
1

Visualization of Graphs
Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part I:
Layered Drawings



2 - 1

First Grid Layout of Binary Trees

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3



2 - 2

First Grid Layout of Binary Trees

0
1
2
3

preorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3



2 - 3

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

preorder inorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3



2 - 4

First Grid Layout of Binary Trees

0
1
2
3

0
1
2
3

0
1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) =depth(u)

0
1
2
3



3 - 1

Layered Drawings – Applications

Decision tree for outcome prediction after traumatic brain injury
Source: Nature Reviews Neurology



3 - 2

Layered Drawings – Applications

Aloisius Gaultier 1821

Family tree of LOTR
elves and half-elves



3 - 3

Layered Drawings – Applications

J. Klawitter, T. Mchedlidze, Link: go.uniwue.de/myth-poster



4 - 1

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

0
1
2
3



4 - 2

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

0
1
2
3



4 - 3

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

0
1
2
3



4 - 4

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

0
1
2
3



4 - 5

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

0
1
2
3



4 - 6

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

0
1
2
3



4 - 7

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

� Edges are straight-line segments

0
1
2
3



4 - 8

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

� Edges are straight-line segments

� Isomorphic subtrees have identi-
cal drawings

0
1
2
3



4 - 9

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

� Edges are straight-line segments

� Isomorphic subtrees have identi-
cal drawings

0
1
2
3



4 - 10

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

� Edges are straight-line segments

� Isomorphic subtrees have identi-
cal drawings

0
1
2
3



4 - 11

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

� Edges are straight-line segments

� Isomorphic subtrees have identi-
cal drawings

Drawing aesthetics

0
1
2
3



4 - 12

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

� Edges are straight-line segments

� Isomorphic subtrees have identi-
cal drawings

Drawing aesthetics
� Area

0
1
2
3



4 - 13

Layered Drawings – Drawing Style

� What are properties of the layout?
� What are the drawing conventions?
� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers
and have integer coordinates

� Parent centered above children

� Edges are straight-line segments

� Isomorphic subtrees have identi-
cal drawings

Drawing aesthetics
� Area
� Symmetries

0
1
2
3



5 - 1

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T



5 - 2

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:



5 - 3

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:



5 - 4

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:



5 - 5

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:



5 - 6

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:



5 - 7

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:



5 - 8

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:



5 - 9

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:

2

some agreed distance



5 - 10

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:

2

some agreed distance

parent centered
wrt to children



5 - 11

Layered Drawings – Algorithm
Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:

2

some agreed distance

parent centered
wrt to children

sometimes 3 apart for grid drawing!



6

Visualization of Graphs
Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part II:
Layered Drawings – Algorithmic Details



7 - 1

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child
vl vr



7 - 2

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

vl vr



7 - 3

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

+1−1

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

vl vr



7 - 4

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

+1−1

+1

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

vl vr



7 - 5

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child −1

+1−1

+1

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

vl vr



7 - 6

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child −1

+1−1

+1 +1−1

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

vl vr



7 - 7

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child −1

+1−1

+1 +1

+1

−1

−1

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

vl vr



7 - 8

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child −1

+1−1

+1 +1

+1

−1

−1

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?vl vr



7 - 9

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

� Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?vl vr



7 - 10

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?vl vr

vl vr



7 - 11

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?vl vr

vl vr



7 - 12

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?vl vr

vl vr



7 - 13

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?vl vr

vl vr



7 - 14

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?vl vr

vl vr



7 - 15

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?vl vr

vl vr



7 - 16

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?vl vr

vl vr



7 - 17

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?vl vr

vl vr



7 - 18

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?

2

vl vr

vl vr



7 - 19

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?

2

vl vr

vl vr



7 - 20

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?

2

vl vr

vl vr



7 - 21

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

? ?

4

vl vr

vl vr



7 - 22

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

−1

+1−1

+1 +1

+1

−1

−1

v
� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

−2 +2

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

4

vl vr

vl vr



7 - 23

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



7 - 24

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



7 - 25

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

Runtime?
� How often do we have to walk along a contour?

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



7 - 26

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

Runtime?
� How often do we have to walk along a contour?

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



7 - 27

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

Runtime?
� How often do we have to walk along a contour?

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



7 - 28

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

Runtime?
� How often do we have to walk along a contour?

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



7 - 29

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

Runtime?
� How often do we have to walk along a contour?

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



7 - 30

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

Runtime?
� How often do we have to walk along a contour?

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



7 - 31

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

Runtime?
� How often do we have to walk along a contour?

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



7 - 32

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

Runtime?
� How often do we have to walk along a contour?

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



7 - 33

Layered Drawings – Algorithm Details
Phase 1 – postorder traversal:
� For each vertex compute horizontal

displacement of left and right child

� At vertex u (below v) store left and right contour of
subtree T(u)

� Contour is linked list of vertex coordinates/offsets

� x-offset(vl) = −d dv
2 e, x-offset(vr) = d dv

2 e

� Find dv = min. horiz. distance between vl and vr

Phase 2 – preorder traversal:
� Compute x- and y-coordinates

Runtime?
� How often do we have to walk along a contour? ⇒ O(n)

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



8 - 1

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 2

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 3

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 4

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 5

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 6

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 7

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 8

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 9

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 10

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 11

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection



8 - 12

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

NP-hard



8 - 13

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

NP-hard



8 - 14

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

NP-hard



8 - 15

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

NP-hard



8 - 16

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

NP-hard



8 - 17

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

NP-hard



8 - 18

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

rooted

NP-hard



8 - 19

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

rooted

NP-hard



8 - 20

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

rooted

NP-hard



8 - 21

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

rooted

NP-hard



8 - 22

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

rooted

NP-hard



8 - 23

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

rooted

NP-hard



8 - 24

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

rooted

NP-hard



8 - 25

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

rooted

NP-hard



8 - 26

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

rooted

NP-hard



8 - 27

Layered Drawings – Result
Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct
a drawing Γ of T in O(n) time, such that:
� Γ is planar, straight-line and strictly downward
� Γ is layered: y-coordinate of vertex v is −depth(v)
� Horizontal and Vertical distances are at least 1
� Each vertex is centred wrt its children
� Area of Γ is in O(n2) – but not optimal!
� Simply isomorphic subtrees have congruent

drawings, up to translation
� Axially isomorphic subtrees have congruent

drawings, up to translation and reflection

rooted

NP-hard



9

Visualization of Graphs
Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part III:
HV-Drawings



10 - 1

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values



10 - 2

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values



10 - 3

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values

1 3

5

1

9 12

10 11

4 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/



10 - 4

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values

1 3

5

1

9 12

10 11

4 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

� Children are vertically or
horizontally aligned with their
parent

� The bounding boxes of the subtrees
of the children are disjoint

� Edges are strictly down- or
rightwards

Drawing aesthetics

� Height, width, area



10 - 5

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values

1 3

5

1

9 12

10 11

4 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

� Children are vertically or
horizontally aligned with their
parent

� The bounding boxes of the subtrees
of the children are disjoint

� Edges are strictly down- or
rightwards

Drawing aesthetics

� Height, width, area



10 - 6

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values

1 3

5

1

9 12

10 11

4 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

� Children are vertically or
horizontally aligned with their
parent

� The bounding boxes of the subtrees
of the children are disjoint

� Edges are strictly down- or
rightwards

Drawing aesthetics

� Height, width, area



10 - 7

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values

1 3

5

1

9 12

10 11

4 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

� Children are vertically or
horizontally aligned with their
parent

� The bounding boxes of the subtrees
of the children are disjoint

� Edges are strictly down- or
rightwards

Drawing aesthetics

� Height, width, area



10 - 8

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values

1 3

5

1

9 12

10 11

4 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

� Children are vertically or
horizontally aligned with their
parent

� The bounding boxes of the subtrees
of the children are disjoint

� Edges are strictly down- or
rightwards

Drawing aesthetics

� Height, width, area



10 - 9

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values

1 3

5

1

9 12

10 11

4 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

� Children are vertically or
horizontally aligned with their
parent

� The bounding boxes of the subtrees
of the children are disjoint

� Edges are strictly down- or
rightwards

Drawing aesthetics

� Height, width, area



10 - 10

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values

1 3

5

1

9 12

10 11

4 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

� Children are vertically or
horizontally aligned with their
parent

� The bounding boxes of the subtrees
of the children are disjoint

� Edges are strictly down- or
rightwards

Drawing aesthetics

� Height, width, area



10 - 11

HV-Drawings – Drawing Style
Applications
� Cons cell diagram in LISP
� Cons(constructs) are memory objects which

hold two values or pointers to values

1 3

5

1

9 12

10 11

4 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

� Children are vertically or
horizontally aligned with their
parent

� The bounding boxes of the subtrees
of the children are disjoint

� Edges are strictly down- or
rightwards

Drawing aesthetics

� Height, width, area



11 - 1

HV-Drawings – Algorithm
Input: A binary tree T
Output: An HV-drawing of T



11 - 2

HV-Drawings – Algorithm
Input: A binary tree T
Output: An HV-drawing of T

Base case:
Divide: Recursively apply the algorithm to
draw the left and right subtrees



11 - 3

HV-Drawings – Algorithm
Input: A binary tree T
Output: An HV-drawing of T

Base case:
Divide: Recursively apply the algorithm to
draw the left and right subtrees



11 - 4

HV-Drawings – Algorithm
Input: A binary tree T
Output: An HV-drawing of T

Base case:
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:



11 - 5

HV-Drawings – Algorithm
Input: A binary tree T
Output: An HV-drawing of T

Base case:
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer: horizontal combination



11 - 6

HV-Drawings – Algorithm
Input: A binary tree T
Output: An HV-drawing of T

Base case:
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer: horizontal combination vertical combination



12 - 1

HV-Drawings – Right-Heavy HV-Layout
Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 2

HV-Drawings – Right-Heavy HV-Layout
Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 3

HV-Drawings – Right-Heavy HV-Layout
Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 4

HV-Drawings – Right-Heavy HV-Layout
Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 5

HV-Drawings – Right-Heavy HV-Layout
Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 6

HV-Drawings – Right-Heavy HV-Layout
Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 7

HV-Drawings – Right-Heavy HV-Layout
Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 8

HV-Drawings – Right-Heavy HV-Layout
Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 9

HV-Drawings – Right-Heavy HV-Layout
Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 10

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 11

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 12

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 13

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 14

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

at least ·2

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 15

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

at least ·2

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 16

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

at least ·2

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 17

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

at least ·2

at least ·2

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 18

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

at least ·2

at least ·2

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 19

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

at least ·2

at least ·2

at least ·2

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 20

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

at least ·2

at least ·2

at least ·2

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices



12 - 21

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
� width at most n− 1 and
� height at most log n.

at least ·2

at least ·2

at least ·2

Right-heavy approach
� Always apply horizontal combination
� Place the larger subtree to the right

Size of subtree := number of vertices

How to implement this
in linear time?



13 - 1

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation



13 - 2

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation



13 - 3

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation



13 - 4

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation



13 - 5

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation



13 - 6

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation



13 - 7

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation

rooted



13 - 8

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation

General rooted tree

rooted



13 - 9

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation

General rooted tree
largest
subtree

rooted



13 - 10

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation

General rooted tree
largest
subtree

rooted



13 - 11

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation

General rooted tree
largest
subtree

rooted



13 - 12

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation

General rooted tree
largest
subtree

rooted

2nd largest



13 - 13

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation

General rooted tree
largest
subtree

Optimal area?

rooted

2nd largest



13 - 14

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)
� Width is at most n− 1
� Height is at most log n
� Area is in O(n log n)
� Simply and axially isomorphic subtrees have congruent

drawings up to translation

General rooted tree
largest
subtree

Optimal area?
Not with divide & conquer
approach, but can be computed
with Dynamic Programming.

rooted

2nd largest



14

Visualization of Graphs
Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part IV:
Radial Layouts



15 - 1

Radial Layouts – Applications

Phylogenetic tree
by Colicelli, ScienceSignaling, 2004



15 - 2

Radial Layouts – Applications

Flare Visualization Toolkit code structure
by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family
by Ribecca, 2011



16 - 1

Radial Layouts – Drawing Style

Drawing conventions
� Vertices lie on circular layers

according to their depth
� Drawing is planar

Drawing aesthetics
� Distribution of the vertices



16 - 2

Radial Layouts – Drawing Style

Drawing conventions
� Vertices lie on circular layers

according to their depth
� Drawing is planar

Drawing aesthetics
� Distribution of the vertices



16 - 3

Radial Layouts – Drawing Style

Drawing conventions
� Vertices lie on circular layers

according to their depth
� Drawing is planar

Drawing aesthetics
� Distribution of the vertices



16 - 4

Radial Layouts – Drawing Style

Drawing conventions
� Vertices lie on circular layers

according to their depth
� Drawing is planar

Drawing aesthetics
� Distribution of the vertices



16 - 5

Radial Layouts – Drawing Style

Drawing conventions
� Vertices lie on circular layers

according to their depth
� Drawing is planar

Drawing aesthetics
� Distribution of the vertices

How can an algorithm optimize
the distribution of the vertices?



17 - 1

Radial Layouts – Algorithm Attempt
Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area



17 - 2

Radial Layouts – Algorithm Attempt
Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 3

Radial Layouts – Algorithm Attempt
Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 4

Radial Layouts – Algorithm Attempt

1
1

1
1

1 1

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 5

Radial Layouts – Algorithm Attempt

1
1

1
1

1 1

3

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 6

Radial Layouts – Algorithm Attempt

1
1

1
1

1 1

3
5

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 7

Radial Layouts – Algorithm Attempt

1
1

1
1

1 1

3
5

7

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 8

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 9

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 10

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 11

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 12

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 13

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 14

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 15

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 16

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 17

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 18

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 19

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

9
10 ·

7
8 ·

1
6

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



17 - 20

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

9
10 ·

7
8 ·

1
6

Idea
� Reserve area corresponding to size `(u) of T(u):

τu =
`(u)

`(v)− 1

� Place u in middle of area

v
u

`(u)



18 - 1

Radial Layouts – How To Avoid Crossings

v

u

p

q



18 - 2

Radial Layouts – How To Avoid Crossings

v

u

p

q



18 - 3

Radial Layouts – How To Avoid Crossings

v

u

p

q



18 - 4

Radial Layouts – How To Avoid Crossings

v

u

p

q



18 - 5

Radial Layouts – How To Avoid Crossings

v

u
q

p



18 - 6

Radial Layouts – How To Avoid Crossings

τu

v

u

� τu – angle of the wedge corre-
sponding to vertex u

q

p



18 - 7

Radial Layouts – How To Avoid Crossings

τu
2

v

u

� τu – angle of the wedge corre-
sponding to vertex u

q

p



18 - 8

Radial Layouts – How To Avoid Crossings

τu
2

v

u

� τu – angle of the wedge corre-
sponding to vertex u

� `(u) – number of nodes in the
subtree rooted at u

q

p



18 - 9

Radial Layouts – How To Avoid Crossings

τu
2

v

u

� τu – angle of the wedge corre-
sponding to vertex u

� ρi – radius of layer i

� `(u) – number of nodes in the
subtree rooted at u

q

p



18 - 10

Radial Layouts – How To Avoid Crossings

ρi

τu
2

v

u

� τu – angle of the wedge corre-
sponding to vertex u

� ρi – radius of layer i

� `(u) – number of nodes in the
subtree rooted at u

q

p



18 - 11

Radial Layouts – How To Avoid Crossings

ρi

τu
2

v

u

� τu – angle of the wedge corre-
sponding to vertex u

� ρi – radius of layer i

� `(u) – number of nodes in the
subtree rooted at u

q

p

ρi+1



18 - 12

Radial Layouts – How To Avoid Crossings

ρi

τu
2

v

u

� τu – angle of the wedge corre-
sponding to vertex u

� ρi – radius of layer i

� cos τu
2 = ρi

ρi+1

� `(u) – number of nodes in the
subtree rooted at u

q

p

ρi+1



18 - 13

Radial Layouts – How To Avoid Crossings

ρi

τu
2

v

u

� τu – angle of the wedge corre-
sponding to vertex u

� ρi – radius of layer i

� cos τu
2 = ρi

ρi+1

� τu = min{ `(u)
`(v)−1 , 2 arccos ρi

ρi+1
}

� `(u) – number of nodes in the
subtree rooted at u

q

p

ρi+1



18 - 14

Radial Layouts – How To Avoid Crossings

ρi

τu
2

v

u

� τu – angle of the wedge corre-
sponding to vertex u

� ρi – radius of layer i

� cos τu
2 = ρi

ρi+1

� τu = min{ `(u)
`(v)−1 , 2 arccos ρi

ρi+1
}

� `(u) – number of nodes in the
subtree rooted at u

q

p
� Alternative:

ρi+1

αu

αmax

αmin

αmin = αu − arccos ρi
ρi+1

αmax = αu + arccos ρi
ρi+1



19 - 1

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)



19 - 2

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

calculate the size of the
subtree recursively



19 - 3

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)



19 - 4

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right



19 - 5

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right



19 - 6

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right



19 - 7

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right



19 - 8

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output



19 - 9

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output



19 - 10

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output



19 - 11

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output



19 - 12

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output



19 - 13

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output



19 - 14

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output



19 - 15

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output



19 - 16

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime?



19 - 17

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime? O(n)



19 - 18

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime? O(n)
Correctness?



19 - 19

Radial Layouts – Pseudocode
RadialTreeLayout(tree T, root r ∈ T, radii ρ1 < · · · < ρk)

begin
postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V(T)
// vertex pos./polar coord.

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← ρt
αv ← (αmin + αmax)/2
if t > 0 then

αmin←max{αmin, αv−arccos ρt
ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left← αmin
foreach child w of v do

right← left + `(w)
`(v)−1 ·(αmax − αmin)

preorder(w, t + 1, left, right)
left← right

//output

Runtime? O(n)
Correctness? X



20 - 1

Radial Layouts – Result

Theorem.
Let T be a tree with n vertices. The RadialTreeLayout
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is radial drawing
� Vertices lie on circle according to their depth
� Area quadratic in max degree times height of T

(see [GD Ch. 3.1.3] if interested)



20 - 2

Radial Layouts – Result

Theorem.
Let T be a tree with n vertices. The RadialTreeLayout
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is radial drawing
� Vertices lie on circle according to their depth
� Area quadratic in max degree times height of T

(see [GD Ch. 3.1.3] if interested)



20 - 3

Radial Layouts – Result

Theorem.
Let T be a tree with n vertices. The RadialTreeLayout
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is radial drawing
� Vertices lie on circle according to their depth
� Area quadratic in max degree times height of T

(see [GD Ch. 3.1.3] if interested)



20 - 4

Radial Layouts – Result

Theorem.
Let T be a tree with n vertices. The RadialTreeLayout
algorithm constructs in O(n) time a drawing Γ of T s.t.:
� Γ is radial drawing
� Vertices lie on circle according to their depth
� Area quadratic in max degree times height of T

(see [GD Ch. 3.1.3] if interested)



21 - 1

Other Tree Visualization Styles

Writing Without Words:
The project explores methods
to visualizes the differences in
writing styles of different
authors.

Similar to ballon layout



21 - 2

Other Tree Visualization Styles

A phylogenetically organised
display of data for all
placental mammal species.

Fractal layout



21 - 3

Other Tree Visualization Styles

A language family tree – in
pictures

Fractal layout



21 - 4

Other Tree Visualization Styles



21 - 5

Other Tree Visualization Styles

treevis.net



22

Visualization of Graphs
Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part V:
Series-Parallel Graphs



23 - 1

Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:



23 - 2

Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

s

t



23 - 3

Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

s

t

G1 G2



23 - 4

Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

s

t

G1

s1

t1

G2

s2

t2



23 - 5

Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

s

t

G1

s1

t1

G2

s2

t2



23 - 6

Series-Parallel Graphs
A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition

s

t

G1

s1

t1

G2

s2

t2



23 - 7

Series-Parallel Graphs

G2

t2

G1

s1

A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition

s

t

G1

s1

t1

G2

s2

t1 = s2

t2



23 - 8

Series-Parallel Graphs

G2

t2

G1

s1

A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition Parallel composition

s

t

G1

s1

t1

G2

s2

t1 = s2

t2



23 - 9

Series-Parallel Graphs

G2

t2

G1

s1

A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition Parallel composition

s

t

G1 G2
G1

s1

t1

G2

s2

s1 = s2

t1 = t2

t1 = s2

t2



23 - 10

Series-Parallel Graphs

G2

t2

G1

s1

A graph G is series-parallel, if
� it contains a single (directed) edge (s, t), or
� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition Parallel composition

s

t

G1 G2
G1

s1

t1

G2

s2

s1 = s2

t1 = t2

t1 = s2

convince yourself
that series-parallel
graphs are planar

t2



24 - 1

Series-Parallel Graphs – Decomposition Tree
A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type



24 - 2

Series-Parallel Graphs – Decomposition Tree
A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type

� A Q-node represents a single edge

Q



24 - 3

Series-Parallel Graphs – Decomposition Tree
A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type

� A Q-node represents a single edge

� An S-node represents a series composition;
its children T1 and T2 represent G1 and G2

Q S

T1 T2

G2

G1



24 - 4

Series-Parallel Graphs – Decomposition Tree

G1 G2

A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type

� A Q-node represents a single edge

� A P-node represents a parallel composition;
its children T1 and T2 represent G1 and G2

� An S-node represents a series composition;
its children T1 and T2 represent G1 and G2

Q S

T1 T2 T1 T2

P

G2

G1



25 - 1

Series-Parallel Graphs – Decomposition Example



25 - 2

Series-Parallel Graphs – Decomposition Example



25 - 3

Series-Parallel Graphs – Decomposition Example

P



25 - 4

Series-Parallel Graphs – Decomposition Example

P



25 - 5

Series-Parallel Graphs – Decomposition Example

P

P



25 - 6

Series-Parallel Graphs – Decomposition Example

P

P



25 - 7

Series-Parallel Graphs – Decomposition Example

P

S

P



25 - 8

Series-Parallel Graphs – Decomposition Example

P

S

Q Q

P



25 - 9

Series-Parallel Graphs – Decomposition Example

S

P

S

Q Q

P



25 - 10

Series-Parallel Graphs – Decomposition Example

S

P

S

Q QQ Q

P



25 - 11

Series-Parallel Graphs – Decomposition Example

S

P

S

S

Q QQ Q

P



25 - 12

Series-Parallel Graphs – Decomposition Example

S

P

S

S

Q QQ Q

Q

P



25 - 13

Series-Parallel Graphs – Decomposition Example

S

P

S

S

S

Q QQ Q

Q

P



25 - 14

Series-Parallel Graphs – Decomposition Example

S

P

S

S

S

Q QQ Q

Q

Q

P



25 - 15

Series-Parallel Graphs – Decomposition Example

S

P

P

S

S

S

Q QQ Q

Q

Q

P



25 - 16

Series-Parallel Graphs – Decomposition Example

S

P

P

S

S

S

Q QQ Q

Q

Q

P



25 - 17

Series-Parallel Graphs – Decomposition Example

S

P

P

S

S

S

Q QQ Q

Q

QS

P



25 - 18

Series-Parallel Graphs – Decomposition Example

S

P

Q Q

P

S

S

S

Q QQ Q

Q

QS

P



25 - 19

Series-Parallel Graphs – Decomposition Example

S

P

Q Q

P

S

S

S

Q QQ Q

Q

QSS

P



25 - 20

Series-Parallel Graphs – Decomposition Example

S

P

Q Q

P

S

S

S

Q QQ Q

Q

Q

Q Q

SS

P



26 - 1

Series-Parallel Graphs – Applications

Flowcharts PERT-Diagrams
(Program Evaluation and Review Technique)



26 - 2

Series-Parallel Graphs – Applications

Flowcharts PERT-Diagrams
(Program Evaluation and Review Technique)

Computational complexity:
Linear time algorithms for NP-hard problems
(e.g. Maximum Matching, MIS, Hamiltonian Completion)



27

Visualization of Graphs
Lecture 2:

Drawing Trees and Series-Parallel Graphs

Philipp Kindermann

Part VI:
Drawings of Series-Parallel Graphs



28 - 1

Series-Parallel Graphs – Drawing Style

Drawing conventions

Drawing aesthetics



28 - 2

Series-Parallel Graphs – Drawing Style

Drawing conventions

Drawing aesthetics

� Planarity
� Straight-line edges
� Upward



28 - 3

Series-Parallel Graphs – Drawing Style

Drawing conventions

Drawing aesthetics

� Planarity
� Straight-line edges
� Upward



28 - 4

Series-Parallel Graphs – Drawing Style

Drawing conventions

Drawing aesthetics

� Planarity
� Straight-line edges
� Upward



28 - 5

Series-Parallel Graphs – Drawing Style

Drawing conventions

Drawing aesthetics

� Planarity
� Straight-line edges
� Upward

� Area
� Symmetry



28 - 6

Series-Parallel Graphs – Drawing Style

Drawing conventions

Drawing aesthetics

� Planarity
� Straight-line edges
� Upward

� Area
� Symmetry



29 - 1

Series-Parallel Graphs – Straight-Line Drawings
Divide & conquer algorithm using the decomposition tree



29 - 2

Series-Parallel Graphs – Straight-Line Drawings

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

∆(G)



29 - 3

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

∆(G)



29 - 4

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

Divide: Draw G1 and G2 first

∆(G)



29 - 5

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 6

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 7

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 8

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 9

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 10

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 11

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 12

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 13

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 14

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

Do you see any problem?

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 15

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

single edge

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 16

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

change embedding!

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 17

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

change embedding!

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 18

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

change embedding!

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



29 - 19

Series-Parallel Graphs – Straight-Line Drawings

Base case: Q-nodes

t

s

Conquer:
� S-nodes / series composition
� P-nodes / parallel composition

∆(G1)

∆(G2)

t

s

∆(G1) ∆(G2)

� Draw G inside a right-angled isosceles bounding triangle ∆(G)

Divide & conquer algorithm using the decomposition tree

change embedding!

t

s

Divide: Draw G1 and G2 first

∆(G2)∆(G1)

∆(G)

∆(G)



30 - 1

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?



30 - 2

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

t

s



30 - 3

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

t

s



30 - 4

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

t

s



30 - 5

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

t

s

t

s



30 - 6

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

t

s

t

s

t

s



30 - 7

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

t

s

t

s

t

s

right-
most



30 - 8

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

t

s

t

s

t

s

right-
most



30 - 9

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

t

s

t

s

t

s

right-
most



30 - 10

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

t

s

t

s

t

s

right-
most

t

s



30 - 11

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

t

s

t

s

t

s

right-
most

t

s



30 - 12

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

v

t

s

t

s

t

s

right-
most

t

s

s



30 - 13

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

π
4

v

t

s

t

s

t

s

right-
most

t

s

s



30 - 14

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

π
4

Assume the following holds:
the only vertex in angle(v) is s

v

t

s

t

s

t

s

right-
most

t

s

s



30 - 15

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

π
4

Assume the following holds:
the only vertex in angle(v) is s

� This condition is preserved during the induction step.

v

t

s

t

s

t

s

right-
most

t

s

s



30 - 16

Series-Parallel Graphs – Straight-Line Drawings
� What makes parallel composition possible without creating crossings?

π
4

Assume the following holds:
the only vertex in angle(v) is s

� This condition is preserved during the induction step.

v

Lemma.
The drawing produced by the algorithm is planar.

t

s

t

s

t

s

right-
most

t

s

s



31 - 1

Series-Parallel Graphs – Result

Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing Γ that
� is upward planar and
� a straight-line drawing
� with area in O(n2).
� Isomorphic components of G have congruent

drawings up to translation.
Γ can be computed in O(n) time.



31 - 2

Series-Parallel Graphs – Result

Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing Γ that
� is upward planar and
� a straight-line drawing
� with area in O(n2).
� Isomorphic components of G have congruent

drawings up to translation.
Γ can be computed in O(n) time.



31 - 3

Series-Parallel Graphs – Result

Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing Γ that
� is upward planar and
� a straight-line drawing
� with area in O(n2).
� Isomorphic components of G have congruent

drawings up to translation.
Γ can be computed in O(n) time.



31 - 4

Series-Parallel Graphs – Result

Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing Γ that
� is upward planar and
� a straight-line drawing
� with area in O(n2).
� Isomorphic components of G have congruent

drawings up to translation.
Γ can be computed in O(n) time.



31 - 5

Series-Parallel Graphs – Result

Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing Γ that
� is upward planar and
� a straight-line drawing
� with area in O(n2).
� Isomorphic components of G have congruent

drawings up to translation.
Γ can be computed in O(n) time.



31 - 6

Series-Parallel Graphs – Result

Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing Γ that
� is upward planar and
� a straight-line drawing
� with area in O(n2).
� Isomorphic components of G have congruent

drawings up to translation.
Γ can be computed in O(n) time.



32 - 1

Series-Parallel Graphs – Fixed Embedding
Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 2

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 3

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn

tn

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 4

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 5

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 6

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

tn+1

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 7

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 8

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 9

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 10

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 11

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

∆1

∆2

Π

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 12

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

∆1

∆2

Π

� 2 · Area(Gn) < Area(Π)

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 13

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

∆1

∆2

ΠΠ

� 2 · Area(Gn) < Area(Π)

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 14

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

∆1

∆2

ΠΠ

� 2 · Area(Gn) < Area(Π)

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 15

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

∆1

∆2

ΠΠ

� 2 · Area(Gn) < Area(Π)

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 16

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

∆1

∆2

ΠΠ

� 2 · Area(Gn) < Area(Π)

� 2 · Area(Π) ≤ Area(Gn+1)

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.



32 - 17

Series-Parallel Graphs – Fixed Embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1

Gn

sn

tn

sn−1

sn+1

tn+1

∆1

∆2

ΠΠ

� 2 · Area(Gn) < Area(Π)

� 2 · Area(Π) ≤ Area(Gn+1)

� 4 · Area(Gn) ≤ Area(Gn+1)

Theorem. [Bertolazzi et al. 94]

There exists a 2n-vertex series-parallel graph Gn such that any
upward planar drawing of Gn that respects the embedding
requires Ω(4n) area.


	Layered Drawings
	First Grid Layout of Binary Trees
	Applications
	Drawing Style
	Algorithm
	Algorithm Details
	Result

	HV-Drawings
	Drawing Style
	Algorithm
	Right-Heavy HV-Layout
	Result

	Radial Layouts
	Applications
	Drawing Style
	Algorithm Attempt
	How To Avoid Crossings
	Pseudocode
	Result

	Other Tree Visualization Styles
	Series-Parallel Graphs
	Decomposition Tree
	Decomposition Example
	Applications

	Drawings of Series-Parallel Graphs
	Drawing Style
	Straight-Line Drawings
	Straight-Line Drawings
	Result
	Fixed Embedding


