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Visualization of Graphs
Lecture 3:

Force-Directed Drawing Algorithms

Philipp Kindermann

Part I:
Algorithm Framework
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General Layout Problem
Input: Graph G = (V, E)
Output: Clear and readable straight-line drawing of G
Drawing aesthetics:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

Optimization criteria partially contradict each other
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Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system . . . The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state.”

adjacent vertices u and v:

u v
fattr

Repulsive forces.

all vertices x and y:
x

yfrep

So-called spring embedders or
force-directed algorithms that work
according to this or similar principles are
among the most frequently used
graph-drawing methods in practice.

Attractive forces.
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Repeatedly place every vertex at barycenter of neighbors.
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