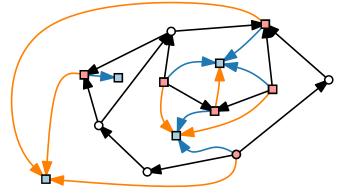
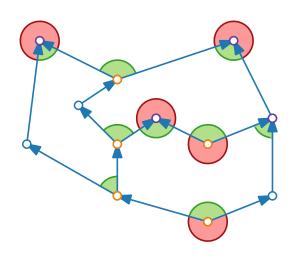


Visualization of Graphs

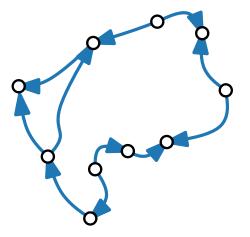


Lecture 7: Upward Planar Drawings

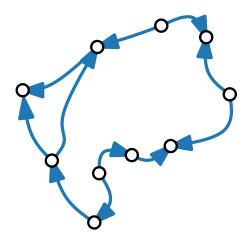


Part I: Characterization

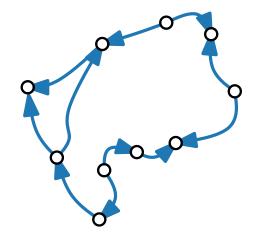
Philipp Kindermann

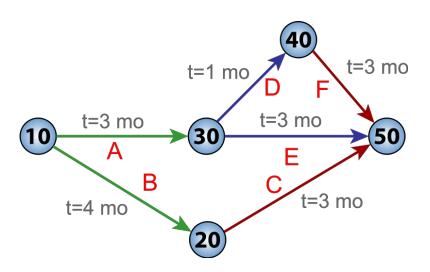


What may the direction of edges in a digraph represent?



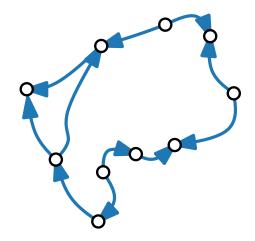
- What may the direction of edges in a digraph represent?
 - Time

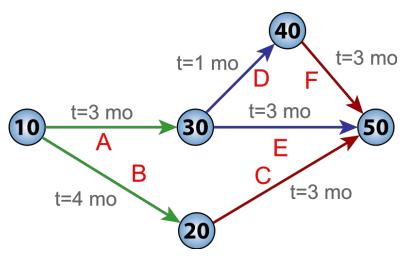




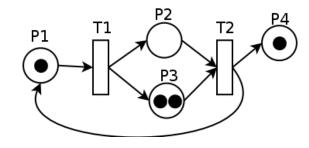
PERT diagram

- What may the direction of edges in a digraph represent?
 - Time
 - Flow



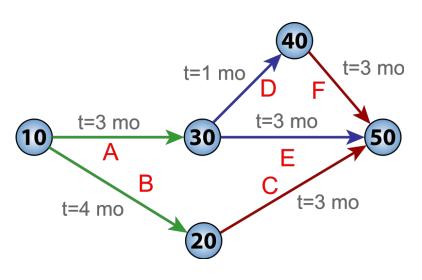


PERT diagram

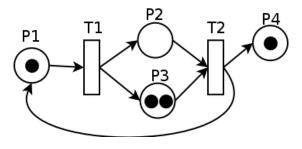


Petri net

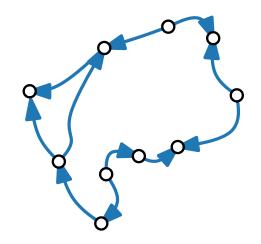
- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchy

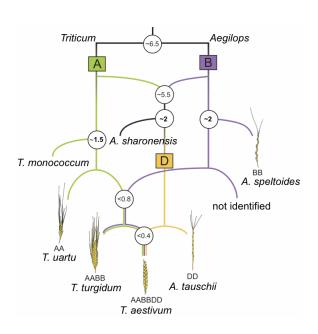


PERT diagram



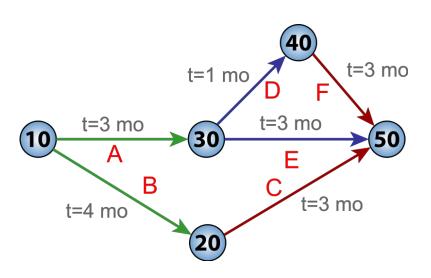
Petri net



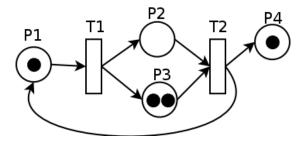


Phylogenetic network

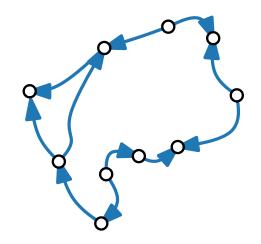
- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchy
 - . . .

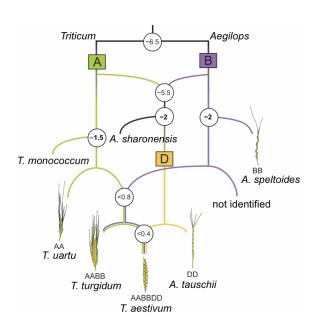


PERT diagram



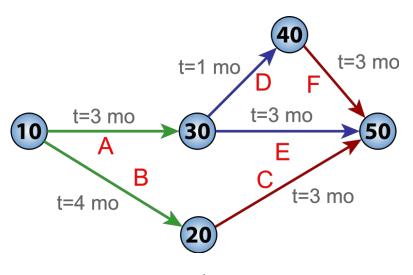
Petri net



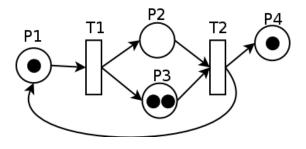


Phylogenetic network

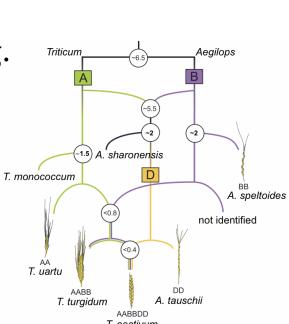
- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchy
 - . . .
- Would be nice to have general direction preserved in drawing.



PERT diagram

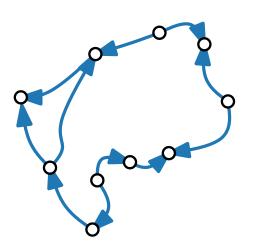


Petri net



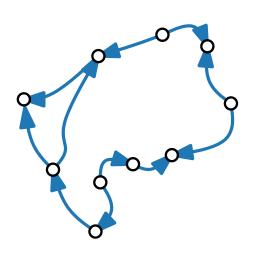
Phylogenetic network

A directed graph G = (V, E) is **upward planar** when it admits a drawing Γ that is



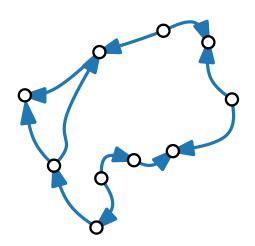
A directed graph G = (V, E) is **upward planar** when it admits a drawing Γ that is

planar and



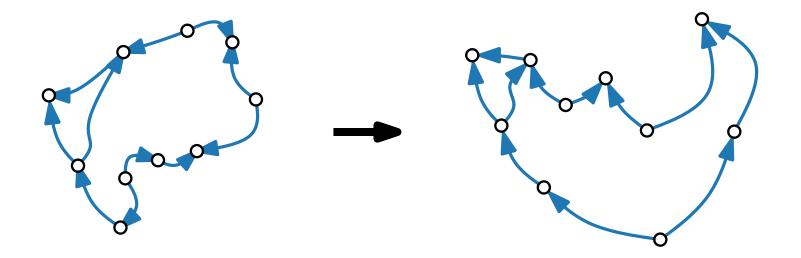
A directed graph G = (V, E) is **upward planar** when it admits a drawing Γ that is

- planar and
- where each edge is drawn as an upward, y-monotone curve.

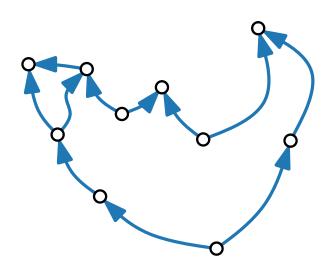


A directed graph G = (V, E) is **upward planar** when it admits a drawing Γ that is

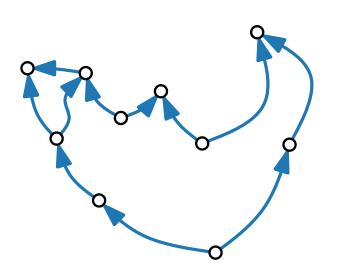
- planar and
- where each edge is drawn as an upward, y-monotone curve.



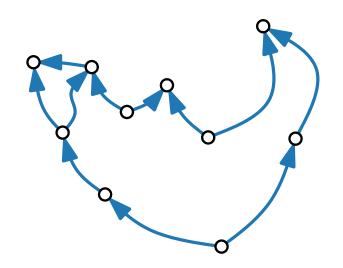
■ For a digraph *G* to be upward planar, it has to be:

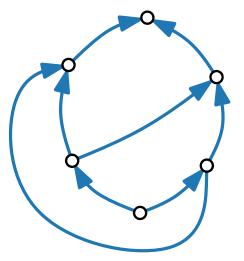


- For a digraph *G* to be upward planar, it has to be:
 - planar

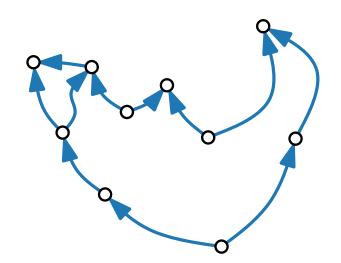


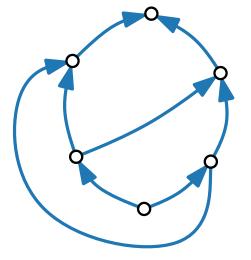
- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic

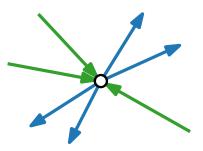




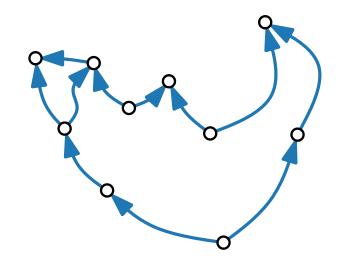
- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic

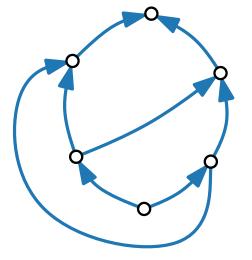


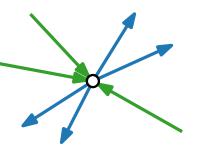




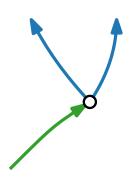
- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic

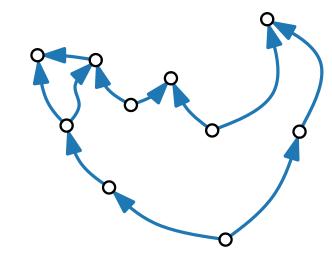


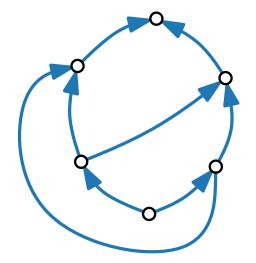


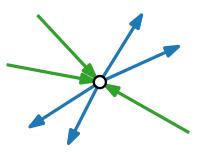


- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic

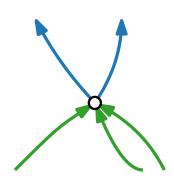


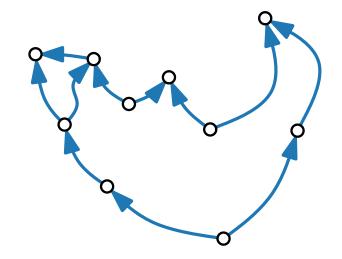


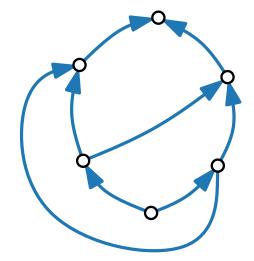


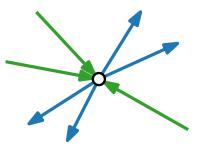


- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic

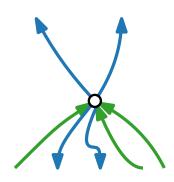


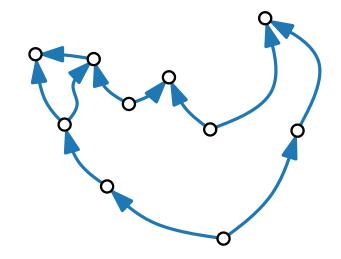


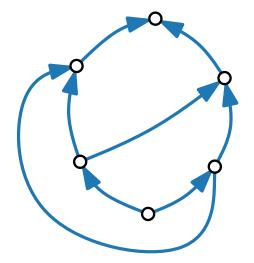


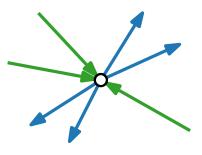


- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic

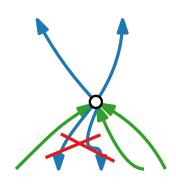


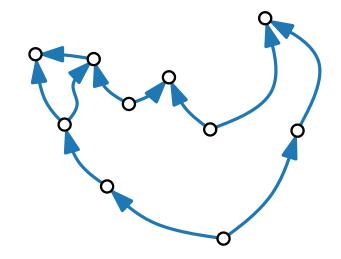


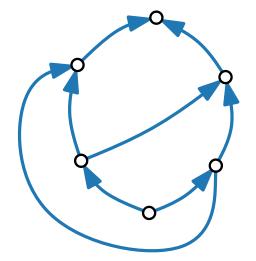


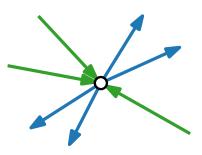


- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic

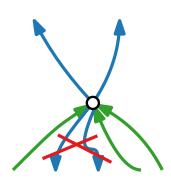


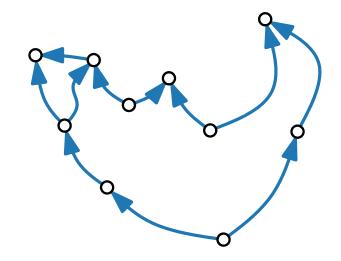


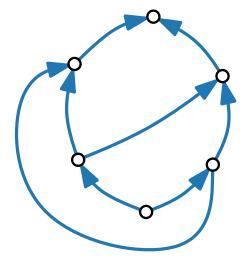


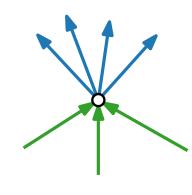


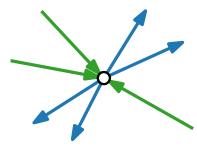
- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic



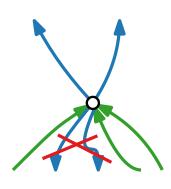


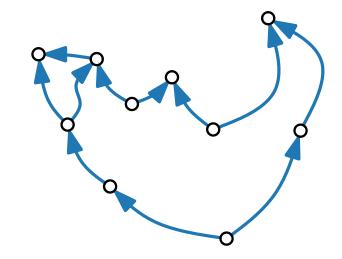


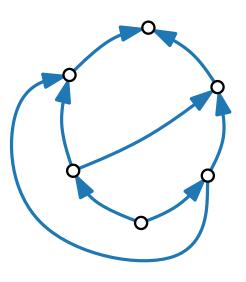


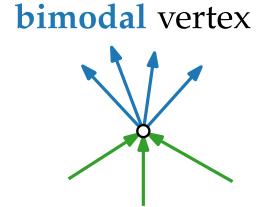


- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic

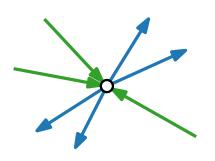




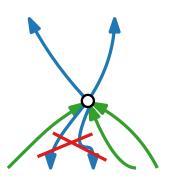


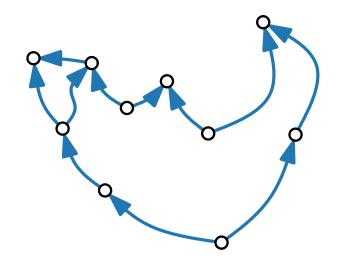


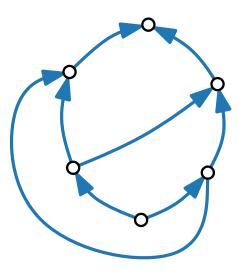
not bimodal

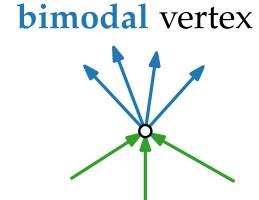


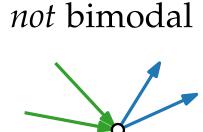
- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic
 - bimodal



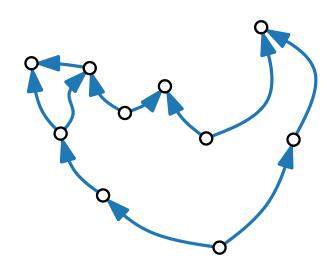


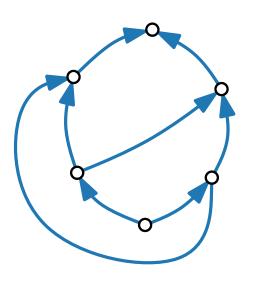


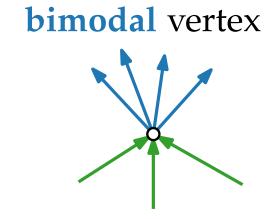


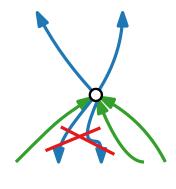


- For a digraph *G* to be upward planar, it has to be:
 - planar
 - acyclic
 - bimodal
- ... but these conditions are *not sufficient*.

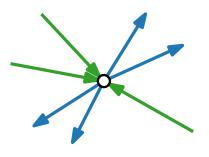








not bimodal



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent: 1. *G* is upward planar.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

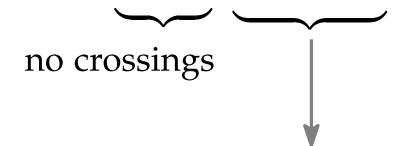
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

no crossings

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

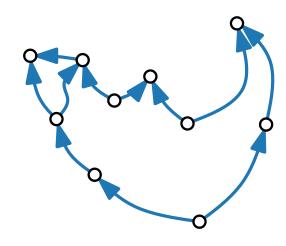
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

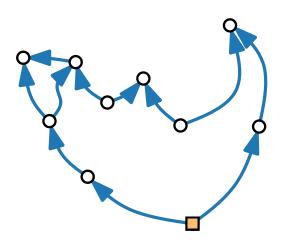
- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

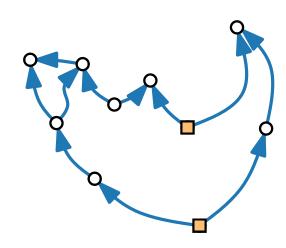
- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

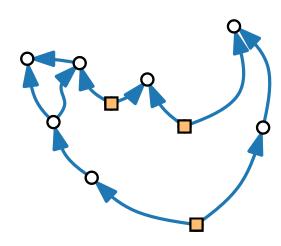
- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

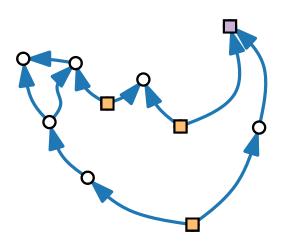
- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

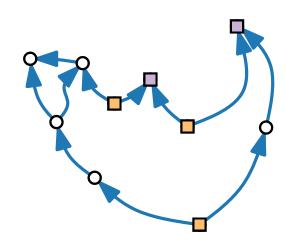
- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

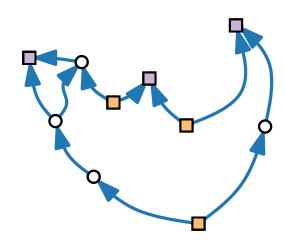
- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

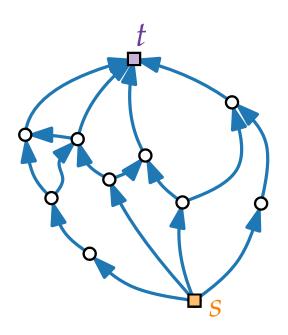
- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

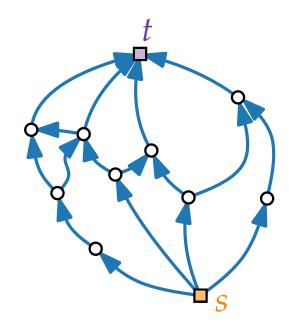
For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Additionally:

Embedded such that s and t are on the outerface f_0 .

no crossings



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

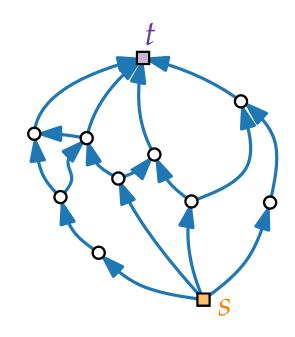
Additionally:

Embedded such that s and t are on the outerface f_0 .

or:

Edge (s, t) exists.

no crossings

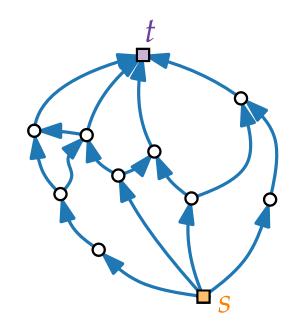


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.



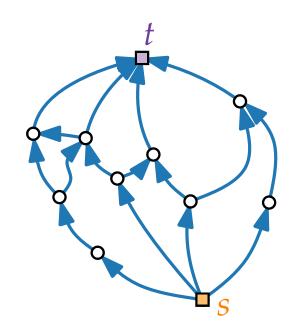
Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2) \Rightarrow (1) By definition.

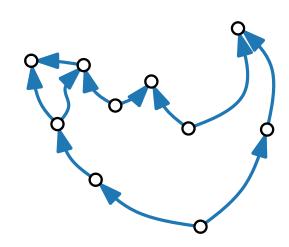


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

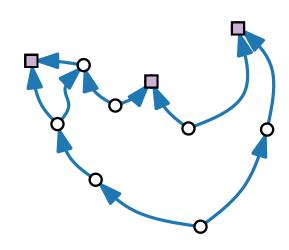


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

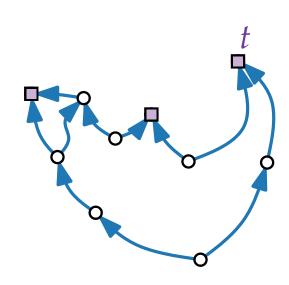


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

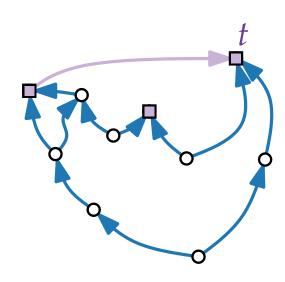


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

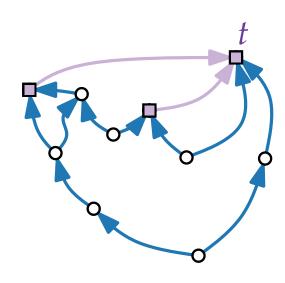


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

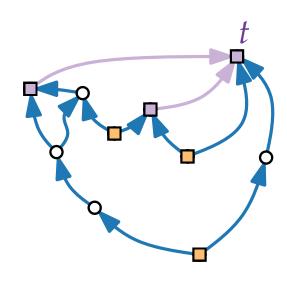


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

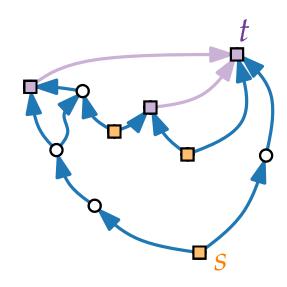


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

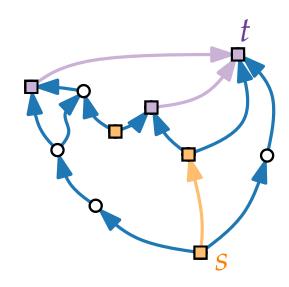


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

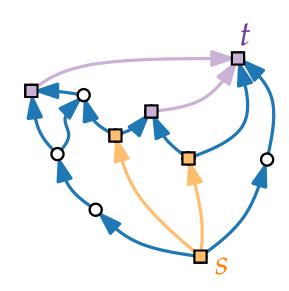


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.



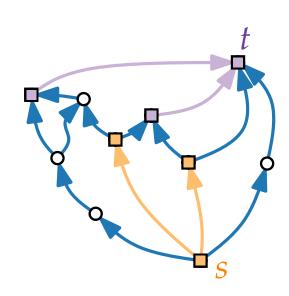
Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:



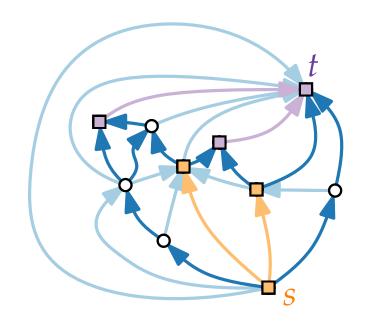
Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

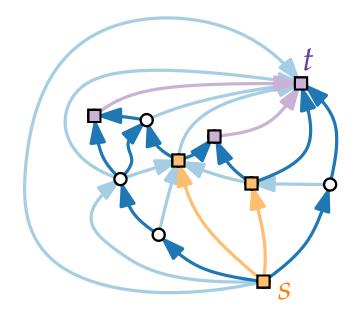
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

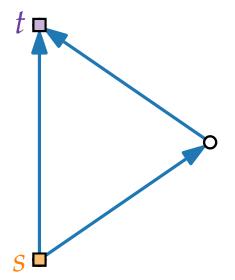
- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

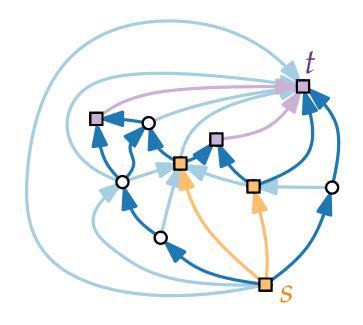
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.





Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

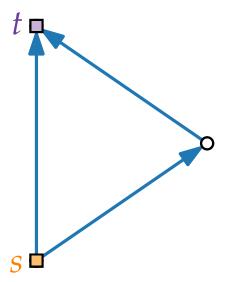
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

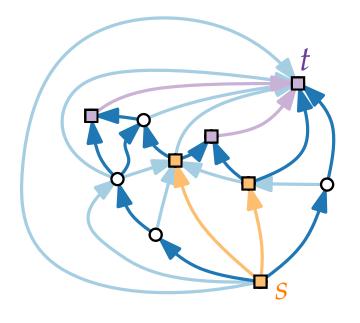
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.





Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

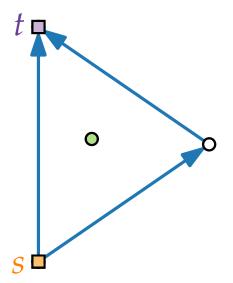
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

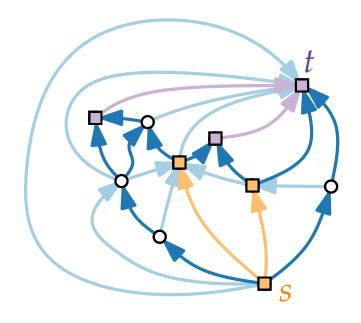
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.





Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

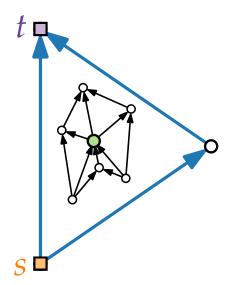
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

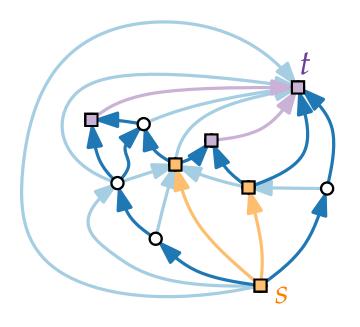
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.





[Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

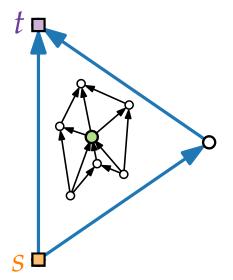
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

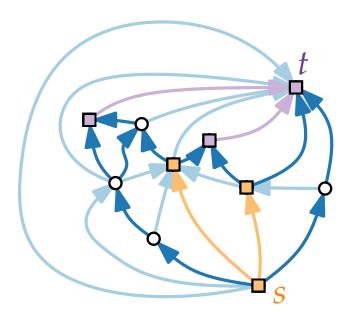
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim. Case 1:

Can draw in chord prespecified triangle.





[Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

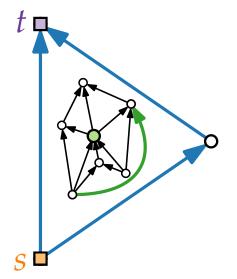
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

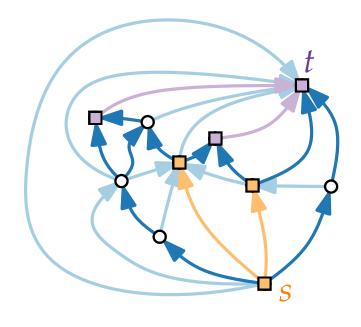
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim. Case 1:

Can draw in chord prespecified triangle.





[Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

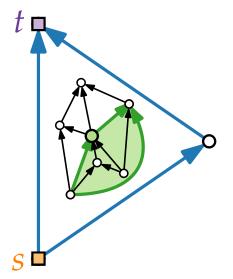
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

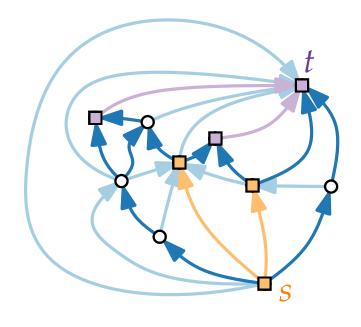
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim. Case 1:

Can draw in chord prespecified triangle.





Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

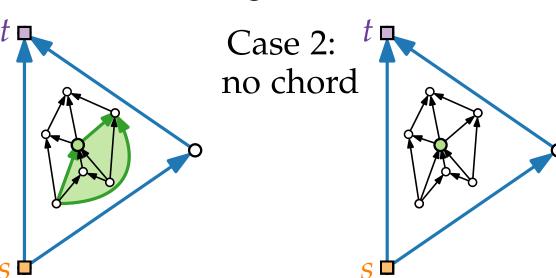
Proof.

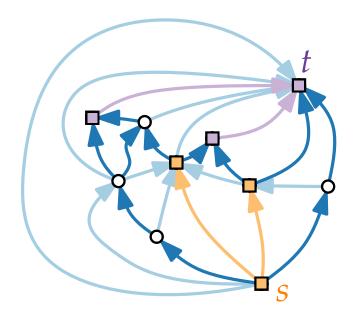
- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Case 1:

Claim.

Can draw in chord prespecified triangle.





[Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

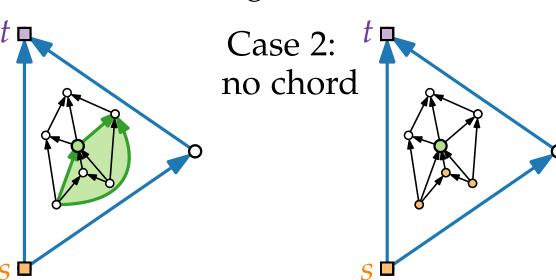
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

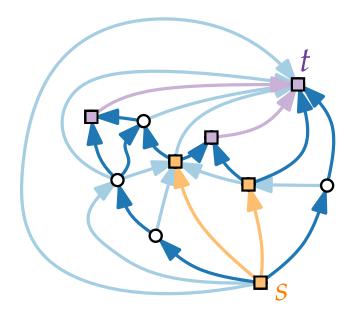
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Case 1: Can draw in chord prespecified triangle.





[Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

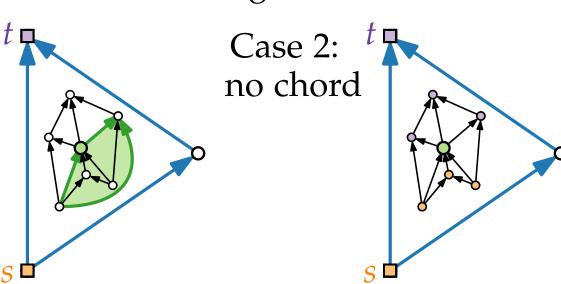
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

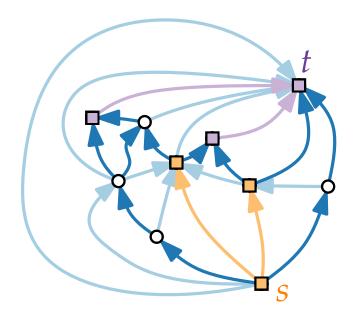
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Case 1: Can draw in chord prespecified triangle.





[Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

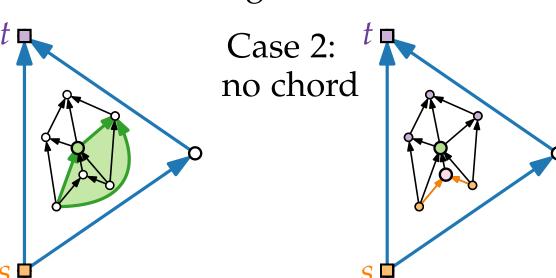
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

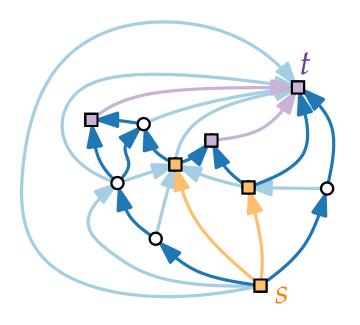
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Case 1: Can draw in chord prespecified triangle.





[Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

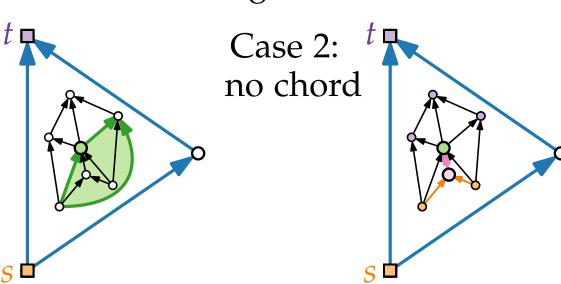
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

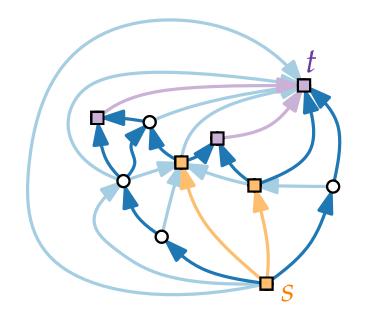
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Case 1: Can draw in chord prespecified triangle.





Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. *G* admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

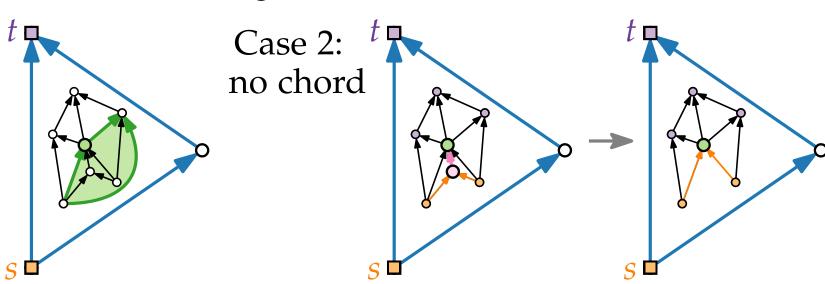
Proof.

- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Case 1:

Claim.

Can draw in chord prespecified triangle.



[Kelly 1987, Di Battista & Tamassia 1988]

For a digraph *G* the following statements are equivalent:

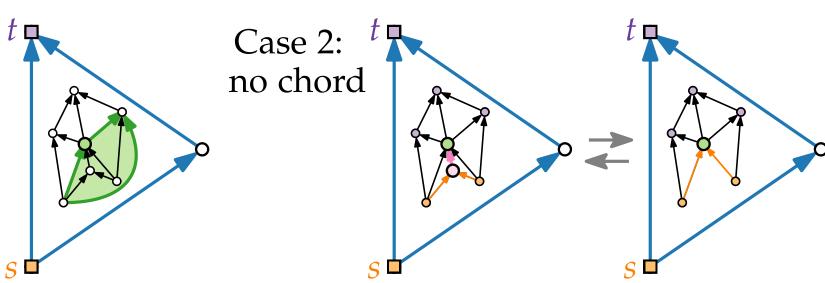
- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

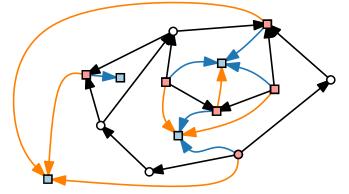
- (2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
- (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Case 1: Can draw in chord prespecified triangle.

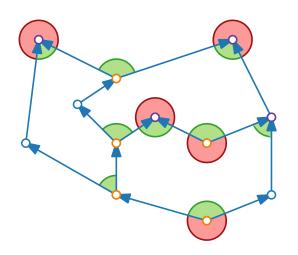


Visualization of Graphs



Lecture 7:

Upward Planar Drawings



Part II: Complexity

Philipp Kindermann

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem.

[Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem.

[Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Corollary.

For a *triconnected* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem.

[Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Corollary.

For a *triconnected* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Theorem.

[Hutton & Lubiw, 1996]

For a *single-source* acyclic digraph it can be tested in O(n) time whether it is upward planar.

Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem.

[Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Corollary.

For a *triconnected* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Theorem.

[Hutton & Lubiw, 1996]

For a *single-source* acyclic digraph it can be tested in O(n) time whether it is upward planar.

Fixed Embedding Upward Planarity Testing.

Let G = (V, E) be a plane digraph with set of faces F and outer face f_0 .

Test whether G is upward planar (wrt to F, f_0).

Fixed Embedding Upward Planarity Testing.

Let G = (V, E) be a plane digraph with set of faces F and outer face f_0 .

Test whether G is upward planar (wrt to F, f_0).

Idea.

■ Find property that any upward planar drawing of *G* satisfies.

Fixed Embedding Upward Planarity Testing.

Let G = (V, E) be a plane digraph with set of faces F and outer face f_0 .

Test whether G is upward planar (wrt to F, f_0).

Idea.

- Find property that any upward planar drawing of G satisfies.
- Formalize property.

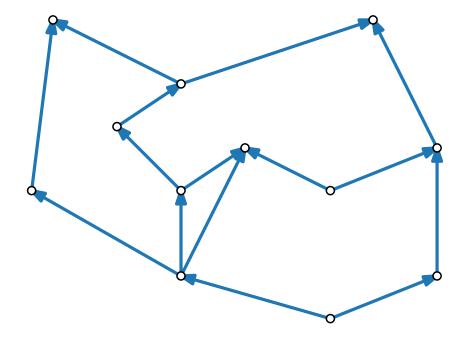
Fixed Embedding Upward Planarity Testing.

Let G = (V, E) be a plane digraph with set of faces F and outer face f_0 .

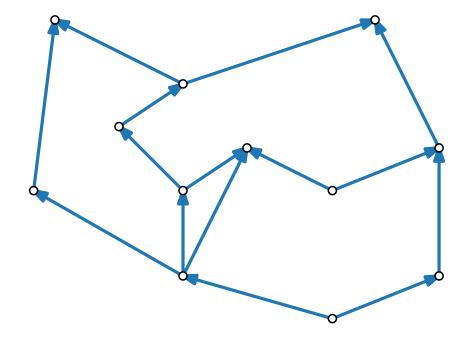
Test whether G is upward planar (wrt to F, f_0).

Idea.

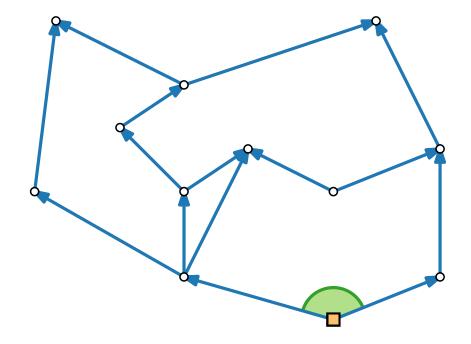
- Find property that any upward planar drawing of G satisfies.
- Formalize property.
- Find algorithm to test property.



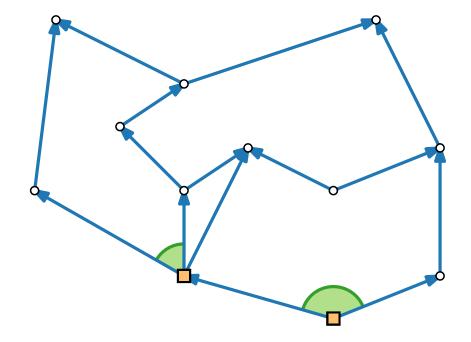
Definitions.



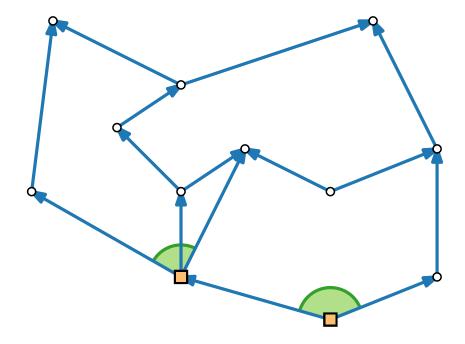
Definitions.



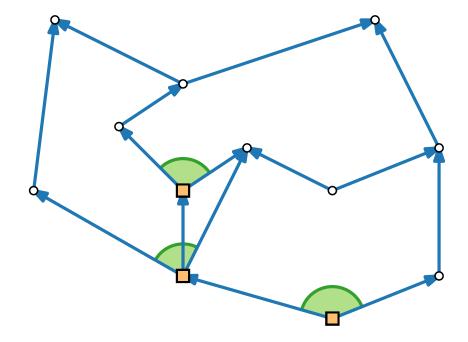
Definitions.



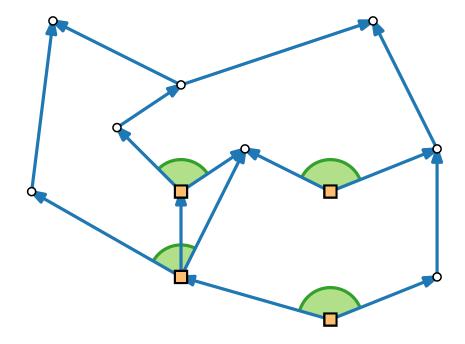
Definitions.



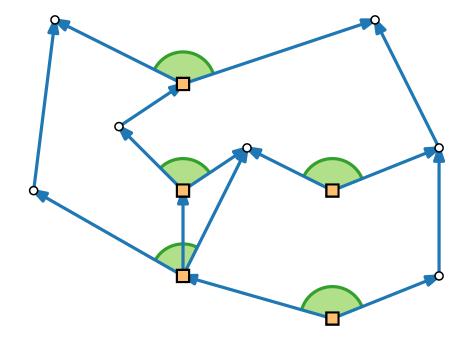
Definitions.



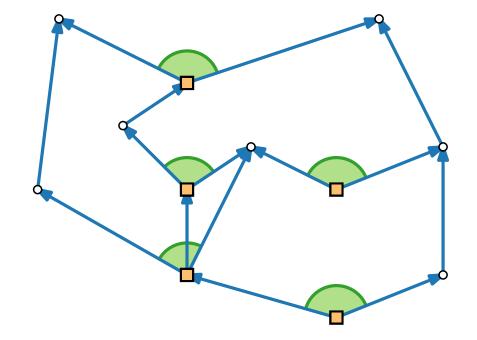
Definitions.



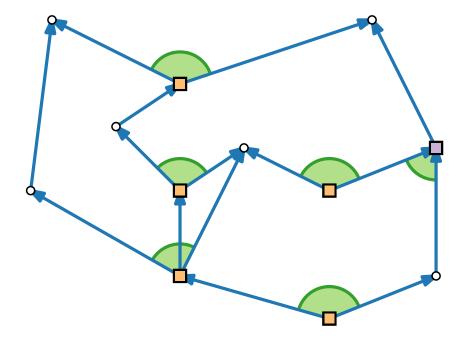
Definitions.



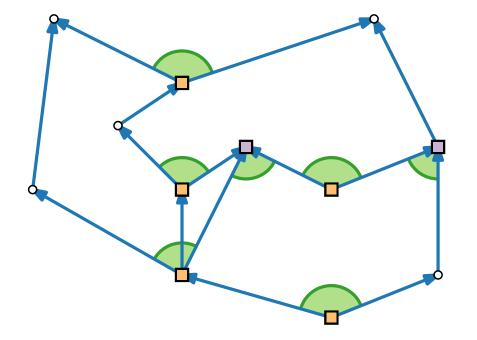
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .



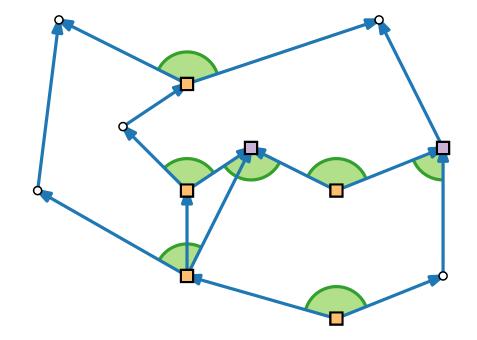
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .



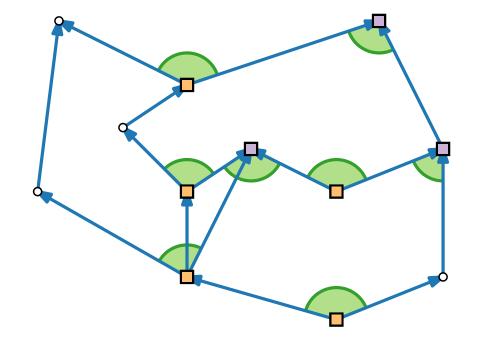
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .



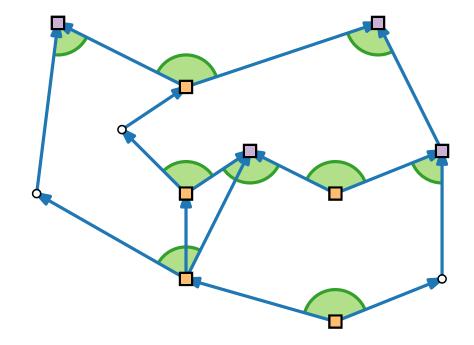
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .



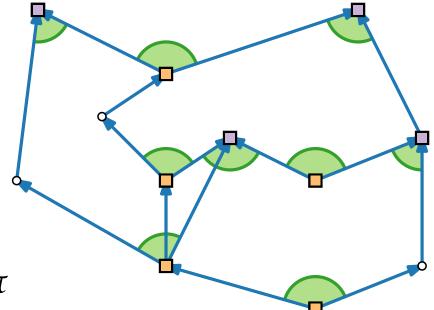
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .



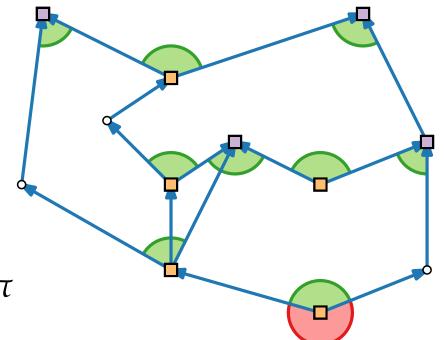
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .



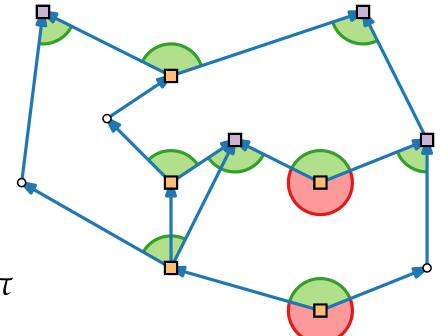
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large when $\alpha > \pi$ and small otherwise.



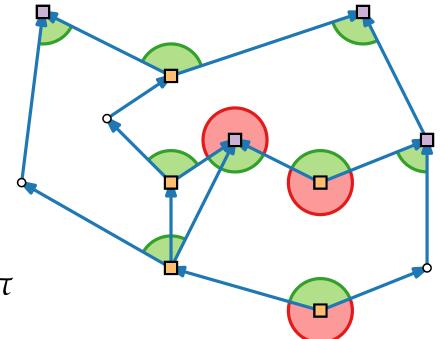
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large when $\alpha > \pi$ and small otherwise.



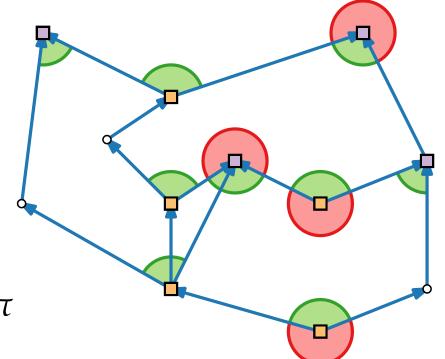
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large when $\alpha > \pi$ and small otherwise.



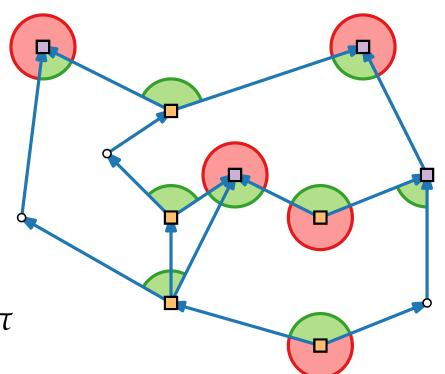
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large when $\alpha > \pi$ and small otherwise.



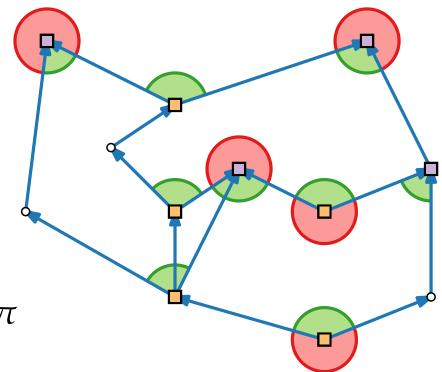
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large when $\alpha > \pi$ and small otherwise.



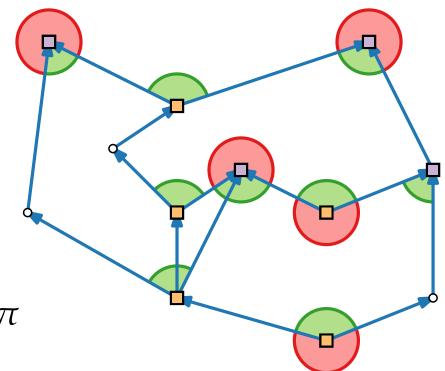
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large when $\alpha > \pi$ and small otherwise.



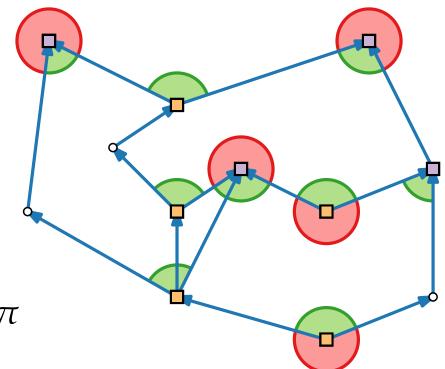
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** when $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v



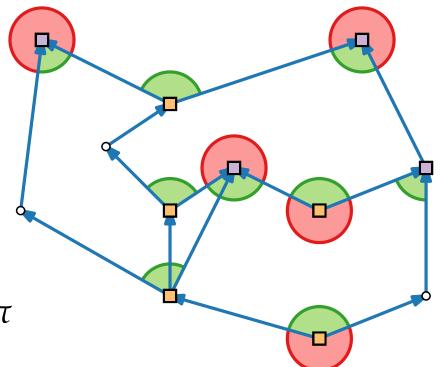
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large when $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f



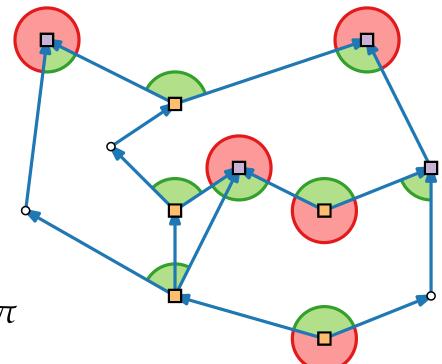
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** when $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f
- \blacksquare S(v) & S(f) for # small angles



- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** when $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f
- \blacksquare S(v) & S(f) for # small angles
- lacksquare A(f) = # local sources wrt f



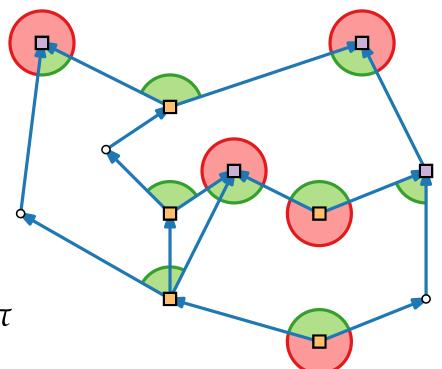
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is **large** when $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f
- \blacksquare S(v) & S(f) for # small angles
- A(f) = # local sources wrt f = # local sinks wrt f



Definitions.

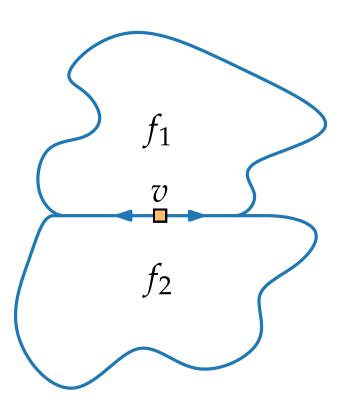
- A vertex v is a local source wrt a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt a face f if v has two incoming edges on ∂f .
- An angle α at a local source / sink is large when $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f
- \blacksquare S(v) & S(f) for # small angles
- A(f) = # local sources wrt f = # local sinks wrt f

Lemma 1. L(f) + S(f) = 2A(f)



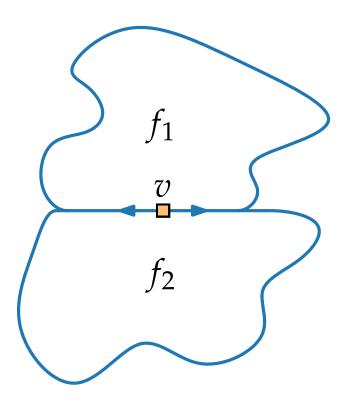
Assignment Problem

 \blacksquare Vertex v is a global source.

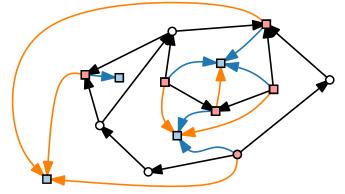


Assignment Problem

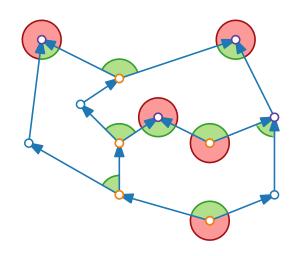
- Vertex v is a global source.
- At which face does *v* have a **large** angle?



Visualization of Graphs



Lecture 7: Upward Planar Drawings



Part III: Angle Relations

Philipp Kindermann

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Lemma 2.

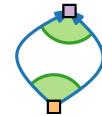
$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

$$L(f) = 0$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

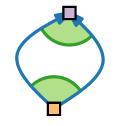
$$L(f) = 0$$



Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

$$L(f) = 0$$



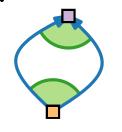
$$\Rightarrow S(f) = 2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

L(f) = 0



$$\Rightarrow S(f) = 2$$

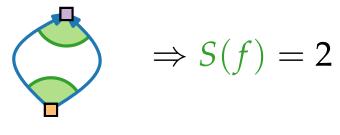
$$L(f) \geq 1$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

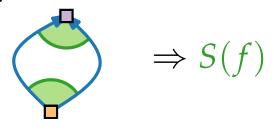
Split f with edge from a large angle at a "low" sink u to

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

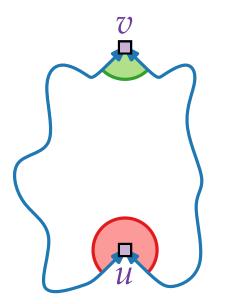
Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

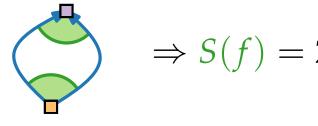


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

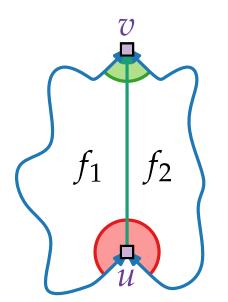
Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

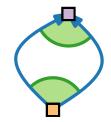


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

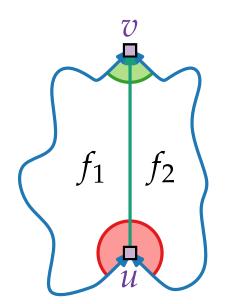
$$L(f) = 0$$



$$\Rightarrow S(f) = 2$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to



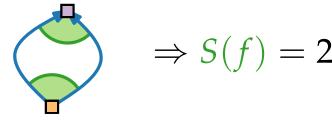
$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

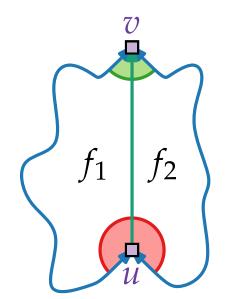
Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to



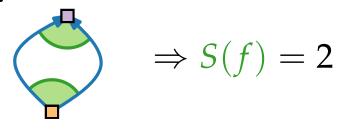
$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

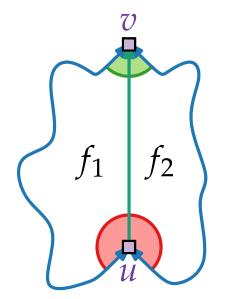
Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to



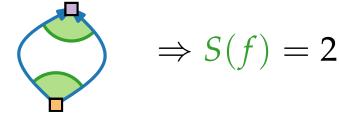
$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$
$$- (S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

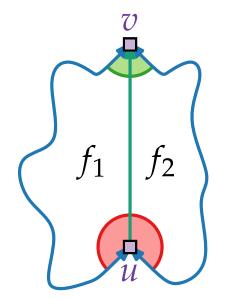
Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to



$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$
$$-(S(f_1) + S(f_2) - 1)$$

Lemma 2.

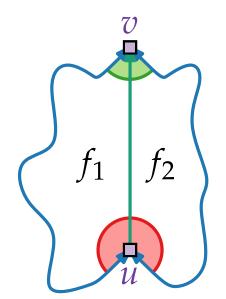
$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to



$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$

$$L(f) \geq 1$$

Split *f* with edge from a large angle at a "low" sink *u* to

$$f_1$$
 f_2

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

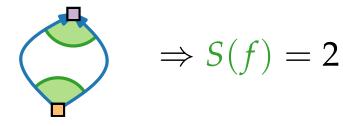
$$= -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split *f* with edge from a large angle at a "low" sink *u* to

$$f_1$$
 f_2 f_1 f_2 f_2

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

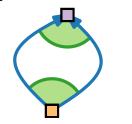
$$= -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$

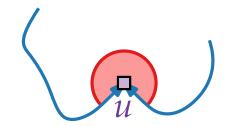


$$\Rightarrow S(f) = 2$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

source *v* with small angle:

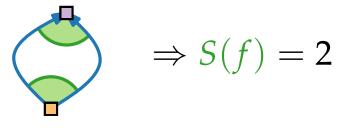


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

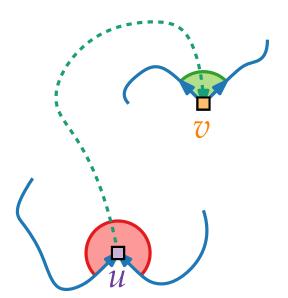
$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

source *v* with small angle:

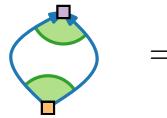


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$\blacksquare L(f) = 0$$



$$\Rightarrow S(f) = 2$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

source *v* with small angle:

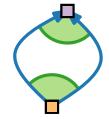


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

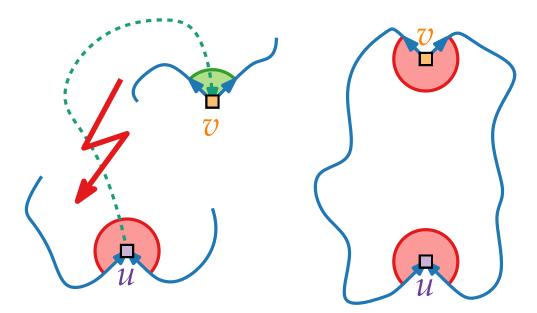
$$L(f) = 0$$



$$\Rightarrow S(f) = 2$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

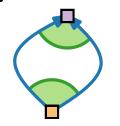


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

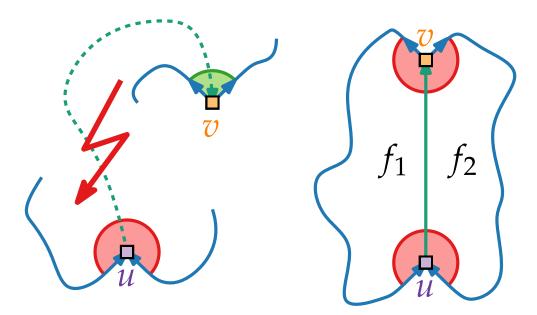
$$L(f) = 0$$



$$\Rightarrow S(f) = 2$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

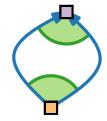


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

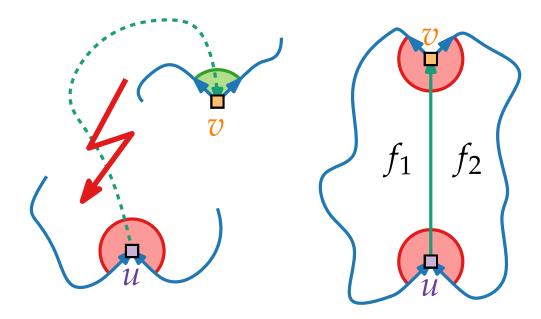
$$L(f) = 0$$



$$\Rightarrow S(f) = 2$$

$$L(f) \geq 1$$

Split *f* with edge from a large angle at a "low" sink *u* to



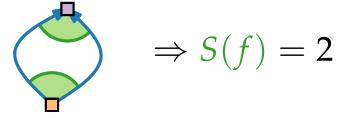
$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

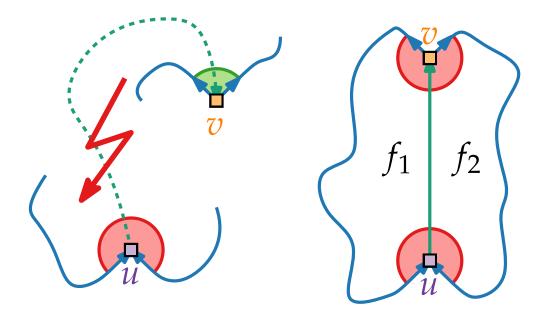
Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split *f* with edge from a large angle at a "low" sink *u* to



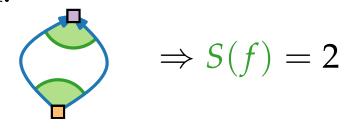
$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

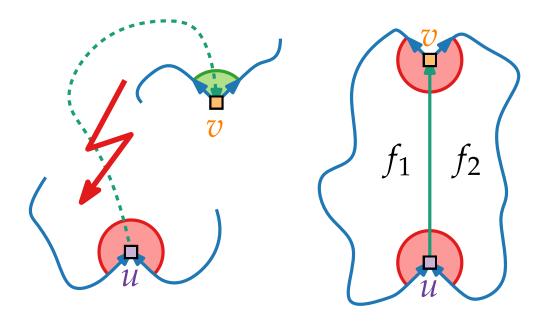
Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split *f* with edge from a large angle at a "low" sink *u* to



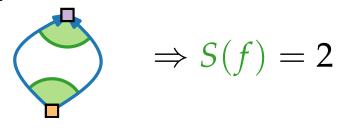
$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$
$$- (S(f_1) + S(f_2))$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split *f* with edge from a large angle at a "low" sink *u* to

source *v* with small/large angle:

$$f_1$$
 f_2

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$
$$-(S(f_1) + S(f_2))$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$

$$L(f) \geq 1$$

Split *f* with edge from a large angle at a "low" sink *u* to

$$f_1$$
 f_2

$$\begin{array}{ccc}
-2 & -2 \\
L(f) - S(f) &= L(f_1) + L(f_2) + 2 \\
&- (S(f_1) + S(f_2)) \\
&= -2
\end{array}$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

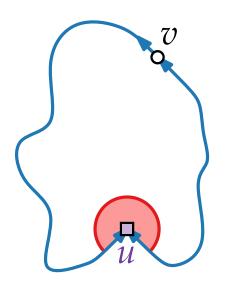
Proof by induction.

$$L(f) = 0$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

vertex v that is neither source nor sink:

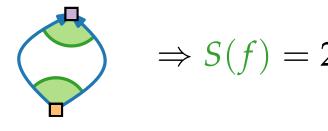


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

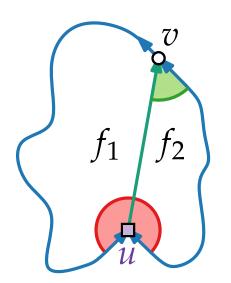
$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

 \blacksquare vertex v that is neither source nor sink:

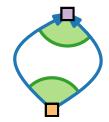


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$



$$\Rightarrow S(f) = 2$$

$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

 \blacksquare vertex v that is neither source nor sink:

$$f_1$$
 f_2

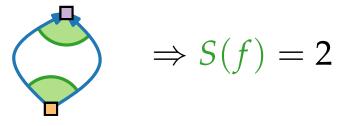
$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

vertex v that is neither source nor sink:

$$f_1$$
 f_2

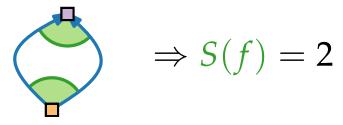
$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split *f* with edge from a large angle at a "low" sink *u* to

 \blacksquare vertex v that is neither source nor sink:

$$f_1$$
 f_2

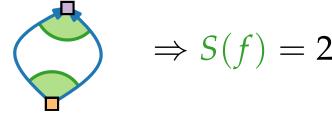
$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$
$$- (S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

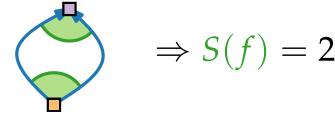
$$- (S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

 \blacksquare vertex v that is neither source nor sink:

$$f_1$$
 f_2

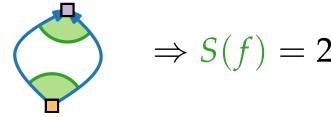
$$\begin{array}{ccc}
-2 & -2 \\
L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\
&- (S(f_1) + S(f_2) - 1) \\
&= -2
\end{array}$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to

vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$\begin{array}{ccc}
-2 & -2 \\
L(f) - S(f) = L(f_1) + L(f_2) + 1 \\
& - (S(f_1) + S(f_2) - 1) \\
& = -2
\end{array}$$

Otherwise "high" source *u* exists.

Number of Large Angles

Lemma 3.

In every upward planar drawing of G holds that

Number of Large Angles

Lemma 3.

In every upward planar drawing of G holds that

• for each vertex $v \in V$: L(v) =

Lemma 3.

In every upward planar drawing of G holds that

• for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \end{cases}$

Lemma 3.

In every upward planar drawing of G holds that

for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$

Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face f: L(f) =

Lemma 3.

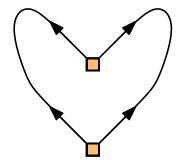
- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ for each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \end{cases}$

Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ for each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

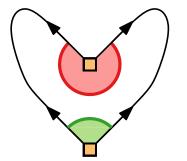
Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ for each face f: $L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$



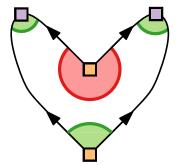
Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ for each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$



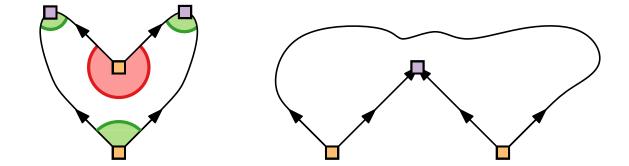
Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ for each face f: $L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$



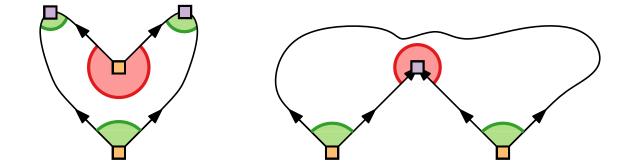
Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ for each face f: $L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$



Lemma 3.

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source } / \text{ sink;} \end{cases}$ for each face f: $L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

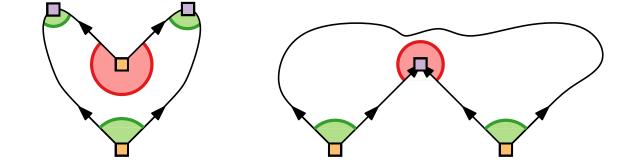


Lemma 3.

In every upward planar drawing of G holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof.

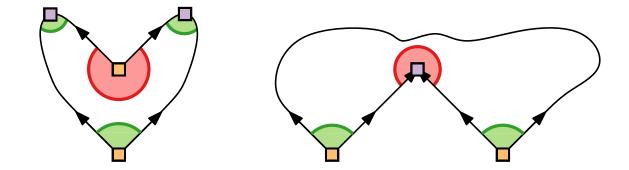


Lemma 3.

In every upward planar drawing of G holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1: L(f) + S(f) = 2A(f)

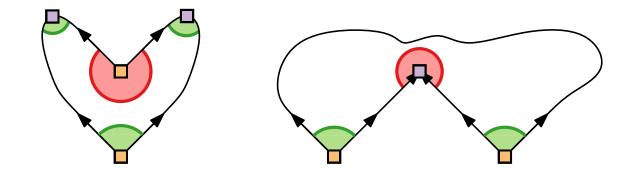


Lemma 3.

In every upward planar drawing of G holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1: L(f) + S(f) = 2A(f)Lemma 2: $L(f) - S(f) = \pm 2$.

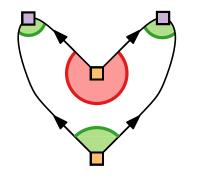


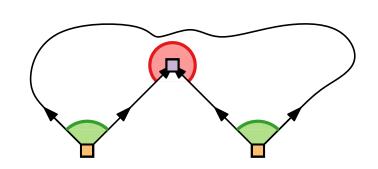
Lemma 3.

In every upward planar drawing of G holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source / sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1: L(f) + S(f) = 2A(f)Lemma 2: $L(f) - S(f) = \pm 2$. $\Rightarrow 2L(f) = 2A(f) \pm 2$.





Let *S* and *T* be the sets of sources and sinks, respectively.

Let *S* and *T* be the sets of sources and sinks, respectively.

Definition.

A consistent assignment Φ : $S \cup T \rightarrow F$ is a mapping where

Let *S* and *T* be the sets of sources and sinks, respectively.

Definition.

A consistent assignment Φ : $S \cup T \rightarrow F$ is a mapping where

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms large angle}$

Let *S* and *T* be the sets of sources and sinks, respectively.

Definition.

A consistent assignment Φ : $S \cup T \rightarrow F$ is a mapping where

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms large angle}$

$$|\Phi^{-1}(f)| =$$

Let *S* and *T* be the sets of sources and sinks, respectively.

Definition.

A consistent assignment Φ : $S \cup T \rightarrow F$ is a mapping where

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms large angle}$

$$|\Phi^{-1}(f)| = L(f) =$$

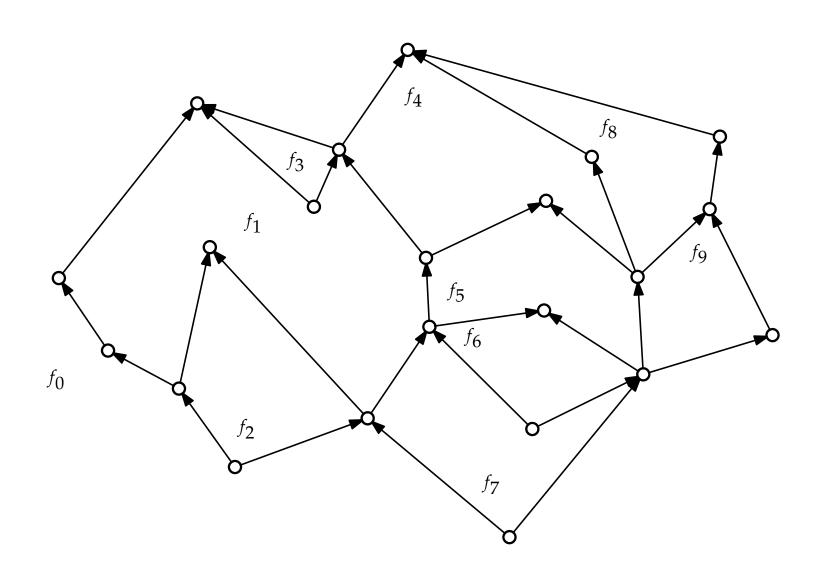
Let *S* and *T* be the sets of sources and sinks, respectively.

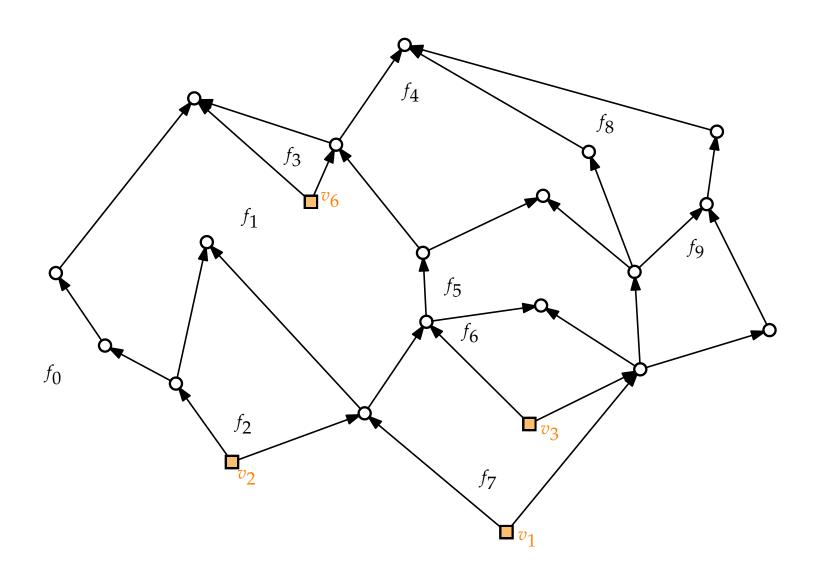
Definition.

A consistent assignment Φ : $S \cup T \rightarrow F$ is a mapping where

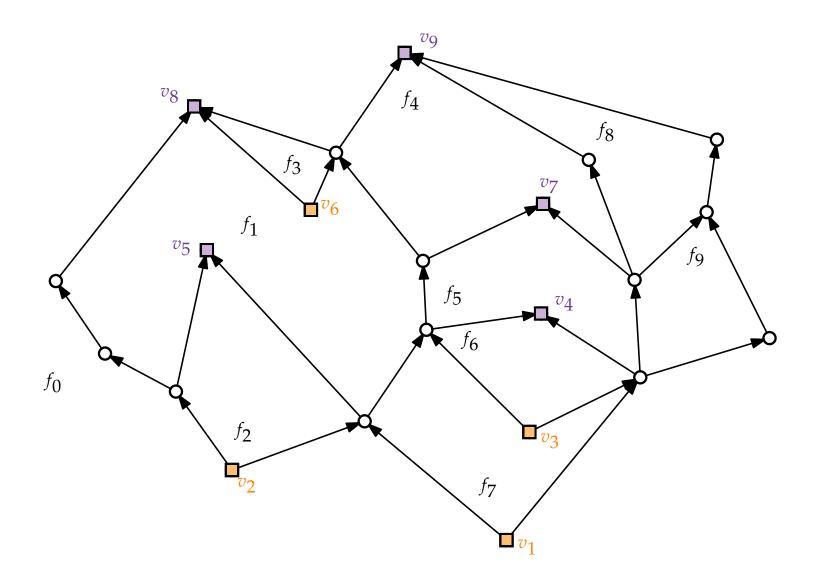
 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms large angle}$

$$|\Phi^{-1}(f)| = L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$$

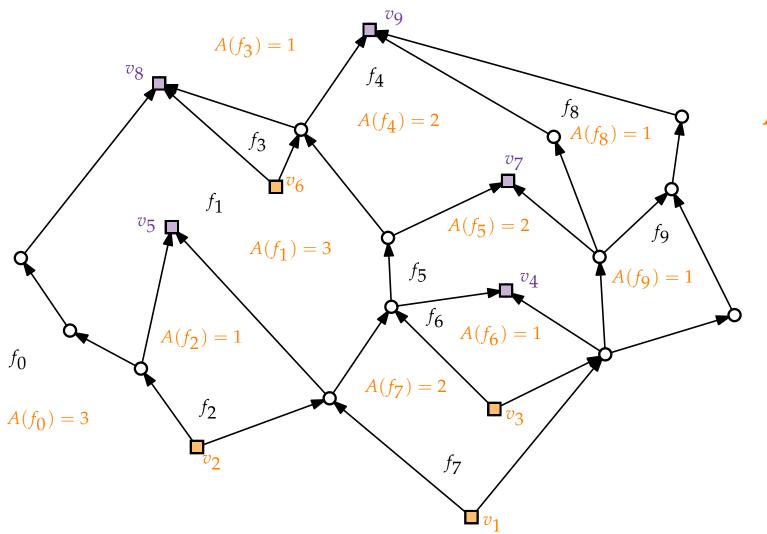




global sources

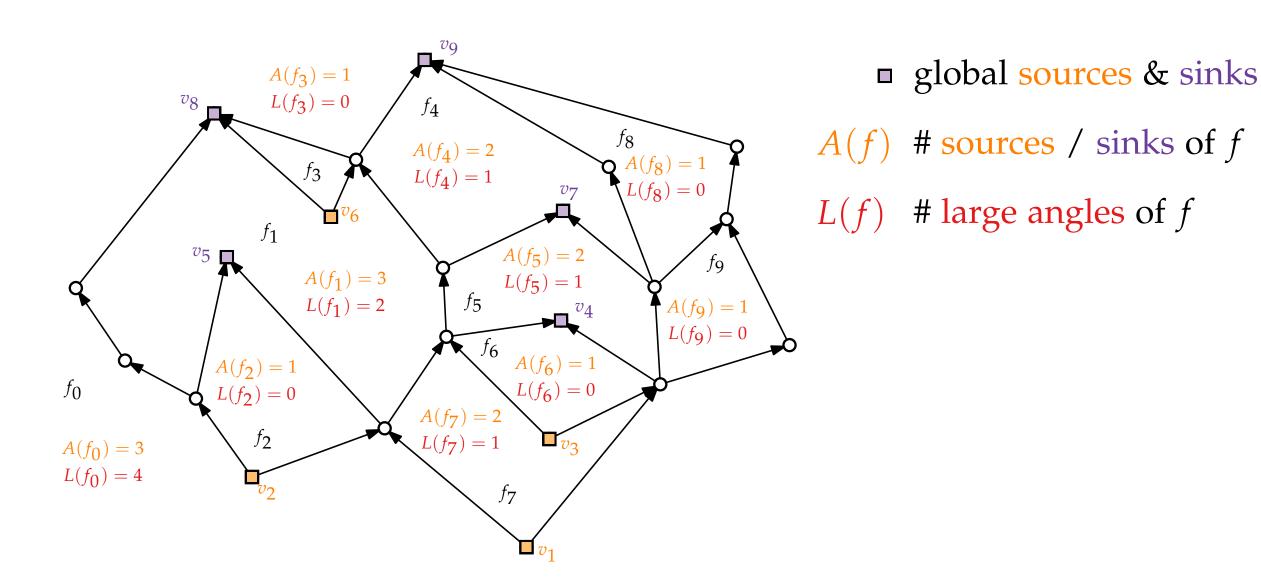


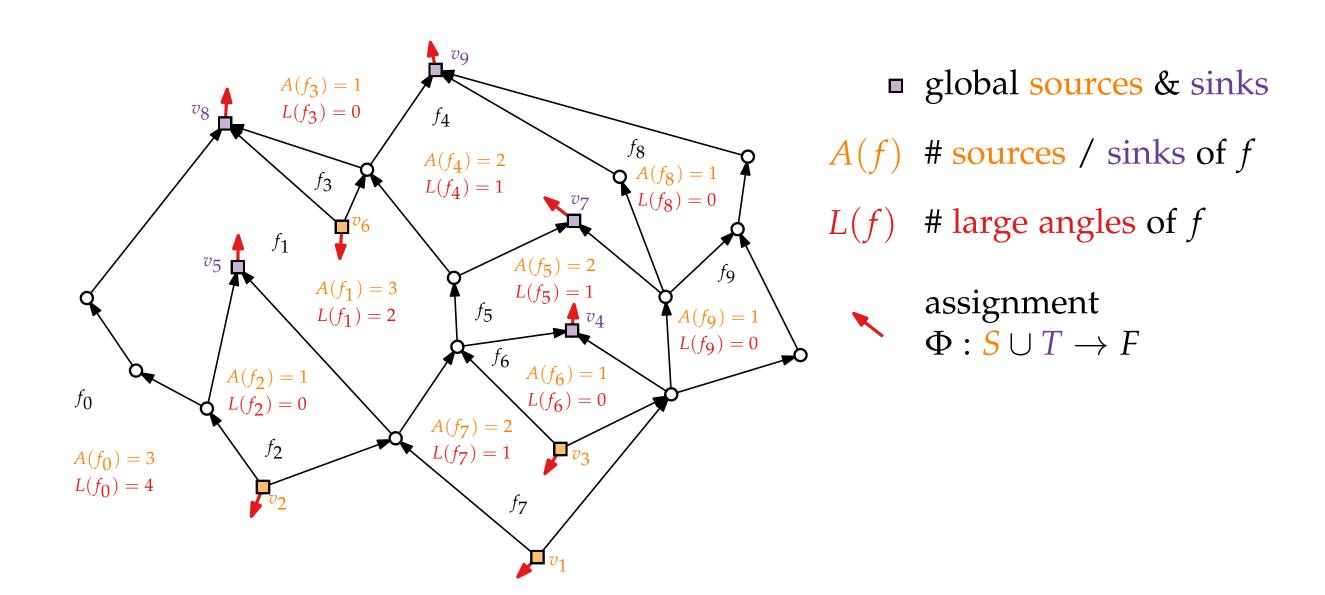
global sources & sinks



global sources & sinks

A(f) # sources / sinks of f





Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- *W* =
- $\blacksquare E' =$
- $\ell(e) =$
- u(e) =
- $lackbox{b}(w) =$

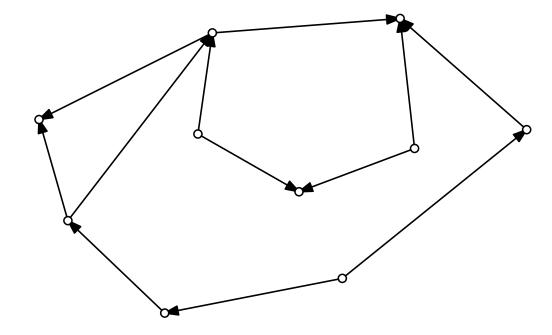
Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- *W* =
- $\blacksquare E' =$
- $\ell(e) =$
- u(e) =
- $lackbox{b}(w) =$



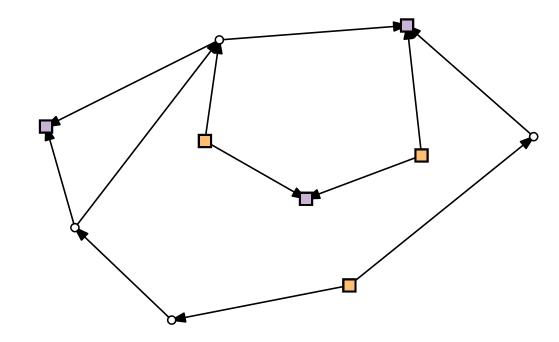
Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- \blacksquare $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $\blacksquare E' =$
- $\ell(e) =$
- u(e) =
- b(w) =



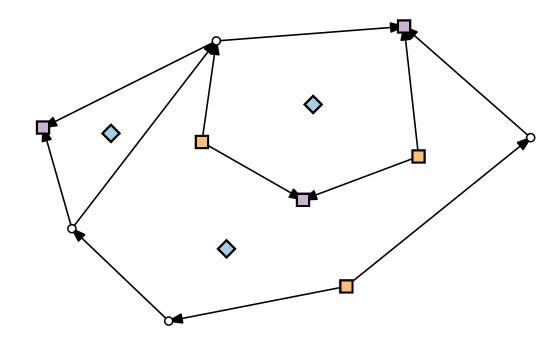
Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $\blacksquare E' =$
- $\ell(e) =$
- u(e) =
- $lackbox{b}(w) =$



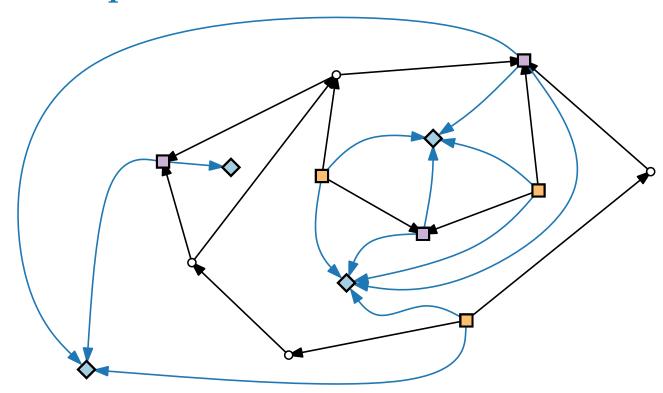
Idea.

Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) =$
- u(e) =
- b(w) =



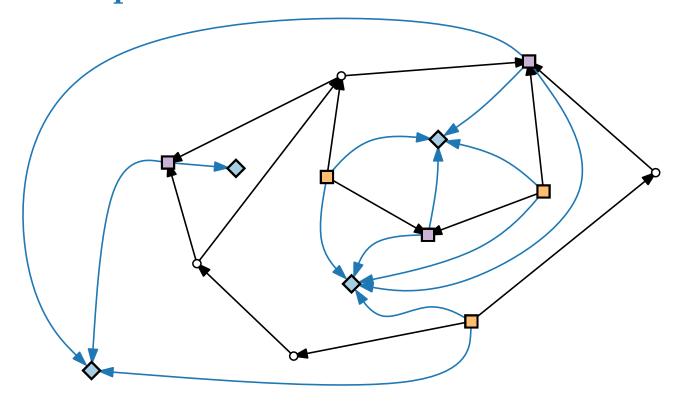
Idea.

Flow (v, f) = 1 from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $lackbox{b}(w) =$



Idea.

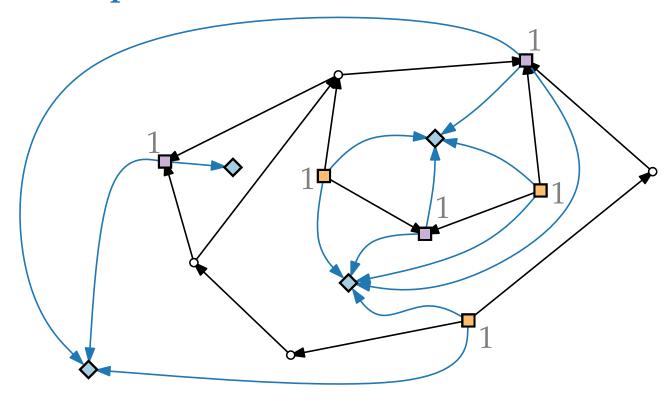
Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ \end{cases}$$



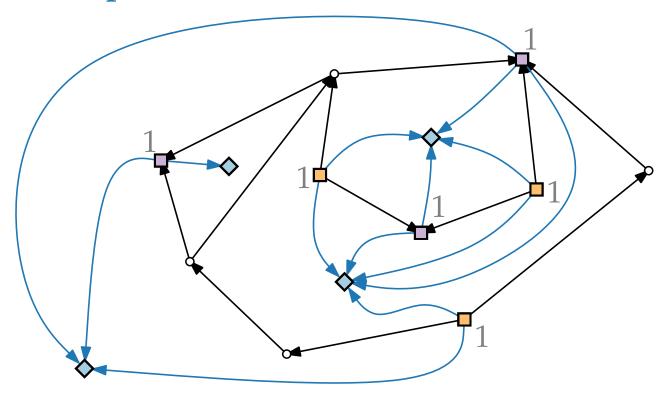
Idea.

Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \end{cases}$



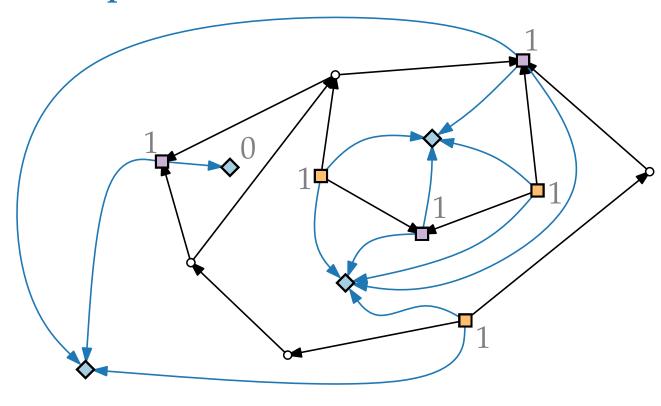
Idea.

Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \end{cases}$



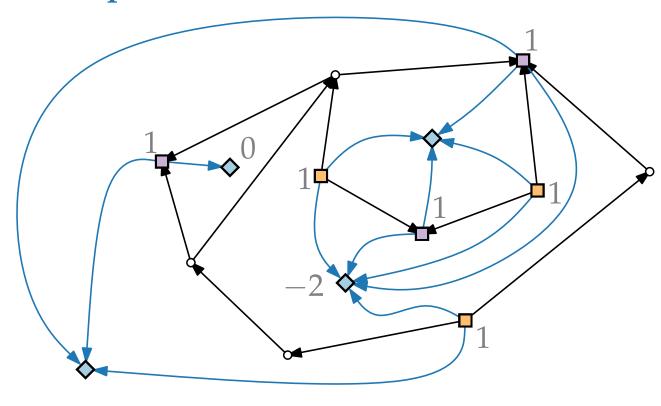
Idea.

Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \end{cases}$



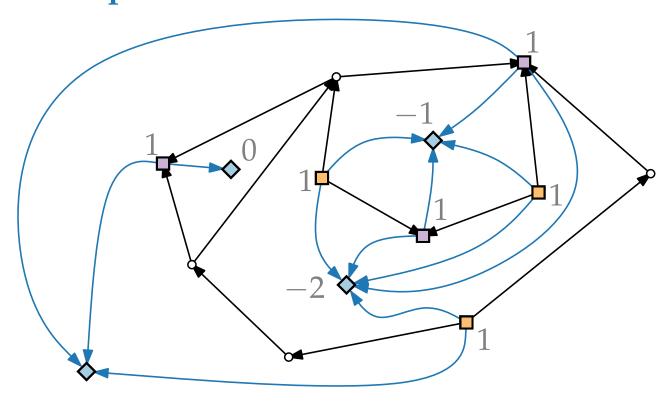
Idea.

Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \end{cases}$



Idea.

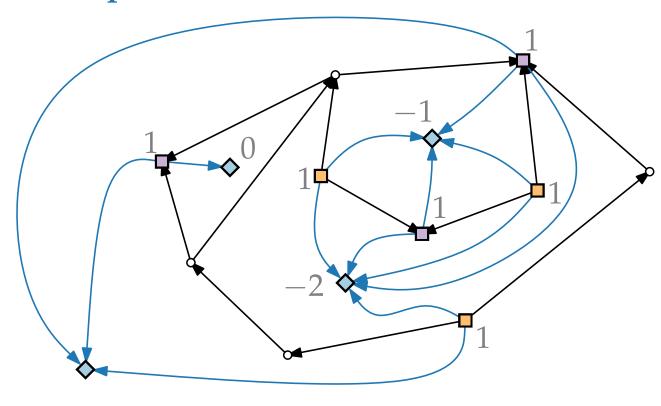
Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$



Idea.

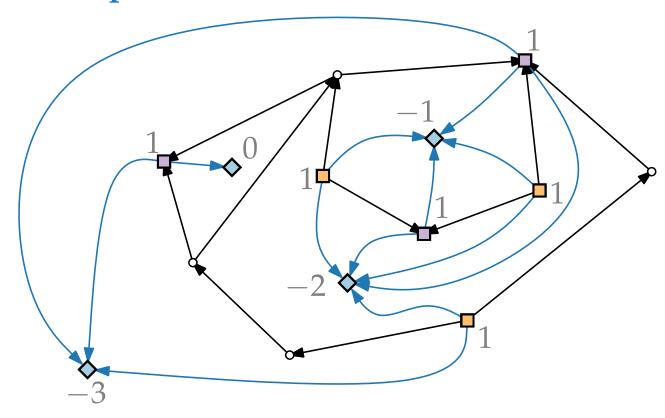
Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$



Idea.

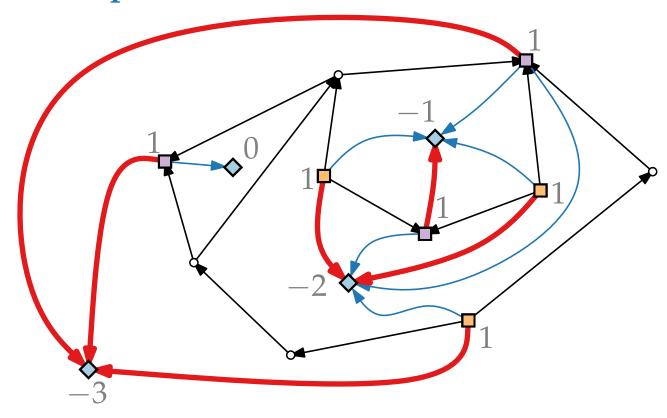
Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

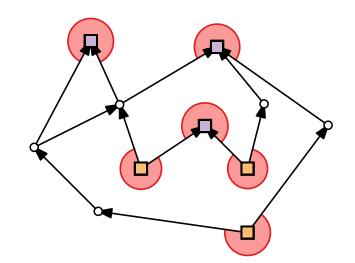
- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$



Idea.

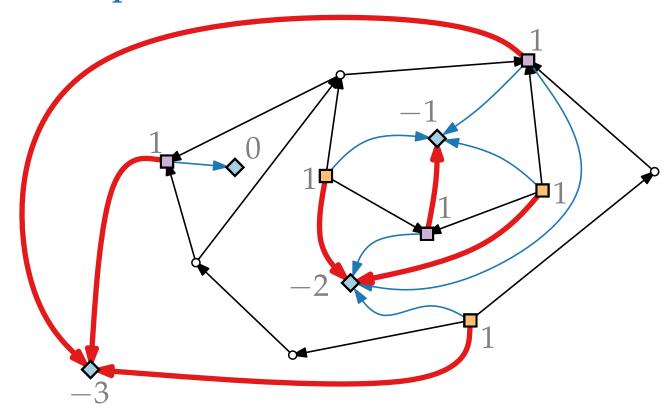
Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.



Flow network.

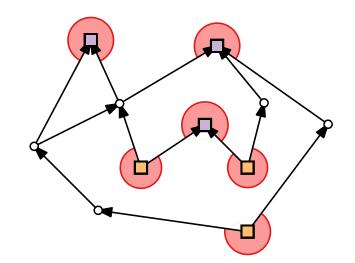
$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$



Idea.

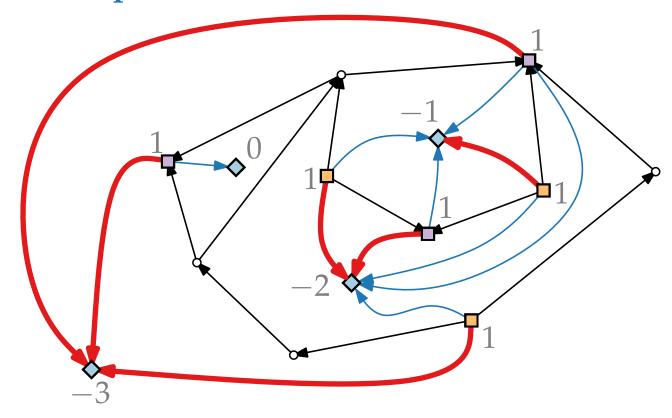
Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.



Flow network.

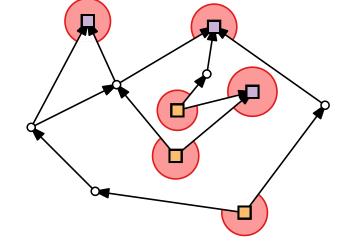
$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$



Idea.

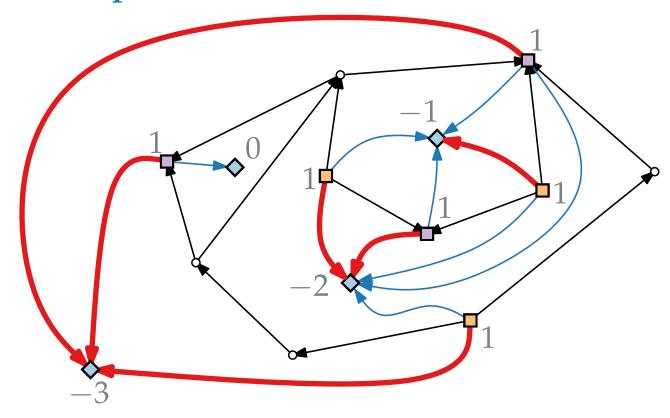
Flow (v, f) = 1 from global source / sink v to the incident face *f* its large angle gets assigned to.



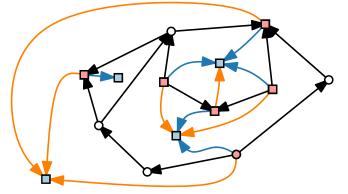
Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

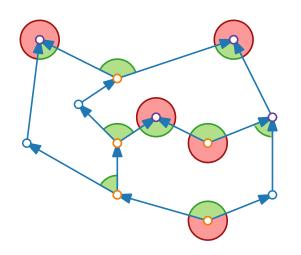
- $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- $b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$



Visualization of Graphs



Lecture 7: Upward Planar Drawings



Part IV: Testing Algorithm

Philipp Kindermann

Theorem 3.

Let G = (V, E) be an acyclic plane digraph with embedding

DIIIIOMAI AIIM HICIC CAISIS COIISISICIII ASSISIIIIICIII Y.

Theorem 3.

Let G = (V, E) be an acyclic plane digraph with embedding given by F, f_0 .

Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ .

Theorem 3.

Let G = (V, E) be an acyclic plane digraph with embedding given by F, f_0 .

Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

Theorem 3.

Let G = (V, E) be an acyclic plane digraph with embedding given by F, f_0 .

Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

⇐: Idea:

■ Construct planar st-digraph that is supergraph of *G*.

Theorem 3.

Let G = (V, E) be an acyclic plane digraph with embedding given by F, f_0 .

Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

⇐: Idea:

- Construct planar st-digraph that is supergraph of G.
- Apply equivalence from Theorem 1.

Theorem 3.

Let G = (V, E) be an acyclic plane digraph with embedding given by F, f_0 .

Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

⇐: Idea:

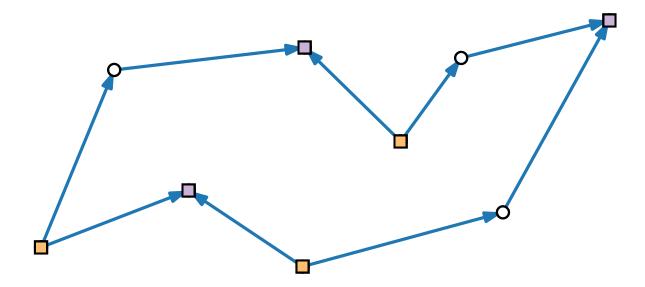
- Construct planar st-digraph that is supergraph of G.
- Apply equivalence from Theorem 1.

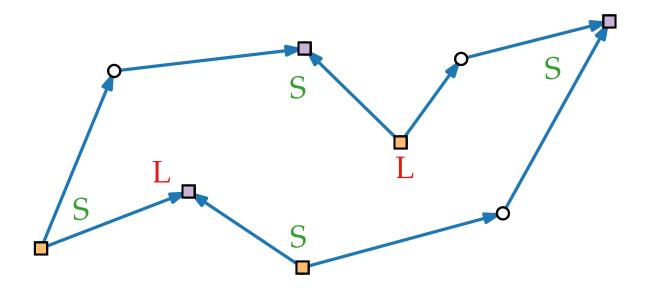
Theorem 1.

[Kelly 1987, Di Battista & Tamassia 1988]

[...] *G* is upward planar

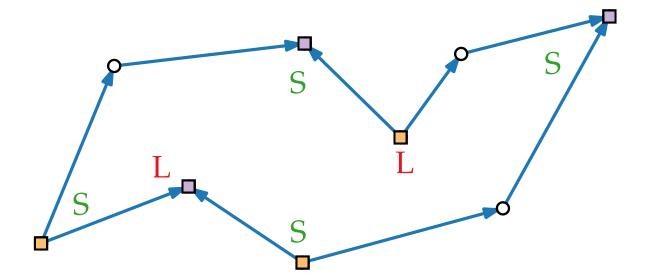
 \Leftrightarrow *G* is the spanning subgraph of a planar *st*-digraph.



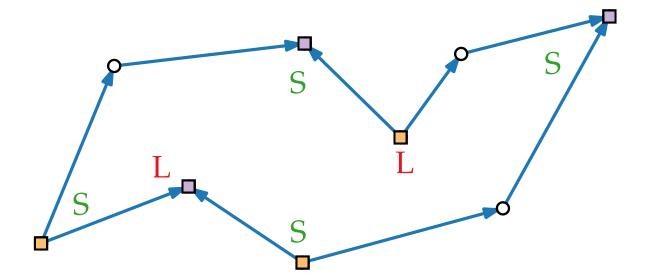


Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

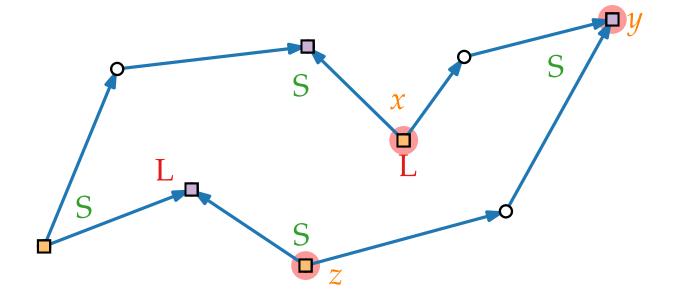
Goal: Add edges to break large angles (sources and sinks).



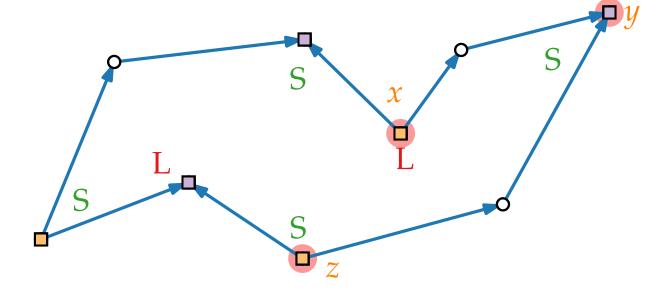
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:



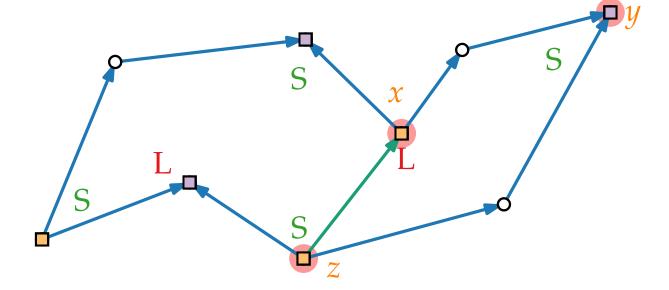
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:



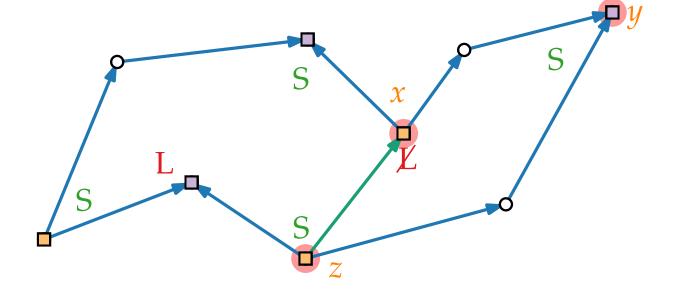
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$



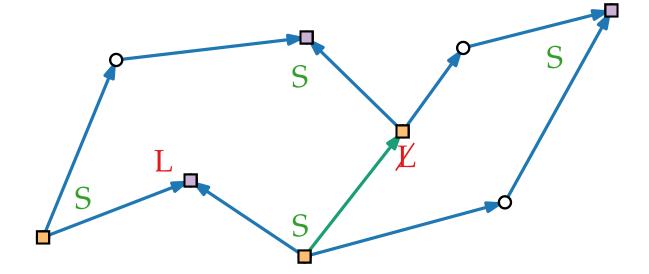
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$



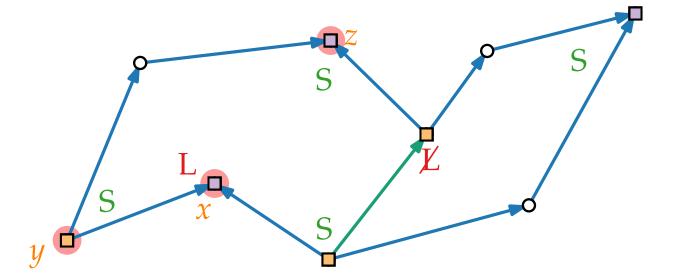
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$



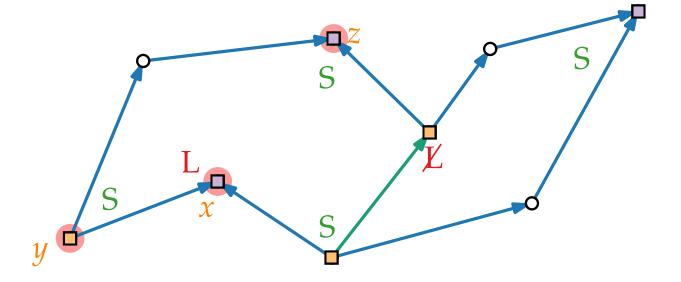
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$



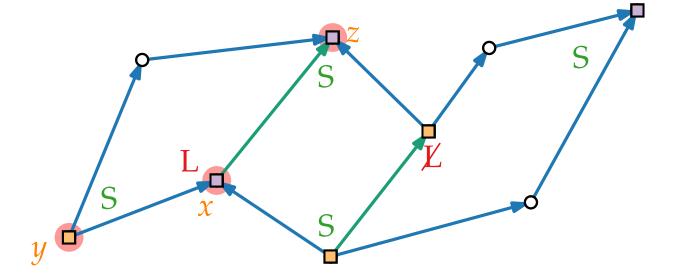
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- \mathbf{x} source \Rightarrow insert edge (z, x)



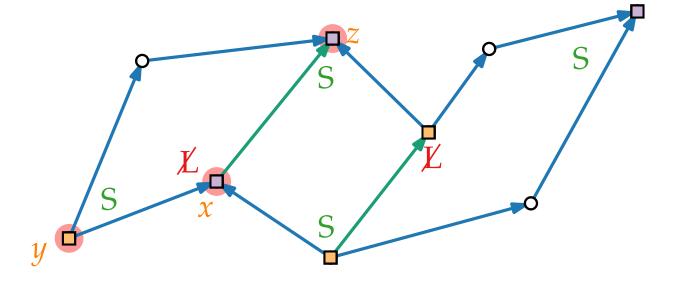
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$



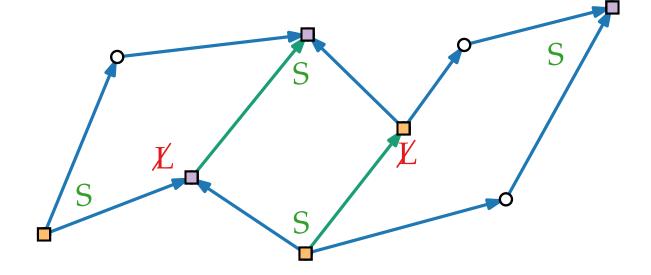
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$



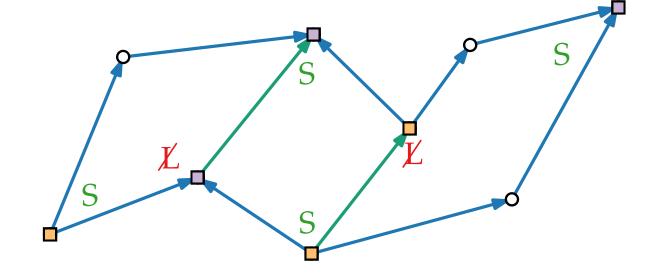
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$



- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$

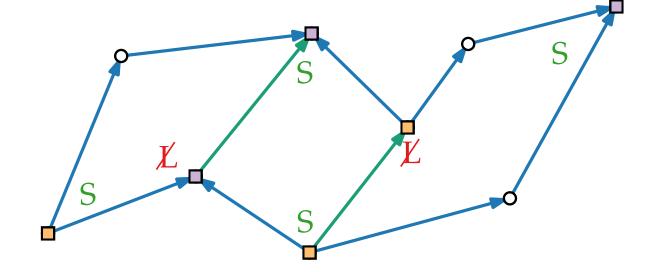


- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $x \sin x \Rightarrow \text{insert edge } (x, z).$
- Refine outer face f_0 .



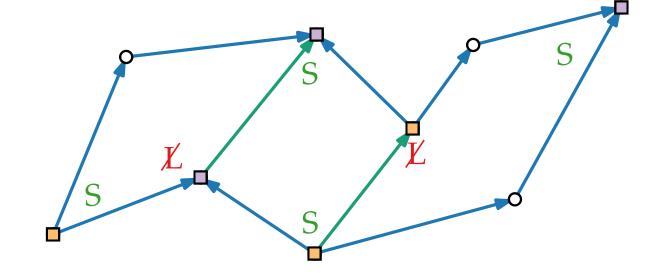
Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- x source \Rightarrow insert edge (z, x)
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$
- Refine outer face f_0 .



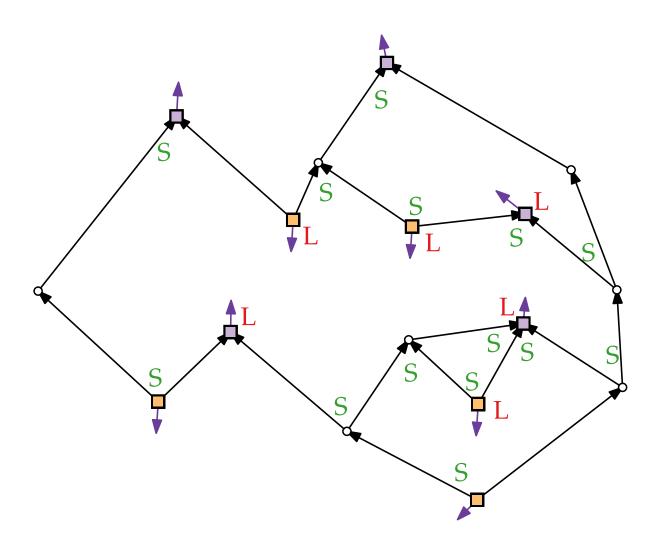
■ Refine all faces. \Rightarrow *G* is contained in a planar st-digraph.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- x source \Rightarrow insert edge (z, x)
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$
- Refine outer face f_0 .

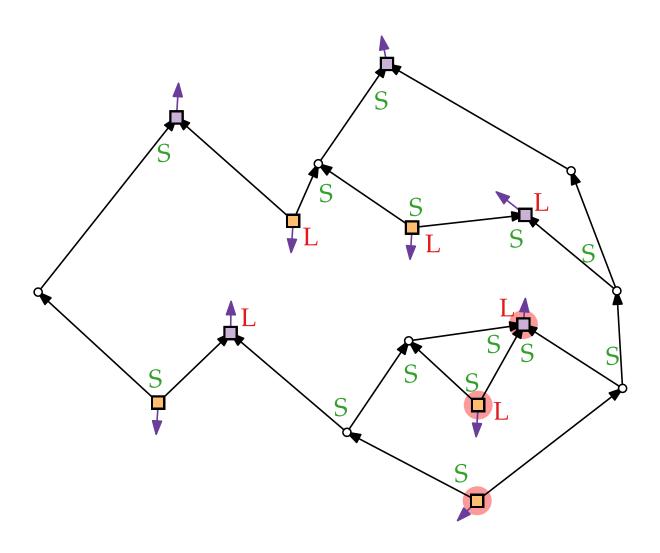


- Refine all faces. \Rightarrow *G* is contained in a planar st-digraph.
- Planarity, acyclicity, bimodality are invariants under construction.

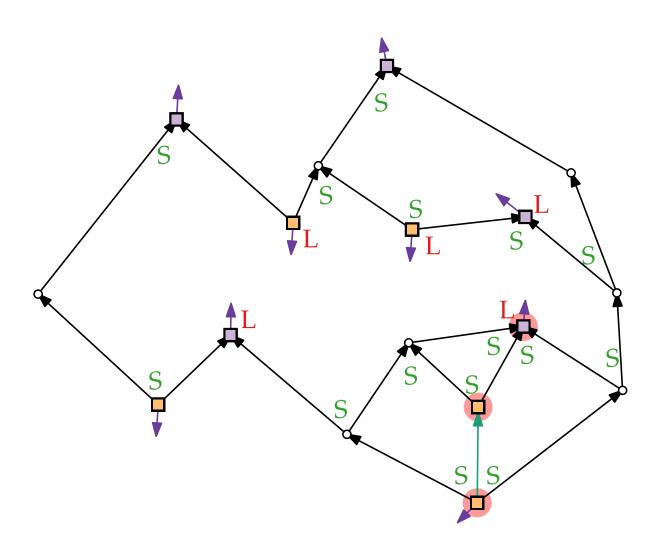
Refinement Example

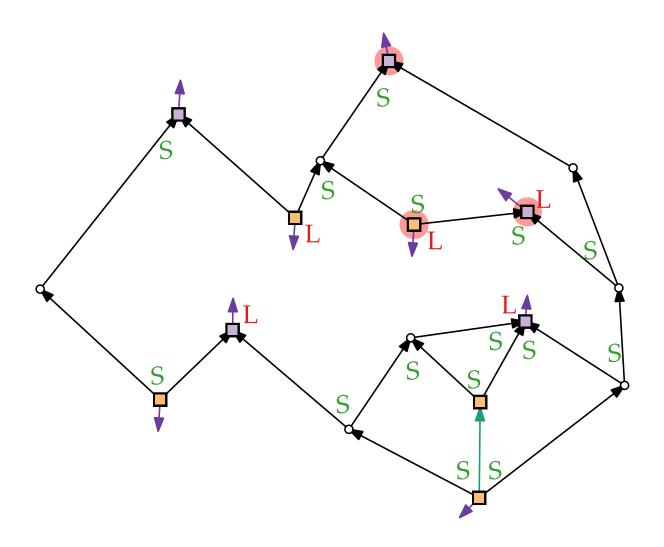


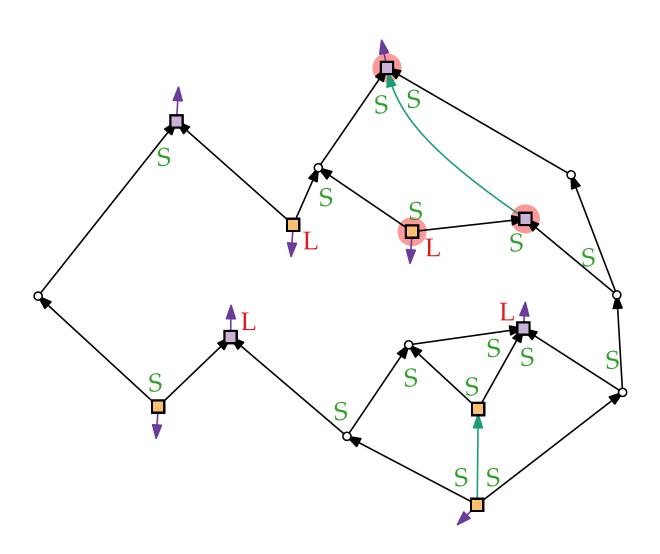
Refinement Example

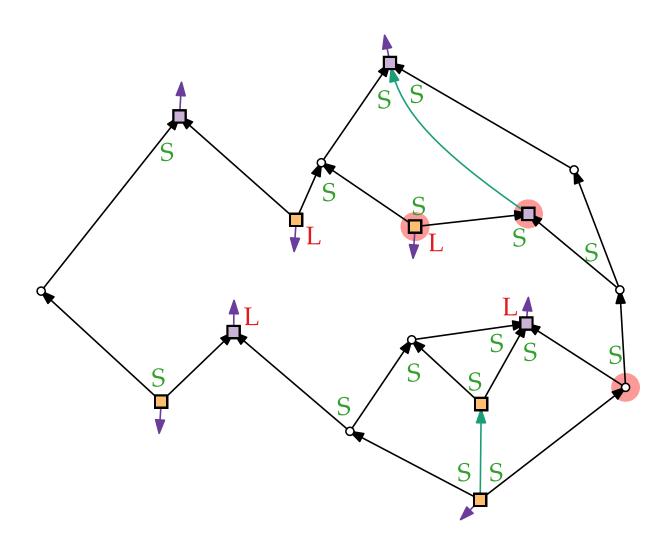


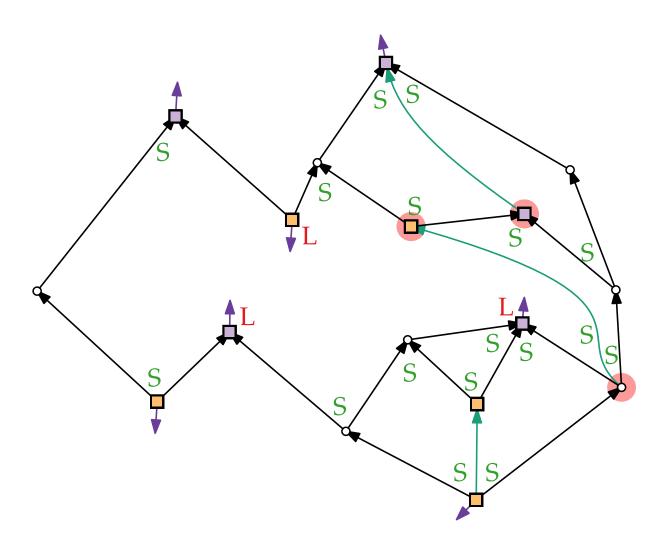
Refinement Example

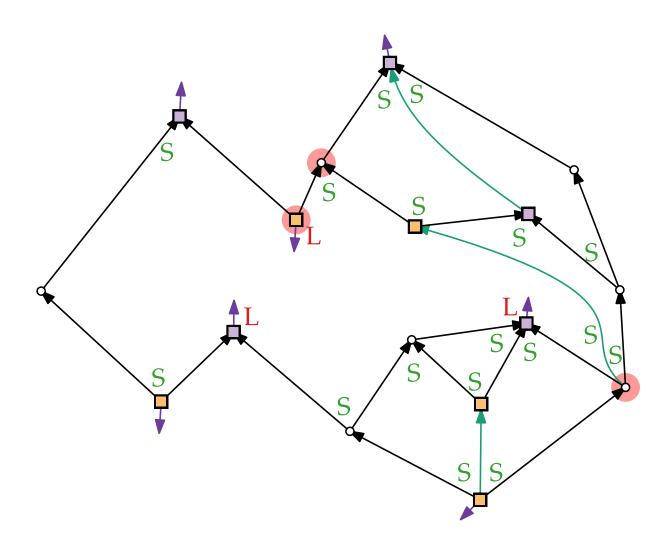


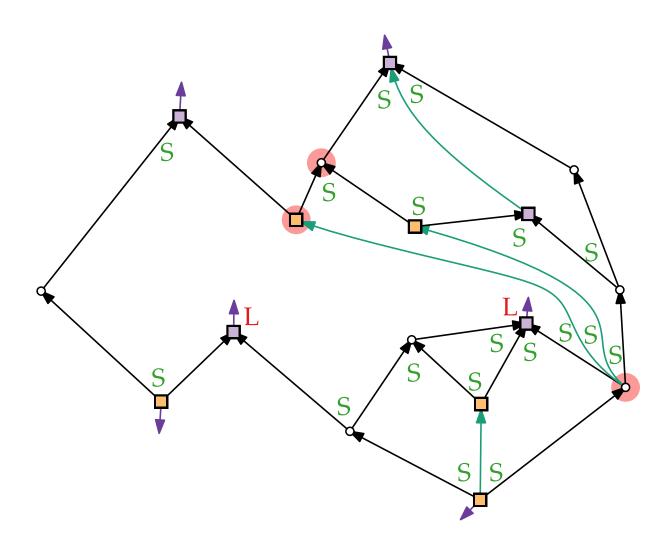


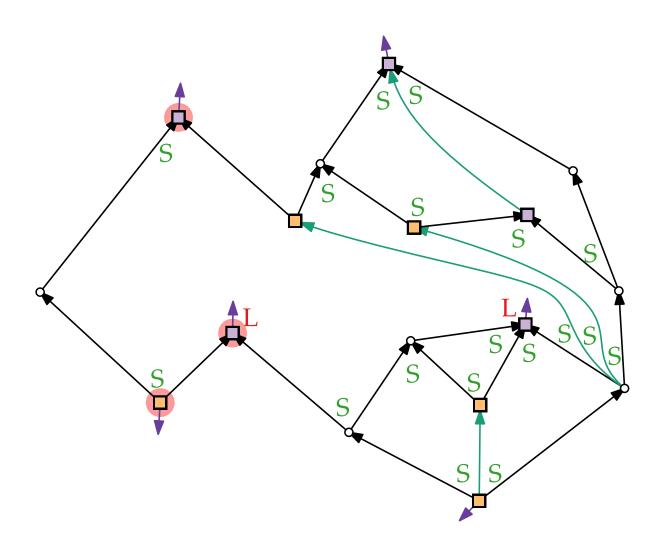


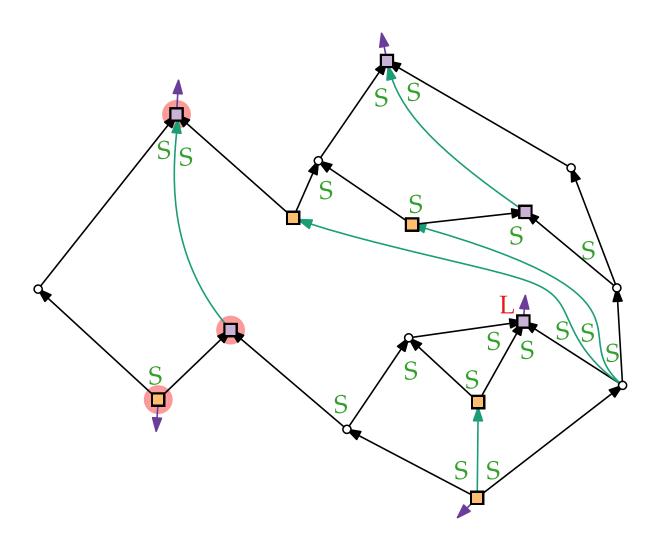


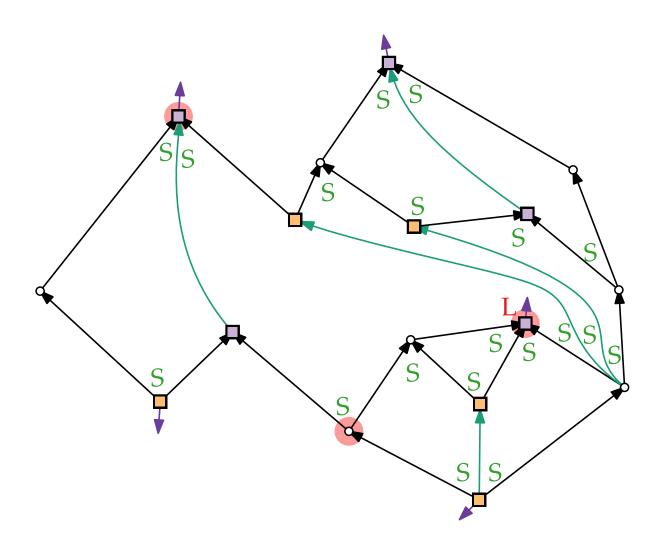


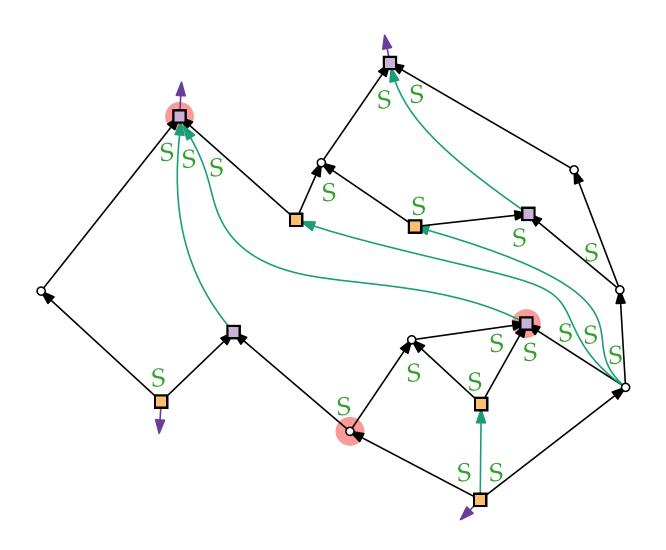


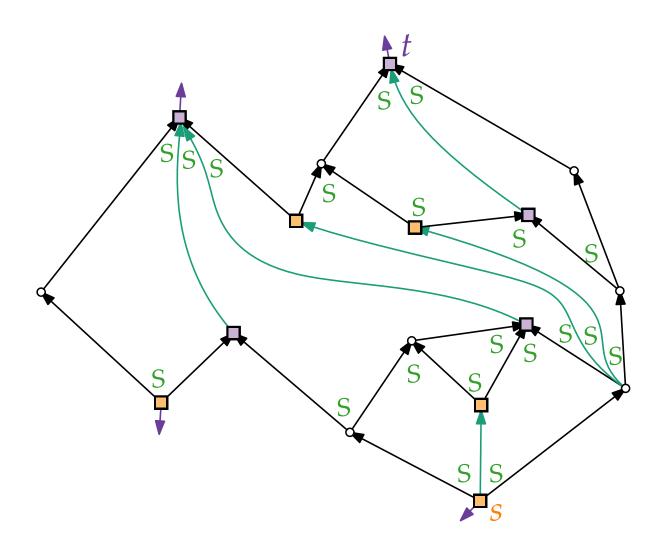


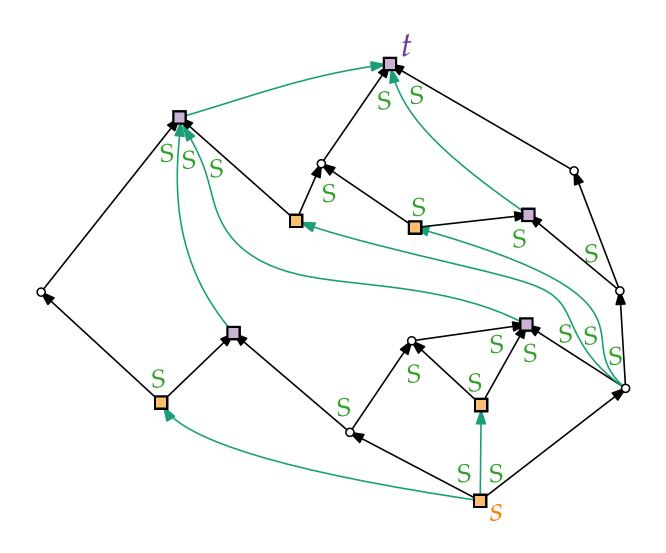












Theorem 2.

[Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph G it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Theorem 2.

[Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph G it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Proof.

■ Test for bimodality.

Theorem 2.

[Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph G it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).

Theorem 2.

[Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph G it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H.

Theorem 2.

[Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph G it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H.
- Draw H upward planar.

Theorem 2.

[Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph G it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H.
- Draw H upward planar.
- Deleted edges added in refinement step.

Discussion

■ There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

Discussion

- There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

 [Healy, Lynch 2005, Didimo et al. 2009]
- Finding assignment in Theorem 2 can be sped up to $\mathcal{O}(n+r^{1.5})$ where r=# sources / sinks. [Abbasi, Healy, Rextin 2010]

Discussion

- There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

 [Healy, Lynch 2005, Didimo et al. 2009]
- Finding assignment in Theorem 2 can be sped up to $\mathcal{O}(n+r^{1.5})$ where r=# sources / sinks. [Abbasi, Healy, Rextin 2010]
- Many related concepts have been studied: quasi-planarity, upward drawings of mixed graphs, upward planarity on cylinder/torus, . . .