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Visualization of Graphs
Lecture 5:

Straight-Line Drawings of Planar Graphs II:
Schnyder Realizer

Philipp Kindermann

Part I:
Barycentric Representation
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Planar Straight-Line Drawings

Idea.
� Fix outer triangle.
� Compute coordinates of inner vertices

� based on outer triangle and
� how much space there should be for other vertices
� using weighted barycentric coordinates.

v1 v2

vn

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).(2n− 5)× (2n− 5).

[Schnyder ’89]
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Barycentric Coordinates

x

A B

C

Recall: barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

Let A, B, C form a triangle, let x lie inside 4ABC.
The barycentric coordinates of x with respect to
4ABC are a triple (α, β, γ) ∈ R3

≥0 such that
� x = αA + βB + γC and
� α + β + γ = 1

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

x

A

B

C

α + β + γ = 1
α

β

γ
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Barycentric Coordinates

x

A B

C

Recall: barycenter(x1, . . . , xk) = ∑k
i=1 xi/k

Let A, B, C form a triangle, let x lie inside 4ABC.
The barycentric coordinates of x with respect to
4ABC are a triple (α, β, γ) ∈ R3

≥0 such that
� x = αA + βB + γC and
� α + β + γ = 1

( 1
2 , 0, 1

2
) ( 1

3 , 1
3 , 1

3
)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

x

A

B

C

α + β + γ = 1
α

β

γ
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Barycentric Representation

A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G:

f : V → R3
≥0, v 7→ (v1, v2, v3)

with the following properties:
(B1) v1 + v2 + v3 = 1 for all v ∈ V,
(B2) for each xy ∈ E and each z ∈ V \ {x, y}

there exists k ∈ {1, 2, 3} with xk < zk and yk < zk.

A B

C

y

x z

max{x2, y2}

max{x1, y1}

max{x3, y3}
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Barycentric Representation

forbidden
triangle

A barycentric representation of a graph G = (V, E) is an
assignment of barycentric coordinates to the vertices of G:

f : V → R3
≥0, v 7→ (v1, v2, v3)

with the following properties:
(B1) v1 + v2 + v3 = 1 for all v ∈ V,
(B2) for each xy ∈ E and each z ∈ V \ {x, y}

there exists k ∈ {1, 2, 3} with xk < zk and yk < zk.

A B

C

y

x z

max{x2, y2}

max{x1, y1}

max{x3, y3}
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Barycentric Representations of Planar Graphs How to find
barycentric

representation?

C

u

v

� No pair of edges {u, v} and {u′, v′} cross:

u′i > ui, vi v′j > uj, vj uk > u′k, v′k vl > u′l , v′l
⇒ {i, j} ∩ {k, l} = ∅

wlog i = j = 2⇒ u′2, v′2 > u2, v2 ⇒ separated by straight line

� No vertex x can lie on an edge {u, v}.

BA

Lemma.
Let f : v 7→ (v1, v2, v3) be a barycentric representation of
a planar graph G and let A, B, C ∈ R2 be in general
position. Then the mapping

φ : v ∈ V 7→ v1 A + v2B + v3C

gives a planar drawing of G inside 4ABC.

u′

v′
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Schnyder Labeling

x1 > y1, z1

y2 > x2, z2

z3 > x3, y3

A

C

B

Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G and let A, B, C ∈ R2 be in general position.

x

z

y
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Schnyder Labeling

x1 > y1, z1

y2 > x2, z2

z3 > x3, y3

We can label each angle in 4xyz uniquely with k ∈ {1, 2, 3}.

A

C

B

Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G and let A, B, C ∈ R2 be in general position.

x

z

y
2

3
1
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Schnyder Labeling

1 1
1

We can label each angle in 4xyz uniquely with k ∈ {1, 2, 3}.

Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G and let A, B, C ∈ R2 be in general position.

x

z

y
2

3
1

A Schnyder Labeling of a plane triangulation G
is a labeling of all internal angles with labels 1, 2
and 3 such that:
Faces: The three angles of an internal face are

labeled 1, 2 and 3 in counterclockwise order.

Vertices: The ccw order of labels around each
vertex consists of
� a nonempty interval of 1’s
� followed by a nonempty interval of 2’s
� followed by a nonempty interval of 3’s.

2
2
2 3

3
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Schnyder Realizer

T1

T2

T3

A Schnyder labeling induces an edge labeling.

A Schnyder Realizer (or Wood) of a plane
triangulation G = (V, E) is a partition of the inner
edges of E into three sets of oriented edges T1, T2, T3
such that for each inner vertex v ∈ V holds:
� v has one outgoing edge in each of T1, T2, and T3.

� The ccw order of edges around v is:
leaving in T1, entering in T3, leaving in T2,
entering in T1, leaving in T3, entering in T2. 1 1

1

2

3
1

2
2
2 3

3

2
3

1

2
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Schnyder Realizer – Example and Properties

T1

T2

T3

1

1
1

11

1

1
1

1
1

1
1
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11
1
1

1
1

2
2 2
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2
2

2
2

2
2

2
2

2

2
2

2
2

2

2

2
2

2

33333

3 3
3

3 3
3

3 3

3 3 3 3

1

1

1

1

1

1
1

2

2

2

2

3
3

3
3

3

3
3

3

2

3 3

c

a b
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Schnyder Realizer – Example and Properties

T1

T2

T3c

a b

� All inner edges incident to a, b, and c
are incoming in the same color.

� T1, T2, and T3 are trees on all inner
vertices and one outer vertex each
(as its root).
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Schnyder Realizer – Existence

Lemma.
Let G be a plane triangulation with vertices a, b, c on the outer
face. There exists a contractible edge {a, x} in G, x 6= b, c.

v1

v2

v3v4

a

v1

v2

v3v4

x
3

1
1 2

3

23

1

contracting

ax

. . . requires that a and x have exactly 2 common neighbors.

Proof by induction on # vertices via edge contractions.

2

3

1 2
3

233

2
1

2
3

1 1
1

a

[Kampen 1976]

Constructive proof
can be used as
algorithm to compute
a Schnyder labeling.
It can be
implemented in O(n)
time . . . as exercise.

expanding

2

Theorem.
Every plane triangulation has a Schnyder Labeling and Realizer.
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Schnyder Realizer – More Properties

Lemma.
� P1(v), P2(v), P3(v) cross only at v.
� For inner vertices u 6= v it holds that

u ∈ Ri(v)⇒ Ri(u) ( Ri(v).
� |R1(v)|+ |R2(v)|+ |R3(v)| = 2n− 5

a directed red path P1(v) to a,
a directed blue path P2(v) to b, and
a directed green path P3(v) to c.

P1

P3

P2

Pi(v): path from v to root of Ti.
R1(v): set of faces contained in P2, bc, P3.
R2(v): set of faces contained in P3, ca, P1.
R3(v): set of faces contained in P1, ab, P2.

T1

T2

T3
c

a b

� From each vertex v there exists

v
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Schnyder Realizer – More Properties

Lemma.
� P1(v), P2(v), P3(v) cross only at v.
� For inner vertices u 6= v it holds that

u ∈ Ri(v)⇒ Ri(u) ( Ri(v).
� |R1(v)|+ |R2(v)|+ |R3(v)| = 2n− 5

a directed red path P1(v) to a,
a directed blue path P2(v) to b, and
a directed green path P3(v) to c.

P1

P3

P2

Pi(v): path from v to root of Ti.
R1(v): set of faces contained in P2, bc, P3.
R2(v): set of faces contained in P3, ca, P1.
R3(v): set of faces contained in P1, ab, P2.

R2

R3

R1(u)

c

a b

� From each vertex v there exists

v R1(v)
u
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Schnyder Realizer – More Properties

Lemma.
� P1(v), P2(v), P3(v) cross only at v.
� For inner vertices u 6= v it holds that

u ∈ Ri(v)⇒ Ri(u) ( Ri(v).
� |R1(v)|+ |R2(v)|+ |R3(v)| = 2n− 5

a directed red path P1(v) to a,
a directed blue path P2(v) to b, and
a directed green path P3(v) to c.

Pi(v): path from v to root of Ti.
R1(v): set of faces contained in P2, bc, P3.
R2(v): set of faces contained in P3, ca, P1.
R3(v): set of faces contained in P1, ab, P2.

c

a b

� From each vertex v there exists

R1(a)

R2(a) = ∅

R3(a) = ∅
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Schnyder Drawing

(B1) v1 + v2 + v3 = 1 for all v ∈ V
(B2) for each {x, y} ∈ E and each z ∈ V \ {x, y}

there exists k ∈ {1, 2, 3} with xk < zk and yk < zk

Set A = (0, 0), B = (2n− 5, 0), and C = (0, 2n− 5).

3

y

x

z

� {x, y} must lie in some Ri(z) for i ∈ {1, 2, 3}
3

[Schnyder ’89]Theorem.
For a plane triangulation G, the mapping

f : v 7→ (v1, v2, v3) =
1

2n−5 (|R1(v)|, |R2(v)|, |R3(v)|)

is a barycentric representation of G, which thus gives a planar
straight-line drawing of G on the (2n− 5)× (2n− 5) grid.

� For inner vertices u 6= v it holds
that u ∈ Ri(v)⇒ Ri(u) ( Ri(v).
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Schnyder Drawing – Example

a b

c

d
e

gh

f (a) = (9, 0, 0)

f (b) = (0, 9, 0)

f (d) =n = 7, 2n− 5 = 9 (2, 6, 1)

(5, 2, 2)

(1, 2, 6)

(4, 1, 4)
A B

C

9

1
2

3
4

5
6

7
8

0

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

0

9

f (c) = (0, 0, 9)

f (e) =

f (g) =

f (h) =
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Schnyder Drawing – Example

a b

c

d
e

gh

f (a) = (9, 0, 0)

f (b) = (0, 9, 0)

f (d) =n = 7, 2n− 5 = 9 (2, 6, 1)

(5, 2, 2)

(1, 2, 6)

(4, 1, 4)1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

0
a b

c
9

d

e

g

h

f (c) = (0, 0, 9)

f (e) =

f (g) =

f (h) =

Theorem. [Schnyder ’89]
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).(2n− 5)× (2n− 5).
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Weak Barycentric Representation
inside of
triangle

forbidden
A weak barycentric representation of a graph G = (V, E)
is an assignment of barycentric coordinates to V:

φ : V → R3
≥0, v 7→ (v1, v2, v3)

with the following properties:
(W1) v1 + v2 + v3 = 1 for all v ∈ V,
(W2) for each xy ∈ E and each z ∈ V \ {x, y}

there exists k ∈ {1, 2, 3} with
(xk, xk+1) <lex (zk, zk+1) and (yk, yk+1) <lex (zk, zk+1).

A B

C

y

x
z

i.e., either yk < zk or
yk = zk and yk+1 < zk+1Lemma.

For a weak barycentric representation φ : v 7→ (v1, v2, v3)
and a triangle A, B, C, the mapping

f : v ∈ V 7→ v1 A + v2B + v3C
gives a planar drawing of G inside 4ABC.

Proof as exercise.
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Counting Vertices

P1

P3

P2

Pi(v): path from v to root of Ti.
R1(v): set of faces contained in P2, bc, P3.
R2(v): set of faces contained in P3, ca, P1.
R3(v): set of faces contained in P1, ab, P2.

R1

R2

R3

c

a b

v

vi = |V(Ri(v))| − |Pi−1(v)|

v1 = 10− 3 = 7

v2 = 6− 3 = 3

v3 = 8− 3 = 5

Lemma.
� For inner vertices u 6= v it holds that

u ∈ Ri(v)⇒ (ui, ui+1) <lex (vi, vi+1).
� v1 + v2 + v3 = n− 1
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Counting Vertices

Pi(v): path from v to root of Ti.
R1(v): set of faces contained in P2, bc, P3.
R2(v): set of faces contained in P3, ca, P1.
R3(v): set of faces contained in P1, ab, P2.

c

a b

a1 = n− 2

a2 = 1

a3 = 0

vi = |V(Ri(v))| − |Pi−1(v)|

v1 = 10− 3 = 7

v2 = 6− 3 = 3

v3 = 8− 3 = 5

Lemma.
� For inner vertices u 6= v it holds that

u ∈ Ri(v)⇒ (ui, ui+1) <lex (vi, vi+1).
� v1 + v2 + v3 = n− 1
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Schnyder Drawing?

Theorem.
For a plane triangulation G, the mapping

f : v 7→ 1
n−1 (v1, v2, v3)

is a barycentric representation of G, which thus gives a planar
straight-line drawing of G on the (n− 2)× (n− 2) grid.

[Schnyder ’90]

Set A = (0, 0), B = (n− 1, 0), and C = (0, n− 1).
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Schnyder Drawing? – Example

a b

c

n = 16, n− 2 = 145

10

15

5 10 150

f (a) = (n− 2, 1, 0)

a
b

c

f (b) = (0, n− 2, 1)
f (c) = (1, 0, n− 2)
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Results & Variations
Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(n− 2)× (n− 2). Such a drawing can be computed in O(n) time.

a b

c

a b

c
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Results & Variations
Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(n− 2)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Felsner ’01]
Every 3-connected planar graph with f faces has a planar straight-line
drawing of size ( f − 1)× ( f − 1) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.

Theorem. [Chrobak & Kant ’97]
Every n-vertex 3-connected planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.
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From Schnyder to Canonical Order

. . . and back again
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Schnyder Realizer→ Canonical Order

b

c

a = v1 = v2

v3

v4

v5

v6

v7
v8

v9

v10
v11

v12

v13

v14 v15

= v16
Theorem.
A ccw pre-order traversal on Ti
induces a canonical order.
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Schnyder Realizer→ Canonical Order

b

c

a = v2 = v16

v9

v10

v14

v15

v13
v11

v12

v8
v7

v4

v6

v3 v5

= v1
Theorem.
A ccw pre-order traversal on Ti
induces a canonical order.
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Schnyder Realizer→ Canonical Order

b

c

a = v16 = v1

v12

v9

v8

v3

v6
v7

v4

v13
v14

v15

v10

v11 v5

= v2

b

c

a

Theorem.
A ccw pre-order traversal on Ti
induces a canonical order.
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Canonical Order→ Schnyder Realizer

v3

v7
v8

v9

v12

v13

v10

v11

v5

v4

v6

v15

v14

b

c

a = v1 = v2

= v16

b

c

a
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Canonical Order→ Schnyder Realizer

v3

v7
v8

v9

v12

v13

v10

v11

v5

v4

v6

v15

v14

b

c

a = v1 = v2

= v16

b

c

a

Theorem.
A canonical order induces a
unique Schnyder Realizer.
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Linear Time Computation
� Compute Canonical Order

� With traversal of each Ti, compute:
� The number of vertices in Pi(v)
� The number of vertices in the subtree

Ti(v) of Ti rooted at v

� |V(Ri(v))| = ∑u∈Pi+1(v)|Ti(u)|+ ∑u∈Pi−1(v)|Ti(u)| − Ti(v)

� Compute these sums in six tree traversals

P1(v)
P2(v)

P3(v)

R3(v)

v
� Goal: vi = |V(Ri(v))| − |Pi−1(v)|

c

a b

� Compute Schnyder Realizer

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(n− 2)× (n− 2). Such a drawing can be computed in O(n) time.
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