

 $4 \rightarrow 2 \rightarrow 5$

 $1 \rightarrow 6 \rightarrow 7$

 $4 \rightarrow 2 \rightarrow 5$

 $1 \leftarrow 6 \leftarrow 7$

Visualization of Graphs

Lecture 8: Hierarchical Layouts: Sugiyama Framework Example 2

The Framework

The Framework

The Framework

The Framework

Part I:

Philipp Kindermann

Hierarchical Drawings – Motivation

Hierarchical Drawing

- Input:
- **Example 12 Except** CHT digraph $G = (V, E)$
 Coltput: drawing of *G* that "

reproduces the

hierarchical propert
 Desirable Properties.
 Coltains 12 Expertise:
 Coltains 12 Expertise:
 Colding 2 Experies events a drawing of *G* that "closely" reproduces the hierarchical properties of *G* Output:

- **vertices occur on (few) horizontal lines**
- edges directed upwards
- edge crossings minimized
- edges as short as possible ■ vertices occur on (few)
■ edges directed upward
■ edge crossings minimi
■ edges as short as poss
■ vertices evenly spaced
-

$Hierarchical Drawing - Applications$ yed Gallery: Java profiler JProfiler using yFiles

Classical Approach – Sugiyama Framework [Sugiyama, Tagawa, Toda '81]

 $4 \rightarrow 2 \rightarrow 5$

 $1 \rightarrow 6 \rightarrow 7$

 $4 \rightarrow 2 \rightarrow 5$

 $1 \leftarrow 6 \leftarrow 7$

Visualization of Graphs

Lecture 8: Hierarchical Layouts: Sugiyama Framework Example 2

Cycle Breaking

Cycle Breaking

Part II:

Philipp Kindermann

Step 1: Cycle breaking

Step 1: Cycle breaking

Approach.

- Find minimum set E^* of edges which are not upwards.
- Remove E^* and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET (FAS).

Input:

■ Input: directed graph *G* = (*V*, *E*)
■ Output: min. set *E*^{*} ⊆ *E*, so that *G* − *E*^{*} acyclic $G - E^{\star} + E^{\star}$
 \therefore NP-hard $\binom{\bullet}{\cdot}$ *r*

Heuristic 1

GreedyMakeAcyclic(Digraph *G* = (*V*, *E*))

 $E' \leftarrow \emptyset$ **foreach** $v \in V$ **do** $\textbf{if} \ |N^{\rightarrow}(v)| \geq |N^{\leftarrow}(v)| \textbf{ then }$ $E' \leftarrow E' \cup N^{\rightarrow}(v)$ **else** $E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and $N(v)$ from G . $\mathbf{return} \; (V, E')$ [Berger, Shor '90]

GreedyMakeAcyclic(Digrapl
 $E' \leftarrow \emptyset$

foreach $v \in V$ do
 \qquad if $|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$
 $\qquad \qquad E' \leftarrow E' \cup N^{\rightarrow}(v)$

else
 $\qquad \qquad E' \leftarrow E' \cup N^{\leftarrow}(v)$

remove v and $N(v)$ fro

return (V, E')
 $\qquad \qquad G' = ($ V, E'
 V, E') is a DAG

is a feedback set

is a feedback set
 V, E'

- $G' = (V, E')$
- **F** $E \setminus E'$

$$
N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}
$$

\n
$$
N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}
$$

\n
$$
N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
$$

\n
$$
\text{Time: } \mathcal{O}(n + m)
$$

\n
$$
\text{Quality guarantee: } |E'| \ge |E|/2
$$

-
- Quality guarantee: $|E'$

Heuristic 2

[Eades, Lin, Smyth '93]

```
E' \leftarrow \emptysetwhile V \neq \emptyset do
     while in V exists a sink v do
           E' \leftarrow E' \cup N^{\leftarrow}(v)remove v and N^{\leftarrow}(v)Remove all isolated vertices from V
     while in V exists a source v do
           E' \leftarrow E' \cup N^{\rightarrow}(v)remove v and N^{\rightarrow}(v)if V \neq \emptyset then
           let v \in V such that |N^{\to}(v)| - |N^{\leftarrow}(v)| maximal
```

```
E' \leftarrow E' \cup N^{\rightarrow}(v)remove v and N(v)
```
T Time: $\mathcal{O}(n+m)$

Quality guarantee: $|E'| \geq |E|/2 + |V|/6$

 $4 \rightarrow 2 \rightarrow 5$

 $1 \rightarrow 6 \rightarrow 7$

Visualization of Graphs

 $4 \rightarrow 2 \rightarrow 5$

 $1 \leftarrow 6 \leftarrow 7$

Part III:

Philipp Kindermann

Step 2: Leveling

Step 2: Leveling

Problem.

- **I**nput: acyclic digraph $G = (V, E)$
- **Output:** Mapping $y: V \rightarrow \{1, \ldots n\}$, so that for every $uv \in E$, $y(u) < y(v)$.

Objective is to *minimize . . .*

number of layers

Step 2: Leveling

Problem.

- **I**nput: acyclic digraph $G = (V, E)$
- Output: Mapping $y: V \rightarrow \{1, \ldots n\},\$ so that for every $uv \in E$, $y(u) < y(v)$.

Objective is to *minimize . . .*

- **number of layers**, i.e. $|y(V)|$
- length of the longest edge, i.e. $\max_{uv \in E} y(v) y(u)$
- \blacksquare width, i.e. max $\{|L_i| \mid 1 \le i \le h\}$
-

Min Number of Layers

Algorithm.

- for each source *q* set $y(q) := 1$
- for each non-source *v* $\text{set } y(v) := \max \{y(u) \mid uv \in E\} + 1$

Observation.

- \blacksquare *y*(*v*) is length of the longest path from a source to *v* plus 1. . . . which is optimal! set $y(q) := 1$
 Can be implemented in linear time with recursive algorithm.
 Can be implemented in linear time with recursive algorithm.
 Can be implemented in linear time with recursive algorithm.
-

Example

Total Edge Length – ILP

Can be formulated as an integer linear program:

$$
\begin{array}{ll}\n\text{min} & \sum_{(u,v)\in E} (y(v) - y(u)) \\
\text{subject to} & y(v) - y(u) \ge 1 & \forall (u, v) \in E \\
& y(v) \ge 1 & \forall v \in V \\
& y(v) \in \mathbb{Z} & \forall v \in V\n\end{array}
$$

One can show that:

■ Constraint-matrix is **totally unimodular**

 \Rightarrow Solution of the relaxed linear program is integer

The total edge length can be minimized in polynomial time

Width

Drawings can be very wide.

Narrower Layer Assignment

Problem: Leveling With a Given Width.

- \blacksquare Input: **Output:** acyclic, digraph $G = (V, E)$, width $W > 0$
Output: Partition the vertex set into a minimum nu
- Partition the vertex set into a minimum number of layers such that each layer contains at most *W* elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- \blacksquare Input: *n* jobs with unit (1) processing time, *W* identical machines, and a partial ordering \lt on the jobs.
- Output: Schedule respecting \lt and having minimum processing time.

■ NP-hard,
$$
(2 - \frac{1}{W})
$$
-Approx., no $(\frac{4}{3} - \varepsilon)$ -Approx. (W ≥ 3).

Approximating PCMPS

- jobs stored in a list *L* (in any order, e.g., topologically sorted)
- **■** for each time $t = 1, 2, \ldots$ schedule \leq *W* available jobs
- a job in *L* is *available* when all its predecessors have been scheduled
- as long as there are free machines and available jobs, take the first available job and assign it to a free machine

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is *W* = 2.

Output: Schedule

Question: Good approximation factor?

Approximating PCMPS - Analysis for *W* = 2

" The art of the lower bound"

 $OPT \geq \lceil n/2 \rceil$ and $OPT \geq \ell :=$ Number of layers of $G_{\leq \ell}$ **Goal:** measure the quality of our algorithm using the lower bounds

Bound. ALG ≤ $\lceil n+\ell \rceil$ 2 $\overline{}$ insertion of pauses $(\!\!\!-\!\!)$ in the schedule (except the last) maps to layers of *G*< \approx $\lceil n/2 \rceil + \ell/2 \leq 3/2 \cdot \text{OPT}$ in general case

 $4 \rightarrow 2 \rightarrow 5$

 $1 \rightarrow 6 \rightarrow 7$

Visualization of Graphs

 $4 \rightarrow 2 \rightarrow 5$

 $1 \leftarrow 6 \leftarrow 7$

Part IV:

Philipp Kindermann

Step 3: Crossing Minimization

Step 3: Crossing Minimization

Problem.

- Input: **n** Input: Graph *G*, layering $y: V \rightarrow \{1, ..., n\}$
 Output: (Re-)ordering of vertices in each layer
- so that the number of crossings in minimized.
- NP-hard, even for 2 layers [Garey& Johnson'83] **Problem.**
 n Input: Graph *G*, layering $y: V \rightarrow \{1, ..., n\}$
 n Output: (Re-)ordering of vertices in each layer so that the number of crossings in minimize
 n NP-hard, even for 2 layers [Garey & John hardly any approach

Iterative Crossing Reduction – Idea

Add dummy-vertices for edges connecting "far" layers.

- Consider adjacent layers (L_1, L_2) , (L_2, L_3) , ... bottom-to-top.
- Minimize crossings by permuting L_{i+1} while keeping L_i

Iterative Crossing Reduction – Algorithm

(1) choose a random permutation of L_1

- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from *L^h*)
- (5) repeat steps (2)–(4) until no further improvement is achieved (1) choose a random permutation of L_1 one-sided crossing minimization

(2) iteratively consider adjacent layers L_i and L_{i+1}

(3) minimize crossings by permuting L_{i+1} and keeping L_i fixed

(4) repeat steps (
-

One-Sided Crossing Minimization

Problem.

- \blacksquare Input: bipartite graph $G = (L_1 \cup L_2, E)$, permutation π_1 on L_1
- Output: permutation π_2 of L_2 minimizing the number of edge crossings.
- One-sided crossing minimization is NP-hard. Abb. aus [Kaufmann und Wagner: Drawing Graphs] Graphs [Eades & Whitesides '94] 14 12 15 9 13 11 Drawing **Algorithms.** (c) Springer-Verlag barycenter heuristic 21 23 29 28 26 25 27 20 22 17 30 Springer median heuristic 12 6 8 15 14 3 $\overline{2}$ 13 11 aus [Kaufmann \odot Greedy-Switch ILP . . . Abb. 21 23 29 28 25 26 27 20 22 30 17

Barycenter Heuristic [Sugiyama et al. '81]

Intuition: few intersections occur when vertices are close to their neighbors

 The barycentre of *u* is the mean *x*-coordinate of the neighbours of *u* in layer L_1 $[x_1 \equiv \pi_1]$

$$
x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)
$$

- **Vertices with the same barycentre are offset by a small** δ **.**
- linear runtime
- **relatively good results**
- **n** optimal if no crossings are required \blacklozenge Exercise!
 n $O(\sqrt{n})$ -approximation factor
- *O*(√

Median Heuristic

 \blacksquare {*v*₁, ..., *v*_{*k*}} := *N*(*u*) with $\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$

\n- [Eades & Wormald '94]
\n- \n
$$
\{v_1, \ldots, v_k\} := N(u)
$$
 with $\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$ \n $x_2(u) := \text{med}(u) := \n \begin{cases} \n 0 & \text{when } N(u) = \emptyset \\ \n \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \n \end{cases}$ \n
\n- \n**Move vertices } u \text{ und } v \text{ by small } \delta \text{, when } x_2(u) = x_2(v)**
\n- \n**Linear runtime**\n
\n- \n**Relatively good results**\n
	\n- Optimal if no crossings are required
	\n- \n**3**-Approximation factor\n
	\n\n
\n

• Move vertices *u* und *v* by small δ , when $x_2(u) = x_2(v)$

- Linear runtime
- Relatively good results
- **Optimal if no crossings are required**
- Relatively good results
 k $k+1$ $k+1$ k

Optimal if no crossings are required

3-Approximation factor

Proof in [GD Ch 11]

Greedy-Switch Heuristic

- Iteratively swap adjacent nodes as long as crossings decrease
- Runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- Suitable as post-processing for other heuristics

Worst case?

 $\approx k^2$

 $/4$ \approx 2*k*

Integer Linear Program

[Jünger & Mutzel, '97]

- Constant $c_{ij} := #$ crossings between edges incident to v_i or v_j when $\pi_2(v_i) < \pi_2(v_j)$
- Variable x_{ij} for each $1 \le i < j \le n_2 := |L_2|$

$$
x_{ij} = \begin{cases} 1 & \text{when } \pi_2(v_i) < \pi_2(v_j) \\ 0 & \text{otherwise} \end{cases}
$$

)

The number of crossings of a permutations π_2

the
$$
x_{ij}
$$
 for each $1 \leq i < j \leq n_2 := |L_2|$

\n
$$
x_{ij} = \begin{cases} 1 & \text{when } \pi_2(v_i) < \pi_2(v_j) \\ 0 & \text{otherwise} \end{cases}
$$
\number of crossings of a permutations π_2

\n
$$
\text{cross}(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij} + \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} c_{ji}
$$
\nconstant constant

Integer Linear Program

Minimize the number of crossings:

minimize
$$
\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}
$$

Transitivity constraints:

$$
0 \le x_{ij} + x_{jk} - x_{ik} \le 1
$$
 for $1 \le i < j < k \le n_2$
i.e., if $x_{ij} = 1$ and $x_{jk} = 1$, then $x_{ik} = 1$

Properties.

- Branch-and-cut technique for DAGs of limited size
- Useful for graphs of small to medium size
- Finds optimal solution
- Solution in polynomial time is not guaranteed

 $4 \rightarrow 2 \rightarrow 5$

 $1 \rightarrow 6 \rightarrow 7$

Visualization of Graphs

Lecture 8: Hierarchical Layouts: Sugiyama Framework

 $4 \rightarrow 2 \rightarrow 5$

 $1 \leftarrow 6 \leftarrow 7$

Part V: Vertex Positioning & Drawing Edges

Philipp Kindermann

Step 4: Vertex Positioning

Step 4: Vertex Positioning

Goal.

Paths should be close to straight, vertices evenly spaced

- **Exact:** Quadratic Program (QP)
- Figures
 Heuristic: Leadratic Program (∴

The Heuristic: Iterative approach 3 2

Heuristic: Iterative approach

Quadratic Program

- **Consider the path** $p_e = (v_1, \ldots, v_k)$ **of an edge** $e = v_1 v_k$ with dummy vertices: v_2 , ..., v_{k-1}
- *x*-coordinate of v_i according to the line $\overline{v_1v_k}$ (with equal spacing):

$$
\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1}(x(v_k) - x(v_1))
$$

Define the deviation from the line

$$
\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2
$$

- Objective function: min ∑*e*∈*^E* dev(*p^e*)
- Constraints for all vertices *v*, *w* in the same layer with *w* right of *v*: $x(w) - x(v) \geq \rho(w, v)$ - min. horizontal distance

- **QP** is time-expensive
- width can be exponential

Compute an initial layout

■ Apply the following steps as long as improvements can be made:

1. Vertex positioning,

2. edge straightening,

3. Compactifying the layout width.

- 1. Vertex positioning,
- 2. edge straightening,
-

Step 5: Drawing Edges

Step 5: Drawing Edges

Possibility. Substitute polylines by Bézier curves

Classical Approach – Sugiyama Framework

[Sugiyama, Tagawa, Toda '81]

