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8
Embedded Graphs

Drawings of graphs are ubiquitous. In this chapter we intoedimportant mathemati-
cal concepts related to embedded graphs and we discussglalgothat draw and embed
graphs and that deal with embedded graphs. We provide onlyianom of the required
mathematics and refer the reader to [Whi73] for a detailegtinent.

We start with the definition of what it means to draw a graphamdxample of a drawing
algorithm. We discuss bidirected graphs and maps, our teghvehicle for dealing with
embedded graphs, in Section 8.2 and the concepts of emlgealdihplanar embedding in
Section 8.3. In this section we also introduce functionstigst the planarity of a graph, that
construct a plane embedding of a planar graph, and thatiexhiKkuratowski subgraph in
a non-planar graph. Their implementation is discussed ai&e8.7. Sections 8.4 and 8.5
introduce order-preserving embeddings, plane maps, fjaites; and the genus of maps. In
Section 8.6 and 8.12 we relate combinatorics and geometnyatticular, we prove that a
map is plane if and only if its genus is zero and we derive areuppund on the number
of edges of any planar graph and we show how to construct tipemdaced by geometric
positions assigned to the nodes of a graph. In Section 8.&ax& bow to modify maps,
in Section 8.9 we discuss the generation of random plane ,neayasin Section 8.13 we
introduce functions that five-color a planar graph and chamdarge independent set in
a planar graph. Section 8.10 introduces face items as a nuéatesaling with faces in
the same way as with nodes and edges. In Section 8.11 we slisauslesign choice of
representing maps by directed graphs instead of undirgcsgahs.
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Figure8.1 A drawing produced by one of the graph drawing algorithms GDAJMN].

8.1 Drawings

We have already seen many drawings of graphs in this book. ale mever defined what
we mean by a drawing, embedding, and planar embedding.

Let G be a graph and I be a surface, e.g., the plane or the sphere or the torus. We wil
be almost exclusively concerned with the plane in this bddkwever, the concepts also
apply to more complex surfaces.

A drawing | of G in Sassigns a point(v) € Sto every node of G and a Jordan curve
| (e) to every edge = (v, w) such that:

(1) distinct points are assigned to distinct nodes, l.&u) # | (w) forv # w,
(2) the curve assigned to any edge connects the endpoints ofitfee iee., ife = (v, w)
thenl (e)(0) = | (v) andl (&)(1) = | (w).

A drawing in the plane is called a straight line drawing if svedge is drawn as a straight
line segment. Figure 8.2 shows some drawings.

An algorithm, that takes a graph and produces a drawing,fizr¢alled agraph drawing
algorithn?. LEDA provides some graph drawing algorithms; see theseain graph draw-
ing in the manual antty the button layout in a GraphWin for a demonstratidfany more
graph drawing algorithms are available in the systems AG@NJand GDToolkit [Bat].

1 A Jordan curves is a curve without self-intersections, i.e., a continuoagpingc : [0, 1] —> Swith

cx) #c(y)forO<x <y<1.
2 Graph drawing is an active area of research, see [BETT94, EME8TI8] for surveys.
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Figure 8.2 Some drawings of the same graph. All drawings except foritte upper drawing
are embeddings.

Both systems are based on LEDA. Figure 8.1 shows a drawirdupeal by an algorithm in
AGD.
The functions
void SPRING_EMBEDDING(const graph& G,
node_array<double>& xpos, node_array<double>& ypos,

double xleft, double xright, double ybottom, double ytop,
int iterations = 250);

void SPRING_EMBEDDING(const graph& G, const list<node>& fixed,
node_array<double>& xpos, node_array<double>& ypos,
double xleft, double xright, double ybottom, double ytop,
int iterations = 250);

compute straight line drawings of a gra@husing a so-calledpring embeddér A spring
embedder works iteratively. It models the nodes of a grapoass in the plane that repulse
each other, and it models each edge as a spring between theiisdf the edge. In each
iteration the force acting on any node is computed as the suepalsive forces (from all
other nodes) and attractive forces (from incident edges)tlae node is moved accordingly.
The number of iterations is determined by the paranitteations

Thex- andy-coordinates of the positions assigned to the nodé€x afe returned ixpos
andypos respectively, and the points are constrained to lie in¢lstangle defined byleft,
xright, ybottom andytop. The second version of the function keeps the positions ®f th
nodes irnfixedfixed.

Drawings in which edges do not cross are particularly nice.call such drawings em-
beddings. Out of the four drawings shown in Figure 8.1 threeembeddings. Embeddings
are the topic of Section 8.3. The graphs in Figure 8.2 areraoiid. For the purposes of

3 The name spring drawer would be more appropriate, as spmigeéders do not produce embeddings, but
drawings. However, the name spring embedder is in genegal us
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Figure 8.3 A bidirected graph: We haveversaley) = 1 andreversaleyi;1) = ey for all i
with 0 <i < 2. Requirement (2) excludes the possibility ttatersaley) = €1, and
reversales) = ey, and requirement (3) excludes the possibility tteaersales) = e4 and
reversales) = es.

this chapter it is convenient to distinguish between the dwentations of an edge. This
leads to the concepts of bidirected graphs and maps, whicreaein the next section.

Exercise for 8.1
1  Implement a spring embedder.

8.2 Bidirected Graphsand Maps

A directed graptG = (V, E) is calledbidirectedif there is a bijective functiomeversal:
E — E such that for every edge= (v, w) with eR = reversale):

(1) eR = (w,v), i.e.,sourcee) = target(e®) andtargete) = sourcee®),
(2) reversale®) = e, and

(3) e#eR

Property (1) ensures that reversal deserves its name, apdrties (2) and (3) ensure that
reversal behaves properly in the presence of parallel eatgeself-loops. Figure 8.3 shows
an example of a bidirected graph and also illustrates ptiggef2) and (3). A bidirected
graph has an even number of edges.

The function

bool G.is_bidirected();
returnstrue if G is bidirected and returrfalseotherwise. The function
void G.make bidirected(<list<edge>& R);

adds a minimum number of edges@oso as to maké& bidirected. The added edges are
returned inR.

Every edgee of any graphG has a reversal information associated with it. It is acatsse
through

G.reversal(e)
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Figure 8.4 A map: Every pair of edgege, e} with reversale) = eR andreversaleR) = eis

drawn as two half-edges. For each half-edge the name of thedge is shown on the left side
of the half-edge.

and has typedge The reversal information of an edge is either undefinedilor is an
edgee® satisfying (1) to (3). The operation

G.set_reversal(e,f)

sets the reversal information efto f and the reversal information df to e. The function
checks whether the created reversal information is legablorts if it is not. If the reversal
information ofe was defined prior to the operation, the reversal informatioer is set to
nil by the operation. The same holds true for

A mapis a graph in which the reversal information of every edgeenéd. A map
is always a bidirected graph and every bidirected graph eanrdmed into a map by setting
the reversal information appropriately. The function

bool G.is_map()

returnstrueif G is a map and the functions

bool G.make map()
void G.make map(list<edge>& R)

turn G into a map by setting the reversal information of every edghe first function
requires that is bidirected (ifG is not bidirected, the function returfialseand sets the
reversal information of a maximal number of edges), the se¢donction adds a minimum
number of edges t& so as to maké&s bidirected and then turn& into a map. Both
functions preserve reversal information, i.e.réf’ersale) is defined before the call, then
reversale) is not changed by either call.

We call a pair of edgege, eR} with reversale) = eR (and henceeversal(e®) = €) a
uedge(undirected edge) and say thaande® form the uedge. The uedge comprisiag
ande®R is denoted e, eR} or {v, w}, wherev andw are the two endpoints & The latter
notation is ambiguous in the presence of parallel edges.épetmaps as shown in Figure
8.4. For every uedgge, eR} we draw “two half-edges that meet” and label themndeR,
respectively.

We have no iteration statement that iterates over the uenfgggraph. However, it is
easy to obtain the effect of iterating over uedges.
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forall edges(e,G)

{ if ( index(e) > index(G.reversal(e)) ) continue;
<body of loop>

}

Observe that the body of the loop is executed for exactly alge én each uedge, namely
the one with smaller index.

We describe the implementations of some of the functioneduiced above. We also
introduce a function that checks whether the reversal in&tion of all edges is properly
defined. This section may be skipped on first reading.

We start with a functiortheckreversalinf that checks whether the reversal information
of every edge is either nil or satisfies (1) to (3) and raisesraor if this is not the cade
The function is non-trivial to write because it cannot assuhat the reversal information
of an edge has a meaningful value, i.e., the function has pe @dth the possibility that
G.reversa(e) is non-nil and not an edge @& for somee.

We proceed as follows. We introduce a miagdgeof.G from edges to bool that we
initialize to false We then seis edgeof_G[€] to true for all edgese of G. Next, we iterate
again over all edgesof G and make sure thagéversale) is eithernil or an edge ofz. In
a third step we make sure that (1) to (3) holds for all edge@tose reversal information is
notnil.

(checkreversalinf.c)+=

bool check_reversal_inf (const graph& G)
{ map<edge,bool> is_edge_of_G(false);
edge e;
forall edges(e,G) is_edge_of_G[e] = true;
forall_edges(e,G)
{ edge r = G.reversal(e);
if ( r == nil || !is_edge_of_G[r]) return false;
}
forall_edges(e,G)
{ edge r = G.reversal(e);

if (r == e || G.reversal(r) != e ||
G.source(e) != G.target(r) || G.target(e) != G.source(r) )
return false;
}
return true;

It is instructive to investigate what can go wrong when otg thirdforall_edgedoop is
executed. It would then be possible thas different fromnil but not an edge o6. The
access to the reversal, target, or source cbuld then result in a segmentation fault. The
4 We use the functiosheckreversalinf for testing purposes. Of course, all functions of the LEDAteyn are
designed to preserve the invariant that the reversal of/duection is either nil or an edge @ satisfying (1) to

(3) and hence, if none of the implementers of LEDA had everegraanhistake, the function would have never
raised an error.
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program above guards against this possibility by ensurmsgtfiat the reversal of any edge
e of G is eithernil or an edge of>.

We next show the implementation of the functiorakemap Its implementation is de-
rived from the functioris Bidirectedgiven in Section 6.12.

A call of G.makemap( ) sets the reversal information of a maximal number of edges.
We proceed as follows: let, vy, ..., v, be an arbitrary order on the nodes@®@f e.g., the
ordering given by the internal numbering of the noded/e make two listESTandETS
of all edges whose reversal information is undefinE&T starts with all edges out afy,
followed by all edges out of,, ... . For each, the edges out of; are in increasing order
of their target node ETSstarts with all edges into;, followed by all edges intay, ....

For eachi, the edges inte; are in increasing order of the source node. We also want the
self-loops incident to any; to appear in reverse order in the two lists.

The listsESTandETSare easy to generate. We collect all edges whose reversal in-
formation is undefined in a liFEST and use bucket sort to rearrang&8T in increasing
lexicographic order. We use the index of the source node efige as the primary key and
the index of the target node as the secondary keyER@we interchange the roles of the
primary and the secondary key, and we initialEZ€Sto the reversal oEST. The effect of
initializing ETSwith the reversal oESTinstead of withETSis that the self-loops incident
to anyv; appear in reverse order in the two lists; this follows frorm fact that bucket sort
is stable.

Having rearranged both lists we establish the reversatnimdtion. EST starts with all
edges out ofy; sorted in order of increasing target aBd Sstarts with all edges into;
sorted in order of increasing source. Both lists start whiteelf-loops incident ta;.

We scan over both lists and check whether the first edgeSm call it e, can be paired
with the first edge orETS call it r. We can paire andr if none of them was paired
previously and ifsourcge) = targef(r), targetle) = sourcer), ande # r. If eandr can
be paired, we pair them by setting their reversal inforrmaippropriately. The function
succeeds if all edges can be paired.

So assume thaandr cannot be paired. We show that at least one afhdr will never
find a partner.

Assume first thasourcde) # target(r). If sourcée) < target(r) thenETScontains no
further edge which ends isourcge). Thuse cannot be paired. Similarly, Bourcee) >
target(r) thenESTcontains no further edge that start¢anget(r ). Thusr cannot be paired.

Assume next thasourcée) = target(r) andtargetie) # sourcdr). If targete) is
less thansourcer) then ETS contains no further edge that startssaurcé€e) and ends
in target(e) and hence cannot be paired. Ilfarget(e) is greater thasourcer) thenEST
contains no further edge that endsanget(r ) and starts irsourcdr ) and hence cannot be
paired.

Assume finally thasourc€e) = targef(r) andtarget(e) = sourcdr) ande=r, i.e.,eis
a self-loop. Sinc&STandETScontain the self-loops incident to any node in reverse order

5 The internal number of a nodeis given byindexv).
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this can only happen if there is an odd number of self-loopglent tosourcege) and ife
is the middle element of the block of self-loops incidensturcge). In this situation it is
OK if e stays unpaired and all other self-loops inciderda@arcee) are paired.

(makemap.¢=
static int map_edge_ordl(const edge& e) { return index(source(e)); }
static int map_edge_ord2(const edge& e) { return index(target(e)); }

bool graph::make_map ()

{
int n = max_node_index();
int count = 0;
edge e,r;

list<edge> EST;
forall_edges(e, (¥this)) if (e->rev == nil) EST.append(e);

int number_of_undefined _reversals = EST.length();
list<edge> ETS = EST; ETS.reverse();

EST.bucket_sort(0,n,&map_edge_ord2); // secondary key
EST.bucket_sort(0,n,&map_edge_ordl); // primary key

ETS.bucket_sort(0,n,&map_edge_ordl); // secondary key
ETS.bucket_sort(0,n,&map_edge_ord2); // primary key

// merge EST and ETS to find corresponding edges

while (! EST.empty() && ! ETS.empty())
{ e = EST.head();
r = ETS.head();

if ( e->rev != nil ) { EST.pop(); continue; }
if ( r->rev != nil ) { ETS.pop(); continue; }

if ( target(r) == source(e) )
{ if ( source(r) == target(e) )
{ ETS.pop(); EST.pop();
if (e !'=1 )
{ e->rev = r; r->rev = e;
count += 2;

}
continue;
}
else // target(r) == source(e) && source(r) != target(e)
{ if (index(source(r)) < index(target(e)))
ETS.pop(); // r cannot be matched
else
EST.pop(); // e cannot be matched

}
else // target(r) '= source(e)
{ if (index(target(r)) < index(source(e)))
ETS.pop(); // r cannot be matched
else
EST.pop(); // e cannot be matched
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}

return count == number_of_undefined_reversals;

}

Given the function above, it is trivial to extend a grapho a map. A callG.makemap( )
determines the reversal information of a maximal numberdgfes. For any edge whose
reversal information is still undefined, we add the reversgge toG and set the reversal
information accordingly.

(makemap.¢+=
void graph::make_map(list<edge>& R)

{ if (make_map()) return;
list<edge> el = all_edges();

edge e;
forall(e,el)
{ if (e->rev == nil)
{ edge r = new_edge(target(e),source(e));
e->rev = r;

r->rev = e;
R.append(r);

Exercises for 8.2

1 Does the functiosheckreversalinf work if the mapis. edgeof_G is replaced by an edge
array?

2 Does the functiooheckreversalinf work if the last twaforall_edgedoops are combined
into one?

8.3 Embeddings

Embeddingsire special drawings, namely drawings where no edge is daavass a node,
where the images of distinct edges do not cross, and wherevthedges comprising a
uedge are embedded the same. Formally, we define as follows:

A drawing| of a graphG into a surfaceSis called arembeddingf the images of edges
contain no images of points in their relative interforg the images of edges belonging
to distinct uedges are disjoint except for endpdingd if the curves assigned to edges
belonging to the same uedge are reversals of each®other

Figure 8.1 shows three embeddings of a vapinto the planeMg has nodes, vy, vs,

6 (e)(x) # | (v) for any edgee, nodev, and reak with 0 < x < 1

7 1(e)(x) # | (€¢)(y) for edges ande’ with e # € ande’ + reversale) and allx andy with 0 < X,y < 1
8H@x@:I@u—xﬂmamm®$ﬁR=mwmdaaMaMﬁfx51
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andvy and uedgesvi, vo}, {v1, v3}, {v1, va}, and{vy, v3}, and will be used as the running
example in this chapter. An embedding into the plane is dalplanar embeddingand
a planar embedding in which every edge is mapped to a striighsegment is called a
straight line embeddingA graphG is calledplanar if it has a planar embedding.

The function

bool Is Planar(const graph& G)

tests whether the grapgh = (V, E) has a planar embedding. It retuinge if G is planar
andfalseotherwise. The running time ®(n + m).

The functions

bool PLANAR (graph& G, bool embed = false);

bool HT PLANAR(graph& G, bool embed = false);
bool BL_PLANAR(graph& G, bool embed = false);

also test whether the grafihis planar. Wherembeds true, G is a map, ands is planar
(the functions rise an error whembeds true andG is not a map), the functions in addition
reorder the adjacency lists &f such thalG becomes a plane map. The notion of plane map
is explained in Section 8.4. All of this takes tinGan + m).

There are two implementations of the planarity test andglambedding algorithm:
HT_PLANAR realizes the planarity testing algorithm of Hopdrahd Tarjan, see [HT74]
or [Meh84, 1V.10], and the embedding algorithm of Mehlhomdaviutzel, see [MM95].
BL_PLANAR realizes the planarity testing algorithm of Lempg&ben, and Cederbaum, and
Booth and Lueker, see [LEC67, Eve79, BL76], and the embegdaligorithm of Nishizeki
and Chiba, see [NC88]. The implementation of RLANAR is documented in [MMN94]
and the implementation of BPLANAR is discussed in Section 8.7. BRLANAR is the
faster of our implementations and hence PLANAR is synonysiolBL_PLANAR.

The functions

bool PLANAR(graph& G, list<edge>& el, bool embed alse);

= f
bool HT PLANAR(graph& G, list<edge>& el, bool embed = false);
bool BL_PLANAR(graph& G, list<edge>& el, bool embed = false);

behave like the functions above whénis planar. IfG is non-planar, the functions also
return a proof of non-planarity in the form of the edgg®f a Kuratowski subgraph. The
identification of Kuratowski subgraphs takes linear ti@én + m) in BL_PLANAR and
PLANAR, and takes quadratic tim@(n?) in HT_PLANAR. We explain the notion oKu-
ratowski subgraph

Figure 8.5 shows two non-planar graphs, the complete gkapbn five nodes and the
complete bipartite grapKs; 3 with three nodes on each side. The non-planarity of both
graphs will be shown in Lemma 3 in Section 8.6. It is a famowotbm of Kuratowski,
see [Kur30, Whi73], that every non-planar grapltontains a subdivisidiof eitherKs or
K33, i.€., there is a sedl of edges inG forming a subdivision of eithelKs or K3 3. Figure
8.6 shows a Kuratowski subgraph of a non-planar graph.

9 LetK be an arbitrary graph. A subdivision &f is obtained fromK by subdividing edges. To subdivide an edge
means to split the edge into two by placing a new vertex ondge e
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Ks Ks3

Figure 8.5 The Kuratowski graph&s andKas 3.

Figure 8.6 A non-planar graph and the Kuratowski subgraph proving planarity. The edges

of the Kuratowski subgraph are shown in bold. This figure wersegated with the ximan-demo
gw_plan.demo.

There is also a function that gives more information aboatbratowski subgraph than
just the list of its edges.

int KURATOWSKI (graph& G, list<node>& V, list<edge>& E,
node_array<int>& deg) ;

returns zero ifG is planar and returns one otherwise. Gfis non-planar, it computes a
Kuratowski subdivisiorK of G as follows:V is the list of all nodes and subdivision points
of K. For allv € V which are subdivision points, the degme]v] is equal to 2. IfK is a
Ks, thendedv] is equal to 4 for all nodes € V that are not subdivision points. K is a

Ks.3, thendedv] is equal to—3 (4-3) for the nodes on the left (right) side of thés 3.
If G is a plane map, the function
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Figure 8.7 A straight line drawing produced by STRAIGHIINE _EMBEDDING. This figure
was generated with the xiIman-demo _glan demo.

int STRAIGHT LINE_EMBEDDING(graph& G, node_array<int>& xcoord,
node_array<int>& ycoord) ;

computes for each nodeof G a point(xcoordv], ycoordv]) with integer coordinates in
the range [0. 2(n—1)] such that the straight line embedding defined by these nosiégns
is an order preserving embedding @ The algorithm [Ii8, dFPP88] has running time
O(n?). G must not have parallel edges and it must not have self-lsipsd the existence of
parallel edges or self-loops excludes the existence obigstrline embedding). Figure 8.7
shows a straight line drawing produced by this algorithm.

The functionls Planar played an important role in the development of LEDA. We added
the function to the system in 1991. The function had beenemphted as part of a master’s
thesis and had been tested on a small number of examplesdwetdiave a large collection
of planar graphs available to us). The master’s thesis estthe implementation; the
actual program was not part of the thesis.

In 1993 we were sent a planar graph which, however, our progdeclared non-planar.
When we started to revise the program we learned two thirigst, ve learned that writing
a function
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bool Is Planar(const graph& G)
means asking for trouble. A function that answers a complestion like
Is G planar?

should not just return “YES” or “NO”jt should justify its answer in a way that is easily
checked by the caller of the function.

Second, we learned that documentation and implementagidtchbe tied together more
closely by the use of literate programming. Literate pragrang, first advocated by
D.E. Knuth, suggests to embed an implementation into a deatithat describes the al-
gorithm. All programs in this book are presented in a liteq@togramming style. We first
used CWEB [KL93] and later switched to noweb [Ram94].

In the case of planarity testing, the learning process leceports [MMN94, MM95,
HMN96] and to function

bool PLANAR(graph& G, list<edge>& el, bool embed)

which justifies its answers:

e WhenG is non-planar the function returns a proof of non-plandntshe form of the
setel of edges of a Kuratowski subgraph. The caller can easilylctiet the edges in
el form a Kuratowski subdivision dob.

e When G is planaembeds set totrue, andG is a map, the function reorders the
adjacency lists 06 such thatc becomes a plane map. A caller of PLANAR has two
ways to check whether the returned map is plane. He can g@itbduce a planar
drawing of G with the help of STRAIGHTLINE_EMBEDDING and visually inspect
the result, or he can compute the genus§ofThe genus of maps will be discussed in
Section 8.6 and it will be shown there that a map is planesfgénus is zero. The
genus of a map can be computed by a simple program.

The fact that PLANAR justifies its answers and that the answez easily checked can
be used to test the function on any input. Observe that te&insually restricted to inputs
where the answer is known by other means. The following temjram exploits the fact
that PLANAR can be tested on any input.

We choose integens andm such that a random map withnodes anan uedges has a
fair chance of being planar and a fair chance of being nongslagenerate random maps
with n nodes and aboum edges, test them for planarity, and check the answer.

(planar_test.g+=
main () {
int n = read_int("n = "); int m = read_int("m = ");
graph G;
list<edge> el;
int P = 0; int K = O;

while (P + K < 1000)
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{ random_graph(G,n,m);
list<edge> R;
G.make_map (R) ;
if ( PLANAR(G,el,true) )
{ assert(Genus(G) == 0); P++; }
else
{ assert (CHECK_KURATOWSKI(G,el)); K++; }
}
cout << "\n\nnumber of plane graphs = " << P;
cout << "\n\nnumber of non-plane graphs = " << K; newline;

}

In a run withn = 50 andm = 55, the program above found 308 planar graphs and 692
non-planar graphs.

The function PLANAR was the first function in LEDA that jusdiifits answers. By now,
many functions do. We have seen many examples already iretteding chapters and we
will see more in the chapters to coméA.general discussion of the role of program checking
in LEDA can be found in Section 2.14.

Exercises for 8.3

1 Let G be a non-planar graph. Show that the following strategytiies the edges of
a Kuratowski subgraph. Iterate over all edgesf G. If G \ eis non-planar, remove
from G, and if G \ eis planar leaves unchanged. The edges remaining3rform a
Kuratowski subgraph.

2 Write a function

bool CHECK KURATOWSKI (const graph& G, const list<edge>& el)

that returngrue if the edges irel form a Kuratowski subdivision of.

8.4 Order-Preserving Embeddings of Maps and Plane M aps

We define the notion of an order preserving embedding of a map.
For a vertexv, we useA(v) to denote the set of edges with soutceThe setA(v) is
stored as a cyclic list. For an edge

G.cyclic._adj_succ(e);

G.cyclic_adj_pred(e);

return the successor and predecesse; odspectively, in the cyclic lisi(sourcee)).
We will, from now on, assume that the adjacency lists of the Ma, our running exam-
ple, are ordered as follows:
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cyclic.adj_succ

cyclic.adj_pred

Figure 8.8 Order-preserving embeddings: The cyclic order of the edygégv) agrees with the
counter-clockwise ordering of the edges arouwrd the drawing.

v1: € = (v1, v2), & = (v1, v4), €3 = (V1, V3)
vz €1 = (vz, v3), €F = (v, V1)

vz e} = (v, v1), €] = (v3, v2)

Vg . ezR = (vg, vl).

Consider a drawing of a mad into the plane (more generally, into any orientable sur-
face) and lebv be any node oM. The drawing defines a cyclic ordering on the edgés)
emanating fromv, namely the counter-clockwise orderifigf the curved (e), e € A(v),
aroundl (v). A drawing is calledbrder-preservingr order-compatiblef for every nodev
the counter-clockwise ordering of the curdg®), e € A(v), aroundl (v) agrees with the
cyclic ordering of the edges iA(v), see Figure 8.8. In Figure 8.9 one of the embeddings
of Mg is order-preserving and one is not. In all further drawinfysiaps in this chapter we
will use order-preserving drawings.

A map is calledblaneif it has an order-preserving planar embedding. The functio

bool Is_Plane Map(const graph& G)

returnstrueif G is a plane map and returfaseotherwise. We will see its implementation
in Section 8.6.

8.5 The Face Cyclesand the Genus of aMap

We define a partition of the edges of a map into cycles, theafleetface cycles We
introduce face cycles as purely combinatorial objects aitldnterpret them geometrically
in the next section. Based on the concept of face cycles welgfihe thegenusof a map.

10 A precise definition is as follows: for a positive reatonsider the first intersections of the cunt€s), e € A(v),
with the circle of radiug aroundl (v). For small enough this ordering does not depend en
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v3 e4 v U3 ef U2

Figure 8.9 Two planar embeddings of the mafy: In the embedding on the left the
counter-clockwise ordering of the edgesAtw1) is e1, €, €3 and in the embedding on the right
the ordering iy, €3, €. The embedding on the left is order-preserving.

Figure 8.10 Face cycle successors and predecessors: Weechave- facecyclesucge ) for all
i,0<i < 5. Indices are mod 5. The drawing convention for maps is used.

For an edge of a mapM we define the face cycle successor and face cycle predecessor
of eby:

face cycle_succ(e) = cyclic_adj_pred(reversal(e))
face_cycle pred(e) = reversal(cyclic_adj_succ(e)).

Figure 8.10 illustrates these definitions. The next lemrstifjas the use of the namescc
andpred and also shows that the functifececyclesuccdecomposes the edges of a map
into cycles.

LemmalLlet M be a map and let e be an edge of M. Then

(a) facecyclepred(facecyclesucge)) = e

(b) facecyclesucgfacecyclepred(e)) = e

(c) Let & = e and set g1 = facecyclesucde) fori > 0. Then there is a k such that
&+1 =€ andeg # e foralliand jwithO<i < j <k.
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Proof (a) and (b) We have

facecyclepred(facecyclesucce))
= reversalcyclicadjsucdcyclicadjpred(reversale))))
= reversalreversale))
= e
and

facecyclesucdfacecyclepred(e))
= cyclicadjpred(reversa(reversa(cyclicadjsucge))))
= cyclicadjpred(cyclicadjsucge))
= e
(c) Letk be minimal such thaé,; = g for somei < k. Assuméa > 0. Frome,; =

facecyclesucdes) ande = facecyclesucde_;) and part (a) we conclude = g_1, a
contradiction to the definition . Thusi = 0. O

For an edge of a mapM we define thdace cyclecontaininge as the cycledy, e, . . ., &]
whereey = e, 6,1 = facecyclesucge) fori > 0,61 =¢€ ande; #eg for0<i < j <
k. Part (c) of the lemma above guarantees that this is a goowititefi Every edge oM
belongs to exactly one face cycle and the face cycles martitie edges oM.

We illustrate the concept of face cycle on our running examiple mapM,. The face
cycle containing the edgg = (vy, v2) IS

[e1. &4, €F, &, €51,

and the face cycle containing the echjie: (vp, v1) IS
[ef, e, eff].

Let us verify that this is indeed the case. We have

facecyclesucc{ef) = cycIiaadered(reversa{ef)) = cyclicadjpred(e;) = es,

facecyclesucdes) = cyclicadjpred(reversales)) = cycIiQadered(e3R) = ef,
and
facecyclesucqell) = cyclicadjpred(reversalel))) = cyclicadjpredie;) = ef.

We want to stress that the concept of face cycles is purelybamatorial. It is made
without any reference to a drawing of a map. A geometric pregation is given in the next
section.

We close this section with the definition of tgenusof a map. LetM be a map withm
edgesg connected componentsnodesnzisolated nodes, anfd face cycles. Then

genugM) = (m/2+ 2c — n — nz—fc)/2.



8.6 Faces, Face Cycles, and the Genus of Plane Maps 19

The genus of a map is always a non-negative integer, as weahall in the next section,
and characterizes the surfaces into which a map can be eetbeor the mapi, we have
m=8,c=1,n=4,nz= 0, andf = 2, and hencgenugMg) = 0. We will see in the
next section that this implies th#g is a plane map.

The following program computes the genus of a map. We deterthie number of nodes
and edges and the number of isolated nodes in the obviouswaiyye calCOMPONENTS
to determine the number of connected components. We detethm number of face cycles
by tracing them one by one. We iterate over all edgetG. If the face cycle ok has not
been traced yet, we trace it and mark all edges on the cyclerssdered.

(genus.¢=

int Genus(const graph& G)

{ if ( !'Is_Map(G) ) error_handler(1l,"Genus only applies to maps");
int n = G.number_of_nodes();
if ( n == 0 ) return O;
int nz = 0;
node v;
forall nodes(v,G) if ( outdeg(v) == 0 ) nz++;
int m = G.number_of_edges();
node_array<int> cnum(G);
int ¢ = COMPONENTS(G,cnum) ;

edge_array<bool> considered(G,false);
int fc = O;
edge e;
forall_edges(e,G)
{ if ( 'considered[e] )
{ // trace the face to the left of e

edge el = e;
do { considered[el] = true;
el = G.face_cycle_succ(el);
}
while (el !'= e);
fc++;
}
}
return (m/2 - n - nz - fc + 2%c)/2;

8.6 Faces, Face Cycles, and the Genus of Plane Maps

The purpose of this section is to relate combinatorics andgdry. We will define the faces
of an embedding and relate it to the face cycles of a map. Wepmae that a map is plane
if and only if its genus is zero. We will also show that andK3 3 are non-planar graphs.
Consider a map/ and an embedding of M into an orientable surfac. The removal
of the embedding frons leaves us with a family of open connected subsetS, afalled
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the faces of the embeddingn an embedding into the plane exactly one of the faces is
unbounded and all other faces are bounded. The unboundedsfatso called theuter
face We associate a set of edges with each facthe boundary of. An edgee belongs

to the boundary oF if the “left side” of | (e) is contained irF, formally, if for every pointp

in the relative interior of the embeddindge) of e and every sufficiently small disk centered
at p, the part of the disk lying to the left df(e) is contained irF.

Consider the embeddings &y shown in Figure 8.9. In the embedding on the left, the
boundary of the unbounded face consists of the edﬁeeg, andef, and the boundary of
the bounded face consists of the edge®y, €, &2, andeR. In the embedding on the right,
the boundary of the unbounded face consists of the eefjes, eR, 3, andef, and the
boundary of the bounded face consists of the edges, ande?. In the embedding on the
left the face boundaries correspond to the face cyclédpof

The boundary of a face consists of one or more cyéleghich we callboundary cycles
In the case of an order-preserving embedding boundaryxgcid face cycles are the same.

Lemma?2Let | be an order-preserving embedding of a map M. The bounciles of the
faces of | are in one-to-one correspondence to the face €ydld.

Proof Lete = (v, w) be any edge oM and consider the boundary cydle containing
I (e). Letg = (w, 2) be the edge such th&tg) follows | (e) in C. Thenl (g) follows
| (reversale)) in the clockwise ordering of the embedded edges ardyng Sincel is an
order-preserving embedding we haye= facecyclepred(e). Thus, boundary cycles and
face cycles are the same. O

The next theorem shows that the genus of a map gives a corabalabndition whether
amap is plane. Itis more generally true, see [Whi73], thagnus of a maM character-
izes the oriented surfaces into whithcan be embedded in an order-preserving way. The
following theorem is due to Euler [Eul53] and Poincaré @i

Theorem 1 Let M be any map. Then genii¢) > 0. Moreover, M is a plane map iff
genusM) = 0.

Proof We observe first that it suffices to prove the claims for a cotetemapM. Let My,
..., M¢ be the connected componentsMf Then?m =Y m,n =Y n;, nz= Y nz,
fc=) fg,andc =) ¢ and hence

genusM) = ) "~ genusgM;).

Let us assume for the moment that the claims hold for condettaps, i.e., we have
genusgM;) > 0 andM,; is plane iffgenugM;) = 0 for alli. We concludeggenugM) > 0. If
M is plane then alM;’s are plane. ThugienugM;) = O for alli and hencgenusM) = 0.
ConverselygenugM) = 0 impliesgenusM;) = O for alli (sincegenugM;) > 0 for some

11 |n a connected graph the boundary of each face consists offerae cycle.
12 We usem; to denote the number of edgeshfy and analogously fon;, nz, fj, andc;.
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Figure8.11 The edge® andeR belong to distinct face cycleso p andeR o . Removal ofe
andeR leaves us with a connected graph sipcandq provide alternative connections between
v andw. Lete; = facecyclesucde), e, = facecyclepred(e), e3 = facecyclepred(eR), and

g4 = facecyclesucqe®). Removal ofe andeR makese; the face cycle successorey, ande,

the face cycle successor@f. No other successor relationship is affected. We concludethe
removal ofe andeR generates the face cycpeo ¢ and affects no other face cycles. Thus,

fc' =fc— 1.

i would imply genugM;) < O for somej). Thus, M; is plane for alli and henceM is
plane.

For connected maps we use induction on the number of edges=ID thenn = nz=1
andfc = 0. Thus,M is plane andjenugM) = 0. We turn to the induction step.

Assume first thaM contains a uedgge, e?} such thae andeR belong to different face
cycles. Removal of ande® generates amag’ withm' = m—2,n' =n,¢ =c=1,nZ =
nz = 0, andfc’ = fc — 1, see Figure 8.11. ThugenusM) = genugM’). By induction
hypothesisgenugM’) > 0 andM’ is plane iffgenugM’) = 0. FromgenugsM’) > 0 we
concludegenugM) > 0. We next show thaM is plane iffgenugM) = 0. If M is plane
then M’ is plane (since an order-preserving embedding/6fis obtained from an order-
preserving embedding o by removing the images & ande®). ThusgenugM’) = 0
by induction hypothesis and hengenugM) = 0. Conversely, iigenugM) = 0 then
genusM’) = 0 and hence there is an order-preserving embedding M’, by induction
hypothesis. By Lemma 2 there is a fagen the embedding’ with boundary cyclep o q.
We embect andeR into F and obtain an order-preserving embeddiraf M.

Assume next that for every ued@e eR} of M, e andeR belong to the same face cycle.
Consider any node and letA(v) = (e, €, ..., &_1) be the cyclic list of edges out af.
Then

g = facecyclesucae® ;)

foralli, 0 < i < k, by the definition of face cycles, see Figure 8.12. SigcandeR
belong to the same face cycle by assumption, all edges imctder belong to the same
face cycle and, sinchl is connected, all edges & belong to the same face cycle. Thus,
fc = 1. SinceM is connected, the number of uedges is at laastl. Thusm > 2(n — 1),

¢ = 1,nz= 0, and hencgenugsM) > 0. We next show that1 is plane iffgenugM) = 0.

If M is plane consider an order-preserving embeddin§ M. The face cycles oM are
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Figure8.12 A nodev with A(v) = (ep, €1, &, €3). There is a face cycle containima@l andeg
foralli, 0 <i < 4. Indices are modulo 4.

in one-to-one correspondence to the faces of the embed8inge there is only one face
cycle, there is only one face, and heMdecannot contain a cycle. Thus, = 2(n — 1) and
hencegenugM) = 0. Conversely, ifjenugM) = 0 then(m/2+2—n — 1) = 0 and hence
m = 2(n — 1). The number of uedges is therefore equai to 1 and hence the uedges form
atree. For a tree there is clearly an order-preserving edibgd O

The theorem above implies that the test of whether a g&apha plane map is trivial to
implement. We only have to test wheth@iis a map and whether the genus®fs zero.
bool Is Plane Map(const graph& G) { return Is Map(G) && Genus(G) == 0; }

We draw some more consequences of Theorem 1. It implies aer yggund on the
number of edges in a planar graph (without self-loops andlighedges) and it implies that
the Kuratowski graph&s andKs 3 are non-planar.

Lemma3

(a) Let M be a connected plane map in which every face cycle derdiat least d edges,
where d> 3. Then

d >N —2).

2
m/sd

i.e., M has at mostd/(d — 2)) - (n — 2) uedges.

(b) Let M be a connected planar map without self-loops and witpawallel edges. Then
M has at mos8n — 6 uedges, if n> 3, and a node of degree at most five.

(c) Let M be a connected bipartite planar map without self-loapsl without parallel
edges. Then M has at mdst — 4 uedges, if r= 4.

(d) The complete graph Kon five nodes is not planar.

(e) The complete bipartite graph4¢ with three nodes on each side is not planar.
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Proof (a) If every face cycle consists of at lealseédges them > d - fc. Thus,
0=genugsM) =m/24+2—-n—-fc>m/24+2—-n—m/d

and hencém/2) - (1—-2/d) <n—2orm/2 < (d/(d —2)) - (n— 2).

(b) and (c) Reorder the adjacency listshdfsuch thati becomes a plane map. M has
no self-loops and no parallel edges, every face cyclelafonsists of at least three edges.
If, in addition, M is bipartite, every face cycle d¥l consists of at least four edges. The
bounds on the number of edges now follow from part (a). If pverde would have degree
six or more, the total number of edges would be at leagf6= 3n.

(d) A planar graph with five nodes and no self-loops and nolighedges has at most
nine uedges by part (b). The grafls has 5 4/2 = 10 uedges.

e) A planar bipartite graph with six nodes and no self-loapd @o parallel edges has at
most eight uedges by part (c). The grafphs has 3- 3 = 9 uedges. O

Exercise for 8.6

1 Itis obvious from the definition gfenugM) that 2. genugM) is an integer. The purpose
of this exercise is to show thgenugM) is an integer. In the proof of Theorem 1 we
have constructed for every connected méjp connected mapl’ such thagenusM) =
genugM’) and such thaM’ has a single face cycle. L&1” be obtained froniM’ by
removing an edge and its reversaéR. Determine the number of edges, nodes, face
cycles, and connected componentdvdf and conclude thalenugM’) — genugsM”) is
an integer. Use this observation and induction to show treagenus of every map is an
integer.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs
This section is joint work with D. Ambras, R. Hesse, Christdfundack, and E. Kalliwoda.

We give the details of the planarity test, the planar embegldigorithm, and the algo-
rithm for finding Kuratowski subgraphs. For each algorithenwill first derive the required
theory and then give an implementation. All implementadiom in linear time and are col-
lected in the file

(_bl_planar.g=

#include <LEDA/graph_alg.h>
#include <LEDA/pq_tree.h>
#include <LEDA/array.h>
#include <assert.h>

(auxiliary function$
(planarity tes}
(planar embedding of biconnected maps
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Figure 8.13 A biconnectedst-numbered grapks. Nodes is labeled 1 and nodeis labeled 9.

(planar embedding of arbitrary maps
(Kuratowski graphs in biconnected maps
(Kuratowski graphs in arbitrary graphs

8.7.1 The Lempel-Even—Cederbaum Planarity Test
We discuss the planarity testing algorithm invented by Leingven, and Cederbaum
[LEC67, Eve79]. We assume thé&t = (V, E) is a biconnected grap#) thatey = (s, t)
is an arbitrary edge o6, and that the nodes @& are st-numbered, i.es,is numbered 1,
t is numbered, and every node distinct fromandt has a lower and a higher numbered
neighbor.

We will first discuss the required theory and then describargolementation based on
PQ-trees.

The Theory: We identify nodes with their st-number, i.&/, = {1, ..., n}. Figure 8.13
shows an example of an st-numbered biconnected graph. Weseilit as our running
example.

Let Vk = {1, ..., k} and letGx = (W, Ex) be the graph induced by, i.e., Ex consists
of all edges ofG whose endpoints are both Wx. We extendGy to a graphBy. For each
edge(v, w) of G withv < kandw > k + 1 there is a node and an edgeBp. They
are called virtual nodes and virtual edges, respectivetylalel every virtual node with its
counterpart ins. Figure 8.14 shows the grafy for our running example.

If G is planar,Bx has a plane embedding which resembles a bush: notlec v < k, is
drawn at height, all virtual nodes are put on a horizontal line at height1, and all edges
are drawn ag-monotone curved. We call such an embeddindoaish fornmfor By and we

13 The rather trivial extension to arbitrary graphs will beagivat the end of the section.
14" A curve isy-monotone if any horizontal line intersects the curve attoose.
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Figure 8.14 The graphBy for the graphG of Figure 8.13. There are three virtual nodes labeled
8, one for each edge connecting node 8 to a node labeled 7sdnlés and there are five virtual
nodes labeled 9, one for each edge connecting node 9 to aatoeled 7 or less i®. The nodes
4, 6, and 7 comprise a biconnected component which we défipter later reference.

Figure8.15 A bush form for the grapiB; of Figure 8.14.

call the horizontal line at heiglkt+ 1 the horizon. The existence of bush forms will follow
from the discussion to come. Figures 8.15 and 8.16 shows tsb forms for the graph of
Figure 8.14.

Theleaf wordof a bush form is a sequencef{iN, E}*, whereE represents a virtual node
labeledk + 1, N represents a virtual node labelled- 2 or larger, and the virtual nodes are
listed in their left-to-right order on the horizon. The bdslm in Figure 8.15 has leaf word
ENNNEN ENand the bush form in Figure 8.16 has leaf WNEEENNNN A bush
form for By is calledextendibleif all virtual nodes labeled + 1 are consecutive on the
horizon, i.e., ifits leaf word is ilN*E*N*. An extendible bush forrﬁ?k is readily extended
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Figure8.16 An extendible bush form foB;.

to a bush forrer+1 for Bxy1. We move all nodes, v > k + 1, to heightk + 2, we merge
all virtual nodes labelell + 1 into a single node (since they are consecutive on the harizo
merging does not destroy planarity), and add a new virtugeexhd node for each edge
(k+ 1, w) withw > k+ 1.

The question is now how to decide whetlgrhas an extendible bush form, and how to
find an extendible bush form. We show:

Theorem 2 By, 1 has a bush form iff Bhas a bush form and no obstructions. Moreover, if
Bk has no obstructions then any bush foF}mof B¢ can be transformed into an extendible
bush form of B by a sequence of permutations and flippings.

We still need to define several of the terms used in the theatwmae. An obstruction
is either an obstructing articulation point or an obstmugtbiconnected component. In
the definition of either kind of obstruction we need the cqtsef clean, mixed, or full
subgraph. A subgraph d is calledclean mixed or full if none, some but not all, or all
of its virtual nodes are labeldd+ 1.

An articulation pointv of By is obstructingif there are three or more components of
Bx \ v that are mixed.

Consider the grapB; of Figure 8.14. Node 4 is an articulation point adg\ 4 has three
components: Two of them are mixed and one is full. Node 4 isalwstructing. Please
convince yourself that none of the articulation points istalicting.

We come to biconnected componentsByf A nodey of a biconnected componeht
is called anattachmennode ofH if it is also the endpoint of an edge outsithke Attach-
ment nodes are articulation points Bf and hence are embedded on the boundary of the
outside face in every bush form &. In the graphB; the biconnected componeHb has
attachment nodes 4, 6, and 7.

Let yo, Y1, ..., Yp-1 be the attachment nodes of a biconnected compadreunit B,. We
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Figure8.17 yn andyn41 are adjacent attachment nodes on the boundary cydteinfBy, but
are separated by andy; in the boundary cycle off in B;.

useyy for the lowest numbered attachment noggjs also the lowest numbered node in
H. Any bush formBy of By induces an embedding &f (simply remove all nodes outside
H and their incident edges). In this embeddingtbtthe boundary of the outside face of
H is a simple cycle, which we call tHeoundary cycl® of H in By. A counter-clockwise
traversal of the boundary cycle yields a cyclic order on titechment nodes, which we call
the cyclic order induced by the bush form. Consider Figur&s 8nd 8.16. The cyclic order
of the attachment nodes 4, 6, and 7 is 4, 6, 7 in the first figudesaa, 7, 6 in the second
figure.

Lemmad4 Let ¥y, V1, ..., Yp—1 be the attachment nodes of a biconnected component H of
Bx in the cyclic order induced by some bush fdByof Bc. Then any other bush form of B
induces either the same cyclic order or its reversal.

Proof Assume otherwise, i.e., thereis a bush fcﬁ%ﬁnsuch that the attachment nodes appear
in a different cyclic order iré((. Then there must be indicés i, and | such thaty, and
Yh+1 (indices are mogh) are separated by andy; in the boundary cycle o in é@, see
Figure 8.17. The embeddirﬁjK implies that any pair of paths connectiggto yn.1 andy;

to y;, respectively, must cross. On the other hand, the embediingplies the existence
of non-crossing paths. O

Let Yo, V1, - - -, Yp—1 be the attachments ¢f in one of their cyclic order§. Thecompo-
nent of B opposite to H at yis the subgraph oBx spanned by all nodes that are reachable
from y; without using an edge dfi. We denote it byC;. EachC; is either clean, mixed, or
full. We define the signature di as the word

SS1 . . - Sp—1 € {clean,mixed,fulf*

wheres describes the status @f. In the graphBy, the component opposite tdy at 6 is
full, the component opposite tidy at 7 is clean, and the component oppositéitoat 4 is
15 A node ofH which is not an attachment node idfmay lie on the boundary cycle ¢f in some bush forms and

may not lie on the boundary cycle in others. Attachment négésng to the boundary cycle in every bush form.
16 There are two by the preceding lemma. For the definition s paragraph it does not matter which one is chosen.
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Figure 8.18 Permuting and flipping.

mixed. The signature dflg is “mixed clean full” for the ordering 4, 7, 6 and “mixed full
clean” for the ordering 4, 6, 7.
A biconnected componeiit is non-obstructingff a cyclic shift of its signature is in

clearf mixed; full* mixed; cleart,

where mixeg denotes zero or one occurrence of mixed, and is obstructiregwise.

We come to permutations and flippings. Permutations appdyttoulation points oBy.
Let v be an articulation point oBy. Then, ifv > 1, exactly one component @ with
respect tov contains nodes lower than and if v = 1, no component doés We call
the component containing lower numbered nodesrdlo¢ componenbf v and all other
componentsion-root componentsf v.

In the graphB; of Figure 8.14 the root component of node 4 contains nodes 3, 3,
two copies of 8, and three copies of 9.

Consider now any bush fOI’Iék of Bx. A sub-bushof ék with lowest numbered node
v is the restriction ofBy to the union of some non-root components with respect tn
particular, each non-root componentwéorresponds to a sub-bush Bf. A permutation
operationpermutes the sub-bushes corresponding to the non-rootawnps with respect
to an articulation point and aflipping operatiorflips over a sub-bush, see Figure 8.18.

We are now ready for the if-direction of Theorem 2.

17 Observe that any nodewith u < v can reach 1 without passing throughy the virtue ofst-numberings.



8.7 Planarity Testing, Planar Embeddings, and Kuratowskg&phs 29

Figure8.19 Permuting the sub-bushes Bfwith respect taw. C, M, and F stand for clean,
mixed, and full sub-bushes, respectively.

Lemma5 If Bx has a bush form and no obstructions then any bush fé(man be trans-
formed into an extendible bush form by a sequence of perionsatind flippings.

Proof We want to use induction over sub-bushes and therefore @alightly stronger
claim. We call a sub-bushcompletef there is a virtual node labeldd+- 1 outside the sub-
bush and we call a sub-bustrongly extendibléf its leaf word is inN*E* or E*N*. We
show that every sub-bush can be transformed into an exterslib-bush, i.e., a sub-bush
whose leaf word is ilN*E*N*, and that every incomplete sub-bush can be transformed into
a strongly extendible sub-bush.

Let B be any sub-bush. B has only one virtual node, the claims are obvious. So, assume
otherwise and let be the lowest numbered node h We distinguish cases according to
whetherv is an articulation point oB or not.

If vis an articulation point oB then at most two of the components Bfwith respect
to v are mixed. We can therefore permute the components suchltiiall and all clean
components are consecutive and such that the two mixed aenfmbracket the full com-
ponents, see Figure 8.19. We apply the induction hypotltetie sub-bushes and therefore
may assume that the sub-bushes are extendible or evenlgtestgndible (for incomplete
sub-bushes). We complete the induction step with two olasemns. First, the mixed sub-
bushes are incomplete except if there is at most one mixedssito and this sub-bush
contains all virtual nodes labeléd+ 1. Second, if8 is incomplete then there is at most
one mixed sub-bush since the root componem,ofvith respect ta is mixed. ThusB can
be transformed into an extendible bush form and into a styamgendible bush form iB
is incomplete. The transformation consists of transforomatof the sub-bushes, permuting
the sub-bushes, and maybe flipping one of the mixed sub-bushe

If v is not an articulation point o8, let H be the biconnected component®tontaining
v. Letyo, y1, ..., Yp—1 With v = Yy be the attachment points &f in By in one of their two
cyclic orders. We have a sub-bugh of B for the componen€; of B, opposite toy; for
alli, 1 <i < p— 1. SinceH is non-obstructing and sindg, is either clean or mixed (it
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cannot be full since it contains the ed@et)), we have
S1...Sp1 € clearf mixed; full* mixed cleart
if Cois clean and we have
S1...Sp_1 € clearf mixed, full* U full* mixed; cleart

if Co is mixed. In either case we conclude tHatcan be transformed into an extendible
bush form and into a strongly extendible bush fornBifis incomplete and hencg is
mixed. The transformation consists of transformationsutFsushes followed (maybe) by
a flipping of the two mixed sub-bushes. O

Figure 8.20 illustrates Lemma 5. It shows a sequence offoemations that transform
the bush form of Figure 8.15 into the extendible bush formigtiFe 8.16.

We summarize. The Lempel-Even—Cederbaum planarity testremts a sequends,
B, By, ..., By of bush forms. In iteratiok + 1 the bush formBy is first transformed into
an extendible bush forré; and then extended to a bush foénﬂ. The transformation to
an extendible bush form uses permutations and flippingsspdssible ifBy contains no
obstructions.

The running time of the Lempel-Even—Cederbaum te€d{s?) in its original form.
Booth and Lueker improved the running time®@n + m) by the introduction of th& Q-
tree data structure, which we will discuss in the next sectio Section 8.7.3 we will show
that the existence of an obstruction implies the existefieekuratowski graph irG.

The PQ-Tree Data Structure: Booth and Lueker [BL76] introduced the PQ-data structure
to keep track of the sequence of bush forms arising in the ledéAiwven—Cederbaum pla-
narity test. PQ-trees have wider applications than plantesting but we will not discuss
them here.

PQ-trees have the following interface.

pgq-tree T(m);

declares a PQ-tre€ which can represent bush forms in which every edge is labeitd
an integer in [1. m]. After the declaratiom represents the empty bush form with no nodes
and no edges. We useto denote the set of virtual edges in the current bush foBrs
empty initially.

The operation

bool T.replace(list<int>& L, list<int>& U, list<int>& I)

adds a node to the current bush form. The node is incidentetwittual edged. in the
current bush form and introduces new virtual edgesWe must havd. C S, U is a set
of integers (= edges) that have never beeisibefore, and. = ¢ iff S = @; the latter
requirement corresponds to the fact that only node 1 is @mtitb no edge from below. The
new set of virtual edges becom&s\ L) U U.

The function returngrueif the current bush formis extendible, i.e., can be tramsft to
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\4

makingB

strongly extendible

by flipping B’

_—
making B extendible

by permuting the sub-bush

and flippingB’

Figure 8.20 Transforming the bush form of Figure 8.15 into an extendilish form.

a bush form in which all edges inare contiguous on the horizon. The function retdatse
otherwise. Once a call abplacehas returnedalse the PQ-tree becomes non-functional
and no further operations can be applied to it.

The last argumentt is irrelevant for the planarity test and is only required tloe con-
struction of a planar embedding. We will discuss it in thetrs@ction.
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The amortized running time @éplaceis proportional to the length df plus the length
of U and the running time of the declaratidim) is O(m).

We are now ready for the planarity test. The function PLANTESpects a biconnected
graphG, an st-numberingtnumof its nodes, and a listlist containing the nodes @ in
increasing order of st-number, and retumne iff G is a planar graph.

If G has less than five nodes thénis planar. So assume th@thas at least five nodes.
We declare a PQ-treB(m), wherem is one larger than the maximal index of any etfge
We useT to maintain the bush forml%k fork=0,1,2,....

We iterate over the nodes in increasing order of st-number.eBchv, we collect the
edges that conneetto lower numbered nodes In, and we collect the edges that connect
to higher numbered nodes bh. Self-loops are ignored as they do not affect planarity. We
update the bush form by

T.replace(L,U,I),

wherel is a dummy argument. If the call is not successful, we breainfthe loop and
returnfalse if the call is successful, we proceed to the next node. ifiafles can be added
to the bush form we returtmue.

(planarity tesf=
static bool PLANTEST(graph& G, node_array<int>& st_num,
list<node>& st_list)
{
int n = G.number_of_nodes();
int m = G.max_edge_index() + 1;

if (n < 5) return true;
pg_tree T(m);
int stv = 1;

node v;
forall(v,st_list)
{
list<int> L, U, I;
edge e;
forall_inout_edges(e,v)
{ node w = G.opposite(v,e);
int stw = st_num[w];
if (stw < stv) L.push(index(e)+1);
if (stw > stv) U.push(index(e)+1);

}
if ( !T.replace(L,U,I) ) break;
stv++;

¥

return stv == n+1;

}

18 The data type graph numbers edges with non-negative irste§lee number of an edge is called its index. Since
PQ-trees expect positive numbers, we identify any edgeitgithdex plus one.
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The program above performs the planarity test in tii@+ m). This follows from the fact
that the declaration oF requires timeD(m) and that the total cost of akplaceoperations
is O(n + m) and that an st-numbering can be computed in linear time (se&o® 7.4).

The program above is short and elegant. It performs a contpl namely, to test
whether a graph is planar, in linear time and a few lines ofecddf course, all the com-
plexity is hidden in the implementation of PQ-trees.

Can you trust the program above¥es, you can trust'it but “it would be unwise to do
sd. We have not explained the inner workings of PQ-treesyingplementation is complex
(almost 2000 lines), and most seriously there is no way tokchee answer of the program
above. It just says “yes” or “no”. In the sections to come wk @4tend the program above
to a program that can be checked. We show how to compute paniaeddings of planar
graphs and Kuratowski subgraphs of non-planar graphs.

8.7.2 Planar Embeddings
Chiba et al [CNAOS85, NC88] have shown how to extend the pignaest of Lempel,
Even, and Cederbaum to an embedding algorithm. We revieiw dlgorithm and give
the implementation of functions

static bool PLAN_EMBED(graph& G, node_array<int>& st_num,

list<node>& st_list);
bool BL_PLANAR(graph& G, bool embed);

The first function takes a biconnected nfapan st-numberingtnumof G, and the list of
nodes ofG in increasing order of st-number, and tests whethés planar. IfG is planar,
it reorders the adjacency lists 6f such thalG becomes a plane map.

The second function applies to any m@p It returnstrue if G is planar and it returns
falseotherwise. IfG is planar ancembeds true, G is turned into a plane map. émbeds
true andG is not a map, the function aborts. dmbeds false the function applies to any
graphG.

Biconnected st-numbered Maps. We discuss the function PLAIKMBED. The planarity
testing algorithm constructs a sequence of bush fdg$,, By, ..., B,. The construction
is implicit in the sense that the bush forms are hidden in tibernal structure of the PQ-
tree. We wantB,. The construction 0B, from By consists of two steps: firsBy is
transformed into an extendible bush foép and then nod& + 1 is added to obtain+1.
For a nodev let L (v) be the set of edge®, w) with w < v, and for any integek with
k > v let Lx(v) be the counter-clockwise order of the edges {w) in the bush formBy.
The embedding algorithm is based on the following obseruati

e The cyclic order of the adjacency liségv), v € V, can be constructed from the lists
Lhn(v),v e V.

e The sequenckg(K) is readily extracted from the PQ-tree data structure.

e The sequencky;1(v) is equal toLy(v) or L} (v) for k > v.
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We provide more details on the last item and postpone theiskson of the other two
items.

Bush forms are transformed by permutations and flippingenB&tions have no effect
on the order of the listk (v) for anyv. They have a dramatic effect on the order of the lists
U (v), whereU (v) is the set of edge&, w) with v < w. For this reason we do not keep
track of the order of th& (v)’s during the construction process but determine theirrsrde
in a second phase (this is the subject of the first item). Alftigjpf a sub-bush with lowest
numbered vertew reverses the order &f(v) for all v in the sub-bush withh # w and does
not affect the order ot (v) for any otherv. We conclude that.y,1(v) is equal to either
Lk(v) or Li*(v) for anyv with v < k. We say that node is flipped in iteratiork + 1 if
Likrr(v) = L2 (v). If v is not flipped in iteratiork + 1 thenLy;1(v) = Lk (v).

We conclude thak ,(v) is equal toL ,(v) if v is flipped an even number of times and is
equal toL'®"(v) if v is flipped an odd number of times. We next show how to determine
efficiently how often nodes are flipped. We could maintain anter for each node and
increment it whenever the node is flipped. Since a linear rmrmabnodes may be flipped in
each iteration, this would result in a quadratic algorithife are aiming for linear running
time and hence need a more compact way to maintain the csunter

In the graphBy.1 there is a unique biconnected componéht; havingk + 1 as its
highest numbered node. We cHill, 1 the biconnected component formed in iterationl.

Lemma 6 All edges in Itk 4+ 1) are contained in .1 and any biconnected component H
of By is either contained in k.1 or edge-disjoint from k.1, see Figure 8.21.

Proof Consider any two lower neighbousandv of k + 1. They are connected by a path of
length two througlk + 1 and they are connected by a path which avé&igsl, the second
half-sentence being a consequencstafiumbering. Thus, all edges In(k 4+ 1) belong to
Hi.1 and the first part of the lemma is shown.

Any two edges belonging to the same biconnected componédsy bélong to the same
biconnected component &, 1. This proves the second part of the lemma. O

For a biconnected componeHt of By let V*(H) denote the set of nodes &f except
for the lowest numbered node bf. A flipping operation changes either the ordeldb)
for all nodesv € V*(H) or for no nodev € V*(H). This follows from the fact that a
biconnected component is either contained in a sub-busksjirt from it. We say that a
biconnected componeht is flipped in iteratiork + 1 if all nodes inV ™ (H) are flipped in
iterationk + 1.

Lemma 7 There is a transformation d%k to an extendible bush form in which only bicon-
nected components H of Bre flipped that become part ofcH,.

Proof Let BQ be the extendible bush form produced by the strategy of LeBaral assume
that some biconnected componéftthat does not become part b1 is flipped by the



8.7 Planarity Testing, Planar Embeddings, and Kuratowskg&phs 35

Figure8.21 The biconnected componentsBf are indicated as ovals and articulation points
are indicated as solid circles. The hatched biconnecteghonents become part bfi 1.

transformation fronBy to By. Lety = y(B{) be the lowest numbered node that is part of a
biconnected componeht that is flipped by the transformation E%{( and does not become
part of Hc. 1. Consider the bush forrﬁ((’ obtained by flipping the smallest sub-busthat
containsH. By is extendible since no leaf labeléd+- 1 is contained inB. Moreover,
either no biconnected component that does not become pait.afis flipped in I§|’<’ or
y(B) > y(Bp.

We conclude thaBy can be transformed into an extendible bush form in which only
biconnected components are flipped that become padi of. O

We can now explain the third argument of functieplaceof classpqtree It consists of
three parts, which in iteratiok+ 1 are as follows (see Figure 8.22):

e Aninteger specifying the number of componentsBf that are merged intély ;.

e Asequencdy, j1, ..., ji—1 Of integers, wher¢1|j0|, H|j|_1| are the biconnected
components 0By that are merged intbl,1, andj; is positive if H;; is not flipped in
iterationk 4+ 1 and is negative otherwise.

e The edge¥in L(k + 1) in their counter-clockwise order arouRat 1 in By, 1.

We denote the third argument@placeby | because it contains the instructions of how to
obtain By 1 from By.

19 More precisely, the sequence of numbers identifying the ®dge
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Figure8.22 The bush formBg obtained from adding node 8 to the bush form of Figure 8.16.
The biconnected componehi consists of the biconnected componerts Hs, andH; and the
edges inL (8). The counter-clockwise order of the edge4.i®) is (8, 3), (8, 1), (8, 6). The
biconnected componentd andH; are flipped when going from the bush foifsa of Figure
8.15toBg. Thusl =3, -3,5, -7, (8,3), (8, 1), (8, 6), where the first 3 indicates that three
components are merged inkty, the sequence 3, 5, —7 indicates that the merged components
areHs, Hs, andH; and thatHz andHy; are flipped, and wheres, 3), (8, 1), (8, 6) form L(8).

We are now ready for the implementation of PLANMMBED. It consists of three phases.

In the first phase, we run the planarity test of the precedéatjen with three changes:

We are now dealing with a map and therefore store only onetilireof each edge in
the PQ-tree. In phase one we are dealing with ligts) and hence we store the
direction from larger to smaller nodes. We construct ths ligv) andU (v) by
iterating over all edges out of edges to lower numbered nodes are put in¢o) and
the reversals of edges to higher numbered nodes are pWd {nfo We put edge
reversals intdJ (v) in order to guarantee that for each uedge the direction goimy
higher to smaller st-number is put into the PQ-tree. Salptoare ignored in phase
one.

We define an arragDGEthat stores for each integer in.[dn] the edge corresponding
to it.

In iterationk we store the output of PQ-tree operatioreplacein I [K].

Here comes phase one.

(PLANLEMBED: phase 1=

int n = G.number_of_nodes();
if ( G.number_of_edges() == 0 ) return true;
int m = G.max_edge_index() + 1;

// interface for pq_tree
pg_tree T(m);
list<int>* I = new list<int>[n+1];
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edgex EDGE = new edge[m+1]; // EDGE[i+1] = edge with index i
edge e;

forall_edges(e,G) EDGE[index(e)+1] = e;

// planarity test

int stv = 1;

node v;

forall(v,st_list)

{
list<int> L, U;

edge e;
forall_adj_edges(e,v)
{ int stw = st_num[target(e)];
if (stw < stv) L.push(index(e) + 1);
if (stw > stv) U.push(index(G.reversal(e)) + 1);
}

if ( !T.replace(L,U,I[stv]) ) break;

stv++;

At the end of phase one, we either hate< n+ 1 and therG is non-planar, ostv=n+1
and thenG is planar and [K] contains the instruction list of thk-th iteration for allk,
1 <k <n. Thus:

(planar embedding of biconnected mgps

static int PLAN_EMBED_K(graph& G, node_array<int>& st_num,
list<node>& st_list)
{ (PLAN.EMBED: phase 1

if (stv == n+1) { (PLANEMBED: phase 2 }

delete[] EDGE;
delete[] I;

return stv - 1;

}

static bool PLAN_EMBED(graph& G, node_array<int>& st_num,
list<node>& st_list)
{ return PLAN_EMBED_K(G,st_num,st_list) == G.number_of_nodes(); }

The first version of the function is needed for the search forakowski subgraphs in the
next section. It returns the largest integesuch thatBy has a bush form.

We come to the second phase. The purpose of the second phaskeisrmine for each
node the order of (v) in B,. This is eitherL,(v) or L!*V(v) depending on whether is
flipped an even or an odd number of times.

Noden is not flipped at all. Consider now a nogle< n and assume that; is merged
into Hy in iterationk. Thenj is not flipped in iterationg + 1 tok — 1, is flipped in iteration
k if 1[k] contains—j in its second part and is not flipped in iteratikif | [k] contains+ |
in its second part, and is flipped in iterations later thaiff node k is flipped. Thus it is
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easy to compute the number of times any nods flipped by iterating over all nodes in
downward order of st-number.

It actually suffices to compute the parity of the number ofettna node is flipped; the
parity is+1 if the number is even and isl otherwise. Assume that we process nka@ad
let j be such thaH; is merged intoH in iterationk. Then the parity of] is equal to the
sign of the occurrence df in 1[K] times the parity ok. In the piece of code below, node
k tells nodej, if the parity of j is odd, by putting the indicator ODD as the first element of
ITil.

The order ofL,(v) is equal to the third part of (v), if v is flipped an even number of
times, and is equal to the reversal of the third part @f) otherwise.

(PLAN.LEMBED: phase p=
node_array<list<edge> > L_n(G);
const int EVEN = +1; const int 0ODD = -1;
int stv = n;
forall_rev(v,st_list)

{
if (stv == 1) break; // for v = t down to s+1

list<int>* I_v = &I[stv];

int d = 1;
int 1 = I_v->pop();
if (1 == 0DD )
{d=-1;

1 =I_v->pop();
}

// 1 = number of components merged into H_v
int i;
for( i =0; i < 1; i++)
{int j = d * I_v->pop();
if (j < 0) I[-j].push(0DD); // tell j that it is odd
}
if (d > 0)
forall(i,*I_v) L_n[v].append(EDGE[i]);
else
forall(i,*I_v) L_n[v].push(EDGE[i]);

stv--;
}
(PLAN.LEMBED: phase 8

We come to the third and last phase of PLAWBED. We knowL,,(v) for every node
v and want to compute the counter-clockwise order of the eitigdgv), whereU (v) is the
set of edges connectingo higher numbered nodes. Self-loops will be treated as droad
We compute the ordering of the edgediv) by so-calledeftmost depth-first search

Consider a depth-first search starting ithat uses only edges in(v) and that considers
the edges irL (v) in their counter-clockwise order. Such a depth-first seasatalled a
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Figure 8.23 A leftmost depth-first search startingtinFor every node the edges going to
lower numbered neighbors are explored in left-to-righteord he edge labels indicate the order
in which the edges are explored.

Figure8.24 The edggu, v) is after(u, w) in the clockwise order of edges ih(u) but (v, u) is
explored beforéw, u).

leftmost depth-first search, as the edgek (n) are explored in left-to-right order (if drawn
downwards fromv) for anyv and, more generally, the grajih is explored in a left-to-right
fashion. This implies that for any node the edges itJ (v) are explored in left-to-right
fashion, i.e., clockwise order, see Figure 8.23.

Lemma 8 A leftmost depth-first search explores the edges (o)Un clockwise order for
any node u.

Proof Assume otherwise. Lat be the highest numbered node such théb) is ordered
incorrectly, say edgéu, v) is after edgdu, w) in the clockwise order of edges h(u), but
(v, u) is explored beforéw, u). Consider the pathB, andP,, fromt to u, which follow the
tree paths te@ andw in the depth-first search tree, respectively, and then tekedgev, u)
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or (w, u), respectively, see Figure 8.24. L&be the node furthest fromand different from
u that is common to both path. L&, and Q,, be the induced paths fromto u passing
throughv andw, respectively, and let, ande, be the first edges on these paths. Then
precedeg, in the counter-clockwise order of the edged.ifz).

The path€Q, andQ,, arey-monotoneQ, is left of Q,, “near” z, andQ, is right of Q,,
“near” u, and hence the two paths must cross. By definitiontby do not cross in a node
and henceB,, is not a bush form oB,. O

The following function LMDFS realizes leftmost depth-fistarch and builds a list
embedist containing all edges iw,U (u) in the order in which they are explored; the edge
which is explored first comes last in the list, and the edgelwvtd explored last comes first
(since edges are pushed on the list and not appended). Invebhds, for each node the
edges inJ (u) occur in counter-clockwise order @ambedist. The edges do not necessarily
occur consecutively.

LMDFS reuses the arragtnumto record whether a node has been visited. leftmost
depth-first search

(auxiliary function$=
static void LMDFS(graph& G, node v, const node_array<list<edge> >& L_n,
node_array<int>& st_num, list<edge>& embed_list)

{
if (st_num[v] < 0) return;
st_num[v] = -1;
edge e;
forall(e,L_n[v])
{ embed_list.push(G.reversal(e));
LMDFS(G,target(e) ,L_n,st_num,embed_list);
}
}

We use LMDFS in a functioembeddinghat reorders the adjacency lists. We first build a
listembedist containing for each nodethe set of edges iA(v) in counter-clockwise order
but not necessarily consecutively, and then use the sdttirggion G.sortedgesembedist)
to rearrange the adjacency lists accordingly.

We buildembedist in three steps. In the first step we copy the llst§v] to embedist,
in the second step we call LMDFS to add the edges,id (v) in their counter-clockwise
order, and in the third step we deal with all self-loops. Tek-Bops can be added in any
order, we only have to make sure that the two directions offd@ap are placed next to
each other. In this way there will be no crossings betwedreaps.

(auxiliary function$+=

static void embedding(graph& G, node t, node_array<int>& st_num,
node_array<list<edge> >& L_n)

{
list<edge> embed_list;

node v; edge e;
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forall_nodes(v,G)
forall(e,L_n[v]) embed_list.append(e);

LMDFS(G,t,L_n,st_num,embed_list);
// append self-loops at the end of the list

edge_map<bool> treated(G,false);
forall_nodes(v,G)
{ edge e;
forall_adj_edges(e,v)
if (target(e) == v && !'treated[e])
{ embed_list.append(e); embed_list.append(G.reversal(e));
treated[e] = treated[G.reversal(e)] = true;
}
¥

G.sort_edges(embed_list);

After all this preparatory work phase three reduces to act@ambedding.

(PLAN.EMBED: phase 8=

node t = st_list.tail();
embedding(G,t,st_num,L_n);

The running time of PLANEMBED is O(n + m). We have already argued that phase
one takes linear time. Phase two touches every edge oncesand takes also linear time.
Phase three consists of a depth-first search followed bgeiig the adjacency lists from
embedist and hence takes linear time.

Arbitrary Maps. We give the implementation 8L PLANARG, embed. Recall thatG
must be a map iémbeds true. The implementation is fairly simple.

We extendG to a biconnected graph (@mbedis false and to a biconnected map (if
embeds true), compute an st-numbering &, call the planarity test for biconnected graphs
and maps, respectively, and remove the added edges. ThiofuMakeBiconnecteds
discussed in the exercises of Section 7.4. It makes a graphiected by adding edges. It
does so without destroying planarity.

(planar embedding of arbitrary maps

bool BL_PLANAR(graph& G, bool embed)
{ if (G.number_of_edges() <= 0) return true;
// prepare graph
list<edge> el;
if (embed)
{ if ( !'G.make_map() )
error_handler(1,"BL_PLANAR: can only embed maps.");
Make_Biconnected(G,el);
edge e;
forall(e,el)
{ edge x = G.new_edge(target(e),source(e));
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el.push(x);
G.set_reversal(e,x);
}
}

else
Make_Biconnected(G,el);

node_array<int> st_num(G) ;
list<node> st_list;
ST_NUMBERING(G,st_num,st_list);

bool plan;
if (embed)

plan = PLAN_EMBED(G,st_num,st_list);
else

plan = PLANTEST(G,st_num,st_list);
// restore graph
edge e; forall(e,el) G.del_edge(e);

return plan;

8.7.3 Kuratowski Subgraphs

We describe functions to extract Kuratowski subgraphs. Vgeé dive a simple algorithm
with quadratic running time, then a linear time algorithmbieconnected graphs, and finally
a linear time algorithm for arbitrary graphs.

We start with a simple algorithm that computes Kuratowskiggaphs in quadratic time
O((n+ m)m). We iterate over all edgesof G. We hidee and check the planarity @ \ e.
If G\ eis non-planar, we leavehidden, and ifG \ eis planar, we ade to the set of edges
of the Kuratowski subgraph and restore it. At the end we resafl edges. The running
time of this algorithm isn times the running time of the planarity test. The runningetim
can be improved t®(n?) by observing that it suffices to consider-8 7 uedges o6, since
a planar graph withh nodes can have at most 3- 6 edges according to Lemma 3. We leave
it to the exercises to implement this improvement.

(auxiliary function$+=

static void KURATOWSKI_SIMPLE(graph& G, list<edge>& K)
{ K.clear();

if ( BL_PLANAR(G,false) )
error_handler (1,"KURATOWSKI_SIMPLE: G is planar");

list<edge> L = G.all_edges();
edge e;
forall(e,L)
{ G.hide_edge(e);
if (BL_PLANAR(G,false))
{ G.restore_edge(e);
K.append(e);
}
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}
G.restore_all_edges();

}

We turn to the linear time algorithm of Karabeg and HundaclehMorn, and Naher
[Kar90, HMN96] to find Kuratowski subgraphs. We assume tBad biconnected non-
planar map without self-loops and parallel edges.

When the planarity test algorithm is run @there will be a minimak such thatBy has
a bush form buBy_; does not, becaud®, contains an obstruction. Thér+ 1 < n since
B,_1can always be extended. We show

Lemma9 If B, has a bush form and contains an obstruction then G containsratwski
subgraph.

An obstruction is either an obstructing articulation pantan obstructing biconnected
component. We deal with obstructing articulation pointstfand then with obstructing
biconnected components. For both cases we need some sanfde@bout trees. For a tree
T and a subses of its nodes we us& (S) to denote the smallest subtreeToiconnecting
all nodes inS. If || < 3 thenT (S) contains a node, called thgoin of Sin T, such that
the paths front to the nodes ir5 are pairwise edge-disjoint (€ Sis allowed). If|S| = 3,
the join is unique.

Lemma 10 Letv be an articulation point of Band let T be a depth-first search tree of B
rooted atv. If w and z are distinct virtual nodes in some connected compdberfitB, with
respect tow then the join of v, w, z} in T is distinct fromw, w, and z.

Proof Let u be the first node reached in a depth-first seard8 efarting inv. SinceC is
a component with respect tg C\v is connected. This implies that all nodesGiv are
descendantsafin T. O

In the sequel we us& to denote a tree on nod¢k + 1, ..., n} rooted att (= n) and
where each node, v < n, has an incoming edge from a higher numbered node. Such a tree
exists sinces is st-numbered.

We also use€ls to denote a depth-first search tree Bf. Ts is rooted ats except if
explicitly specified otherwise.

An Obstructing Articulation Point: Let v be an obstructing articulation point, i.e., at
least three of the components with respect taire mixed. LeCi, 0 < i < 2, be a mixed
component with respect to, let w; be a leat® labeledk + 1 in C; and letz be a largé!
leaf inC;. Let Ts be a depth-first search tree Bf rooted atv.

LetT; be the subgraph af; spanned by, w;, andz;, and letx; be the join ofT;. Consider
the subgraplK of G consisting of:

20 e will use leaf and virtual node as synonyms in this section.
21 Alarge leaf is a leaf that is labeléd+ 2 or larger.



44 Embedded Graphs

Figure8.25 A Kg 3 with sides{xo, X1, X2} and{v,k+ 1,r}.

o T, Tq, Ty, and the treé’t(zo, Z1, Zz).

Letr be the join ofzy, z;, andz, in T;. Thenr # k + 1 and hence& is a subdivision of
K33 with sides{xo, X1, X2} and{k + 1, v, r }, see Figure 8.25.

An Obstructing Biconnected Component: Let H be a biconnected component with at-
tachment nodegy, i, ..., Yp-1. We assume thay, is the lowest numbered attachment
node and thayo, y1, ..., Yp—1 appear in this order on the boundary cycletbfin =
where ék is a bush form ofBx. Let C; be the part ofBx opposite toH at y; and let
s(Ci) e {clean mixed full } be the status of;. We have

S(Co)S(C1) ...S(Cp_1) ¢ cleart mixed; full* mixed; cleart,

sinceH is obstructing.

Lemma 11 One of the cases below arises:

(1) There are indices a, b, ¢, and d such that y,, Y., and y occur in this order on the
boundary cycle of H, and £and C; are non-clean and gand G; are non-full.

(2) There are indices a, b, and ¢ such that y,, and y occur in this order on the boundary
cycle of H, and G, Cy, and G are mixed.

In either case, 0 is among the selected indices.
Proof Observe first, thaCy is either clean or mixed, but never full (since there is a leaf
labeledn in Cp andk +1 < n). If

S(C1)...S(Cp-1) ¢ cleart mixed, full* mixed} cleart,

then there ara, b,cwith 1 <a < b < ¢ < p—1 andC, andC; are non-clean an@, is
non-full. SinceCy is non-full we are in case (1) witth = 0. So assume that

S(C1)...S(Cp_1) € cleart mixed; full* mixed; cleart.
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ThenCy is non-clean (and hence mixed) apd- 1 > 2 sinceH is non-obstructing other-
wise.

If case (1) does not arise with= 0 then there are nb, ¢, andd with1 <b<c<d <
p — 1 with C, andCq4 non-full andC; non-clean, i.e., ang. between two non-fulCy, and
Cq is clean. Thus, eithep — 1 = 2 or

S(C1)...S(Cp_1) € cleart mixed; full* U full* mixed; clear.

In the latter situatiorH is non-obstructing, and hence this case is excluded. Irottnedr
situationC; andC, must be mixed sincél is non-obstructing otherwise. Thus, (2) arises.
O

We next exhibit Kuratowski subgraphs for cases (1) and (2).

Assume first that there are indicagsb, ¢, andd such thaty,, i, Ye, andyy occur in this
order on the boundary cycle &f, C; andC. are non-clean an@, andCy are non-full. We
call this anobstructing cycle with four alternating attachmen@onsider the subgrapk
of G consisting of:

e the boundary cycle of,

e apath fromy, to a copy ofk + 1 in C,,
e apath fromy. to a copy ok + 1 in Cg,
e apath fromy, to a large leaf, in Cy,
e apath fromyy to a large leaky in Cy,
o thetreeTi({k + 1, zp, z4}).

Letr be a join ofk + 1, z,, andzy in T;; we may assume that # k + 1 (observe that
Z, # k+ 1 andzy # k+ 1). K is a subdivision oK3 3 with sides{ys, yq4, k + 1} and
{VYa, Y, '}, see Figure 8.26.

Assume next that there are indiagd, andc such thaty,, y,, andy; occur in this order
on the boundary cycle dfl andC,, Cy,, andC. are mixed. We call this aycle with three
mixed attachment<onsider the subgragh of G consisting of:

e the boundary cycle of,

o treesTs({Vi, wi, z}) wherei € {a, b, c}, w; is a leaf labeled + 1 in C;, andz is a
large leaf inC;,

o treeTi({k+ 1, z1, 2, Z3}).

Let y/ be the join ofy;, z;, andw;. Theny; is distinct fromz andw; but may be equal to
yi. Figure 8.27 illustrates the situation.

We can obtain &5 from K by contracting the paths connectiryg with y/ for i e
{a, b, ¢} and by contracting the edgesin{z,, z,, z.}). We can now appeal to the fact that
if a graphK can be contracted to a subdivisionkdf 3 or Ks then it contains a subdivision
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Zh Zq +1
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Yo Yd
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Figure 8.26 An obstructing cycle with four alternating attachmentsegivise to &3 3 with
sides{Ya, Yc. I } and{yp, yu, k+ 1}.

Figure 8.27 An obstructing cycle with three mixed attachments yield&saafter contraction of
the paths fromy; to y/ fori € {a, b, ¢} and contraction of the edges in tr&g{za, zp, Zc}).

of K33 or K5 before the contraction, see [NC88, Lemma 1.2] and the esesciWe will
exploit this fact in our implementation.

For completeness we also exhibit the Kuratowski subgrajestty. We distinguish
three cases.

If yi =y foralli e {a,b,c}andT.({k + 1, z, z,, zc}) contains a node of degree four
thenK is a subdivision oKs.
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Figure 8.28 An obstructing cycle with three mixed attachments yield&sa if y; = y; for
i €{a,b,clandTi({k + 1, za, zn, zc}) contains no node of degree four. In the figuke; 1 is
paired withz,.

If yi = y/ foralli € {a, b, c}andTi({k + 1, zs, z,, Zc}) contains no node of degree four
thenT;({k + 1, z4, Zy, Zc}) contains two nodes of degree three, sggndr,. The removal
of the path joining 1 andr, pairsk + 1 with somez;. We remove fronK the path fromy;
to the copy ok + 1 in C; and the part of the boundary cycle ldfjoining the other twoy’s
and obtain a subdivision d€3 3, see Figure 8.28, with sid¢y,, k+ 1, r2} and{ vy, Ve, 1}

If yi # y/ for somei € {a,b,c}, sayya # VY, letr be the join ofz,, z, z in
Ti({Za, 2, zc}). We obtain a subdivision df3 3 with sides{y,, k + 1,r} and{y], V., Y4}
from K by deleting the part of the boundary cycle ldf that connectsy, andy., and by
replacingTi({k + 1, za, zp, Zc}) by Tt ({za, 25, Z}), See Figure 8.29.

This completes the proof of Lemma 9.

We turn to a linear time implementation. The following funct assumes thas is a
biconnected non-planar map without self-loops and pdretiges. It computes the set of
edges of a Kuratowski subgraph@fin K.

(Kuratowski graphs in biconnected maps

static void Kuratowski(graph& G, list<edge>& K)

{ node v; edge e;
string current_case; // for debugging purposes
(compute st-numbering
int k = PLAN_EMBED_K(G,st_num,st_list);
if ( k == G.number_of_nodes() )

error_handler(1,"Kuratowski: G must be non-planar");

(compute bush form B for_B)
(obstructing articulation poinjt

(obstructing biconnected compongnt
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Figure8.29 An obstructing cycle with three mixed attachments yield&sa if ya # V.

We start by computing an st-numbering®f Next we call PLANEMBED_K to find k
such thatBy has a bush form buBy, ; has not. We compute a bush fofor B, and then
search for an obstruction iB. This will be the most difficult part of the implementation.
Having found an obstruction we extract a Kuratowski subgrap shown in the proof of
Lemma 9.

Compute st-Numbering: We compute an st-numbering and the noslaadt.

(compute st-numberinge

node_array<int> st_num(G) ;
list<node> st_list;
ST_NUMBERING(G,st_num,st_list);
node s = st_list.head();

node t = st_list.tail();

The Bush Form B for Bx: We construct a bush forr® for Bx. We declareB of type
GRAPHnode edge and let every node and edge Bfknow its original inG. We add a
nodetopB to B and connect it to every virtual node (by a uedge). In this Bdyecomes a
biconnected map.

We st-number the nodes & by first numbering the non-virtual nodes, then the virtual
nodes, and finally the nodepB. We store the st-numbering #tnumB the ordered list of
nodes instlistB. Finally, sBis the node inB that corresponds te andtB is a virtual node
in B that is connected teB by an edgeiB is a large leaf in the root component of every
articulation point and in the part & opposite toy, for any biconnected componeHtwith
lowest attachment nodg.
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Having constructed the st-numbering we call PLAWMBED to compute a planar em-
bedding ofB. We restore the st-numbers as they are destroyed by ther@artzedding
program, and we delete the auxiliary nddg B from B andstlistB.

(compute bush form B for By=

GRAPH<node,edge> B;
list<node> st_listB;

node_array<node> v_in_B(G,nil);

forall(v,st_list)

{ if ( st_num[v] > k ) break;
node vB = v_in_B[v] = B.new_node(v);
st_listB.append(vB);

}

node top_B = B.new_node();

forall_nodes(v,G)
{ if (st_num[v] > k) continue;
forall_adj_edges(e,v)
{ node w = G.target(e);
if ( st_num[w] < st_num[v] ) continue;
edge r = G.reversal(e);
node wB;
if ( st_num[w] > k )
{ wB = B.new_node(w);
st_listB.append(wB);
B.set_reversal (B.new_edge(wB,top_B),B.new_edge(top_B,wB));
}
else
wB = v_in_B[w];
edge el = B.new_edge(v_in_B[v],wB,e);
edge r1 = B.new_edge(wB,v_in_B[v],r);
B.set_reversal(el,rl);
}
}

node sB = v_in_B[s]; node tB;
forall_adj_edges(e,sB)
if ( B[B.target(e)] == t) tB = B.target(e);

B.set_reversal (B.new_edge(sB,top_B) ,B.new_edge(top_B,sB));
st_listB.append(top_B);

node_array<int> st_numB(B);

int stn = 1;

forall(v,st_listB) st_numB[v] = stn++;

PLAN_EMBED (B,st_numB,st_listB); // destroys st-numbers

stn = 1;
forall(v,st_listB) st_numB[v] = stn++;

B.del_node(top_B); st_listB.Pop(); // remove top_B

Obstructing Articulation Points. We search for an obstructing articulation point and, if
successful, extract a Kuratowski subgraph.
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(obstructing articulation pointe

array<node> z(3);
array<node> spec(3);

A successful search for an obstructing articulation poaiititstore the obstructing articula-
tion pointinv, and fori, 0 < i < 3, will store a large leaf in theth mixed component with
respecttaw in z[i] and a leaf labele# + 1 in spedi].

The search (successful or not) will also compute some auyilnformation for internal
use and for later use in the search for obstructing bicoedezdmponents.

We define an enum that we use to distinguish between leaflethlbe- 1 and large leafs,
and we define two functions so that node arrays can be usegapdyameters.

(auxiliary function$+=
enum { K_PLUS_1 = 0, OTHERS = 1};

ostream& operator<<(ostream& o, const node_array<node>&) { return o; }
istream& operator>>(istream& i, node_array<node>&) { return i; }

We give the declarations of the auxiliary informations arglain them below.

(obstructing articulation point-=

list<node> dfs_list;
node_array<edge> tree_edge(B,nil);
node_array<int> dfs_num(B,-1);

int dfs_count = 0;

DFS(B,sB,dfs_list,dfs_num,dfs_count,tree_edge) ;

edge_array<int> comp_num(B) ;
int num_comps = BICONNECTED_COMPONENTS (B, comp_num) ;

node_array<edge> up_tree_edge(G,nil);

array<node_array<node> > leaf(2);
leaf [K_PLUS_1] = leaf [0THERS] = node_array<node>(B,nil);

array<node_array<node> > leaf_in_upper_part(2);
leaf_in_upper_part[K_PLUS_1] =
leaf_in_upper_part [0THERS] = node_array<node>(B,nil);

node_array<int> num_mixed_non_root_comps(B,O);
node_array<node> spec_leaf_in_root_comp(B,nil);

array<node_array<node> > child(1,2); // want indices one and two
child[1] = child[2] = node_array<node>(B,nil);

The auxiliary information is as follows: 16f; be a depth-first search tree Bfrooted ats.

treeedgégv] is the tree edge into in Ts for v # s and isnil for v = s, dfsnunfv] is the
dfs-number ofv, anddfslist is the list of nodes oB in increasing order of dfs-number. All
gquantities just mentioned are computed by a call of the muyifunction DFS, see below.

numcompsis the number of biconnected components, eachpnurnie] is the number of
the biconnected component containefipr any edgee of B. Both values are computed by
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calling the biconnected components function. We cathpnunie] the component number
of e.

uptreeedgégu] is for any nodev of G with sthunjv] > k andv # t an edge from a higher
numbered node. It isil for all other nodes 0G. The up-tree edges define a trReooted
att on the nodes labeldd+ 1 and larger.

leaf[K PLUS1][v] is a leaf labeled + 1 in the subtree of rooted atv (nil if no such leaf
exists).

leaf[ OTHERJ v] is a large leaf in the subtree @f rooted atv (nil if no such leaf exists).

The next four pieces of information are only defined for aition points. Theupper
part with respect to an articulation poiris the union of the non-root components with
respect to the articulation point.

leaf inupperpartfK PLUS1][v] is a leaf labeled + 1 in the upper part of (nil if there is
no such leaf).

leaf inupperpart{f OTHERJ v] is a large leaf in the upper part of(nil if there is no such
leaf).

child[1][v] is a child of v in Ts that lies in a mixed non-root component with respect to
(nil if there is no such child).

child[2][v] is a child of v in Ty that lies in a second mixed non-root component with respect
to v (nil if there is no such child).

We next discuss how the auxiliary information is computelge juantities related to depth-
first search are computed by a variant of depth-first search.

(auxiliary function$+=
void DFS(const graph& G, node v,
list<node>& dfs_list, node_array<int>& dfs_num,
int& dfs_count, node_array<edge>& tree_edge)
{ dfs_list.append(v);
dfs_num[v] = dfs_count++;
edge e;
forall_adj_edges(e,v)
{ node w = G.target(e);
if ( dfs_num[w] == -1 )
{ tree_edgel[w] = e;
DFS(G,w,dfs_list,dfs_num,dfs_count,tree_edge);
}
}
}

The up-tree is easily computed. We simply select for eacle matoeled larger thak an
edge going to a node with higher st-number and then put trersalof the edge into the
tree.
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Figure8.30 The root component af consists of the nodes v, a, andb. Tree edges are drawn
in bold. The tree edgé, a) belongs to the same biconnected component as the tree edge in
but the tree edgéy, k + 1) does not. The tree edde, k + 1) belongs to a non-root component
with respect ta.

(obstructing articulation poinH-=

forall_nodes(v,G)
{ if (st_num[v] <= k ) continue;
edge e;
forall_adj_edges(e,v)
{ node w = G.target(e);
if ( st_num[w] > st_num[v] )
{ up_tree_edgelv] = G.reversal(e); break; }
}
}

All other auxiliary information is computed by scans ovgr We start with some simple
observations, see Figure 8.30. We have, for any nodlee following:

e The tree edge into belongs to the root component with respeci 1o

e Atree edge out of belongs to the root component with respect iff it belongs to
the same biconnected component as the tree edge iffti has the same component
number as the tree edge into

e Atree edge out of belongs to a non-root component with respeat tff its
component number is different from the component numbenefree edge into or
if v is equal to (the copy o8 in B.

e The non-root components with respecbtare in one-to-one correspondence to the
tree edges out af.

The node labelkeaf[K PLUS1] andleaf[OTHER$ are computed by a leaf to root scan
of Ts.
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(obstructing articulation poinH-=

forall_nodes(v,B)
{ if (st_numB[v] <= k) continue;
if ( st_num[B[v]] ==k + 1)
leaf [K_PLUS_1][v] = v;
else
leaf [0THERS] [v] = v;

}
forall_rev(v,dfs_list) // down the tree
{ if (v == sB) continue;

node pv = B.source(tree_edgelv]);
assign(leaf [K_PLUS_1] [pv],leaf [K_PLUS_1][v]);
assign(leaf [0THERS] [pv], 1leaf[0THERS] [v]);

where we used the following conditional assignment fumcéissignto propagate informa-
tion.

(auxiliary function$+=

void assign(node& x, const node& y) { if ( x == nil) x = y; }

We next compute for each articulation poirthe number of mixed non-root components
with respect ta andleaf_inLupperpart[][ v].

A nodev identifies a non-root component of its parewtif either pvis equal tosBand
sBhas more than one child or if the tree edges inemdpv belong to different biconnected
components. ActuallysBalways has at least two children, one is a copy afd the other
contains a copy ok + 1 in its subtree. Note th&t+ 1 # t since the planarity test cannot
fail when nodd is to be added.

The non-root component @ividentified byv is mixed if it contains a leaf labeldd+ 1
as well as a large leaf.

We are propagating information from the leaves to the rodtlence know the number
of mixed non-root components ofwhenv is reached. If a node has three mixed non-root
components we extract a Kuratowski subgraph.

(obstructing articulation point-=
forall_rev(v,dfs_list) // down the tree
{ if (num_mixed_non_root_comps[v] >= 3)
{ (v has three mixed non-root componenis

if ( v == sB) continue;
node pv = B.source(tree_edgelv]);
if ( pv == sB || comp_num[tree_edge[v]] != comp_num[tree_edge[pv]] )

{ if ( leaf[K_PLUS_1][v] && leaf[OTHERS][v] )
num_mixed_non_root_comps [pv]++;
assign(leaf_in_upper_part[K_PLUS_1][pv],leaf [K_PLUS_1][v]);
assign(leaf_in_upper_part [0THERS] [pv],leaf [0THERS] [v]);
}
}
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Assume thab has three mixed non-root components. We iterate over dtirem of v
and search for three children that define mixed non-root corapts. Whenever such a
child is found we copy its two leaves idi] andspegi] fori = 0, 1, and 2.

(v has three mixed non-root componests
current_case = "three mixed non-root components';
int i = 0;
forall_adj_edges(e,v)
{ node w = B.target(e);
if (w == sB || v != B.source(tree_edge[w]) ) continue;
if ( leaf[K_PLUS_1][w] && leaf [OTHERS] [w] )
{ z[i] = leaf[OTHERS] [w]; spec[i] = leaf[K_PLUS_1] [w];
i++;
if ( i == 3) break;
}
}

(obstructing articulation point: extract Kuratowski graph

The actual extraction of the Kuratowski subgraph will becdssed below.

If no articulation point has three mixed non-root composewe need to check whether
there is an articulation point with two mixed non-root compots and a mixed root com-
ponent. It is slightly tricky to determine whether root camnpnts are mixed. We observe
first that nodes and hence nodeis contained in any root component. Thus there is always
a large leaf in the root component. In fact, it is the nii8le

We want to compute for each nodea leaf labelek + 1 in its root component (if any).
Consider any patlp in Ts from v to a leaf labelek + 1. The leaf belongs to the root
component ofv iff the target of the first edge op belongs to the root component of
This is the case if the first edge g@f is the tree edge inte or is a tree edge out of
which belongs to the same biconnected component as thedgeeistov. We compute
spedeaf.inrootcompby considering the two kinds of paths separately.

For the second kind of path we propagate information dowtréee We pass information
about a leaf along a tree ed@e w) if this edge belongs to the root componenwof.e., if
it has the same component number as the tree edge.into

(obstructing articulation poinH-=

forall_rev(v,dfs_list) // down the tree
{ if (v == sB) continue;
node pv = B.source(tree_edgelv]);
if ( pv != sB && comp_num[tree_edge[v]] == comp_num[tree_edge[pv]] )
assign(spec_leaf_in_root_comp[pv],leaf [K_PLUS_1][v]);
}

For the first kind of path we compute for every nogdespedeaf.viatreeedggv], a leaf
labeledk + 1 in the root component af that is reachable through the tree edge infail

if there is no such leaf). A leaf labeldéd+ 1 in the root component is then either a leaf that
was already computed above or the leaf that can be reachduevigee edge into.
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spedeaf_viatreeedgeis computed from the root towards the leaveSofLet v be any
node and consider the time when we procesket ¢ be any child ofv. A leaf in the root
component ot that is reachable through the tree edge mi®either reachable through the
tree edge inta or through a sibling o€.

If v has a leaf labelel + 1 that is reachable through the tree edge intee simply pass
this leaf to all children ob.

So assume that has no leaf labeleld + 1 that is reachable through the tree edge into
v. We try to determine two childreqy andc; of v that have a leaf labelekl+ 1 in their
subtree. If there is none, then no childwotan reach a leaf labeldd+ 1 through one of its
siblings, if there is exactly one child, then all siblingsthis child can reach a leaf labeled
k 4+ 1 through it, and if there are two children, then all childcérv can reach a leaf labeled
k + 1 through a sibling.

When a nodev is encountered that has two mixed non-root components anckedm
root component we have found an obstructing articulatiointpand proceed to extract a
Kuratowski subgraph.

(obstructing articulation poinH-=
node_array<node> spec_leaf_via_tree_edge(B,nil);

forall(v,dfs_list) // up the tree
{ assign(spec_leaf_in_root_comp[v],spec_leaf_via_tree_edgelv]);

if ( num_mixed_non_root_comps[v] == 2 && spec_leaf_in_root_comp[v] )
{ (v has two mixed non-root and a mixed root compohént

if ( spec_leaf_via_tree_edge[v] != nil )
{ forall_adj_edges(e,v)
{ node ¢ = B.target(e);
if ( ¢ == sB || v != B.source(tree_edgelc]) ) continue;
spec_leaf_via_tree_edgel[c] = spec_leaf_via_tree_edgel[v];
}
}
else
{ forall_adj_edges(e,v)
{ node ¢ = B.target(e);
if ( ¢ == sB || v != B.source(tree_edgelc]) ) continue;
if ( leaf[K_PLUS_1][c] )
{ if ( child[1][v] == nil )
child[1][v] = c;
else
child[2] [v] = c;
}
}
if ( child[1][v] )
{ forall_adj_edges(e,v)
{ node ¢ = B.target(e);
if ( ¢ == sB || v != B.source(tree_edge[c]) ) continue;
if ( ¢ != child[11[v] )
spec_leaf_via_tree_edgel[c] = leaf [K_PLUS_1][child[1][v]];
else
if ( child[2][v] )
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spec_leaf_via_tree_edgelc] = leaf [K_PLUS_1][child[2][v]];

Assume thab has two mixed non-root and a mixed root component. A leafléabe+ 1

in the root component af is given byspedeaf.inrootcomgv] and a large leaf is given by
tB. For the other components we find the leaf labdded1 and the large leaf as in the case
of three mixed non-root components.

(v has two mixed non-root and a mixed root compoyent

current_case = "two mixed non-root and a mixed root component";
z[0] = tB;

spec[0] = spec_leaf_in_root_comp[v];

int i = 1;

forall_adj_edges(e,v)
{ node w = B.target(e);
if (w == sB || v != B.source(tree_edge[w]) ) continue;
if (v !'= sB && comp_num[e] == comp_num[tree_edgel[v]l] ) continue;
if ( leaf [K_PLUS_1] [w] && leaf [0THERS] [w] )
{ z[i] = leaf[OTHERS] [w]; spec[i] = leaf[K_PLUS_1] [w];
i++;
if ( 1 == 3) break;
}
}

(obstructing articulation point: extract Kuratowski graph

Obstructing Articulation Point: Extraction of Kuratowski Graph: The nodev is an
obstructing articulation point. For eveiy0 < i < 3, we have a large leaf in theth
componentirg[i] and a leaf labele#& + 1 in spegi].

We reroot the depth-first search treevaand then extract the Kuratowski subgraph as
described in the proof of Lemma 9.

(obstructing articulation point: extract Kuratowski grajza
// reroot the DFS-tree at v

dfs_list.clear();

dfs_num.init(B,-1);

tree_edge.init(B,nil);

int dfs_count = 0;

DFS(B,v,dfs_list,dfs_num,dfs_count,tree_edge);

list<edge> join_edges;

for (i = 0; 1 < 3; i++)

{ join(z[i],spec[i],v,tree_edge,B,join_edges);
translate_to_G(join_edges,B); K.conc(join_edges);

}
join(B[z[0]1],B[z[1]1],B[z[2]],up_tree_edge,G, join_edges) ;
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K.conc(join_edges);

check_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,
B,st_numB, sB,current_case);

return;

The functioncheckbeforereturn calls CHECKKURATOWSK(G, K) to check whetheK

is a Kuratowski subgraph. If not, it opens tBraphWinsand displays the edges K in
one of them and the bush for® in the other. We do not give details here. This visual
debugging aid proved very valuable during the developmkase of the algorithm.

The Join Function: Let T be a tree and led, b, andc be the three nodes to be joined in
T. For each node the tree edge into is stored inreeedggv].

We trace the paths to the root from all three nodes and coongdch node of, the
number of paths containing it. Letbe the highest node which is reachable from all three
nodes. The subtree joining the three nodes is the union gfaties from the three nodes to
r. This union is not necessarily a disjoint union. We want ttpatieach edge in the subtree
only once and therefore mark nodes as we trace the paths. Shede is marked, its tree
edge is added to the sktof edges comprising the subtree. The function returns

(auxiliary function$+=

node join(node a, node b, node c, const node_array<edge>& tree_edge,
graph& B, list<edge>& L)
{ L.clear();
node_array<int> num_desc(B,0);
array<node> A(3); A[0] = a; A[1] = b; A[2] = c;
int i;
for (i = 0; 1 < 3; i++)
{ node v = A[i]l;
num_desc[v]++;
while ( tree_edgel[v] != nil )
{ v = B.source(tree_edge[v]);
num_desc[v]++;
}
}
node r;
for (i = 0; i < 3; i++)
{ node v = A[i];
while (num_desc[v] < 3)
{ L.append(tree_edgel[v]);
num_descl[v] = 3;
v = B.source(tree_edgel[v]);
}
if (i ==0) r = v;
}
return r;

}
void translate_to_G(list<edge>& L, const GRAPH<node,edge>& B)
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{ list_item it;
forall_items(it,L) L[it] = B[L[it]];
}

The functiontranslatetakes a list. of edges oB and replaces each edge by its counterpart
in G.

Obstructing Biconnected Component: We come to obstructing biconnected components.
We describe the search for an obstructing biconnected coem@nd the extraction of a
Kuratowski subgraph once an obstructing component hasfoeed.

We exploit the fact thaB is a plane map in our search for obstructing biconnected com-
ponents. Consider any nodeand the cyclic listA(v) of edges out ob. If v is not an
articulation point then all edges iA(v) belong to the same biconnected component: If
is an articulation point ther\(v) decomposes into blocks, one for each biconnected com-
ponent containing. This follows from the fact that the boundary cycles of atldsinected
component are part of the boundary of the outer face in evask borm.

Blocks that consist of at least two edges indicate the baynchecle of a biconnected
component. We find such blocks as follows. We iterate oveeddjesf out of v. If the
cyclic predecessor df in A(v) belongs to a different biconnected component and the cyclic
successor belongs to the same biconnected componentf thelongs to the boundary cy-
cle of a non-trivial biconnected component, i.e., a bicatee component which is not just
a single uedge. We maintain an edge atragtedcomponento record which biconnected
components have already been treated.

If the component having in its boundary cycle has not been treated yet, we determine
its boundary cycle icycleedgesand then determine whether one of the cases (1) or (2) of
Lemma 11 applies.

In our search for biconnected components we iterate ovemales ofTs from the root
to the leaf. This has the advantage that we hit every bicdedezomponent at its lowest
node.

Let H be a biconnected component with attachment cyge\u, . .., k], whereyp is
the lowest numbered node in the biconnected component. \a& toeknow whether the
component ofB opposite toH at yg is mixed, i.e., contains a leaf label&d+ 1. We
compute such a leaf ispedeaf.in.oppositepart. For alli different from zero, the part of
B opposite toH aty; is simply the upper part oB with respect tay;. We have collected
information about upper parts already.

If the search for an obstructing biconnected componentssicecessful, we give debug-
ging information. After all, there must be either an obsting articulation point or an
obstructing biconnected component.

(obstructing biconnected compongat
array<bool> treated_component (num_comps) ;
edge f;
forall(v,dfs_list) // upwards
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Figure8.31 Scanning the boundary of a biconnected compomhtniVe scan the boundary in
clockwise direction. At each node, the reversal of a bounddge is turned clockwise (i.e.,
throughH) until the next boundary edge is reached. Two stoppingr@itgply to the turning
process: we stop if the cyclic adjacency successor doesstmtdptoH or if all edges incident to
the boundary node have been considered.

The edgee™' is a boundary edge intw. We turn its reversas clockwise until the next boundary
edge is reached. At nodethe first stopping criterion applies and at a node which haacident
edge outsiddd the second stopping criterion applies.

{ forall_adj_edges(f,v)

}

{

}

edge el = B.cyclic_adj_succ(f);
edge e_pred = B.cyclic_adj_pred(f);
if ( comp_num[el] !'= comp_num[f] ||

comp_num[f] == comp_num[e_pred] ) continue;
if ( treated_component[comp_num[f]] ) continue;
list<edge> cycle_edges;
treated_component [comp_num[f]] = true;
(determine boundary cycle of component with lowest nafey)
node spec_leaf_in_opposite_part = nil;
(compute leaf labeled k+1 in part opposite t®y
{(obstructing cycle with four alternating attachments
if ( spec_leaf_in_opposite_part )
{ (obstructing cycle with three mixed attachménis

(unreachable point: give debugging informatjon

The boundary cycle of a biconnected comporte¢ns easily traced. We start with an edge
f that emanates from, the lowest node in the component, and that lies on the baynda
cycle of the component. The unbounded face is to the right, afee Figure 8.31. We will
trace the boundary cycle in clockwise direction, i.e., kegphe unbounded face to our left,
and store it ircycleedges

Assume that is an edge such that its reversal belongs to the boundarg.dyitially, e
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is equal tof. We show how to find the successor edge'8f in the boundary cycle. Let
e, be the cyclic adjacency successoreole advance; until the successor @ belongs

to a different biconnected component or the successey Bfequal toe. The former case
happens for nodes that are attachment nodes ldf and the latter case happens for nodes
that lie on the boundary cycle dfi but are not attachment nodes df. Edgee; is the
successor of'®” on the cycle. We proceed in this way until the cycle is cormghjetraced.

(determine boundary cycle of component with lowest nalew)=

edge e0 = £;
node y0 = v;
edge e = f; // el was set to B.cyclic_adj_succ(f) above

do { while ( comp_num[B.cyclic_adj_succ(el)] == comp_num[e] &&
B.cyclic_adj_succ(el) != e )
{ el = B.cyclic_adj_succ(el); }
cycle_edges.append(el) ;
e = B.reversal(el);
el = B.cyclic_adj_succ(e);
} while (e != e0 );

We next show how to compute a leaf labeled 1 in the part ofB opposite toH at yp in
constant time. Constant time is needed singcean be the lowest numbered node of many
biconnected components.

The part of B opposite toH at yg consists of the root component gf and all non-root
components with respect g that do not contaitd. We have computed above two children
of yo (if they exist) that define mixed non-root components. A ledkledk + 1 can be
found in either the root component or in one of the mixed c¢hkitdthat does not contaid.

A non-root component does not containif the tree edge into the child does not belong to
H.

(compute leaf labeled k+1 in part opposite t®y=
spec_leaf_in_opposite_part = spec_leaf_in_root_comp[v];
for (int i = 1; i <= 2; i++)

{ node ¢ = child[i] [v];
if ( spec_leaf_in_opposite_part == nil
&% c && comp_num[tree_edgelc]l] != comp_num[eO] )
spec_leaf_in_opposite_part = leaf[K_PLUS_1] [c];

Obstructing Cyclewith Four Alternating Attachments: We search for a cycle with four
alternating attachments. By Lemma 11 there are two ways ausitle may occur: The
component opposite tg contributes either a large leaf or a leaf labeled1. We therefore
perform two searches. In the first search weysaypeto OTHERS and leCy contribute
a large leaf and in the second search weygdypeto K_PLUS_1 and letCy contribute a
leaf labeledk + 1. The second search is only performed whpadeaf in oppositepart is
defined.
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For an attachmeny; different fromyg the part opposite té1 aty; is equal to the upper
part of B with respect toy;.

We store the four attachments yi0] to y[3] and we store the selected leaf in théh
componentirg|i].

(obstructing cycle with four alternating attachmeyts
list<int> kinds;
kinds.append (OTHERS) ; kinds.append(K_PLUS_1);
int yO_type;
forall(yO_type, kinds)
{ array<node> y(4);
y[0] = yO; y[1] = y[2] = y[3] = nil;
array<node> z(4);
if (yO_type == OTHERS)

{ z[0] = tB;
current_case = '"cycle with 4 attachments; y_O connects to t";

}

else

{ z[0] = spec_leaf_in_opposite_part;
current_case = '"cycle with 4 attachments; y_O connects to k + 1";
if ( !spec_leaf_in_opposite_part ) break;

}

list_item it0 = cycle_edges.first();
list_item it = cycle_edges.cyclic_succ(it0);
int i = 1;
while (it !'= itO0)
{ node v = B.source(cycle_edges[it]);
int kind = (i == 2 ? yO_type : 1 - yO_type);
if ( leaf_in_upper_part[kind] [v] )

{ ylil = v;
z[i] = leaf_in_upper_part[kind] [v];
i++;

}

if (i ==4)
{ (build the Kuratowski graph
return;

}

it = cycle_edges.cyclic_succ(it);

Assume that we have found an obstructing cycle with fouradteng attachments. We have
the four attachments ig[0] to y[3] and the selected leaf in thheh componentirgfi]. Also
yQtypetells us the type of the componeds.

In the upper tree we need to take the subtree spanned by tHanyeoleaves and node
k+1.
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(build the Kuratowski grapf=
translate_to_G(cycle_edges,B); K.conc(cycle_edges);
list<edge> join_edges;
int i;
for (i = 0; 1 < 4; i++)

{ join(y[i],z[i],z[i],tree_edge,B,join_edges);
translate_to_G(join_edges,B); K.conc(join_edges);

}

// subtree of T_t spanned by k+1 and two large leaves.
if (yO_type == OTHERS) i = 0; else i = 3;
join(B[z[i]],B[z[1]1]1,B[z[2]],up_tree_edge,G,join_edges);
K.conc(join_edges);

check_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,
B,st_numB, sB,current_case);

Obstructing Biconnected Component with Three Mixed Opposing Parts. For case (2)
we need that the component opposite/gas mixed and that there ang, Yy, such thaiC,
andC;, are mixed.

(obstructing cycle with three mixed attachmests

array<node> y(3);
array<node> spec_leaf_opposing(3);
array<node> other_leaf_opposing(3);
y[0]l = yO;
spec_leaf_opposing[0] = spec_leaf_in_opposite_part;
other_leaf_opposing[0] = tB;
int i = 1;
list_item it0 = cycle_edges.first();
list_item it = cycle_edges.cyclic_succ(itO0);
while (it != itO0)
{ node v = B.source(cycle_edges[it]);
if ( leaf_in_upper_part[0THERS] [v] && leaf_in_upper_part[K_PLUS_1][v])
{ y[il = v;
spec_leaf_opposing[i] = leaf_in_upper_part[K_PLUS_1] [v];
other_leaf_opposing[i] = leaf_in_upper_part [0THERS] [v];
i++;
}
if (1i==3)
{ (obstructing cycle with three mixed attachments: extracakawsk)
return;

}

it = cycle_edges.cyclic_succ(it);

It remains to extract the Kuratowski subgraph. We proceedessribed in the proof of
Lemma 9. We collect all edges shown in Figure 8.2KinK is not a Kuratowski graph
yet, but is guaranteed to contain one.
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(obstructing cycle with three mixed attachments: extracekawsk)=
current_case = "obstructing cycle with three mixed attachments";
translate_to_G(cycle_edges,B); K.conc(cycle_edges);
list<edge> join_edges;
for(int j = 0; j <= 2; j++)

{ join(spec_leaf_opposing[j], other_leaf_opposingl[jl, y[j],
tree_edge,B, join_edges) ;
translate_to_G(join_edges,B); K.conc(join_edges);

}

node r = join(B[other_leaf opposing[1]], Bl[other_leaf_opposing[2]],
Blspec_leaf_opposing[0]], up_tree_edge,G, join_edges) ;

K.conc(join_edges);
join(r,r,t,up_tree_edge,G,join_edges);
K.conc(join_edges);

{ (thinoutK) %}

check_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,
B,st_numB, sB,current_case);

Thinning Out: K is now an appropriate set of edgesGn It might still be too big. We
want to thin it out so that only &3 3 or a Ks remains. This is easy to do. We construct
an auxiliary graptAG, which has a node for each node®fthat has degree three or more
in K and which has an edge for each pathKinconnecting two such nodes and having
only intermediate nodes of degree two. We associate withyedge ofAG the path inG
represented by it.

AGis a small graph; in fact, it has at most twelve nodes. We halbuadratic version of
the Kuratowski algorithm to find a Kuratowski subgraphA@ and then translate is back to
G.

{thin out Ky=
node v; edge e;
edge_array<bool> in_K(G,false);
node_array<int> deg_in_K(G,0);
forall(e,K)
{ in_K[e] = true;
deg_in_K[G.source(e)]++; deg_in_K[G.target(e)]++;
}
GRAPH<node,list<edge> > AG;
node_array<node> link(G,nil);
forall_nodes(v,G)
if ( deg_in_K[v] > 2 ) link[v] = AG.new_node(v);
forall_nodes(v,G)
{ if ( 'link[v] ) continue;
edge e;
forall_inout_edges(e,v)
{ if ( in_K[e] )
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{ // trace path starting with e
list<edge> path;
edge f = e; node w = v;
while (true)
{ in_K[f] = false; path.append(f);
w = G.opposite(w,f);
if ( link[w] ) break;
// observe that w has degree two and hence ...
forall_inout_edges(f,w)
if ( in_K[f] ) break;
}
edge e_new = AG.new_edge(link[v],link[w]);
AG[e_new] .conc(path); // 0(1) assignment
}
}
}

list<edge> el;
KURATOWSKI_SIMPLE(AG,el);

K.clear();
forall(e,el) K.conc(AG[el);

There is a small optimization in the program above which watw@mention. Instead of

edge enew = AG.new_edge(link[v],link[w]);
AG[emnew] .conc(path); // 0(1) assignment

we could have written more elegantly
AG.new_edge(link[v],link[w],path);

The second version calls the copy constructor to constraopg of pathas the edge infor-
mation of the new edge &G, the first version concatenatpathto the edge information
of the new edge (which is initialized to the default valueisfd, i.e., the empty list, by the
new edge operation). Concatenation is a constant time operaConcatenation empties
path and this is all right. We have now completed the implemeoiatf the linear time
Kuratowski graph finder for biconnected graphs.

Arbitrary Graphs. We extend the algorithm to arbitrary grap@s We first call the em-
bedding algorithm to find out i& is planar. If it is, we are done.

So assume thds is non-planar. Then one of the biconnected componen® isfnon-
planar. The idea is to search for a non-planar biconnectegonent ofG and to call the
algorithm of the preceding section for the biconnected comept.

We give more details. A caBICONNECTEDCOMPONENTS5, compnum) returns
the numbemnumc of biconnected components & and computes for each edge Gfthe
index of the biconnected component containgng

We iterate over all edges @ and construct for everg, 0 < ¢ < numc, the setE[c] of
edges in the component and the ¥ét] of nodes of the component. We determine the set
V[c] as the set of endpoints of edgeskiic] and hence this set may contain duplicates.
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When the edge and node sets of all biconnected componendgtmenined, we iterate
over all components. For each0O < ¢ < numc, we construct a copy of the component
in H. The nodes and edges bBif know their counterparts i®G. SinceV[c] may contain
duplicates, we maintain a node ariak, in which we store for each nodein G, whether
a copy ofv has already been constructedHn We resetink when the construction dfl is
completed. In this way the extraction of a biconnected camepbhas cost proportional to
the size of the component.

When the extraction of a component is completed, we test filBmarity. We break from
the loop once a non-planar biconnected component is found.

If G is biconnected we take a short cut and méka copy ofG.

The identification of Kuratowski graphs is simplifiedhf is a map without self-loops
and parallel edges. We therefore remove self-loops (or dgutthem intoH in the first
place) and parallel edges, and we tittninto a map by adding edges. Every added edge
is made to point to the same edgeGnas its reversal. We then cd{luratowskito find a
Kuratowski subgraptK of H. We turnK into a Kuratowski subgraph @& by replacing
every edge by its counterpart @.

(Kuratowski graphs in arbitrary graphss

bool BL_PLANAR(graph& G, list<edge>& K, bool embed)
{
if (BL_PLANAR(G, embed)) return true;

edge_array<int> comp_num(G) ;
int num_c = BICONNECTED_COMPONENTS (G, comp_num) ;
GRAPH<node,edge> H;
edge e;
if ( num_c == 1)
{ CopyGraph(H,G) ;
Delete_Loops(H);
}
else
{ node_array<node> 1ink(G,nil);

array<list<edge> > E(num_c);
array<list<node> > V(num_c);

forall_edges(e,G)

{ node v = source(e); node w = target(e);
if (v == w) continue;
int ¢ = comp_num[e]l; E[c].append(e);
Vlc].append(v); V[c].append(w);

}

int c; node v;

for(c = 0; ¢ < num_c; c++)

{ H.clear();
forall(v,V[c]) if ( link[v] == nil ) link[v] = H.new_node(v);
forall(e,E[c])
{ node v = source(e); node w = target(e);

H.new_edge(link[v],link[w],e);

¥
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forall(v,V[c]) link[v] = nil;

if (!'BL_PLANAR(H,false)) break;
}
}

K.clear();
// H is a biconnected non-planar graph; we turn it into map
Make_Simple(H) ;

list<edge> R;
H.make_map (R) ;

forall(e,R) Hl[el = H[H.reverse(e)];
// auxiliary edges inherit original edge from their reversal
Kuratowski (H,K) ;

list_item it;
forall_items(it,K) K[it] = H[K[it]];

return false;

8.7.4 Running Times
Table 8.1 shows the running times of the functions discusséus section. We used five
kinds of graphs:

e Random planar maps withnodes anan = 2n uedges (P).

e Random planar maps withnodes anan = 2n uedges plus &3 3 on six randomly
chosen nodes (P K3 3).

e Random planar maps withnodes anan = 2n uedges plus &5 on five randomly
chosen nodes (P Ks).

e Maximal planar maps with nodes (MP).

e Maximal planar maps on nodes plus one additional edge between two random nodes
that are not connected @& (MP + e).

We constructed the graphs using the generators discusSegtiion 8.9 and then permuted
the adjacency lists, so as to hide the graph structure.
We ran the following algorithms:

e BLPLANARG), the Booth—Lueker planarity test (T) that gives a yes-navansbut
does not justify its answer.

e BLPLANARG, K, true), the Booth—Lueker planarity test that justifies its answérs
+J). If G is planar, it turn<s into a planar map, and @& is non-planar, it exhibits a
Kuratowski subgraph ob.
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Graph Gen BLPLANAR Check HTPLANAR

T T+J T T+J

P 076 1.59 1.82 0.23 26 4.18

172 3.27 3.71 0.47 541  8.87

3.47 6.67 7.43 0.95 11.38 19.22

P+Kzsz 0.97 11 5.66 0.17 2.54 -

1.74 24 12.65 0.34 5.16 -

356 547 20.01 0.69 11.02 -

P +Ks 1 0.98 5.72 0.16 2.61 -

1.75 181 1291 0.34 5.35 -

3.58 3.26 22.06 0.67 10.86 -

MP 087 228 241 0.33 3.88 6.24

15 459 4.84 0.66 7.81 12.98

3.05 9.23 9.66 134 16.06 26.84

MP+e 087 1.26 5.47 0.23 1.05 -

149 219 9.61 0.49 21 -

3.06 587 2381 0.96 4.28 -

Table 8.1 The running times of functions related to planarity: Theucoh labeled Gen contains
the time needed to generate the input graph. All other cofuane as described in the text. We
usedn = 2 - 5000 fori = 0, 1, and 2. This table was generated with the program plynéme
in the demo directory.

e The check whether the algorithm in the previous item workadectly, i.e., the check
GenugG) == 0, if G is planar, andCHECKKURATOWSK(G, K), if G is
non-planar.

e HT_PLANARG), the Hopcroft—Tarjan planarity test (T) that gives a yesnswer,
but does not justify its answer.

e HT.PLANARG, K, true), the Hopcroft—Tarjan planarity test that justifies its aasw
(T + J). This algorithm was only run when the previous itemlaexd G planar. The
extraction of the Kuratowski subgraph would have taken siasince there is no
efficient Kuratowski finder implemented for the HopcroftH&a planarity test.
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Exercises for 8.7
1 Show that the number of distinct permutations in which thrtual leaves ofBx can
appear on the horizon is

€. P,

whereC is the number of biconnected component8pfvith three or more attachments
and P = [] p,! where the product is over all articulation points Bf and p, is the
number of non-root components Bf with respect ta.

2 Improve the running time of the simple search for Kuratdwskgraphs t®(n?). Make
sure that your algorithm works in the presence of parallgesdnd self-loops.

3 Let G be a graph, lee = (a, b) be an edge 06, and letG’ be obtained fronG by
contraction ofe. Show that ifG’ contains a Kuratowski subgraph théndoes.

4 We have shown in Lemma 9 that the existence of an obstruicti@y guarantees the
existence of the Kuratowski subgraph®f Show that it guarantees thBf 1 has no
bush form.

8.8 Manipulating Maps and Constructing Triangulated M aps

In the chapter on graphs we saw functions that allow us to aidnmodes and edges to a
graphG. In particular,

edge G.new_edge(node v, node w)

adds a new edge, w) to G and returns it. The edge is appendedtiedgesv) and to
eitherin.edgesw) (if G is directed) ooutedgesw) (if G is undirected).

In this chapter the cyclic ordering of the adjacency lis&ypla crucial role and hence
we need much finer control over the positions where edgesiseeted into adjacency lists.
The following function gives full control:

edge G.new_edge(edge el, edge e2,
int d1 = LEDA::after, int d2 = LEDA::after)

adds a new edge = (v, w) to G, wherev = sourcéel) andw = target(e2), and returns
the new edge. The new edge is inserted before or afterestigéo outedgesv) as directed
by dl If Gisdirected, it is also inserted before or after edgeto inedgesw) as directed
by d2. If G is undirected, it is also inserted before or after edgénto outedgesw) as
directed byd2 The constantsEDA::after andLEDA::beforeare predefined constants.

If control about the position of insertion is needed at ormg @ndpoint of the edge (or if
the new edge is the first edge incident to a node) the functions

LEDA: :after)
LEDA: :after)

edge G.new_edge(edge e, node w, int dir
edge G.new_edge(node v, edge e, int dir

should be used. The former function adds a new edge (sourc€e), w) to G. X is
inserted before or after edgento outedgessourcee)) as directed bylir and appended to
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inedgesw) (if G is directed) oroutedgesw) (if G is undirected). The operation returns
the new edg«. If G is undirected we must hasourcee) £ w. The latter function is
symmetric to the former.

Related to themewedgefunction is themoveedgefunction. The call

G.move_edge(edge e, node v, node w)

requires thae is an edge ofs. It makesv the source ot andw the target ofe. For all
versions of themewedgefunction mentioned above, there is a corresponding versidime
moveedgefunction, which takes the edge to be moved as an additiogahaent. The effect
of moveedgde, v, w) is similar, but distinct to the combined effectadledgee) followed
by newedgdv, w). The effect is similar ag ceases to make the connection between its
old source and target and as there is now an edge fréonw. The effect is distinct, as
moveedgemoves an already existing edge (which may for example has@cged entries
in edge arrays) andewedgecreates a new edge.

For maps it is frequently convenient to add an edge and iexsaVin a single operation.

edge M.new map_edge(edge el, edge e2)

inserts a new edge= (sourcegel), sourcée?)) afterelinto the adjacency list fourcgel)
and the reversal te aftere2into the adjacency list cdourcée?).
The following function splits a uedge in a magp.

edge M.split map_edge(edge e)

splits edgee = (v, w) and its reversal = (w, v) into edgesv, u), (U, w), (w, u), and
(u, v), whereu is a new node. It returns the edge w).

We give an application of the functions above. We show hotwigmgulate a map Let
M be a map. The task is to add edgedtsuch that:

e the genusis notincreased, in particular, a plane map stage mand
e every face cycle of the resulting map consists of at mosethoges.

Both items are easy to achieve. As longhgs not connected we take any two nodes
andw in distinct components and join them by a uedge. This ine@gtd®e number of edges
by two, decreases the number of components by one, and dibezases the number of
isolated nodes by two and increases the number of face chgleme, or decreases the
number of isolated nodes by one and leaves the number of yatesainchanged, or leaves
the number of isolated nodes unchanged and decreases themnafriace cycles by one.
In either case the genus is unchanged.

So assume thd¥l is connected. As long as there is a face cycle consistingwofdo
more edges, we consider any such face cglend two node® andw on C that are not
neighbors orC, say

C=][...,ev,6,...,63w,6€1,...].

We splitC by adding edgeév, w) and(w, v). The edggv, w) is added aftee, to the list
of out-edges ob and the edgéw, v) is added aftee; to the list of out-edges ab; this is
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the reverse of the operation illustrated in Figure 8.11. iAddhe two edges increases the
number of face cycles by one; thus the genus is not changed.

We use the triangulation routine as a subroutine in ourgditdine drawing routine for
planar graphs. The straight line drawing routine assumasith input is a triangulated
graph without parallel edges. We therefore have to makethatahe triangulation routine
does not introduce parallel edges. Unfortunately, whea &cles are split independently,
parallel edges may be introduced. We want to avoid this.

e Ifthe genus oM is zero then no new edge is parallel to another edge of théngrap
(new or old).

Christian Uhrig and Torben Hagerup suggested a trianguatigorithm that achieves
all three items above. Their algorithm runs in linear ti@é + m). The algorithm steps
through the nodes d¥1. For each node, it triangulates all faces incident an For each
nodev, this consists of the following:

First, the neighbors of are marked. During the processingwgfa node will be marked
exactly if it is a neighbor of.

Then the faces incident om are processed in any order. A face with boundary=
X1, X2, ..., Xn] IS triangulated as follows: i < 3, nothing is done. Otherwise,

(1) if x5 is not marked, a uedg,, X3} is added x3 is marked, and the same strategy is
applied to the face with boundaryq, xs, Xa, ..., Xn].

(2) if x3 is marked, a uedggxo, X4} is added, and the same strategy is applied to the face
with boundary ki, X2, Xa, Xs, ..., Xn].

When all faces incident to are triangulated, all neighbors ofare unmarked.

The algorithm just described clearly triangulates all fageles. We need to show that it
does not introduce parallel edges.

During the processing of a nodethe marks on neighbors ofclearly prevent the addi-
tion of a parallel edge with endpoint After the processing af, such an edge is not added
because all faces incident erhave been triangulated. This takes care of the edges added
in (1).

Whenever a uedggxy, X4} is added in step (2), the presence of a uedgexs} implies
thatx, andx4 are incident on exactly one common face, hamely the faceotiyrbeing
processed, see Figure 8.32. Hence another £dge,} will never be added.

The linear running time can be seen as follows. The time togg®a node is propor-
tional to the degree of plus the number of edges added during the processing dhe
total running time is therefore proportional @n + m’) wherem'’ is the number of edges
in the final graph. The number of uedges in the final graph iscestt i@n by Lemma 3.

The following program implements the algorithm. We first a&didjes to make the graph
connected, then make sure that all reversal informatioagpeoperly set, and finally add
edges to triangulate the graph.
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Figure8.32 xi, X2, X3, andxs are consecutive nodes on a face and the u¢rgexs} exists.
Then{x, X4} cannot exist.

(triangulate.¢=

list<edge> graph::triangulate_map()
{ node v;

edge x, e, el, e2, e3;

list<edge> L;

(add edges to make the graph connegted

if ( 'make_map() )
error_handler (1, "TRIANGULATE_PLANAR_MAP: graph is not a map.");

node_array<int> marked(*this,0);

forall_nodes(v,*this)
{ list<edge> E1 = adj_edges(v);

// mark all neighbors of v
forall(el,El) marked[target(el)] = 1;

(process faces incidentto v

//unmark all neighbors of v
node w;
forall_adj_nodes(w,v) marked[w] = O;

} // end of stepping through nodes

return L;

}

The two sub-steps are both fairly easy to implement. For s $ub-step we call
COMPONENTS to determine the number of connected compoeitso label each node
with its component number. If there is more than one comppneea create an array
still_.disconnectedvith index set [Q.c — 1], wherec is the number of connected com-
ponents. For each component except the one which corgatines first node of5, we state
that the component still needs to be connected with the casiccontaining. We then
iterate over all nodes. Whenever we encounter a nodéiose component still needs to
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be connected witls, we add the uedggv, s}, and record that the componentwfs now
connected with the component®f

(add edges to make the graph connegted

node_array<int> comp (*this);

int ¢ = COMPONENTS (*this, comp);

if (c>1)

{ node s = first_node();
array<bool> still_disconnected(c);
for (int i = 0; i < c; i++)

still_disconnected[i] = ( i == comp[s] ? false : true);

forall_nodes (v, (*this))
{ if ( still_disconnected[comp[v]] )

{ set_reversal(el = new_edge(s,v), e2 = new_edge(v,s));
L.append(el); L.append(e2);
still_disconnected[comp[v]] = false;

}

}
}

The faces incident to a nodeare processed as described above. We store three consec-
utive edges of the face i, e2 ande3 respectively. If either of the three edges ends,in
the face cycle has length at most three and we are done.

So assume otherwise and letbe the endpoint oé2

If w is not marked, we marly and add the uedde, w} inside the current face, i.e., we
add the edgéw, v) aftere3to A(w) and we add the edge, w) afterelto A(v). Also
(v, w) becomes the newl, e2become£3 ande3becomes the face cycle successoedf

If w is marked, we add the ueddsourcé€e?), targete3d} inside the current face, i.e.,
after edgee2at sourcée?) and after the face cycle successoe8fttargete3).

(process faces incident to=

forall(e,El)
{
el e;
e2 face_cycle_succ(el);
e3 = face_cycle_succ(e2);
if (target(el) == v || target(e2) == v || target(e3) == v) continue;
while (target(e3) != v)
{ node w = target(e2);
if ( 'marked([w] )
{ // we mark w and add the uedge {v,w}
marked[w] = 1;
L.append(x = new_edge(e3,v));
L.append(el = new_edge(el,w));
set_reversal(x,el);
e2 e3;
e3 = face_cycle_succ(e2);
}

else
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{ //add the uedge {source(e2),target(e3)}

e3 = face_cycle_succ(e3);

L.append(x = new_edge(e3,source(e2)));
L.append(e2 = new_edge(e2,source(e3)));
set_reversal(x,e2);

}
}//end of while
} //end of stepping through incident faces

8.9 Generating Plane Maps and Graphs

We discuss the generation of random plane maps and randamgraphs. We describe two
methods to generate plane maps, a combinatorial methodgewhaetric method. We warn
the reader that neither method generates plane maps aggtodhe uniform distribution.

Combinatorial Constructions: The function
void maximal _planar map(graph& G, int n);

generates a plane map witmodes and 8— 6 uedges, no self-loops and no parallel edges.
The number of edges is the maximal possible, see Lemma 3ifand, 3, every face cycle
is a triangle.

We give the implementation. H = 0 we return the empty graph,iif= 1 we return the
graph consisting of a single isolated node, ana # 2 we return the graph consisting of
two nodes and a single uedge. Sorlet 2 and assume, that we have already constructed a
maximal planar map with — 1 nodes. We select one of the existing edgesesayrandom
and put a new node into the face to the left of.

Let [e1, &, e3] be the face cycle containing (when the third node is inserted the face
cycle has length 2 instead of 3). For eaahe add the edgésourcee ), v) to A(sourcee))
afterg and we append the edge, sourcee)) to A(v).

(generateplanarmap.¢=

void maximal_planar_map(graph& G, int n)

{
G.clear();

if (n <= 0 ) return;

node a = G.new_node();

n--;

if (n == 0) return;

node b = G.new_node();

n--;

edgex E = new edge[n == 07 2 : 6*n]l;

E[0] = G.new_edge(a,b); E[1] = G.new_edge(b,a);
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G.set_reversal(E[0] ,E[1]);

int m = 2;

while (n--)

{ edge e = E[rand_int(0,m-1)];

node v = G.new_node();

while (target(e) != v)

{ edge x = G.new_edge(v,source(e));
edge y = G.new_edge(e,v,LEDA: :after);
E[m++] = x; Elm++] = y;
G.set_reversal(x,y);

e = G.face_cycle_succ(e);
}
}

delete[] E;
}

The function
void random planar map(graph& G, int n, int m);

generates a plane map witmodes and mi@m, 3n — 6) uedges. It first generates a maximal
plane map and then deletes a random set of uedges until tireddasimber of edges is
obtained.

The functions

void maximal planar _graph(graph& G, int n);
void random planar _graph( graph& G, int n, int m);

first construct a plane map with the same parameters and gemdaly one of the edges
comprising each uedge.

Geometric Constructions: Geometry is a rich source of planar graphs. A simple way
to generate a planar map is to chooseandom points in the plane and to triangulate the
resulting point set. We will see how to triangulate a pointisesection 10.3. Alternatives
are to compute the Delaunay triangulation of a set of randomitg, see Section 10.4, or
to choose a random set of segments and to compute the arrangefithe segments, see
Section 10.7.

The functions

void triangulation map(graph& G, int n);

void triangulation map(graph& G, node_array<double>& xcoord,
node_array<double>& ycoord, int n);

void triangulationmap(graph& G, list<node>& outer face,
node_array<double>& xcoord,
node_array<double>& ycoord,
int n);
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choosen random points in the unit square and &b some triangulationG will be a plane
map. The first function only returns the triangulation, teeand function also returns the
point coordinates, and the third function also returnsiief vertices lying on the convex
hull (in clockwise order).

The function

void random planar map(graph& G, node_array<double>& xcoord,
node_array<double>& ycoord, int n, int m);

first constructs a triangulated planar map and then delétlegtan edges.
All functions above are also available witmapreplaced bygraphin the function name.
The modified functions keep only one edge of each uedge.

8.10 FacesasObjects

The face cycles of maps played an important role in the piegexkctions. It is therefore
only natural to introduce them as a type of their own. For Buwtness, we use the type
nameface

8.10.1 Concepts
The operation

M.compute faces()

computes the set of face cycles of the nMpthe function aborts iM is not a map. After
this operation and till the next modification M by a newnode newedge delnode or
deledgeoperation, the face cycles & are available in much the same way as the edges
and nodes oM are available.

For example,

int M.number_of _faces();
list<face> M.all_faces();

return the number of faces and the list of all facesvibfrespectively. Iff is a face, the
predecessor and successor face on the list of all faces is returned byl.succfacg f)
andM.predfacqg f), respectively, and the first and last face in the list of alefais returned
by M.firstfacq ) andM.lastface( ), respectively. The four functions just mentioned return
nil if the requested object does not exist. The iteration statem

forall_faces(f,M)

iterates over all face cycles of.
The function

face M.face of (edge e)

returns the face cycle d¥l which contains the edgeand the functions
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list<edge> M.adj_edges(face f)
edge M.first face_edge(face f)
int M.size(face f)

return the list of all edges in the face cydiethe first edge in this cycle, and the number of
edges in the face cycle, respectively. The iteration statém

forall face_edges(e,f)

iterates over all edgessin the face cyclef .
For a nodev, the function

list<face> M.adj_faces(node v)

returns the list of faces incident to More precisely, ifA(v) = [ep, €1, ..., &_1] is the list
of edges out of then the list faceof (), . . ., faceof (g_1)] is returned.
Similarly, for a facef, the function

list<node> M.adj nodes(face f)

returns the list of all nodes d¥l incident to f. More precisely, iff = [ey, e, ..., &_1],
the list [sourcéep), . .., sourc&ex_1)] is returned.

There is a small number of update operations which do notalestie list of faces of a
map. The operation

edge M.split_face(edge el, edge e2)

inserts the edge = (sourcde;), sourcéey)) and its reversal intdM and returnse. The
edgese; and e, must belong to the same face. This face cycle is split into lywdhe
operation by inserting aftere; into the list of edges out afourcde;) and by insertingeR
aftere into the list of edges out afourceée,). The operation

face M.join faces(edge e)

deletes the edgeand its reversal fronM and updates the list of faces accordingly. lfet
andg be the face cycles containimegande®, respectively. Assume first thdt= g. If both

f andg consist of a single edgéthen the number of face cycles goes down by two@ihd
is returned. If at least one df or g consists of more than one edge, thleandg are joined
into a single face and this face is returned. When we coineddme for the operations we
assumed that the latter case would be the “normal” use ofgheation. Assume next that
f = g. If f consists of exactly two edges, namelgndeR then the number of face cycles
goes down by one amndil is returned. Iff consists of at least three edges and either
eR is the face cycle successor of the other then the number efdfaties is unchanged and
f is returned. Finally, if neithee nor eR is the face cycle successor of the other, then the
number of faces goes up by one and one of the new faces isedturn
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Figure 8.33 The dual of our maMo. The dual has two nodes (shown as squares) and four
uedges (drawn dashed).

8.10.2 The Dual of a Map
The (combinatorial) dual of a may is another maj, see Figure 8.33:

e D has one node for each face cycleMdf More precisely, the nodes &f and the face
cycles ofM are in one-to-one-correspondence. Wedisk) to denote the node dd
corresponding to the face cycfeof M.

e D has one edge for each edgeMf Let e be any edge oM, let f be the face cycle
containinge, and letg be the face cycle containirgf. ThenD contains the edge

d(e) = (d(f), d(g)).

o Letf =[eye,...,e_1] be aface cycle oM. Then the cyclic adjacency list of the
noded(f) of D is equal to fi(ep), d(e), ..., d(e&x_1)]-

The following program computes the dull of a mapM. We first compute the face
cycles of M. We then put a node int® for each face cycle oM and record the corre-
spondence in acearray<node>. We then iterate over all face cycles bF and for each
face cycle over the edges comprising the face cycle. For edgh we constructs its dual
and record the correspondence. Observe that the edgesnhtidany dual node are con-
structed in the order in which they are supposed to appeaeiadjacency list of the dual
node. Finally, we establish the reversal information otlathl edges.

(dual.g=

void graph::dual_map(graph& D) const

{ D.clear();
graph& M = *((graph#*)this); // cast away the const
M. compute_faces();
face f; edge e;
face_array<node> dual (M) ;
forall_faces(f,M) dual[f] = D.new_node();

22 This case occurs, for example, in a graph with one node andexaige.
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edge_array<edge> dual_edge(M);

forall_faces(f,M)

{ node df = dual[f];
forall_face_edges(e,f)
{ face g = M.face_of (M.reversal(e));

dual_edgel[e] = D.new_edge(df,duallg]);

}

}

forall_edges(e,M)
D.set_reversal(dual_edgele] ,dual_edge[M.reversal(e)]);

8.10.3 Faces of Planar Maps
There are two functions that deal with faces of planar maps.flinction

void M.make_planar map ()

assumes thatl is a bidirected graph. It first callsl.makemap ) to turn M into a map. It
then callsPLANARM, true) to turnM into a plane map. It finally calls.computegaces )
to compute the face cycles M.

The function

list<edge> M.triangulate_planar map ()

calls M.triangulatemap( ) followed by M.computdaceg ) and returns the list of edges
added toM by the former call.

Exercise for 8.10
1 Is the dual of the dual of a ma@d isomorphic toM? Give a counterexample. Under
which conditions does the claim hold? State and prove a lemma

8.11 Embedded Graphsas Undirected Graphs

The reader may wonder about the use of directed graphs ichhjster. After all, in maps
we always combine a pair of directed edges into a uedge. Weedbidirected graphs to
represent maps mainly for two reasons.

Although maps are basically undirected graphs, the twantateons of an undirected
edge play a major role in the functions operating on maps. ahiqular, the face cycle
successor of an edge and the reversal of an edge are “dimtedpts” and hence would
require additional arguments if maps were realized by @otird graphs. For example, one
could distinguish the two orientations of an undirectededolgspecifying a node to indicate
the source node of the oriented edge. This would, howevewaoik for self-loops.

The second reason is that maps are frequently construaezmentally and that the two
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orientations of an edge are constructed at different mosrartime. We saw one example
already in the progrardualmapthat constructs the dual of a map. Such constructions are
difficult to implement with a representation that can onlgressent maps. The problem is
that we arrive at a map at the end of the construction proagtsisave no map during the
construction process.

Our choice of directed graphs to represent maps wastes, gace the two edges com-
prising a uedge are stored in two lists at each endpoint ofidtgge. One list for each
endpoint would suffice for most functions presented in thispter.

8.12 Order from Geometry

The following problem arises frequently. A graph is constedl by drawing it in &raphWin
and the combinatorial structure of the graph is supposeeiftect the drawing, i.e., for ev-
ery nodev the cyclic order ofA(v) is supposed to agree with the counter-clockwise order
of the edges out af in the drawing.

Let us be more precise. For every eddet d(e) be a vector (not necessarily, non-zero) in
the plane. We define an order on two-dimensional vectorsaRon-zero vectad let o (d)
be the angle between the positixexis andd, i.e., the angle by which the positiveaxis
has to be turned in counter-clockwise direction until igal withd. A vectord; precedes
a vectord, if «(d;) < a(d2) and a vectod; is equivalento a vectord, if «(d;) = a(dy).
The zero vector precedes all other vectors. The implenientaf this order on vectors is
discussed in Chapter 8 on geometry kernels.

The functions

bool SORT _EDGES(graph &G,

const edge_array<NT>& dx, const edge_array<NT>& dy)

bool SORT_EDGES(graph &G,
const node_array<NT>& x, const node_array<NT>& y)

reorder all adjacency lists in non-decreasing order of #wtarsd(e), e € E. For the first
function, the vector associated with an eéde (dX €], dy{€]), and for the second function,
the vector associated with an edge- (v, w) is (X[w] — X[v], Y[w] — Y[v]).

The functions returtrueif G is a plane map after the reordering. When will this be the
case? Assume th& is a map and that the vectalge) come from a planar drawing @,
i.e.,d(e) is a vector tangent to the image®és it leaves its source. @ has no self-loops
and no parallel edgésthenG will be a plane map after the call SORTEDGES In fact,
it will be a plane map for which the given drawing is an ordezgerving embedding.

We next give an application of the function SOEDGES to the task described in the

23 Observe that sorting edges by angle leaves the relative ofgelf-loops and the relative order of parallel edges
undefined.
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introductory paragraph. The goal is to deduce a plane map &astraight line drawing of
the map. Assume thaw is a GraphWin with an associated gra@hi.e., defined by

(gw_sortedgesdemo=
graph G;
(gw_sortedgesdemo: auxiliary functions

int main()
{ GraphWin gw(G,"Plane Map from Geometry");

gw.set_init_graph_handler(init_handler);

gw.set_new_edge_handler (new_edge_handler) ;
gw.set_del_edge_handler(del_edge_handler);
gw.set_new_node_handler (new_node_handler);
gw.set_del_node_handler (del_node_handler);

gw.set_directed(true);

gw.display();
gw.edit();

return 0O;

We define an auxiliary functiosortthat queries for each nodeof G its position ingwand
then calls SORTEDGES. We calbortwhenever an edge is added to the graph (and hence
the new edge handler is called) or if a new graph is read igvbgand hence the init handler
is called). When an edge is added, we also add the reversalke sure that we deal with
a map.

The effect of the call ofortis to rearrange the adjacency lists according to the counter
clockwise order in which the edges incident to any node apipethe drawing. We print
the graph at the end of sort in order to allow a visual compmarisetween the drawing and
the representation of the graph. The graph will be a planeasdpng as the drawing is a
planar embedding.

(gw_sort edgesdemo: auxiliary functions=

void sort(GraphWin& gw)

{
node_array<double> x(G), y(G);

node v;
forall_nodes(v,G)
{ point p = gw.get_position(v);
x[v] = p.xcoord(); ylvl] = p.ycoord();
}
SORT_EDGES(G,x,y);
cout << "\n\nThe adjacency lists are:\n";
G.print();
}
void init_handler (GraphWin& gw)
{ list<edge> L;
G.make_map (L) ;



8.13 Miscellaneous Functions on Planar Graphs 81

sort (gw) ;
}

void new_edge_handler (GraphWin& gw, edge e)

{ G.set_reversal(e,gw.new_edge(G.target(e),G.source(e)));
sort (gw) ;

}

bool del_edge_handler (GraphWin& gw, edge e)
{ gw.del_edge(G.reversal(e)); return true; }

void new_node_handler (GraphWin& gw,node) {}
void del_node_handler (GraphWin& gw) {

We will see more functions that relate geometry and grapl@hiapter 10 on geometric
algorithms.

Exercises for 8.12

1  Extend the gudrawingdemo.c such that it can also cope with edges that contairsbend

2  Write a function that checks whether the geometric passtiassigned to the nodes of
a map define a straight line embedding of the map. Hint: Reatd®e10.7.2 on line
segment intersection before working on this exercise.

8.13 Miscellaneous Functionson Planar Graphs

There are many problems that are simpler for planar gra@rsftbr arbitrary graphs. We
collect two in this section.

8.13.1 Five Coloring
Every planar graph can be four-colored, i.e., the nodeseftlaph can be labeled with
the integers 1 to 4 such that any edge connects two nodestwfctlisolor. We have not
implemented a four coloring algorithm but only a five colgraigorithm.

The function

void FIVE_COLOR(graph& G, node_array<int>& C);

attempts to color the nodes & using five colors, more precisely, it computes for every
nodev a colorC[v] € {1, ..., 5}, such thaC[sourcde)] # C[target(e)] for every edgee.
The function runs in linear time and is guaranteed to sucie®ds planar and contains no
self-loops and no parallel edgés

We sketch how the algorithms works. In a planar graph theadways a node with at
most five neighbors (Lemma 3). Letbe a node with at most five neighbors. vlfhas
less than five neighbors, we recursively five-color the graphv and then use a color for
v which is not used by any of its neighbors. vlfhas degree 5, we have to work slightly

24 gelf-loops are clearly an obstruction to colorability. &kl edges are no “real” problem; it is just that our
algorithm is not able to handle them.
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harder. We observe that there must be two neighbof3 which are not connected by an
edge (otherwise the neighbors ofwould form a complete graph on five nodes; this is,
however, impossible in a planar graph by Lemma 3). keindz be two neighbors ob
that are not connected by an edge. We remoaad mergev andz into a single node. This
can be done without destroying planarity as Figure 8.34 shdhen mergingy andz we
also delete any parallel edges which may result from the imgmrocess. We five-color the
resulting grapha’ recursively. In order to obtain a coloring 6fwe unmergev andz, give
w andz the color of the node that represented them botB’inand givev a color which is
not used on its neighbors.

To obtain linear running time is slightly tricky and we leatvéor the exercises.

hod
-
JoR

Figure 8.34 Merging the neighbors) andz of v.

8.13.2 Independent Sets of Small Degree
An independent set in a gragh is a setl of nodes no two of which are connected by an
edge. A five coloring of a graph yields an independent setzaf ai leash/5, since at least
one of the colors is used on at leagb of the nodes and since all edges have their endpoints
in different color classes. Sometimes, it is desirable i@lemn independent set all of whose
nodes have small degree.

The function

void INDEPENDENT SET(const graph& G, list<node>& I)

computes an independent deall of whose nodes have degree at most 9Glis planar
and has no parallel edges, it is guaranteed that- n/6. The algorithm is due to David
Kirkpatrick and Jack Snoeyink [KS97] and is extremely sienghd elegant.
The algorithm starts by removing all nodes that have degbee hore. It then repeatedly
chooses a node of smallest degree, adago |, and removes and its neighbors frors.
We describe an implementation. We start by making an isomoigopyH of G; H is
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of type GRAPHnode edge, and each node of H stores inH[v] the node ofG to which
it corresponds. We saw the implementatiorCalpyGraphin Section 6.1. We will work on
H.

We delete all self-loops froril and turnH into a map. Recall that turning a graph into
a map pairs a maximum number of edges and adds reversalefongfaired edges. After
turning H into a map, each edge is part of a uedge.

We then determine all nodes of degree at least 10 and dellstechlnodes.

Next we collect all nodes dfl of degred, 0 <i < 9inalinear listLD[i]. In the course
of the algorithm the list$ D[i] may contain nodes that were already deleted fidmWe
need to be able to identify those nodes and therefore maiatearraynodeof H.

The construction of the independent set can now begin. Ag é&xH is not empty, we
select a node from the lowest indexed non-empty list. We continue thect&la process
until we select a node that belongs to the curtdntwWe addH[v] to | (recall thatH[v] is
the node inG that corresponds to), and we delete and its neighbors froni ; we do not
remove them from the listsD though (this could be done by maintaining an ajpagin LD
that stores for each nodethe item inLD that containg). We collect all neighbors af in
a listaffectednodesand add them to the listD according to their new degrees.

(_Lindependenset=

void INDEPENDENT_SET(const graph& G, list<node>& I)
{ I.clear();

GRAPH<node,edge> H;

CopyGraph (H,G) ;

node v; edge e;

list<edge> E = H.all_edges();

forall(e,E) { if (H.source(e) == H.target(e) ) H.del_edge(e); }

H.make_map(E); // E is a dummy argument

list<node> HD; // high degree nodes
forall_nodes(v,H) if (H.degree(v) >= 10) HD.append(v);

forall(v,HD) H.del_node(v);

array<list<node> > LD(10);
forall nodes(v,H) LD[H.degree(v)].append(v);
node_array<bool> node_of_H(H,true);

while (H.number_of_nodes() > 0)
{ int i = 0;
while (i < 10)
{ if ( LD[i].empty() ) { i++; continue; }
v = LD[i] .pop();
if ( node_of_H[v] ) break;
}

I.append(H[v]);
list<node> affected_nodes;

forall_inout_edges(e,v)

{ node w = H.opposite(v,e);
edge f;
forall_inout_edges(f,w)
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affected_nodes.append(H.opposite (w,f));
H.del_node(w); node_of_H[w] = false;

}
H.del_node(v); node_of_H[v] = false;

forall(v,affected_nodes)
if ( node_of_H[v] ) LD[H.degree(v)].append(v);

Exercises for 8.13

1 Extend the functiorlVE.COLORINGso that it can handle parallel edges.

2 Implement the function FIVECOLORING. Try to achieve linear running time.

3 Modify the implementation of INDEPENDENSET such that the listsD contain only
nodes ofH and every node at most once.

4 A separator in a grapB is a setS of nodes ofG such that removal 0§ decomposes
G into two or more subgraphs none of which has more that82odes. Planar graphs
have separators of siZ2(,/n) and there are linear time algorithms to compute them, see
[LT77] or [Meh84, IV.10]. Implement the planar separatoedhem and provide it as a
LEP.
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