

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Philipp Kindermann Part I: Layered Drawings

1

First Grid Layout of Binary Trees

Layered Drawings – Applications

Decision tree for outcome prediction after traumatic brain injury

Source: Nature Reviews Neurology

Layered Drawings – Applications

Family tree of LOTR elves and half-elves

Layered Drawings – Applications

J. Klawitter, T. Mchedlidze, *Link:* go.uniwue.de/myth-poster

Layered Drawings – Drawing Style

- What are properties of the layout?
- What are the drawing conventions?
-

- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Drawing aesthetics

- Area
-

Layered Drawings – Algorithm

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex o **Divide:** Recursively apply the algorithm to draw the left and right subtrees

Conquer:

Layered Drawings – Algorithm

Input: A binary tree *T* **Output:** A layered drawing of *T*

Base case: A single vertex o **Divide:** Recursively apply the algorithm to draw the left and right subtrees

Conquer:

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Philipp Kindermann Part II: Layered Drawings – Algorithmic Details

Layered Drawings – Algorithm Details

Phase 1 – postorder traversal:

- **For each vertex compute horizontal** displacement of left and right child
-) $= -\lceil \frac{d_v}{2} \rceil$ $\frac{d_v}{2}$], x-offset $(v_r)=\lceil \frac{d_v}{2} \rceil$ 2 $\overline{}$
- At vertex *u* (below *v*) store left and right contour of subtree *T*(*u*) ■ x-offset(v_l) = $-\lceil \frac{d_v}{2} \rceil$, x-offset(v_r) = $\lceil \frac{d_v}{2} \rceil$

■ At vertex *u* (below *v*) store left and right contour

subtree *T*(*u*)

■ Contour is linked list of vertex coordinates/offsets
-
- Find d_v = min. horiz. distance between v_l and v_r
- **Phase 2 preorder traversal:**
-

Layered Drawings – Algorithm Details

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
-) $= -\lceil \frac{d_v}{2} \rceil$ $\frac{d_v}{2}$], x-offset $(v_r)=\lceil \frac{d_v}{2} \rceil$ 2 $\overline{}$
- At vertex *u* (below *v*) store left and right contour of subtree *T*(*u*) ■ x-offset(v_l) = $-\lceil \frac{d_v}{2} \rceil$, x-offset(v_r) = $\lceil \frac{d_v}{2} \rceil$

■ At vertex *u* (below *v*) store left and right contour

subtree *T*(*u*)

■ Contour is linked list of vertex coordinates/offsets
-
- Find d_v = min. horiz. distance between v_l and v_r
- **Phase 2 preorder traversal:**
- Compute x- and y-coordinates

Runtime?

■ How often do we have to walk along a contour? \Rightarrow $\mathcal{O}(n)$

Layered Drawings – Result

Theorem. [Reingold & Tilford '81]

Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- Γ is layered: y-coordinate of vertex *v* is −depth(*v*)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- **Area of Γ is in** $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation Each vertex is centred wrt its children
Area of Γ is in $\mathcal{O}(n^2)$ – but not optimal!
Simply isomorphic subtrees have congruent
drawings, up to translation and reflection
drawings, up to translation and reflection
- Axially isomorphic subtrees have congruent

Layered Drawings – Result

Theorem. rooted [Reingold & Tilford '81] Let *T* be a binary tree with *n* vertices. We can construct a drawing Γ of \overline{T} in $\mathcal{O}(n)$ time, such that: **The a binary tree with** *n* vertices. We can construct awing Γ of \overline{T} in $\mathcal{O}(n)$ time, such that:
 Γ is planar, straight-line and strictly downward Γ is layered: y-coordinate of vertex v is $-\text{depth}(v)$

H

- Γ is planar, straight-line and strictly downward
- Γ is layered: y-coordinate of vertex *v* is −depth(*v*)
- Horizontal and Vertical distances are at least 1
- Each vertex is centred wrt its children
- **Area of Γ is in** $\mathcal{O}(n^2)$ but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Philipp Kindermann Part III: HV-Drawings

HV-Drawings – Drawing Style

Applications

- **Cons cell diagram in LISP**
- *Cons*(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint
- Edges are strictly down- or rightwards

Drawing aesthetics

Height, width, area

HV-Drawings – Algorithm

Input: A binary tree *T* **Output:** An HV-drawing of *T*

Base case: P_{I} **Divide:** Recursively apply the algorithm to draw the left and right subtrees

HV-Drawings – Right-Heavy HV-Layout

Right-heavy approach

- Always apply horizontal combination
- **Place the larger subtree to the right** Size of subtree $:=$ number of vertices

How to implement this in linear time?

at least ·2

at least ·2

at least ·2

 Ω

Lemma. Let *T* be a binary tree. The drawing constructed by the right-heavy approach has ■ width at most *n* − 1 and height at most log *n*.

HV-Drawings – Result

Theorem.

Let *T* be a binary tree with *n* vertices. The right-heavy algorithm constructs in *O*(*n*) time a drawing Γ of *T* s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- Width is at most $n-1$
- Height is at most $log n$
- Area is in $\mathcal{O}(n \log n)$
- **Simply and axially isomorphic subtrees have congruent** drawings up to translation

HV-Drawings – Result

Optimal area?
 Subtree Not with divice
 Subtree Supprimal area? Not with divide & conquer approach, but can be computed

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Part IV: Radial Layouts

Philipp Kindermann

Radial Layouts – Applications

Radial Layouts – Applications

Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family by Ribecca, 2011

Radial Layouts – Drawing Style

Drawing conventions

- **Vertices lie on circular layers** according to their depth
- **Drawing is planar**

Drawing aesthetics

Distribution of the vertices

How can an algorithm optimize the distribution of the vertices?

Radial Layouts – Algorithm Attempt

Idea

Reserve area corresponding to size $\ell(u)$ of $T(u)$:

 $\tau_u =$

 $\ell(u)$

 $\ell(v) - 1$

Radial Layouts – How To Avoid Crossings

Radial Layouts – How To Avoid Crossings

- *τ^u* angle of the wedge corresponding to vertex *u*
- $\ell(u)$ number of nodes in the subtree rooted at *u*
- *ρⁱ* radius of layer *i*

$$
\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}
$$

$$
\tau_u = \min\{\frac{\ell(u)}{\ell(v)-1}, 2 \arccos \frac{\rho_i}{\rho_{i+1}}\}
$$

$$
\alpha_{\min} = \alpha_u - \arccos \frac{\rho_i}{\rho_{i+1}}
$$

$$
\alpha_{\max} = \alpha_u + \arccos \frac{\rho_i}{\rho_{i+1}}
$$

Radial Layouts – Pseudocode

 $\operatorname{RadialTreeLayout (tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$})$ **begin** *postorder*(*r*) *preorder*(*r*, 0, 0, 2*π*) ${\bf return}\,\left(d_v,\alpha_v\right)_{v\in V(T)}$ // vertex pos./polar coord. postorder(vertex *v*) $\ell(v) \leftarrow 1$ **foreach** child *w* of *v* **do** *postorder*(*w*) $\ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(vertex *v*, *t*, *α*min, *α*max) $d_v \leftarrow \rho_t$ $\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2$ **if** $t > 0$ **then** *α*min ←max{*α*min, *αv*−arccos *ρt* ρ _{*t*+1} } α_{\max} ← min $\{\alpha_{\max}$, α_v + arccos $\frac{\rho_t}{\rho_{t+1}}$ ρ_{t+1} } $left \leftarrow \alpha_{\min}$ **foreach** child *w* of *v* **do** $right \leftarrow left + \frac{\ell(w)}{\ell(w)-1}$ $\frac{\ell(\omega)}{\ell(\nu)-1} \cdot (\alpha_{\max} - \alpha_{\min})$ $preorder(w, t + 1, left, right)$ *left* ← *right* //*output*

Runtime? $O(n)$ Correctness?

Radial Layouts – Result

Theorem.

Let *T* be a tree with *n* vertices. The RadialTreeLayout algorithm constructs in $O(n)$ time a drawing Γ of T s.t.:

- \blacksquare Γ is radial drawing
- Vertices lie on circle according to their depth
- Area quadratic in max degree times height of *T* (see [GD Ch. 3.1.3] if interested)

Writing Without Words: The project explores methods to visualizes the differences in writing styles of different authors.

Similar to ballon layout

A phylogenetically organised display of data for all placental mammal species.

Fractal layout

A language family tree – in pictures

Fractal layout

treevis.net

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Philipp Kindermann Part V: Series-Parallel Graphs

Series-Parallel Graphs

A graph *G* is **series-parallel**, if

- it contains a single (directed) edge (*s*, *t*), or
- it consists of two series-parallel graphs *G*₁, *G*₂ with sources *s*1, *s*² and sinks *t* ¹, *t* ² that are combined using one of the following rules: d sinks t_1 , t_2 that are $\qquad \qquad$ os \qquad graps of the following rules:
Series composition **Parallel composition**

convince yourself that series-parallel graphs are planar

Series-Parallel Graphs – Decomposition Tree

A **decomposition tree** of *G* is a binary tree *T* with nodes of three types: **S**, **P** and **Q**-type

- A **Q**-node represents a single edge
- An **S**-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2
- A **P**-node represents a parallel composition; its children T_1 and T_2 represent G_1 and G_2

*T*2

Series-Parallel Graphs – Decomposition Example

Series-Parallel Graphs – Applications

Flowcharts PERT-Diagrams (Program Evaluation and Review Technique)

Computational complexity: Linear time algorithms for $N \mathcal{P}$ -hard problems (e.g. Maximum Matching, MIS, Hamiltonian Completion)

Visualization of Graphs Lecture 2: Drawing Trees and Series-Parallel Graphs Philipp Kindermann Part VI: Drawings of Series-Parallel Graphs

Series-Parallel Graphs – Drawing Style

Drawing conventions

- **Planarity**
- Straight-line edges
- **Upward**
- **Drawing aesthetics** Area

Series-Parallel Graphs – Straight-Line Drawings

What makes parallel composition possible without creating crossings?

Assume the following holds: the only vertex in angle (v) is *s*

π 4

s

Lemma.

Series-Parallel Graphs – Result

Theorem.

Let *G* be a series-parallel graph. Then *G* (with **variable embedding**) admits a drawing Γ that

- **is upward planar and**
- **a** straight-line drawing
- with area in $\mathcal{O}(n^2)$.

 Isomorphic components of *G* have congruent drawings up to translation.

Γ can be computed in $O(n)$ time.

Series-Parallel Graphs – Fixed Embedding

Theorem. [Bertolazzi et al. 94]

There exists a 2*n*-vertex series-parallel graph *Gⁿ* such that any upward planar drawing of *Gⁿ* that respects the embedding requires Ω(4 *n*) area.

- $2 \cdot Area(G_n) < Area(\Pi)$
- **2** · $Area(\Pi) \leq Area(G_{n+1})$
- \blacksquare 4 · $Area(G_n) \leq Area(G_{n+1})$

*G*0 $\mathsf{0}_{S_{\scriptstyle{0}}}$ *t* 0 *Gn*+¹ *Gⁿ s n*+1 *s n t n t n*+1 *Gn sn tn s n*−1 *s n*+1 *t n*+1 Δ_1 Δ 2 \prod