Graphs – Decomposition Example

S

P

Q Q

P

S

S

S

Q QQ Q

Q

Q

Q Q

SS

P
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Series-Parallel Graphs – Applications

Flowcharts PERT-Diagrams
(Program Evaluation and Review Technique)
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Series-Parallel Graphs – Applications

Flowcharts PERT-Diagrams
(Program Evaluation and Review Technique)

Computational complexity:
Linear time algorithms for NP-hard problems
(e.g. Maximum Matching, MIS, Hamiltonian Completion)
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Visualization of Graphs
Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part VI:
Drawings of Series-Parallel Graphs
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Series-Parallel Graphs – Drawing Style

Drawing conventions

Drawing aesthetics
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Series-Parallel Graphs – Drawing Style

Drawing conventions

Drawing aesthetics

� Planarity
� Straight-line edges
� Upward
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Series-Parallel Graphs – Drawing Style

Drawing conventions

Drawing aesthetics

� Planarity
� Straight-line edges
� Upward

� Area
� Symmetry
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Series-Parallel Graphs – Drawing Style

Drawing conventions

Drawing aesthetics

� Planarity
� Straight-line edges
� Upward

� Area
� Symmetry
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Series-Parallel Graphs – Straight-Line Drawings
Divide & conquer algorithm using the decomposition tree
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Series-Parallel Graphs – Straight-Line Drawings

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

Divide: Draw G1 and G2 first

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

Do you see any problem?

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

single edge

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

change embedding!

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

change embedding!

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

change embedding!

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

change embedding!

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)
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Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?
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Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing Γ that
� is upward planar and
� a straight-line drawing
� with area in O(n2).
� Isomorphic components of G have congruent

drawings up to translation.
Γ can be computed in O(n) time.
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