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Planar Straight-Line Drawings

Every n-vertex planar graph has a planar straight-line
drawing of size (2n —4) x (n — 2).

(Theorem. [Schnyder ’89]j

Every n-vertex planar graph has a planar straight-line
drawing of size (2n —5) x (2n —5).

Idea.
B Fix outer triangle.

B Compute coordinates of inner vertices
B based on outer triangle and

® how much space there should be for other vertices

m using weighted barycentric coordinates.
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assignment of barycentric coordinates to the vertices of G:
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A barycentric representation of a graph G = (V,E) is an
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Barycentric Representation

A barycentric representation of a graph G = (V,E) is an

assignment of barycentric coordinates to the vertices of G: f (t)d) iddf” max{xz, Y}
riangle

f:V— 1R3>O,v — (01,07, 03)

S max{ X3, Y3 } ¥+ 7
with the following properties: /x\/ z \

(Bl) v1 + vp+0v3 =1forallv eV, max{xq,y1 }

(B2) for each xy € E and each z € V' \ {x,y}
there exists k € {1,2,3} with x; < z; and y; < z.
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Let f : v+ (v1,vp,03) be a barycentric representation of
a planar graph G and let A, B, C € R? be in general
position. Then the mapping

$p:veVi—0vA+ 0B+ 03C

gives a planar drawing of G inside AABC.
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p
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p
Lemma.

Let f : v+ (v1,vp,03) be a barycentric representation of
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p
Lemma.

Let f : v+ (v1,vp,03) be a barycentric representation of
a planar graph G and let A, B, C € R? be in general
position. Then the mapping
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Barycentric Representations of Planar Graphs

( )
Lemma.

Let f : v+ (v1,vp,03) be a barycentric representation of
a planar graph G and let A, B, C € R? be in general
position. Then the mapping

$p:veVi—0vA+ 0B+ 03C

gives a planar drawing of G inside AABC.

B No vertex x can lie on an edge {u,v}.
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\
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B No pair of edges {u,v} and {u/,v'} cross: " ,
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Barycentric Representations of Planar Graphs| How tofind
barycentric
Lemma. D _ representation? |

Let f : v+ (v1,vp,03) be a barycentric representation of
a planar graph G and let A, B, C € R? be in general
position. Then the mapping

¢IUEVI—>01A+UzB+03C 7 0

/ ,"Z)/
gives a planar drawing of G inside AABC. \ X
. ) 1 ,,'
/ \
B

B No vertex x can lie on an edge {u,v}. 3

B No pair of edges {u,v} and {u/,v'} cross: " ,
uh > Ui, v v;- > Ui, v; U > U, v, U > U,
= {i,j}N{ki1} =0

wlogi=j=2= u),v, > uy,v, = separated by straight line
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planar graph G and let A, B, C € IR? be in general position.

We can label each angle in Axyz uniquely with k € {1,2,3}.

A Schnyder Labeling of a plane triangulation G
is a labeling of all internal angles with labels 1, 2
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Faces: The three angles of an internal face are
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Let ¢ : v +— (v1,vp,03) be a barycentric representation of a
planar graph G and let A, B, C € IR? be in general position.

We can label each angle in Axyz uniquely with k € {1,2,3}.

A Schnyder Labeling of a plane triangulation G
is a labeling of all internal angles with labels 1, 2
and 3 such that:

Faces: The three angles of an internal face are
labeled 1, 2 and 3 in counterclockwise order. N1
Vertices: The ccw order of labels around each 5
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Schnyder Labeling

Let ¢ : v +— (v1,vp,03) be a barycentric representation of a
planar graph G and let A, B, C € IR? be in general position.

We can label each angle in Axyz uniquely with k € {1,2,3}.

A Schnyder Labeling of a plane triangulation G
is a labeling of all internal angles with labels 1, 2
and 3 such that:

Faces: The three angles of an internal face are
labeled 1, 2 and 3 in counterclockwise order. N1

Vertices: The ccw order of labels around each
vertex consists of

B a nonempty interval of 1’s
B followed by a nonempty interval of 2’s

B followed by a nonempty interval of 3’s.

-14



Schnyder Realizer

A Schnyder labeling induces an edge labeling.




Schnyder Realizer

A Schnyder labeling induces an edge labeling.




Schnyder Realizer

A Schnyder labeling induces an edge labeling.




Schnyder Realizer

A Schnyder labeling induces an edge labeling.




Schnyder Realizer

A Schnyder labeling induces an edge labeling.




Schnyder Realizer

A Schnyder labeling induces an edge labeling.




Schnyder Realizer

A Schnyder labeling induces an edge labeling.

A Schnyder Realizer (or Wood) of a plane
triangulation G = (V, E) is a partition of the inner
edges of E into three sets of oriented edges T, T, T3




Schnyder Realizer

A Schnyder labeling induces an edge labeling.

A Schnyder Realizer (or Wood) of a plane
triangulation G = (V, E) is a partition of the inner
edges of E into three sets of oriented edges T, T, T3
such that for each inner vertex v € V holds:




Schnyder Realizer

A Schnyder labeling induces an edge labeling.

A Schnyder Realizer (or Wood) of a plane
triangulation G = (V, E) is a partition of the inner
edges of E into three sets of oriented edges T, T, T3
such that for each inner vertex v € V holds:

B v has one outgoing edge in each of 77, 15, and T5.




Schnyder Realizer

A Schnyder labeling induces an edge labeling.

A Schnyder Realizer (or Wood) of a plane
triangulation G = (V, E) is a partition of the inner
edges of E into three sets of oriented edges T, T, T3
such that for each inner vertex v € V holds:

B v has one outgoing edge in each of 77, 15, and T5.

B The ccw order of edges around v is:

- 10



Schnyder Realizer

A Schnyder labeling induces an edge labeling.

A Schnyder Realizer (or Wood) of a plane
triangulation G = (V, E) is a partition of the inner
edges of E into three sets of oriented edges T, T, T3
such that for each inner vertex v € V holds:

B v has one outgoing edge in each of 77, 15, and T5.
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Schnyder Realizer

A Schnyder labeling induces an edge labeling.

A Schnyder Realizer (or Wood) of a plane
triangulation G = (V, E) is a partition of the inner
edges of E into three sets of oriented edges T, T, T3
such that for each inner vertex v € V holds:

B v has one outgoing edge in each of 77, 15, and T5.
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A Schnyder Realizer (or Wood) of a plane
triangulation G = (V, E) is a partition of the inner
edges of E into three sets of oriented edges T, T, T3
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Schnyder Realizer

A Schnyder labeling induces an edge labeling.

A Schnyder Realizer (or Wood) of a plane
triangulation G = (V, E) is a partition of the inner
edges of E into three sets of oriented edges T, T, T3
such that for each inner vertex v € V holds:

B v has one outgoing edge in each of 77, 15, and T5.

B The ccw order of edges around v is:
leaving in T7, entering in T3, leaving in 15,
entering in T7, leaving in T3, entering in 15.
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‘Lemma. [Kampen 1976] )
Let G be a plane triangulation with vertices a, b, ¢ on the outer
kface. There exists a contractible edge {a,x} in G, x # b, c. )
" Constructive proof
can be used as

J algorithm to compute

‘Theorem.
Every plane triangulation has a Schnyder Labeling and Realizer.

Proof by induction on # vertices via edge contractions. a Schnyder labeling.
) It can be
contracting 1mplemented m.(’)(n)
— time ... as exercise.
ax
N ——
expanding
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Set A= (0,0), B=(2n—5,0), and C = (0,2n — 5).

‘Theorem. [Schnyder '89]) /
For a plane triangulation G, the mapping

froe (v1,02,03) = Fs(Ri(0)] [R2(0) ], [Rs(0)]) x
is a barycentric representation of G, which thus gives a planar
straight-line drawing of G on the (2n —5) x (2n — 5) grid.
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Every n-vertex planar graph has a planar straight-line drawing of size
(2n —4) x (n—2). Such a drawing can be computed in O(n) time.

‘Theorem. [De Fraysseix, Pach, Pollack '90] |

J

Every n-vertex planar graph has a planar straight-line drawing of size
\(n —2) X (n —2). Such a drawing can be computed in O(n) time.

‘Theorem. [Schnyder ’90]N

J

Every n-vertex 3-connected planar graph has a planar straight-line
drawing of size (n —2) x (n — 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.

‘Theorem. |Chrobak & Kant ’97]N
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‘Theorem. |De Fraysseix, Pach, Pollack ’90]N
Every n-vertex planar graph has a planar straight-line drawing of size
(2n —4) x (n—2). Such a drawing can be computed in O(n) time.

J

‘Theorem. [Schnyder ’90]N
Every n-vertex planar graph has a planar straight-line drawing of size
(n —2) x (n —2). Such a drawing can be computed in O(n) time.

\. J

‘Theorem. |Chrobak & Kant ’97]\
Every n-vertex 3-connected planar graph has a planar straight-line
drawing of size (n —2) x (n — 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.

J

‘Theorem. |Felsner ’01]\

Every 3-connected planar graph with f faces has a planar straight-line
drawing of size (f — 1) x (f — 1) where all faces are drawn convex.

Such a drawing can be computed in O(n) time.

20-4



W Universitit Trier

Visualization ot Graphs \\ [/

Lecture 5: /\

Straight-Line Drawings of Planar Graphs II:
Schnyder Woods

Part V:
From Schnyder to Canonical Order
..and back again

Philipp Kindermann




Schnyder Realizer — Canonical Order

C




Schnyder Realizer — Canonical Order

C
0




Schnyder Realizer — Canonical Order

C




Schnyder Realizer — Canonical Order

C




Schnyder Realizer — Canonical Order

C




Schnyder Realizer — Canonical Order

C




Schnyder Realizer — Canonical Order

C

a— 10

22 -



Schnyder Realizer — Canonical Order

C

a— 10

22 -



Schnyder Realizer — Canonical Order

22 -



22 -10

Schnyder Realizer — Canonical Order




22 -11

Schnyder Realizer — Canonical Order




22 -12

Schnyder Realizer — Canonical Order




22 -13

Schnyder Realizer — Canonical Order




22-14

Schnyder Realizer — Canonical Order




22 -15

Schnyder Realizer — Canonical Order




22 -16

Schnyder Realizer — Canonical Order




22 -17

Schnyder Realizer — Canonical Order




22 -18

Schnyder Realizer — Canonical Order




22 -19

Schnyder Realizer — Canonical Order

C = 01¢




Schnyder Realizer — Canonical Order

.
Theorem.

A ccw pre-order traversal on T;
induces a canonical order.

C = 01¢

\

J

22 -20



Schnyder Realizer — Canonical Order

p
Theorem.
A ccw pre-order traversal on T;

induces a canonical order.

\

J

22 -21



22 -22

Schnyder Realizer — Canonical Order

4 N
c =0, Theorem.
C A ccw pre-order traversal on T;
induces a canonical order. )
Y12
03 U5
O Ul3
0
{06 11
04 1 0 015
(Y
7 08 ¢ 014
y 910
U9
O O

a— 0y bZUl6



Schnyder Realizer — Canonical Order

QU6

a — 016

.
Theorem.

A ccw pre-order traversal on T;
induces a canonical order.

\

J

22 -23































































Canonical Order — Schnyder Realizer

‘Theorem.
A canonical order induces a
‘unique Schnyder Realizer.
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®m With traversal of each T;, compute:
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B Compute Canonical Order

B Compute Schnyder Realizer

m Goal: v; = |V(Ri(v))| = [Pi—1(9)]

]

With traversal of each T;, compute:

® The number of vertices in P;(v)

B The number of vertices in the subtree & b
T;(v) of T; rooted at v

8 ’V(Ri(v))‘ — ZuEP,-H(v) ‘Ti(u)‘ + ZuEPi_l(v) ‘Ti(u)‘ — Ti(v)
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Linear Time Computation

B Compute Canonical Order

B Compute Schnyder Realizer

m Goal: v; = |V(Ri(v))| = [Pi—1(9)]
]

With traversal of each T;, compute:
® The number of vertices in P;(v)

B The number of vertices in the subtree
T;(v) of T; rooted at v

— ’V(Ri(v))‘ — ZuEP,-H(v) ‘Ti(u)‘ + ZuEPi_l(v) ‘Ti(u)‘ - Ti(v)
B Compute these sums in six tree traversals

‘Theorem. [Schnyder ’90]\
Every n-vertex planar graph has a planar straight-line drawing of size

(n—2) x (n—2). Such a drawing can be computed in O(n) time. )
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