
1

Visualization of Graphs
Lecture 4:

Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Philipp Kindermann

Part I:
Planar Straight-Line Drawings

+2+1



2 - 1

Motivation
Why planar and straight-line?



2 - 2

Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

Why planar and straight-line?



2 - 3

Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

Why planar and straight-line?



2 - 4

Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

Why planar and straight-line?



2 - 5

Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

Why planar and straight-line?

Drawing conventions
� No crossings⇒ planar
� No bends⇒ straight-line



2 - 6

Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

Why planar and straight-line?

Drawing conventions
� No crossings⇒ planar
� No bends⇒ straight-line

Drawing aestethics
� Area



3 - 1

Planar Graphs



3 - 2

Planar Graphs

Characterization



3 - 3

Planar Graphs

Characterization

Recognition



3 - 4

Planar Graphs

Characterization

Recognition

Drawing



3 - 5

Planar Graphs
K5 K3,3

Theorem. [Kuratowski 1930]
G planar⇔
neither K5 nor K3,3 minor of G

Characterization

Recognition

Drawing



3 - 6

Planar Graphs
K5 K3,3

Theorem. [Kuratowski 1930]
G planar⇔
neither K5 nor K3,3 minor of G

For a graph G with n vertices, there is an O(n) time algorithm
to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]

Characterization

Recognition

Drawing



3 - 7

Planar Graphs
K5 K3,3

Also computes an embedding in O(n).

Theorem. [Kuratowski 1930]
G planar⇔
neither K5 nor K3,3 minor of G

For a graph G with n vertices, there is an O(n) time algorithm
to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]

Characterization

Recognition

Drawing



3 - 8

Planar Graphs
K5 K3,3

Also computes an embedding in O(n).

Theorem. [Kuratowski 1930]
G planar⇔
neither K5 nor K3,3 minor of G

For a graph G with n vertices, there is an O(n) time algorithm
to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]

Every planar graph has a planar drawing where the edges are
straight-line segments.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]

Characterization

Recognition

Drawing



3 - 9

Planar Graphs
K5 K3,3

Also computes an embedding in O(n).

Theorem. [Kuratowski 1930]
G planar⇔
neither K5 nor K3,3 minor of G

For a graph G with n vertices, there is an O(n) time algorithm
to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]

Every planar graph has a planar drawing where the edges are
straight-line segments.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]

The algorithms implied by this theory produce drawings with
area not bounded by any polynomial on n.

Characterization

Recognition

Drawing



4 - 1

Triangulations

1

2

3

4
5



4 - 2

Triangulations

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 3

Triangulations with planar embedding

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 4

Triangulations with planar embedding

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 5

Triangulations with planar embedding

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 6

Triangulations with planar embedding

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 7

Triangulations with planar embedding

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 8

Triangulations with planar embedding

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 9

Triangulations with planar embedding

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 10

Triangulations with planar embedding

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 11

Triangulations with planar embedding

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 12

Triangulations with planar embedding

1

2

3

4
5

A plane triangulation is a plane graph
where every face is a triangle.



4 - 13

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.



4 - 14

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.



4 - 15

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.



4 - 16

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.



4 - 17

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.



4 - 18

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.



4 - 19

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.



4 - 20

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:



4 - 21

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:
Lemma.
Every plane graph is subgraph of a
plane triangulation.



4 - 22

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:
Lemma.
Every plane graph is subgraph of a
plane triangulation.



4 - 23

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:
Lemma.
Every plane graph is subgraph of a
plane triangulation.



4 - 24

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:
Lemma.
Every plane graph is subgraph of a
plane triangulation.



4 - 25

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:
Lemma.
Every plane graph is subgraph of a
plane triangulation.



4 - 26

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:
Lemma.
Every plane graph is subgraph of a
plane triangulation.



4 - 27

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:
Lemma.
Every plane graph is subgraph of a
plane triangulation.



4 - 28

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:
Lemma.
Every plane graph is subgraph of a
plane triangulation.



4 - 29

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:
Lemma.
Every plane graph is subgraph of a
plane triangulation.

Corollary.
Tutte’s algorithm creates a planar
straight-line drawing for every planar
graph.



4 - 30

Triangulations with planar embedding

1

2

3

4
5

A plane (inner) triangulation is a plane
graph where every (inner) face is a
triangle.
A maximal planar graph is a planar
graph where adding any edge would
destroy planarity.

Observation.
A maximal plane graph is a plane
triangulation.

Lemma.
A plane triangulation is at least
3-connected and thus has a unique
planar embedding.

We focus on plane triangulations:
Lemma.
Every plane graph is subgraph of a
plane triangulation.

Corollary.
Tutte’s algorithm creates a planar
straight-line drawing for every planar
graph. (but with exponential area)



5 - 1

Planar Straight-Line Drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).



5 - 2

Planar Straight-Line Drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).



5 - 3

Planar Straight-Line Drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).



5 - 4

Planar Straight-Line Drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).



5 - 5

Planar Straight-Line Drawings

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

Hubert de Fraysseix
*Paris, France

János Pach
*1954, Budapest, Hungary

Richard Pollack
*1935, New York, USA
†2018, Montclair, USA



5 - 6

Planar Straight-Line Drawings

Idea.
� Start with single edge (v1, v2). Let this be G2.
� To obtain Gi+1, add vi+1 to Gi so that neighbours

of vi+1 are on the outer face of Gi.
� Neighbours of vi+1 in Gi have to form path of

length at least two.

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

Hubert de Fraysseix
*Paris, France

János Pach
*1954, Budapest, Hungary

Richard Pollack
*1935, New York, USA
†2018, Montclair, USA



5 - 7

Planar Straight-Line Drawings

Idea.
� Start with single edge (v1, v2). Let this be G2.
� To obtain Gi+1, add vi+1 to Gi so that neighbours

of vi+1 are on the outer face of Gi.
� Neighbours of vi+1 in Gi have to form path of

length at least two.
v2

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

Hubert de Fraysseix
*Paris, France

János Pach
*1954, Budapest, Hungary

Richard Pollack
*1935, New York, USA
†2018, Montclair, USA

v1



5 - 8

Planar Straight-Line Drawings

Idea.
� Start with single edge (v1, v2). Let this be G2.
� To obtain Gi+1, add vi+1 to Gi so that neighbours

of vi+1 are on the outer face of Gi.
� Neighbours of vi+1 in Gi have to form path of

length at least two.
v2

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

Hubert de Fraysseix
*Paris, France

János Pach
*1954, Budapest, Hungary

Richard Pollack
*1935, New York, USA
†2018, Montclair, USA

v1



5 - 9

Planar Straight-Line Drawings

Idea.
� Start with single edge (v1, v2). Let this be G2.
� To obtain Gi+1, add vi+1 to Gi so that neighbours

of vi+1 are on the outer face of Gi.
� Neighbours of vi+1 in Gi have to form path of

length at least two.
v2

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

Hubert de Fraysseix
*Paris, France

János Pach
*1954, Budapest, Hungary

Richard Pollack
*1935, New York, USA
†2018, Montclair, USA

Gi

v1



5 - 10

Planar Straight-Line Drawings

Idea.
� Start with single edge (v1, v2). Let this be G2.
� To obtain Gi+1, add vi+1 to Gi so that neighbours

of vi+1 are on the outer face of Gi.
� Neighbours of vi+1 in Gi have to form path of

length at least two.

vi+1

v2

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

Hubert de Fraysseix
*Paris, France

János Pach
*1954, Budapest, Hungary

Richard Pollack
*1935, New York, USA
†2018, Montclair, USA

Gi

v1



5 - 11

Planar Straight-Line Drawings

Idea.
� Start with single edge (v1, v2). Let this be G2.
� To obtain Gi+1, add vi+1 to Gi so that neighbours

of vi+1 are on the outer face of Gi.
� Neighbours of vi+1 in Gi have to form path of

length at least two.

vi+1

v2

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

Hubert de Fraysseix
*Paris, France

János Pach
*1954, Budapest, Hungary

Richard Pollack
*1935, New York, USA
†2018, Montclair, USA

Gi

v1



5 - 12

Planar Straight-Line Drawings

Idea.
� Start with single edge (v1, v2). Let this be G2.
� To obtain Gi+1, add vi+1 to Gi so that neighbours

of vi+1 are on the outer face of Gi.
� Neighbours of vi+1 in Gi have to form path of

length at least two.

vi+1

v2

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

Hubert de Fraysseix
*Paris, France

János Pach
*1954, Budapest, Hungary

Richard Pollack
*1935, New York, USA
†2018, Montclair, USA

Gi

v1



6

Visualization of Graphs
Lecture 4:

Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Philipp Kindermann

Part II:
Canonical Order

+2+1



7 - 1

Canonical Order – Definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.



7 - 2

Canonical Order – Definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.



7 - 3

Canonical Order – Definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

v2

Gk

v1



7 - 4

Canonical Order – Definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

v2

Gk

v1



7 - 5

Canonical Order – Definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

vk+1

v2

Gk

v1



8 - 1

Canonical Order – Example

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 2

Canonical Order – Example

G16

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 3

Canonical Order – Example

G16

v1 v2

v16

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 4

Canonical Order – Example

G15

v1 v2

v16

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 5

Canonical Order – Example

v15

G15

v1 v2

v16

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 6

Canonical Order – Example

G14

v1 v2

v16

v15

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 7

Canonical Order – Example

v14

G14

v1 v2

v16

v15

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 8

Canonical Order – Example

G13

v1 v2

v16

v15

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 9

Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 10

Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 11

Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 12

Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 13

Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 14

Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 15

Canonical Order – Example

chord

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 16

Canonical Order – Example

chord

G13

v1 v2

v16

v15

v13

v14

edge joining two
nonadjacent
vertices in a cycle

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 17

Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 18

Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



8 - 19

Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

v12



8 - 20

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G11

v16

v15

v13

v14

v12



8 - 21

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G11

v16

v15

v13

v14

v11

v12



8 - 22

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G10

v16

v15

v13

v14

v11

v12



8 - 23

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G9

v16

v15

v13

v14

v11

v12

v10



8 - 24

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G8

v16

v15

v13

v14

v11

v12

v10

v9



8 - 25

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G7

v16

v15

v13

v14

v11

v12

v10

v9

v8



8 - 26

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G6

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7



8 - 27

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G5

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6



8 - 28

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G4

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
v5



8 - 29

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G3

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
v5

v4



8 - 30

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
v5

v4
v3



8 - 31

Canonical Order – Example

v3
v7

v8

v9

v12

v13

v10

v11

v5
v4

v6

v1 v2

v16

v15

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



9

Visualization of Graphs
Lecture 4:

Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Philipp Kindermann

Part III:
Canonical Order – Existence

+2+1



10 - 1

Canonical Order – Existence

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary



10 - 2

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary



10 - 3

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary



10 - 4

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

3



10 - 5

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

3

3



10 - 6

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

3

3

3



10 - 7

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

3

3

3



10 - 8

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary



10 - 9

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1



10 - 10

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1



10 - 11

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk



10 - 12

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk



10 - 13

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1



10 - 14

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1



10 - 15

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1



10 - 16

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertex



10 - 17

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
adjacent to a

chord



10 - 18

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.

Have to show:
1. vk not adjacent to

chord is sufficient
2. Such vk exists

Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
adjacent to a

chord



10 - 19

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.

Have to show:
1. vk not adjacent to

chord is sufficient
2. Such vk exists

Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
adjacent to a

chord



10 - 20

Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.

Have to show:
1. vk not adjacent to

chord is sufficient
2. Such vk exists

Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
adjacent to a

chord



11 - 1

Canonical Order – Existence

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.



11 - 2

Canonical Order – Existence

vkGk

v1 v2

Gk−1

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.



11 - 3

Canonical Order – Existence

v1 v2

Gk−1

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.



11 - 4

Canonical Order – Existence

v1 v2

Gk−1

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.



11 - 5

Canonical Order – Existence

v1 v2

Gk−1

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.



11 - 6

Canonical Order – Existence

vkGk

v1 v2

Gk−1

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.



11 - 7

Canonical Order – Existence

vkGk

v1 v2

contradiction to edges
being consecutive

Gk−1

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.



11 - 8

Canonical Order – Existence

vkGk

v1 v2

contradiction to edges
being consecutive

Gk−1

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.



11 - 9

Canonical Order – Existence

vkGk

v1 v2

contradiction to edges
being consecutive

Gk−1

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.



11 - 10

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.



11 - 11

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Gk not biconnected



11 - 12

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 13

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 14

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 15

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 16

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 17

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 18

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 19

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 20

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 21

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 22

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

vk
Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



11 - 23

Canonical Order – Existence

vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

vk

This completes proof of Lemma. �

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected



12 - 1

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours



12 - 2

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

outer face



12 - 3

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

outer face



12 - 4

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

outer face



12 - 5

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face



12 - 6

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face



12 - 7

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face



12 - 8

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face



12 - 9

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face



12 - 10

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face



12 - 11

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face



12 - 12

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face



12 - 13

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face



12 - 14

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

v



12 - 15

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk



12 - 16

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk



12 - 17

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk



12 - 18

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk



12 - 19

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk



12 - 20

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk



12 - 21

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk



12 - 22

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

outer face

vk



12 - 23

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

outer face

vk

// keep list with candidates



12 - 24

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

outer face

vk

// keep list with candidates

// O(n) in total



12 - 25

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

outer face

vk

// keep list with candidates

// O(n) in total

// O(m) = O(n) in total



13

Visualization of Graphs
Lecture 4:

Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Philipp Kindermann

Part IV:
Shift Method

+2+1



14 - 1

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

Gk−1



14 - 2

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k− 6, 0)

Gk−1



14 - 3

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k− 6, 0)

Gk−1



14 - 4

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k− 6, 0)

Gk−1



14 - 5

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

vk

(0, 0) (2k− 6, 0)

wp wqGk−1



14 - 6

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

vk

(0, 0) (2k− 6, 0)

wp wqGk−1



14 - 7

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!

vk

(0, 0) (2k− 6, 0)

wp wqGk−1



14 - 8

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!
What could be the solution?

vk

(0, 0) (2k− 6, 0)

wp wqGk−1



14 - 9

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What could be the solution?

vk

(0, 0) (2k− 6, 0)

wp wqGk−1



14 - 10

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What could be the solution?

vk

(0, 0) (2k− 6, 0)

wp wqGk−1



14 - 11

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.
vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1



14 - 12

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1



14 - 13

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?



14 - 14

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?



14 - 15

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

x

y

Gk−1

Does vk land on grid?



14 - 16

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

x

y

Gk−1

Does vk land on grid?



14 - 17

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?

x

y



14 - 18

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?

x

y



14 - 19

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

yes, beause wp and wq
have even Manhattan
distance

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?

x

y



14 - 20

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

L(vk)

vk

yes, beause wp and wq
have even Manhattan
distance

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?

x

y



15 - 1

Shift Method – Example



15 - 2

Shift Method – Example



15 - 3

Shift Method – Example

+1 +2



15 - 4

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 5

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 6

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 7

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 8

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 9

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 10

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 11

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 12

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 13

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 14

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 15

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 16

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 17

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 18

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 19

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 20

Shift Method – Example

L(10)

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 21

Shift Method – Example

L(11)

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 22

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 23

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



15 - 24

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(13)



15 - 25

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(14)



15 - 26

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(15)



15 - 27

Shift Method – Example

12
13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(16)



15 - 28

Shift Method – Example

(0, 0) (2n− 4, 0)

(n− 2, n− 2)
12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6



16 - 1

Shift Method – Planarity

Gk−1



16 - 2

Shift Method – Planarity

Gk−1

vk



16 - 3

Shift Method – Planarity

w1 wt

Gk−1

w2

wp wq

wt−1

vk



16 - 4

Shift Method – Planarity

w1 wt

Gk−1

covered vertices
w2

wp wq

wt−1

vk



16 - 5

Shift Method – Planarity

w1 wt

Gk−1

covered vertices

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

vk



16 - 6

Shift Method – Planarity

w1 wt

Gk−1

covered vertices

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

vk



16 - 7

Shift Method – Planarity

w1 wt

Gk−1

covered vertices

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

vk



16 - 8

Shift Method – Planarity

w1 wt

Gk−1

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

vk



16 - 9

Shift Method – Planarity

w1 wt

Gk−1

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

vk



16 - 10

Shift Method – Planarity

w1 wt

Gk−1

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

vk



16 - 11

Shift Method – Planarity

w1 wt

Gk−1

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

vk

Lemma.
Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N,
such that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the
right, then we get a planar
straight-line drawing.



16 - 12

Shift Method – Planarity

w1 wt

Gk−1

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

vk

Lemma.
Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N,
such that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the
right, then we get a planar
straight-line drawing.



16 - 13

Shift Method – Planarity

w1 wt

Gk−1

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

Proof by induction:
If Gk−1 is drawn planar and straight-line,
then so is Gk.

vk

Lemma.
Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N,
such that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the
right, then we get a planar
straight-line drawing.



17

Visualization of Graphs
Lecture 4:

Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Philipp Kindermann

Part V:
Linear Time

+2+1



18 - 1

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}



18 - 2

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}



18 - 3

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}



18 - 4

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}

w1 wt

Gk−1

w2

wp wq

wt−1

vk



18 - 5

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}

w1 wt

Gk−1

w2

wp wq

wt−1

vk



18 - 6

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}

w1 wt

Gk−1

w2

wp wq

wt−1

vk



18 - 7

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}

+1

w1 wt

Gk−1

w2

wp wq

wt−1

vk



18 - 8

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}

+1

w1 wt

Gk−1

w2

wp wq

wt−1

vk



18 - 9

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}

+1 +2

w1 wt

Gk−1

w2

wp wq

wt−1

vk



18 - 10

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}

+1 +2

w1 wt

Gk−1

w2

wp wq

wt−1

vk



18 - 11

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}

+1 +2

w1 wt

Gk−1

w2

wp wq

wt−1

vk



18 - 12

Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}

+1 +2

w1 wt

Gk−1

w2

wp wq

wt−1

vk

Running Time?



18 - 13

Shift Method – Pseudocode

// O(n2) in total

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}

+1 +2
// O(n2) in total

w1 wt

Gk−1

w2

wp wq

wt−1

vk

Running Time?



19 - 1

Shift Method – Linear Time Implementation
vk

Gk−1

w2

wp wq

wt−1

w1 wt



19 - 2

Shift Method – Linear Time Implementation
Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

vk

Gk−1

w2

wp wq

wt−1

w1 wt



19 - 3

Shift Method – Linear Time Implementation
Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

w1 wt



19 - 4

Shift Method – Linear Time Implementation
Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

w1 wt



19 - 5

Shift Method – Linear Time Implementation
Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

w1 wt



19 - 6

Shift Method – Linear Time Implementation
Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

Idea 2.
Instead of storing explicit x-coordinates,
we store x-distances.

vk

Gk−1

w2

wp wq

wt−1

w1 wt



19 - 7

Shift Method – Linear Time Implementation
Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

Idea 2.
Instead of storing explicit x-coordinates,
we store x-distances.

vk

Gk−1

w2

wp wq

wt−1

w1 wt



19 - 8

Shift Method – Linear Time Implementation
Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

Idea 2.
Instead of storing explicit x-coordinates,
we store x-distances.

vk

Gk−1

w2

wp wq

wt−1

w1 wt



19 - 9

Shift Method – Linear Time Implementation
Idea 1.
To compute x(vk) & y(vk),
we only need y(wp) and y(wq) and x(wq)− x(wp)

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

Idea 2.
Instead of storing explicit x-coordinates,
we store x-distances.

vk

Gk−1

w2

wp wq

wt−1

w1 wtAfter x distance for vn computed, use
preorder traversal to compute all
x-coordinates.



19 - 10

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

w1 wt

� y-coordinate y(v)



19 - 11

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root
w1 wt

� y-coordinate y(v)



19 - 12

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root
w1 wt

� y-coordinate y(v)



19 - 13

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root
w1 wt

� y-coordinate y(v)



19 - 14

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root
w1 wt

� y-coordinate y(v)



19 - 15

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root
w1 wt

� y-coordinate y(v) wp+1



19 - 16

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root

Calculations.
� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . . + ∆x(wq)

� ∆x(vk) by (3)
� ∆x(wq) = ∆x(wp, wq)− ∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1



19 - 17

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root

Calculations.
� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . . + ∆x(wq)

� ∆x(vk) by (3)
� ∆x(wq) = ∆x(wp, wq)− ∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1



19 - 18

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root

Calculations.
� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . . + ∆x(wq)

� ∆x(vk) by (3)
� ∆x(wq) = ∆x(wp, wq)− ∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1



19 - 19

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root

Calculations.
� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . . + ∆x(wq)

� ∆x(vk) by (3)
� ∆x(wq) = ∆x(wp, wq)− ∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1



19 - 20

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root

Calculations.
� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . . + ∆x(wq)

� ∆x(vk) by (3)
� ∆x(wq) = ∆x(wp, wq)− ∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1



19 - 21

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root

Calculations.
� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . . + ∆x(wq)

� ∆x(vk) by (3)
� ∆x(wq) = ∆x(wp, wq)− ∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1



19 - 22

Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root

Calculations.
� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . . + ∆x(wq)

� ∆x(vk) by (3)
� ∆x(wq) = ∆x(wp, wq)− ∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1

O(n) in total



20 - 1

Result & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.



20 - 2

Result & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Kant ’96]
Every n-vertex 3-connected planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.



20 - 3

Result & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Chrobak & Kant ’97]
Every n-vertex 3-connected planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.



20 - 4

Result & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Chrobak & Kant ’97]
Every n-vertex 3-connected planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.

Theorem. [Brandenburg ’08]
Every n-vertex planar graph has a planar straight-line drawing of size
4
3 n× 2

3 n. Such a drawing can be computed in O(n) time.


	Planar Straight-Line Drawings
	Motivation
	Planar Graphs
	Triangulations
	Planar Straight-Line Drawings

	Canonical Order
	Definition
	Example
	Existence
	Implementation

	Shift Method
	Idea
	Example
	Planarity
	Pseudocode
	Linear Time Implementation
	Result \& Variations


