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Observations.
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Definition.
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Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7 ), (e3,D, 77), (€4, 2, 7))

€1

1 1

fo

NS

€2 7 €3 71 €4

-15



Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7 ), (e3,D, 77), (€4, 2, 7))
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Orthogonal Representation — Example

H(f()) — ((61, 11, %)/ (85/ 111, 377{)/ (84/ L, 7[)/ (63/ L, 7[)/ (62/ &, %))
H(fl) — ((811001 3%)/ (62/ D, %)/ (86/ 00, 71'))
H(f2) = ((e5,000, 7), (6,11, 7 ), (e3,D, 77), (€4, 2, 7))
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Orthogonal Representation — Example

H(fo) = ((e1,11, ), (es, 111,37”) (e4,D, ), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2 )/ (86/11' 2) (63/@/ 71'), (84/@/ %))
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Orthogonal Representation — Example

H(fo) = ((e1,11, ), (es, 111,37”) (e4,D, ), (€3, D, 1), (€2, D, 7))
H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
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Orthogonal Representation — Example
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Orthogonal Representation — Example
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Orthogonal Representation — Example

H(fo) = ((e1,11, 3), (e5, 111,37”) (e4,D, 1), (e3,D, 1), (€2, D, 7))

H(f1) = ((e1,00, %), (e2, 2, %), (e6,00, 77))
H(fZ) — ((651000' 2 )/ (86/11' 2) (63/@/ 71'), (84/@/ %))
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Orthogonal Representation — Example

, (e5, 111,37”) (e4,D, 1), (e3,D, 1), (€2,D, 7))

), (2,2, 5), (es,00, 7))
)/ (66/ 11/ 2 ) (63/ &, 7-()/ (84/ @, %))

H(f()) — ((61/11/ )
H(fl) — ((81100 Tn
H(f2) = ((es, 000, 5

€1 1

1
fo <[00
1 2
0 =" € 7 €3 ;1 €4 3
63 2 STH T |t 7\’( 71’)2
0 2 |8 2
f1
36@84 U U f2
1 €6 1
5 0 0
> 1 €5 1

Concrete coordinates are not fixed yet!
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(H1) H(G) corresponds to F, fp.
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sequence 07 is reversed and inverted 0».
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(H2) For each edge shared by faces f and ¢ with
( ,51,0&1) c H(f) and ( ,52,0(2) S H(g)
sequence 07 is reversed and inverted 0».

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
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(H2) For each edge shared by faces f and ¢ with
( ,51,0&1) c H(f) and ( ,52,0(2) S H(g)
sequence 07 is reversed and inverted 0».

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
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For each face f it holds that:
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reH(f) +4 otherwise.



(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,51,0&1) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.
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(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,51,0&1) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:
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reH(f) +4 otherwise.



(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,51,0&1) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.



(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,51,0&1) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

1 a
0 0
5 7€ 1 €3 1 €4 3
T 3m 2
i 5 r |z 7T
2 2 12
0 f 0
=0—-0+4+2—12
7T
— — 42
— — 42
— — 42



(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,51,0&1) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.



(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,51,0&1) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.
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(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,51,0&1) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.



(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,(51,061) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.
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(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,(51,061) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.
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(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,(51,061) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.
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(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,(51,061) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.
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(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by faces f and ¢ with

( ,51,0&1) ~ H(f) and ( ,52,0(2) S H(g)
sequence 01 is reversed and inverted 0,.

(H3) Let |d|g (resp. |0]1) be the number of zeros
(resp. ones) in 0 and r = (¢, J, ).
Let C(r) :=1[0|lg— |01 +2—w -2/
For each face f it holds that:

Z C(T) _ {_4 if f = fo

reH(f) +4 otherwise.

(H4) For each vertex v the sum of incident angles is 277.
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Three-step approach: [Tamassia 1987]
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B directed graph G = (V,E)
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B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS
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Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X(i,j) <ulij) V(i) €E
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Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<X(i,j) <ulij) V(i) €E
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Flow Networks

[Finnrind, CC BY-SA 3.0,
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Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

® edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:
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Flow network (G = (V,E);s, t; u) with
B directed graph G = (V,E)

W sources € V,sinkt eV

® edge capacity u: E — RS

A function X: E — IRBL is called s-t-flow, if:
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FordFulkerson

iFordFulkerson(G (V,E);s, t;u)

foreach (v,v") € E do

| X(v,7")=0
while Gy contains s-f-path IV do
AW = min@’v/)ew C(U, U/)
foreach (v,v") € W do
if (v,v’) € E then

| X(v,7v") = X(v,0") + Aw

re_turn X

_____________________________________________________________

} Initialization with Zero-flow

} Capacity of W

} Max Flow
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FordFulkerson

iFordFulkerson(G (V,E);s, t;u)

ﬂ[re;((:zll 5]/)' :) OE £ do }Initialization with Zero-flow
while Gy contains s-f-path W do ,

Ay = min, e (0, 0') '} Capacity of W

foreach (v,v") € W do :

if (v,v’) € E then

| X(v,7") = X(v,0") + Aw

| X(v,7") = X(v,v") — Aw

return X } Max Flow

_____________________________________________________________
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FordFulkerson

iFordFulkerson(G (V,E);s,t;u)
fﬁrg?((:zll E/), :) OE £ do }Initialization with Zero-flow
while Gy contains s-f-path WV do ,
Ay = min, e (0, 0') '} Capacity of W
foreach (v,v") € W do )
if (v,v’) € E then |
| X(0,0) = X(v,0') + Bw - pIncreasing flow along W

| X(v,7") = X(v,v") — Aw

| 1/
return X } Max Flow

_____________________________________________________________
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FordFulkerson

iFordFulkerson(G (V,E);s, t;u)

f([re)?((:g, 5]/)' :) ()E £ do }Initialization with Zero-flow

while Gy contains s-f-path W do ,
Ay = min, e (0, 0') '} Capacity of W
foreach (v,v") € W do )
if (v,v’) € E then

|1 X(v,v') = X(v,v') + Aw - tIncreasing flow along W
else |

| X(v,7") = X(v,v") — Aw

L W,
return X } Max Flow

_____________________________________________________________

(FordFulkerson finds a maximum s-t-flow in O(|X*| - n) time.]
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EdmondsKarp

EFordFulkerson(G = (V,E);s, t;u)
- foreach (v,v') € E do

| X(v,7")=0
while Gy contains s-f-path W do
W = s-t-path in Gy

Ay = min(v,v’)éc(v,v’)
foreach (v,v') € W do
if (v,v") € E then
| X(v,7") = X(v,0") + Aw
else
| X(v,7") = X(v,v") — Aw

r;turn X

_____________________________________________________________
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iFordFulkcrson(G = (V,E);s, t;u)
foreach (v,v') € E do

| X(v,7")=0
while Gy contains s-f-path W do
W = s-t-path in Gy

Ay = min(v,v’)éc(v,v’)
foreach (v,v') € W do
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r;turn X
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r;turn X
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EdmondsKarp

iFordFulkcrson(G = (V,E);s, t;u)
foreach (v,v’) € E do

| X(v,7")=0
while Gy contains s-f-path W do
W = s-t-path in Gy

Ay = min(v,v’)éc(v,v’)
foreach (v,v’) € W do
if (v,v") € E then
| X(v,7") = X(v,0") + Aw
else
| X(v,7") = X(v,v") — Aw

re_turn X

_____________________________________________________________

[EdmondsKarp finds a maximum s-t-flow in O(nm?) time.J
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); S, T; u) with
B directed graph G = (V,E)

B sources S C V,sinks T CV

B edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<XUD<MUD V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS
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General Flow Network

[Finnrind, CC BY-SA 3.0,
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Flow network (G = (V,E);S, T; (; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

m edge lower bound [ : E — Ry

B edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<XUD<MUD V(i,j) € E
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(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS



20-4

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E);S, T; (; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

m edge lower bound [ : E — Ry

B edge capacity u: E — RS

A function X: E — IRBL is called S-T-flow, if:

0<XUD<uUﬁ V(i,j) € E

Y X(@G,7)— Y X(j,i) Vie V\(SUT)
(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E);S, T; (; u) with
B directed graph G = (V,E)

B sources S CV,sinksT CV

m edge lower bound [ : E — Ry

B edge capacity u: E — RS
A function X: E — IRBL is called S-T-flow, if:

00,)) < X(@,j) <ul(i,j)  V(,j) €E
Y X(i,j)— Y _X(j,i)=0 Vie V\(SUT)

(i,j)€E (ji)eE

A maximum S-T-flow is an S-T-flow where Z X(i,7) is maximized.
(i,j)€E,ieS
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V,E); b; /; u) with
B directed graph G = (V,E)
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Flow network (G = (V,E); b; /; u) with
B directed graph G = (V,E)

B node production/consumption b: V.— R with Y_;2 b(i) =0

m edge lower bound [ : E — Ry - &

N

3/3
4/4/5(3/5

2/2
[ ]

B edge capacity u: E — RS

A function X: E — IRBL is called valid flow, if:

0, 7) < X(,) < uli, ]') v(i,j) € E

Y X(i,7)— Y _X(j,i) =b(i VieV
(i,j)€E (ji)eE

m Cost function cost: E — Ry and cost(X) := Y(; ieg cost(i, j) - X(i, )

A minimum cost flow is a valid flow where cost(X) is minimized.



General Flow Network — Algorithms

Polynomial Algorithms

# Dueto Year
1 Edmonds and Karp 1972
2 Rock 1980
3 Rock 1980
4 Bland and Jensen 1985
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Ahuja, Goldberg, Orlin and Tarjan 1988
Strongly Polynomial Algorithms
# Dueto Year
1 Tardos 1985
2 Orlin 1984
3 Fujishige 1986
4 Galil and Tardos 1986
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Orlin (this paper) 1988
S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))

Min, m) = Ofmin (nm + n?*€, nm log n)

where € is any fixed constant,
Mn, m, U) = Ofnm log ( o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m)2 log n S(n, m))
O((n + m)2 log n S(n, m))
O(n log n S(n, m))
CJ'{m'n2 log n Ing[n:’-ﬁm}}
D{nm2 ]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

[Orlin 1991]

21 -1



Polynomial Algorithms

# Dueto Year
1 Edmonds and Karp 1972
2 Rock 1980
3 Rock 1980
4 Bland and Jensen 1985
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Ahuja, Goldberg, Orlin and Tarjan 1988
Strongly Polynomial Algorithms
# Dueto Year
1 Tardos 1985
2 Orlin 1984
3 Fujishige 1986
4 Galil and Tardos 1986
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Orlin (this paper) 1988
S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))

Min, m) = Ofmin (nm + n?*€, nm log n)

where € is any fixed constant,
Mn, m, U) = Ofnm log ( o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m)2 log n S(n, m))
O((n + m)2 log n S(n, m))
O(n log n S(n, m))
CJ'{m'n2 log n Ing[n:’-ﬁm}}
D{nm2 ]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

21 -2

General Flow Network — Algorithms

Theorem. [Orlin 1991]\
The minimum cost flow problem can be solved in

O(n?log?n + m?logn) time.

[Orlin 1991]
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Polynomial Algorithms

~] o W e W B = 3
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Edmonds and Karp
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Bland and Jensen

Goldberg and Tarjan

Goldberg and Tarjan

Ahuja, Goldberg, Orlin and Tarjan

Strongly Polynomial Algorithms

=] O N sk W 2 — 3

Due to

Tardos

Orlin

Fujishige

Galil and Tardos
Goldberg and Tarjan
Goldberg and Tarjan
Orlin (this paper)

Year
1972
1980
1980
1985
1987
1988
1988

Year
1985
1984
1986
1986
1987
1988
1988

S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))
Min, m) = Ofmin (nm + n?*€, nm log n)
where € is any fixed constant,
M(n, m, U) = O(nm log ( :ﬂﬁgm 2)

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m"2 log n S(n, m))
O((n+ m"2 log n S(n, m))
O(n log n S(n, m))
D‘{m‘n2 log n ]Dgtn:’-ﬁm}}
D{nm2 ]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

Theorem. [Orlin 1991]\
The minimum cost flow problem can be solved in

O(n?log?n + m?logn) time.

‘Theorem. [Cornelsen & Karrenbauer 2011]‘
The minimum cost flow problem for planar
graphs with bounded costs and faze sizes can be
solved in O(n3/2) time. ;

[Orlin 1991]
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Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]
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Geometric bend minimization.
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Find:  Orthogonal drawing wit!
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Bend Minimization with Given Embedding

‘Geometric bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face fy

Find: Orthogonal drawing with minimum number of bends
that preserves the embedding.

\.

J

Compare with the following variation.

'Combinatorial bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4

® Combinatorial embedding F and outer face fy
Find:

.
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Bend Minimization with Given Embedding

‘Geometric bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face fy

Find: Orthogonal drawing with minimum number of bends
that preserves the embedding.

\.

J

Compare with the following variation.

'Combinatorial bend minimization.
Given: ® Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face fy

Find: Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.

.
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Combinatorial Bend Minimization

‘Combinatorial bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face f

Find: Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

\.
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Given: m Plane graph G = (V, E) with maximum degree 4
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Idea.
Formulate as a network flow problem:
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Combinatorial Bend Minimization

‘Combinatorial bend minimization.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face f

Find: Orthogonal representation H(G) with minimum

number of bends that preserves the embedding

Idea.
Formulate as a network flow problem:

B a unit of flow = L7
B vertices —< faces (# £7 per face)

B faces -5 neighbouring faces (# bends toward the neighbour)

25 -



Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.
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(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
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refl f) +4 otherwise.
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V(v,f)€eE,veV,feF
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(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.
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BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}
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B O(f)=—2deg(f)+ {4 = o Lt (ZEu(l)er)

+4 otherwise
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cost(v, f) =
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(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:

Z e {—4 if f = fi

refl(f +4 otherwise.
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:
Y cl) = {—4 i = f

refl f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1 (@)
217 2\! 1]
—6
1 1

Define flow network N(G)
BE={(v,f) €V XF]|

= ((VUF,E); b; (;u; cost):
v between edges ¢,¢’ of df} U

{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV

B O(f)=—2degs(f) + {

V(v,f)€eE,veV,feF

% cE f,geF

\

4 iff=fy, = Lub(w)=0
. (Euler)
+4 otherwise

/

1< X(v,f)<4=:u(v,f)

IN S IN

cost(v, f) =
= <X(f,g) < =ulfg)
cost(f, g) =
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-

ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:

Z e {—4 if £ = f

refl(f +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1 (@)
217 2\! 1]
—6
1 1

Define flow network N(G) =

((VUF,E);b;/; u;cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV

B O(f)=—2degs(f) + {

V(v,f)€eE,veV,feF

% cE f,geF

—4

if f=f, = Yobw) Eu(l)er)
+4 otherwise )
=1<X(v, f) <4=:u(v,f)
cost(v, f) =0
=0< X(f,g) oo =:u(f,g)
cost(f,g) =1



Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:

Z e {—4 if f = fi

refl(f +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1 (@)
217 2\! 1]
—6
Cl 10

Define flow network N(G) =

26 - 26

((VUF,E);b;/; u;cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV

B O(f)=—2degs(f) + {

V(v,f)€eE,veV,feF

% cE f,geF

—4 iff:f()/

+4 otherwise

p—

cost(v, f
=0

|
— A o IA

cost(f, g)
I
=

\

/

X(v, f)

X(f,8)

> = Y b(w) =0

(Euler)

<4=:u(vf)

< oo =:u(f,g)

We model only the
number of bends.
Why is it enough?



Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0-.

(H3) For each face f it holds that:

Z e {—4 if f = fi

refl(f +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

1 (@)
217 2\! 1]
—6
Cl 10

Define flow network N(G) =

26 - 27

((VUF,E);b;/; u;cost):

BE={(vf), €VXF]|vbetween edgese, e of df} U
{ € F x F | f,¢ have common edge ¢}

Bi(v)=4 YoeV

B O(f)=—2degs(f) + {

V(v,f)€eE,veV,feF

% cE f,geF

—4 iff:f()/

+4 otherwise

p—

cost(v, f
=0

|
— A o IA

cost(f, g)
I
=

\

/

X(v, f)

X(f,8)

> = Y b(w) =0

(Euler)

<4=:u(vf)

< oo =:u(f,g)

We model only the
number of bends.
Why is it enough?
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‘Theorem. | Tamassia ’87]N
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.
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Proof.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 = f

ref(f) +4 otherwise.
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Bend Minimization — Result

‘Theorem. | Tamassia ’87]\
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 = f

ref(f) +4 otherwise.
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dent angles is 277.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.

B Show properties (H1)-(H4).

(H1) H(G) matches F, fg
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Bend Minimization — Result

‘Theorem. | Tamassia ’87]\
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

(H1) H(G) corresponds to F, fp.

(H2) For each edge shared by fa-
ces f and g, sequence 0, is reversed
and inverted 0.

(H3) For each face f it holds that:
Y cl) = {—4 = f

ref(f) +4 otherwise.

(H4) For each vertex v the sum of inci-
dent angles is 277.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.

B Show properties (H1)-(H4).

(H1) H(G) matches F, f

(H2) Bend order inverted and reversed on opposite sides
(H3) Angle sum of f = +4
(H4) Total angle at each vertex = 27t

v
v

\/ Exercise.
v
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Bend Minimization — Result

‘Theorem. | Tamassia ’87]N
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.
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Bend Minimization — Result

‘Theorem. | Tamassia ’87]\
A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.

= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

B Define flow X: E — IR(J)F.
B Show that X is a valid flow and has cost k.
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Bend Minimization — Result
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representation H(G) with k bends iff the flow network N /=1 X0.f) S et )
N(G) has a valid flow X with cost k. (f':z)o < X(f1g) S 0 =iu(fg)
N p cost(f,g) =
Proof.

= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

B Define flow X: E — lRar.
B Show that X is a valid flow and has cost k.
(N1) X(vf) =1/2/3/4 v



28 - 15

Bend Minimization — Result

r ) . v) = (S

Theorem. [ Tamassia "87] - ey 4oy
A plane graph (G, F, fp) has a valid orthogonal e {+4 otherwise
representation H(G) with k bends iff the flow network N /=1 X0.f) S et )
N(G) has a valid flow X with cost k. (f':—)oi X(f,8) < oo = u(f, )
N p cost(f,g) =

Proof.

= Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.

B Define flow X: E — Ry

B Show that X is a valid flow and has cost k.

(N1) X(vf) =1/2/3/4 v

(N2) X(/g) = [6f¢lo, (€,0¢q, x) describes e = fq from f v
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Bend Minimization — Result

‘Theorem. | Tamassia ’87]w
A plane graph (G, F, fp) has a valid orthogonal

representation H(G) with k bends iff the flow network 0
N(G) has a valid flow X with cost k.

\. J

—4 if f = fp,

+4 otherwise

B o) = —2degg(f) +{

Proof.
= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

B Define flow X: E — lRar.

B Show that X is a valid flow and has cost k.

(N1) X(vf)=1/2/3/4

(N2) X(/g) = [6f¢lo, (€,0¢q, x) describes e = fq from f

(N3) capacities, deficit/demand coverage

SSRNIEN
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Bend Minimization — Result

r o) B rv)=4 WwevV
Theorem. | Tamassia '87]

A plane graph (G, F, fp) has a valid orthogonal
representation H(G) with k bends iff the flow network 0
N(G) has a valid flow X with cost k.

\. J

Proof.
= Given an orthogonal representation H(G) with k bends.
Construct valid flow X in N(G) with cost k.

B Define flow X: E — lRar.
B Show that X is a valid flow and has cost k.

(N1) X(vf) =1/2/3/4
(N2) X(/g) = [6f¢lo, (€,0¢q, x) describes e = fq from f

(N3) Capac1t1es deficit/demand coverage
(N4) cost =

—4 if f = fp,

+4 otherwise

B o) = —2degg(f) +{
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Bend Minimization — Remarks

B From Theorem follows that the combinatorial orthogonal
bend minimization problem for plane graphs can be solved
using an algorithm for the Min-Cost-Flow problem.
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B From Theorem follows that the combinatorial orthogonal
bend minimization problem for plane graphs can be solved

using an algorithm for the Min-Cost-Flow problem.

The minimum cost flow problem for planar graphs with
bounded costs and vertex degrees can be solved in

O(n”/*\/logn) time.

.

‘Theorem. |Garg & Tamassia 1996] ]

J

The minimum cost flow problem for planar graphs with
‘bounded costs and faze sizes can be solved in O(n3/?) time.

‘Theorem. |Cornelsen & Karrenbauer 2011]N
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Bend Minimization — Remarks

B From Theorem follows that the combinatorial orthogonal
bend minimization problem for plane graphs can be solved
using an algorithm for the Min-Cost-Flow problem.

‘Theorem. |Garg & Tamassia 1996]N
The minimum cost flow problem for planar graphs with
bounded costs and vertex degrees can be solved in

O(n”/*\/logn) time.

. J

‘Theorem. |Cornelsen & Karrenbauer 2011]N
The minimum cost flow problem for planar graphs with

‘bounded costs and faze sizes can be solved in O(n3/?) time. )

‘Theorem. |Garg & Tamassia 2001]N
Bend Minimization without a given combinatorial embedding

is an NP-hard problem.

J
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Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]
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Compaction

(Compaction problem.
Given: m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length

B minimum area
Properties.

B bends only on the outer face

B opposite sides of a face have the same length

32 -11



Compaction

(Compaction problem.
Given: m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length

B minimum area
Properties.

B bends only on the outer face

B opposite sides of a face have the same length
Idea.

B Formulate flow network for horizontal /vertical compaction
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Definition.
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Definition.
Flow Network Nyor = ((Whors Ehor); U; £; 11; cost)

O Whor:F\{fO}U{S/t} -
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Flow Network for Edge Length Assignment

Definition.
Flow Network Nyer = ((Wyer, Ever); b; /; 11; cost)

B Weer = F\ {fo} U{s,t} =

B Eor =1{(f,Q) | f, g share a vertical segment and f lies to

the left of ¢} U{(t,s)}
B /(0)=1 Vaé€ Eye

B u(a) =00 Va € Eye
B cost(a) =1 Va € Eyer

BO(f)=0 VfeE Wy
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Compaction — Result

‘Theorem.
Valid min-cost-flows for Np,, and Ny, exists iff

corresponding edge lenghts induce orthogonal drawing.
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Compaction — Result

What if not all
faces rectangular?

‘Theorem.
Valid min-cost-flows for Np,, and Ny, exists iff
corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?
] ’Xhor (t , S) | and ‘Xver (t , S) ‘? width and height of drawing

] ZeE Epor Xhor (8 ) + ZeE Ever Xver (8 ) total edge length
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Refinement of (G, H) — Outer Face

O

Area minimized? No!
O But we get bound O((n + b)?) on the area.

(Theorem. [Patrignani 2()01]N
Compaction for given orthogonal

representation is in general NP-hard.
U J
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