

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Part I: Layered Drawings

Philipp Kindermann

1. Choose *y*-coordinates: y(u) = depth(u)

1. Choose *y*-coordinates: y(u) = depth(u)

1. Choose *y*-coordinates: y(u) = depth(u)

1. Choose *y*-coordinates: y(u) = depth(u)

Layered Drawings – Applications

Decision tree for outcome prediction after traumatic brain injury

Source: Nature Reviews Neurology

Layered Drawings – Applications

Family tree of LOTR elves and half-elves

Layered Drawings – Applications

J. Klawitter, T. Mchedlidze, *Link:* go.uniwue.de/myth-poster

• What are properties of the layout?

What are properties of the layout?What are the drawing conventions?

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

Drawing conventions

Vertices lie on layers and have integer coordinates

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

- Vertices lie on layers and have integer coordinates
- Parent centered above children

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

What are properties of the layout?

- What are the drawing conventions?
- What are aesthetics to optimize?

- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

4 - 9

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

Drawing conventions

- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Drawing aesthetics

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

Drawing conventions

- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Drawing aesthetics

Area

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

Drawing conventions

- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Drawing aesthetics

- Area
- Symmetries

Input: A binary tree *T* **Output:** A layered drawing of *T*

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: Divide:

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex **O Divide:**

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex **O Divide:** Recursively apply the algorithm to draw the left and right subtrees

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex **O Divide:** Recursively apply the algorithm to draw the left and right subtrees

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex **O Divide:** Recursively apply the algorithm to draw the left and right subtrees

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex **O Divide:** Recursively apply the algorithm to draw the left and right subtrees

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex **O Divide:** Recursively apply the algorithm to draw the left and right subtrees

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex **O Divide:** Recursively apply the algorithm to draw the left and right subtrees

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex **O Divide:** Recursively apply the algorithm to draw the left and right subtrees

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex **O Divide:** Recursively apply the algorithm to draw the left and right subtrees

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Part II: Layered Drawings – Algorithmic Details Philipp Kindermann

Layered Drawings – Algorithm Details

Phase 1 – postorder traversal:

For each vertex compute horizontal displacement of left and right child

Layered Drawings – Algorithm Details

Phase 1 – postorder traversal:

For each vertex compute horizontal displacement of left and right child

Phase 2 – preorder traversal:Compute x- and y-coordinates

Layered Drawings – Algorithm Details

Phase 1 – postorder traversal:

For each vertex compute horizontal displacement of left and right child

Phase 2 – preorder traversal:Compute x- and y-coordinates
Phase 1 – postorder traversal:

For each vertex compute horizontal displacement of left and right child

Phase 1 – postorder traversal:

For each vertex compute horizontal displacement of left and right child

Phase 1 – postorder traversal:

For each vertex compute horizontal displacement of left and right child

Phase 1 – postorder traversal:

For each vertex compute horizontal displacement of left and right child

Phase 1 – postorder traversal:

For each vertex compute horizontal displacement of left and right child

Phase 1 – postorder traversal:

For each vertex compute horizontal displacement of left and right child

- At vertex *u* (below *v*) store left and right contour of subtree *T*(*u*)
- Contour is linked list of vertex coordinates/offsets

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- At vertex *u* (below *v*) store left and right contour of subtree *T*(*u*)
- Contour is linked list of vertex coordinates/offsets

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- At vertex *u* (below *v*) store left and right contour of subtree *T*(*u*)
- Contour is linked list of vertex coordinates/offsets

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- At vertex *u* (below *v*) store left and right contour of subtree *T*(*u*)
- Contour is linked list of vertex coordinates/offsets

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- At vertex *u* (below *v*) store left and right contour of subtree *T*(*u*)
- Contour is linked list of vertex coordinates/offsets

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets

- For each vertex compute horizontal displacement of left and right child
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

- For each vertex compute horizontal displacement of left and right child
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

- For each vertex compute horizontal displacement of left and right child
- At vertex *u* (below *v*) store left and right contour of subtree *T*(*u*)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

- For each vertex compute horizontal displacement of left and right child
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

- For each vertex compute horizontal displacement of left and right child
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

- For each vertex compute horizontal displacement of left and right child
- At vertex *u* (below *v*) store left and right contour of subtree *T*(*u*)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

Runtime?

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

Runtime?

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

Runtime?

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

Runtime?

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

Runtime?

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

Runtime?

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

Runtime?

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

Runtime?

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- **x-offset** $(v_l) = -\lceil \frac{d_v}{2} \rceil$, **x-offset** $(v_r) = \lceil \frac{d_v}{2} \rceil$
- At vertex u (below v) store left and right contour of subtree T(u)
- Contour is linked list of vertex coordinates/offsets
- Find $d_v = min$. horiz. distance between v_l and v_r
- Phase 2 preorder traversal:
- Compute x- and y-coordinates

Runtime?


```
\Rightarrow \mathcal{O}(n)
```

Theorem.

[Reingold & Tilford '81]

Theorem.

[Reingold & Tilford '81]

Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

Γ is planar, straight-line and strictly downward

Theorem.

[Reingold & Tilford '81]

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)

Theorem.

[Reingold & Tilford '81]

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1

Theorem.

[Reingold & Tilford '81]

- **Γ** is planar, straight-line and strictly downward
- **\Box** Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children

Theorem.

[Reingold & Tilford '81]

- **Γ** is planar, straight-line and strictly downward
- **\Box** Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$
Theorem.

[Reingold & Tilford '81]

- **Γ** is planar, straight-line and strictly downward
- **\Box** Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!

Theorem.

[Reingold & Tilford '81]

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!

Theorem.

[Reingold & Tilford '81]

- **Γ** is planar, straight-line and strictly downward
- **\Box** Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!

Theorem.

[Reingold & Tilford '81]

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!

Theorem.

[Reingold & Tilford '81]

- **Γ** is planar, straight-line and strictly downward
- **\Gamma** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!

Theorem.

[Reingold & Tilford '81]

NP-hard

Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children

Area of Γ is in $\mathcal{O}(n^2)$ – but not optimal!

Theorem.

[Reingold & Tilford '81]

NP-hard

Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation

8 - 13

Theorem.

[Reingold & Tilford '81]

NP-hard

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation

Theorem.

[Reingold & Tilford '81]

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation

Theorem.

[Reingold & Tilford '81]

NP-hard

- **Γ** is planar, straight-line and strictly downward
- **\Box** Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Theorem.

[Reingold & Tilford '81]

NP-hard

Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **\Box** Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

8 - 17

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **\Box** Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **\Box** Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **\Box** Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **Γ** is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of *T* in O(n) time, such that:

- **Γ** is planar, straight-line and strictly downward
- **\Box** Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
 - Axially isomorphic subtrees have congruent drawings, up to translation and reflection

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Part III: **HV-Drawings** Philipp Kindermann

Applications

Cons cell diagram in LISP

Applications

- Cons cell diagram in LISP
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Applications

- Cons cell diagram in LISP
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Applications

Drawing conventions

- Cons cell diagram in LISP
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Applications

- Cons cell diagram in LISP
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Drawing conventions

 Children are vertically or horizontally aligned with their parent

Drawing aesthetics

Source: after gajon.org/trees-linked-lists-common-lisp/

Applications

- Cons cell diagram in LISP
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint
- Edges are strictly down- or rightwards

Applications

- Cons cell diagram in LISP
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint
- Edges are strictly down- or rightwards

Drawing aesthetics

Height, width, area

HV-Drawings – Algorithm

Input: A binary tree *T* **Output:** An HV-drawing of *T*

HV-Drawings – Algorithm

Input: A binary tree *T* **Output:** An HV-drawing of *T*

Base case: **Q**

HV-Drawings – Algorithm

Input: A binary tree *T* **Output:** An HV-drawing of *T*

Base case: Q Divide: Recursively apply the algorithm to draw the left and right subtrees
HV-Drawings – Algorithm

Input: A binary tree *T* **Output:** An HV-drawing of *T*

Base case: Q Divide: Recursively apply the algorithm to draw the left and right subtrees

Conquer:

HV-Drawings – Algorithm

Input: A binary tree *T* **Output:** An HV-drawing of *T*

Base case: Q Divide: Recursively apply the algorithm to draw the left and right subtrees

Conquer:

horizontal combination

Input: A binary tree *T* **Output:** An HV-drawing of *T*

Base case: Q Divide: Recursively apply the algorithm to draw the left and right subtrees

Right-heavy approach

Always apply horizontal combination

- Always apply horizontal combination
- Place the larger subtree to the right

- Always apply horizontal combination
- Place the larger subtree to the rightSize of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 Size of subtree := number of vertices

0

- Always apply horizontal combination
- Place the larger subtree to the rightSize of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

Lemma. Let *T* be a binary tree. The drawing constructed by the right-heavy approach has
■ width at most *n* − 1 and
■ beight at most

height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

at least ·2

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

at least $\cdot 2$

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

at least $\cdot 2$

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

at least $\cdot 2$

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

at least $\cdot 2$

at least $\cdot 2$

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the rightSize of subtree := number of vertices

at least $\cdot 2$

at least $\cdot 2$

at least $\cdot 2$

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right Size of subtree := number of vertices

at least $\cdot 2$

at least $\cdot 2$

at least $\cdot 2$

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the rightSize of subtree := number of vertices

How to implement this in linear time?

at least $\cdot 2$

at least $\cdot 2$

at least $\cdot 2$

Theorem.

Let *T* be a binary tree with *n* vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of *T* s.t.:

Theorem.

Let *T* be a binary tree with *n* vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of *T* s.t.:

Γ is an HV-drawing
 (planar, orthogonal, strictly right-/downward)

Theorem.

Let *T* be a binary tree with *n* vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of *T* s.t.:

Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)

• Width is at most n - 1

Theorem.

Let *T* be a binary tree with *n* vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of *T* s.t.:

- **Γ** is an HV-drawing
 - (planar, orthogonal, strictly right-/downward)
- Width is at most n-1
- Height is at most log n

Theorem.

Let *T* be a binary tree with *n* vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of *T* s.t.:

Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)

- Width is at most n 1
- Height is at most log n
- Area is in $\mathcal{O}(n \log n)$

Theorem.

Let *T* be a binary tree with *n* vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of *T* s.t.:

Γ is an HV-drawing

(planar, orthogonal, strictly right-/downward)

- Width is at most n 1
- Height is at most log n
- Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

- Theorem. rooted
 Let *T* be a binary tree with *n* vertices. The right-heavy algorithm constructs in *O*(*n*) time a drawing Γ of *T* s.t.:
 Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
 Width is at most *n* 1
- Height is at most log n
- Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

drawings up to translation

Simply and axially isomorphic subtrees have congruen drawings up to translation

Simply and axially isomorphic subtrees have congruent drawings up to translation

HV-Drawings – Result

Optimal area?

HV-Drawings – Result

Optimal area?

Not with divide & conquer approach, but can be computed with Dynamic Programming.

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Part IV: **Radial Layouts** Philipp Kindermann

Radial Layouts – Applications

Radial Layouts – Applications

Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family by Ribecca, 2011

Drawing conventions

Drawing aesthetics

Drawing conventions

 Vertices lie on circular layers according to their depth

Drawing aesthetics

Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

Distribution of the vertices

Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

Distribution of the vertices

How can an algorithm optimize the distribution of the vertices?

Idea

Idea

Idea

Idea

Idea

Idea

Idea

Idea

Idea

Idea

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

Place *u* in middle of area

Idea

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

Idea

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

Idea

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

$$\ell(u)$$

Idea

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

Idea

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

$$\ell(u)$$

Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

 $\ell(u)$

Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$

 $\ell(u)$

 $\tau_u = \frac{\ell(u)}{\ell(v) - 1}$

Idea

 $\tau_u = \frac{\ell(u)}{\ell(v) - 1}$

Idea

• τ_u – angle of the wedge corresponding to vertex u

• τ_u – angle of the wedge corresponding to vertex u

- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u

- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at *u*
- ρ_i radius of layer *i*

- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at *u*
- ρ_i radius of layer *i*

- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at *u*
- ρ_i radius of layer *i*

- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at *u*
- ρ_i radius of layer *i*

$$\Box \cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$$

- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at *u*
- ρ_i radius of layer *i*

$$\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$$
$$\tau_u = \min\{\frac{\ell(u)}{\ell(v)-1}, 2 \arccos \frac{\rho_i}{\rho_{i+1}}\}$$

- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at *u*
- ρ_i radius of layer *i*

$$cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$$
$$\tau_u = \min\{\frac{\ell(u)}{\ell(v)-1}, 2 \arccos \frac{\rho_i}{\rho_{i+1}}\}$$

Alternative:

$$\alpha_{\min} = \alpha_u - \arccos \frac{\rho_i}{\rho_{i+1}}$$

 $\alpha_{\max} = \alpha_u + \arccos \frac{\rho_i}{\rho_{i+1}}$

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

begin

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex pos./polar coord.
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)
```

begin

postorder(r) preorder(r, 0, 0, 2π) return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.

 $postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ calculate the size of the \\ subtree recursively \end{cases}$

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)
```

begin

postorder(r) preorder(r, 0, 0, 2π) return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)	preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max}$)
begin $postorder(r)$ $preorder(r, 0, 0, 2\pi)$ $return (d_v, \alpha_v)_{v \in V(T)}$ $// vertex pos./polar coord.$	
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ postorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin	preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max}$) $d_v \leftarrow \rho_t$
$postorder(r)$ $preorder(r, 0, 0, 2\pi)$ $return (d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.	
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ postorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin postorder(r) $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.	preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max}$) $d_v \leftarrow \rho_t$ $\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2$
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ lossorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin postorder(r) $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.	preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max}$) $\begin{vmatrix} d_v \leftarrow \rho_t \\ \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 \end{vmatrix}$
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ lostorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin postorder(r) $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.	preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max}$) $\begin{vmatrix} d_v \leftarrow \rho_t \\ \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 \end{vmatrix} //output$
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ lostorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)	preorder(vertex v , t , α_{min} , α_{max})
begin $postorder(r)$ $preorder(r, 0, 0, 2\pi)$ $return (d_v, \alpha_v)_{v \in V(T)}$ $// vertex pos./polar coord.$	$\begin{vmatrix} d_{v} \leftarrow \rho_{t} \\ \alpha_{v} \leftarrow (\alpha_{\min} + \alpha_{\max})/2 \end{vmatrix} //output$ if $t > 0$ then $\begin{vmatrix} \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_{v} - \arccos \frac{\rho_{t}}{\rho_{t+1}}\} \\ \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_{v} + \arccos \frac{\rho_{t}}{\rho_{t+1}}\} \end{vmatrix}$
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ lostorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)	preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max}$)
begin $postorder(r)$ $preorder(r, 0, 0, 2\pi)$ $return (d_v, \alpha_v)_{v \in V(T)}$ $// vertex pos./polar coord.$	$ \begin{array}{c c} d_v \leftarrow \rho_t & //output \\ \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 & //output \\ if t > 0 then \\ \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}} \\ \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}} \end{array} $
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ lostorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	left $\leftarrow \alpha_{\min}$

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin postorder(r) $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.	$preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})$ $\begin{vmatrix} d_v \leftarrow \rho_t & //output \\ \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 \\ if t > 0 then \\ \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\} \\ \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\} \end{vmatrix}$
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ lostorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	$\begin{bmatrix} left \leftarrow \alpha_{\min} \\ \textbf{foreach} \\ child w \\ of v \\ \textbf{do} \end{bmatrix}$

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)	preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max}$)
begin	$\begin{vmatrix} d_v \leftarrow \rho_t \\ \alpha_v \leftarrow (\alpha + \alpha_{max})/2 \end{vmatrix} //output$
$postorder(r)$ $preorder(r,0,0,2\pi)$	if $t > 0$ then
return $(d_v, \alpha_v)_{v \in V(T)}$	$ \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\} $
// vertex pos./polar coord.	$\left \begin{array}{c} \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\left[\frac{\rho_t}{\rho_{t+1}}\right] \right \right $
<pre>postorder(vertex v)</pre>	<i>left</i> $\leftarrow \alpha_{\min}$
$\mid \ell(v) \leftarrow 1$	foreach child <i>w</i> of <i>v</i> do
foreach child w of v do	$ right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})$
postorder(w)	
$ \lfloor \ell(v) \leftarrow \ell(v) + \ell(w) $	

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin postorder(r) $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.	preorder(vertex v, t, $\alpha_{\min}, \alpha_{\max}$) $\begin{vmatrix} d_v \leftarrow \rho_t & //output \\ \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 & //output \\ if t > 0 then \\ \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\} \\ \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\} \end{vmatrix}$
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ lossorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	$ \begin{array}{c c} left \leftarrow \alpha_{\min} \\ \textbf{foreach child } w \text{ of } v \textbf{ do} \\ $

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin postorder(r) $preorder(r, 0, 0, 2\pi)$	preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max}$) $\begin{vmatrix} d_v \leftarrow \rho_t & //output \\ \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 & //output \\ if t > 0 then & \rho_t \end{pmatrix}$
$ \begin{array}{ c c } return & (d_v, \alpha_v)_{v \in V(T)} \\ // \text{ vertex pos./polar coord.} \end{array} \\ \hline postorder(vertex v) \\ & \ell(v) \leftarrow 1 \\ foreach child w of v do \\ & lostorder(w) \\ & \ell(v) \leftarrow \ell(v) + \ell(w) \end{array} \end{array} $	$ \begin{array}{c} \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_{v} - \arccos \frac{1}{\rho_{t+1}}\} \\ \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_{v} + \arccos \frac{\rho_{t}}{\rho_{t+1}}\} \\ \begin{array}{c} left \leftarrow \alpha_{\min} \\ foreach child w of v do \\ left \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min}) \\ preorder(w, t+1, left, right) \end{array} $

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)	preorder(vertex v , t , α_{\min} , α_{\max})
begin $postorder(r)$ $preorder(r, 0, 0, 2\pi)$ $return (d_v, \alpha_v)_{v \in V(T)}$ $// vertex pos./polar coord.$	$ \begin{array}{c c} d_v \leftarrow \rho_t & //output \\ \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 & //output \\ if t > 0 then \\ \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\} \\ \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\} \end{array} $
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ lostorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	$ \begin{array}{c c} left \leftarrow \alpha_{\min} \\ foreach child w of v do \\ $

Runtime?

Radial TreeLayout (tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)	preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max})$
begin $postorder(r)$ $preorder(r, 0, 0, 2\pi)$ $return (d_v, \alpha_v)_{v \in V(T)}$ $// vertex pos./polar coord.$	$\begin{vmatrix} d_{v} \leftarrow \rho_{t} \\ \alpha_{v} \leftarrow (\alpha_{\min} + \alpha_{\max})/2 \end{vmatrix} //output$ if $t > 0$ then $\begin{vmatrix} \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_{v} - \arccos \frac{\rho_{t}}{\rho_{t+1}}\} \\ \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_{v} + \arccos \frac{\rho_{t}}{\rho_{t+1}}\} \end{vmatrix}$
postorder(vertex v) $\ell(v) \leftarrow 1$ foreach child w of v do postorder(w) $\ell(v) \leftarrow \ell(v) + \ell(w)$	$ \begin{array}{c c} left \leftarrow \alpha_{\min} \\ foreach child w of v do \\ $

Runtime? O(n)

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin postorder(r)	$preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})$ $\begin{pmatrix} d_v \leftarrow \rho_t \\ \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 \end{pmatrix} //output$
$preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.	$\begin{bmatrix} \alpha_{\min} < \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\} \\ \alpha_{\max} < \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\} \end{bmatrix}$
$postorder(vertex v) \\ \ell(v) \leftarrow 1 \\ foreach child w of v do \\ lossorder(w) \\ \ell(v) \leftarrow \ell(v) + \ell(w) \end{cases}$	$ \begin{array}{c c} left \leftarrow \alpha_{\min} \\ foreach child w of v do \\ $

Runtime? O(n)Correctness?

RadialTreeLayout(tree <i>T</i> , root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin <i>postorder</i> (<i>r</i>)	preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max}$) $\begin{vmatrix} d_v \leftarrow \rho_t \\ \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2 \end{vmatrix}$ //output
$preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.	$\begin{bmatrix} \mathbf{if} \ t > 0 \ \mathbf{then} \\ \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\} \\ \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\} \end{bmatrix}$
postorder(vertex v) $\ell(v) \leftarrow 1$ foreach child w of v do postorder(w) $\ell(v) \leftarrow \ell(v) + \ell(w)$	$ \begin{array}{c c} left \leftarrow \alpha_{\min} \\ foreach child w of v do \\ $

Runtime? O(n)Correctness? \checkmark

Theorem.

Let *T* be a tree with *n* vertices. The RadialTreeLayout algorithm constructs in O(n) time a drawing Γ of *T* s.t.:

Theorem.

Let *T* be a tree with *n* vertices. The RadialTreeLayout algorithm constructs in *O*(*n*) time a drawing Γ of *T* s.t.:
Γ is radial drawing

Theorem.

Let *T* be a tree with *n* vertices. The RadialTreeLayout algorithm constructs in O(n) time a drawing Γ of *T* s.t.:

- **Γ** is radial drawing
- Vertices lie on circle according to their depth

Theorem.

Let *T* be a tree with *n* vertices. The RadialTreeLayout algorithm constructs in O(n) time a drawing Γ of *T* s.t.:

- **Γ** is radial drawing
- Vertices lie on circle according to their depth
- Area quadratic in max degree times height of T (see [GD Ch. 3.1.3] if interested)

Writing Without Words: The project explores methods to visualizes the differences in writing styles of different authors.

Similar to ballon layout

A phylogenetically organised display of data for all placental mammal species.

Fractal layout

A language family tree – in pictures

Fractal layout

treevis.net

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Part V: Series-Parallel Graphs Philipp Kindermann

A graph *G* is **series-parallel**, if

A graph *G* is **series-parallel**, if ■ it contains a single (directed) edge (*s*, *t*), or

A graph *G* is **series-parallel**, if

- It contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2

- A graph *G* is **series-parallel**, if
- It contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2

A graph *G* is **series-parallel**, if

- It contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G₁, G₂ with sources s₁, s₂ and sinks t₁, t₂ that are combined using one of the following rules:

A graph *G* is **series-parallel**, if

- It contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G₁, G₂ with sources s₁, s₂ and sinks t₁, t₂ that are combined using one of the following rules:

Series composition

A graph *G* is **series-parallel**, if

- It contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G₁, G₂ with sources s₁, s₂ and sinks t₁, t₂ that are combined using one of the following rules:

A graph *G* is **series-parallel**, if

- It contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G₁, G₂ with sources s₁, s₂ and sinks t₁, t₂ that are combined using one of the following rules:

Parallel composition

A graph *G* is **series-parallel**, if

- It contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G₁, G₂ with sources s₁, s₂ and sinks t₁, t₂ that are combined using one of the following rules:

Parallel composition

A graph *G* is **series-parallel**, if

- It contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G₁, G₂ with sources s₁, s₂ and sinks t₁, t₂ that are combined using one of the following rules:

convince yourself that series-parallel graphs are planar

Parallel composition

A **decomposition tree** of *G* is a binary tree *T* with nodes of three types: **S**, **P** and **Q**-type

A **decomposition tree** of *G* is a binary tree *T* with nodes of three types: **S**, **P** and **Q**-type

A Q-node represents a single edge

A **decomposition tree** of *G* is a binary tree *T* with nodes of three types: **S**, **P** and **Q**-type

- A Q-node represents a single edge
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2

A **decomposition tree** of *G* is a binary tree *T* with nodes of three types: **S**, **P** and **Q**-type

- A Q-node represents a single edge
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2
- A P-node represents a parallel composition; its children T_1 and T_2 represent G_1 and G_2

Series-Parallel Graphs – Applications

Flowcharts

PERT-Diagrams (Program Evaluation and Review Technique)
Series-Parallel Graphs – Applications

Flowcharts

PERT-Diagrams (Program Evaluation and Review Technique)

Computational complexity: Linear time algorithms for \mathcal{NP} -hard problems (e.g. Maximum Matching, MIS, Hamiltonian Completion)

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Part VI: **Drawings of Series-Parallel Graphs** Philipp Kindermann

Drawing conventions

Drawing conventions

Planarity

Drawing conventions

- Planarity
- Straight-line edges

Drawing conventions

- Planarity
- Straight-line edges
- Upward
- **Drawing aesthetics**

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aestheticsArea

Drawing conventions

- Planarity
- Straight-line edges
- Upward

- Area
- Symmetry

Divide & conquer algorithm using the decomposition tree

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle $\Delta(G)$

Divide & conquer algorithm using the decomposition tree

■ Draw *G* inside a right-angled isosceles bounding triangle $\Delta(G)$

Base case: Q-nodes

Divide & conquer algorithm using the decomposition tree Draw *G* inside a right-angled isosceles bounding triangle $\Delta(G)$ **Base case:** Q-nodes **Divide:** Draw G_1 and G_2 first

Series-Parallel Graphs – Straight-Line Drawings Divide & conquer algorithm using the decomposition tree Draw *G* inside a right-angled isosceles bounding triangle $\Delta(G)$ $\Delta(G)$ **Divide:** Draw *G*₁ and *G*₂ first **Base case:** Q-nodes **Conquer:** $\Delta(G_1)$ $\Delta(G_2)$

Divide & conquer algorithm using the decomposition treeDraw G inside a right-angled isosceles bounding triangle $\Delta(G)$ Base case: Q-nodesDivide: Draw G_1 and G_2 first

Conquer:

S-nodes / series composition

Divide & conquer algorithm using the decomposition treeDraw G inside a right-angled isosceles bounding triangle $\Delta(G)$ Base case: Q-nodesDivide: Draw G_1 and G_2 first

Conquer:

S-nodes / series composition

Divide & conquer algorithm using the decomposition treeDraw G inside a right-angled isosceles bounding triangle $\Delta(G)$ Base case: Q-nodesDivide: Draw G_1 and G_2 first

Conquer:

S-nodes / series composition

What makes parallel composition possible without creating crossings?

Assume the following holds: the only vertex in angle(v) is *s*

What makes parallel composition possible without creating crossings?

Assume the following holds: the only vertex in angle(v) is *s*

S

 $\frac{\pi}{4}$

This condition **is** preserved during the induction step.

What makes parallel composition possible without creating crossings?

Assume the following holds: the only vertex in angle(v) is *s*

This condition **is** preserved during the induction step.

Lemma. The drawing produced by the algorithm is planar.

Theorem.

Let *G* be a series-parallel graph. Then *G* (with **variable embedding**) admits a drawing Γ that

Theorem.
Let *G* be a series-parallel graph. Then *G* (with variable embedding) admits a drawing Γ that
is upward planar and

Theorem.

Let *G* be a series-parallel graph. Then *G* (with **variable embedding**) admits a drawing Γ that

- is upward planar and
- a straight-line drawing

Theorem.

Let *G* be a series-parallel graph. Then *G* (with **variable embedding**) admits a drawing Γ that

- is upward planar and
- a straight-line drawing
- with area in $\mathcal{O}(n^2)$.

Theorem.

Let *G* be a series-parallel graph. Then *G* (with **variable embedding**) admits a drawing Γ that

- is upward planar and
- a straight-line drawing
- with area in $\mathcal{O}(n^2)$.

Isomorphic components of *G* have congruent drawings up to translation.

Theorem.

Let *G* be a series-parallel graph. Then *G* (with **variable embedding**) admits a drawing Γ that

- is upward planar and
- a straight-line drawing
- with area in $\mathcal{O}(n^2)$.

Isomorphic components of *G* have congruent drawings up to translation.

 Γ can be computed in $\mathcal{O}(n)$ time.

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

Theorem. [Bertolazzi et al. 94]

There exists a 2*n*-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

Theorem. [Bertolazzi et al. 94]

There exists a 2*n*-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

Theorem. [Bertolazzi et al. 94]

There exists a 2*n*-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

Theorem. [Bertolazzi et al. 94]

There exists a 2*n*-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

Theorem. [Bertolazzi et al. 94]

There exists a 2*n*-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

- $2 \cdot Area(G_n) < Area(\Pi)$
- $2 \cdot Area(\Pi) \leq Area(G_{n+1})$

 t_{n+1} t_{n+1} Δ_2 \mathbf{d}^{t_n} tn **o**^t₀ s_{n-1} G_n Δ_1 S_n s_{n+1} \mathbf{o}_{s_0} bs_{n+1} G_{n+1} G_0 s_n

Theorem. [Bertolazzi et al. 94]

There exists a 2*n*-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

- $2 \cdot Area(G_n) < Area(\Pi)$
- $2 \cdot Area(\Pi) \leq Area(G_{n+1})$
- $4 \cdot Area(G_n) \leq Area(G_{n+1})$

 t_{n+1} t_{n+1} Δ_2 \mathbf{b}^{t_n} tn \mathbf{o}^{t_0} s_{n-1} G_n Δ_1 \mathbf{Q}_{S_n} s_{n+1} O_{S_0} bs_{n+1} G_{n+1} G_0 s_n