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Visualization of Graphs
Lecture 4:

Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Philipp Kindermann

Part I:
Planar Straight-Line Drawings
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Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

Why planar and straight-line?

Drawing conventions
� No crossings⇒ planar
� No bends⇒ straight-line

Drawing aestethics
� Area
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Planar Graphs
K5 K3,3

Also computes an embedding in O(n).

Theorem. [Kuratowski 1930]
G planar⇔
neither K5 nor K3,3 minor of G

For a graph G with n vertices, there is an O(n) time algorithm
to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]

Every planar graph has a planar drawing where the edges are
straight-line segments.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]

The algorithms implied by this theory produce drawings with
area not bounded by any polynomial on n.
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Canonical Order – Definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.
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Canonical Order – Example

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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G13

v1 v2

v16

v15

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .
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and all neighbors of vk+1 in Gk appear on the boundary
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(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
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edge joining two
nonadjacent
vertices in a cycle

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G6

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7



8 - 27

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.

G5

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6



8 - 28

Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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v1 v2

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.
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v3
v7

v8
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v12

v13

v10

v11

v5
v4

v6

v1 v2

v16

v15

v14

(C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk .

(C2) Edge (v1, v2) belongs to the outer face of Gk .

(C3) If k < n then vertex vk+1 lies in the outer face of Gk ,
and all neighbors of vk+1 in Gk appear on the boundary
of Gk consecutively.



9

Visualization of Graphs
Lecture 4:

Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Philipp Kindermann

Part III:
Canonical Order – Existence

+2+1



10 - 1

Canonical Order – Existence

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk
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consecutive on boundary
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Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
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Base Case:
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of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertex
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.
Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
adjacent to a

chord
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.

Have to show:
1. vk not adjacent to

chord is sufficient
2. Such vk exists

Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2
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v1

vk
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Gk−1

v1

cut vertexbecause vk
adjacent to a

chord
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Canonical Order – Existence

Base Case:
Let Gn = G, and let v1, v2, vn be the vertices of the outer face
of Gn. Conditions (C1) – (C3) hold.

Induction hypothesis:
Vertices vn−1, . . . , vk+1 have been chosen such that conditions
(C1) – (C3) hold for k + 1 ≤ i ≤ n.

Have to show:
1. vk not adjacent to
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2. Such vk exists

Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk ,
neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
adjacent to a

chord
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Induction step: Consider Gk. We search for vk.
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(C1) Gk biconnected and internally
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neighbors of vk+1 in Gk
consecutive on boundary

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
adjacent to a

chord
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Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.
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not triangulated

v1 v2

contradiction to edges
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Gk−1
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then Gk−1 is biconnected.
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Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.
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vkGk

not triangulated

v1 v2

contradiction to edges
being consecutive

Gk−1

vk

This completes proof of Lemma. �

Gk

v1 v2

Claim 1.
If vk is not adjacent to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

Gk not biconnected
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Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

outer face
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mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

outer face
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

outer face
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
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neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face
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forall v ∈ V do
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for k = n to 3 do
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� out(v) = true iff v is
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� mark(v) = true iff v has
received its number
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forall v ∈ V do
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
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out(wi)← true for all p < i < q
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

v
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk



12 - 18

Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

outer face

vk
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk
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CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk
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Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

outer face

vk
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Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

outer face

vk
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Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

outer face

vk

// keep list with candidates
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Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

outer face

vk

// keep list with candidates

// O(n) in total
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Canonical Order – Implementation

CanonicalOrder(G = (V, E), (v1, v2, vn))

forall v ∈ V do
chords(v)← 0; out(v)← false; mark(v)← false

mark(v1), mark(v2), out(v1), out(v2), out(vn)← true
for k = n to 3 do

choose v such that mark(v) = false, out(v) = true,
and chords(v) = 0

vk ← v; mark(v)← true
// Let w1 = v1, w2, . . . , wt−1, wt = v2 denote the

boundary of Gk−1 in Gk−1 and let wp, . . . , wq be the
neighbors of vk

out(wi)← true for all p < i < q
update number of chords for wi
and its neighbours

� chord(v): # chords
adjacent to v

� out(v) = true iff v is
currently outer vertex

� mark(v) = true iff v has
received its number

wp wq

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

outer face

vk

// keep list with candidates

// O(n) in total

// O(m) = O(n) in total
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Visualization of Graphs
Lecture 4:

Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Philipp Kindermann

Part IV:
Shift Method

+2+1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

Gk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k− 6, 0)

Gk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k− 6, 0)

Gk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2
(0, 0) (2k− 6, 0)

Gk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

vk

(0, 0) (2k− 6, 0)

wp wqGk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

vk

(0, 0) (2k− 6, 0)

wp wqGk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!

vk

(0, 0) (2k− 6, 0)

wp wqGk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

Overlaps!
What could be the solution?

vk

(0, 0) (2k− 6, 0)

wp wqGk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What could be the solution?

vk

(0, 0) (2k− 6, 0)

wp wqGk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

v1 v2

What could be the solution?

vk

(0, 0) (2k− 6, 0)

wp wqGk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.
vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?



14 - 14

Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

x

y

Gk−1

Does vk land on grid?
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

x

y

Gk−1

Does vk land on grid?
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?

x

y
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?

x

y
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

vk

yes, beause wp and wq
have even Manhattan
distance

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?

x

y
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Shift Method – Idea
Drawing invariants:
Gk−1 is drawn such that
� v1 is on (0, 0), v2 is on (2k− 6, 0),
� boundary of Gk−1 (minus edge (v1, v2)) is

drawn x-monotone,
� each edge of the boundary of Gk−1

(minus edge (v1, v2)) is drawn with slopes ±1.

L(vk)

vk

yes, beause wp and wq
have even Manhattan
distance

wp wq

v1
(0, 0)

v2
(2k− 4, 0)

Gk−1

Does vk land on grid?

x

y
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Shift Method – Example
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Shift Method – Example
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Shift Method – Example
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Shift Method – Example
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Shift Method – Planarity

Gk−1
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Shift Method – Planarity

Gk−1
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Shift Method – Planarity
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Shift Method – Planarity
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Shift Method – Planarity

w1 wt

Gk−1

covered vertices

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2
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wt−1

vk



16 - 6

Shift Method – Planarity
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Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.
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Shift Method – Planarity
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covered vertices

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.
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Shift Method – Planarity
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Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.
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Shift Method – Planarity
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Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.
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Shift Method – Planarity
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Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.
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Shift Method – Planarity

w1 wt

Gk−1

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

vk

Lemma.
Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N,
such that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the
right, then we get a planar
straight-line drawing.
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Shift Method – Planarity
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Gk−1

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.
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wp wq

wt−1

L(wi)

vk

Lemma.
Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N,
such that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the
right, then we get a planar
straight-line drawing.
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Shift Method – Planarity

w1 wt

Gk−1

Observations.
� Each internal vertex is covered exactly once.
� Covering relation defines a tree in G
� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

Proof by induction:
If Gk−1 is drawn planar and straight-line,
then so is Gk.

vk

Lemma.
Let 0 < δ1 ≤ δ2 ≤ · · · ≤ δt ∈N,
such that δq − δp ≥ 2 and even.
If we shift L(wi) by δi to the
right, then we get a planar
straight-line drawing.
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Visualization of Graphs
Lecture 4:

Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Philipp Kindermann

Part V:
Linear Time

+2+1
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Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
P(v1)← (0, 0); P(v2)← (2, 0), P(v3)← (1, 1)
for i = 4 to n do

Let w1 = v1, w2, . . . , wt−1, wt = v2
denote the boundary of Gi−1
and let wp, . . . , wq be the neighbours of vi

for ∀v ∈ ∪q−1
j=p+1L(wj) do

x(v)← x(v) + 1

for ∀v ∈ ∪t
j=qL(wj) do

x(v)← x(v) + 2

P(vi)← intersection of +1/−1 diagonals
through P(wp) and P(wq)

L(vi)← ∪
q−1
j=p+1L(wj) ∪ {vi}
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Shift Method – Pseudocode

Let v1, . . . , vn be a canonical order of G
for i = 1 to 3 do

L(vi)← {vi}
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(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root

Calculations.
� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . . + ∆x(wq)

� ∆x(vk) by (3)
� ∆x(wq) = ∆x(wp, wq)− ∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1
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Shift Method – Linear Time Implementation

(1) x(vk) =
1
2 (x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2 (x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2 (x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1

w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store
� x-offset ∆x(v) from parent

root

Calculations.
� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . . + ∆x(wq)

� ∆x(vk) by (3)
� ∆x(wq) = ∆x(wp, wq)− ∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)− ∆x(vk)

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1

O(n) in total
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Result & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.



20 - 2

Result & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Kant ’96]
Every n-vertex 3-connected planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.
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Result & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Chrobak & Kant ’97]
Every n-vertex 3-connected planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.
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Result & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Chrobak & Kant ’97]
Every n-vertex 3-connected planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.

Theorem. [Brandenburg ’08]
Every n-vertex planar graph has a planar straight-line drawing of size
4
3 n× 2

3 n. Such a drawing can be computed in O(n) time.
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