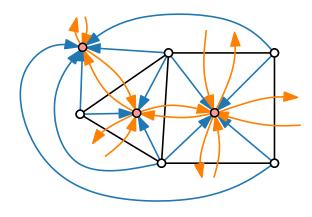
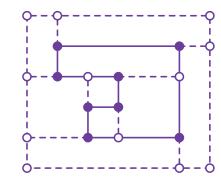
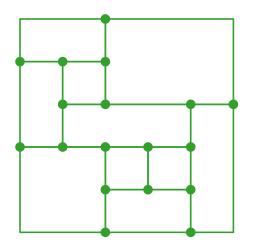


Visualization of Graphs



Lecture 6: Orthogonal Layouts

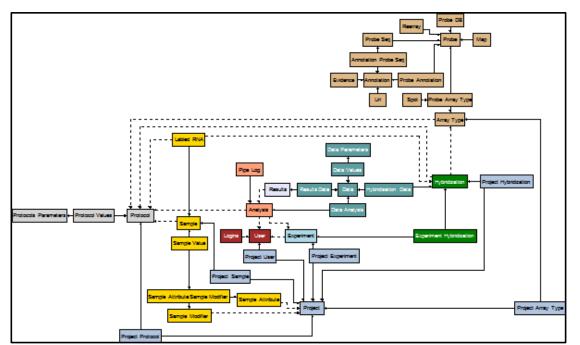




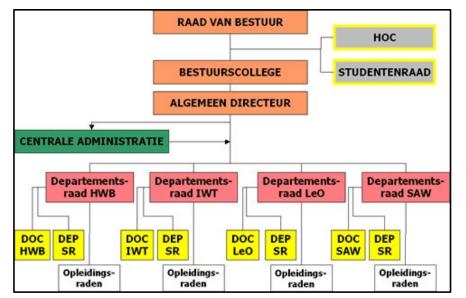
Part I: Topology – Shape – Metrics

Philipp Kindermann

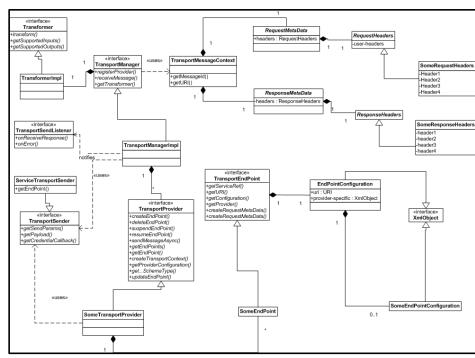
Orthogonal Layout – Applications



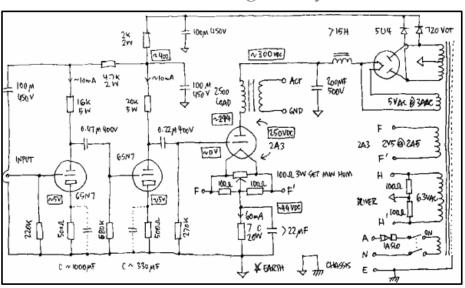
ER diagram in OGDF



Organigram of HS Limburg

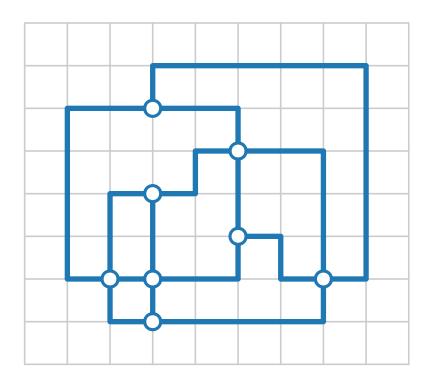


UML diagram by Oracle



Circuit diagram by Jeff Atwood

Orthogonal Layout – Definition



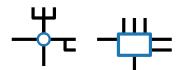
Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise



Planarization.

- Fix embedding
- Crossings become vertices

Aesthetic criteria.

- Number of bends
- Length of edges
- Width, height, area
- Monotonicity of edges
- ..

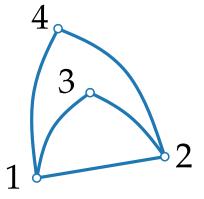
Topology – Shape – Metrics

Three-step approach:

 $V = \{v_1, v_2, v_3, v_4\}$ $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

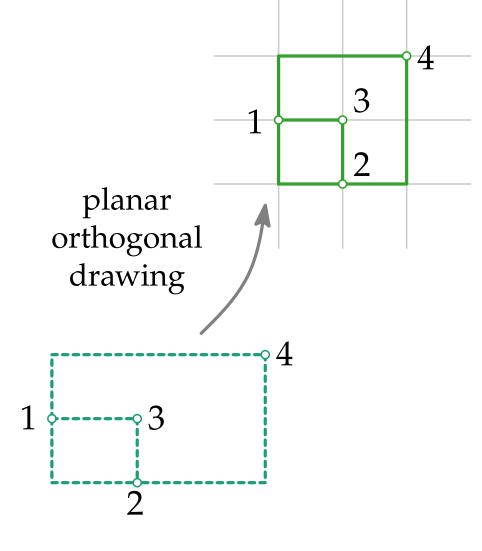
reduce crossings

combinatorial embedding/planarization



bend minimization

orthogonal representation



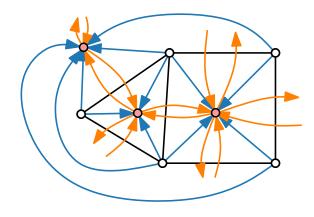
TOPOLOGY

SHAPE

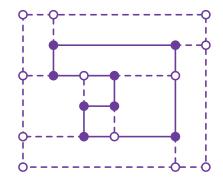
[Tamassia 1987]

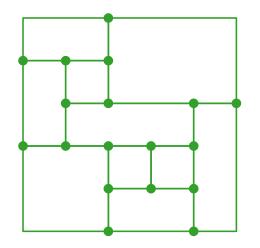
METRICS

Visualization of Graphs



Lecture 6: Orthogonal Layouts





Part II: Orthogonal Representation

Philipp Kindermann

Orthogonal Representation

Idea.

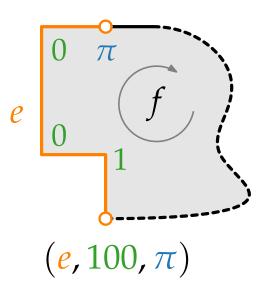
Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right. An edge description of e wrt f is a triple (e, δ, α) where
 - δ is a sequence of $\{0,1\}^*$ (0 = right bend, 1 = left bend)
 - lacksquare α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'
- A face representation H(f) of f is a clockwise ordered sequence of edge descriptions (e, δ, α) .
- An orthogonal representation H(G) of G is defined as

$$H(G) = \{ H(f) \mid f \in F \}.$$

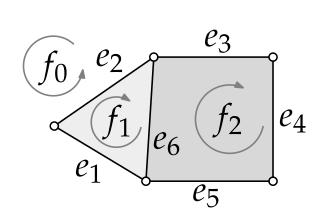


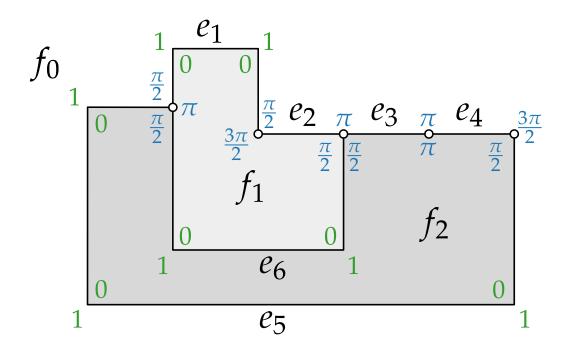
Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$





Concrete coordinates are not fixed yet!

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

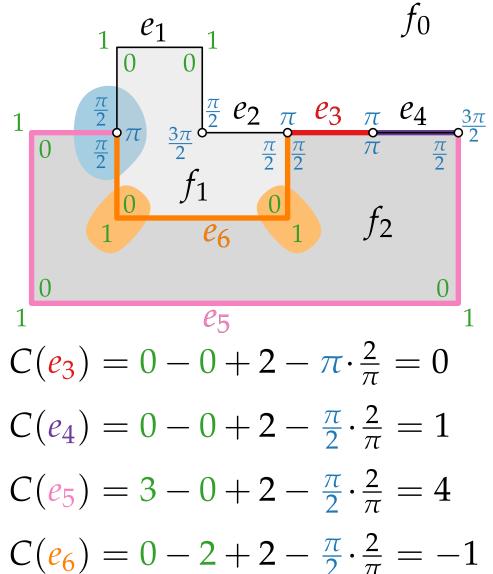
- (H2) For each **edge** $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1) \in H(f)$ and $((v,u),\delta_2,\alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r = (e, \delta, \alpha)$.

Let $C(r) := |\delta|_0 - |\delta|_1 + 2 - \alpha \cdot 2/\pi$.

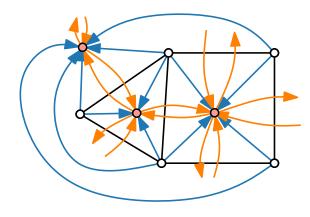
For each **face** *f* it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

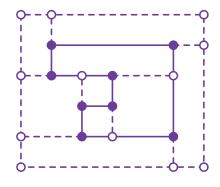
(H4) For each **vertex** v the sum of incident angles is 2π .

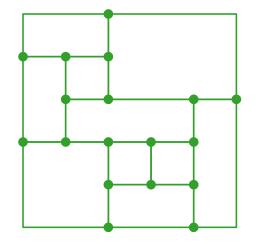


Visualization of Graphs



Lecture 6: Orthogonal Layouts





Part III: Flow Networks

Philipp Kindermann

Flow Networks

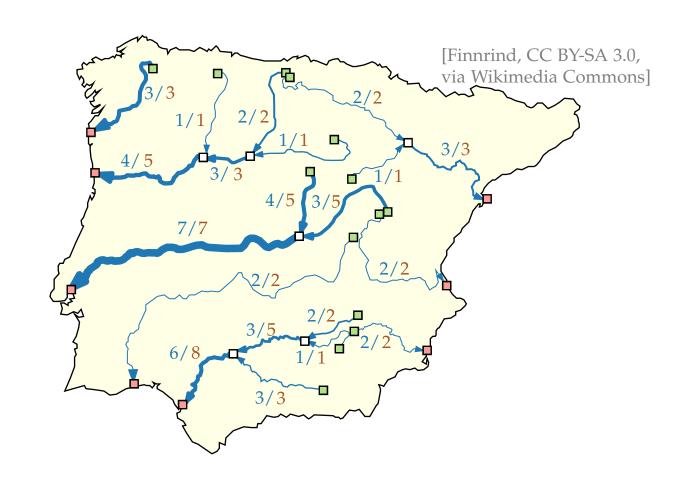
Flow network (G = (V, E); S, T; u) with

- \blacksquare directed graph G = (V, E)
- \blacksquare sources $S \subseteq V$, sinks $T \subseteq V$
- edge *capacity u* : $E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *S-T-flow*, if:

$$0 \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E$$
$$\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = 0 \qquad \forall i \in V \setminus (S \cup T)$$

A maximum *S-T*-flow is an *S-T*-flow where $\sum_{(i,j)\in E, i\in S} X(i,j)$ is maximized.



s-t-Flow Networks

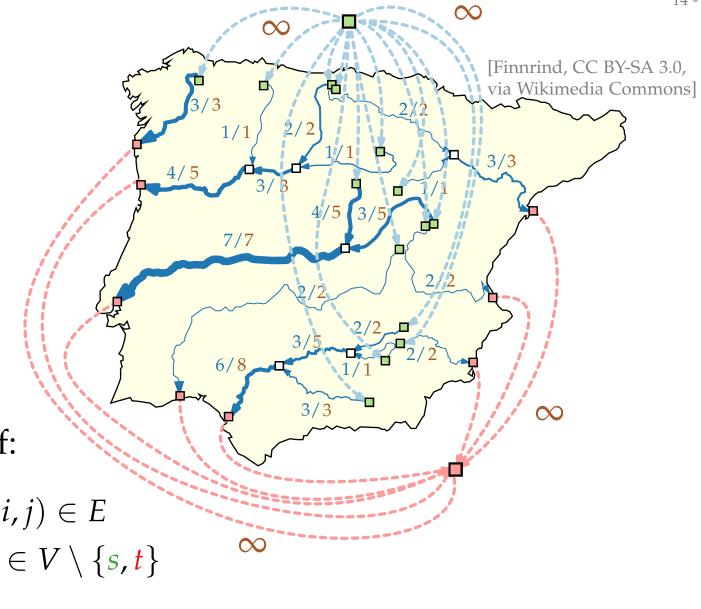
Flow network (G = (V, E); s, t; u) with

- \blacksquare directed graph G = (V, E)
- \blacksquare source $s \in V$, $sink \ t \in V$
- edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called *s-t-flow*, if:

$$0 \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E$$
$$\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = 0 \qquad \forall i \in V \setminus \{s,t\}$$

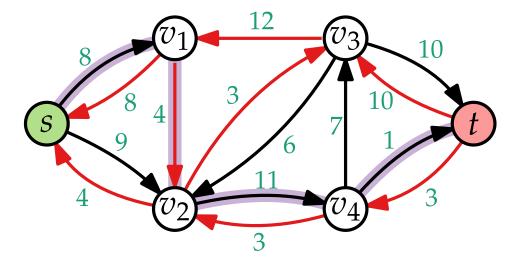
A maximum *s-t*-flow is an *s-t*-flow where $\sum_{(s,j)\in E} X(s,j)$ is maximized.



Residual Network

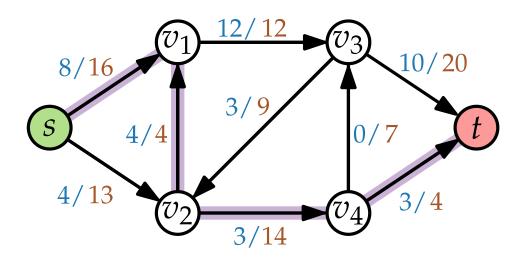
Residual network $G_X = (V, E')$:

- $X(v,v') < u(v,v') \Rightarrow (v,v') \in E'$ c(v,v') = u(v,v') (v,v')
- $X(v,v') > 0 \Rightarrow (v',v) \in E'$ c(v,v') = u(v,v')



Flow-increasing path W

Flow network (G = (V, E); s, t; u)

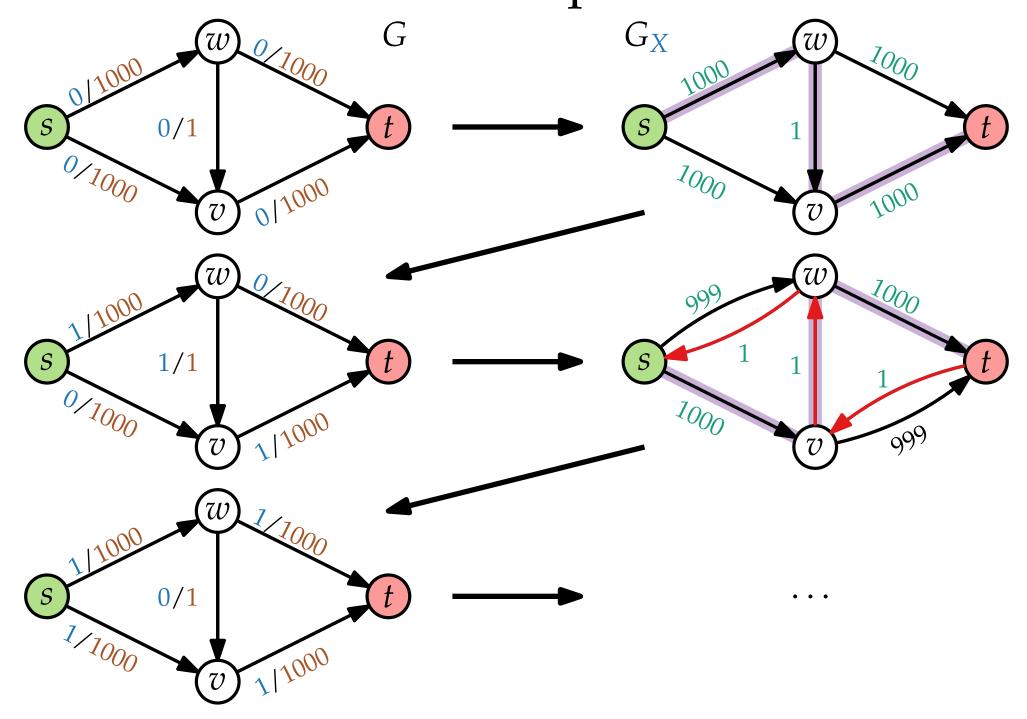


FordFulkerson

```
FordFulkerson(G = (V, E); s, t; u)
  foreach (v, v') \in E do
                                              Initialization with Zero-flow
   X(v,v')=0
  while G<sub>X</sub> contains s-t-path W do
     \Delta_W = \min_{(v,v') \in W} c(v,v')
                                               Capacity of W
     foreach (v, v') \in W do
         if (v, v') \in E then
         X(v,v') = X(v,v') + \Delta_W
                                               Increasing flow along W
         else
          X(v,v') = X(v,v') - \Delta_W
  return X
                                               Max Flow
```

FordFulkerson finds a maximum s-t-flow in $O(|X^*| \cdot n)$ time.

FordFulkerson – Example



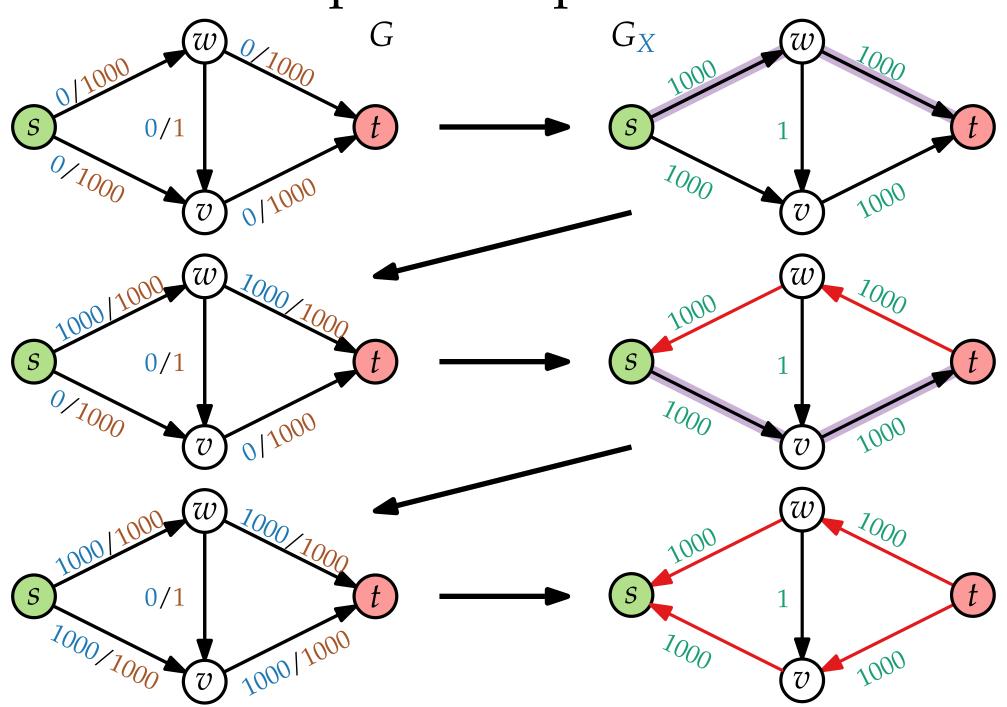
EdmondsKarp

```
FordFulkerson(G = (V, E); s, t; u)
 foreach (v, v') \in E do
   X(v,v')=0
  while G<sub>X</sub> contains s-t-path W do
      W = shortest s-t-path in G_X
     \Delta_W = \min_{(v,v') \in c(v,v')}
     foreach (v, v') \in W do
         if (v, v') \in E then
           X(v,v') = X(v,v') + \Delta_W
         else
          X(v,v') = X(v,v') - \Delta_W
  return X
```

Jack R. Edmonds *1934

EdmondsKarp finds a maximum s-t-flow in $O(nm^2)$ time.

EdmondsKarp – Example



General Flow Network

Flow network ($G = (V, E); b; \ell; u$) with

- \blacksquare directed graph G = (V, E)
- node production/consumption $b: V \to \mathbb{R}$ with $\sum_{i \in V} b(i) =$
- edge *lower bound* $\ell: E \to \mathbb{R}_0^+$
- edge *capacity u* : $E \to \mathbb{R}_0^+$

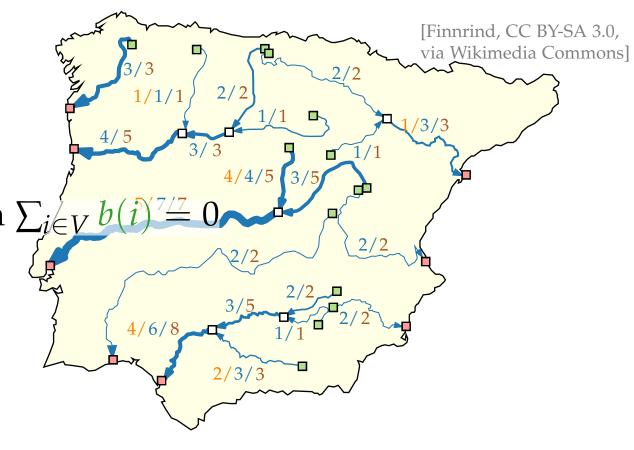
A function $X: E \to \mathbb{R}_0^+$ is called **valid flow**, if:

$$\frac{\ell(i,j) \le X(i,j) \le u(i,j)}{\sum X(i,j) - \sum X(j,i) = b(i)} \quad \forall (i,j) \in E$$

$$\frac{\sum X(i,j) - \sum X(j,i) = b(i)}{(j,i) \in E} \quad \forall i \in V$$

■ Cost function cost: $E \to \mathbb{R}_0^+$ and $\operatorname{cost}(X) := \sum_{(i,j) \in E} \operatorname{cost}(i,j) \cdot X(i,j)$

A minimum cost flow is a valid flow where cost(X) is minimized.



General Flow Network – Algorithms

Polynomial Algorithms				
Due to	Year	Running Time		
Edmonds and Karp	1972	O((n + m') log U S(n, m, nC))		
Rock	1980	$O((n + m') \log U S(n, m, nC))$		
Rock	1980	O(n log C M(n, m, U))		
Bland and Jensen	1985	O(m log C M(n, m, U))		
Goldberg and Tarjan	1987	$O(nm log (n^2/m) log (nC))$		
Goldberg and Tarjan	1988	O(nm log n log (nC))		
Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))		
	Due to Edmonds and Karp Rock Rock Bland and Jensen Goldberg and Tarjan Goldberg and Tarjan	Due toYearEdmonds and Karp1972Rock1980Rock1980Bland and Jensen1985Goldberg and Tarjan1987Goldberg and Tarjan1988		

Strongly Polynomial Algorithms

#	Due to	Year	Running Time
1	Tardos	1985	O(m ⁴)
2	Orlin	1984	$O((n + m')^2 \log n S(n, m))$
3	Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
4	Galil and Tardos	1986	$O(n^2 \log n S(n, m))$
5	Goldberg and Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$
6	Goldberg and Tarjan	1988	$O(nm^2 log^2 n)$
7	Orlin (this paper)	1988	$O((n + m') \log n S(n, m))$

$$S(n, m) = O(m + n \log n)$$
 Fredman and Tarjan [1984]
$$S(n, m, C) = O(Min (m + n\sqrt{\log C}),$$
 Ahuja, Mehlhorn, Orlin and Tarjan [1990]
$$(m \log \log C))$$
 Van Emde Boas, Kaas and Zijlstra[1977]
$$M(n, m) = O(min (nm + n^{2+\epsilon}, nm \log n)$$
 Where ϵ is any fixed constant.
$$M(n, m, U) = O(nm \log (\frac{n}{m} \sqrt{\log U} + 2))$$
 Ahuja, Orlin and Tarjan [1989]

Theorem.

[Orlin 1991]

The minimum cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

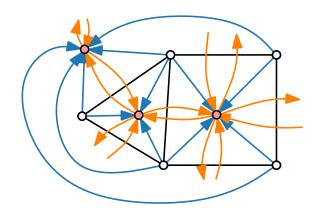
Theorem.

[Cornelsen & Karrenbauer 2011]

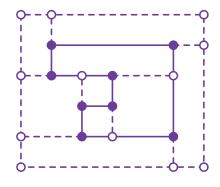
The minimum cost flow problem for planar graphs with bounded costs and faze sizes can be solved in $O(n^{3/2})$ time.

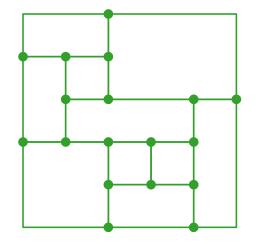
[Orlin 1991]

Visualization of Graphs



Lecture 6: Orthogonal Layouts



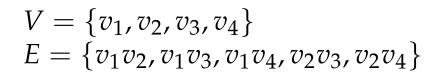


Part IV:
Bend Minimization

Philipp Kindermann

Topology – Shape – Metrics

Three-step approach:

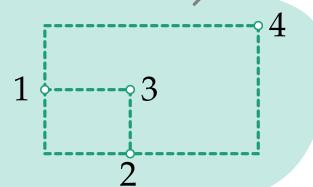


reduce crossings

combinatorial embedding/ planarization

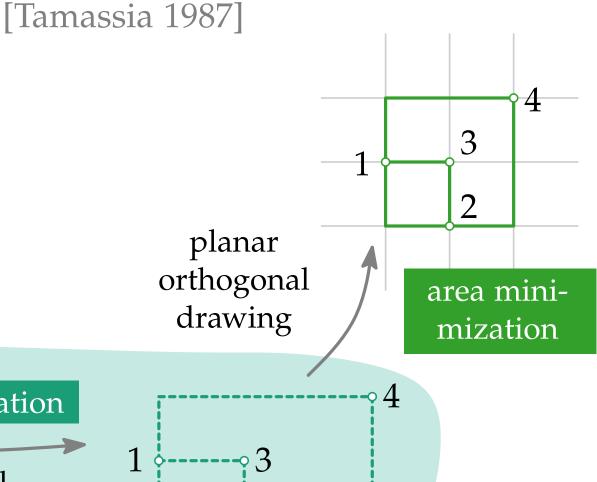
3

orthogonal representation



TOPOLOGY

SHAPE



Bend Minimization with Given Embedding

Geometric bend minimization.

Given: Plane graph G = (V, E) with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variation.

Combinatorial bend minimization.

Given: Plane graph G = (V, E) with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

Combinatorial Bend Minimization

Combinatorial bend minimization.

Given: Plane graph G = (V, E) with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum

number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

- \blacksquare a unit of flow = $\angle \frac{\pi}{2}$
- vertices $\stackrel{\angle}{\longrightarrow}$ faces (# $\angle \frac{\pi}{2}$ per face)
- faces $\stackrel{\angle}{\longrightarrow}$ neighbouring faces (# bends toward the neighbour)

Flow Network for Bend Minimization

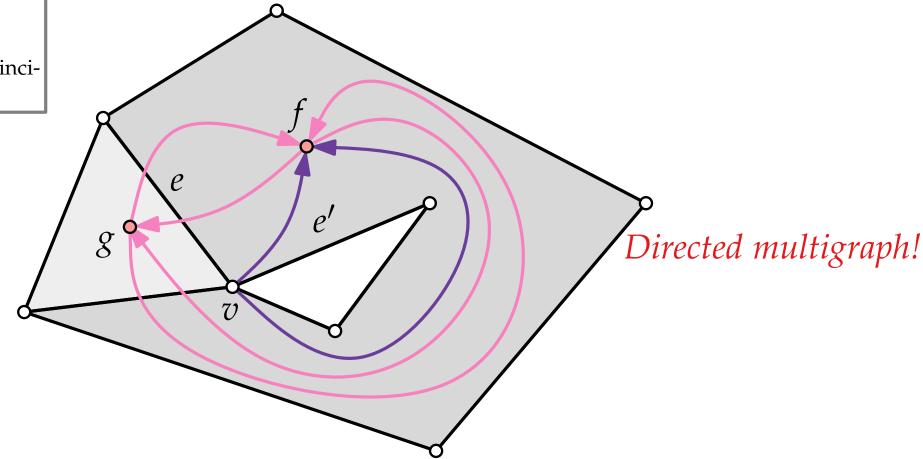
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

■ $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



Flow Network for Bend Minimization

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** *v* the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

- $\blacksquare E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$

$$b(f) = -2\deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_w b(w) = 0$$
 (Euler)

$$\Rightarrow \sum_{w} b(w) = 0$$
 (Euler)

$$\forall (v, f) \in E, v \in V, f \in F$$

 $\forall (f, g) \in E, f, g \in F$

$$f) \in E, v \in V, f \in F$$

$$cost(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$$

$$cost(v, f) = 0$$

$$\ell(f, g) := 0 \le X(f, g) \le \infty =: u(f, g)$$

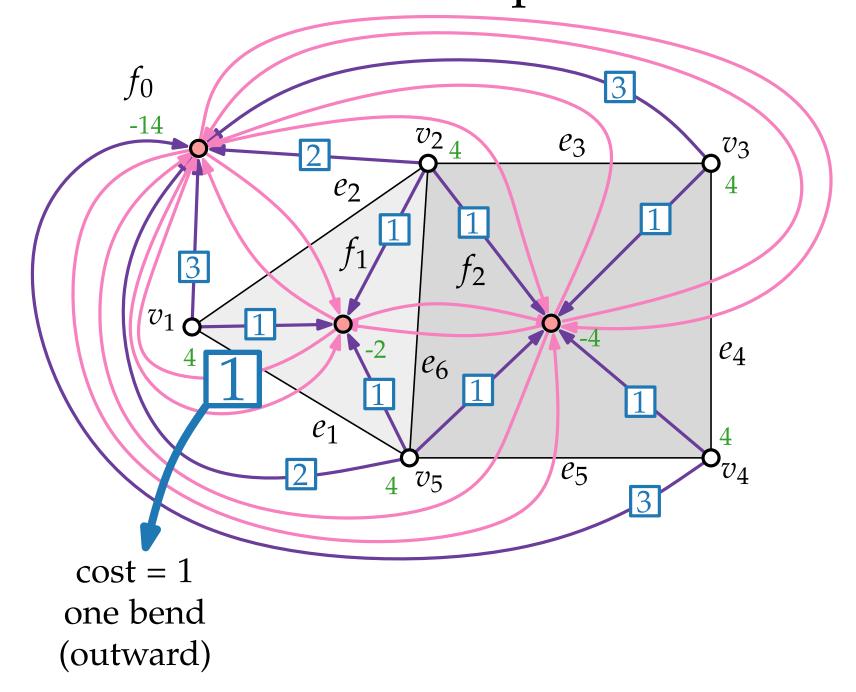
$$cost(f, g) = 1$$

$$umber \text{ of bends.}$$

$$umber \text{ of bends.}$$

$$why is it enough?$$

Flow Network Example

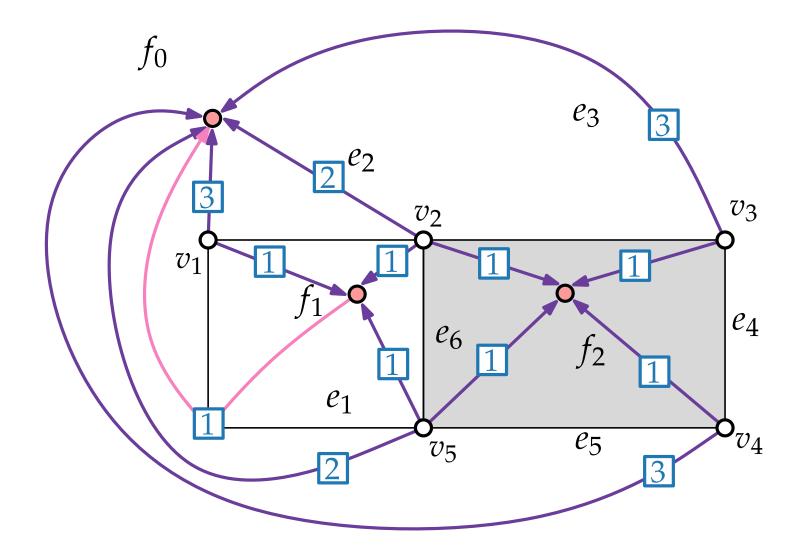


Legend

$$V$$
 \circ
 F \bullet
 $\ell/u/\cos t$
 $V \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$
 $4 = b$ -value

3 flow

Flow Network Example



Legend

$$\ell/u/\cos t$$

$$V \times F \supseteq \frac{1/4/0}{}$$

$$F \times F \supseteq \frac{0/\infty/1}{\bullet}$$

$$4 = b$$
 -value

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
 - Transform from flow to orthogonal description.
 - Show properties (H1)–(H4).
- (H1) H(G) matches F, f_0
- (H2) Bend order inverted and reversed on opposite sides
- (H3) Angle sum of $f = \pm 4$
- (H4) Total angle at each vertex = 2π

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

$b(v) = 4 \quad \forall v \in V$

$$b(f) = -2\deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$$

$$\cot(v, f) = 0$$

$$\ell(f, g) := 0 \le X(f, g) \le \infty =: u(f, g)$$

$$\cot(f, g) = 1$$

Proof.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
 - Define flow $X: E \to \mathbb{R}_0^+$.
 - \blacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

(N2)
$$X(fg) = |\delta_{fg}|_0$$
, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f

(N3) capacities, deficit/demand coverage

$$(N4) \cos t = k$$

$$\sqrt{}$$

$$\checkmark$$

Bend Minimization – Remarks

From Theorem follows that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.

Theorem.

[Garg & Tamassia 1996]

The minimum cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.

[Cornelsen & Karrenbauer 2011]

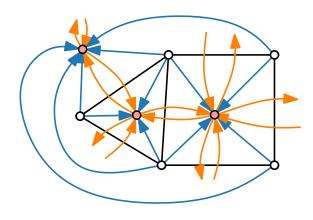
The minimum cost flow problem for planar graphs with bounded costs and faze sizes can be solved in $O(n^{3/2})$ time.

Theorem.

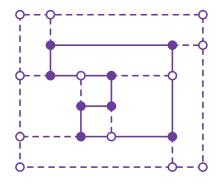
[Garg & Tamassia 2001]

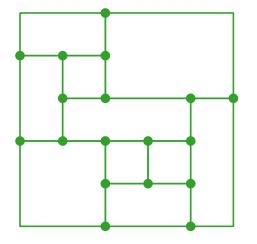
Bend Minimization without a given combinatorial embedding is an NP-hard problem.

Visualization of Graphs



Lecture 6: Orthogonal Layouts





Part V: Area Minimization

Philipp Kindermann

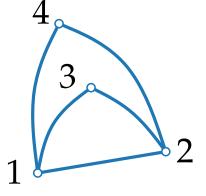
Topology – Shape – Metrics

Three-step approach:

 $V = \{v_1, v_2, v_3, v_4\}$ $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

reduce crossings

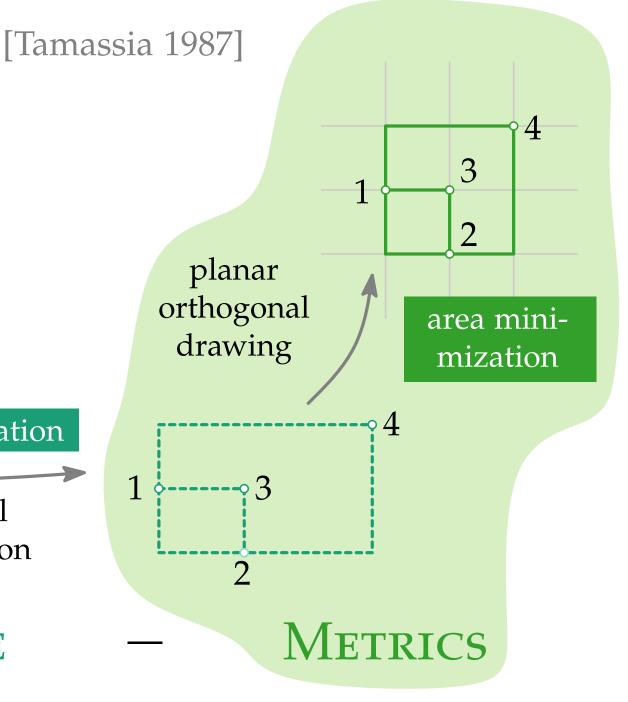
combinatorial embedding/planarization



bend minimization

orthogonal representation

Topology – Shai



Compaction

Compaction problem.

Given: Plane graph G = (V, E) with maximum degree 4

lacksquare Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

→ Guarantees possible ■ minimum total edge length

minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Idea.

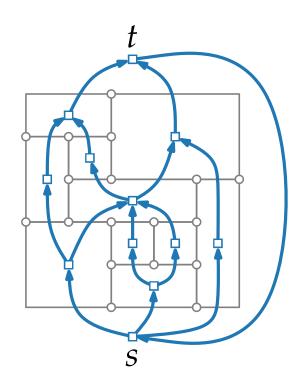
■ Formulate flow network for horizontal/vertical compaction

Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{hor}} = ((W_{\text{hor}}, E_{\text{hor}}); b; \ell; u; \text{cost})$

- $W_{\text{hor}} = F \setminus \{f_0\} \cup \{s, t\}$
- $E_{\text{hor}} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\} \cup \{(t,s)\}$
- $l(a) = 1 \quad \forall a \in E_{hor}$
- $u(a) = \infty \quad \forall a \in E_{hor}$
- $b(f) = 0 \quad \forall f \in W_{\text{hor}}$

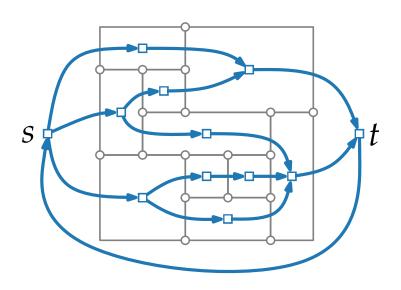


Flow Network for Edge Length Assignment

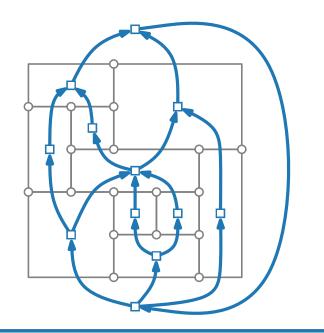
Definition.

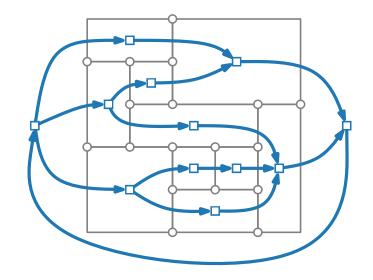
Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, E_{\text{ver}}); b; \ell; u; \text{cost})$

- $W_{\text{ver}} = F \setminus \{f_0\} \cup \{s, t\}$
- $E_{\text{ver}} = \{(f,g) \mid f,g \text{ share a } vertical \text{ segment and } f \text{ lies to the } left \text{ of } g\} \cup \{(t,s)\}$
- $l(a) = 1 \quad \forall a \in E_{\text{ver}}$
- $u(a) = \infty \quad \forall a \in E_{\text{ver}}$
- $b(f) = 0 \quad \forall f \in W_{\text{ver}}$



Compaction – Result





What if not all faces rectangular?

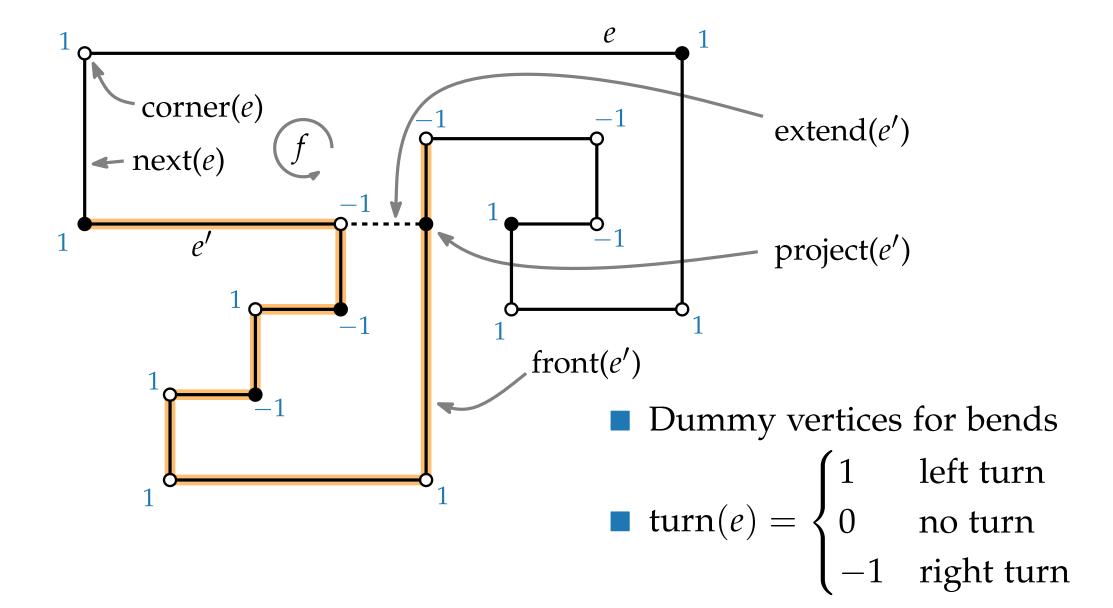
Theorem.

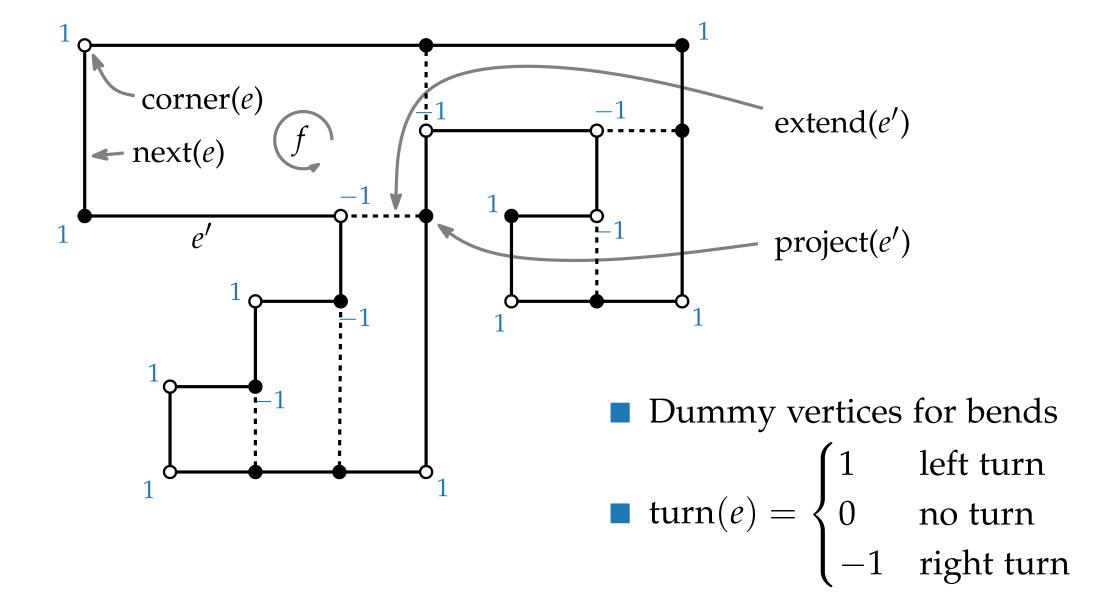
Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lengths induce orthogonal drawing.

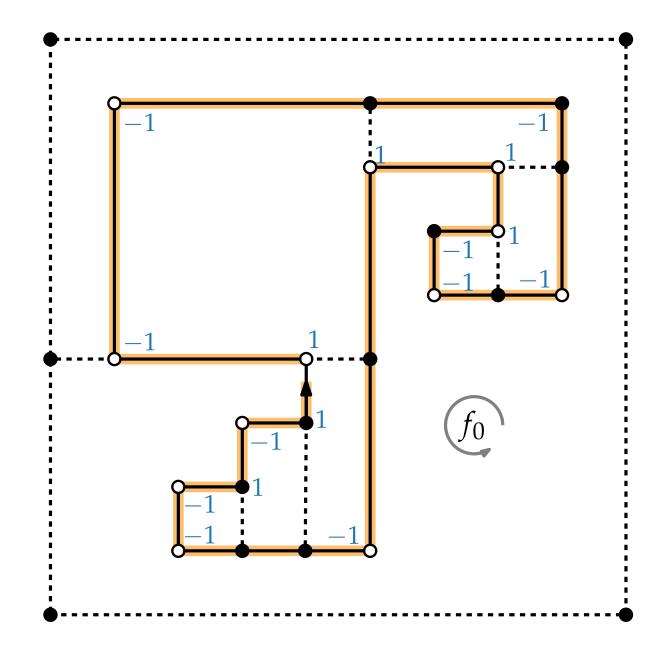
What values of the drawing represent the following?

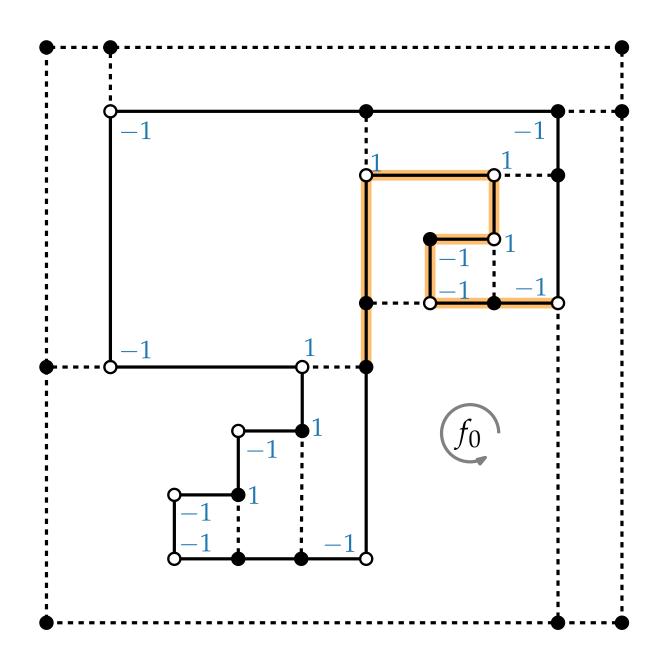
 $|X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of drawing

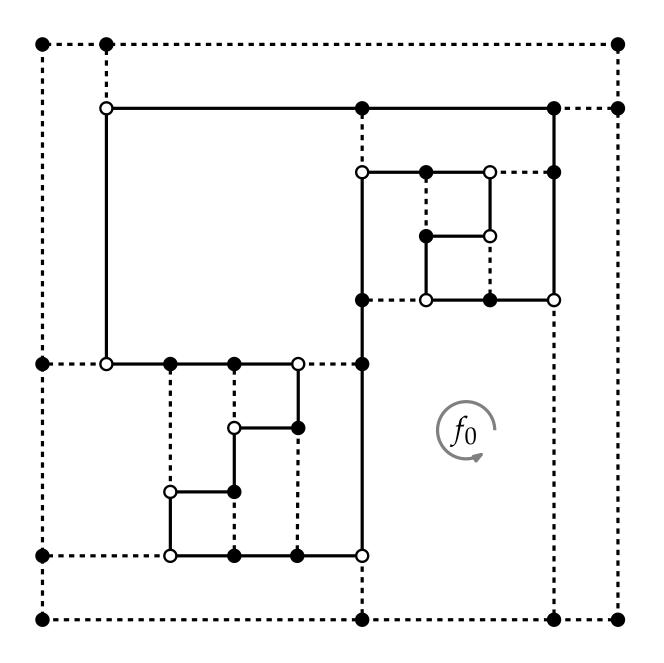
 $\sum_{e \in E_{\text{hor}}} X_{\text{hor}}(e) + \sum_{e \in E_{\text{ver}}} X_{\text{ver}}(e)$ total edge length

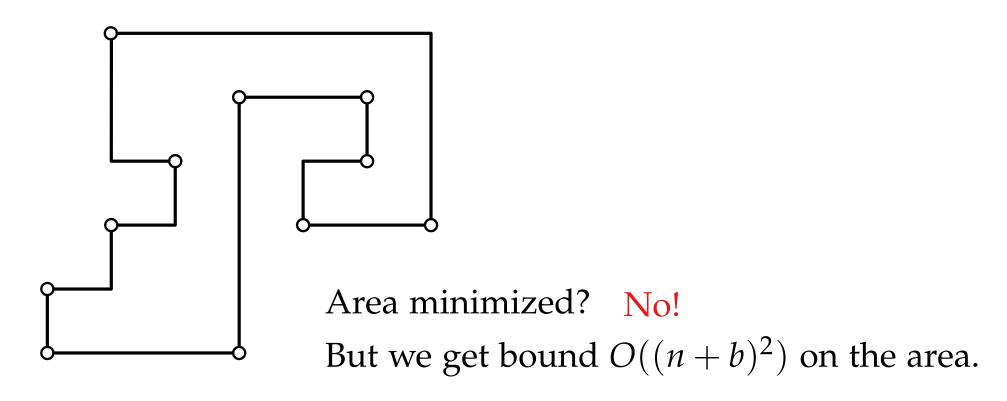












Theorem.

[Patrignani 2001]

Compaction for given orthogonal representation is in general NP-hard.