W Universitit Trier

Visualization of Graphs

v Lecture 6: 1
% Orthogonal Layouts e i
’ S bod
Part I:
‘ﬁ Topology — Shape — Metrics
}L Philipp Kindermann

Orthogonal Layout — Applications

" ER diagram in OGDF

Orthogonal Layout — Applications

ER diagram in OGDF

RequestMotaData
[theaders : RequesiHeaders

ronRecenveResponse(]
[+onError)

ServiceTransportSender

[aetEndPaint)

winterfacen
TransportSender
*getSendParams()
+getPayload])
[+getCradentialCatibacki)

ausasn

winteriacer
Transformer
[ransiormy)
begetSupportedinputs() 1
[+ gotsupportedOutputs()
4 «intarfacan «usess |TransportMessageContext
TransportManager
registerProvider(] -
)
[+get Transformer() [+eetURI()
3 SN
dnieraces
TransportSendListener

TransportManagerimpl

RespanseMotaData

head:

RequestHeadars

SomeRequestHeaders

Header|
Header2
+Headerd
Headerd

headers . ResponseHeaders
i I—!

1 winterfaces
TransportEndPoint
X gelSorviceRen) EndPointConfiguration
getURI) e
vgaiC al l+provider-specific : XmiObject
winteriacen LigetProvider() 1 1
L d MetaDala()
T fotaDatal)
+deleteEndPoint()
+suspendEndPoint()
+resumeEnaPoint()
+sendMessageAsync()
+gotEndPoints()
+getEndPoint()
+oreate TransportConfext()
+getProviderConfiguration()
+gel...SchemaType()
+updateEndPoint)
SomeTransportProvider

1

Fheadert
header2
header3
headerd

srfacen
miObject
£

a
Xi

UML diagram by Oracle

Orthogonal Layout — Applicat

10NS

ER diagram in OGDF

-

SomeRequestHeaders

Header!
Header2
-Headerd
Headerd

headerl
header2
header3

i

headerd

winterfaces
XmiObject
£

winteriacer
man;;::;“’”" RequestMetaData
 getsupportedinputs() [theaders : RequesiHeaders
[+ gotsupportedOutputs() 1
winterfacen «usess [TransportMessageContoxt
1 |TransporiManager
registarProvider) |- —— == ;
1 i
+getT) [*getURI()
; t RespanseMotaData
headers - RespanseHeaders
1 k [Respansefioades]
nterfacen
TransportSendListanor
[ronReceneResponsel | |
[ronErrar) \ TransportManagerimpl
[P
natifies
s
I
1 winteriacen
_ Jeusesn 1 T rEndPoint
ServiceTransportSender fanspof ol
e I gelSorviceRen) EndPointConfiguration
! gettmig SR
H _ vgaiC l+provider-specific : XmiObject
| wintertacen LgeiProvider() 1 1
o \ TransportProvider +ereateRequestMetaDataf)
winterfacen fotaDatal)
1
TransportSender H +deteteEndPoint) 1
[*gatSandParams(} K—- +suspandEndPoint()
+getPayload() +resumeEnaPoint()
[+getCradentialCatibacki) +sendMessageAsync()
; +gotEndPoints()
| +getEndPoint()
| +oreale TransportConfext()
| +getProviderConfigurationt)
| +gel..SchemaType()
i +updateEndPoint)
|
|
| ausass
|
} SomeTransportProvider @@ 0.1

RAAD VAN BESTUUR

BESTUURSCOLLEGE

L STUDENTENRAAD

ALGEMEEN DIRECTEUR

[

|covtonie aowimisTeane| -

1 i M

il :]

Departements-

—

’(' raad IWT

Departements- SPaITEn
raad LeO raad SAW

| pocC | | DEP
| wT

SR

DocC | | DEP
LeO | | SR

DOC DEP‘
HWB || SR |
Opleidings-

raden

Opleidings-

poc || DEP
SAW |

raden

Opleidings-
raden

Opleidings-
raden

Organigram of HS Limburg

UML diagram by Oracle

Orthogonal Layout — Applications

ER diagram in OGDF

-

winteriacer
Transf
maw:::} armer RequestMetaData
- gotSupportedinputs() [theaders : RequesiHeaders
+aetSupportedoutputs() ! 1
1 «intarfacan «usess | TransportMessageContext
TransportManager SomeRequestHeaders
, registarProvider) |- —— == ; Heacer]
Header2
et) [+getURI() Headerd
’ t ResponseMetaData Headsrd
headers ; ResponseHeaders
1 k (Fosparnsaiosdors]
1
nterfacen
TransportSendListonor | Teadert
[tonReceiveResponse() \ header2
[ronErrar) \ TransportManagerimpl header3
Vo headerd
HD[\ﬁels 77777
I
1 winteriacen
_ |ruses 1 i rEndPoint
ServiceTransportSender fanspor ol
— I gafSorvicoRial) EndPointConfiguration
! gettmig SR
H L hgetC l+provider-specific : XmiObject
winterfacen +getProvider() 1 1
] ! TransportProvider L croateRequestMetaData() winterfaces
winterfacen | 7 fotaDatal) XmiObject
TransportSender | deleteEndPaint() 1 7
[*gatSandParams(} K—- +suspandEndPoint()
+getPayload} +resumeEnaPoint}
[+getCradentialCatibacki) +sendMessageAsync()
: +gotEndPoints()
| +getEndPoint()
\ +oreale TransportConfext()
| +getProviderConfiguration()
| +get...SchemaType()
| +updateEndPoint)
|
|
| ausass
{SomaEndPaintConfiguration
|
} SomeTransportProvider SWE@ 0.1

i

RAAD VAN BESTUUR

BESTUURSCOLLEGE L STUDENTENRAAD

I
ALGEMEEN DIRECTEUR

UML diagram by Oracle

[|
emen Departements-

——mimnw Faad TWT. [L‘m‘m [L‘M-sm

DocC DEP‘ DOC DEP DocC DEI" DOC | DEP
HWB . SR | LeO SR SﬂW SR
Oplcidihgsh— Opleidings- Opleidings- Opleidings-
raden | raden raden raden

cmw;nr o~ Hlogt %xm J;:L,ﬁw E o] — _.j

U 1z¢ vor

-

=
A
g

)

e -
N o

Organigram of HS Limburg

Circuit diagram by Jetf Atwood

Orthogonal Layout — Detinition

Orthogonal Layout — Detinition

o O
OO

Orthogonal Layout — Detinition

Orthogonal Layout — Detinition

‘Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

\

Orthogonal Layout — Detinition

‘Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

\

Observations.

Orthogonal Layout — Detinition

‘Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

\

Observations.

B Edges lie on grid =
bends lie on grid points

Orthogonal Layout — Detinition

‘Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

\

Observations.

B Edges lie on grid =
bends lie on grid points

B Max degree of each
vertex is at most 4

Orthogonal Layout — Detinition

Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

.

Observations.

B Edges lie on grid =
bends lie on grid points

B Max degree of each
vertex is at most 4

B Otherwise _+_

Orthogonal Layout — Detinition

Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

.

Observations.

B Edges lie on grid =
bends lie on grid points

B Max degree of each
vertex is at most 4

B Otherwise _?_:

Orthogonal Layout — Detinition

Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

.

Observations.

B Edges lie on grid =
bends lie on grid points

B Max degree of each
vertex is at most 4

B Otherwise _?_: LI
|

- 10

Orthogonal Layout — Detinition

‘Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

\

Observations. Planarization.

B Edges lie on grid =
bends lie on grid points

B Max degree of each
vertex is at most 4

B Otherwise _?_: LI
|

-11

Orthogonal Layout — Detinition

Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

.

Observations. Planarization.

B Edges lie on grid = B Fix embedding

bends lie on grid points

B Max degree of each
vertex is at most 4

B Otherwise _?_: LI
|

-12

Orthogonal Layout — Detinition

Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

.

Observations. Planarization.

B Edges lie on grid = B Fix embedding

bends lie on grid points B Crossings become

B Max degree of each vertices
vertex is at most 4

B Otherwise _?_: LI
|

Orthogonal Layout — Detinition

‘Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

\

Observations. Planarization.

B Edges lie on grid = B Fix embedding

bends lie on grid points B Crossings become

B Max degree of each vertices

vertex is at most 4 + . +
B Otherwise _?_: LI

Orthogonal Layout — Detinition

‘Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

\

Observations. Planarization.

B Edges lie on grid = B Fix embedding

bends lie on grid points B Crossings become

B Max degree of each vertices

vertex is at most 4 + . +
B Otherwise _?_: LI

Orthogonal Layout — Detinition

‘Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

\ J

Observations. Planarization. Aesthetic criteria.

B Edges lie on grid = B Fix embedding

bends lie on grid points B Crossings become

B Max degree of each vertices

vertex is at most 4 + . +
B Otherwise _?_: LI

Orthogonal Layout — Detinition

‘Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

Observations. Planarization. Aesthetic criteria.
m Edges lie on grid = B Fix embedding B Number of bends
bends lie on grid points B Crossings become
vertices

B Max degree of each

vertex is at most 4 + . +
B Otherwise _?_: LI

Orthogonal Layout — Detinition

Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

. J
Observations. Planarization. Aesthetic criteria.
m Edges lie on grid = B Fix embedding B Number of bends
bends lie on grid points B Crossings become B Length of edges
vertices

B Max degree of each

vertex is at most 4 + . +
B Otherwise _?_: LI

Orthogonal Layout — Detinition

Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

.

Observations. Planarization. Aesthetic criteria.
m Edges lie on grid = B Fix embedding B Number of bends
bends lie on grid points B Crossings become B Length of edges
B Max degree of each vertices B Width, height, area

vertex is at most 4 + . +
B Otherwise _?_: LI

-19

Orthogonal Layout — Detinition

Observations.

B Edges lie on grid =
bends lie on grid points

B Max degree of each

vertex is at most 4

B Otherwise

3

Definition.
A drawing I of a graph G = (V, E) is called orthogonal if
M vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical segments, and

B pairs of edges are disjoint or cross orthogonally.

. y
Planarization. Aesthetic criteria.
B Fix embedding B Number of bends
B Crossings become B Length of edges
vertices B Width, height, area

+ —» + B Monotonicity of edges
H ...

Topology — Shape — Metrics

Three-step approach: | Tamassia 1987]

TOPOLOGY - SHAPE — METRICS

Topology — Shape — Metrics

Three-step approach: | Tamassia 1987]

V= {Ulr 02,03, 04:}
E = {010, 0103, 0104, U203, U204 }

TOPOLOGY - SHAPE — METRICS

Topology — Shape — Metrics

Three-step approach:

V= {Ulr 02,03, 04:}
E = {010, 0103, 0104, U203, U204 }

combinatorial
embedding/

planarization

4

1
TOPOLOGY —

SHAPE

[Tamassia 1987]

METRICS

Topology — Shape — Metrics

Three-step approach:

V = {Ull 02,03, 04}
E = {v1vy, 0103, 0104, U203, V204 }

combinatorial
embedding/
reduce planarization
crossings
4
; 2
TOrPOLOGY —

SHAPE

[Tamassia 1987]

METRICS

Topology — Shape — Metrics

Three-step approach:

V = {Ull 02,03, 04}
E = {v1vy, 0103, 0104, U203, V204 }

combinatorial
embedding/
reduce planarization
crossings
4
; 2
TOrPOLOGY —

[Tamassia 1987]

orthogonal
representation

SHAPE

METRICS

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

V = {U].I 02,03, 04}
E = {v1vy, 0103, 0104, U203, V204 }

combinatorial
embedding/

reduce planarization
crossings

A NUIL b:: . iniization [— T4

7 1¢---23 ;

orthogonal |
2 representation =~ Le--ee- .25).

1
TOPOLOGY - SHAPE — METRICS

Topology — Shape — Metrics

Three-step approach:

V = {U].I 02,03, 04}
E = {v1vy, 0103, 0104, U203, V204 }

combinatorial
embedding/
reduce planarization
crossings
4

1

TOPOLOGY —

[Tamassia 1987]

bend minimization

orthogonal
representation

SHAPE

—=

74
1 .
IZ
planar |
orthogonal
drawing
prmmTTmTmmmmme <4
N
FD S
2
— METRICS

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

74

V = {U].I 02,03, 04}
E = {v1v7, 0103, 0104, U203, V04 } 3

1 <
combinatorial | I 2
embedding/ planhat
reduce planarization or thogpnal area mini-
crossings drawing mization

VA NG - iniization [— T4

7 1¢---23 ;

orthogonal |
2 representation =~ Le--ee- .25).

1
TOPOLOGY - SHAPE — METRICS

W Universitit Trier

Visualization of Graphs

H Lecture 6: f ——
% Orthogonal Layouts Og . i
’ S bod
Part 11I:
T [I Orthogonal Representation
}_l_‘: Philipp Kindermann

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

74

V = {U].I 02,03, 04}
E = {v1v7, 0103, 0104, U203, V04 } 3

1 <
combinatorial | I 2
embedding/ planar
reduce planarization orthogpnal area mini-
crossings drawing mization

N bend minimization [— 74

1623 ;

orthogonal i
2 representation =~ Le-eee- .2!5.

1
TOPOLOGY - SHAPE — METRICS

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.
Let G = (V, E) be a plane graph with faces F and outer face fy.

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.
Let G = (V, E) be a plane graph with faces F and outer face fy.

B Let ¢ be an edge

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

-Q\\
S

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face fy. @ \;.
B Let ¢ be an edge with the face f to the right.

4
-
-

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

-Q\\
S

Definitions. .
Let G = (V, E) be a plane graph with faces F and outer face fy. @)

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ wrt f is a triple (¢, , «) where AN

4
-
-

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

-Q\\
S

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face fy. @ \;.
B Let ¢ be an edge with the face f to the right. -
An edge description of ¢ wrt f is a triple (¢, , «) where AN

m Jisasequence of {0,1}* (0 = right bend, 1 = left bend) o=

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

-Q\\
S

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face fy. @ \;.
B Let ¢ be an edge with the face f to the right. . -
An edge description of ¢ wrt f is a triple (¢, , «) where AN

m §is a sequence of {0,1}* (0 = right bend, 1 = left bend) ="

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

-Q\\
S

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face fy. @ \;.
B Let ¢ be an edge with the face f to the right. 0 : .
An edge description of ¢ wrt f is a triple (¢, , «) where AN

m §is a sequence of {0,1}* (0 = right bend, 1 = left bend) ="

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

-Q\\
S

Definitions. 0

Let G = (V, E) be a plane graph with faces F and outer face fy. @ \;.
B Let ¢ be an edge with the face f to the right. 0 : .
An edge description of ¢ wrt f is a triple (¢, , «) where AN

m §is a sequence of {0,1}* (0 = right bend, 1 = left bend) ="

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.
Let G = (V, E) be a plane graph with faces F and outer face fy.

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ wrt f is a triple (¢, , «) where

® 0 is a sequence of {0,1}* (0 = right bend, 1 = left bend)

-Q\\
S

4
-
-

- 10

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face fy.

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ wrt f is a triple (¢, , «) where

® 0 is a sequence of {0,1}* (0 = right bend, 1 = left bend)
m xisangle € {7, T, 37”, 27t} between ¢ and next edge ¢’

-Q\\
S

O \
o7,

0 z
1 \

(¢,100,)

-11

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face fy.

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ wrt f is a triple (¢, , «) where

® 0 is a sequence of {0,1}* (0 = right bend, 1 = left bend)
m xisangle € {7, T, 37”, 27t} between ¢ and next edge ¢’

-Q\\
S

4
-
-

-12

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face fy.

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ wrt f is a triple (¢, , «) where

® 0 is a sequence of {0,1}* (0 = right bend, 1 = left bend)
m xisangle € {7, T, 37”, 27t} between ¢ and next edge ¢’

-Q\\
S

4
-
-

-13

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.
Let G = (V, E) be a plane graph with faces F and outer face fy.

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ wrt f is a triple (¢, , «) where

® 0 is a sequence of {0,1}* (0 = right bend, 1 = left bend)
m xisangle € {7, T, 37”, 27t} between ¢ and next edge ¢’

B A face representation H(f) of f is a clockwise ordered se-
quence of edge descriptions (¢, J,).

-~~~
S

4
-
-

-14

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.
Let G = (V, E) be a plane graph with faces F and outer face fy.

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ wrt f is a triple (¢, , «) where

® 0 is a sequence of {0,1}* (0 = right bend, 1 = left bend)
m xisangle € {7, T, 37”, 27t} between ¢ and next edge ¢’

B A face representation H(f) of f is a clockwise ordered se-
quence of edge descriptions (¢, J,).

B An orthogonal representation H(G) of G is defined as

H(G) = {H(f) | f € F}.

-~~~
S

4
-
-

-15

Orthogonal Representation — Example

82 " Q

Orthogonal Representation — Example

Orthogonal Representation — Example

Orthogonal Representation — Example

H(fo) = ((e1,11, 3), (85 111, %), (e, @,), (€3,D, 71), (€2, D, §))
H(fl) — ((811001 3%) () (e6 00, 71'))
H(f2) = ((e5,000, 7), (66 11, %) (e3,D,), (s, D, 5))

Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 3%)/ (84/ L, 7[)/ (63/ L, Tt)/ (62/ @D, %))
H(fl) — ((811001 3%)/ (62/ @D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000,), (es,11, 5), (e3,D,), (e4, D, 7))

@ “ ’/ I . . 14 . 7
Combinatorial “drawing” of H(G)?
f @ o -
L lge \J2
€1 |)

Orthogonal Representation — Example

H(fo) = ((e1,11, 3), (85 111, %), (e, @,), (€3,D, 71), (€2, D, §))
H(fl) — ((811001 3%) () (e6 00, 71'))
H(f2) = ((e5,000, 7), (66 11, %) (e3,D,), (s, D, 5))

fo

Orthogonal Representation — Example

H(fo) = ((e1,11, 3), (85 111, %), (e, @,), (€3,D, 71), (€2, D, §))
H(fl) — ((811001 3%) () (e6 00, 71'))
H(f2) = ((e5,000, 7), (66 11, %) (e3,D,), (s, D, 5))

€1

ol

1

Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7), (e3,D, 77), (€4, 2, 7))

€1

tod

1

NS

Orthogonal Representation — Example

H(fo) = ((e1,11, 3), (85 111, %), (e, @,), (€3,D, 71), (€2, D, §))
H(fl) — ((811001 3%) () (e6 00, 71'))
H(f2) = ((e5,000, 7), (66 11, %) (e3,D,), (s, D, 5))

fo

Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7), (e3,D, 77), (€4, 2, 7))

fo

- 10

Orthogonal Representation — Example

H(fo) = ((e1,11, 3), (85 111, %), (e, @,), (€3,D, 71), (€2, D, §))
H(fl) — ((811001 3%) () (e6 00, 71'))
H(f2) = ((e5,000, 7), (66 11, %) (e3,D,), (s, D, 5))

€1
1 1
fo
1 2 €4 3r

0427

@66@&1

€1 {4

€5

8-11

Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7), (e3,D, 77), (€4, 2, 7))

€1
1 1
fo
1 2 T €4 5

0 [

@66@ o

€1 4

€5

-12

Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7), (e3,D, 77), (€4, 2, 7))

€1

1 1

fo

NS

€3 1 €4
O O

-13

Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7), (e3,D, 77), (€4, 2, 7))

€1

1 1

fo

NS

m €3 1 €4

-14

Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7), (e3,D, 77), (€4, 2, 7))

€1

1 1

fo

NS

€2 7 €3 71 €4

-15

Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7), (e3,D, 77), (€4, 2, 7))

fo
1 2 %32;(3371340

- 16

Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7), (e3,D, 77), (€4, 2, 7))

fo
1 2 %32;(3371340

-17

Orthogonal Representation — Example

H(fo) = ((e1,11,), (es, 111,37”) (e4,D,), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

1 1
fo 0 0

- 18

Orthogonal Representation — Example

H(fo) = ((e1,11,), (es, 111,37”) (e4,D,), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

1 1
fo 0 0

-19

Orthogonal Representation — Example

H(fo) = ((e1,11,), (es, 111,37”) (e4,D,), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

1 1
fo 0 0

- 20

Orthogonal Representation — Example

H(fo) = ((e1,11,), (es, 111,37”) (e4,D,), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

€1

fo

p—
JNE —_
- o
(6V)
~ o
N[
N
N

-21

Orthogonal Representation — Example

H(fo) = ((e1,11,), (es, 111,37”) (e4,D,), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

€1

fo

—_

JNE —_
N| =
w
|>1 o

NI

Q)
N

-22

Orthogonal Representation — Example

H(fo) = ((e1,11,), (es, 111,37”) (e4,D,), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

€1

fo

—_

JNE —_
N| =
w
|>1 o

NI

Q)
N

8-23

Orthogonal Representation — Example

H(fo) = ((e1,11,), (es, 111,37”) (e4,D,), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

€1

fo

—_
O
NIR —_
N| o
w
|>1 o
N|_
Q)
N

-24

Orthogonal Representation — Example

H(fo) = ((e1,11,), (es, 111,37”) (e4,D,), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

2
fo 0 0
1 2] 562 1 €3 €4 sn
0 z|" & T ° 1°
2 2
0 h 0
€6 f2
0 0

-25

Orthogonal Representation — Example

H(fo) = ((e1,11,), (es, 111,37”) (e4,D,), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

161 4
fo 0 0
1 2] 562 1 €3 €4 sn
0 =" F T ° 7’
2 2
o N1
1 €6 1 f2
0 0

- 26

Orthogonal Representation — Example

H(fo) = ((e1,11,), (es, 111,37”) (e4,D,), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

fo

p—
JNE —_
N| o
(6V)
~)
NI
N
N
>
N
W
0~
N
A
(GV]
|

0 = = |z 1?
2 212
0 h 0
1 €6 1 f2
0 0

-27

Orthogonal Representation — Example

H(f()) — ((61/11/ ’ (8 117, 377{) (84/@ 7() (63/@/ 7[)/ (62/@/ 7))
H(f1) = ((e1,00,), (e2,
H(fZ) — ((65/ 000, 2)/ (86/11' 2) (63/ &, 71'), (84/@/ 2))
€1

fo

)
5 7). (6,00, 7))

-
N[

p—
JNE —_
N| o
(6V)
N|>1 o
N
QN
N
—0
N[~
N
W
~0o~

-28

Orthogonal Representation — Example

H(f()) — ((61/11/ ’ (8 117, 377{) (84/@ 7() (63/@/ 7[)/ (62/@/ 7))
H(f1) = ((e1,00,), (e2,
H(fZ) — ((65/ 000, 2)/ (86/11' 2) (63/ &, 71'), (84/@/ 2))
€1

fo

)
5 7). (6,00, 7))

-
N[

p—
JNE —_
N| o
(6V)
N|>1 o
N
QN
N
—0
N[~
N
W
~0o~

-29

Orthogonal Representation — Example

H(fo) = ((e1,11, 3), (e5, 111,37”) (e4,D, 1), (e3,D, 1), (€2, D, 7))

H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2)/ (86/11' 2) (63/@/ 71'), (84/@/ %))

161 4
fo <[00
1 2
0 ZzZ|° €2 1 €3 ;1 €4 3
gl 3 ol o o))
> n [7T i
2 |2 2
f1
0 0 f2
1 €6 1
0 0

- 30

Orthogonal Representation — Example

, (e5, 111,37”) (e4,D, 1), (e3,D, 1), (€2,D, 7))

), (2,2, 5), (es,00, 7))
)/ (66/ 11/ 2) (63/ &, 7-()/ (84/ @, %))

H(f()) — ((61/11/)
H(fl) — ((81100 Tn
H(f2) = ((es, 000, 5

€1 1

1
fo <[00
1 2
0 =" € 7 €3 ;1 €4 3
63 2 STH T |t 7\’(71’)2
0 2 |8 2
f1
36@84 U U f2
1 €6 1
5 0 0
> 1 €5 1

Concrete coordinates are not fixed yet!

-}
OSTPSE ST —_

(H1) H(G) corresponds to F, fp.
1

(H1) H(G) corresponds to F, fp.

(H2) For each edge

shared by faces f and g

(H1) H(G) corresponds to F, fp.

shared by faces f and ¢ with

(H2) For each edge
,00,00) € H(g)

(,01,001) € H(f) and (

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with
(,51,0&1) c H(f) and (,52,0(2) S H(g)
sequence 07 is reversed and inverted 0».

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with
(,51,0&1) c H(f) and (,52,0(2) S H(g)
sequence 07 is reversed and inverted 0».

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with
(,51,0&1) c H(f) and (,52,0(2) S H(g)
sequence 07 is reversed and inverted 0».

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/

e fo
(H1) H(G) corresponds to F, fp. 1Io : ol1
1 %ngngezg%g&; 2
(H2) For each edge shared by faces f and g with | 2| * 35 " 3
((1,0),61,00) € H(f) and ((0,11),0,,00) € H(g) o o
sequence 01 is reversed and inverted ¢5. ! 6 1 2
0 0
1 €5 1

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(r) = {_4 if f = fo

reH(f) +4 otherwise.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,51,0&1) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

(H1) H(G) corresponds to F, fp. 0 0
) W
(H2) For each edge shared by faces f and ¢ with 0 21 2
((1,0),01,00) € H(f) and ((,1),6,,02) € H(g) L
sequence 07 is reversed and inverted 05. !
0
1
(H3) Let |d|g (resp. |0]1) be the number of zeros Cles) = 0 —

(resp. ones) in 0 and r = (¢, J,). (¢3)
Let C(r) :=1[0|lg— |01 +2—w -2/ Cley) = —
For each face f it holds that: (o)

(¢6)

Z C(T) _ {_4 iff:fO

reH(f) +4 otherwise. C

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,51,0&1) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,51,0&1) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,51,0&1) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

1 a
0 0
5 7€ 1 €3 1 €4 3
T 3m 2
i 5 r |z 7T
2 2 12
0 f 0
=0—-0+4+2—12
7T
— — 42
— — 42
— — 42

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,51,0&1) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,51,0&1) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

1L fo
0 O
1 % ; %ezn% ey
0 %71 TN %% 2z
0 fl 0
1 € 1 f)
0
1
C(BB):O_O—FZ—n.%:O
Cles) =0—-0+2—F-2 =
Cles) = — +2— =
Cles) = — +2— =

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,51,0&1) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,(51,061) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

1L fo
0 0
1 %7{ 3n§€2n63 o €4 s
L % 2 %% -~ %
0 fl 0
1 € 1 f)
: 0
1 1
C(63)20_0+2—7T-%:O
C(€4):O—()_|_2_%.%:1
_ .
Cleg) = — +2— =

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,(51,061) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

1L fo
0 0
: %” 3n%62”e3 7 €4 3x
L % 2 %% -~ %
0 fl 0
1 € 1 f)
: 0
1 1
C(63)20_0+2—7T-%:O
C(€4):O—()_|_2_%.%:1
_ -
C(e5)=3-0+2—-%-2=4
Cleg) = — +2— =

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,(51,061) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

1L fo
0 0
1 g %627163 o €4 s
B A T
0 fl 0
! e 1 N2
: 0
1 1
C(63)20_0+2—7T-%:O
C(€4):O—()_|_2_%.%:1
_ -
C(es) =3-04+2-5-2 =4
_ -
Cleg) =0—24+2—-7%-2 =

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,(51,061) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

1L fo
0 0
1 g %627163 o €4 s
B A T
0 fl 0
! e 1 N2
: 0
1 1
C(63)20_0+2—7T-%:O
C(€4):O—()_|_2_%.%:1
_ -
C(es) =3-04+2-5-2 =4
_ -
Cleg)=0-24+2-7-2 =1

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

(,51,0&1) ~ H(f) and (,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J,).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

(H4) For each vertex v the sum of incident angles is 277.

1L fo
0 0
1 % %627163 o €4 s
A A L
0 fl 0
! e 1 N2
: 0
1 1
C(63)20_0+2—7T-%:O
C(€4):O—()_|_2_%.%:1
_ -
C(es) =3-04+2-5-2 =4
_ -
Cleg)=0-24+2-7-2 =1

10

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

74

V = {U].I 02,03, 04}
E = {v1v7, 0103, 0104, U203, V04 } 3

1 <
combinatorial | I 2
embedding/ planar
reduce planarization orthogpnal area mini-
crossings drawing mization

N bend minimization [— 74

1623 ;

orthogonal i
2 representation =~ Le-eee- .2!5.

1
TOPOLOGY - SHAPE — METRICS

11

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

74

V = {U].I 02,03, 04}
E = {v1v7, 0103, 0104, U203, V04 } 3

1 q
combinatorial | I 2
embedding/ planat
reduce planarization oL thogpnal area mini-
crossings drawing mization

A NUL - iniization [—— 74

7 1¢---23 ;

orthogonal i
2 representation =~ Leeeee- .2!5.

1
TOPOLOGY - SHAPE — METRICS

W Universitit Trier

Visualization of Graphs

| 4 O - Qmmmmm oo 9

N Lecture 6: 1
% Orthogonal Layouts Og | i

Part 111
‘ﬁ Flow Networks
. }L Philipp Kindermann

13 -

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

13-2

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with

13-3

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

13-4

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)
B sources S CV

13-5

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)
B sources S C V,sinks T CV

13-6

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)
B sources S C V,sinks T CV

13-7

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)
B sources S C V,sinks T CV

13-8

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

13-9

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

13-10

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

13-11

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X(i,j) <ulij) V(i) €E

13-12

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X(i,j) <ulij) V(i) €E

13-13

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-14

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-15

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-16

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-17

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-18

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-19

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-20

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-21

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-22

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-23

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X0ﬁ<u0ﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

13-24

Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0 X(i) Suli) Vi) < B
Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(1,7) is maximized.
(i,j)€E,i€S

14 -1

s-t-Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S C V,sinks T CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0 X(i) Suli) Vi) < B
Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(1,7) is maximized.
(i,j)€E,i€S

14 -2

s-t-Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E);s, t; u) with
B directed graph G = (V,E)

W sources € V,sinkt eV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0 X(i) Suli) Vi) < B
Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(1,7) is maximized.
(i,j)€E,i€S

14 -3

s-t-Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E);s, t; u) with
B directed graph G = (V,E)

W sources € V,sinkt eV

® edge capacity u: E — RS

A function X: E — IRBL is called s-t-flow, if:

0<XUD<UUD V(i,j) € E
Y X(@G,7)— Y X(j,i) Vie V\{s,t}

(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(1,7) is maximized.
(i,j)€E,i€S

14 -4

s-t-Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E);s, t; u) with
B directed graph G = (V,E)

W sources € V,sinkt eV

® edge capacity u: E — RS

A function X: E — IRBL is called s-t-flow, if:

0<XUD<UUD V(i,j) € E
Y X(@G,7)— Y X(j,i) Vie V\{s,t}

(i,j)€E (ji)eE

A maximum s-t-flow is an s-t-flow where Z X(s,]) is maximized.
(s,/)cE

14 -5

s-t-Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E);s, t; u) with
B directed graph G = (V,E)

W sources € V,sinkt eV

® edge capacity u: E — RS

A function X: E — IRBL is called s-t-flow, if:

0<XUD<UUD V(i,j) € E
Y X(@G,7)— Y X(j,i) Vie V\{s,t}

(i,j)€E (ji)eE

A maximum s-t-flow is an s-t-flow where Z X(s,]) is maximized.
(s,/)cE

14 -6

O
s-t-Flow Networks e e,
3/3 P /:\,M ~ V1;n\1;1\/r1112med1a Commons]
._ 4/5 e 1/1 D} ?J\ 3/3
Flow network (G = (V,E);s, t; u) with 25 (/5 :

m directed graph G = (V,E) - {:D

W sources € V,sinkt eV s o a
® edge capacity u: E — RS o5 "‘f/ﬁf{r‘uz/z

3/3
A function X: E — IRBL is called s-t-flow, if:

0<X(,J) <M(']') v(i,j) € E
Y X(i,7)— Y _X(j,i)=0 Vie V\{s,t}

(i,j)€E (ji)eE

A maximum s-t-flow is an s-t-flow where Z X(s,]) is maximized.
(s,/)cE

14-7
O

s-t-Flow Networks

AR TR N [Finnrind, CC BY-SA 3.0,
3/3 il "\-—\ﬂ via Wikimedia Commons]
T 1m
. “} >‘3\ 3/3
. . - 1/1
Flow network (G = (V,E);s, t; u) with o5 (350 2

m directed graph G = (V,E) - {:D

W sources € V,sinkt eV s o a
® edge capacity u: E — RS o5 "‘f/ﬁf{r‘uz/z

3/3
A function X: E — IRBL is called s-t-flow, if:

0<X(,J) <M(']') v(i,j) € E
Y X(i,7)— Y _X(j,i)=0 Vie V\{s,t}

i,j)€E (ji)eE
/J)

A maximum s-t-flow is an s-t-flow where Z X(s,]) is maximized.
(s,/)cE

14 -8

s-t-Flow Networks

[Finnrind, CC BY-SA 3.0,
A\'—\, via Wikimedia Commons]

Flow network (G = (V,E);s, t; u) with
B directed graph G = (V,E)

W sources € V,sinkt eV

® edge capacity u: E — RS

A function X: E — IRBL is called s-t-flow, if:

0<X0ﬁ<u(ﬁ V(i,j) € E
Y X(i,7)— Y _X(j,i)=0 Vie V\{s,t}

(i,j)€E (ji)eE

A maximum s-t-flow is an s-t-flow where Z X(s,]) is maximized.
(s,/)cE

14 -
09

s-t-Flow Networks o

[Finnrind, CC BY-SA 3.0,
A\'—\, via Wikimedia Commons]

Flow network (G = (V,E);s, t; u) with
B directed graph G = (V,E)

W sources € V,sinkt eV

® edge capacity u: E — RS

A function X: E — IRBL is called s-t-flow, if:

0 < X(i)) <U(']') V(i j) € E
Y X(i,7)— Y _X(j,i)=0 Vie V\{st} o
(i,j)€E (ji)eE

A maximum s-t-flow is an s-t-flow where Z X(s,]) is maximized.
(s,/)cE

Residual Network

15 -

Flow network (G = (V,E);s, t; u)

Residual Network

Residual network Gy = (V,E’):

15 -

Flow network (G = (V,E);s, t; u)

Residual Network

Residual network Gy = (V,E’):

15 -

Flow network (G = (V,E);s, t; u)

Residual Network

Residual network Gy = (V,E’):
m X(0,7) <u(v,v)= (v,0) €FE

15 -

Flow network (G = (V,E);s, t; u)

Residual Network

Residual network Gy = (V,E’):
m X(0,7) <u(v,v)= (v,0) €FE

15 -

Flow network (G = (V,E);s, t; u)

15 -

Residual Network

Residual network Gy = (V,E’): Flow network (G = (V,E);s, t; u)
m X(0,7) <u(v,v)= (v,0) €FE

B X(v,0)>0= (v,v) € E

Residual Network

Residual network Gy = (V,E’):
m X(0,7) <u(v,v)= (v,0) €FE

B X(v,0)>0= (v,v) € E
/@
(8

\@

03

X

15 -

Flow network (G = (V,E);s, t; u)

15 -

Residual Network

Residual network Gy = (V,E’): Flow network (G = (V,E);s, t; u)
m X(0,7) <u(v,v)= (v,0) €FE

c(v,v") =u(v,v") — (v,0)
B X(v,0)>0= (v,v) € E

D
s

\@

03

X

Residual Network

Residual network Gy = (V,E’):
m X(0,7) <u(v,v)= (v,0) €FE

c(v,v") =u(v,v") — (v,0)
B X(v,0)>0= (v,v) € E

15 -

Flow network (G = (V,E);s, t; u)

15-10

Residual Network

Residual network Gy = (V,E’): Flow network (G = (V,E);s, t; u)
m X(0,7) <u(v,v)= (v,0) €FE

c(v,v") =u(v,v") — (v,0)
B X(v,0)>0= (v,v) € E

c(v,v") =u(v,v)

15-11

Residual Network

Residual network Gy = (V,E’): Flow network (G = (V,E);s, t; u)
m X(0,7) <u(v,v)= (v,0) €FE

c(v,v") =u(v,v") — (v,0)
B X(v,0)>0= (v,v) € E

c(v,v") =u(v,v)

15-12

Residual Network

Residual network Gy = (V,E’): Flow network (G = (V,E);s, t; u)
m X(0,7) <u(v,v)= (v,0) €FE

c(v,v") =u(v,v") — (v,0)
B X(v,0)>0= (v,v) € E

c(v,v") =u(v,v)

Flow-increasing path IV

15-13

Residual Network

Residual network Gy = (V,E’): Flow network (G = (V,E);s, t; u)
m X(0,7) <u(v,v)= (v,0) €FE

c(v,v") =u(v,v") — (v,0)
B X(v,0)>0= (v,v) € E

c(v,v") =u(v,v)

Flow-increasing path IV

15-14

Residual Network

Residual network Gy = (V,E’): Flow network (G = (V,E);s, t; u)
m X(0,7) <u(v,v)= (v,0) €FE

c(v,v") =u(v,v") — (v,0)
B X(v,0)>0= (v,v) € E

c(v,v") =u(v,v)

Flow-increasing path IV

15-15

Residual Network

Residual network Gy = (V,E’): Flow network (G = (V,E);s, t; u)
m X(0,7) <u(v,v)= (v,0) €FE

c(v,v") =u(v,v") — (v,0)
B X(v,0)>0= (v,v) € E

c(v,v") =u(v,v)

Flow-increasing path IV

FordFulkerson

FordFulkerson

FordFulkerson

} Initialization with Zero-flow

16 -

FordFulkerson

} Initialization with Zero-flow

} Max Flow

16 -

FordFulkerson

} Initialization with Zero-flow

} Max Flow

16 -

FordFulkerson

} Initialization with Zero-flow

} Max Flow

16 -

FordFulkerson

} Initialization with Zero-flow

} Capacity of W

} Max Flow

16 -

FordFulkerson

} Initialization with Zero-flow

} Capacity of W

} Max Flow

16 -

FordFulkerson

iFordFulkerson(G (V,E);s, t;u)

foreach (v,v") € E do

| X(v,7")=0
while Gy contains s-f-path IV do
AW = min@’v/)ew C(U, U/)
foreach (v,v") € W do
if (v,v’) € E then

| X(v,7v") = X(v,0") + Aw

re_turn X

} Initialization with Zero-flow

} Capacity of W

} Max Flow

16 -

16 - 10

FordFulkerson

iFordFulkerson(G (V,E);s, t;u)

ﬂ[re;((:zll 5]/)' :) OE £ do }Initialization with Zero-flow
while Gy contains s-f-path W do ,

Ay = min, e (0, 0') '} Capacity of W

foreach (v,v") € W do :

if (v,v’) € E then

| X(v,7") = X(v,0") + Aw

| X(v,7") = X(v,v") — Aw

return X } Max Flow

16 - 11

FordFulkerson

iFordFulkerson(G (V,E);s,t;u)
fﬁrg?((:zll E/), :) OE £ do }Initialization with Zero-flow
while Gy contains s-f-path WV do ,
Ay = min, e (0, 0') '} Capacity of W
foreach (v,v") € W do)
if (v,v’) € E then |
| X(0,0) = X(v,0') + Bw - pIncreasing flow along W

| X(v,7") = X(v,v") — Aw

| 1/
return X } Max Flow

16 - 12

FordFulkerson

iFordFulkerson(G (V,E);s, t;u)

f([re)?((:g, 5]/)' :) ()E £ do }Initialization with Zero-flow

while Gy contains s-f-path W do ,
Ay = min, e (0, 0') '} Capacity of W
foreach (v,v") € W do)
if (v,v’) € E then

|1 X(v,v') = X(v,v') + Aw - tIncreasing flow along W
else |

| X(v,7") = X(v,v") — Aw

L W,
return X } Max Flow

(FordFulkerson finds a maximum s-t-flow in O(|X*| - n) time.]

FordFulkerson — Example

17 -

FordFulkerson — Example

17 -

FordFulkerson — Example

17 -

FordFulkerson — Example

17 - -

FordFulkerson — Example

17 -

FordFulkerson — Example

17 -

FordFulkerson — Example

17 -

FordFulkerson — Example

17 -

EdmondsKarp

EFordFulkerson(G = (V,E);s, t;u)
- foreach (v,v') € E do

| X(v,7")=0
while Gy contains s-f-path W do
W = s-t-path in Gy

Ay = min(v,v’)éc(v,v’)
foreach (v,v') € W do
if (v,v") € E then
| X(v,7") = X(v,0") + Aw
else
| X(v,7") = X(v,v") — Aw

r;turn X

EdmondsKarp

iFordFulkcrson(G = (V,E);s, t;u)
foreach (v,v') € E do

| X(v,7")=0
while Gy contains s-f-path W do
W = s-t-path in Gy

Ay = min(v,v’)éc(v,v’)
foreach (v,v') € W do
if (v,v") € E then
| X(v,7") = X(v,0") + Aw
else
| X(v,7") = X(v,v") — Aw

r;turn X

EdmondsKarp

iFordFulkcrson(G = (V,E);s, t;u)
foreach (v,v') € E do

| X(v,7")=0
while Gy contains s-f-path W do
W = s-t-path in Gy

Ay = min(v,v’)éc(v,v’)
foreach (v,v') € W do
if (v,v") € E then
| X(v,7") = X(v,0") + Aw
else
| X(v,7") = X(v,v") — Aw

r;turn X

EdmondsKarp

iFordFulkcrson(G = (V,E);s, t;u)
foreach (v,v’) € E do

| X(v,7")=0
while Gy contains s-f-path W do
W = s-t-path in Gy

Ay = min(v,v’)éc(v,v’)
foreach (v,v’) € W do
if (v,v") € E then
| X(v,7") = X(v,0") + Aw
else
| X(v,7") = X(v,v") — Aw

re_turn X

[EdmondsKarp finds a maximum s-t-flow in O(nm?) time.J

EdmondsKarp — Example

19 -

EdmondsKarp — Example

19 -

EdmondsKarp — Example

19 -

EdmondsKarp — Example

19 - -

EdmondsKarp — Example

19 -

EdmondsKarp — Example

19 -

EdmondsKarp — Example

19 -

EdmondsKarp — Example

19 -

20-1

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S C V,sinks T CV

B edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<XUD<MUD V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS

20-2

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; /; u) with
B directed graph G = (V,E)

B sources S C V,sinks T CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<XUD<MUD V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS

20-3

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E);S, T; (; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

m edge lower bound [: E — Ry

B edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<XUD<MUD V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS

20-4

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E);S, T; (; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

m edge lower bound [: E — Ry

B edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<XUD<uUﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS

20-5

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E);S, T; (; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

m edge lower bound [: E — Ry

B edge capacity u: E — RS
A function X: E — IRBL is called S-T-flow, if:

00,)) < X(@,j) <ul(i,j) V(,j) €E
Y X(i,j)— Y _X(j,i)=0 Vie V\(SUT)

(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS

20-6

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); b; /; u) with
B directed graph G = (V,E)

B node production/consumption b: V.— R with Y_;2 b(i) =0

m edge lower bound [: E — Ry - &

N

3/3 > o 1/1
4/4/5(3/5

2/2
[]

B edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

00,) < X(@,j) <ul(i,j) V(,j) €E
Y X(i,7)— Y _X(j,i)=0 Vie V\(SUT)

(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS

20-7

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); b; /; u) with
B directed graph G = (V,E)

B node production/consumption b: V.— R with Y_;2 b(i) =0

m edge lower bound [: E — Ry - &

N

3/3 > o 1/1
4/4/5(3/5

2/2
[]

B edge capacity u: E — RS

A function X: E — IRBL is called valid flow, if:

f(i) < X(ij) < u(i]') v(i,j) € E

Y X(i,7)— Y _X(j,i) = b(i) VieV

(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS

20-8

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); b; /; u) with
B directed graph G = (V,E)

B node production/consumption b: V.— R with Y_;2 b(i) =0

m edge lower bound [: E — Ry - &

N

3/3 > o 1/1
4/4/5(3/5

2/2
[]

B edge capacity u: E — RS

A function X: E — IRBL is called valid flow, if:

0, 7) < X(,) < uli,]') v(i,j) € E

Y X(i,7)— Y _X(j,i) =b(i VieV
(i,j)€E (ji)eE

m Cost function cost: E — RY

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS

20-9

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); b; /; u) with
B directed graph G = (V,E)

B node production/consumption b: V.— R with Y_;2 b(i) =0

m edge lower bound [: E — Ry - &

N

3/3 > o 1/1
4/4/5(3/5

2/2
[]

B edge capacity u: E — RS

A function X: E — IRBL is called valid flow, if:

0(,j) < X(1,j) < u(i]') v(i,j) € E

Y X(i,7)— Y _X(j,i) = b(i) VieV
(i,j)€E (ji)eE

m Cost function cost: E — Ry and cost(X) := Y(; ieg cost(i, j) - X(i,)

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS

20-10

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); b; /; u) with
B directed graph G = (V,E)

B node production/consumption b: V.— R with Y_;2 b(i) =0

m edge lower bound [: E — Ry - &

N

3/3
4/4/5(3/5

2/2
[]

B edge capacity u: E — RS

A function X: E — IRBL is called valid flow, if:

0, 7) < X(,) < uli,]') v(i,j) € E

Y X(i,7)— Y _X(j,i) =b(i VieV
(i,j)€E (ji)eE

m Cost function cost: E — Ry and cost(X) := Y(; ieg cost(i, j) - X(i,)

A minimum cost flow is a valid flow where cost(X) is minimized.

General Flow Network — Algorithms

Polynomial Algorithms

Dueto Year
1 Edmonds and Karp 1972
2 Rock 1980
3 Rock 1980
4 Bland and Jensen 1985
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Ahuja, Goldberg, Orlin and Tarjan 1988
Strongly Polynomial Algorithms
Dueto Year
1 Tardos 1985
2 Orlin 1984
3 Fujishige 1986
4 Galil and Tardos 1986
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Orlin (this paper) 1988
S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))

Min, m) = Ofmin (nm + n?*€, nm log n)

where € is any fixed constant,
Mn, m, U) = Ofnm log (o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m)2 log n S(n, m))
O((n + m)2 log n S(n, m))
O(n log n S(n, m))
CJ'{m'n2 log n Ing[n:’-ﬁm}}
D{nm2]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

[Orlin 1991]

21 -1

Polynomial Algorithms

Dueto Year
1 Edmonds and Karp 1972
2 Rock 1980
3 Rock 1980
4 Bland and Jensen 1985
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Ahuja, Goldberg, Orlin and Tarjan 1988
Strongly Polynomial Algorithms
Dueto Year
1 Tardos 1985
2 Orlin 1984
3 Fujishige 1986
4 Galil and Tardos 1986
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Orlin (this paper) 1988
S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))

Min, m) = Ofmin (nm + n?*€, nm log n)

where € is any fixed constant,
Mn, m, U) = Ofnm log (o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m)2 log n S(n, m))
O((n + m)2 log n S(n, m))
O(n log n S(n, m))
CJ'{m'n2 log n Ing[n:’-ﬁm}}
D{nm2]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

21 -2

General Flow Network — Algorithms

Theorem. [Orlin 1991]\
The minimum cost flow problem can be solved in

O(n?log?n + m?logn) time.

[Orlin 1991]

21-3

General Flow Network — Algorithms

Polynomial Algorithms

~] o W e W B = 3

Due to

Edmonds and Karp

Rock

Rock

Bland and Jensen

Goldberg and Tarjan

Goldberg and Tarjan

Ahuja, Goldberg, Orlin and Tarjan

Strongly Polynomial Algorithms

=] O N sk W 2 — 3

Due to

Tardos

Orlin

Fujishige

Galil and Tardos
Goldberg and Tarjan
Goldberg and Tarjan
Orlin (this paper)

Year
1972
1980
1980
1985
1987
1988
1988

Year
1985
1984
1986
1986
1987
1988
1988

S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))
Min, m) = Ofmin (nm + n?*€, nm log n)
where € is any fixed constant,
M(n, m, U) = O(nm log (:ﬂﬁgm 2)

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m"2 log n S(n, m))
O((n+ m"2 log n S(n, m))
O(n log n S(n, m))
D‘{m‘n2 log n]Dgtn:’-ﬁm}}
D{nm2]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

Theorem. [Orlin 1991]\
The minimum cost flow problem can be solved in

O(n?log?n + m?logn) time.

‘Theorem. [Cornelsen & Karrenbauer 2011]‘
The minimum cost flow problem for planar
graphs with bounded costs and faze sizes can be
solved in O(n3/2) time. ;

[Orlin 1991]

W Universitit Trier

Visualization of Graphs

| 4 O - Qmmmmm oo 9

N Lecture 6: 1
% Orthogonal Layouts Og | i

Part IV:
‘ﬁ Bend Minimization
[L Philipp Kindermann

23

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

74

V = {U].I 02,03, 04}
E = {v1v7, 0103, 0104, U203, V04 } 3

1 <
combinatorial | I 2
embedding/ planar
reduce planarization orthogpnal area mini-
crossings drawing mization

N bend minimization [— 74

1623 ;

orthogonal i
2 representation =~ Le-eee- .2!5.

1
TOPOLOGY - SHAPE — METRICS

Bend Minimization with Given Embedding

Bend Minimization with Given Embedding

Bend Minimization with Given Embedding

Bend Minimization with Given Embedding

([] [] [] [] []
Geometric bend minimization.

® Combinatorial embed
Find: Orthogonal drawing wit!

Given: m Plane graph G = (V, E) with maximum degree 4

ding F and outer face f
N minimum number of bends

that preserves the embec
\.

ding.

J

24 -

Bend Minimization with Given Embedding

([] [] [] [] []
Geometric bend minimization.
Given:

B Combinatorial embed

Find: Orthogonal drawing wit!

B Plane graph G = (V, E) with maximum degree 4

ding F and outer face f
n minimum nhumber of bends

that preserves the embec
.

ding.

J

Compare with the following variation.

Given:

Find:

.

([] [] [] [] [] []
Combinatorial bend minimization.

24 -

Bend Minimization with Given Embedding

‘Geometric bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face fy

Find: Orthogonal drawing with minimum number of bends
that preserves the embedding.

\.

J

Compare with the following variation.

'Combinatorial bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4

® Combinatorial embedding F and outer face fy
Find:

.

24 -

Bend Minimization with Given Embedding

‘Geometric bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face fy

Find: Orthogonal drawing with minimum number of bends
that preserves the embedding.

\.

J

Compare with the following variation.

'Combinatorial bend minimization.
Given: ® Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face fy

Find: Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.

.

24 -

Combinatorial Bend Minimization

‘Combinatorial bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face f

Find: Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

\.

25 -

Combinatorial Bend Minimization

‘Combinatorial bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face f

Find: Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

\.

Idea.
Formulate as a network flow problem:

25 -

Combinatorial Bend Minimization

‘Combinatorial bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face f

Find: Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

\.

Idea.
Formulate as a network flow problem:

B a unit of flow = A%

25 -

Combinatorial Bend Minimization

‘Combinatorial bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face f

Find: Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

.

Idea.
Formulate as a network flow problem:

B a unit of flow = A%

B vertices —< faces (# £7 per face)

25 -

Combinatorial Bend Minimization

‘Combinatorial bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face f

Find: Orthogonal representation H(G) with minimum

number of bends that preserves the embedding

Idea.
Formulate as a network flow problem:

B a unit of flow = L7
B vertices —< faces (# £7 per face)

B faces -5 neighbouring faces (# bends toward the neighbour)

25 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

26 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence ¢, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

26 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence ¢, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):

26 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence ¢, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):

26 -+

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence ¢, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):
B E={(v,f), € VXF]|vbetween edgese, e of df}

26 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):
B E={(v,f), € VXF]|vbetween edgese, e of df}

26 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):
B E={(v,f), € VXF]|vbetween edgese, e of df}

26 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):
B E={(v,f), € VXF]|vbetween edgese, e of df}

Directed multigraph!

26 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Directed multigraph!

26 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Directed multigraph!

26 - 10

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Directed multigraph!

26 - 11

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV

26 -12

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1
241

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV

26 - 13

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

Define flow network N(G) = ((VUF, E); b; (; u; cost):
BE={(vf), €VXF]|vbetween edgese, e of df} U

{

€ F x F| f,g have common edge e}

Bi(v)=4 YoeV

m b(f)

26 -14

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1
T 5 1]
1 1

Define flow network N(G) = ((VUF, E); b; (; u; cost):
BE={(vf), €VXF]|vbetween edgese, e of df} U

{

€ F x F| f,g have common edge e}

Bi(v)=4 YoeV

m b(f)

26 - 15

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1
T 5 1]
—6
1 1

Define flow network N(G) = ((VUF, E); b; (; u; cost):
BE={(vf), €VXF]|vbetween edgese, e of df} U

{

€ F x F| f,g have common edge e}

Bi(v)=4 YoeV

m b(f)

26 - 16

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1
T 5 1]
—6
1 1

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV
—4 if f = f,

+4 otherwise

B O(f)=—2degs(f) + {

26 - 17

26 - 18

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1
T 5 1]
—6
1 1

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

mbh(v)=4 VoeV)

?
—4 if f = fp, » =Y, b(w) =0
+4 otherwise

B O(f)=—2degs(f) + {

26 - 19

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1
T 5 1]
—6
1 1

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

mbh(v)=4 VoeV)

B O(f)=—2deg(f)+ {4 = o Lt (ZEu(l)er)

+4 otherwise

26 - 20

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1
217 2\! 1]
—6
1 1

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

mbh(v)=4 VoeV)

B O(f)=—2deg(f)+ {4 = o Lt (ZEu(l)er)

+4 otherwise

V(v,f)€eE,veV,feF

26 - 21

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1
217 2\! 1]
—6
1 1

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

mbh(v)=4 VoeV)

B O(f)=—2deg(f)+ {4 = o Lt (ZEu(l)er)

+4 otherwise

/

V(v,f)€eE,veV,feF = < X(v,f) < =:u(y,f)
cost(v, f) =

26 - 22

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:

Z e {—4 if f = fi

refl(f +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1
217 2\! 1]
—6
1 1

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

mbh(v)=4 VoeV)

m b(f) = —2degg(f) + {4 f=for (=F LublW) TR

+4 otherwise

/

V(v,f)€eE,veV,feF =1<X(v,f) <4=:u(v,f)
cost(v, f) =

26 - 23

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:

Z e {—4 if f = fi

refl(f +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1
217 2\! 1]
—6
1 1

Define flow network N(G) = ((VUF, E); b; (; u; cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

mbh(v)=4 VoeV)

m b(f) = —2degg(f) + {4 f=for (=F LublW) TR

+4 otherwise

/

V(v,f)€eE,veV,feF =1<X(v,f) <4=:u(v,f)
cost(v, f) =0

26 - 24

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1 (@)
217 2\! 1]
—6
1 1

Define flow network N(G)
BE={(v,f) €V XF]|

= ((VUF,E); b; (;u; cost):
v between edges ¢,¢’ of df} U

{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV

B O(f)=—2degs(f) + {

V(v,f)€eE,veV,feF

% cE f,geF

\

4 iff=fy, = Lub(w)=0
. (Euler)
+4 otherwise

/

1< X(v,f)<4=:u(v,f)

IN S IN

cost(v, f) =
= <X(f,g) < =ulfg)
cost(f, g) =

26 - 25

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-

ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:

Z e {—4 if £ = f

refl(f +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1 (@)
217 2\! 1]
—6
1 1

Define flow network N(G) =

((VUF,E);b;/; u;cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV

B O(f)=—2degs(f) + {

V(v,f)€eE,veV,feF

% cE f,geF

—4

if f=f, = Yobw) Eu(l)er)
+4 otherwise)
=1<X(v, f) <4=:u(v,f)
cost(v, f) =0
=0< X(f,g) oo =:u(f,g)
cost(f,g) =1

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:

Z e {—4 if f = fi

refl(f +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1 (@)
217 2\! 1]
—6
Cl 10

Define flow network N(G) =

26 - 26

((VUF,E);b;/; u;cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV

B O(f)=—2degs(f) + {

V(v,f)€eE,veV,feF

% cE f,geF

—4 iff:f()/

+4 otherwise

p—

cost(v, f
=0

|
— A o IA

cost(f, g)
I
=

\

/

X(v, f)

X(f,8)

> = Y b(w) =0

(Euler)

<4=:u(vf)

< oo =:u(f,g)

We model only the
number of bends.
Why is it enough?

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:

Z e {—4 if f = fi

refl(f +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1 (@)
217 2\! 1]
—6
Cl 10

Define flow network N(G) =

26 - 27

((VUF,E);b;/; u;cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV

B O(f)=—2degs(f) + {

V(v,f)€eE,veV,feF

% cE f,geF

—4 iff:f()/

+4 otherwise

p—

cost(v, f
=0

|
— A o IA

cost(f, g)
I
=

\

/

X(v, f)

X(f,8)

> = Y b(w) =0

(Euler)

<4=:u(vf)

< oo =:u(f,g)

We model only the
number of bends.
Why is it enough?

—» Fxercise

le
amp
twork Ex

Ne

Flow

03
O
€3
02
I
fo 62 |
f1 f
O
€6 v4
01 65
€1 -

27 -

Flow Network Example

fo
O U2 €3 003
(o) r
f1 f
01 O O
€6 €4
€1
) O
U5 €5 04

Legend
vV O
F O

27 -

Flow Network Example

£ Legend
@
o) 02 €3 U3 v
0 ? Q F o
2 ¢/u/cost
1/4/0
f 1 f2 V xFD L,
U1 o) o)
€6 €4
€1 \ &

Flow Network Example

£ Legend
@
o) 02 €3 U3 v
0 ? Q F o
2 ¢/u/cost
1/4/0
f 1 f2 V xFD L.
U1 —»Q @)
€6 €4
€1 \ &

Flow Network Example

£ Legend
V @)
v
o) 2 €3 o3 r oo
€2 ¢/ u/cost
1/4/0
f 1 f2 V < F D L.
01 —»Q @)
€6 €4
€1

O
U5 €5 04

Flow Network Example

\/

Legend

vV O
F O

V X F DO

¢/ u/cost
1/4/0

—

27 -

Flow Network Example

\/

Legend
vV O
F ©

¢/u/cost

1/4/0

FXF DO

27 -

Flow Network Example

\/

Legend
vV O
F ©

¢/u/cost

1/4/0

FXF DO

27 -

Flow Network Example

N
v

O

B
AN

05

€5

N

€4

U4

Legend
vV O
F ©

¢/u/cost

1/4/0

FXF DO

27 -

Flow Network Example

Legend
vV O
F ©

¢/u/cost

1/4/0

FXF DO

27 - 10

Flow Network Example

Legend
vV O
F ©

¢/u/cost

1/4/0

FXF DO

27 - 11

Flow Network Example

Legend
vV O
F ©

¢/u/cost

1/4/0

FXF DO

27 - 12

Flow Network Example

Legend
vV O
F ©

¢/u/cost

1/4/0

FXF DO

27 - 13

Flow Network Example

Legend
vV O
F ©

¢/u/cost

1/4/0

FXF DO

4 = b-value

27 - 14

Flow Network Example

$ /

-

2

O

Legend

V @)

F (0
¢/u/cost

1/4/0

FXF DO

4 = b-value

3] flow

27 - 15

Flow Network Example

Legend
V @)
F (@)
¢/ u/cost

1/4/0

FXF DO

4 = b-value

3] flow

27 - 16

Flow Network Example

Legend
V @)
F O
¢/ u/cost

1/4/0

FXF DO

4 = b-value

3] flow

27 - 17

Flow Network Example

Legend

V @)

F (0
¢/u/cost

1/4/0

FXF DO

4 = b-value

cost =1
one bend
(outward)

3] flow

27 - 18

Flow Network Example

Legend
V @)
F O
¢/ u/cost

1/4/0

FXF DO

4 = b-value

3] flow

27 - 19

Flow Network Example

Legend
V @)
F O
¢/ u/cost

1/4/0

FXF DO

4 = b-value

3] flow

27 - 20

Flow Network Example

Legend
V @)
F O
¢/ u/cost

1/4/0

FXF DO

4 = b-value

3] flow

27 - 21

Bend Minimization — Result

(Theorem. | Tamassia ’87]w

A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

.

J

28 -

Bend Minimization — Result

(Theorem. | Tamassia ’87]w

A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

.

J

Proof.

28 -

Bend Minimization — Result

‘Theorem. | Tamassia ’87]w
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

\. J

Proof.

< Given valid flow X in N(G) with cost k.
Construct

28 -

Bend Minimization — Result

‘Theorem. | Tamassia ’87]N
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

28 -

Bend Minimization — Result

‘Theorem. | Tamassia ’87]\
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.

Bend Minimization — Result

‘Theorem. | Tamassia ’87]N
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 = f

ref(f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
B Show properties (H1)-(H4).

(H1)

(H2)

(H3)

(H4)

28 -

Bend Minimization — Result

‘Theorem. | Tamassia ’87]N
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 = f

ref(f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
B Show properties (H1)-(H4).

(H1) H(G) matches F, fg

(H2)

(H3)

(H4)

28 -

Bend Minimization — Result

‘Theorem. | Tamassia ’87]N
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 = f

ref(f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
B Show properties (H1)-(H4).

(H1) H(G) matches F, f

(H2)

(H3)

(H4) Total angle at each vertex = 27t

28 -

Bend Minimization — Result

‘Theorem. | Tamassia ’87]\
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 = f

ref(f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.

B Show properties (H1)-(H4).

(H1) H(G) matches F, fg

(H2) Bend order inverted and reversed on opposite sides
(H3)

(H4) Total angle at each vertex = 27t

v
v

v

28 -

Bend Minimization — Result

‘Theorem. | Tamassia ’87]\
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 = f

ref(f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.

B Show properties (H1)-(H4).

(H1) H(G) matches F, f

(H2) Bend order inverted and reversed on opposite sides
(H3) Angle sum of f = +4
(H4) Total angle at each vertex = 27t

v
v

\/ Exercise.
v

28 -10

28 - 11

Bend Minimization — Result

‘Theorem. | Tamassia ’87]N
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

28 - 12

Bend Minimization — Result

‘Theorem. | Tamassia ’87]\
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

B Define flow X: E — IR(J)F.
B Show that X is a valid flow and has cost k.

28 - 13

Bend Minimization — Result

B obo)=4 W
‘Theorem. [Tamassia '87]] - s ey 4oy
A plane graph (G, F, fp) has a valid orthogonal e {+4 otherwise
representation H(G) with k bends iff the flow network N /=1 X0.f) S et)
N(G) has a valid flow X with cost k. (f':z)o < X(f1g) S 0 =iu(fg)
N p cost(f,g) =
Proof.

= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

B Define flow X: E — lRar.
B Show that X is a valid flow and has cost k.

28 - 14

Bend Minimization — Result

B obo)=4 W
‘Theorem. [Tamassia '87]] - s ey 4oy
A plane graph (G, F, fp) has a valid orthogonal e {+4 otherwise
representation H(G) with k bends iff the flow network N /=1 X0.f) S et)
N(G) has a valid flow X with cost k. (f':z)o < X(f1g) S 0 =iu(fg)
N p cost(f,g) =
Proof.

= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

B Define flow X: E — lRar.
B Show that X is a valid flow and has cost k.
(N1) X(vf) =1/2/3/4 v

28 - 15

Bend Minimization — Result

r) . v) = (S

Theorem. [Tamassia "87] - ey 4oy
A plane graph (G, F, fp) has a valid orthogonal e {+4 otherwise
representation H(G) with k bends iff the flow network N /=1 X0.f) S et)
N(G) has a valid flow X with cost k. (f':—)oi X(f,8) < oo = u(f,)
N p cost(f,g) =

Proof.

= Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.

B Define flow X: E — Ry

B Show that X is a valid flow and has cost k.

(N1) X(vf) =1/2/3/4 v

(N2) X(/g) = [6f¢lo, (€,0¢q, x) describes e = fq from f v

28 - 16

Bend Minimization — Result

‘Theorem. | Tamassia ’87]w
A plane graph (G, F, fp) has a valid orthogonal

representation H(G) with k bends iff the flow network 0
N(G) has a valid flow X with cost k.

\. J

—4 if f = fp,

+4 otherwise

B o) = —2degg(f) +{

Proof.
= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

B Define flow X: E — lRar.

B Show that X is a valid flow and has cost k.

(N1) X(vf)=1/2/3/4

(N2) X(/g) = [6f¢lo, (€,0¢q, x) describes e = fq from f

(N3) capacities, deficit/demand coverage

SSRNIEN

28 - 17

Bend Minimization — Result

r o) B rv)=4 WwevV
Theorem. | Tamassia '87]

A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network 0
N(G) has a valid flow X with cost k.

\. J

Proof.
= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

B Define flow X: E — lRar.
B Show that X is a valid flow and has cost k.

(N1) X(vf) =1/2/3/4
(N2) X(/g) = [6f¢lo, (€,0¢q, x) describes e = fq from f

(N3) Capac1t1es deficit/demand coverage
(N4) cost =

—4 if f = fp,

+4 otherwise

B o) = —2degg(f) +{

SRR

Bend Minimization — Remarks

B From Theorem follows that the combinatorial orthogonal
bend minimization problem for plane graphs can be solved
using an algorithm for the Min-Cost-Flow problem.

29 -

Bend Minimization — Remarks

B From Theorem follows that the combinatorial orthogonal
bend minimization problem for plane graphs can be solved
using an algorithm for the Min-Cost-Flow problem.

‘Theorem. [Garg & Tamassia 1996]
The minimum cost flow problem can be solved in

\O(|X* 3/4m/log n) time.

29 -

Bend Minimization — Remarks

B From Theorem follows that the combinatorial orthogonal
bend minimization problem for plane graphs can be solved
using an algorithm for the Min-Cost-Flow problem.

‘Theorem. |Garg & Tamassia 1996]N
The minimum cost flow problem for planar graphs with
bounded costs and vertex degrees can be solved in

O(n”/*\/logn) time.

. J

29 -

Bend Minimization — Remarks

B From Theorem follows that the combinatorial orthogonal
bend minimization problem for plane graphs can be solved

using an algorithm for the Min-Cost-Flow problem.

The minimum cost flow problem for planar graphs with
bounded costs and vertex degrees can be solved in

O(n”/*\/logn) time.

.

‘Theorem. |Garg & Tamassia 1996]]

J

The minimum cost flow problem for planar graphs with
‘bounded costs and faze sizes can be solved in O(n3/?) time.

‘Theorem. |Cornelsen & Karrenbauer 2011]N

J

Bend Minimization — Remarks

B From Theorem follows that the combinatorial orthogonal
bend minimization problem for plane graphs can be solved
using an algorithm for the Min-Cost-Flow problem.

‘Theorem. |Garg & Tamassia 1996]N
The minimum cost flow problem for planar graphs with
bounded costs and vertex degrees can be solved in

O(n”/*\/logn) time.

. J

‘Theorem. |Cornelsen & Karrenbauer 2011]N
The minimum cost flow problem for planar graphs with

‘bounded costs and faze sizes can be solved in O(n3/?) time.)

‘Theorem. |Garg & Tamassia 2001]N
Bend Minimization without a given combinatorial embedding

is an NP-hard problem.

J

29 -

W Universitit Trier

Visualization of Graphs

| 4 O - Qmmmmm oo 9

N Lecture 6: 1
% Orthogonal Layouts Og | i

Part V:
‘ﬁ Area Minimization
[L Philipp Kindermann

31

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

74

V = {U].I 02,03, 04}
E = {v1v7, 0103, 0104, U203, V04 } 3

1 q
combinatorial | I 2
embedding/ planat
reduce planarization oL thogpnal area mini-
crossings drawing mization

A NUL - iniization [—— 74

7 1¢---23 ;

orthogonal
2 representation = foeeeee- N

1
TOPOLOGY - SHAPE — METRICS

Compaction

32 -

Compaction

32 -

Compaction

32 -

Compaction

32 -

Compaction

Special case.
All faces are rectangles.

32 -

Compaction

(Compaction problem.

Given: m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

kFind: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible

32 -

Compaction

(Compaction problem.

Given: m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

kFind: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length

32 -

Compaction

(Compaction problem.

Given: m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

kFind: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length

B minimum area

32 -

Compaction

(Compaction problem.
Given: m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length

B minimum area
Properties.

32 -

Compaction

(Compaction problem.
Given: m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length

B minimum area
Properties.

B bends only on the outer face

32-10

Compaction

(Compaction problem.
Given: m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length

B minimum area
Properties.

B bends only on the outer face

B opposite sides of a face have the same length

32 -11

Compaction

(Compaction problem.
Given: m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length

B minimum area
Properties.

B bends only on the outer face

B opposite sides of a face have the same length
Idea.

B Formulate flow network for horizontal /vertical compaction

32-12

Flow Network for Edge Length Assignment

33 -

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

33 -

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

O Whor:F\{fO} =

33 -

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

B Whor = F\{fo}U{s t} o

33 -

33 -

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

O Whor:F\{fO}U{S/t} = E

33 -

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)
@ Whor:F\{fO}U{S/t} - E
B E..=1(f,g) | f, g share a horizontal segment and f lies —
below ¢} - -
\ L}

33 -

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)
@ Whor:F\{fO}U{S/t} - E
B E..=1(f,g) | f, g share a horizontal segment and f lies —
below ¢} - -
\ L ¥

33 -

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)
@ Whor:F\{fO}U{S/t} - E

33 -

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)
@ Whor:F\{fO}U{S/t} - E

33-10

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

B Whor = F\{fo}U{st} o

O =

33-11

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

B Whor = F\{fo}U{st} o

33-12

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

O Whor:F\{fO}U{S/t} -
B E..=1{(f,Q) | f, g share a horizontal segment and f lies
below ¢} U{(t,s)}

33-13

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

O Whor:F\{fO}U{S/t} -
B E..=1{(f,Q) | f, g share a horizontal segment and f lies

below ¢} U{(t,s)}
] é(&l) =1 Va € Ey,

33-14

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

O Whor:F\{fO}U{S/t} -
B E..=1{(f,Q) | f, g share a horizontal segment and f lies

below ¢} U{(t,s)}
] é(&l) =1 Va € Ey,

B u(a) =00 Vaé€ Ey,

33-15

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

O Whor:F\{fO}U{S/t} -
B E..=1{(f,Q) | f, g share a horizontal segment and f lies

below ¢} U{(t,s)}
] é(&l) =1 Va € Ey,

B u(a) =00 Vaé€ Ey,
B cost(a) =1 Va € Epgy

33-16

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

O Whor:F\{fO}U{S/t} -
B E..=1{(f,Q) | f, g share a horizontal segment and f lies

below ¢} U{(t,s)}

la) =1 Va € Epo
u(a) =00 Va € Epor
cost(a) =1 Va € Epyy

b(f):O Vf € Whor S

Flow Network for Edge Length Assignment

Definition.
Flow Network Nyer = ((Wyer, Ever); b; /; 11; cost)

B Weer = F\ {fo} U{s,t} =

B Eor =1{(f,Q) | f, g share a vertical segment and f lies to

the left of ¢} U{(t,s)}
B /(0)=1 Vaé€ Eye

B u(a) =00 Va € Eye
B cost(a) =1 Va € Eyer

BO(f)=0 VfeE Wy

34

Compaction — Result

‘Theorem.
Valid min-cost-flows for Np,, and Ny, exists iff

corresponding edge lenghts induce orthogonal drawing.

35 -

Compaction — Result

‘Theorem.
Valid min-cost-flows for Np,, and Ny, exists iff

corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?

35 -

Compaction — Result

‘Theorem.
Valid min-cost-flows for Np,, and Ny, exists iff

corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?
B [Xnor(f,s)| and [Xver(t,5)[?

35 -

Compaction — Result

‘Theorem.
Valid min-cost-flows for Np,, and Ny, exists iff
corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?
] ’Xhor (t , S) ‘ and ‘Xver (t , S) ‘? width and height of drawing

35 -

Compaction — Result

‘Theorem.
Valid min-cost-flows for Np,, and Ny, exists iff
corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?
] ’Xhor (t , S) ‘ and ‘Xver (t , S) ‘? width and height of drawing

@ ZeEEhor Xhor(e) + ZeEEver Xver(e)

35 -

Compaction — Result

‘Theorem.
Valid min-cost-flows for Np,, and Ny, exists iff
corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?
] ’Xhor (t , S) ‘ and ‘Xver (t , S) ‘? width and height of drawing

] ZeE Epor Xhor (8) + ZeE Ever Xver (8) total edge length

35 -

35 -

Compaction — Result

What if not all
faces rectangular?

‘Theorem.
Valid min-cost-flows for Np,, and Ny, exists iff
corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?
] ’Xhor (t , S) | and ‘Xver (t , S) ‘? width and height of drawing

] ZeE Epor Xhor (8) + ZeE Ever Xver (8) total edge length

Refinement of (G, H) — Inner Face

Refinement of (G, H) — Inner Face

B Dummy vertices for bends

36 -

Refinement of (G, H) — Inner Face

B Dummy vertices for bends

36 -

Refinement of (G, H) — Inner Face

@ o

B Dummy vertices for bends

36 -

Refinement of (G, H) — Inner Face

Q

-

corner(e)

G

B Dummy vertices for bends

36 -

Refinement of (G, H) — Inner Face

Q

-

<— next(e)

corner(e)

G

B Dummy vertices for bends

36 -

Refinement of (G, H) — Inner Face

Q

-

corner(e)

<— next(e)

G

e/

B Dummy vertices for bends

36 -

Refinement of (G, H) — Inner Face

Q

-

corner(e)

<— next(e)

G

e/

B Dummy vertices for bends
1 left turn
B turn(e) = <0 no turn

—1 right turn

36 -

Refinement of (G, H) — Inner Face

14 e o
\ corner(e) 1 1
o,
<— next(e)
1
1 ¢ —1
1 °1
B Dummy vertices for bends
S 1 left turn

B turn(e) = ¢ 0 no turn

—1 right turn

36 -

Refinement of (G, H) — Inner Face

lo o
\ corner(e) 1 1
o
<— next(e)
1
1 ¢ —1
1 °1
Jfront(e’)
B Dummy vertices for bends
S 1 left turn

B turn(e) = ¢ 0 no turn

—1 right turn

36 - 10

Refinement of (G, H) — Inner Face

1 o € ® 1
\ T
corner(¢) . “extend(e)
<— next(e)
1 —1
°1
front(e’)

B Dummy vertices for bends
1 left turn
B turn(e) = <0 no turn

—1 right turn

36 - 11

Refinement of (G, H) — Inner Face

Q

-

<— next(e)

corner(e)

“extend(e)

__— project(e))

O
1

front(e’)

B Dummy vertices for bends
1 left turn
B turn(e) = <0 no turn

—1 right turn

36 - 12

Refinement of (G, H) — Inner Face

Q

-

<— next(e)

corner(e)

“extend(e)

__— project(e))

O
1

B Dummy vertices for bends

1 left turn
B turn(e) = ¢ 0 no turn

—1 right turn

36 - 13

Refinement of (G, H) — Inner Face

Q

-

<— next(e)

corner(e)

“extend(e)

__— project(e))

O
1

B Dummy vertices for bends

1 left turn
B turn(e) = ¢ 0 no turn

—1 right turn

36 - 14

Refinement of (G, H) — Inner Face

Q

-

<— next(e)

corner(e)

“extend(e)

__— project(e))

O
1

B Dummy vertices for bends

1 left turn
B turn(e) = ¢ 0 no turn

—1 right turn

36 - 15

Refinement of (G, H) — Inner Face

o ®
\ T
corner(e) 1 . ,
...... P extend(e’)
<— next(e)
®

__— project(e))

1

B Dummy vertices for bends
1 left turn
B turn(e) = <0 no turn

—1 right turn

36 - 16

Refinement of (G, H) — Inner Face

Q

-

<— next(e)

corner(e)

“extend(e)

__— project(e))

1

B Dummy vertices for bends

S 1 left turn

B turn(e) = ¢ 0 no turn

—1 right turn

36 -17

Refinement of (G, H) — Inner Face

Q

-

<— next(e)

corner(e)

“extend(e)

__— project(e))

1

B Dummy vertices for bends

S 1 left turn

B turn(e) = ¢ 0 no turn

—1 right turn

36 - 18

Refinement of (G, H) — Outer Face

37 -

Refinement of (G, H) — Outer Face

37 -

Refinement of (G, H) — Outer Face

37 -

Refinement of (G, H) — Outer Face

37 -

Refinement of (G, H) — Outer Face

37 - &

Refinement of (G, H) — Outer Face

37 -

Refinement of (G, H) — Outer Face

37 -

Refinement of (G, H) — Outer Face

37 -

Refinement of (G, H) — Outer Face

37 -

37 -10

Refinement of (G, H) — Outer Face

37 - 11

Refinement of (G, H) — Outer Face

37 -12

Refinement of (G, H) — Outer Face

37 -13

Refinement of (G, H) — Outer Face

37 - 14

Refinement of (G, H) — Outer Face

O

Area minimized?

37 -15

Refinement of (G, H) — Outer Face

O

Area minimized? No!

37 -16

Refinement of (G, H) — Outer Face

O

Area minimized? No!
O But we get bound O((n + b)?) on the area.

37 -17

Refinement of (G, H) — Outer Face

O

Area minimized? No!
O But we get bound O((n + b)?) on the area.

(Theorem. [Patrignani 2()01]N
Compaction for given orthogonal

representation is in general NP-hard.
U J

	Orthogonal Layouts
	Applications
	Definition

	Topology - Shape - Metrics
	Orthogonal Representation
	Definition
	Example
	Correctness

	Flow Networks
	S-T-Flow Networks
	s-t-Flow Networks
	Residual Network
	FordFulkerson
	FordFulkerson - Example
	EdmondsKarp
	EdmondsKarp - Example
	General Flow Network
	General Flow Network - Algorithms

	Bend Minimization
	Problem Statement
	Idea
	Flow Network
	Example
	Result
	Remarks

	Area Minimization
	Problem Statement
	Flow Network
	Result
	Refinement of Inner Face
	Refinement of Outer Face

