
1

Visualization of Graphs
Lecture 3:

Force-Directed Drawing Algorithms

Philipp Kindermann

Part I:
Algorithm Framework

2 - 1

General Layout Problem
Input: Graph G = (V, E)

2 - 2

General Layout Problem
Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G

2 - 3

General Layout Problem
Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Drawing aesthetics:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

2 - 4

General Layout Problem
Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Drawing aesthetics:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

2 - 5

General Layout Problem
Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Drawing aesthetics:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

2 - 6

General Layout Problem
Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Drawing aesthetics:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

2 - 7

General Layout Problem
Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Drawing aesthetics:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

2 - 8

General Layout Problem
Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Drawing aesthetics:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

2 - 9

General Layout Problem
Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Drawing aesthetics:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

2 - 10

General Layout Problem
Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Drawing aesthetics:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

Optimization criteria partially contradict each other

3 - 1

Fixed Edge Lengths?
Input: Graph G = (V, E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

3 - 2

Fixed Edge Lengths?
Input: Graph G = (V, E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

3 - 3

Fixed Edge Lengths?
Input: Graph G = (V, E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

3 - 4

Fixed Edge Lengths?
Input: Graph G = (V, E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

3 - 5

Fixed Edge Lengths?
Input: Graph G = (V, E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

3 - 6

Fixed Edge Lengths?

NP-hard for
� uniform edge lengths in any dimension [Johnson ’82]

� uniform edge lengths in planar drawings [Eades, Wormald ’90]

� edge lengths {1, 2} [Saxe ’80]

Input: Graph G = (V, E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

3 - 7

Fixed Edge Lengths?

NP-hard for
� uniform edge lengths in any dimension [Johnson ’82]

� uniform edge lengths in planar drawings [Eades, Wormald ’90]

� edge lengths {1, 2} [Saxe ’80]

Input: Graph G = (V, E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

3 - 8

Fixed Edge Lengths?

NP-hard for
� uniform edge lengths in any dimension [Johnson ’82]

� uniform edge lengths in planar drawings [Eades, Wormald ’90]

� edge lengths {1, 2} [Saxe ’80]

Input: Graph G = (V, E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

3 - 9

Fixed Edge Lengths?

NP-hard for
� uniform edge lengths in any dimension [Johnson ’82]

� uniform edge lengths in planar drawings [Eades, Wormald ’90]

� edge lengths {1, 2} [Saxe ’80]

Input: Graph G = (V, E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

4 - 1

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

4 - 2

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

4 - 3

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

4 - 4

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

4 - 5

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

4 - 6

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

Attractive forces.

4 - 7

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

adjacent vertices u and v:
Attractive forces.

4 - 8

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

adjacent vertices u and v:

u v
fattr

Attractive forces.

4 - 9

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

adjacent vertices u and v:

u v
fattr

Repulsive forces.

Attractive forces.

4 - 10

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

adjacent vertices u and v:

u v
fattr

Repulsive forces.

all vertices x and y:

Attractive forces.

4 - 11

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

adjacent vertices u and v:

u v
fattr

Repulsive forces.

all vertices x and y:
x

yfrep

Attractive forces.

4 - 12

Physical Analogy
Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

adjacent vertices u and v:

u v
fattr

Repulsive forces.

all vertices x and y:
x

yfrep

So-called spring embedders or
force-directed algorithms that work
according to this or similar principles are
among the most frequently used
graph-drawing methods in practice.

Attractive forces.

5 - 1

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

5 - 2

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

initial layout

5 - 3

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout

5 - 4

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold

5 - 5

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

5 - 6

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

5 - 7

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

u

5 - 8

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

u

5 - 9

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

u

5 - 10

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

u

5 - 11

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

u

5 - 12

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

u

u

5 - 13

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

u

u

cooling factor

5 - 14

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

u

u

cooling factor

δ(t)

t

5 - 15

Force-Directed Algorithms

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

end layout

initial layout threshold
max # iterations

u

cooling factor

δ(t)

t

u

6

Visualization of Graphs
Lecture 3:

Force-Directed Drawing Algorithms

Philipp Kindermann

Part II:
Spring Embedder by Eades

7 - 1

Spring Embedder by Eades – Model

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

7 - 2

Spring Embedder by Eades – Model
� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

7 - 3

Spring Embedder by Eades – Model
� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

7 - 4

Spring Embedder by Eades – Model
� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

7 - 5

Spring Embedder by Eades – Model
� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u
and v

� −−→pu pv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

7 - 6

Spring Embedder by Eades – Model
� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u
and v

� −−→pu pv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

7 - 7

Spring Embedder by Eades – Model
� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u
and v

� −−→pu pv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

repulsion constant (e.g. 2.0)

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

7 - 8

Spring Embedder by Eades – Model
� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u
and v

� −−→pu pv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

repulsion constant (e.g. 2.0)

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

7 - 9

Spring Embedder by Eades – Model
� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u
and v

� −−→pu pv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

repulsion constant (e.g. 2.0)

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

7 - 10

Spring Embedder by Eades – Model
� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u
and v

� −−→pu pv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

repulsion constant (e.g. 2.0)

spring constant (e.g. 1.0)

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

7 - 11

Spring Embedder by Eades – Model
� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u
and v

� −−→pu pv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

repulsion constant (e.g. 2.0)

spring constant (e.g. 1.0)

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

8 - 1

Spring Embedder by Eades – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

8 - 2

Spring Embedder by Eades – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

8 - 3

Spring Embedder by Eades – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

8 - 4

Spring Embedder by Eades – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

fattr(u, v) = fspring(u, v)− frep(u, v)

8 - 5

Spring Embedder by Eades – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

fattr(u, v) = fspring(u, v)− frep(u, v)

8 - 6

Spring Embedder by Eades – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

fattr(u, v) = fspring(u, v)− frep(u, v)

Demo

9 - 1

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

9 - 2

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

9 - 3

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

9 - 4

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

9 - 5

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

Disadvantages.
� system is not stable at the end
� converging to local minima
� timewise fspring in O(|E|) and frep in O(|V|2)

9 - 6

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

Disadvantages.
� system is not stable at the end
� converging to local minima
� timewise fspring in O(|E|) and frep in O(|V|2)

9 - 7

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

Disadvantages.
� system is not stable at the end
� converging to local minima
� timewise fspring in O(|E|) and frep in O(|V|2)

9 - 8

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

Disadvantages.
� system is not stable at the end
� converging to local minima
� timewise fspring in O(|E|) and frep in O(|V|2)

9 - 9

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

Disadvantages.
� system is not stable at the end
� converging to local minima
� timewise fspring in O(|E|) and frep in O(|V|2)

Influence.
� original paper by Peter Eades [Eades ’84] got ∼ 2000 citations
� basis for many further ideas

9 - 10

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

Disadvantages.
� system is not stable at the end
� converging to local minima
� timewise fspring in O(|E|) and frep in O(|V|2)

Influence.
� original paper by Peter Eades [Eades ’84] got ∼ 2000 citations
� basis for many further ideas

9 - 11

Spring Embedder by Eades – Discussion
Advantages.
� very simple algorithm
� good results for small and medium-sized graphs
� empirically good representation of symmetry and structure

Disadvantages.
� system is not stable at the end
� converging to local minima
� timewise fspring in O(|E|) and frep in O(|V|2)

Influence.
� original paper by Peter Eades [Eades ’84] got ∼ 2000 citations
� basis for many further ideas

10

Visualization of Graphs
Lecture 3:

Force-Directed Drawing Algorithms

Philipp Kindermann

Part III:
Variant by Fruchterman & Reingold

11 - 1

Variant by Fruchterman & Reingold

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u
and v

� −−→pu pv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pv pu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

repulsion constant (e.g. 2.0)

spring constant (e.g. 1.0)

11 - 2

Variant by Fruchterman & Reingold
� Repulsive forces

frep(u, v) =
`2

||pv − pu||
· −−→pv pu

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u
and v

� −−→pu pv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pu pv

fattr(u, v) = fspring(u, v)− frep(u, v)

spring constant (e.g. 1.0)

11 - 3

Variant by Fruchterman & Reingold
� Repulsive forces

frep(u, v) =
`2

||pv − pu||
· −−→pv pu

� Attractive forces

fattr(u, v) =
||pv − pu||2

`
· −−→pu pv

� Resulting displacement vector

Fu = ∑
v∈V

frep(u, v) + ∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u
and v

� −−→pu pv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

12 - 1

Fruchterman & Reingold – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

12 - 2

Fruchterman & Reingold – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

frep(u, v) =
`2

||pv − pu||
· −−→pv pu

12 - 3

Fruchterman & Reingold – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

frep(u, v) =
`2

||pv − pu||
· −−→pv pu

fattr(u, v) =
||pv − pu||2

`
· −−→pu pv

12 - 4

Fruchterman & Reingold – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

frep(u, v) =
`2

||pv − pu||
· −−→pv pu

fattr(u, v) =
||pv − pu||2

`
· −−→pu pv

fspring(u, v) = fattr(u, v) + frep(u, v)

12 - 5

Fruchterman & Reingold – Force Diagram

Distance
`

Force

pu
ll

u
to

v
pu

sh
u

aw
ay

frep(u, v) =
`2

||pv − pu||
· −−→pv pu

fattr(u, v) =
||pv − pu||2

`
· −−→pu pv

Demo

fspring(u, v) = fattr(u, v) + frep(u, v)

13

Visualization of Graphs
Lecture 3:

Force-Directed Drawing Algorithms

Philipp Kindermann

Part IV:
Tutte Drawing

14 - 1

Idea

William T. Tutte
1917 – 2002

14 - 2

Idea

William T. Tutte
1917 – 2002

14 - 3

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)

a

b

c

14 - 4

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v

v
a

b

c

14 - 5

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v

v

Where would you place v?

a

b

c

14 - 6

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v

Where would you place v?

v

a

b

c

14 - 7

Idea

v

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v

Where would you place v?

a

b

c

14 - 8

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v

Where would you place v?

v

a

b

c

14 - 9

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v

Where would you place v?

v

a

b

c barycenter(a, b, c)

14 - 10

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v

Where would you place v?

v

a

b

c barycenter(a, b, c)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k?

14 - 11

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v

Where would you place v?

v

a

b

c barycenter(a, b, c)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

14 - 12

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v

Where would you place v?

v

a

b

c barycenter(a, b, c)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

Idea.
Repeatedly place every vertex at barycenter of neighbors.

15 - 1

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

15 - 2

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

15 - 3

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

15 - 4

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

15 - 5

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

15 - 6

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

15 - 7

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)

15 - 8

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)
= ∑uv∈E ||pu − pv||/ deg(u)

15 - 9

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)
= ∑uv∈E ||pu − pv||/ deg(u)

15 - 10

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)
= ∑uv∈E ||pu − pv||/ deg(u)

� Repulsive forces

frep(u, v) = 0

15 - 11

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)
= ∑uv∈E ||pu − pv||/ deg(u)

� Repulsive forces

frep(u, v) = 0

� Attractive forces

fattr(u, v) =
1

deg(u)
· ||pu − pv||

15 - 12

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)
= ∑uv∈E ||pu − pv||/ deg(u)

� Repulsive forces

frep(u, v) = 0

� Attractive forces

fattr(u, v) =
1

deg(u)
· ||pu − pv|| Demo

15 - 13

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)
= ∑uv∈E ||pu − pv||/ deg(u)

� Repulsive forces

frep(u, v) = 0

� Attractive forces

fattr(u, v) =
1

deg(u)
· ||pu − pv||

Solution: pu = (0, 0) ∀u ∈ V

15 - 14

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)
= ∑uv∈E ||pu − pv||/ deg(u)

� Repulsive forces

frep(u, v) = 0

� Attractive forces

fattr(u, v) =
1

deg(u)
· ||pu − pv||

Solution: pu = (0, 0) ∀u ∈ V

15 - 15

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)
= ∑uv∈E ||pu − pv||/ deg(u)

� Repulsive forces

frep(u, v) = 0

� Attractive forces

fattr(u, v) =
1

deg(u)
· ||pu − pv||

Solution: pu = (0, 0) ∀u ∈ V

Fix coordinates
of outer face!

15 - 16

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)
= ∑uv∈E ||pu − pv||/ deg(u)

� Repulsive forces

frep(u, v) = 0

� Attractive forces

fattr(u, v) =

{
0 u fixed

1
deg(u) · ||pu − pv|| else

Solution: pu = (0, 0) ∀u ∈ V

Fix coordinates
of outer face!

15 - 17

Tutte’s Forces ForceDirected(G = (V, E), p = (pv)v∈V , ε > 0, K ∈N)
t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)← ∑v∈V frep(u, v) + ∑uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t + 1
return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

= ∑uv∈E pv/ deg(u)

Fu(t) = ∑uv∈E pv/ deg(u)− pu

= ∑uv∈E(pv − pu)/ deg(u)
= ∑uv∈E ||pu − pv||/ deg(u)

� Repulsive forces

frep(u, v) = 0

Demo

� Attractive forces

fattr(u, v) =

{
0 u fixed

1
deg(u) · ||pu − pv|| else

Solution: pu = (0, 0) ∀u ∈ V

Fix coordinates
of outer face!

16 - 1

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

16 - 2

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

16 - 3

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

16 - 4

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

16 - 5

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

16 - 6

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

16 - 7

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations
Ax = b

16 - 8

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations
Ax = b Ay = b

16 - 9

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations
Ax = b Ay = b b = (0)n

16 - 10

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

u5

u6

Ay = b b = (0)n

16 - 11

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A

Ay = b b = (0)n

16 - 12

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

Ay = b b = (0)n

16 - 13

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 14

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 15

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 16

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 17

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 18

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 19

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 20

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 21

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 22

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 23

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 24

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 25

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6

Ay = b b = (0)n

16 - 26

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Ay = b b = (0)n

16 - 27

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

16 - 28

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G

16 - 29

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G

⇒ no unique solution

16 - 30

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution

16 - 31

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution

16 - 32

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution

16 - 33

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution

16 - 34

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution

16 - 35

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution

16 - 36

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution
k

k = #free vertices

16 - 37

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution
k

k = #free vertices

16 - 38

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution
k

k = #free vertices
k

16 - 39

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution
k

k = #free vertices
k >

16 - 40

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution
k

k = #free vertices
k >

⇒

16 - 41

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution
k

k = #free vertices
k >

⇒

Theorem.
Tutte’s barycentric algorithm admits a unique solution.
It can be computed in polynomial time.

16 - 42

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) = ∑uv∈E pv/ deg(u)

pu = (xu, yu)

xu = ∑uv∈E xv/ deg(u)
yu = ∑uv∈E yv/ deg(u)

⇔ deg(u) · xu = ∑uv∈E xv
⇔ deg(u) · yu = ∑uv∈E yv

⇔ deg(u) · xu −∑uv∈E xv = 0
⇔ deg(u) · yu −∑uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G
n variables, n constraints, det(A) = 0

⇒ no unique solution
k

k = #free vertices
k >

⇒

Theorem.
Tutte’s barycentric algorithm admits a unique solution.
It can be computed in polynomial time.

Tutte drawing

17

Visualization of Graphs
Lecture 3:

Force-Directed Drawing Algorithms

Philipp Kindermann

Part V:
Tutte’s Theorem

18 - 1

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

1

2

5

18 - 2

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected:

1

2

5

18 - 3

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V

1

2

5

18 - 4

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V

1

2

5

18 - 5

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V

1

2

5

18 - 6

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V

1

2

5

18 - 7

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V

1

2

5

18 - 8

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)

1

2

5

18 - 9

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

18 - 10

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

18 - 11

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

18 - 12

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

18 - 13

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

18 - 14

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

18 - 15

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

18 - 16

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

18 - 17

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

18 - 18

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

18 - 19

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.

18 - 20

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G

18 - 21

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

18 - 22

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

18 - 23

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

18 - 24

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

u inside C in Γ1

18 - 25

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

u inside C in Γ1, v outside C in Γ1

18 - 26

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

u inside C in Γ1, v outside C in Γ1

18 - 27

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

u inside C in Γ1, v outside C in Γ1

18 - 28

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

u inside C in Γ1, v outside C in Γ1

18 - 29

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u inside C in Γ1, v outside C in Γ1

18 - 30

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u inside C in Γ1, v outside C in Γ1

18 - 31

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u inside C in Γ1, v outside C in Γ1
both on same side in Γ2

18 - 32

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u inside C in Γ1, v outside C in Γ1
both on same side in Γ2

18 - 33

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u

u inside C in Γ1, v outside C in Γ1
both on same side in Γ2

18 - 34

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u

u inside C in Γ1, v outside C in Γ1
both on same side in Γ2

18 - 35

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u

u inside C in Γ1, v outside C in Γ1
both on same side in Γ2

18 - 36

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u

u inside C in Γ1, v outside C in Γ1
both on same side in Γ2

18 - 37

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u

u inside C in Γ1, v outside C in Γ1
both on same side in Γ2

18 - 38

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u

u inside C in Γ1, v outside C in Γ1
both on same side in Γ2

18 - 39

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V

k-connected: G− {v1, . . . , vk−1} is connected
for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G
C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C
u

u inside C in Γ1, v outside C in Γ1
both on same side in Γ2

19 - 1

Tutte’s Theorem

Theorem.
Let G be a 3-connected planar graph, and
let C be a face of its unique embedding.
If we fix C on a strictly convex polygon, then the Tutte
drawing of G is planar and all its faces are strictly convex.

[Tutte 1963]

19 - 2

Tutte’s Theorem

Theorem.
Let G be a 3-connected planar graph, and
let C be a face of its unique embedding.
If we fix C on a strictly convex polygon, then the Tutte
drawing of G is planar and all its faces are strictly convex.

[Tutte 1963]

19 - 3

Tutte’s Theorem

Theorem.
Let G be a 3-connected planar graph, and
let C be a face of its unique embedding.
If we fix C on a strictly convex polygon, then the Tutte
drawing of G is planar and all its faces are strictly convex.

[Tutte 1963]

19 - 4

Tutte’s Theorem

Theorem.
Let G be a 3-connected planar graph, and
let C be a face of its unique embedding.
If we fix C on a strictly convex polygon, then the Tutte
drawing of G is planar and all its faces are strictly convex.

[Tutte 1963]

19 - 5

Tutte’s Theorem

Theorem.
Let G be a 3-connected planar graph, and
let C be a face of its unique embedding.
If we fix C on a strictly convex polygon, then the Tutte
drawing of G is planar and all its faces are strictly convex.

[Tutte 1963]

20

Visualization of Graphs
Lecture 3:

Force-Directed Drawing Algorithms

Philipp Kindermann

Part VI:
Proof of Tutte’s Theorem

21 - 1

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v

21 - 2

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v

21 - 3

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

21 - 4

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

w

21 - 5

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

w

Otherwise, all forces to same side . . .

21 - 6

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

w

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 7

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

w

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 8

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

w

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 9

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

w

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 10

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

w

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 11

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

w

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 12

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

w

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 13

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v.
v∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

u

w

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 14

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 15

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 16

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 17

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 18

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

21 - 19

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `

Property 2. All free vertices lie inside C.

21 - 20

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

Property 2. All free vertices lie inside C.

21 - 21

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

Property 2. All free vertices lie inside C.

21 - 22

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′

Property 2. All free vertices lie inside C.

21 - 23

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w
Property 2. All free vertices lie inside C.

21 - 24

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Property 2. All free vertices lie inside C.

21 - 25

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Property 2. All free vertices lie inside C.

21 - 26

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Property 2. All free vertices lie inside C.

21 - 27

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Property 2. All free vertices lie inside C.

21 - 28

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Property 2. All free vertices lie inside C.

21 - 29

Properties of Tutte Drawings

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Property 2. All free vertices lie inside C.

21 - 30

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Property 2. All free vertices lie inside C.

21 - 31

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Property 2. All free vertices lie inside C.

21 - 32

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Property 2. All free vertices lie inside C.

21 - 33

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear

Property 2. All free vertices lie inside C.

21 - 34

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear

Property 2. All free vertices lie inside C.

21 - 35

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear

Property 2. All free vertices lie inside C.

21 - 36

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear

Property 2. All free vertices lie inside C.

21 - 37

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear
G 3-connected

Property 2. All free vertices lie inside C.

21 - 38

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear
G 3-connected

Property 2. All free vertices lie inside C.

21 - 39

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear
G 3-connected

Property 2. All free vertices lie inside C.

21 - 40

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear
G 3-connected
⇒ K3,3 minor

Property 2. All free vertices lie inside C.

21 - 41

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear
G 3-connected
⇒ K3,3 minor

Property 2. All free vertices lie inside C.

21 - 42

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear
G 3-connected
⇒ K3,3 minor

Property 2. All free vertices lie inside C.

21 - 43

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear
G 3-connected
⇒ K3,3 minor

A

Property 2. All free vertices lie inside C.

21 - 44

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear
G 3-connected
⇒ K3,3 minor

A

B

Property 2. All free vertices lie inside C.

22 - 1

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

22 - 2

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

22 - 3

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

22 - 4

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

22 - 5

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

22 - 6

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

22 - 7

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

22 - 8

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

22 - 9

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

22 - 10

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

22 - 11

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

22 - 12

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

22 - 13

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

22 - 14

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

22 - 15

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

22 - 16

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex.

22 - 17

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex.

22 - 18

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex.

22 - 19

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex.

22 - 20

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex.

22 - 21

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex.

22 - 22

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex.

22 - 23

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex.

22 - 24

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex.

22 - 25

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex.

22 - 26

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

22 - 27

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

22 - 28

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p

22 - 29

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

22 - 30

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

22 - 31

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

22 - 32

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.

22 - 33

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face

22 - 34

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face

22 - 35

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face

22 - 36

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face

22 - 37

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face
jumping over edge
→ #faces the same

22 - 38

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face
jumping over edge
→ #faces the same

22 - 39

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face
jumping over edge
→ #faces the same

22 - 40

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face
jumping over edge
→ #faces the same

22 - 41

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face
jumping over edge
→ #faces the same
⇒ p inside one face

22 - 42

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line
through uv. Then the two faces f1, f2 incident to
uv lie completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p
p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face
jumping over edge
→ #faces the same
⇒ p inside one face

23

Literature
Main sources:
� [GD Ch. 10] Force-Directed Methods

� [DG Ch. 4] Drawing on Physical Analogies

Referenced papers:
� [Johnson 1982] The NP-completeness column: An ongoing guide

� [Eades, Wormald 1990] Fixed edge-length graph drawing is NP-hard

� [Saxe 1980] Two papers on graph embedding problems

� [Eades 1984] A heuristic for graph drawing

� [Fruchterman, Reingold 1991] Graph drawing by force-directed placement

� [Frick, Ludwig, Mehldau 1994] A fast adaptive layout algorithm for undirected
graphs

� [Tutte 1963] How to draw a graph

	Algorithm Framework
	General Layout Problem

	Fixed Edge Lengths?
	Physical Analogy
	Force-Directed Algorithms

	Spring Embedders by Eades
	Model
	Force diagram
	Discussion

	Variant by Fruchterman & Reingold
	Model
	Force diagram

	Tutte Drawing
	Idea
	Tutte's Forces
	Linear System of Equations

	Tutte's Theorem
	3-Connected Planar Graphs
	The Theorem

	Proof of Tutte's Theorem
	Properties of Tutte Drawings
	Proof of Tutte's Theorem

	Literature

