
1

Visualization of Graphs
Lecture 8:

Hierarchical Layouts:
Sugiyama Framework

Philipp Kindermann

Part I:
The Framework

3

2 54

1 6 7

3

2 54

1 6 7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

2 - 2

Hierarchical Drawings – Motivation

3 - 8

Hierarchical Drawing

� Input:

� vertices occur on (few) horizontal lines
� edges directed upwards
� edge crossings minimized
� edges as short as possible
� vertices evenly spaced

Desirable Properties.

Criteria can be contradictory!

Problem Statement.

digraph G = (V, E)

drawing of G that “closely”
reproduces the
hierarchical properties of G

� Output:

4 - 3

Hierarchical Drawing – Applications
yEd Gallery: Java profiler JProfiler using yFiles

Source: ”Design Considerations for Optimizing
Storyline Visualizations”Tanahashi et al.

Hierarchical Drawing – Applications

Source: Visualization that won
the Graph Drawing Contest 2016. Klawitter & Mchedlidze

5 - 7

Classical Approach – Sugiyama Framework
[Sugiyama, Tagawa, Toda ’81]

3

2 54

1 6 7

3

2 54

1 6 7
3 2

54

1

6

7
Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

6

Visualization of Graphs
Lecture 8:

Hierarchical Layouts:
Sugiyama Framework

Philipp Kindermann

Part II:
Cycle Breaking

3

2 54

1 6 7

3

2 54

1 6 7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

7 - 1

Step 1: Cycle breaking

3

2 54

1 6 7

3

2 54

1 6 7
3 2

54

1

6

7
Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

7 - 9

Step 1: Cycle breaking

Approach.

� Find minimum set E? of edges which are not upwards.
� Remove E? and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS).

� Input:
� Output:

directed graph G = (V, E)
min. set E? ⊆ E, so that G− E? acyclic

. . . NP-hard
G− E? + E?

r

3

2 54

1 6 7

3

2 54

1 6 7

8 - 30

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V, E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪ N→(v)

else
E′ ← E′ ∪ N←(v)

remove v and N(v) from G.
return (V, E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}

N(v) := N→(v) ∪ N←(v)

� G′ = (V, E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

� Time: O(n + m)

� Quality guarantee: |E′| ≥ |E|/2

v

9 - 38

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪ N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪ N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪ N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]

� Time: O(n + m)

� Quality guarantee:
|E′| ≥ |E|/2 + |V|/6

10

Visualization of Graphs
Lecture 8:

Hierarchical Layouts:
Sugiyama Framework

Philipp Kindermann

Part III:
Leveling

3

2 54

1 6 7

3

2 54

1 6 7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

11 - 1

Step 2: Leveling

3

2 54

1 6 7

3

2 54

1 6 7
3 2

54

1

6

7
Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

11 - 6

Step 2: Leveling

Problem.
� Input:
� Output: Mapping y : V → {1, . . . n},

so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V, E)

Objective is to minimize . . .

� number of layers, i.e. |y(V)|
� length of the longest edge, i.e. maxuv∈E y(v)− y(u)
� width, i.e. max{|Li| | 1 ≤ i ≤ h}
� total edge length, i.e. number of dummy vertices

3

2 54

1 6 7
3 2

54

1

6

7

11 - 13

Step 2: Leveling

Problem.
� Input:
� Output: Mapping y : V → {1, . . . n},

so that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V, E)

Objective is to minimize . . .

� number of layers, i.e. |y(V)|
� length of the longest edge, i.e. maxuv∈E y(v)− y(u)
� width, i.e. max{|Li| | 1 ≤ i ≤ h}
� total edge length, i.e. number of dummy vertices

3

2 54

1 6 7
3 2

54

1

6

7

12 - 9

Min Number of Layers

� for each source q
set y(q) := 1

Observation.

� y(v) is length of the longest path from a source to v plus 1.

� for each non-source v
set y(v) := max

{
y(u) | uv ∈ E

}
+ 1

. . . which is optimal!

Algorithm.

� Can be implemented in linear time with recursive algorithm.

3

2 54

1 6 7
3 2

54

1

6

7

13 - 2

Example

14 - 10

Total Edge Length – ILP
Can be formulated as an integer linear program:

min ∑(u,v)∈E(y(v)− y(u))
subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E

y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V

One can show that:

� Constraint-matrix is totally unimodular
� ⇒ Solution of the relaxed linear program is integer
� The total edge length can be minimized in polynomial time

15

Width

Drawings can be very wide.

16 - 9

Narrower Layer Assignment
Problem: Leveling With a Given Width.

� Input:
� Output:

acyclic, digraph G = (V, E), width W > 0
Partition the vertex set into a minimum number of layers
such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

� Input:

� Output:

n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.
Schedule respecting < and having minimum
processing time.

� NP-hard, (2− 1
W)-Approx., no (4

3 − ε)-Approx. (W ≥ 3).

17 - 4

Approximating PCMPS
� jobs stored in a list L

(in any order, e.g., topologically sorted)

� for each time t = 1, 2, . . . schedule ≤W available jobs

� a job in L is available when all its predecessors have been scheduled

� as long as there are free machines and available jobs, take the first
available job and assign it to a free machine

17 - 19

Approximating PCMPS
Input: Precedence graph (divided into layers of arbitrary width)

1

2
3

4

5
6
7

9
A

8

B

C
D

F

G

E

Number of Machines is W = 2.

Output: Schedule

M1
M2
t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

Question: Good approximation factor?

18 - 15

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2
3

4

5
6
7

9
A

8

B

C
D

F

G

E

Schedule

M1
M2
t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G<

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤
⌈

n+`
2

⌉
insertion of pauses () in the schedule
(except the last) maps to layers of G<

≈ dn/2e+ `/2 ≤ 3/2 · OPT

≤ (2− 1/W) · OPT in general case

19

Visualization of Graphs
Lecture 8:

Hierarchical Layouts:
Sugiyama Framework

Philipp Kindermann

Part IV:
Crossing Minimization

3

2 54

1 6 7

3

2 54

1 6 7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

20 - 1

Step 3: Crossing Minimization

3

2 54

1 6 7

3

2 54

1 6 7
3 2

54

1

6

7
Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

20 - 6

Step 3: Crossing Minimization

Problem.
� Input:
� Output:

Graph G, layering y : V → {1, . . . , n}
(Re-)ordering of vertices in each layer
so that the number of crossings in minimized.

� NP-hard, even for 2 layers [Garey&Johnson’83]

� hardly any approaches optimize over multiple layers :(

3 2

54

1

6

7

3 2

54

1

6

7

21 - 5

Iterative Crossing Reduction – Idea

� Add dummy-vertices for edges connecting “far” layers.
� Consider adjacent layers (L1, L2), (L2, L3), . . . bottom-to-top.
� Minimize crossings by permuting Li+1 while keeping Li fixed.

Observation.
The number of crossings only depends on permutations of adjacent layers.

22 - 8

Iterative Crossing Reduction – Algorithm

(1) choose a random permutation of L1

(2) iteratively consider adjacent layers Li and Li+1

(3) minimize crossings by permuting Li+1 and keeping Li fixed

(4) repeat steps (2)–(3) in the reverse order (starting from Lh)

(5) repeat steps (2)–(4) until no further improvement is achieved

(6) repeat steps (1)–(5) with different starting permutations

one-sided crossing minimization

23 - 10

One-Sided Crossing Minimization
Problem.

� Input:

� Output:

bipartite graph G = (L1 ∪ L2, E),
permutation π1 on L1

permutation π2 of L2 minimizing the number of
edge crossings.

One-sided crossing minimization is NP-hard.
[Eades & Whitesides ’94]

Algorithms.

� barycenter heuristic
� median heuristic
� Greedy-Switch
� ILP
� . . . A

bb
.a

us
[K

au
fm

an
n

un
d

W
ag

ne
r:

D
ra

w
in

g
G

ra
ph

s]
(c

)
Sp

ri
ng

er
-V

er
la

g

24 - 12

Barycenter Heuristic
[Sugiyama et al. ’81]

� Intuition: few intersections occur when vertices are close to their neighbors

� linear runtime
� relatively good results
� optimal if no crossings are required
� O(

√
n)-approximation factor

Exercise!

� The barycentre of u is the mean x-coordinate of
the neighbours of u in layer L1 [x1 ≡ π1]

x2(u) := bary(u) :=
1

deg(u) ∑
v∈N(u)

x1(v)

� Vertices with the same barycentre are offset by a small δ. k2 − 1 k− 1
︸︷︷︸︸ ︷︷ ︸

Worst case?
u v

25 - 13

Median Heuristic

� Linear runtime
� Relatively good results
� Optimal if no crossings are required
� 3-Approximation factor

[Eades & Wormald ’94]

� {v1, . . . , vk} := N(u) with π1(v1) < π1(v2) < · · · < π1(vk)

�

x2(u) := med(u) :=

{
0 when N(u) = ∅
π1(vdk/2e) otherwise

� Move vertices u und v by small δ, when x2(u) = x2(v)

Proof in [GD Ch 11]

k
︸︷︷︸

u v

k
︸︷︷︸

k + 1
︸ ︷︷ ︸

k + 1
︸ ︷︷ ︸

2k(k + 1) + k2 vs. (k + 1)2

Worst case?

�

26 - 8

Greedy-Switch Heuristic

� Iteratively swap adjacent nodes as long as crossings decrease

� Runtime O(L2) per iteration; at most |L2| iterations

� Suitable as post-processing for other heuristics

L1

L2

Worst case?

︸ ︷︷ ︸
k

≈ k2/4 ≈ 2k

27 - 8

Integer Linear Program
[Jünger & Mutzel, ’97]

� Constant cij := # crossings between edges incident
to vi or vj when π2(vi) < π2(vj)

� Variable xij for each 1 ≤ i < j ≤ n2 := |L2|

xij =

{
1 when π2(vi) < π2(vj)
0 otherwise

� The number of crossings of a permutations π2

cross(π2) =
n2−1

∑
i=1

n2

∑
j=i+1

(cij − cji)xij +
n2−1

∑
i=1

n2

∑
j=i+1

cji︸ ︷︷ ︸
constant

vi vj

27 - 17

Integer Linear Program
� Minimize the number of crossings:

minimize
n2−1

∑
i=1

n2

∑
j=i+1

(cij − cji)xij

� Transitivity constraints:

0 ≤ xij + xjk − xik ≤ 1 for 1 ≤ i < j < k ≤ n2

i.e., if xij = 1 and xjk = 1, then xik = 1
00 0

Properties.
� Branch-and-cut technique for DAGs of limited size
� Useful for graphs of small to medium size
� Finds optimal solution
� Solution in polynomial time is not guaranteed

28 - 1

Iterations on Example

28 - 2

Iterations on Example

28 - 3

Iterations on Example

28 - 4

Iterations on Example

28 - 5

Iterations on Example

28 - 6

Iterations on Example

28 - 7

Iterations on Example

28 - 8

Iterations on Example

28 - 9

Iterations on Example

29

Visualization of Graphs
Lecture 8:

Hierarchical Layouts:
Sugiyama Framework

Philipp Kindermann

Part V:
Vertex Positioning & Drawing Edges

3

2 54

1 6 7

3

2 54

1 6 7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

30 - 1

Step 4: Vertex Positioning

3

2 54

1 6 7

3

2 54

1 6 7
3 2

54

1

6

7
Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

30 - 5

Step 4: Vertex Positioning

Goal.

� Exact: Quadratic Program (QP)

� Heuristic: Iterative approach

3 2

54

1

6

7

3 2

54

1

6

7

Paths should be close to straight, vertices evenly spaced

31 - 21

Quadratic Program
� Consider the path pe = (v1, . . . , vk) of an edge e = v1vk

with dummy vertices: v2, . . . , vk−1

� x-coordinate of vi according to the line v1vk
(with equal spacing):

x(vi) = x(v1) +
i− 1
k− 1

(
x(vk)− x(v1)

)
� Define the deviation from the line

dev(pe) :=
k−1

∑
i=2

(
x(vi)− x(vi)

)2

vk

v1

vi

� Objective function: min ∑e∈E dev(pe)

� Constraints for all vertices v, w in the same layer with w right of v:
x(w)− x(v) ≥ ρ(w, v)

min. horizontal distance

� QP is time-expensive

� width can be exponential

32 - 5

Iterative Heuristic

� Compute an initial layout

1. Vertex positioning,
2. edge straightening,
3. Compactifying the layout width.

� Apply the following steps as long as improvements can be made:

33 - 2

Example

34 - 1

Step 5: Drawing Edges

3

2 54

1 6 7

3

2 54

1 6 7
3 2

54

1

6

7
Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

34 - 2

Step 5: Drawing Edges

3 2

54

1

6

7

3 2

54

1

6

7

Possibility.
Substitute polylines by Bézier curves

35 - 1

Example

35 - 2

Example

35 - 3

Example

36 - 2

Classical Approach – Sugiyama Framework
[Sugiyama, Tagawa, Toda ’81]

3

2 54

1 6 7

3

2 54

1 6 7
3 2

54

1

6

7
Input Cycle breaking Leveling

Crossing
minimization

Vertex
positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
drawing

� Flexible framework to draw directed graphs
� Sequential optimization of various criteria
� Modelling gives NP-hard problems, which can

still can be solved quite well

	The Framework
	Motivation
	Definition
	Applications
	Sugiyama Framework

	Step 1: Cycle Breaking
	Heuristic 1
	Heuristic 2

	Step 2: Leveling
	Min Number of Layers
	Example
	Total edge length - ILP
	Width
	Narrower Layer Assignment
	Approximating PCMPS
	Analysis for W = 2

	Step 3: Crossing Minimization
	Iterative Crossing Reduction
	Algorithm
	One-Sided Crossing Minimization
	Barycenter Heuristic
	Median Heuristic
	Greedy-Switch Heuristic
	Integer Linear Program
	Iterations on Example

	Step 4: Vertex Positioning
	Quadratic Program
	Iterative Heuristic
	Example

	Step 5: Drawing Edges
	Example

	Conclusion

