

Visualization of Graphs Lecture 5: Straight-Line Drawings of Planar Graphs II: Schnyder Realizer Part I: **Barycentric Representation**

Philipp Kindermann

Planar Straight-Line Drawings

Theorem.[De Fraysseix, Pach, Pollack '90]Every *n*-vertex planar graph has a planar straight-linedrawing of size $(2n - 4) \times (n - 2)$.

Theorem.

Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 5) \times (2n - 5)$.

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices
 - using weighted barycentric coordinates.

 v_n

Ο

 \mathcal{U}_1

Ο

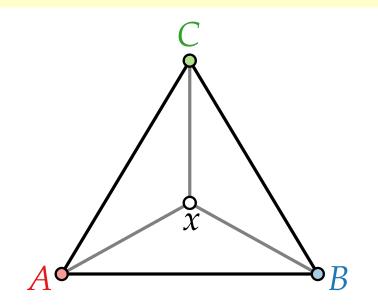
 v_{2}

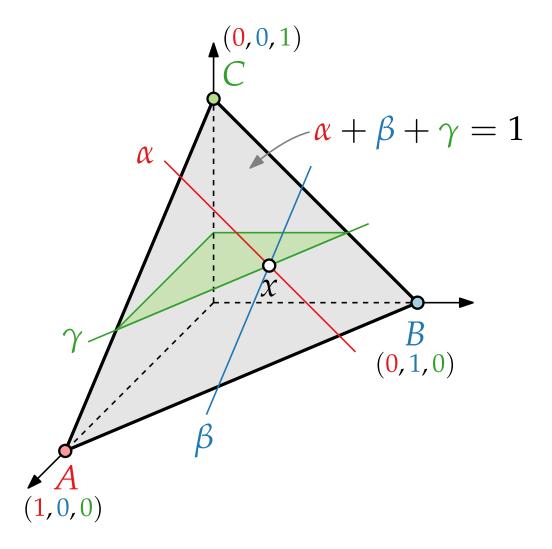
Schnyder '89

Barycentric Coordinates

Recall: barycenter(x_1, \ldots, x_k) = $\sum_{i=1}^k x_i/k$

Let *A*, *B*, *C* form a triangle, let *x* lie inside $\triangle ABC$. The **barycentric coordinates** of *x* with respect to $\triangle ABC$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{\geq 0}$ such that $x = \alpha A + \beta B + \gamma C$ and $\alpha + \beta + \gamma = 1$

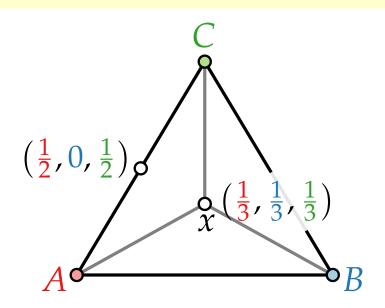


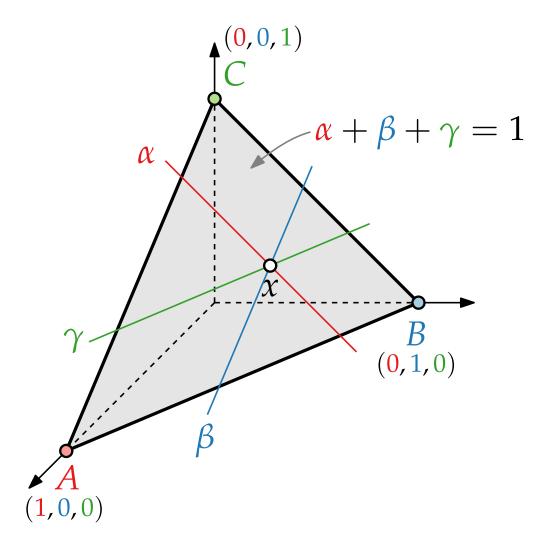


Barycentric Coordinates

Recall: barycenter(x_1, \ldots, x_k) = $\sum_{i=1}^k x_i/k$

Let *A*, *B*, *C* form a triangle, let *x* lie inside $\triangle ABC$. The **barycentric coordinates** of *x* with respect to $\triangle ABC$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{\geq 0}$ such that $x = \alpha A + \beta B + \gamma C$ and $\alpha + \beta + \gamma = 1$





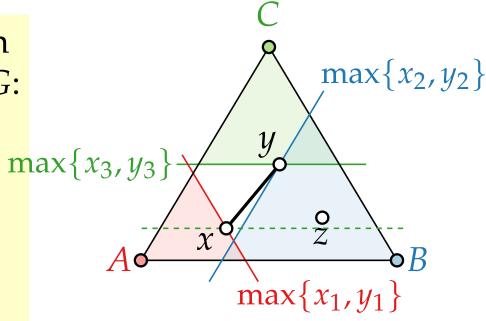
Barycentric Representation

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of *G*:

$$f\colon V\to \mathbb{R}^3_{\geq 0}, v\mapsto (v_1, v_2, v_3)$$

with the following properties: (B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$, (B2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$

there exists $k \in \{1, 2, 3\}$ with $x_k < z_k$ and $y_k < z_k$.



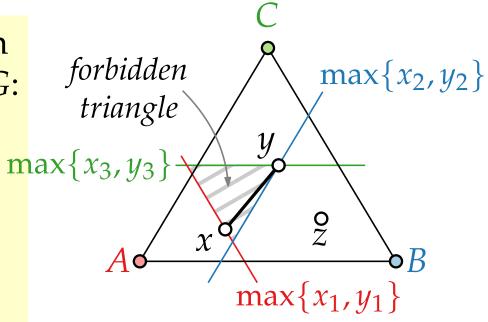
Barycentric Representation

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of *G*:

$$f\colon V\to \mathbb{R}^3_{\geq 0}, v\mapsto (v_1, v_2, v_3)$$

with the following properties: (B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$, (B2) for each $w \in \Gamma$ and each $\tau \in U$) (w

(B2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $x_k < z_k$ and $y_k < z_k$.



Barycentric Representations of Planar Graphs

Lemma.

Let $f : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph *G* and let *A*, *B*, *C* $\in \mathbb{R}^2$ be in general position. Then the mapping

 $\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$

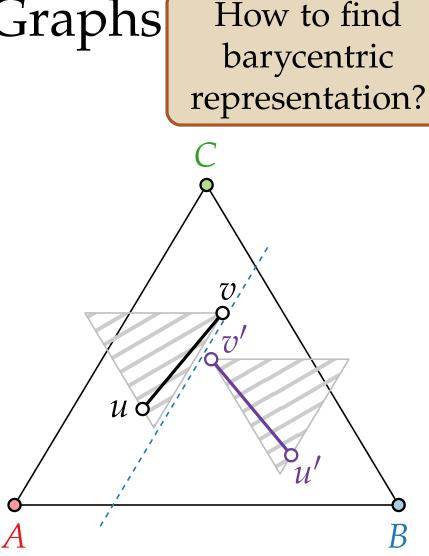
gives a **planar** drawing of *G* inside $\triangle ABC$.

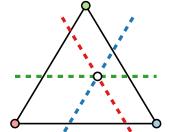
- No vertex *x* can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

wlog $i = j = 2 \Rightarrow u'_{2}, v'_{2} > u_{2}, v_{2} \Rightarrow$ separated by straight line





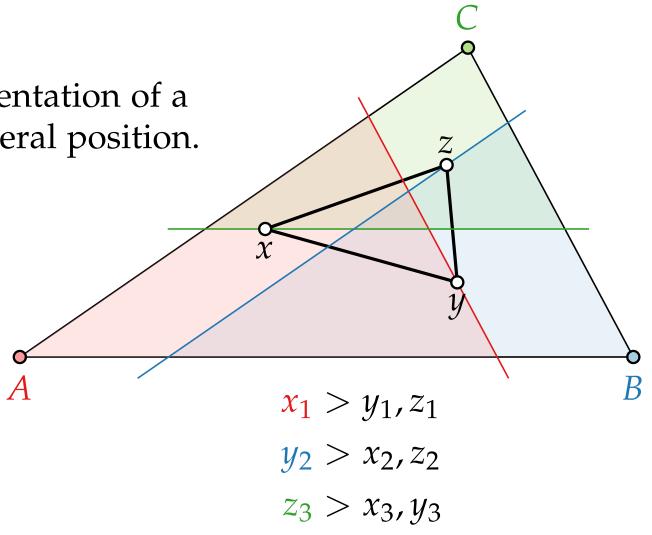
Visualization of Graphs Lecture 5: Straight-Line Drawings of Planar Graphs II: Schnyder Realizer Part II:

Schnyder Realizer

Philipp Kindermann

Schnyder Labeling

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph *G* and let *A*, *B*, *C* $\in \mathbb{R}^2$ be in general position.



Schnyder Labeling

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph *G* and let *A*, *B*, *C* $\in \mathbb{R}^2$ be in general position. We can label each angle in $\triangle xyz$ **uniquely** with $k \in \{1, 2, 3\}$.

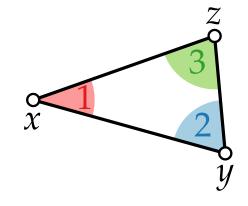
 $x_1 > y_1, z_1$ $y_2 > x_2, z_2$ $z_3 > x_3, y_3$ B

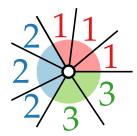
Schnyder Labeling

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph *G* and let *A*, *B*, *C* $\in \mathbb{R}^2$ be in general position. We can label each angle in $\triangle xyz$ **uniquely** with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation *G* is a labeling of all internal angles with labels 1, 2 and 3 such that:

- **Faces:** The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.
- **Vertices:** The ccw order of labels around each vertex consists of
 - a nonempty interval of 1's
 - followed by a nonempty interval of 2's
 - followed by a nonempty interval of 3's.





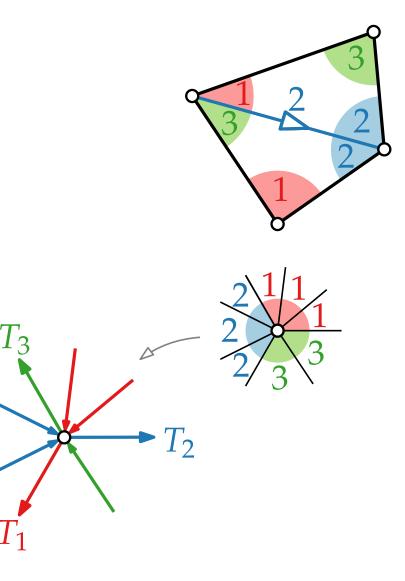
Schnyder Realizer

A Schnyder labeling induces an edge labeling.

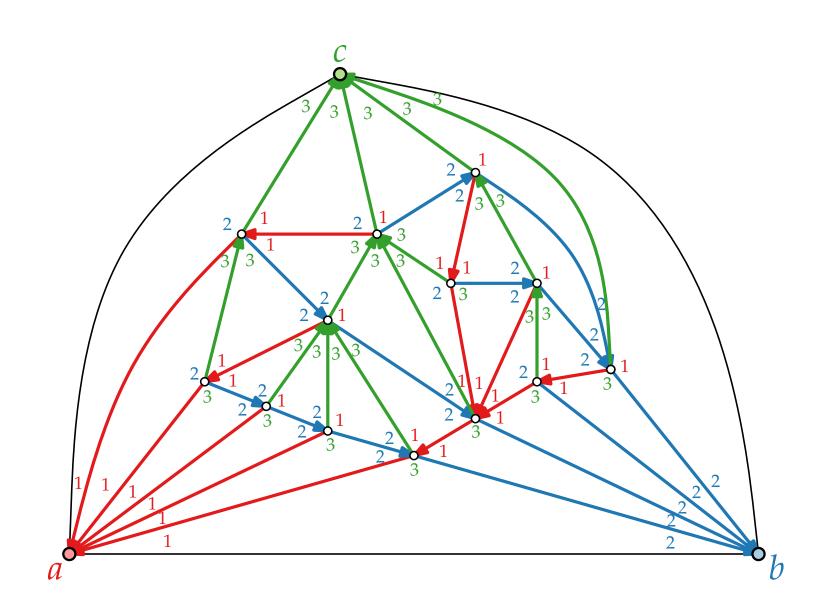
A Schnyder Realizer (or Wood) of a plane triangulation G = (V, E) is a partition of the inner edges of *E* into three sets of oriented edges T_1 , T_2 , T_3 such that for each inner vertex $v \in V$ holds:

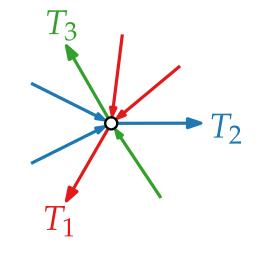
• v has one outgoing edge in each of T_1 , T_2 , and T_3 .

The ccw order of edges around v is: leaving in T₁, entering in T₃, leaving in T₂, entering in T₁, leaving in T₃, entering in T₂.

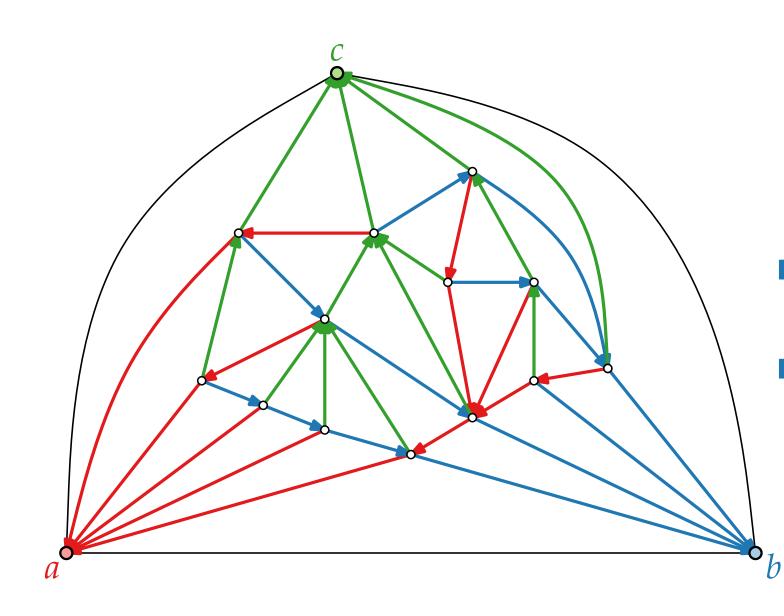


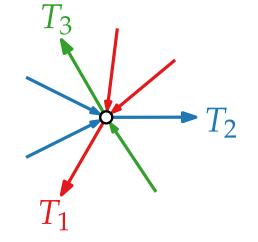
Schnyder Realizer – Example and Properties





Schnyder Realizer – Example and Properties



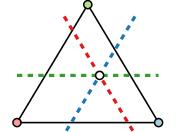


- All inner edges incident to *a*, *b*, and *c* are incoming in the same color.
- *T*₁, *T*₂, and *T*₃ are trees on all inner vertices and one outer vertex each (as its root).

Schnyder Realizer – Existence

Lemma. [Kampen 1976] Let *G* be a plane triangulation with vertices *a*, *b*, *c* on the outer face. There exists a **contractible edge** $\{a, x\}$ in $G, x \neq b, c$. Constructive proof Theorem. can be used as Every plane triangulation has a Schnyder Labeling and Realizer. algorithm to compute **Proof** by induction on # vertices via edge contractions. a Schnyder labeling. It can be implemented in $\mathcal{O}(n)$ v_4 v_4 v_3 v_3 contracting time ... as exercise. $2 v_2$ v_2 axexpanding

... requires that *a* and *x* have exactly 2 common neighbors.

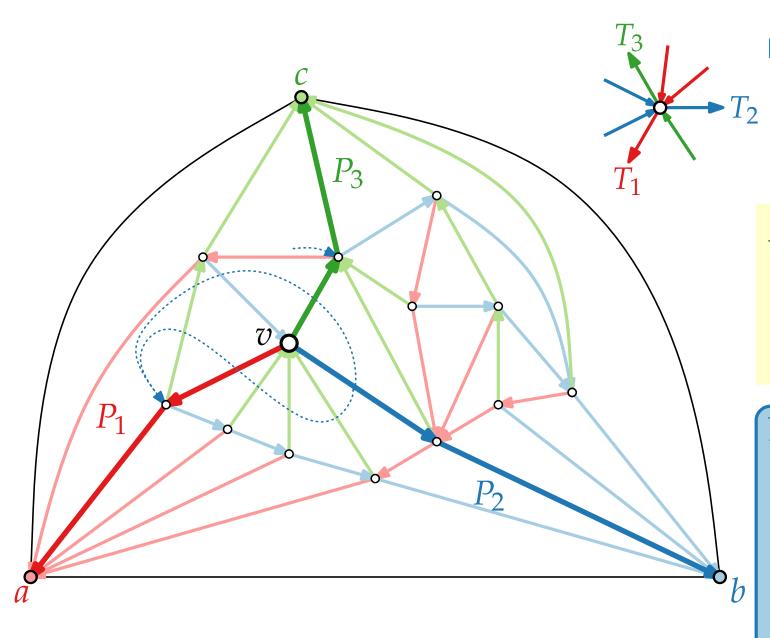


Visualization of Graphs Lecture 5: Straight-Line Drawings of Planar Graphs II: Schnyder Realizer

Part III: Schnyder Drawings

Philipp Kindermann

Schnyder Realizer – More Properties

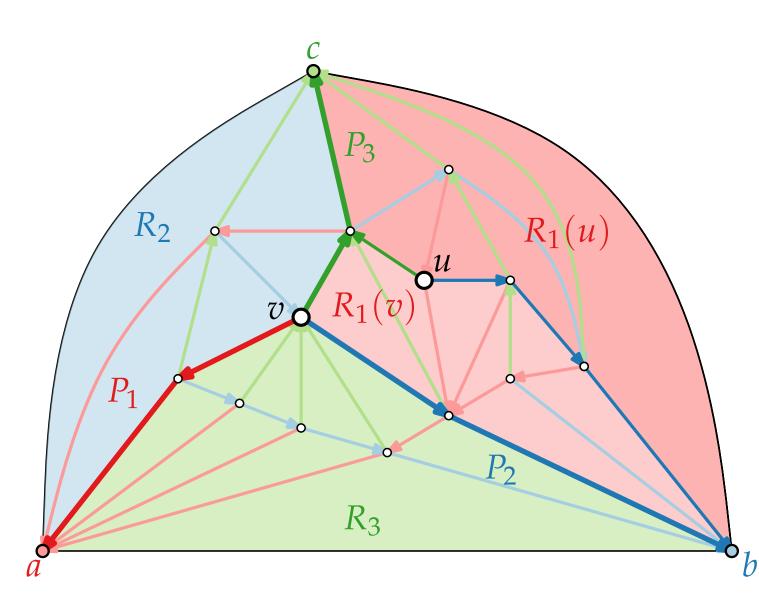


From each vertex v there exists a directed red path P₁(v) to a, a directed blue path P₂(v) to b, and a directed green path P₃(v) to c.
 P_i(v): path from v to root of T_i.

Lemma.

 $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$

Schnyder Realizer – More Properties



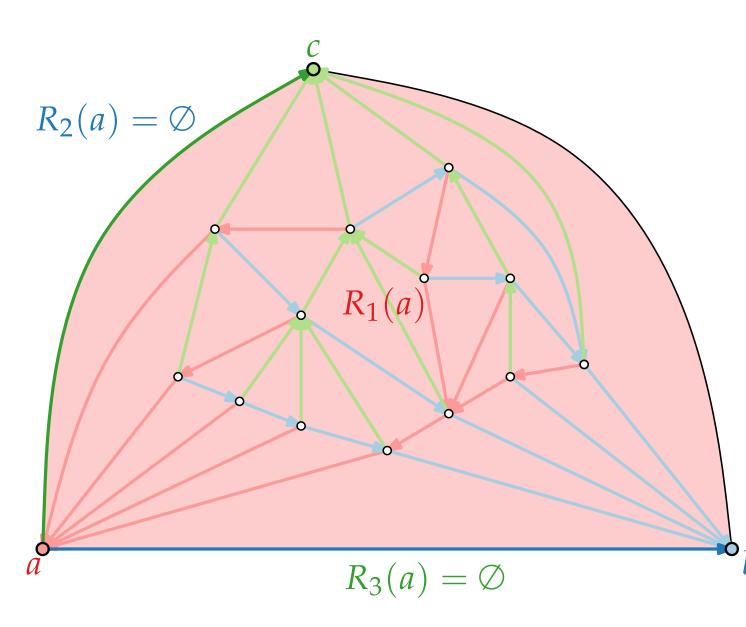
From each vertex v there exists a directed red path P₁(v) to a, a directed blue path P₂(v) to b, and a directed green path P₃(v) to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

Lemma.

- $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

Schnyder Realizer – More Properties



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

Lemma.

- $\blacksquare P_1(v), P_2(v), P_3(v) \text{ cross only at } v.$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Schnyder Drawing

Set
$$A = (0,0)$$
, $B = (2n - 5, 0)$, and $C = (0, 2n - 5)$.

Theorem. For a plane triangulation *G*, the mapping

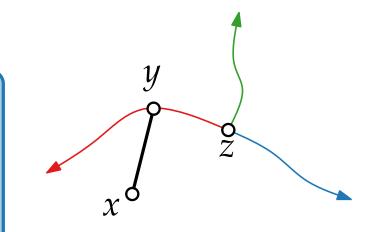
 $f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$

is a barycentric representation of *G*, which thus gives a planar straight-line drawing of *G* on the $(2n - 5) \times (2n - 5)$ grid.

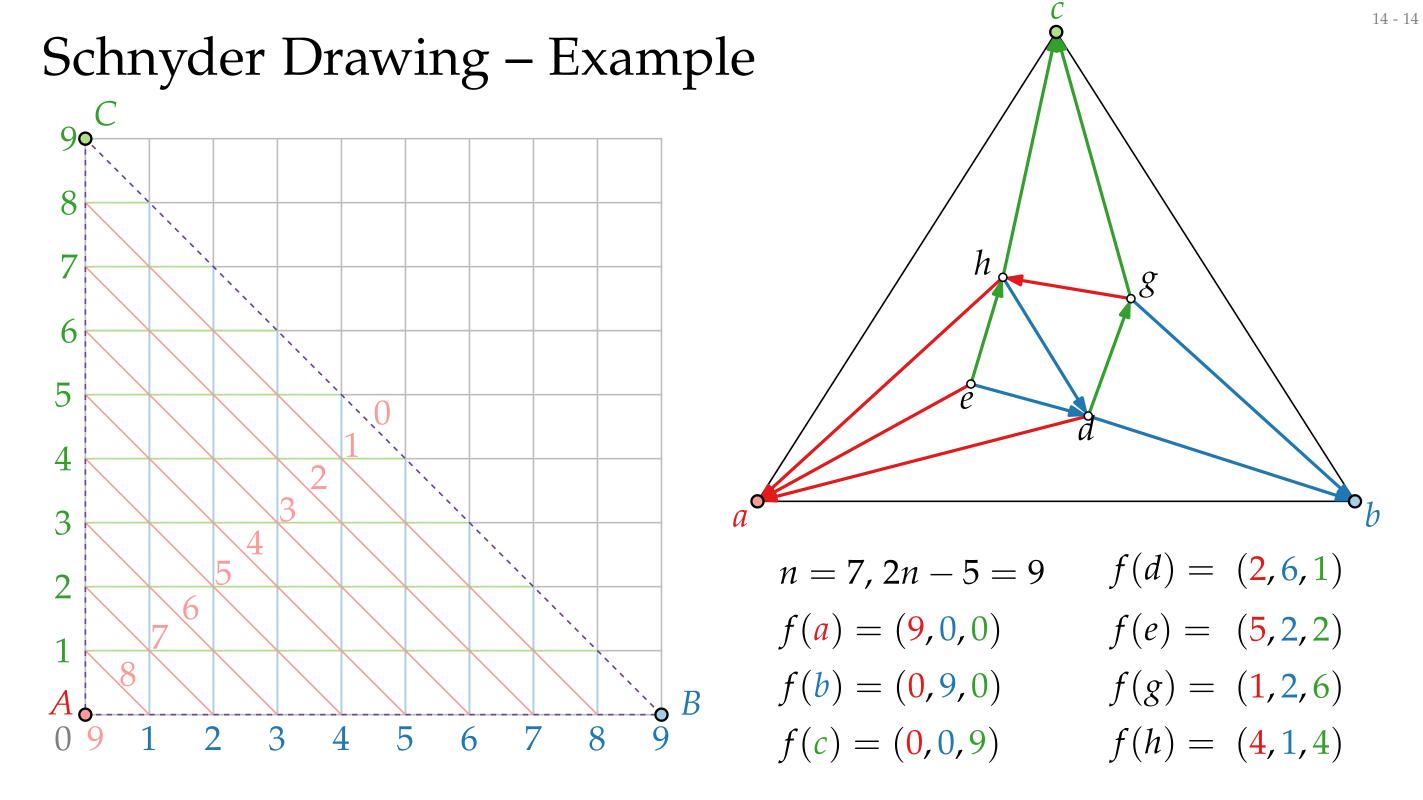
(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V \checkmark$

(B2) for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $x_k < z_k$ and $y_k < z_k$ \checkmark

- {x, y} must lie in some $R_i(z)$ for $i \in \{1, 2, 3\}$
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.



[Schnyder '89]



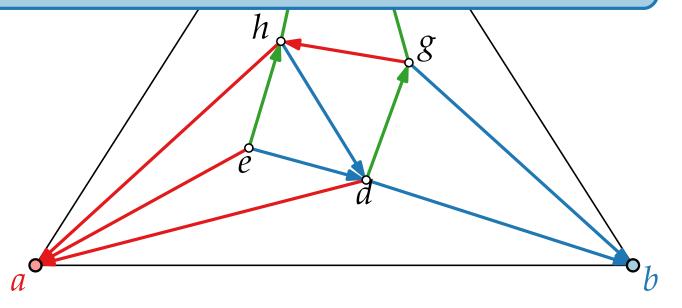
Schnyder Drawing – Example

90

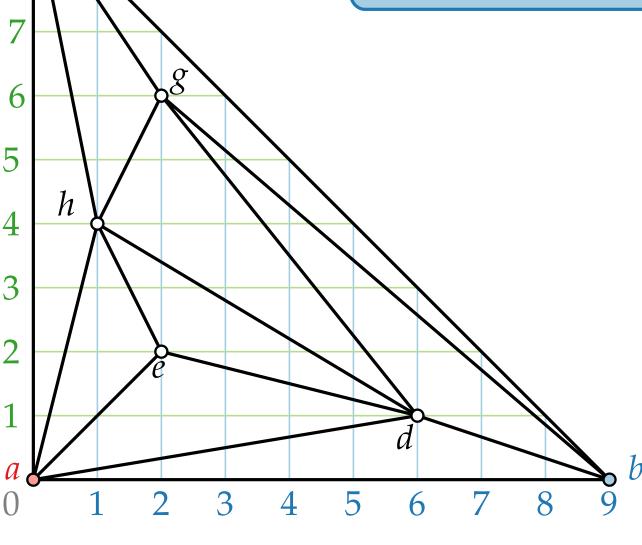
8

Theorem.

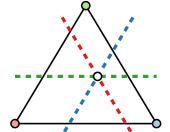
Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 5) \times (2n - 5)$.



 $n = 7, 2n - 5 = 9 \qquad f(d) = (2, 6, 1)$ $f(a) = (9, 0, 0) \qquad f(e) = (5, 2, 2)$ $f(b) = (0, 9, 0) \qquad f(g) = (1, 2, 6)$ $f(c) = (0, 0, 9) \qquad f(h) = (4, 1, 4)$



[Schnyder '89]



Visualization of Graphs Lecture 5: Straight-Line Drawings of Planar Graphs II: Schnyder Woods Part IV: Weak Barycentric Representation

Philipp Kindermann

Weak Barycentric Representation

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to *V*:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties: (W1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$,

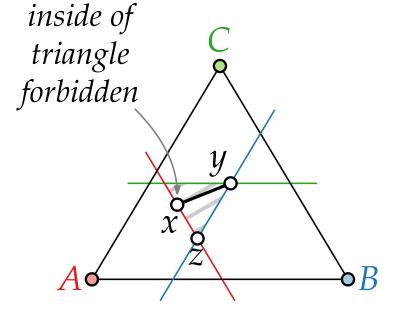
(W2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$.

Lemma.

For a weak barycentric representation $\phi : v \mapsto (v_1, v_2, v_3)$ and a triangle *A*, *B*, *C*, the mapping

$$f: v \in V \mapsto v_1 A + v_2 B + v_3 C$$

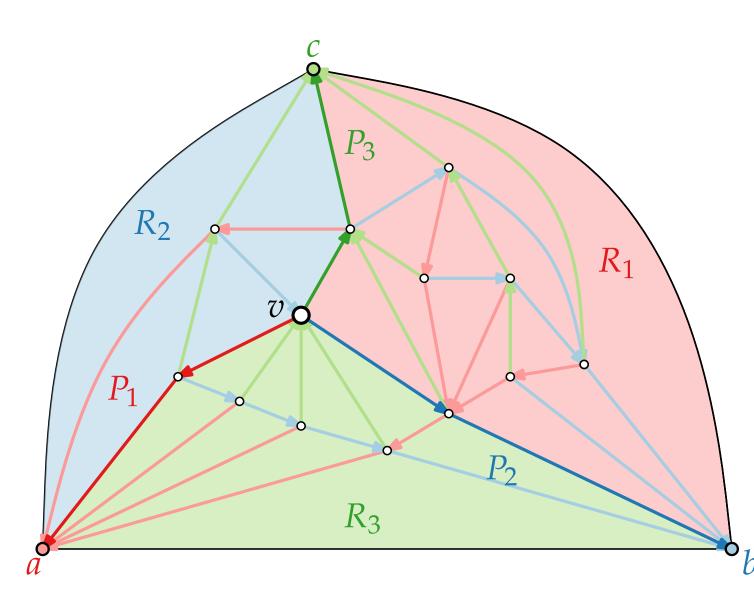
gives a **planar** drawing of *G* inside $\triangle ABC$.



i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

Proof as exercise.

Counting Vertices



 $P_i(v): \text{ path from } v \text{ to root of } T_i.$ $R_1(v): \text{ set of faces contained in } P_2, bc, P_3.$ $R_2(v): \text{ set of faces contained in } P_3, ca, P_1.$ $R_3(v): \text{ set of faces contained in } P_1, ab, P_2.$ $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$

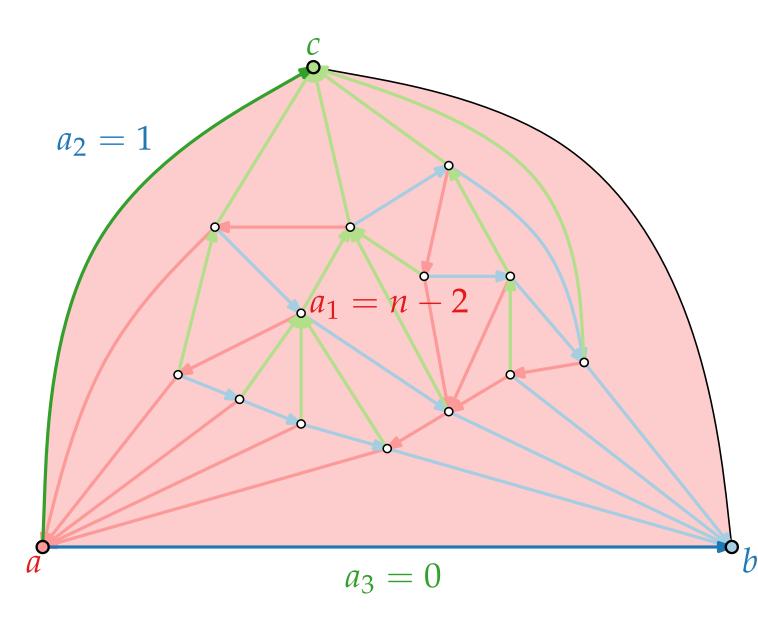
$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.

For inner vertices *u* ≠ *v* it holds that *u* ∈ *R_i*(*v*) ⇒ (*u_i*, *u_{i+1}*) <_{lex} (*v_i*, *v_{i+1}*).
 *v*₁ + *v*₂ + *v*₃ = *n* − 1

Counting Vertices



 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 . $v_i = |V(R_i(v))| - |P_{i-1}(v)|$ $v_1 = 10 - 3 = 7$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.

For inner vertices *u* ≠ *v* it holds that *u* ∈ *R_i*(*v*) ⇒ (*u_i*, *u_{i+1}) <_{lex}* (*v_i*, *v_{i+1}*).
 *v*₁ + *v*₂ + *v*₃ = *n* − 1

Schnyder Drawing*

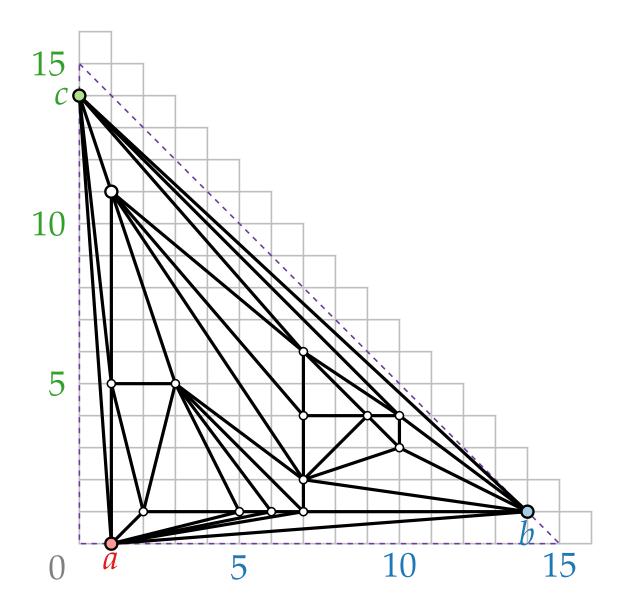
Set
$$A = (0,0)$$
, $B = (n - 1, 0)$, and $C = (0, n - 1)$.

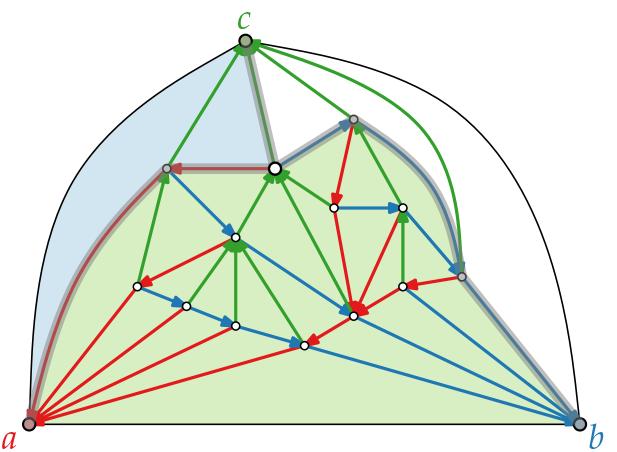
Theorem. For a plane triangulation *G*, the mapping [Schnyder '90]

 $f\colon v\mapsto \frac{1}{n-1}(v_1,v_2,v_3)$

is a barycentric representation of *G*, which thus gives a planar straight-line drawing of *G* on the $(n-2) \times (n-2)$ grid.

Schnyder Drawing^{*} – Example





n = 16, n - 2 = 14 f(a) = (n - 2, 1, 0) f(b) = (0, n - 2, 1)f(c) = (1, 0, n - 2)

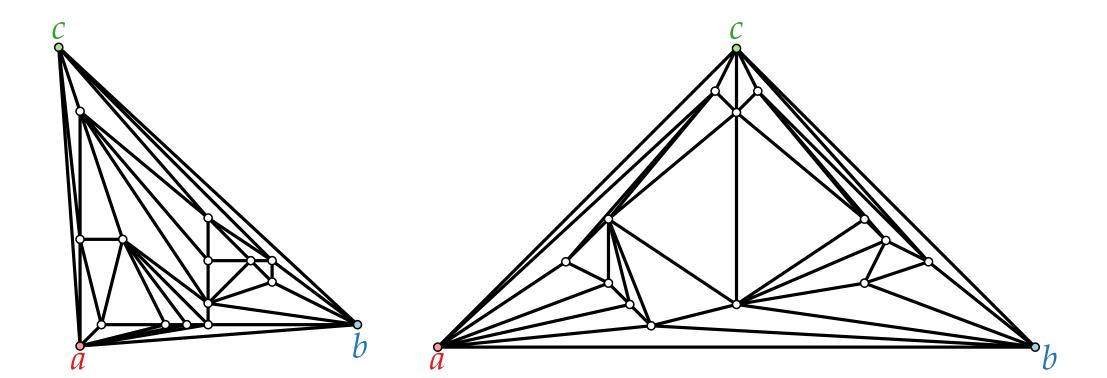
Results & Variations

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$. Such a drawing can be computed in O(n) time.



Results & Variations

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

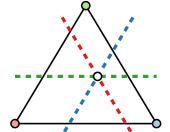
[Chrobak & Kant '97]

Every *n*-vertex 3-connected planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Felsner '01]

Every 3-connected planar graph with f faces has a planar straight-line drawing of size $(f-1) \times (f-1)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

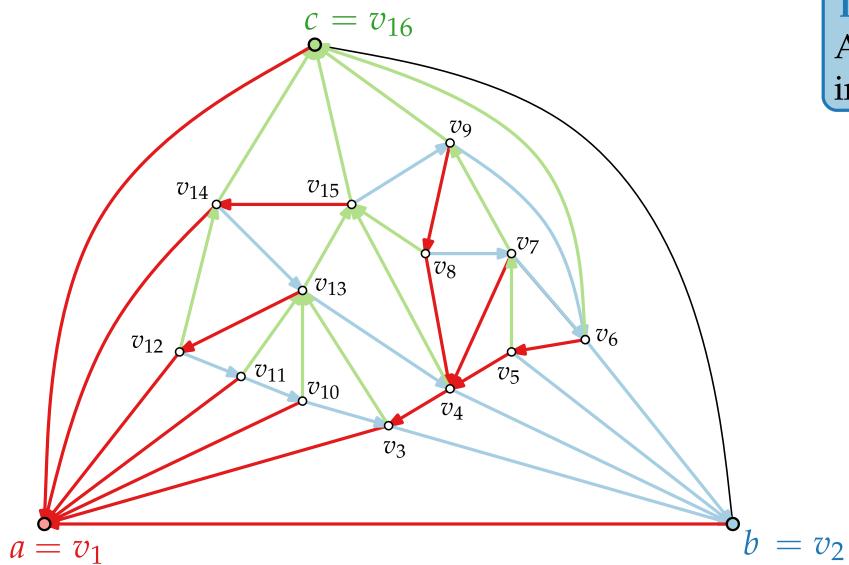


Visualization of Graphs Lecture 5: Straight-Line Drawings of Planar Graphs II: Schnyder Woods Part V: From Schnyder to Canonical Order

... and back again

Philipp Kindermann

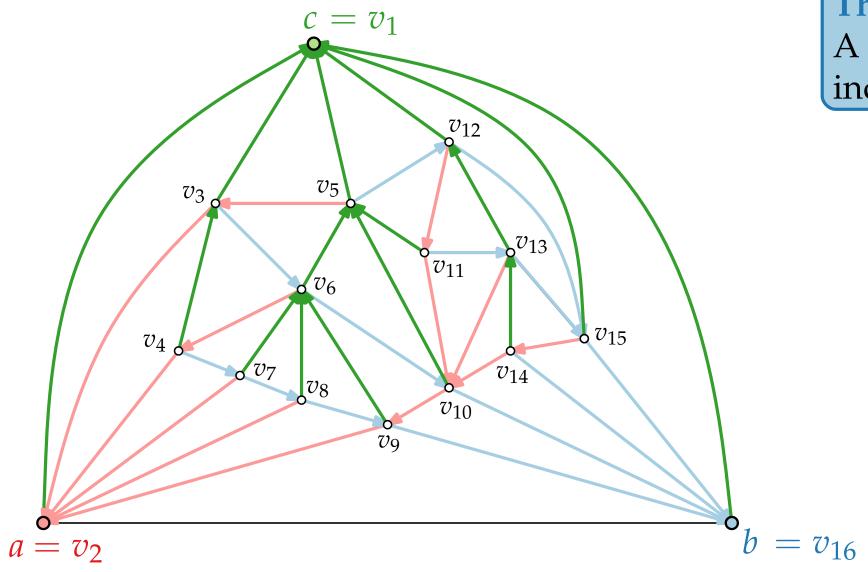
Schnyder Realizer \rightarrow Canonical Order



Theorem.

A ccw pre-order traversal on T_i induces a canonical order.

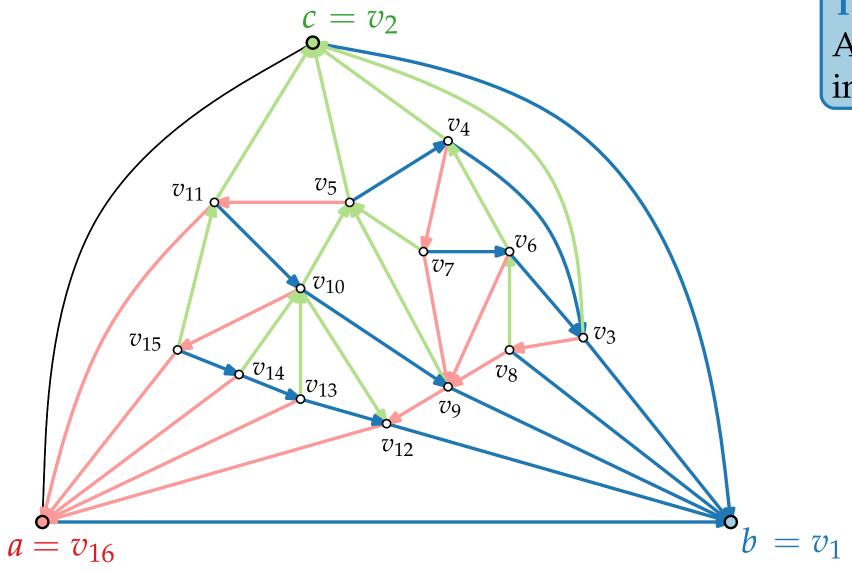
Schnyder Realizer \rightarrow Canonical Order



Theorem.

A ccw pre-order traversal on T_i induces a canonical order.

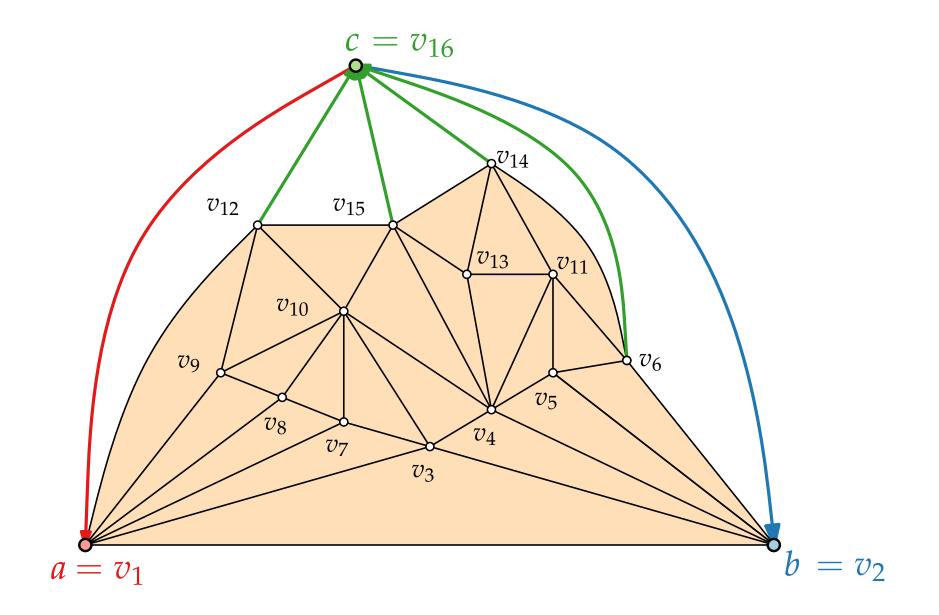
Schnyder Realizer \rightarrow Canonical Order



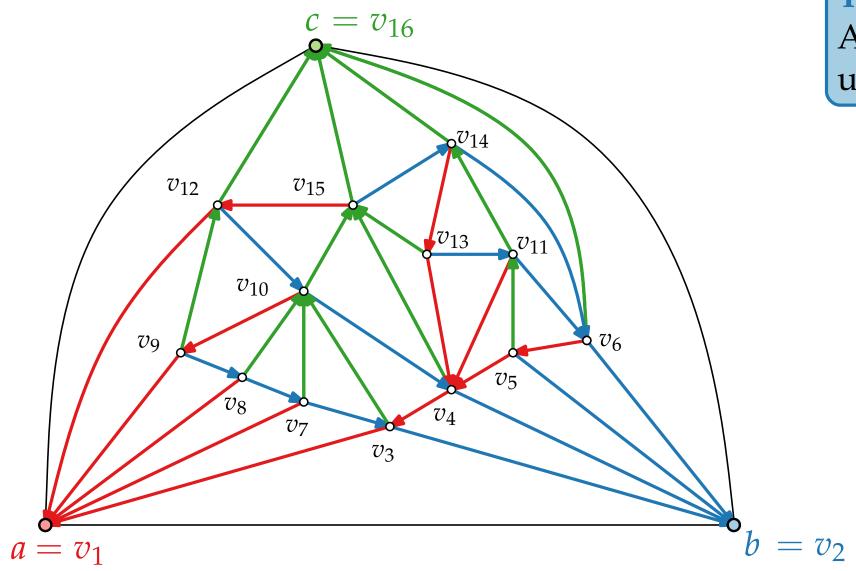
Theorem.

A ccw pre-order traversal on T_i induces a canonical order.

Canonical Order \rightarrow Schnyder Realizer



Canonical Order \rightarrow Schnyder Realizer

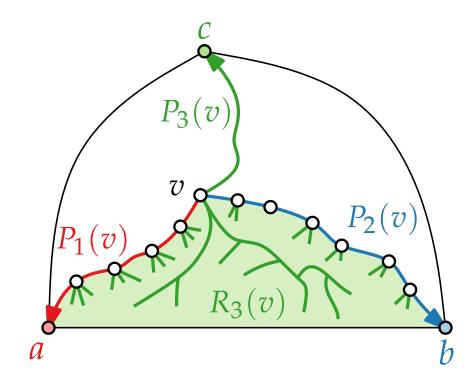


Theorem.

A canonical order induces a unique Schnyder Realizer.

Linear Time Computation

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:
 - The number of vertices in $P_i(v)$
 - The number of vertices in the subtree $T_i(v)$ of T_i rooted at v



 $|V(R_i(v))| = \sum_{u \in P_{i+1}(v)} |T_i(u)| + \sum_{u \in P_{i-1}(v)} |T_i(u)| - T_i(v)$

Compute these sums in six tree traversals

Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$. Such a drawing can be computed in O(n) time.