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Geometry Algorithms

We discuss convex hulls, triangulations, the verification of geometric structures, Delaunay
triangulations and Delaunay diagrams, Voronoi diagrams, applications of Delaunay and
Voronoi diagrams, geometric dictionaries, line segment intersection, polygons, and close
with a glimpse at higher-dimensional computation geometry. For each problem we in-
troduce the required mathematics and derive algorithms andtheir implementations. The
books [Meh84b, Ede87, PS85, Mul94, Kle97, BY98, dBKOS97] provide a wider view of
computational geometry.

The chapter uses results of all preceding chapters and is, inthis sense, the culmination
point of the book, e.g., we use lists and arrays from the basicdata types, integers and
rationals from the number types, dictionaries, maps and sorted sequences from the advanced
data types, graphs and graph algorithms, embedded graphs, and the geometry kernels.

Computational geometry is a very rich area and LEDA certainly does not provide every-
thing there is to it. Other good sources of geometric software are CGAL [CGA] and the
LEDA extension packages [LEP].

10.1 Convex Hulls

The convex hull problem in the plane is one of the simplest geometric problems and hence
a good starting point for our exploration of geometry algorithms. It will allow us to address
five important themes in a simple setting:

• Thesweep paradigm: In this paradigm the input points are first sorted accordingto the
lexicographic order and then the desired geometric structure is constructed
incrementally during a single sweep over the points. We willderive and implement a
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Figure 10.1 A convex and a non-convex set.

Figure 10.2 A point set, its convex hull, and its width. The figure was generated with the
xlman-demo voronoidemo. The width of point sets is discussed in Section 10.1.3.

sweep algorithm for convex hulls. We will see more applications of the sweep
paradigm in later sections.

• The(randomized) incremental construction paradigm: In this paradigm the input
points are considered one by one in either arbitrary or random order and the desired
geometric structure is constructed incrementally. We willderive and implement an
incremental algorithm for convex hulls.

• The careful handling ofdegeneracies: The literature on computational geometry
frequently makes the so-calledgeneral position assumptionwhich states that only
inputs are considered for which none of the geometric predicates required by the
algorithm (recall that the evaluation of a geometric predicate calls for the evaluation of
the sign of an expression) ever evaluates to zero. For example, the incremental
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Figure 10.3 Two point sets and their convex hulls. The hulls are represented as cyclic lists of
points, namelyv0, v1, v2, v3 for the example on the left andw0, w1 for the example on the right.

algorithm for convex hulls uses the orientation predicate and hence the general
position assumption excludes all inputs containing three collinear points. Of course,
we do not want to exclude any inputs and hence cannot make the general position
assumption. Dropping the general position assumption typically requires a more
careful formulation of the algorithms. The sweep as well as the incremental algorithm
for convex hulls will work for all inputs. In fact, all algorithms in this chapter do.

• Verification of geometric structures: Geometric programs require checking. Although
the convex hull problem is one of the simplest geometric problems, the programs
derived in this section will be non-trivial. We will see how to partially check the output
of convex hull programs in Section 10.3.

• The importance ofexact geometric primitives: In the preceding chapter we introduced
the rational geometry kernel; in this section we will profit from it.

A setC is calledconvexif for any two pointsp andq in C the entire line segmentpq is
contained inC, see Figure 10.1. Theconvex hullconvSof a setSof points is the smallest
(with respect to set inclusion) convex set containingS. A point p ∈ S is called anextreme
point of S if there is a closed halfspace containingS such thatp is the only point inS that
lies in the boundary of the halfspace. A pointp ∈ S is called aweak extreme pointof S if
there is a closed halfspace containingS such thatp lies in the boundary of the halfspace.
Clearly, an extreme point is also a weak extreme point, but there may be weak extreme
points that are not extreme points. The pointp in Figure 10.3 is an example.

From now on we restrict our discussion to the plane. IfS contains no three collinear
points then every weak extreme point is also extreme, i.e., under the general position as-
sumption there is no need to distinguish between weak extreme points and extreme points.
We define the convex hull problem as the problem of computing the extreme points of a
finite set of points as a cyclically ordered list of point, seeFigure 10.3. The cyclic order is
the clockwise order in which the extreme points appear on thehull.
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Figure 10.4 Adding point p. We determine the two tangents fromp by a clockwise and
counter-clockwise walk along the current hull starting at the most recently added pointq.

The functionlist<POINT> CONVEX HULL(
onst list<POINT>& L);
computes the convex hull of the points inL and returns its list of vertices. The cyclic order
of the vertices in the result corresponds to the clockwise order of the vertices on the hull.
The algorithm uses randomized incremental construction and its expected running time is
O(n logn).

10.1.1 The Sweep Algorithm
The sweep algorithm for convex hulls consists of the following three steps:

• The input points are sorted in increasing lexicographic order.

• The convex hull is initialized with the two lexicographically smallest points inL.

• The remaining points are considered in increasing lexicographic order and the convex
hull is updated for each point. Assume thatp is the next point to be considered and
that we have already constructed the convex hull of the preceding points. The new hull
can be obtained from the old hull by constructing the two tangents fromp. The
construction of the tangents is simple sincep is guaranteed to see the pointq added
just beforep. We only have to walk fromq in clockwise and counter-clockwise
direction along the hull in order to determine the other endpoints of the tangents, see
Figure 10.4.

We now turn this strategy into a program. We assume that the set S is given as a listL0 of
points. We allow multiple occurrences of points. We follow the general outline above and
proceed in three steps. We first make a local copyL of L0 and sortL. Next we initialize
the list of hull vertices with the first two points (in the sorted version) ofL, and finally, we
add all other points ofL. We call the resulting program CONVEXHULL S since it uses
the sweep paradigm to compute convex hulls.
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〈convexhull.c〉�list<POINT> CONVEX_HULL_S(
onst list<POINT>& L0){ list<POINT> CH;list<POINT> L = L0;L.sort();
〈initialize hull with two points〉
〈add all other points〉return CH;}

We prepare for the sweep by sorting the points according to the lexicographic order. A point
p precedes a pointq in the lexicographic orderif either its x-coordinate is smaller or the
two x-coordinates are equal and itsy-coordinate is smaller. The default ordering on points
is the lexicographic ordering and henceL.sort( ) rearrangesL in the desired way.

We can now start building the hull. We begin with the first two points in L and make
them the vertices of the first hull. As said above we representthe hull as a linear listCH
that contains the hull vertices inclockwiseorder. The list is to be interpreted as a cyclic list.
We maintain an itemlast vertexinto the list; it contains the point added last.

〈initialize hull with two points〉�if ( L.empty() ) return CH;POINT last_p;CH.append(last_p = L.pop());// remove dupli
ates of first pointwhile ( !L.empty() && last_p == L.head() ) L.pop();if ( L.empty() ) return CH;list_item last_vertex = CH.append(last_p = L.pop());
We process the remaining points. If the next pointp is equal to the last point added we

do nothing. If the current hull consists of only two verticesand the new pointp is collinear
with these vertices we replace the second vertex byp. Otherwise, we determine two items
upitemanddownitem in CH which correspond to the other endpoints of the two tangents
starting atp. To determineup itemwe scan the hull in counter-clockwise direction starting
at last vertex. If the point stored at the predecessor ofupitem, the point stored atup item,
and p do not form a right turn we moveupitem to its predecessor vertex. We determine
downitemby the symmetric procedure.

After having determinedupitemanddownitemwe update the hull. We delete all items
strictly betweenup itemanddownitemand insertp instead of them. Note thatupitemand
downitemare guaranteed to be different sincep sees at least one of the edges incident to
the most recently added vertex.

〈add all other points〉�POINT p;forall(p,L){ if ( p == last_p ) 
ontinue; // dupli
ate point



10.1 Convex Hulls 7last_p = p;if (CH.length() == 2 && 
ollinear(CH.head(),CH.tail(),p)){ CH[last_vertex℄ = p; 
ontinue; }// the interesting 
ase// 
ompute up_itemlist_item up_item = last_vertex;while (!right_turn(CH[CH.
y
li
_pred(up_item)℄, CH[up_item℄, p)){ up_item = CH.
y
li
_pred(up_item); }// 
ompute down_itemlist_item down_item = last_vertex;while (!left_turn(CH[CH.
y
li
_su

(down_item)℄, CH[down_item℄, p)){ down_item = CH.
y
li
_su

(down_item); }// update hullwhile (down_item != CH.
y
li
_su

(up_item)){ CH.del_item(CH.
y
li
_su

(up_item)); }last_vertex = CH.insert(p,up_item,after);}
The running time of the convex hull program isO(n logn). It takes timeO(n logn) to sort
the points lexicographically. After that everything is linear as the following amortization
argument shows. Adding a point to the hull takes constant time plus time proportional to
the number of points removed from the hull. Since any point can disappear from the hull
at most once, the total time to add all points is linear. The running time of the algorithm
is never better thann logn since it takes2(n logn) time to sort the points. The sweep
algorithm for convex hulls is due to Andrew ([And79]); it refines an earlier algorithm of
Graham ([Gra72]).

The convex hull program makes use of the primitives providedby the geometry kernels.
The rational kernel guarantees that all geometric primitives behave according to their math-
ematical specification and hence binding the program with the rational kernel will yield a
correct executable. The program may behave incorrectly if bound with the floating point
kernel. Consider the following example.

We compute the convex hull of the set{(−M +1, −M), (0, 0), (M, M +1), (0, −2)} for
M = 2m and increasing values ofm. All four points are extreme and hence the following
program will print “everything went fine”, when executed with the rational kernel.

〈convex hull and kernel〉�for (int m = 20; m < 50; m++){ double M = ldexp(1.0,m);INT_TYPE IM(M);POINT p(-IM + 1, -IM) , q(0, 0), r(IM, IM + 1), s(0, -2);list<POINT> L;L.append(p); L.append(q); L.append(r); L.append(s);list<POINT> CH = CONVEX_HULL_S(L);if ( CH.length() != 4 )
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out << "\n\nlength = " << CH.length() << " for m = " << m;return 0;}}
out << "\n\neverything went fine";
However, when executed with the floating point kernel the program will printlength = 3 for m = 27,
since the floating point kernel believes that the triple(p, q, r ) is collinear form ≥ 27.

10.1.2 Incremental Construction
We will next describe an alternative algorithm to compute convex hulls. The algorithm
is based on the paradigm of(randomized) incremental construction. The algorithm has a
worst case running time ofO(n2), an average running time ofO(n logn), and a best case
running time ofO(n).

The algorithm starts by searching for three non-collinear pointsa, b, andc. If there are
none, then all points are collinear and the vertices of the hull are simply the lexicographi-
cally smallest and largest point.

〈convexhull.c〉+�
〈ch edgeclass〉list<POINT> CONVEX_HULL_IC(
onst list<POINT>& L){ if (L.length() < 2) return L;list<POINT> CH;POINT a = L.head(), b = L.tail();POINT 
, p;if ( a == b ) { forall(p,L) if (p != a) { b = p; break; } }if ( a == b ) { // all points are equalCH.append(a);return CH;}int orient;forall(
,L) if ( (orient = orientation(a,b,
)) != 0 ) break;if ( orient == 0 ){ // all points are 
ollinearforall(p,L) { if ( 
ompare(p,a) < 0 ) a = p;if ( 
ompare(p,b) > 0 ) b = p;}CH.append(a); CH.append(b);return CH;}// a, b, and 
 are not 
ollinearif ( orient < 0 ) leda_swap(b,
);

〈full-dimensional case: initialization〉
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Figure 10.5 The initial convex hull consists of the pointsa, b, andc. When pointp1 is added
the edgese1 ande2 are deleted from the hull and the edgese4 ande5 are added, and whenp2 is
added to the hull the edgese3 ande4 are deleted from the hull and the edgese6 ande7 are added.
The boundary of the current hull consists of edgese7, e5, ande6 in counter-clockwise order.
Every edge ever deleted from the hull points to the two edges that replaced it, e.g.,e3 ande4

point toe6 ande7.forall(p,L) { 〈full-dimensional case: insertion of p〉 }
〈full-dimensional case: prepare result and clean-up〉return CH;}

We come to the interesting case that not all points inL are collinear. We have already
determined three non-collinear pointsa, b, andc. Their orientation is positive, i.e., the three
points form a counter-clockwise oriented triangle.

The algorithm maintains the current hull as a cyclically linked list of edges and also keeps
all edges that ever belonged to a hull. Every edge that is not on the current hull anymore
points to the two edges that replaced it. More precisely, assume thatS is the set of points
already seen and thatp is a point outside the current hullCH(S). There is a chainC of
edges of the boundary ofCH(S) that do not belong to the boundary ofCH(S∪ p). The
chain is replaced by the two tangents fromp to the previous hull. All edges inC are made
to point to the two new edges, see Figure 10.5.

We use a classchedgeto represent convex hulls. Every edge stores its two endpoints,
three linkssucc, pred, andlink to other edges, and a boolean flagoutside. We uselink to
collect all edges into a linear list in the order of their creation; every edge points to the edge
created just before it andlastedgepoints to the edge created last. The only purpose of this
linear list is to help in the destruction of edges.
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The boolean flagoutsideindicates whether an edge belongs to the current hull or not.All
edges in the current hull form a cyclic doubly linked list with succpointing to the clockwise
successor andpred pointing to the clockwise predecessor. All edges that do notbelong
to the current hull anymore use theirsuccandpred fields to point to the two replacement
edges.

〈ch edgeclass〉�
lass 
h_edge;stati
 
h_edge* last_edge = nil;
lass 
h_edge {publi
:POINT sour
e, target;
h_edge* su

, pred, link;bool outside;
h_edge(
onst POINT& a, 
onst POINT& b) : sour
e(a), target(b){ outside = true;link = last_edge;last_edge = this;}~
h_edge() {}};
In order to initialize the data structure we create the edges(a, b), (b, c) and(c, a), store
them in an arrayT , and turn them into a doubly-linked cyclic list. We initialize lastedgeto
nil before doing any of this, such that the list of all edges has the correct anchor.

〈full-dimensional case: initialization〉�last_edge = nil;
h_edge* T[3℄;T[0℄ = new 
h_edge(a,b);T[1℄ = new 
h_edge(b,
);T[2℄ = new 
h_edge(
,a);int i;for(i = 0; i < 2; i++) T[i℄->su

 = T[i+1℄;T[2℄->su

 = T[0℄;for(i = 1; i < 3; i++) T[i℄->pred = T[i-1℄;T[0℄->pred = T[2℄;
We are now ready to deal with the insertion of a pointp. We proceed in two steps. We first
determine whetherp is outside the current hull and then update the hull (ifp is outside).

In order to find out whetherp lies outside the current hull, we walk through the history
of hulls. We first find out whetherp can see one of the edges of the initial triangle:p lies
outside the initial triangle if there is an edgee of the initial triangle such thatp lies to the
right of the edge.

More generally,p is outside one of the intermediate hullsCH(S) if there is an edgee on
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Figure 10.6 e is a (counter-clockwise) edge of the current hull andp lies to the right of it;e is
replaced byr0 andr1 when the pointq is added. Ifp lies neither to the right ofr0 nor to the right
of r1 then p lies in the shaded region and hence inCH(S∪ q).

its boundary such thatp lies to the right of the edge. Ife is an edge on the boundary of
the current hull thenp lies outside the current hull. Ife is not an edge on the boundary of
the current hull, letr0 andr1 be the two edges that replacede whenCH(S) was enlarged to
CH(S∪ q). p is outsideCH(S∪ q) if it lies to the right of eitherr0 or r1, see Figure 10.6.

〈full-dimensional case: insertion of p〉�int i = 0;while (i < 3 && !right_turn(T[i℄->sour
e,T[i℄->target,p) ) i++;if (i == 3) { // p inside initial triangle
ontinue;}
h_edge* e = T[i℄;while (! e->outside){ 
h_edge* r0 = e->pred;if ( right_turn(r0->sour
e,r0->target,p) ) e = r0;else { 
h_edge* r1 = e->su

;if ( right_turn(r1->sour
e,r1->target,p) ) e = r1;else { e = nil; break; }}}if (e == nil) 
ontinue; // p inside 
urrent hull
〈insertion of p: p is outside current hull〉

Assume now thatp lies outside the current hull and to the right of the counter-clockwise hull
edgee. We determine all edges visible fromp by walking along the hull in both directions.
This is exactly as in the previous algorithm. Letlow be the first predecessor ofe that is not
visible and lethighbe the first successor that is not visible.

We then add the new tangents betweenlow andhighand mark all edges that were deleted
from the hull as inside and make the two new tangents the replacement edges of all deleted
edges.
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〈insertion of p: p is outside current hull〉�// 
ompute "upper" tangent (p,high->sour
e)
h_edge* high = e->su

;while (orientation(high->sour
e,high->target,p) <= 0) high = high->su

;// 
ompute "lower" tangent (p,low->target)
h_edge* low = e->pred;while (orientation(low->sour
e,low->target,p) <= 0) low = low->pred;e = low->su

; // e = su

essor of low edge// add new tangents between low and high
h_edge* e_l = new 
h_edge(low->target,p);
h_edge* e_h = new 
h_edge(p,high->sour
e);e_h->su

 = high;e_l->pred = low;high->pred = e_l->su

 = e_h;low->su

 = e_h->pred = e_l;// mark edges between low and high as "inside"// and define refinementswhile (e != high){ 
h_edge* q = e->su

;e->pred = e_l;e->su

 = e_h;e->outside = false;e = q;}
Having computed the hull we prepare the output and delete alledges. We prepare the

output by running around the hull once and we clean up by deleting all edges.

〈full-dimensional case: prepare result and clean-up〉�
h_edge* l_edge = last_edge;CH.append(l_edge->sour
e);for(
h_edge* e = l_edge->su

; e != l_edge; e = e->su

)CH.append(e->sour
e);// 
lean upwhile (l_edge){ 
h_edge* e = l_edge;l_edge = l_edge->link;delete e;}
What is the running time of the incremental construction of convex hulls?

The worst case running time isO(n2) since the time to insert a point isO(n). The time
to insert a point isO(n) since there are at most 2(k +1) edges after the insertion ofk points
and since every edge is looked at at most once in the insertionprocess.

The best case running time isO(n). An example for the best case is when the pointsa,
b, andc span the hull.
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The average case running time isO(n logn) as we will show next. What are we aver-
aging over? We consider a fixed but arbitrary setS of n points and average over then!
possible insertion orders. The following theorem is a special case of the by now famous
probabilistic analysis of incremental constructionsstarted by Clarkson and Shor [CS89].
The books [Mul94, BY98, MR95, dBKOS97] contain detailed presentations of the method.
The reader may skip the proof of Theorem 1. Why do we include a proof at all given the
fact that the method is already well treated in textbooks? Wegive a proof because the cited
references prove the theorem only for points in general position. We want to do without the
general position assumption in this book.

Theorem 1 The average running time of the incremental construction method for convex
hulls is O(n logn).

Proof We assume for simplicity that the points inS are pairwise distinct. The theorem is
true without this assumption; however, the notation required in the proof is more clumsy.

The running time of the algorithm is linear iff all points inS are collinear. So let us
assume thatScontains three points that are not collinear. In this case wewill first construct
a triangle and then insert the remaining points. Letp be one of the remaining points. When
p is inserted, we first determine the position ofp with respect to the initial triangle (time
O(1)), then search for a hull edgee visible by p, and finally update the hull. The time to
update the hull isO(1) plus some bounded amount of time for each edge that is removed
from the hull. We conclude that the total time (= time summed over all insertions) spent
outside the search for a visible hull edge isO(n).

In the search for a visible hull edge we perform testsrightturn(x, y, p) wherex andy are
previously inserted points. We call a testsuccessfulif it returns true and observe that in each
iteration of the while-loop at most two rightturn tests are performed and that in all iterations
except the last at least one rightturn test is successful. Ittherefore suffices to bound the
number of successful rightturn tests.

For an ordered pair(x, y) of distinct points inS we useKx,y to denote the set of points
z in S such thatrightturn(x, y, z) is true plus1 the set of points on the line through(x, y)

but not betweenx andy, see Figure 10.7. We usekxy to denote the cardinality ofKx,y, Fk

to denote the set of pairs(x, y) with kxy = k, F≤k to denote the set of pairs(x, y) with
kxy ≤ k, and fk and f≤k to denote the cardinalities ofFk andF≤k, respectively. We have

Lemma 1The average number A of successful rightturn tests is bounded by
∑

k≥1 2 f≤k/k2.

Proof Consider a pair(x, y) with kxy = k. If some point inKx,y is inserted before both
x andy are inserted then(x, y) is never constructed as a hull edge and hence no rightturn

1 The set to be defined next is empty ifS is in general position. The probabilistic analysis of incremental
constructions usually assumes general position. We do not want to assume it here and hence have to modify the
proof somewhat.
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y

x

Figure 10.7 Kx,y consists of all points in the shaded region plus the two solidrays.

tests(x, y, −) are performed. However, ifx andy are inserted before all points inKx,y then
up tok successful rightturn tests(x, y, z) are performed.
The probability thatx andy are inserted before all points inKx,y is

2!k!/(k + 2)!

since there are(k + 2)! permutations ofk + 2 points out of which 2!k! havex and y as
their first two elements. Thus the expected number of successful rightturn tests(x, y, z) is
bounded by

2!k!/(k + 2)! · k = 2 · k/(k + 1)(k + 2) < 2/(k + 1).

The argument above applies to any pair(x, y) and hence the average number of successful
rightturn tests is bounded by

∑

k≥1

2 fk/(k + 1).

We next write fk = f≤k − f≤k−1 and obtain

A ≤
∑

k≥1

2( f≤k − f≤k−1)/(k + 1) =
∑

k≥1

2 f≤k(1/(k + 1) − 1/(k + 2))

=
∑

k≥1

2 f≤k/((k + 1)(k + 2)).

It remains to boundf≤k. We use random sampling to derive a bound.

Lemma 2 f≤k ≤ 2e2n · k for all k, 1 ≤ k ≤ n.

Proof There are onlyn2 pairs of points ofS and hence we always havef≤k ≤ n2. Thus,
the claim is certainly true forn ≤ 10 ork ≥ n/4.
So assume thatn ≥ 10 andk ≤ n/4 and letR be a random subset ofS of sizer . We will
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fix r later. Clearly, the convex hull ofR consists of at mostr edges. On the other hand, if
for some(x, y) ∈ F≤k, x andy are inR but none of the points inKx,y is in R, then(x, y)

will be an edge of the convex hull ofR. The probability of this event is
(n−i−2

r−2

)

(n
r

) ≥
(n−k−2

r−2

)

(n
r

) ,

wherei = kx,y. Observe that the event occurs ifx andy are chosen and the remainingr −2
points inR are chosen fromS\ {x, y} \ Kx,y. The expected number of edges of the convex
hull of R is therefore at least

f≤k ·
(n−k−2

r−2

)

(n
r

) .

Since the number of edges is at mostr we have

f≤k ·
(

n − k − 2

r − 2

)

/

(

n

r

)

≤ r

or

f≤k ≤ r ·
(

n

r

)

/

(

n − k − 2

r − 2

)

= r ·
n(n − 1)

r (r − 1)
·

[n − 2]r−2

[n − k − 2]r−2
,

where [n] i = n(n − 1) · · · (n − i + 1). Next observe that

[n − 2]r−2

[n − k − 2]r−2
≤

[n]r

[n − k]r
=

r−1
∏

i=0

n − i

n − k − i
=

r−1
∏

i=0

(

1 +
k

n − k − i

)

= exp

(

r−1
∑

i=0

ln(1 + k/(n − k − i ))

)

≤ exp(rk/(n − k − r )) ,

where the last inequality follows from ln(1 + x) ≤ x for x ≥ 0 and the fact thatk/(n −
k − i ) ≤ k/(n − k − r ) for 0 ≤ i ≤ r − 1. Settingr = n/(2k) and using the fact that
n − k − r ≥ n/4 for k ≤ n/4 andn ≥ 10, we obtain

f≤k ≤ e2n2/r = 2e2nk.

Putting our two lemmas together completes the proof of Theorem 1

A ≤ 4e2
∑

k≥1

nk/k2 = O(n logn).

There are two important situations when the assumptions of the theorem above are satis-
fied:

• When the points inSare generated according to a probability distribution for points in
the plane.

• When the points are randomly permuted before the incremental construction process is
started. We then speak about arandomized incremental construction.
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CONVEX HULL RIC realizes the randomized incremental construction of convex hulls.

〈convexhull.c〉+�list<POINT> CONVEX_HULL_RIC(
onst list<POINT>& L){ list<POINT> L1 = L;L1.permute();return CONVEX_HULL_IC(L1);}list<POINT> CONVEX_HULL(
onst list<POINT>& L){ return CONVEX_HULL_RIC(L); }
It is important to understand the difference betweenIC and RIC. The former is adetermin-
istic procedure whose average running time isO(n logn) if the assumptions of Theorem 1
are satisfied. The latter is a randomized algorithm whose expected running time for any
input is O(n logn). Table 10.1 shows the difference. We generated a listL of n random
points for each of three distributions: random points in theunit square, random points in the
unit disk, and random points close to the boundary of the unitcircle. We also generated a
second input setLSby sortingL lexicographically. On the random inputsIC does slightly
better thanRIC because the latter does something that is unnecessary for random inputs: it
randomly permutes an input that is already random. However,for the sorted inputs the situ-
ation is completely different.RIC behaves about the same as for random inputs. However,
IC behaves much worse. For the points on the circle the behavior seems to be quadratic

and for the points in the square and the disk the behavior seems to benδ for someδ > 1.
For this reason RIC is to be preferred over IC.

We next compare the sweep line algorithm with the randomizedincremental construction
algorithm. Table 10.2 shows the results. Observe that we usemuch larger inputs sizes for
this table. The randomized incremental algorithm is fasterthan the sweep algorithm for
inputs with only few hull vertices and is somewhat slower forpoints on the unit circle. Ob-
serve that the proof of Theorem 1 implies that the running time of randomized incremental
construction iso(n logn) if a random subset of the input points has a small convex hull.

There are many more convex hull algorithms than sweep and (randomized) incremental
construction. Schirra [Sch98] discusses implementations.

10.1.3 The Width of a Point Set
The width of a point setL is the minimal width of a stripe containing all points inL. A
stripe is the region of the plane between two parallel lines.Minimum width stripes are
illustrated in the xlman-demo voronoi-demo, see Figure 10.2. The functionRAT TYPE WIDTH(
onst list<POINT>& L, LINE& l1, LINE& l2)
assumes thatL is non-empty and returns the square2 of the minimum width stripe containing
L and the boundaries of the stripe.

We show how to compute the minimum width stripe by the so-called rotating caliber
method. We start with a partial characterization of the minimum width stripe.
2 We return the square of the width instead of the width becausethis choice avoids the use of square roots.
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IC RIC

K n Gen V Random Sorted Random Sorted

S 4000 0.29 18 0.09 0.27 0.11 0.13

S 8000 0.64 23 0.16 0.76 0.22 0.21

S 16000 1.34 29 0.33 2.53 0.42 0.41

D 4000 0.27 59 0.1 0.45 0.11 0.1

D 8000 0.59 66 0.17 1.26 0.23 0.2

D 16000 1.25 87 0.43 3.48 0.5 0.41

C 4000 9.32 4000 0.32 15.57 0.34 0.37

C 8000 18.87 7995 0.7 65.93 0.75 0.71

C 16000 37.62 1.599e+04 1.47 253.4 1.53 1.57

Table 10.1 A comparison of incremental and randomized incremental construction: We
generatedn points according to one of three distributions, either points with random integer
coordinates in [−R .. R], or random points with integer coordinates in the disc withradiusR
centered at the origin, or random points with integer coordinates that lie approximately on the
circle with radiusR centered at the origin. We usedR = 16000. The columns show from left to
right the kind of the point set (S for points in a square, D for points in the disc, and C for points
on a circle), the numbern of points, the time to generate then points, the number of vertices of
the hull, the running time of the incremental algorithm (IC), and the running time of the
randomized incremental algorithm (RIC). For both algorithms the first column gives the time
for random inputs and the second column gives the time for lexicographically sorted inputs.
Observe the bad behavior ofIC on sorted inputs. Also observe that the time to compute thehull
is usually smaller than the time to generate the points.

Lemma 3 Let S be a minimum width stripe containing L. Then one of the boundaries
contains an edge of the convex hull of L and the other boundarycontains at least one vertex
of the convex hull of L.

Proof Clearly, both boundaries ofS must contain at least one vertex of the convex hull of
S. Assume that neither boundary contains an edge of the convexhull and let p andq be
the two vertices of the convex hull ofL that are contained in the boundary ofS. Since the
boundary ofL contains no edge of the convex hull we can rotate both lines around p and
q, respectively. Letα be the acute angle between the segmentpq and the boundary ofS
incident top, see Figure 10.8. Then

width(S) = |pq| · sinα

and hence the width decreases whenα is decreased.
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Sweep RIC

K n Gen V Random Sorted Random Sorted

S 20000 1.72 25 1.68 1.54 0.55 0.55

S 40000 3.77 29 3.6 3.26 1.26 1.43

S 80000 7.92 31 7.72 6.98 2.06 2.07

D 20000 1.62 106 1.75 1.59 0.55 0.56

D 40000 3.49 109 3.76 3.33 1.17 1.25

D 80000 7.32 152 8 7.02 2.42 2.58

C 20000 47 1.999e+04 1.82 1.67 2.13 2.12

C 40000 94.68 3.994e+04 3.96 3.57 4.46 4.41

C 80000 188.8 7.979e+04 8.6 7.78 10.31 10.04

Table 10.2 The running times of the sweep algorithm and the randomized incremental
construction algorithm for convex hulls. The meaning of thecolumns is the same as for
Table 10.1.

p

q
l2

l1

width

α

Figure 10.8 The stripeSwith boundariesl1 andl2 contains all points ofL , but neither boundary
contains an edge of the convex hull ofL . Rotating its boundaries decreases the width of the
stripe.

We conclude from the lemma above that the minimum width stripe is defined by an edge
of the convex hull and the vertex of maximum distance from theline supporting this edge.
The next lemma constrains the part of the convex hull where this vertex of maximal distance
may lie.

Lemma 4 Letv0, v1, . . . , vk−1 be the vertices of the convex hull of L, let l= l (vk−1, v0) be
the line passing throughvk−1 andv0, and letvm be the vertex of maximal distance from l.
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vm

vk−1 v0

v1

l

l ′

Figure 10.9 Illustration of the proof of Lemma 4.

Let l′ = l (v0, v1), let vm′ be the vertex of maximal distance from l′. Then m≤ m′ ≤ k − 1.
Also m′ is minimal such thatvm′+1 has smaller distance to l′ thanvm′ .

Proof Consider Figure 10.9. All verticesvi with 1 ≤ i ≤ m are contained in the triangle
with cornersv1, vm, and the intersection betweenl ′ and the line parallel tol throughvm.
Any point in this triangle has smaller distance tol ′ thanvm. Thusm ≤ m′ ≤ k − 1.

For the second claim consider the distance betweenl ′ andvi as a function ofi and asi
ranges from 1 tok−1. It follows from convexity that this function is first strictly increasing
then reaches its maximum for either one or two vertices and isthen again strictly decreasing.

It is easy to derive an algorithm from the preceding lemma. Wedetermine for each hull
edgepq the vertexm of maximal distance from the linel (p, q). We initialize p andq to
the first two hull vertices and findm by a search over all vertices. We then scan once around
the convex hull ofL in order to check all other edges.

We maintain the square of the width of the currently best stripe inminsqrwidth and the
boundaries of the stripe inl1 andl2.

〈width.c〉�RAT_TYPE WIDTH(
onst list<POINT>& L, LINE& l1, LINE& l2){ if ( L.empty() )error_handler(1,"WIDTH applies only to non-empty sets");list<POINT> CH = CONVEX_HULL(L);if ( CH.length() == 1 ){ l1 = l2 = LINE(L.head(), VECTOR(INT_TYPE(1),INT_TYPE(1)));return 0;}if ( CH.length() == 2 )



20 Geometry Algorithms{ l1 = l2 = LINE(CH.head(), CH.tail()); return 0; }list_item p_it = CH.first();list_item q_it = CH.
y
li
_su

(p_it);list_item m_it = q_it;list_item it;LINE l(CH[p_it℄,CH[q_it℄);RAT_TYPE min_sqr_width = 0; RAT_TYPE sqr_dist;// find vertex with maximal distan
e from lforall_items(it,CH){ if ( (sqr_dist = l.sqr_dist(CH[it℄)) > min_sqr_width ){ min_sqr_width = sqr_dist;m_it = it;}}l1 = l; l2 = LINE(CH[m_it℄, CH[q_it℄ - CH[p_it℄);
〈rotate caliber around CH〉return min_sqr_width;}

Let r be the successor vertex ofq. We want to determine the vertexm′ with maximal
distance froml ′ = l (q, r ). The last sentence of the lemma above implies thatm′ is the
closest successor ofm (inclusive) such that the successor ofm′ has smaller distance tol ′

thanm′.

〈rotate caliber around CH〉�do // move 
aliber to next edge{ list_item r_it = CH.
y
li
_su

(q_it);LINE l(CH[q_it℄,CH[r_it℄);RAT_TYPE 
ur_sqr_dist = l.sqr_dist(CH[m_it℄);list_item new_m_it = m_it;it = CH.
y
li
_su

(m_it);while ( (sqr_dist = l.sqr_dist(CH[it℄)) >= 
ur_sqr_dist ){ new_m_it = it; it = CH.
y
li
_su

(it);
ur_sqr_dist = sqr_dist;}if ( 
ur_sqr_dist < min_sqr_width ){ min_sqr_width = 
ur_sqr_dist;l1 = l; l2 = LINE(CH[new_m_it℄, CH[r_it℄ - CH[q_it℄);}p_it = q_it; q_it = r_it; m_it = new_m_it;} while ( p_it != CH.first() );
The running time of the width computation is the time to compute the convex hull plus an
amount of time that is linear in the number of vertices of the convex hull. It takes linear
time to compute the vertex of maximal distance from the first hull edge and it takes linear
time to compute the vertex of maximal distance for all other edges. The latter follows from
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the observation that both the edge and the vertex of maximal distance “travel around the
convex hull once”.

Exercises for 10.1
1 Design an example where the running time of CONVEXHULL IC is quadratic.
2 Design an example where the running time of CONVEXHULL IC is linear.
3 Redo the proof of Theorem 1 under the assumption that the expected number of hull

edges in the convex hull ofr random points isr 1−δ for someδ > 0.
4 Modify either convex hull algorithm such that it returns all points that lie on the boundary

of the convex hull.
5 Let P andQ be two disjoint convex polygons given by their cyclic list ofvertices. Write

a program that computes the common tangents ofP andQ.
6 Use the solution of the previous exercise to compute the convex hull by divide-and-

conquer. Sort the points lexicographically and split them into two halves. Compute
the hull of both halves recursively. Merge the two hulls by constructing the common
tangents.

7 Generaten random points in the unit square and compute their convex hull. Do so for
different values ofn and derive a conjecture concerning the expected number of extreme
points in a set ofn random points. Try to prove your conjecture or do a literature search
to find out what is known about the problem. Do the same for random points in the unit
disk.

10.2 Triangulations

A triangulationof S is a partition of the convex hull ofS into triangles. This assumes that
not all points ofS are collinear. Each triangle in the partition has three points of S as its
vertices and any two triangles in the partition are either disjoint, or share a vertex, or an
edge and two vertices. The union of all triangles is the convex hull of S, see Figure 10.10
for two examples. What is a triangulation of convS if all points of S are collinear? It is
simply a partition of convS into line segments3, see Figures 10.10 and 10.11.

Triangulations are a versatile data structure. We will use them for point location queries,
nearest neighbor queries, and range queries in Section 10.6and describe their use ininter-
polationnow. Assume that we are given the values of some functionf at some finite set
S of points and want to interpolatef for all points in the convex hull ofS. Triangulations
offer an elegant way to approach this problem. We compute a triangulationT of S and lift
it to three-dimensional space. More precisely, for every triangle(p, q, r ) of T we define

3 More generally, ifShas affine dimensiond then a triangulation ofS is a partition of convS into d-dimensional
simplices. Ad-dimensionalsimplexis the convex hull ofd + 1 affinely independent points. Thus, triangles are
two-dimensional simplices and line segments are one-dimensional simplices and hence a triangulation of a
one-dimensional setS is a partition of its convex hull into line segments, a triangulation of a two-dimensional set
is a partition of its convex hull into triangles, and a triangulation of a three-dimensional set is the partition of its
convex hull into tetrahedra.



22 Geometry Algorithms

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

Figure 10.10 A triangulation of a two-dimensional and of a one-dimensional point set.

Figure 10.11 A triangulation computed by the function TRIANGULATEPOINTS discussed in
this section.

a triangle((p, f (p)), (q, f (q)), (r, f (r ))) in three-space, see Figure 10.12. In this way
we obtain a surface in three-space. In order to determine theinterpolating value at a point
x ∈ convSwe determine the height of the interpolating surface abovex and return it. This
requires us to find the triangle ofT containingx (a point location query) and to determine
the height atx by linear interpolation from the height at the vertices of the triangle contain-
ing x. Assume thatx lies in the triangle with verticesp, q, andr . We writex as a convex
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r

(q, f (q))

(p, f (p))

x

(r, f (r ))

(x, f (x))

Figure 10.12 A triangle in the plane and its lifting to three-space.

combination ofp, q, andr , i.e.,

x = cp p + cqq + cr r,

wherecp + cq + cr = 1 and computef (x) as

f (x) = cp f (p) + cq f (q) + cr f (r ).

The coefficientscp, cq, andcr are called thebarycentric coordinatesof x with respect to
the triangle(p, q, r ).

We next discuss how to represent triangulations. We represent triangulations as straight
line embedded plane maps; embedded graphs are the subject ofChapter 8 and we recom-
mend that you read the first four sections of that chapter before proceeding. LetT be a
triangulation of a setSof points. We use a graphG of typeGRAPH<POINT, int> to repre-
sentT ; G has the following properties, see Figure 10.14:

• The nodes ofG are in one-to-one correspondence to the points inS. For a nodev of G
the point inScorresponding to it is stored asG[v].

• G is a directed graph whose edges will be calleddarts. We use the word dart instead
of edge in order to distinguish the edges of the representinggraph from the edges of
the represented geometric object. The darts ofG come in pairs. For every dart
e = (v, w) of G the reversed darteR = (w, v) is also a dart ofG. Moreover, the
member functionreversalmaps each dart to its reversal, i.e.,G.reversal(e) = eR and
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cyclic adj succ

e

cyclic adj pred

Figure 10.13 The relationship between the cyclic ordering of the adjacency list A(v) of a nodev
and the counter-clockwise ordering of the edges incident toG[v].

G.reversal(eR) = e. We call a pair consisting of a dart and its reversal a uedge (=
undirected edge). The uedges ofG correspond to the edges ofT and a dart(v, w) of
G corresponds to the oriented edge(G[v], G[w]) of T .

• For each nodev of G the list A(v) of edges out ofv is ordered cyclically. For an edge
e with sourcev the functionsG.
y
li
 adj su

(e);G.
y
li
 adj pred(e);
return the cyclic successor and the cyclic predecessor ofe in A(v). The cyclic ordering
of the edges inA(v) agrees with the counter-clockwise ordering of the edges incident
to G[v] in the triangulation, i.e.,G.cyclicadj succ(e) is the next dart out ofv in
counter-clockwise direction andG.cyclicadj pred(e) is the next dart out ofv in
clockwise direction, see Figure 10.13.

• The preceding items guarantee that the faces of the triangulation correspond to the
face cycles ofG. For each counter-clockwise triangle(G[u], G[v], G[w]) of the
triangulation the edges(u, v), (v, w), (w, u) form a face cycle ofG. There is also a
face cycle corresponding to the unbounded face ofT . As a face cycle is traversed the
face lies to the left of the face cycle. The functionsG.fa
e 
y
le su

(e);G.fa
e 
y
le pred(e);
support the convenient traversal of the face cycles of a map.They give the successor
and predecessor ofe in the face cycle containinge, respectively. The face cycle
successor is the cyclic adjacency predecessor of the reversal of e, see Figure 8.10.

• Each dart has an integer label (available asG[e]) that gives information about the dart.
The labels come from the enumeration type
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Figure 10.14 A graphG representing a triangulation. For each edge of the triangulation there
are two darts inG, e.g., the edgeG[v]G[w] is represented by the dartse1 = (v, w) and
e2 = (w, v). We haveG.reversal(e1) = e2 andG.reversal(e2) = e1. For each dart its name is
shown near the source of the dart and to the left of the dart. The list A(w) of edges out ofw is a
cyclic shift (it is not specified which) of(e5, e3, e2). The two triangles correspond to the face
cycles(e1, e3, e9) and(e5, e7, e4). The unbounded face corresponds to the face cycle
(e6, e2, e10, e8).enum delaunay edge info{ DIAGRAM EDGE = 0, DIAGRAM DART = 0,NON DIAGRAM EDGE = 1, NON DIAGRAM DART = 1,HULL EDGE = 2, HULL DART = 2};

defined in<LEDA/geoglobalenums.h>. We discuss them in Section 10.4.

A dart is called ahull dart if the unbounded face ofG lies to its left. If hull dart is any
hull dart, the following lines of code traverse all hull darts.edge e = hull dart;do { e = G.fa
e 
y
le su

(e); } while (e != hull dart);

We next extend the hull program of the preceding section to a triangulation program.
This algorithm was first described in [Meh84a]. Again, we start by sorting the points lexi-
cographically. Then we set up the triangulation of the first two points and finally add point
by point to the triangulation.

〈triangulation.c〉�inline int left_bend(
onst POINT& p, 
onst GRAPH<POINT,int>& G,
onst edge& e){ return (orientation(p,G[sour
e(e)℄,G[target(e)℄) > 0); }edge TRIANGULATE_POINTS(
onst list<POINT>& L0, GRAPH<POINT,int>& G){ G.
lear();



26 Geometry Algorithmsif (L0.empty()) return nil;list<POINT> L = L0;L.sort();if ( L.empty() ) return nil;// initialize G with a single edge starting at the first pointPOINT last_p = L.pop(); // last visited pointnode last_v = G.new_node(last_p); // last inserted nodewhile (!L.empty() && last_p == L.head()) L.pop();if (!L.empty()){ last_p = L.pop();node v = G.new_node(last_p);edge x = G.new_edge(last_v,v,0);edge y = G.new_edge(v,last_v,0);G.set_reversal(x,y);last_v = v;}
〈triangulate points: scan remaining points〉}

In order to facilitate the addition of points we maintain thedartelast; it is the hull dart that
leaves the most recently added vertex. Letp be the point to be added and leteupande low
be hull darts such that exactly the hull vertices between thetarget ofeup and the source
of e low are visible fromp, see Figure 10.15. All edgese betweeneup andelow are such
that p, the source ofe, and the target ofe form a left turn, buteup andelow do not have
this property. Moreover,eup is a proper face cycle predecessor ofelast, andelow is a
face cycle successor ofe last. Thus it is easy to determineeupande low. For example, the
former is the first proper face cycle predecessore of e last such thatp, the source ofe, and
target ofe do not form a left turn.

Having determinedeup we walk toelow and extend the triangulation by adding edges
betweenv, wherev is a new node corresponding to pointp, and the hull vertices visible
from p. We must be careful to add the new edges in a way that reflects the triangulation.
We iterate over the hull darts betweeneup inclusive andelow exclusive, starting ateup
and walking towardselow. Consider any suche and letesuccbe its face cycle succes-
sor. We add the dart(source(esucc), v) afteresuccto A(source(esucc)) and we append
the dart(v, source(esucc)) to A(v). Observe that this way of adding darts buildsA(v)

in counter-clockwise order and adds the dart(source(esucc), v) at the proper position to
A(source(esucc)).

The update step just described works correctly even if the new point is collinear with all
preceding points. In this situation only a line segment is added to the triangulation.

〈triangulate points: scan remaining points〉�POINT p;forall(p,L){ if (p == last_p) 
ontinue;edge e = G.last_adj_edge(last_v);
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e up

e last

e low

p

Figure 10.15 Edgese last, e up, ande low.last_v = G.new_node(p);last_p = p;// walk up to upper tangentdo e = G.fa
e_
y
le_pred(e); while (left_bend(p,G,e));// now e = e_up// walk down to lower tangent and triangulatedo { edge su

_e = G.fa
e_
y
le_su

(e);edge x = G.new_edge(su

_e,last_v,after,0);edge y = G.new_edge(last_v,sour
e(su

_e),0);G.set_reversal(x,y);e = su

_e;} while (left_bend(p,G,e));}
〈mark edges of convex hull as HULLDARTS〉

In the pieces of code above we labeled all new edges with zero.We now relabel all hull
darts as such. The last edge added to the triangulation is a hull dart and all other hull darts
are reached by tracing the face cycle containing it. The labeling of the hull darts will prove
useful in the section on Delaunay diagrams.

We return a hull dart.

〈mark edges of convex hull as HULLDARTS〉�edge hull_dart = G.last_edge();if (hull_dart){ edge e = hull_dart;do { G[e℄ = HULL_DART;
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K n Gen V Hull Hull check Triang Triang check

S 20000 0.44 25 1.71 0 3.1 23.7

S 40000 0.92 29 3.65 0 6.43 47.35

S 80000 1.84 35 7.52 0 13.04 94.31

D 20000 0.41 91 1.9 0 3.13 24.72

D 40000 0.73 123 3.6 0 6.26 47.29

D 80000 1.47 147 7.72 0 13.15 94.36

C 20000 47.3 19992 1.69 0.17 2.62 21.19

C 40000 95.59 39958 3.59 0.42 5.47 42.01

C 80000 190.9 79756 8.08 1.32 11.65 86.39

Table 10.3 The running times of the sweep algorithms for convex hulls and triangulations. We
generated unsorted lists ofn points according to the same distributions as in Table 10.1.The
meaning of the first four columns is as in Table 10.1. The column “Hull” shows the time to
compute the convex hull, the column “Hull check” shows the time to verify that any three
consecutive vertices ofCH form a right turn, the column “Triang” shows the time to compute the
triangulation, and the column “Triang check” shows the timeto run Is Triangulation(G).e = G.fa
e_
y
le_su

(e);} while (e != hull_dart);}return hull_dart;

Table 10.3 compares the running times of the sweep algorithms for convex hulls and tri-
angulations. We generatedn random points in a square, a disc, and on a circle, respectively,
The triangulation algorithm takes about twice as long as theconvex hull program. The table
also shows the time for partially checking the output of either program. For the convex hull
program we checked that any three consecutive vertices forma right turn and in the case
of triangulations we called the checkerIs Triangulation(G), which will be discussed in the
next section.

Both checks are only partial. In the case of triangulations we do not check that exactly
the input points appear as vertices of the triangulation. This omission could be corrected
by the use of a dictionary. In the case of the convex hull program we do not verify that all
input points lie inside the produced convex chain. This is anomission which is not easily
corrected; the obvious approach takes quadratic time.

Exercises for 10.2
1 Write a program that verifies that the nodes of aGRAPH<POINT, int> agree with the

points in alist<POINT>. Add this to the check of the triangulation program.
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2 Extend the randomized incremental construction of convexhulls to an incremental con-
struction of triangulations.

10.3 Verification of Geometric Structures, Basics

We have by now seen programs to compute convex hulls, minimumwidth stripes, and
triangulations. The programs are non-trivial and we will see more complex programs in
later sections. Although we wrote the documentation and thecorrectness proofs in parallel
to the development of these programs, we nevertheless made mistakes, some minor, like
testing for positive orientation instead of non-negative orientation, and some major, like
assuming that every set of points contains three non-collinear points. Visual debugging,
i.e., displaying the output of a geometric computation, wasan indispensible aid in getting
the programs correct, but visual debugging has its limits. Visual debugging is most useful
in the plane; already displaying a partition of three-spaceis next to impossible. Also, the
representation underlying a geometric object may be incorrect, although the object itself
“looks correct”.

One of our key experiences was the development of a program tocompute convex hulls in
arbitrary dimensions. It took some time to get the programs working for points in the plane,
but after some time it produced convex hulls which “looked right”. We moved to three-space
and a few hours later the convex hulls in three-space looked right. We got adventurous and
tried an example in seven-dimensional space. The program ran to completion and claimed
that it had computed the convex hull. Given our past experience we had every reason to
believe the contrary. At that time we had no way to check the result of the convex hull
computation. We teamed up with some collegues and wrote [MNS+96]. In this paper
we discuss how to verify convex hulls, triangulations, Delaunay diagrams, and Voronoi
diagrams. Alternative checkers are discussed in [DLPT97].

In this section and in Sections 10.4.3, 10.4.6, and 10.5.3 wederive procedures to verify
properties ofgeometric graphs. A geometric graph is a straight line embedded map. Ev-
ery node is mapped to a point in the plane and every dart is mapped to the line segment
connecting its endpoints. We start with procedures to checkthat the edges around vertices
are cyclically ordered, that face cycles define convex polygons, and that a graph defines a
convex subdivision or a triangulation. In later sections wewill extend these functions to
check Delaunay triangulations, Delaunay diagrams, and Voronoi diagrams.

We usegeograph as a template parameter for geometric graphs. Any instantiation
geographinst of geographmust provide a functionVECTOR edge ve
tor(
onst geo graph inst& G, 
onst edge& e)
that returns a vector from the source to the target ofe. We will use two instantiations of
geograph in this chapter:GRAPH<POINT, int> for triangulations, Delaunay triangula-
tions, and Delaunay diagrams, andGRAPH<CIRCLE, POINT> for Voronoi diagrams. In
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the first case, the position of a nodev is given by the pointG[v] and hence the edge vector
function can be realized as

〈GRAPH〈POINT,int〉: edge vector function〉�stati
 VECTOR edge_ve
tor(
onst GRAPH<POINT,int>& G, 
onst edge& e){ return G[G.target(e)℄ - G[G.sour
e(e)℄; }
In the second case, the position of a nodev is given by the center of the circleG[v]. We
will define the corresponding edge vector function in the section on Voronoi diagrams.

All functions that check properties of geometric graphs arecollected in the file

〈geocheck.t〉�
〈comparing edges by angle〉
〈cyclically ordered lists〉
〈verifying the order of adjacency lists and the convexity of faces〉

in directory LEDA/templates. This file must be included to use any of these functions.

10.3.1 Monotone and Cyclically Monotone Sequences
Let x = (x1, x2, . . . , xn) be a sequence of elements from some ordered set;x is called
non-decreasingif xi ≤ xi+1 for all i , 1 ≤ i < n, andx is calledincreasingif xi < xi+1

for all i , 1 ≤ i < n, x is calledcyclically non-decreasingiff some cyclic shift ofx is non-
decreasing, andx is calledcyclically increasingiff some cyclic shift ofx is increasing. The
notions non-increasing, decreasing, cyclically non-increasing, and cyclically decreasing are
defined analogously.

The functionsIs C NondecreasingandIs C Increasingcheck whether a sequence is cycli-
cally non-decreasing or increasing. They take a listL of elements of some typeT and a
compare objectcmpfor typeT .

The implementation is simple. We iterate over the elements of L and compare every
element with its cyclic successor. We count how often the successor is smaller (smaller or
equal for the second function). If the count reaches two, thesequence violates the property.

〈cyclically ordered lists〉�template <
lass T>bool Is_C_Nonde
reasing(
onst list<T>& L, 
onst leda_
mp_base<T>& 
mp){ list_item it;int number_of_less = 0;forall_items(it,L)if ( 
mp(L[L.
y
li
_su

(it)℄,L[it℄) < 0 ) number_of_less++;return (number_of_less < 2);}template <
lass T>bool Is_C_In
reasing(
onst list<T>& L, 
onst leda_
mp_base<T>& 
mp){ list_item it;
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mp(L[L.
y
li
_su

(it)℄,L[it℄) <= 0 ) number_of_lesseq++;return (number_of_lesseq < 2);}
The functionsIs C Nonincreasingand Is C decreasingare defined analogously. We leave
their implementation to the reader.

10.3.2 Comparing Edges by Angle
For a non-zero two-dimensional vectorv let α(v) be the angle between the positivex-axis
andv, i.e., the angle by which the positivex-axis has to be turned counter-clockwise until
it aligns withv. The geo kernels provide functionsint 
ompare by angle(
onst VECTOR& v1,
onst VECTOR& v2)
that compare vectors by angle, i.e., the functions return−1 if v1 precedesv2, 0 if v1 and
v2 define the same angle, and+1 if v1 succeedsv2. The zero vector precedes all non-zero
vectors in the ordering by angle.

In a geometric graphG the functionedgevector(G, e) returns the vector from the source
to the target of edgee. The compare objectcmpedgesbyangle compares the edges of
any geograph G according to the vectors defined by the edges ofG. It is derived from
ledacmpbase<edge>, has a constructor that takes a geometric graphG and stores a refer-
ence to it in the object, and a function operator that takes two edgese and f and compares
them according to the vectors defined by them.

〈comparing edges by angle〉�template <
lass geo_graph>
lass 
mp_edges_by_angle: publi
 leda_
mp_base<edge> {
onst geo_graph& G;publi
:
mp_edges_by_angle(
onst geo_graph& g): G(g){}int operator()(
onst edge& e, 
onst edge& f) 
onst{ return 
ompare_by_angle(edge_ve
tor(G,e), edge_ve
tor(G,f)); }};
10.3.3 Counter-Clockwise Ordered Adjacency Lists
The functionbool Is CCW Ordered(
onst geo graph& G)
returns true if for all nodesv the neighbors ofv are in increasing counter-clockwise order
aroundv, and the functionbool Is CCW Ordered Plane Map(
onst geo graph& G)
returns true if, in addition,G is a plane map. The function
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reorders the adjacency lists such that for every nodev of G the edges inA(v) are in non-
decreasing order by angle.

All three functions are very easy to implement. For the first function, we define a compare
objectcmpto compare the darts ofG by angle, and then check whether the darts out of every
nodev are cyclically increasing. The second function calls the first and checks whetherG
is a plane map, and the third function sorts the set of darts and then rearranges the adjacency
lists.

〈verifying the order of adjacency lists and the convexity of faces〉�template <
lass geo_graph>bool Is_CCW_Ordered(
onst geo_graph& G){ node v;
mp_edges_by_angle<geo_graph> 
mp(G);forall_nodes(v,G)if ( !Is_C_In
reasing(G.out_edges(v),
mp) ) return false;return true;}template <
lass geo_graph>bool Is_CCW_Ordered_Plane_Map(
onst geo_graph& G){ return Is_Plane_Map(G) && Is_CCW_Ordered(G); }template <
lass geo_graph>bool Is_CCW_Weakly_Ordered(
onst geo_graph& G){ node v;
mp_edges_by_angle<geo_graph> 
mp(G);forall_nodes(v,G)if ( !Is_C_Nonde
reasing(G.out_edges(v),
mp) ) return false;return true;}template <
lass geo_graph>bool Is_CCW_Weakly_Ordered_Plane_Map(
onst geo_graph& G){ return Is_Plane_Map(G) && Is_CCW_Weakly_Ordered(G); }template <
lass geo_graph>void SORT_EDGES(geo_graph& G){ 
mp_edges_by_angle<geo_graph> 
mp(G);list<edge> L = G.all_edges();L.sort(
mp);G.sort_edges(L);}
10.3.4 Convex Faces
We define functions that check for convexity of faces. Consider any face cyclef of a
geometric graphG; f defines a closed polygonal chainC in the plane. We want to know
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Figure 10.16 A strictly convex counter-clockwise polygonal chain, a weakly convex clockwise
polygonal chain, and a chain which is not simple.

whether the polygonal chain is the boundary of a convex region. More precisely, we callC
a weakly convex counter-clockwise polygonal chainif C is simple, i.e., does not intersect
itself, and the region to the left ofC is convex. We callC astrictly convex counter-clockwise
polygonal chainor simplyconvex counter-clockwise polygonal chainif, in addition, any two
consecutive edges ofC do not have the same direction, see Figure 10.16. For clockwise
chains the region to the right ofC must be convex.

In a convex subdivision, e.g., a triangulation, the face cycles of all bounded faces form
convex counter-clockwise polygonal chains, and the face cycle of the unbounded face forms
a weakly convex clockwise polygonal chain.

Let p0, p1, . . . , pk−1 be the points associated with the nodes ofC.

Lemma 5 C is a counter-clockwise weakly convex polygonal chain iff the sequence s=
(p1 − p0, p2 − p1, . . . , p0 − pk−1) is cyclically non-decreasing.

Proof If C is a counter-clockwise weakly convex polygonal chain thens is clearly cyclically
non-decreasing.

Assume next thats is cyclically non-decreasing. Then no pair of consecutive vectors
forms a right turn and the angles between all pairs of consecutive vectors sum to 2π . We
conclude thatC is simple, i.e, does not intersect itself, and that the region to the left ofC is
convex.

The functionsbool Is CCW Convex Fa
e Cy
le(
onst geo graph& G,
onst edge e)bool Is CCW Weakly Convex Fa
e Cy
le(
onst geo graph& G, 
onst edge e)bool Is CW Convex Fa
e Cy
le(
onst geo graph& G, 
onst edge e)bool Is CW Weakly Convex Fa
e Cy
le(
onst geo graph& G, 
onst edge e)
return true if the face cycle ofG containinge has the stated property, i.e., if the face cycle
forms a cyclically increasing, non-decreasing, decreasing, or non-increasing, respectively,
sequence of edges according to the compare-by-angles ordering.

We give the implementation of the first function. We collect the edges of the face cycle
in a list L, define a compare objectcmpthat compares edges ofG, and then check whether
L is cyclically increasing.
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〈verifying the order of adjacency lists and the convexity of faces〉+�template <
lass geo_graph>bool Is_CCW_Convex_Fa
e_Cy
le(
onst geo_graph& G, 
onst edge& e){ list<edge> L;edge e1 = e;do { L.append(e1);e1 = G.fa
e_
y
le_su

(e1);} while ( e1 != e );
mp_edges_by_angle<geo_graph> 
mp(G);return Is_C_In
reasing(L,
mp);}
10.3.5 Convex Subdivisions
A geometric graphG is aconvex planar subdivision, if G is a plane map and if the positions
assigned to the nodes ofG define a straight line embedding ofG in which all bounded faces
are strictly convex and in which the unbounded face is weaklyconvex.

The functionbool Is Convex Subdivision(
onst GRAPH<POINT,int>& G)
returns true ifG is a convex planar subdivision, and the functionbool Is Triangulation(
onst geo graph& G)
returns true ifG is a convex planar subdivision in which every bounded face isa simplex.
More precisely, if all nodes ofG lie on a common line, then every face cycle of a bounded
face is simply a pair of anti-parallel edges, and if the nodesof G do not lie on a common
line, then every bounded face ofG is a triangle.

Both functions are implemented in terms of the functionbool Is Convex Subdivision(
onst GRAPH<POINT,int>& G,bool& is triangulated)
that returns true ifG is a convex subdivision and setsis triangulatedto true if, in addition,
G is a triangulation.

We discuss the theory behind the latter function and then give its implementation. IfG is
a convex subdivision, then the following conditions are certainly satisfied:

• G is a connected plane map.

• All nodes ofG have counter-clockwise ordered adjacency lists.

• If all vertices lie on a common line, i.e., the underlying point set has affine dimension
less than 2, thenG is a path which reflects the ordering of its vertices on the line.

• If the underlying point set has affine dimension 2, then each face is either a bounded
counter-clockwise oriented convex polygon or a clockwise oriented weakly convex
polygon. There is only one face of the latter kind.
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Lemma 6 If G satisfies the four conditions above, then G is a convex planar subdivision.

Proof Assume first that all vertices ofG lie on a linel and letv1, v2, . . . ,vn be the ordering
of the vertices onl . Then the points assigned to adjacent vertices must be distinct,v1 and
vn must have degree one, andvi must have neighborsvi−1 andvi+1 for 1 < i < n. The
number of edges ofG is 2n − 2 wheren is the number of nodes ofG.

Assume next that not all vertices ofG lie on a common line. LetR be the region that is
enclosed by the unique face cyclef which is a weakly convex clockwise polygon. We claim
that all vertices that are not part off lie in the interior ofR. Assume otherwise. Then there
must be a vertexv that is not part off and a directiond such thatv is a maximal vertex ofG
in directiond (note that we said “a maximal vertex” and not “the maximal vertex”). Since
v is maximal there must be a pair of edges incident tov which span an angle of at leastπ

and hencev must be part of a weakly convex chain. Thusv belongs tof , a contradiction.
Every face cycle ofG different from f defines a counter-clockwise oriented convex

polygonal region in the plane. We need to show that these regions form a partition ofR.
Consider a pointp moving in the plane such that it avoids vertices ofG. Wheneverp crosses
a directed edgee it will enter another region (namely, the one to the left ofreversal(e)) ex-
cept whenreversal(e) belongs to f . This shows that all points in the interior ofR are
covered by the same number of regions. Also, since all vertices on the boundary ofR are
part of f , exactly one bounded region is incident to each edge off . Altogether we have
shown that the regions defined by the face cycles different from f partition R. The number
of edges ofG must be at least 2n since every node must have degree at least two.

We turn to the implementation. We first check whetherG is a connected plane map in
which all adjacency lists are counter-clockwise ordered. Then we comparem andn. If
m = 2n−2 we must be in the situation that all vertices ofG are collinear and ifm > 2n−2
we must be in the situation that the underlying point set has affine dimension 2.

〈subdivisioncheck.c〉+�stati
 bool False(
onst string& s){ 
err << "Is_Convex_Subdivision: " << s; return false; }bool Is_Convex_Subdivision(
onst GRAPH<POINT,int>& G,bool& is_triangulated){ is_triangulated = true;if ( !Is_Conne
ted(G) ) return False("G is not 
onne
ted");if ( !Is_CCW_Ordered_Plane_Map(G) )return False("G is not a CCW-ordered plane map");int n = G.number_of_nodes();int m = G.number_of_edges();
mp_edges_by_angle<GRAPH<POINT,int> > 
mp(G);if ( m == 2*n - 2) { 〈ICS: collinear points〉 }
〈ICS: affine dimension is two〉}
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If m = 2n − 2, the fact thatG is a connected bidirected graph guarantees thatG is a tree.
It therefore suffices to check that there is no vertex of degree three and that for every vertex
of degree two the two incident edges point in opposite directions.

〈ICS: collinear points〉�node v;if ( n <= 1 ) return true;forall_nodes(v,G){ if ( G.outdeg(v) > 2 ) return False("G is a tree but not a 
hain");if (G.outdeg(v) == 1) 
ontinue;edge e1 = G.first_adj_edge(v), e2 = G.last_adj_edge(v);node w = G.target(e1);node u = G.target(e2);if ( G[v℄ == G[w℄ || G[v℄ == G[u℄ )return False("nodes at equal positions");if ( 
mp(e1,G.reversal(e2)) != 0 )return False("dire
tion not opposite");}return true;
It remains to deal with the situation that the affine dimension of the underlying point set is

2. We trace all face cycles ofG. One face cycle must be a weakly convex clockwise oriented
polygon and all other face cycles must be strongly convex counter-clockwise polygons. We
make the distinction by considering three consecutive nodes of a face cycle and determining
their orientation. If the orientation is positive, the facecycle must be a strongly convex
counter-clockwise polygon, and if the orientation is non-positive, the face cycle must be the
boundary of the unbounded face.

If the number of edges of the face cycle is three, the orientation test itself guarantees
strong convexity and there is no need to trace the face cycle to check convexity.

〈ICS: affine dimension is two〉�edge e;edge_array<bool> 
onsidered(G,false);bool already_seen_unbounded_fa
e = false;forall_edges(e,G){ if ( !
onsidered[e℄ ){ // 
he
k the fa
e to the left of ePOINT a = G[sour
e(e)℄;POINT b = G[target(e)℄;POINT 
 = G[target(G.fa
e_
y
le_su

(e))℄;int orient = orientation(a,b,
);int n = 0;edge e0 = e;do { 
onsidered[e℄ = true;e = G.fa
e_
y
le_su

(e);n++;} while ( e != e0);if ( orient > 0 )



10.4 Delaunay Triangulations and Diagrams 37{ if ( n > 3 ){ is_triangulated = false;if ( !Is_CCW_Convex_Fa
e_Cy
le(G,e) )return False("non-
onvex bounded fa
e");}}else{ if ( already_seen_unbounded_fa
e )return False("two fa
es qualify for unbounded fa
e");already_seen_unbounded_fa
e = true;if ( !Is_CW_Weakly_Convex_Fa
e_Cy
le(G,e) )return False("unbounded fa
e is not weakly 
onvex");}}}return true;
Exercises for 10.3
1 Improve the implementation ofIs CWWOrderedand the functions checking convexity

of faces. In our implementation we first construct a list of edges and then check this list
for cyclic monotonicity. Avoid the construction of the list.

2 Improve the theory underlyingIs ConvexSubdivision. Is it necessary to check whether
the edges inA(v) are CCW-ordered or does this property follow from the condition that
all bounded faces are counter-clockwise strongly convex polygonal chains?

3 Extend the functionIs ConvexSubdivisionsuch that it works forgeographand not only
for GRAPH<POINT, int>.

10.4 Delaunay Triangulations and Diagrams

A point set may in general be triangulated in many different ways. Depending on the ap-
plication one triangulation is preferable over another. A triangulation that is useful in many
contexts is the so-calledDelaunay triangulation. A triangulation of a point setS is called
Delaunayif the interior of the circumcircle of any triangle in the triangulation contains
no point of S. Figure 10.17 shows a Delaunay triangulation. The voronoidemo and the
point setdemo in xlman illustrate Delaunay diagrams.

In this section we will first show the existence of Delaunay triangulations. The exis-
tence proof is constructive and yields a simple algorithms for the construction of Delaunay
triangulation, the so-callingflipping algorithm. We give an implementation of the algo-
rithm based on the so-calledincircle test, a powerful geometric primitive. The Delaunay
triangulation of a point set is in general not unique (if the point set contains co-circular
points); it has, however, a substructure which is unique, the so-calledDelaunay diagram.
We characterize Delaunay diagrams and give some applications of Delaunay diagrams and
triangulations.
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Figure 10.17 A Delaunay triangulation. The figure was produced with the voronoi demo in
xlman.

10.4.1 Delaunay Triangulations and the Flipping Algorithm
Our immediate goal is to prove that Delaunay triangulationsexist. Consider the simplest
situation first, four pointsp, q, r , ands forming the corners of a convex quadrilateral.
There are two triangulations corresponding to the chordspr andqs, respectively, see Figure
10.18. We show that at least one of the two triangulations is Delaunay. Assume that the
triangulation corresponding to the chordpr is not Delaunay, say becauses is contained in the
circumcircle of triangle△(p, q, r ). Thenq is also contained in the circumcircle of triangle
△(p, r, s). We can obtain the circumcircle of triangle△(p, q, s) from the circumcircle of
△(p, q, r ) by reducing the size of the circle while simultaneously insisting that it passes
throughp andq. This shows thatr is outside the circumcircle of triangle△(p, q, s) and
that the radius of the circumcircle of△(p, q, s) is smaller than the radius of the circumcircle
of △(p, q, r ). The symmetric argument shows thatp is outside the circumcircle of triangle
△(q, r, s) and that the radii of both circles in the Delaunay triangulation are smaller than
the radii of the circles in the other triangulation.

Let us next turn to point sets of larger cardinality. We show that any triangulation which
is not Delaunay contains two adjacent triangles, i.e., triangles sharing an edge, that form a
convex quadrilateral and such that the circumcircles of both triangles contain the third vertex
of the other triangle. Clearly, a triangulation which is notDelaunay contains a triangle,
say△(p, q, r ) whose circumcircle is non-empty. Assume w.l.o.g. that there is a points
contained in the regionR formed by the chordpq and the circular arc connectingp andq
and not containingr , see Figure 10.19. Consider the other triangle incident to edgepq. If
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Figure 10.18 The two triangulations of a convex quadrilateral.
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Figure 10.19 A triangle△(p, q, r ) with non-empty circumcircle. RegionR is shown shaded.

the third vertex of this triangle is also contained inR, we have identified the desired pair of
triangles. If the third vertex, sayt , is outsideR thens is also contained in the circumcircle
of triangle△(p, q, t) ands is closer to△(p, q, t) than to△(p, q, r ). Here, the distance of a
point to a triangle is the distance to the closest point of thetriangle. We repeat the argument
with triangle△(p, q, t) and points. After a finite number of steps we must arrive at the first
case.

We have now shown that any triangulation that is not Delaunaycontains a convex quadri-
lateral formed by two adjacent triangles such that the triangulation of this quadrilateral is
not Delaunay. The deletion of the common edge of both triangles and the insertion of the
other diagonal of the quadrilateral is called adiagonal-flipor simply flip. A flip makes
the triangulation locally Delaunay and also decreases the sum of the radii of the circumcir-
cles of all triangles. We have thus arrived at the so-called flipping algorithm for Delaunay
triangulations:
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T = some triangulation;
while (T is not Delaunay)f find a pair of adjacent triangles that form a convex quadrilateral and whose triangula-

tion is not Delaunay;

flip the diagonal of the quadrilateral;g
The algorithm terminates since every flip reduces the sum of the radii of all circumcircles

and hence no triangulation can repeat. The maximal number offlips performed by the
flipping algorithm is2(n2). We ask you in the exercises to construct a worst case point set.
The upper bound follows from the fact that once a segmentpq is flipped away it will never
be reintroduced into the triangulation. The flipping algorithm is due to Lawson ([Law72]).

For points in convex position4 there is also a so-calledfurthest site Delaunay triangula-
tion. In a furthest site Delaunay triangulation of a setS the circumcircle of any triangle has
no point ofS in its exterior. The flipping algorithm can also be used to construct furthest site
Delaunay triangulation. We start with an arbitrary triangulation of a set of points in convex
position and flip as long as the triangulation is not furthestsite Delaunay. Of course, this
time we flip the diagonal of a convex quadrilateral if the third vertex of the other triangle is
outside the circumcircle.

When it is necessary to emphasize the difference between ordinary Delaunay triangu-
lations and furthest site Delaunay triangulations we call the former nearest site Delaunay
triangulations. Some algorithms work for nearest and furthest site Delaunay triangulations.
In these algorithms we use the enumeration typeenum delaunay voronoi kind { NEAREST, FURTHEST };
defined in LEDA/geoglobal enums.h to distinguish between the two kinds of triangula-
tions.

As in the preceding section we use the typeGRAPH<POINT, int> to represent trian-
gulations. For every nodev of G the associated point is given byG[v]. For every edge
e of G, G[e] is an integer in the enumeration typedelaunayedgeinfo. In the Delau-
nay triangulation all hull darts are labeled HULLDART, and every other dart is labeled
either DIAGRAM DART or NON DIAGRAM DART. A non-hull dart is labeled DIA-
GRAM DART if the circumcircles of the triangles incident to it aredistinct and is la-
beled NONDIAGRAM DART otherwise. The reversals of hull darts are labeled DIA-
GRAM DART.

The functionsvoid DELAUNAY TRIANG( 
onst list<POINT>& L, GRAPH<POINT,int>& G);void F DELAUNAY TRIANG(
onst list<POINT>& L, GRAPH<POINT,int>& G);
compute the nearest site and the furthest site Delaunay triangulation of a listL of points.

4 A set Sof points is in convex position if every point inS is a vertex of the convex hull ofS.
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10.4.2 The Flipping Algorithm
We turn the flipping algorithm into a program5. The flipping algorithm works for nearest
and furthest site Delaunay triangulations.

We assume that we start with a triangulationG in which all hull darts are labeled with the
label HULL DART and in which all other darts have a label different from HULL DART.
The algorithm terminates with a Delaunay triangulation andreturns the number of flips
performed. For furthest site triangulations we assume further that the vertices ofG are in
convex position.

The algorithm maintains a setS of darts which may potentially violate the Delaunay
property. Initially, S consists of one dart in each uedge ofG. The algorithm terminates
whenS is empty. As long asS is non-empty, an arbitrary darte of S is chosen. If it violates
the Delaunay property, a flip is performed.

We define the integerf to be+1 if we are aiming for a nearest site diagram and to be
−1 if we are aiming for a furthest site diagram. It will be used in the test for the Delaunay
property.

〈flip delaunay.c〉�int DELAUNAY_FLIPPING(GRAPH<POINT,int>& G, delaunay_voronoi_kind kind){ if (G.number_of_nodes() <= 3) return 0;int f = ( kind == NEAREST ? +1 : -1);list<edge> S;edge e;forall_edges(e,G) if ( index(e) < index(G.reversal(e)) ) S.append(e);int flip_
ount = 0;while ( !S.empty() ){ edge e = S.pop();edge r = G.reversal(e);
〈check e for the Delaunay property and flip if necessary〉}return flip_
ount;}

Let e be a dart of the current triangulation. Ife is a hull dart or the reversal of a hull
dart, then no action is required as hull darts belong to everyDelaunay triangulation. Ife is
not a hull dart, define edgesr , e1, ande3, and pointsa, b, c, andd as in Figure 10.20;r is
the reversal ofe, e1 is the face cycle successor ofr , e3 is the face cycle successor ofe, a
andb are source and target ofe1, andc andd are source and target ofe3. The quadrilateral
(a, b, c, d) is convex if and only if the interior angles at verticesa andc are less than 180◦,
i.e., if (d, a, b) and(b, c, d) are left turns.

5 The program delaunayflip anim in LEDAROOT/book/Geo animates the algorithm.
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Figure 10.20 The edgese, r , e1, e2, e3, ande4, and the pointsa, b, c, andd.

〈check e for the Delaunay property and flip if necessary〉�if (G[e℄ == HULL_DART || G[r℄ == HULL_DART) 
ontinue;G[e℄ = DIAGRAM_DART;G[r℄ = DIAGRAM_DART;// e1,e2,e3,e4: edges of quadrilateral with diagonal eedge e1 = G.fa
e_
y
le_su

(r);edge e3 = G.fa
e_
y
le_su

(e);// flip testPOINT a = G[sour
e(e1)℄;POINT b = G[target(e1)℄;POINT 
 = G[sour
e(e3)℄;POINT d = G[target(e3)℄;if ( left_turn(d,a,b) && left_turn(b,
,d) ){ // the quadrilateral is 
onvex
〈check circle property and flip if necessary〉}

Assume now that the quadrilateral(a, b, c, d) is convex. The triangulation is locally Delau-
nay if d does not lie inside the circle defined by(a, b, c), and can be improved by a flip ifd
lies inside the circle. For the furthest site triangulationthe situation is reversed. The testside of 
ir
le(a,b,
,d)
returns

+1 if d is left of the oriented circle througha, b, andc,
0 if |{a, b, c}| ≤ 2 ord lies on the oriented circle througha, b, andc,

−1 if d is right of the oriented circle througha, b, andc.

Let soc= f · sideof circle(a, b, c, d). If socis zero, the four points are co-circular, and
no flip is required. However,e andr have to be relabeled with NONDIAGRAM DART. If
socis positive,d lies inside the circumcircle of the triangle(a, b, c) (outside for furthest site
triangulations) and a flip is required. Lete2 ande4 be the other two edges of the quadrilateral
(a, b, c, d). We movee andr to the other diagonal of the quadrilateral. More precisely,we
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inserte after e2 into A(source(e2))
6 and makesource(e4) the target ofe, and we insertr

aftere4 into A(source(e4)) and makesource(e2) the target ofr . We also add all four sides
of the quadrilateral toS to make sure that their Delaunay property is rechecked. Observe
that flippinge may affect the “Delaunay-ness” of the sides of the quadrilateral.

〈check circle property and flip if necessary〉�int so
 = f * side_of_
ir
le(a,b,
,d);if (so
 == 0) // 
o-
ir
ular quadrilateral(a,b,
,d){ G[e℄ = NON_DIAGRAM_DART;G[r℄ = NON_DIAGRAM_DART;}if (so
 > 0) // flip{ edge e2 = G.fa
e_
y
le_su

(e1);edge e4 = G.fa
e_
y
le_su

(e3);S.push(e1);S.push(e2);S.push(e3);S.push(e4);// flip diagonalG.move_edge(e,e2,sour
e(e4));G.move_edge(r,e4,sour
e(e2));flip_
ount++;}
In order to construct the Delaunay triangulation for a set ofpoints we first triangulate the

set of points and then call the flipping algorithm to turn the triangulation into a Delaunay
triangulation.

In the case of the furthest site Delaunay triangulation we first extract the vertices of the
convex hull, then construct a triangulation of them, and finally use the flipping algorithm to
obtain a furthest site Delaunay triangulation.

〈flip delaunay.c〉+�int DELAUNAY_FLIP(
onst list<POINT>& L, GRAPH<POINT,int>& G){ TRIANGULATE_POINTS(L,G);if (G.number_of_edges() == 0) return 0;return DELAUNAY_FLIPPING(G,NEAREST);}int F_DELAUNAY_FLIP(
onst list<POINT>& L, GRAPH<POINT,int>& G){ list<POINT> H = CONVEX_HULL(L);TRIANGULATE_POINTS(H,G);if (G.number_of_edges() == 0) return 0;return DELAUNAY_FLIPPING(G,FURTHEST);}
6 Recall that for a nodev, A(v) is the counter-clockwise ordered cyclic list of darts out ofv.
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10.4.3 Verifying Delaunay Triangulations
The functionbool Is Delaunay Triangulation(
onst GRAPH<POINT,int>& G,delaunay voronoi kind kind);
checks whetherG is a Delaunay triangulation of the points associated with its nodes. The
flagkind allows us to choose between nearest and furthest site diagrams.

Let S be the set of points associated with the nodes ofG. G is a Delaunay triangulation
of S, if G is a triangulation and every triangle ofG has the Delaunay property.

Thus the implementation is simple. First we check whetherG is a triangulation. If
the affine dimension ofS is less than 2 this suffices; the affine dimension is less than 2if
m = 2n − 2. Otherwise, we walk over all edges. If an edge separates twotriangles that
form a convex quadrilateral we check the Delaunay property.

〈delaunaycheck.c〉+�stati
 bool False(
onst string& s){ 
err << "Is_Delaunay_Triangulation: " << s; return false; }bool Is_Delaunay_Triangulation(
onst GRAPH<POINT,int>& G,delaunay_voronoi_kind kind){ if ( !Is_Triangulation(G) ) return False("G is no triangulation");if (G.number_of_edges() == 2*G.number_of_nodes() - 2) return true;
〈check Delaunay property〉return true;}

where

〈check Delaunay property〉�edge e;edge_array<bool> 
onsidered(G,false);forall_edges(e,G){ if (!
onsidered[e℄){ // 
he
k the fa
es in
ident to e and reversal(e)
onsidered[e℄ = 
onsidered[G.reversal(e)℄ = true;POINT a = G[sour
e(e)℄;POINT b = G[target(G.
y
li
_adj_pred(e))℄;POINT 
 = G[target(e)℄;POINT d = G[target(G.fa
e_
y
le_su

(e))℄;if (left_turn(a,b,
) && left_turn(b,
,d) &&left_turn(
,d,a) && left_turn(d,a,b) ){ // the fa
es to the left and right of e are boundedint s = side_of_
ir
le(a,b,
,d);/* +1 for inside, -1 for outside */if ( (kind == NEAREST && s > 0) || (kind == FURTHEST && s < 0) )return False("violated Delaunay property");}}}
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K n Flipping Guibas–Stolfi Dwyer Check

S 20000 26.4 17.36 8.57 25.63

S 40000 56.89 37.45 17.44 51.66

S 80000 122.1 79.61 36.35 102.7

D 20000 26.13 17.22 8.71 25.53

D 40000 56.28 37.1 17.62 51.09

D 80000 120.8 78.49 36.92 102.7

C 20000 14.66 10.6 11.09 27.72

C 40000 29.74 21.73 22.89 55.87

C 80000 60.74 44.55 45.29 111

Table 10.4 The running times of Delaunay triangulation algorithms. The first column designates
the kind of input (S for random points in a square, D for randompoints in a disk, C for random
points near a circle), and the other columns show the number of points, the running time of the
flipping algorithm, the running time of the algorithm of Guibas and Stolfi, the running time of
the algorithm of Dwyer, and the time to verify the correctness of the result, respectively.

10.4.4 Other Algorithms for Delaunay Triangulations
The flipping approach yields a simple but not the most efficient Delaunay triangulation
algorithm. There areO(n logn) algorithms based on sweeping [For87], on divide-and-
conquer [GS85, Dwy87], and on randomized incremental construction [BT93]. The pa-
per [SD97] compares many Delaunay algorithms.

In LEDA the divide-and-conquer algorithms of Guibas and Stolfi and of Dwyer are avail-
able. Table 10.4 shows an experimental comparison of the flipping algorithm with the two
divide-and-conquer algorithms. The algorithm of Dwyer is consistently the best and there-
fore we use it as our default implementation. For the furthest site diagram we only have the
flipping algorithm.

〈delaunay.c〉�void DELAUNAY_TRIANG(
onst list<POINT>& L, GRAPH<POINT,int>& G){ DELAUNAY_DWYER(L,G); }void F_DELAUNAY_TRIANG(
onst list<POINT>& L, GRAPH<POINT,int>& G){ F_DELAUNAY_FLIP(L,G); }
10.4.5 Delaunay Diagrams
The Delaunay triangulation of a setS is in general not unique, e.g., ifSconsists of the cor-
ners of a square, or more generally of four co-circular points, then both triangulations ofS
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Figure 10.21 st is essential buts1t1 is not.

t

b′

b

D

e

a

a′

s

Figure 10.22 An essential segmentst with its disk D and an edgee = (a, b) of a Delaunay
triangulation intersectingst.

are Delaunay. We now characterize the segments that belong to all Delaunay triangulations.
Let s andt be two distinct points inS. A segmentst is calledessentialif there is a closed
disk D with S∩ D = {s, t}. In other words, there is a circle passing throughs andt such
thats andt are the only points ofScontained in the closure of the circle, see Figure 10.21.
We have

Lemma 7 Let S be a finite set of points in the plane and let s and t be distinct points in S.
The segment st is essential if and only if it belongs to every Delaunay triangulation of S.
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Figure 10.23 The discsDa, Db, andD.

Proof We first show that essential segments belong to all Delaunay triangulations. Assume
otherwise, sayst is essential but does not belong to some Delaunay triangulation T . Then
st cannot be an edge of the convex hull ofS because any such edge belongs to every tri-
angulation. The open segmentst is therefore contained in the interior of convS. Imagine
travelling along the segmentst from s to t . In the vicinity of s the segmentst runs inside
some triangle ofT and in the vicinity oft it runs inside some other triangle ofT . We con-
clude that the segmentst must intersect an edgee = (a, b) of T . Sincest is essential there
is a closed diskD with S∩ D = {s, t }. Let a′ andb′ be the intersections of the boundary
of D with edgee, see Figure 10.22. The four pointsa′, s, b′, andt form the corners of a
convex quadrilateral and are co-circular. This implies that any closed disk containing the
segmenta′b′ must also contain eithers or t . Consider next any of the triangles ofT incident
to e. The circumcircle of this triangle contains the segmenta′b′ in its interior and hence also
contains eithers or t in its interior. The triangle is therefore not Delaunay, a contradiction.
This proves that essential edges are part of every Delaunay triangulation.

To show the converse consider a non-essential segmentst. We will construct a Delaunay
triangulation that does not containst. Let T be any Delaunay triangulation ofS. If st is not
an edge ofT we are done. Otherwise, consider the two triangles△ and△′ incident tost in
T ; it is easy to see thatst is not a hull edge and hence the two triangles exist. Leta andb
be the third vertices of△ and△′, respectively. If the four pointss, a, t , b are co-circular
then we may replacest by ab and stay Delaunay. So, assume that the four points are not
co-circular. Thenb is outside the closed diskDa havings, a, andt on its boundary anda
is outside the closed diskDb havings, b, andt on its boundary, see Figure 10.23. Consider
the closed diskD havings andt on its boundary and having its center at the midpoint of the
centers ofDa andDb; all of D (except fors andt) is contained in the interior ofDa ∪ Db.
Thus,D ∩ S⊆ {s, t} andst is essential, a contradiction.
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We can now define theDelaunay diagramof a setSof points. It consists of all essential
segments defined by the points inS and is denotedDD(S). The Delaunay diagram is a
subgraph of every Delaunay triangulation. The Delaunay diagram is a planar graph whose
bounded faces are convex polygons all of whose vertices are co-circular. If no four points
of S are co-circular then all bounded faces are triangles and theDelaunay diagram is a
triangulation.

It is trivial to construct the Delaunay diagram from a Delaunay triangulation. We only
have to delete all edges that are labeled NONDIAGRAM DART.

〈delaunay.c〉+�void DELAUNAY_DIAGRAM(
onst list<POINT>& L, GRAPH<POINT,int>& DD){ DELAUNAY_TRIANG(L,DD);list<edge> el;edge e;forall_edges(e,DD) if ( DD[e℄ == NON_DIAGRAM_DART) el.append(e);forall(e,el) DD.del_edge(e);}
For furthest site diagrams the construction is completely analogous and therefore not shown.

10.4.6 Verifying Delaunay Diagrams
We show how to verify Delaunay diagrams. The functionbool Is Delaunay Diagram(
onst GRAPH<POINT,int>& G,delaunay voronoi kind kind);
checks whetherG is a Delaunay diagram of the points associated with its nodes. The flag
kind allows us to choose between nearest and furthest site diagrams. Let S be the set of
points associated with the nodes ofG.

It is clearly necessary thatG is a convex subdivision in which the vertices of every
bounded face (= a face whose face cycle is a convex counter-clockwise polygon) are co-
circular. Assume this is the case. ThenG is a Delaunay diagram if an arbitrary triangulation
of G is a Delaunay triangulation. It therefore suffices to check the Delaunay property of all
edges ofG as in〈check Delaunay property〉.

〈delaunaycheck.c〉+�stati
 bool False_IDD(
onst string& s){ 
err << "Is_Delaunay_Diagram: " << s; return false; }bool Is_Delaunay_Diagram(
onst GRAPH<POINT,int>& G,delaunay_voronoi_kind kind){ if ( !Is_Convex_Subdivision(G) )return False_IDD("G is no 
onvex subdivision");edge e;edge_array<bool> 
onsidered(G,false);forall_edges(e,G)
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onsidered[e℄){ // 
he
k the fa
e to the left of ePOINT a = G[sour
e(e)℄;POINT 
 = G[target(e)℄;POINT d = G[target(G.fa
e_
y
le_su

(e))℄;if ( left_turn(a,
,d) ){ // fa
e is boundedCIRCLE C(a,
,d);edge e0 = e;do { 
onsidered[e℄ = true;if ( !C.
ontains(G[sour
e(e)℄) )return False_IDD("fa
e with non-
o-
ir
ular verti
es");e = G.fa
e_
y
le_su

(e);} while ( e != e0 );}else{ // fa
e is unboundededge e0 = e;do { 
onsidered[e℄ = true;e = G.fa
e_
y
le_su

(e);} while ( e != e0 );}}}{ 〈check Delaunay property〉 }return true;}
10.4.7 Applications
Delaunay triangulations have several useful properties. We mention three:

• For a triangulationT let µ(T) be the smallest interior angle of any triangle inT .
Delaunay triangulations maximizeµ(T).

• Delaunay triangulations tend to produce “rounder” triangles than other triangulations,
see Figure 10.24, a property desirable for numerical applications of triangulations. For
example, the interpolation scheme presented at the beginning of Section 10.2 is
numerically more stable if the triangulation contains no “skinny” triangles.

• The Euclidian minimum spanning tree of a setS is a tree of minimum cost connecting
all points inS, where the cost of an edge is its Euclidian length. The Euclidian
minimum spanning tree is a subgraph of the Delaunay diagram.

The functionvoid MIN SPANNING TREE(
onst list<POINT>& L, GRAPH<POINT,int>& T)
computes the Euclidian minimum spanning tree for the pointsin L. It first constructs the
Delaunay diagramT for L, then runs the minimum spanning tree algorithm onT , and
finally deletes all edges fromT that do not belong to the minimum spanning tree.
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Figure 10.24 A Delaunay triangulation and a triangulation produced by sweeping. The
Delaunay triangulation is shown on the left. The triangles in the Delaunay triangulation are
“rounder” than in the triangulation by sweeping. The figure was generated with the
triangulationdemo (see LEDAROOT/demo/book/Geo).

Figure 10.25 A point set and its Euclidian minimum spanning tree. The figure was generated
with the voronoidemo in xlman.

Exercises for 10.4
1 Show that the flipping algorithm constructs a furthest siteDelaunay triangulation for a

set of points in convex position.



10.5 Voronoi Diagrams 51

2 Extend the functions for checking Delaunay triangulations and Delaunay diagrams such
that they also check the edge labels.

3 Write a program that takes a Delaunay triangulation and draws it into a graphicswindow.
For each triangle the circumcircle should also be displayed.

4 Consider the points(i, i 2), 0 ≤ i < n. Show that the Delaunay triangulation of this point
set has a fan-like shape. Show that the flipping algorithm mayperform�(n2) flips when
starting with the “opposite fan”.

5 (Euclidian minimum spanning tree (EMST)) For a setS of points in the plane a treeT
of minimum cost connecting all points inS is called a Euclidian minimum spanning tree
of S. The cost of an edge is defined as its Euclidian length.
a) Show that every edge of an EMST is essential. (Hint: For an edgee with endpoints
a andb consider the circle centered at the midpoint ofe and passing througha andb.
Assume that it contains a pointc ∈ S\ {a, b}. Show that a better tree can be obtained by
removinge and adding either(a, c) or (c, b).)
b) Conclude from part a) that an EMST is a subgraph of the Delaunay diagram. Write
a program to compute an EMST. Make use of programs for Delaunay diagrams and
minimum spanning trees. Try to work with the squared length of edges instead of their
length.

6 For a triangulationT let α(T) be the sorted tuple of all interior angles of all triangles in
T . Consider Figure 10.18 and letT1 andT2 be the two triangulations shown withT2 being
Delaunay. Show thatα(T1) ≤ α(T2) where the ordering on tuples is the lexicographic
one. Consider next any triangulationT of a setS that is not Delaunay and letT ′ be
obtained fromT by a diagonal flip. Show thatα(T) ≤ α(T ′). Conclude that Delaunay
triangulations maximize the smallest interior angle.

7 Improve the implementation of the flipping algorithm by ensuring that, for any pair of
darts in a uedge, at most one is inS. Observe that we ensure this property only at the
time of initialization. Does the running time improve?

10.5 Voronoi Diagrams

We discuss Voronoi diagrams. We define them and discuss theirrepresentation by graphs.
We relate them to Delaunay triangulations and show how to obtain Voronoi diagrams from
Delaunay triangulations. Finally, we discuss applications and the verification of Voronoi
diagrams.

10.5.1 Definition and Representation
A structure closely related to the Delaunay diagram is the so-calledVoronoi diagram. Let
S be a set of points in the plane. We will refer to the elements ofS assites. For any point
p of the plane letclose(p) be the set of sites that realize the closest distance betweenp and
the sites inS, i.e.,s ∈ close(p) if dist(s, p) ≤ dist(t, p) for all t ∈ S. In other words, there
is a circle with centerp passing through all points inclose(p) and having no points ofS
in its interior, see Figure 10.26. For most pointsp of the planeclose(p) consists of only a
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p1 p2 p3

Figure 10.26 Sites are shown as dots. The pointpi hasi sites inclose(pi ).

Figure 10.27 A Voronoi diagram. The figure was generated with the voronoidemo in xlman.

single site. For some pointsp, close(p) contains two or more sites. These points form the
so-called Voronoi diagramVD(S) of S.

VD(S) = {p ∈ IR2; |close(p)| ≥ 2}.

Figure 10.27 shows a Voronoi diagram. The Voronoi diagram isa graph-like structure.
Its vertices are all pointsp with |close(p)| ≥ 3, its edges are maximal connected sets of
points p with |close(p)| = 2, and its faces are maximal connected sets of pointsp with
|close(p)| = 1.

We derive some more properties of edges and faces. Consider any edgee of the Voronoi
diagram, and lets and t be the two sites ofS such thatclose(p) = {s, t} for all points p
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Figure 10.28 The Voronoi region ofd is the intersection of three open halfspacesVR(d, a),
VR(d, b), andVR(d, c).

of e. Any suchp lies on the perpendicular bisector ofs andt and hencee is a straight line
segment contained in the perpendicular bisector ofs andt .

Consider next any facef of the Voronoi diagram and lets be the site ofS such that
close(p) = {s} for all points p of f . Thendist(s, p) < dist(t, p) for all t ∈ S\ {s} and
hencef is contained in the open halfplane bounded by the perpendicular bisector ofs andt
and containings. We useVR(s, t) to denote this halfplane, see Figure 10.28, and call it the
halfplane wheres dominates over t. We have just shown thatf ⊆ VR(s, t) for all t ∈ S\{s}
and hence

f ⊆ VR(s) :=
⋂

t∈S\{s}
VR(s, t).

We even have equality sincep ∈ VR(s) implies p ∈ VR(s, t) for all t ∈ S\{s} which in turn
implies thatp is closer tos than to any other site inS. We callVR(s) theVoronoi regionof
sites. It is the intersection of open halfspaces and hence an open convex polygonal region.

How are we going to represent Voronoi diagrams? We use plane maps of typeGRAPH<CIRCLE,POINT>.
We defined the Voronoi diagramVD(S) as a set of points. We turn it into a graphG by plac-
ing a “vertex at infinity” on every unbounded edge ofVD(S)7 and by deleting the portion of
the edge that goes beyond the vertex at infinity, see Figure 10.29. A nodev of G has either
degree one or degree three or more. We callv a node at infinity in the former case and a
proper node in the latter case.

The node and edge labels give information about the positions of the node ofG in the
plane and about the Voronoi regions:

• Every dart is labeled with the site whose region lies to its left.

• Every proper nodev is labeled by a circleCIRCLE(a, b, c), wherea, b, andc are

7 If all sites are collinear and henceVD(S) consists of a set of parallel lines, we put two vertices at infinity on every
line.
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Figure 10.29 A Voronoi diagram for a set of four sites and its graph representation.

distinct sites whose regions are incident tov. The center of this circle is the position of
v in the plane.

• Every nodev at infinity lies on the perpendicular bisector of two sitesa andb. We
labelv by CIRCLE(a, x, b), wherex is an arbitrary point collinear toa andb (e.g.,a)
andv lies to the left of the oriented segment froma to b.

The functionvoid VORONOI(
onst list<POINT>& L, GRAPH<CIRCLE,POINT>& VD);
computes the Voronoi diagram of the sites inL in time O(n logn).

There is also a so-calledfurthest site Voronoi diagram, see Figure 10.30 for an example.
Its definition is the same as for (nearest site) Voronoi diagrams except for replacing closest
by furthest. For any pointp let furthest(p) be the set of sites that realize the furthest distance
betweenp and the sites inS, i.e., s ∈ furthest(p) if dist(s, p) ≥ dist(t, p) for all t ∈ S.
In other words, there is a circle with centerp passing through all points infurthest(p) and
having no points ofS in its exterior. For most pointsp of the planefurthest(p) consists of
only a single site. For some pointsp, furthest(p) contains two or more sites. These points
form the so-called furthest site Voronoi diagramFVD(S) of S.

FVD(S) = {p ∈ R2; |furthest(p)| ≥ 2}.

The furthest site Voronoi region of a sites is given by

FVR(s) :=
⋂

t∈S\{s}
FVR(t, s).

Only vertices of the convex hull have non-empty regions in the furthest site Voronoi digram.
The rules for the graph representation of furthest site diagrams are the same as for nearest
site diagrams.

The functionvoid F VORONOI(
onst list<POINT>& L, GRAPH<CIRCLE,POINT>& FVD);
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Figure 10.30 A furthest site Voronoi diagram. The figure was generated with the voronoidemo
in xlman.

computes the furthest site Voronoi diagram of the points inL.
We recommend that the readers exercise the Voronoi demo in xlman before proceeding.

10.5.2 The Duality between Voronoi and Delaunay Diagrams
Voronoi diagrams and Delaunay diagrams are closely relatedstructures. In fact, each one
of them is easily obtained from the other. LetS be a set of sites and letVD(s) andDD(S)

be its Voronoi and Delaunay diagram, respectively. We show how to obtainVD(S) from
DD(S).

(1) For every bounded facef of DD(S) there is a vertexc( f ) of VD(S) located at the
center of the circumcircle off .

(2) Consider an edgest of DD(S) and let f1 and f2 be the faces incident to the two sides
of the edge.
a) If f1 and f2 are both bounded, then the edgec( f1)c( f2) belongs toVD(S).
b) If f1 is unbounded andf2 is bounded, then a ray with sourcec( f2) and contained
in the perpendicular bisector ofs andt belongs toVD(S). It extends into the halfplane
containing the unbounded face.
c) If f1 and f2 are unbounded8 and hencef1 = f2, then the entire perpendicular bisector
of s andt belongs toVD(S).

8 Casec arises only if all sites inSare collinear. Then cases a) and b) do not arise.
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Figure 10.31 A Voronoi diagram and a Delaunay diagram for the same set of sites. This figure
was generated with the voronoidemo in xlman.

(3) That’s all.

Figure 10.31 shows a Delaunay and a Voronoi diagram for the same set of sites. Use
the Voronoi demo to construct your own examples. The rules above are called aduality
relation because they map faces (= 2-dimensional objects) into vertices (= 0-dimensional
objects), edges into edges, and vertices into faces. The latter map is implicit. There is a
corresponding set of rules that construct the Delaunay diagram from the Voronoi diagram.
We leave them to the exercises.

Theorem 2The rules above construct the Voronoi diagram from the Delaunay diagram.

Proof We proceed in two steps. We first show that everything that is constructed by the
rules does indeed belong to the Voronoi diagram and in a second step we show that the
complete Voronoi diagram is obtained.

Consider any bounded facef of DD(S). The vertices off are co-circular and hence the
circumcenterc( f ) is a point with|close(p)| ≥ 3, i.e., a vertex ofVD(S).

Consider next any edgest of DD(S). View it as oriented froms to t and let f1 and f2 be
the faces to its left and right, respectively. Assume first that f1 and f2 are both bounded.
The centersc( f1) andc( f2) of the circumcircles off1 and f2 both lie on the perpendicular
bisector ofs and t and any point betweenc( f1) andc( f2) is the center of a diskD with
D ∩ S= {s, t}, see Figure 10.32. Thus,c( f1)c( f2) is an edge ofVD(S).

Assume next thatf1 is unbounded andf2 is bounded, i.e,st is a clockwise convex hull
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c( f1)

c( f2)

s t

Figure 10.32 An edgee = (s, t) of DD(S), the two incident facesf1 and f2 and the
circumcircles off1 and f2. Each point on the open line segmentc( f1)c( f2) is the center of an
empty circle passing throughs andt .

t

s
c( f2)

Figure 10.33 st is a clockwise convex hull edge and the facef2 to its right is bounded.

edge, see Figure 10.33. Then the same argument shows that theray starting inc( f2), con-
tained in the perpendicular bisector ofs and t , and extending into the left halfplane with
respect tost belongs toVD(S).

Finally, if f1 and f2 are both unbounded then the entire perpendicular bisector of s andt
is an edge ofVD(S).

We have now shown that the rules above construct only features of the Voronoi diagram.
We show next that the entire Voronoi diagram is constructed.Consider any edgeeof VD(S),
say separating the regionsVR(s) andVR(t). Thenclose(p) = {s, t} for every pointp ∈ e,
i.e., everyp ∈ e witnesses that the segmentst is essential and hence is an edge ofDD(S).
Imagine a disk centered atp and havings andt in its boundary asp moves alonge. When
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p moves into an endpoint ofe (e may have 0, 1, or 2 endpoints),close(p) grows to at
least three points, namely the vertices of a face ofDD(S) incident tost. Thus, applying the
appropriate rule 2a, 2b, or 2c tost yieldse. Moreover, applying rule 1 to the bounded faces
incident tost produces the endpoints ofe (if any). We have now shown that all edges of
VD(S) are constructed and since every vertex ofVD(S) is incident to at least one (actually
three) edge we have also shown that all vertices are constructed.

We next give the program that constructs a Voronoi diagram from a Delaunay diagram.
The Voronoi diagram is empty if the number of sites is less than two. So assume that there
are at least two sites. We first determine a hull edge, then create all nodes of the Voronoi
diagram and finally all darts of the Voronoi diagram. We use anedge arrayvnodein order
to associate with each darte of DD the node ofVD that lies in the face to the left ofe.

〈voronoi.c〉�void DELAUNAY_TO_VORONOI(
onst GRAPH<POINT,int>& DD,GRAPH<CIRCLE,POINT>& VD){ VD.
lear();if (DD.number_of_nodes() < 2) return;// determine a hull dartedge e;forall_edges(e,DD) if (DD[e℄ == HULL_DART) break;edge hull_dart = e;edge_array<node> vnode(DD,nil);
〈DD to VD: create Voronoi nodes〉
〈DD to VD: create Voronoi darts〉}

We create the Voronoi nodes in two phases. We first create the nodes at infinity and then
the proper nodes.

There is one node at infinity for each hull dart. Ife is a hull dart anda andb are the sites
associated with the source and target ofe, respectively, then the label of the node at infinity
is CIRCLE(a, x, b), wherex is any point collinear witha andb. We use the midpoint ofa
andb for x.

If e is not a hull dart then there is a proper nodev associated with the face cycle ofe. We
labelv with CIRCLE(a, b, c), wherea, b, andc are any three vertices of the face cycle, and
associatev with every dart of the face cycle.

〈DD to VD: create Voronoi nodes〉�// 
reate Voronoi nodes for outer fa
ePOINT a = DD[sour
e(e)℄;do { POINT b = DD[target(e)℄;vnode[e℄ = VD.new_node(CIRCLE(a,
enter(a,b),b));e = DD.fa
e_
y
le_su

(e);a = b;} while ( e != hull_dart );
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Figure 10.34 Tracing a face cycle in forward direction generates the darts incident to the node
dual to the face in counter-clockwise order.// and for all other fa
esforall_edges(e,DD){ if (vnode[e℄) 
ontinue;edge x = DD.fa
e_
y
le_su

(e);POINT a = DD[sour
e(e)℄;POINT b = DD[target(e)℄;POINT 
 = DD[target(x)℄;node v = VD.new_node(CIRCLE(a,b,
));vnode[e℄ = v;do { vnode[x℄ = v;x = DD.fa
e_
y
le_su

(x);} while( x != e );}

We come to the construction of the Voronoi darts. Letebe a dart ofDD, let r be its reversal,
and letp be the point associated with the target ofe. The dart dual toe starts at the node
associated withe, ends at the node associated withr , and is labeled byp.

We want to construct the darts incident to any node ofVD in their proper counter-
clockwise order. For the nodes at infinity this is no problem since they have degree one.
We therefore construct the Voronoi darts in two phases. We first construct the Voronoi darts
out of the nodes at infinity and then the Voronoi darts out of the proper nodes. Finally, we
link the two darts in each. For each darte of DD we record the dart dual to it in the edge
arrayvedge.

Consider a proper nodev. It corresponds to a bounded face ofDD and has one incident
dart for each dart of the face cycle. We construct the darts intheir proper counter-clockwise
order if we trace the face cycle in forward direction, see Figure 10.34.
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〈DD to VD: create Voronoi darts〉�edge_array<edge> vedge(DD,nil);// 
onstru
t Voronoi darts out of nodes at infinitye = hull_dart;do { edge r = DD.reversal(e);POINT p = DD[target(e)℄;vedge[e℄ = VD.new_edge(vnode[e℄,vnode[r℄,p);e = DD.
y
li
_adj_pred(r); // same as DD.fa
e_
y
le_su

(e)} while ( e != hull_dart );// and out of all other nodes.forall_edges(e,DD){ node v = vnode[e℄;if (VD.outdeg(v) > 0) 
ontinue;edge x = e;do { edge r = DD.reversal(x);POINT p = DD[target(x)℄;vedge[x℄ = VD.new_edge(v,vnode[r℄,p);x = DD.
y
li
_adj_pred(r);} while ( x != e);}// assign reversal edgesforall_edges(e,DD){ edge r = DD.reversal(e);VD.set_reversal(vedge[e℄,vedge[r℄);}
This completes the construction of Voronoi diagrams from Delaunay diagrams. The con-
struction runs in linear time.

In order to construct the Voronoi diagram for a setL of points we first construct the
Delaunay diagram and then the Voronoi diagram from the Delaunay diagram.

〈voronoi.c〉+�void VORONOI(
onst list<POINT>& L, GRAPH<CIRCLE,POINT>& VD){ GRAPH<POINT,int> DD;DELAUNAY_DIAGRAM(L,DD);DELAUNAY_TO_VORONOI(DD,VD);}
The construction of furthest site Voronoi diagrams from furthest site Delaunay triangula-

tions is completely analogous. We leave it to the exercises.

10.5.3 Verifying Voronoi Diagrams
Let G be a graph of typeGRAPH<CIRCLE, POINT>. We want to verify thatG is the
Voronoi diagram of the sites associated with its nodes. The procedure to be described is
fairly complicated and we wished we had a simpler one. The procedure is probably the
least elegant piece of code contained in this book. We considered to drop this section, but
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decided against it for two reasons. We had invested a lot of time in it, and more importantly,
the check discovered several mistakes.

G must satisfy the following conditions:

• G is a CCW-ordered plane map.

• The site information associated with edges is consistent, i.e., if e ande′ are
consecutive edges on some face cycle then both edges have thesame associated site.

• The sites associated withe andreversal(e) are distinct.

• Call a vertex whose associated circle is non-degenerate non-trivial and call it trivial
otherwise. Every non-trivial vertex has degree at least three and every trivial vertex has
degree one.

• For each non-trivial vertex each of the three points definingthe associated circle is
associated with one of the incident edges and the sites associated with all incident
edges lie on the associated circle.

• Each trivial vertex has an associated circle of the formCIRCLE(a, , c), wherea andc
are distinct. Lete be the unique outgoing edge. In a nearest site diagram the site
associated with the face to the left ofe is c and the site associated with the face to the
right of e is a and in a furthest site diagram the roles ofa andc are interchanged.

• For every edgee = (v, w) such thatv andw are non-trivial, the centers of the circles
associated withv andw are distinct. Letp andq be these centers and leta be the site
associated withe. In a nearest site diagrama lies to the left of the segmentpq and in a
furthest site diagrama lies to the right of the segmentpq.

• Each face is a convex polygonal region and the regions associated with the different
sites partition the plane.

In the implementation we first check the first six conditions and then distinguish cases
according to whetherG is connected or not. For the first item we want to use the function
Is CCWOrderedPlaneMap and therefore we need to define theedgevector function for
circle-points. Lete be an edge and letC and D be the circles associated with the source
and the target ofe, respectively. If both circles are non-degenerate the edgevector is simply
the vector from the center ofC to the center ofD. So assume that one of the circles is
degenerate. IfD is degenerate thenD = CIRCLE(a, , c) and D represents a point at
infinity on the perpendicular bisector ofa andc and to the right of the line segmentac.
Let m be the midpoint ofa andc and leta1 be the point obtained by rotatinga by 90◦

in a clockwise direction aboutm. We may return the vectorm − a1. The case thatC is
degenerate is symmetric.
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〈voronoi check: edge vector function〉�stati
 VECTOR edge_ve
tor(
onst GRAPH<CIRCLE,POINT>& G, 
onst edge& e){ 
onst CIRCLE& C = G[G.sour
e(e)℄;
onst CIRCLE& D = G[G.target(e)℄;if ( D.is_degenerate() ) { POINT a = D.point1();POINT 
 = D.point3();POINT m = midpoint(a,
);return m - a.rotate90(m);}if ( C.is_degenerate() ) { POINT a = C.point1();POINT 
 = C.point3();POINT m = midpoint(a,
);return a.rotate90(m) - m;}// both 
ir
les are non-degeneratereturn D.
enter() - C.
enter();}
and

〈voronoi check.c〉+�
〈voronoi check: edge vector function〉stati
 bool False_IVD(
onst string& s){ 
err << "Is_Voronoi_Diagram: " << s; return false; }bool Is_Voronoi_Diagram(
onst GRAPH<CIRCLE,POINT>& G,delaunay_voronoi_kind kind){ if ( G.number_of_nodes() == 0 ) return true;node v,w; edge e;if ( !Is_CCW_Ordered_Plane_Map(G) )return False_IVD("G is not CCW-ordered plane map");forall_edges(e,G){ if ( G.outdeg(target(e)) != 1 ){ // e does not end at a vertex at infinityif ( G[e℄ != G[G.fa
e_
y
le_su

(e)℄ )return False_IVD("in
onsistent site labels");}if ( G[e℄ == G[G.reversal(e)℄ )return False_IVD("same site on both sides");}forall_nodes(v,G){ CIRCLE C = G[v℄;if ( C.is_degenerate() ){ // vertex at infinityif ( G.outdeg(v) != 1 )return False_IVD("degree of vertex at inf");edge e = G.first_adj_edge(v); edge r = G.reversal(e);POINT a = C.point1(); POINT 
 = C.point3();if ( (kind == NEAREST) && (
 != G[e℄ || a != G[r℄) ||(kind == FURTHEST) && (a!= G[e℄ || 
 != G[r℄) )return False_IVD("vertex at inf: wrong edge labels");
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ontains(G[e℄) )return False_IVD("label of proper vertex");}for (int i = 1; i <= 3; i++){ POINT a = ( i == 1 ? C.point1() :(i == 2 ? C.point2() : C.point3() ) );bool found_a = false;forall_adj_edges(e,v) if ( a == G[e℄ ) found_a = true;if ( !found_a ) return False_IVD("wrong 
y
le");}forall_adj_edges(e,v){ w = G.target(e);if ( G.outdeg(w) == 1 ) 
ontinue;if ( C.
enter() == G[w℄.
enter() )return False_IVD("zero length edge");int orient = orientation(C.
enter(),G[w℄.
enter(),G[e℄);if ( kind == NEAREST && orient <= 0 ||kind == FURTHEST && orient >= 0 )return False_IVD("orientation");}}}if ( Is_Conne
ted(G) ){ 〈G is connected〉 }else{ 〈G is not connected〉 }return true;}
WhenG has passed all tests above we can construct a geometric object from it as follows.
We assign a positionpos(v) to each non-trivial vertexv and a segment, ray, or linegeo(e)
to each edgee. For a non-trivial vertexv let pos(v) be the center of the circle associated
with v. For an edgee = (v, w) let a andc be the sites separated bye, i.e., one ofa and
c is associated withe and the other withreversal(e). If v is non-trivial thena andc lie on
the circle associated withv and hencepos(v) lies on the perpendicular bisector ofa andb.
Definegeo(e) as follows. First assume thatv andw are both non-trivial. Thengeo(e) is the
segment directed frompos(v) to pos(w). Note that this segment has non-zero length and
is part of the perpendicular bisector ofa andc. Next assume that exactly one ofv andw

is non-trivial. Assume w.l.o.g. that the triple of points associated with the trivial vertex is
of the form(a, , c). If w is trivial thengeo(e) is the ray starting atpos(v), running along
the perpendicular bisector ofa andc, and extending to infinity to the right of the segment
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ac. If w is trivial thengeo(e) is the ray ending inpos(v), running along the perpendicular
bisector ofa andc, and coming from infinity to the right of the segmentac. Finally, assume
thatv andw are trivial and assume w.l.o.g. that the triple of points associated withv is of
the form(a, , c). Thengeo(e) is the bisector ofa andc oriented such thata lies to its left.

Now we distinguish cases according to whetherG is connected or not.

G is connected: Define a face chain as a minimal sequencee0, e1, . . . ,ek of edges such that
ei+1 is the face cycle successor ofei for all i , 0 ≤ i < k, and eithertarget(ek) = source(e0)

or source(e0) andtarget(e0) have degree one. We call face chains of the former kind closed
and face chains of the latter kind open. All face chains are strictly convex counter-clockwise
oriented. Moreover, the rays going to infinity wind around the origin once and open face
chains cover only a half-circle. There is no need to check thesecond half-sentence as it is
implied by the first half-sentence.

Below, we first search for a vertex of degree one and then checkthe open face chains
one by one. Simultaneously we build the list of all rays; notethat they will wind clockwise
around the origin. Having checked all open face chains we turn to the closed face chains.

〈G is connected〉�
mp_edges_by_angle<GRAPH<CIRCLE,POINT> > 
mp(G);node v;forall_nodes(v,G) if ( G.outdeg(v) == 1 ) break;edge_array<bool> 
onsidered(G,false);list<edge> rays;edge e = G.first_adj_edge(v);do { rays.push(e);list<edge> D;do { 
onsidered[e℄ = true;D.append(e);e = G.fa
e_
y
le_su

(e);} while ( G.outdeg(sour
e(e)) != 1);if ( !Is_C_In
reasing(D,
mp) ) return False_IVD(": wrong order");} while ( G.sour
e(e) != v);if ( !Is_C_Nonde
reasing(rays,
mp) )return False_IVD("wrong order, rays");forall_edges(e,G){ if ( !
onsidered[e℄ ){ edge e0 = e;do { 
onsidered[e℄ = true;if ( G.outdeg(target(e)) == 1 )return False_IVD("unexpe
ted vertex of degree one");e = G.fa
e_
y
le_su

(e);} while ( e != e0);if ( !Is_CCW_Convex_Fa
e_Cy
le(G,e) )return False_IVD("wrong order");}}
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We claim that we are done at this point. Let us see why. Consider any face chainf . All
edges on the boundary off have the same associated site, saya, the circles associated
with all non-trivial vertices off pass througha, for each edgee of f , geo(e) is part of the
perpendicular bisector ofa and the site associated with the other side ofe, anda lies to the
left of geo(e) if kind is NEARESTand to the right of it ifkind is FURTHEST. Define

reg( f ) =
⋂

e; e is an edge off
H (a, siteof reversal(e)),

whereb = siteof reversal(e) is the site associated with the reversal ofe andH (a, b) is the
halfplane defined bya andb and containinga if kind is NEARESTand not containinga
otherwise. Thenreg( f ) is a convex polygonal region which contains the Voronoi region of
sitea (since in the definition of a Voronoi region the intersectionis over all sites different
from a). We still need to show that the regions partition the plane.Consider a point moving
in the plane and avoiding vertices of regions. Such a point isalways covered by the same
number of regions. Moreover, when the point travels along a cycle at infinity it is always
covered by exactly one region since the rays of the diagram wind around the origin once.
Altogether we have shown that the regions partition the plane.

G is not connected: If G is not connected it can only be the Voronoi diagram of a set of
collinear sites. As such it must have the following additional properties:

• All nodes have out-degree one.

• All sites are collinear.

• No site is associated with three edges ofG.

• The number of distinct sites is equal tom/2 + 1.

We show that these conditions suffice. Clearly, the geometric interpretation ofG is a set of
parallel line segments. Consider the placement of the siteson their common underlying line.
For each sites which is associated with two edges, it is guaranteed that thetwo adjacent
sites (= sites for which there is an edge havings on one of its sides) lie on opposite sides of
s; this follows from the fact that we have already checked thateach edge incident to a trivial
node separates the sites it is supposed to separate. We conclude that the conditions above
suffice.

〈G is not connected〉�forall_nodes(v,G)if ( G.outdeg(v) > 1 ) return False_IVD("degree larger than 1");d_array<POINT,int> 
ount(0);int n_dual = 0;edge e = G.first_edge();LINE l(G[e℄,G[G.reversal(e)℄);forall_edges(e,G){ if ( !l.
ontains(G[e℄) )
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Figure 10.35 The smallest circle enclosing a set of points. The figure was generated with the
voronoi demo in xlman.return False_IVD("non-
ollinear sites");int& p
 = 
ount[G[e℄℄;if (p
 == 0) n_dual++;p
++;if (p
 == 3) return False_IVD(": site mentioned thri
e");}if ( n_dual != (G.number_of_edges()/2 + 1) )return False_IVD(": two many sites");

10.5.4 Applications of Voronoi Diagrams
We discuss some applications of Voronoi diagrams. All of them are illustrated in the
voronoi-demo of xlman.

Extremal Circles: Thesmallest enclosing circlefor a setL of points is the circle with the
smallest radius containing all points inL, see Figure 10.35. The smallest enclosing circle
is the best approximation ofL by a circle. It is easy to see that such a circle has at least two
points inL on its boundary and hence its center lies on the furthest siteVoronoi diagram of
L.

We conclude that the center of the minimum enclosing circle is either a vertex of the
furthest site diagram (and then has three points inL on its boundary) or lies on an edge
of the furthest site diagram (and then is the circle of minimum radius passing through the
two sites defining the edge). In this way each edge and vertex of the furthest site Voronoi
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Figure 10.36 The largest empty circle for a set of points. The figure was generated with the
voronoi demo in xlman.

diagram defines a candidate circle. The minimum enclosing circle is the smallest of these
circles.

The functionCIRCLE SMALLEST ENCLOSING CIRCLE(
onst list<POINT>& L);
computes a smallest enclosing circle according to the strategy just described.

The largest empty circlefor a setL of points is the circle with the largest radius whose
interior is void of points inL and whose center lies inside the convex hull ofL, see Fig-
ure 10.36. We know of no good motivation for considering largest empty circles. It is easy
to see that such a circle has at least two points inL on its boundary and hence its center lies
on the nearest site Voronoi diagram ofL.

We conclude that the center of the largest empty circle is either a vertex of the nearest site
diagram (and then has three points inL on its boundary) or lies on an edge of the nearest site
diagram (and then is the circle of maximum radius passing through the two sites defining
the edge and having its center inside the convex hull). In this way each edge and vertex of
the nearest site Voronoi diagram defines a candidate circle.The largest empty circle is the
largest of these circles.

The functionCIRCLE LARGEST EMPTY CIRCLE(
onst list<POINT>& L);
computes a largest empty circle according to the strategy just described.
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Figure 10.37 The minimum width and the minimum area annulus for a set of points. The figure
was generated with the voronoidemo in xlman.

The application of Voronoi diagrams to find enclosing and empty circles is due to Shamos
and Hoey ([SH75]).

Minimum Width and Minimum Area Annuli: An annulus Ais the region between two
concentric circles. When the common center of the circles isa point at infinity, an annulus
degenerates to a stripe between parallel lines. Annuli are closed sets. An annulus covers
a setL of points if all points inL are contained in the annulus. Thewidth of an annulus
is the difference between the radius of the outer circle and the radius of the inner circle of
the annulus (in the case of a stripe the width is the distance between the two boundaries of
the stripe). Theareaof an annulus is the area of the region between the outer and the inner
circle (it is infinite in the case of a stripe of non-zero widthand is zero in the case of a stripe
of width zero). We are interested in computing minimum widthand minimum area annuli
covering a given setL of points, see Figure 10.37 for an example. Minimum width and
minimum area annuli are used to estimate the “roundness” of aset of points.

It can be shown that there is always a minimum annulus covering a given setL of points
that is either:

• the minimum width stripe covering the points, or

• a pair of concentric circles whose center is either a vertex of the nearest site Voronoi
diagram, or a vertex of the furthest site diagram, or an intersection between an edge of
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the nearest site diagram and an edge of the furthest site diagram. This observation was
made in [SH75].

The idea for the proof is as follows. Consider an annulus covering the points inL.
Clearly, if one of the boundaries does not contain a point inL then the annulus can be
improved. So both boundaries must contain at least one pointin L. If the two boundaries
together contain a total of four points ofL then the center of the annulus is either a vertex
of one the diagrams (if one boundary contains three points and the other contains one) or
an intersection between edges (if both boundaries contain two points). So assume that the
boundaries together contain less than four points, say there are two pointsp andq on one
of the boundaries and one pointr on the other boundary. Then the centerc lies on the
perpendicular bisector ofp andq. Let d be a vector in the direction of the perpendicular
bisector and consider the annulusA(ǫ) with centerc + ǫ · d and havingp, q andr on its
boundaries. For small enoughǫ, A(ǫ) coversL. Consider the optimization criterion as
a function ofǫ and conclude that the center can be moved either in the direction +d or
the direction−d without increasing the objective value. Move until a further point lies on
one of the boundaries. For example, if the objective value isthe area, the area ofA(ǫ) is
proportional to

dist(p, c + ǫ · d)2 − dist(r, c + ǫ · d)2 = (p − c)2 − (r − c)2 + 2ǫ(p − r ) · d,

i.e., is a linear function ofǫ. If (p− r ) ·d 6= 0 then the annulus can be improved by moving
the center, and if(p − r ) · d = 0 then the center can be moved in either direction without
increasing the area of the annulus.

The two items above suggest a strategy to compute minimum width and minimum area
annuli. One simply checks all the candidates listed. This results in quadratic algorithms.

The functionsbool MIN AREA ANNULUS(
onst list<POINT>& L, POINT& 
enter,POINT& ipoint, POINT& opoint, LINE& l1);bool MIN WIDTH ANNULUS(
onst list<POINT>& L, POINT& 
enter,POINT& ipoint, POINT& opoint,LINE& l1, LINE& l2);
compute minimum area and minimum width annuli covering the points in L, respectively.
The functions returntrue, if the optimal annulus is the region between two circles, and return
false if the optimal annulus is a stripe. In the former case the center of the annulus and a
point on the inner and the outer circle are returned incenter, ipoint andopoint, respectively.
In the latter case the boundaries of the stripe are returned in l1 and l2. In the case of the
a minimum area annulus a stripe can only be optimal if it has width zero. Hence only one
line is returned in the former function.

Both functions have quadratic running time and hence shouldbe used only for small
input size. There are much faster algorithms: the minimum area annulus can be computed
in linear time by linear programming ([Sei91]) and the minimum width annulus can be
computed in timeO(n8/5+ǫ) by parametric search ([AST94]).
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Figure 10.38 A set of points in the plane and the curve reconstructed byCRUST. The figure
was generated by the Voronoi-demo in xlman.

Curve Reconstruction: The reconstruction of a curve from a set of sample points is anim-
portant problem in computer vision. We describe a reconstruction algorithm due to Amenta,
Bern, and Eppstein [ABE98]. Figure 10.38 shows a point set and the curves reconstructed
by their algorithm.

The precise problem formulation is as follows. LetF be a smooth curve in the plane and
let S ⊂ F be a finite set of sample points fromF . A polygonal reconstructionof F is a
graph that connects every pair of samples adjacent alongF , and no others.

The algorithmCRUSTto be described takes a listSof points and returns a graphG. The
graphG is guaranteed to be a polygonal reconstruction ofF if F is sufficiently densely
sampled byS. We refer the reader to [ABE98] to the definition of sufficientdense sampling
density.

The algorithm proceeds in three steps:

• It first constructs the Voronoi diagramVD of the points inS.

• It then constructs a setL = S∪ V , whereV consists of all proper vertices ofVD.

• Finally, it constructs the Delaunay triangulationDT of L and makesG the graph of all
edges ofDT that connect points inL.

The algorithm is very simple to implement9.

9 In 1997 the authors attended a conference, where Nina Amentapresented the algorithm. We were supposed to
give a presentation of LEDA later in the day. We started the presentation with a demo of algorithmCRUST.
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〈crust.c〉+�void CRUST(
onst list<POINT>& S, GRAPH<POINT,int>& G){ list<POINT> L = S;map<POINT,bool> voronoi_vertex(false);GRAPH<CIRCLE,POINT> VD;VORONOI(L,VD);// add Voronoi verti
es and mark themnode v;forall_nodes(v,VD){ if (VD.outdeg(v) < 2) 
ontinue;POINT p = VD[v℄.
enter();voronoi_vertex[p℄ = true;L.append(p);}DELAUNAY_TRIANG(L,G);forall_nodes(v,G)if (voronoi_vertex[G[v℄℄) G.del_node(v);}
The program above owes much of its elegance to the fact that weuse graphs to represent
Delaunay diagrams and hence have the full power of the graph data type available to us.
Observe that after having constructed the Delaunay triangulation of L in G, we treatG as
an “ordinary graph”. We simply delete all auxiliary nodes from it, a step that does not make
sense on the level of Delaunay triangulations.

10.5.5 Voronoi Diagrams of Line Segments
The Voronoi diagram of a set of point sites under the Euclidian metric is just one instance
in a wide class of Voronoi diagrams. Other diagrams are obtained by choosing a different
metric and/or a different class of sites.

Figure 10.39 shows a Voronoi diagram of line segments. In such a diagram the sites are
points and open line segments; the endpoints of every line segment must belong to the point
sites. The edges of a Voronoi diagram of line segments are part of angular bisectors between
line segments, of parabola, and of lines perpendicular to segments at their endpoints.

Michael Seel [See97] has written a package to compute Voronoi diagrams of line seg-
ments. It is available as a LEDA extension package.

The Voronoi diagram of line segments has played an importantrole in the development of
the number types in LEDA, see Section 4.4. Our first program for Voronoi diagrams of line
segments used floating point arithmetic in a naive way and worked only for a small number
of examples. The main difficulty was a correct implementation of the incircle test. Observe
that the coordinates of Voronoi vertices are non-rational algebraic numbers and hence the
incircle test requires to compute the sign of certain algebraic numbers. This computation is
very error-prone when executed with floating point arithmetic.

In [Bur96, BMh94, BFMh97] we laid the theoretical basis for an efficient and correct
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Figure 10.39 A Voronoi diagram of line segments. The figure was generated with Michael
Seel’s extension package for Voronoi diagrams of line segments.

sign test of simple algebraic numbers which is used in [BMh96] to implement the number
typereal. Michael Seel uses this number type in his implementation.

Exercises for 10.5
1 Construct a setSwhere the Voronoi diagram contains no vertices andShas at least three

points. What is the Delaunay diagram ofS?
2 Give the rules for obtaining the Delaunay diagram from the Voronoi diagram for the

same set of sites.
3 Write a program that constructs the Delaunay diagram of a set S given its Voronoi dia-

gram.
4 Write a program to compute the largest empty circle.
5 Write a program to compute the smallest enclosing circle.



10.6 Point Sets and Dynamic Delaunay Triangulations 73

10.6 Point Sets and Dynamic Delaunay Triangulations

The classPOINTSET10 maintains a set of points in the plane under insertions and dele-
tions. It offers dictionary operations, nearest neighbor queries, point location queries, and
circular, triangular and rectangular range queries. A point set is maintained as a Delaunay
triangulation of its elements and hence the class may equally well be called dynamic De-
launay triangulation11. The class is derived fromGRAPH<POINT, int> and hence all graph
algorithms and all operations for graphs are available for point sets12.

In this section we will first give an impression of the functionality and then give part of
the implementation. The full implementation can be found in[MN98]. We close the section
with some experimental data. POINTSETS are illustrated by the pointsetdemo in xlman,
see Figure 10.40.

10.6.1 Functionality
The constructorspoint set T; // set of pointspoint set T(list<point> L);rat point set RT; // set of rat pointsrat point set RT(list<rat point> L);
create a point set for the empty set and the set of points inL, respectively. We mentional
already thatPOINTSET is derived fromGRAPH<POINT, int>. Every instance of class
POINTSET is an embedded planar map. The position of a vertexv is given byT.pos(v)

and also byT [v] and we use

S= {T.pos(v) | v ∈ T}

to denote the underlying point set. Each edge is labeled by anelement in the enumeration
type delaunayedgeinfo defined in Section 10.2. If the listL in the constructor contains
multiple occurrences of equal points, only the last occurrence of each point is retained and
the others are discarded.

The functionint T.dim()
returns the affine dimension of the point set, i.e.,−1 if S is empty, 0 ifSconsists of only one
point, 1 if Sconsists of at least two points and all points inSare collinear, and 2 otherwise.

The functionslookup, insertanddel give point sets the functionality of adictionary for
points.node T.lookup(POINT p)
10 The instantiations arepoint setfor pointsandrat pointsetfor rat points.
11 In an earlier version of LEDA we called the classdelaunaytriang. We found, however, that the typical use of the

class emphasizes the query operations and hence we now find the name point set more appropriate.
12 Only constgraph operations and graph algorithms should be used as others may destroy the additional invariants

imposed by POINTSET.
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Figure 10.40 A screenshot of the point-set-demo in xlman. A locate query for the highlighted
point was performed. The edge returned by the query is highlighted.

returns a nodev of T with T.pos(v) = p, if there is such a node, and returnsnil otherwise.node T.insert(POINT p)
insertsp into T and returns the corresponding node. More precisely, if there is already
a nodev in T positioned atp (i.e., pos(v) is equal top) then pos(v) is changed top
(i.e., pos(v) is made identical top) and if there is no such node then a new nodev with
pos(v) = p is added toT . In either case,v is returned.void T.del(node v)
removes nodev, i.e., makesT a point set forS\ {pos(v)}.

We come topoint locationandnearest neighborqueries. The functionedge T.lo
ate(POINT p)
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performs point location. It returns a darte (nil if T has no edge) such thatp lies in the
closure of the face to the left ofe, see Figure 10.40.

The functionsnode T.nearest neighbor(POINT p);list<node> T.k nearest neighbors(POINT p, int k);
return a nodev of T that is closest top, i.e.,

dist(p, pos(v)) = min {dist(p, pos(u)) ; u ∈ T }

and the list of the min(k, |S|) closest points top, respectively. The points in the result list
are ordered by distance fromp. One can also ask for the nearest neighbor(s) of a node.node T.nearest neighbor(node w);list<node> T.k nearest neighbors(node w, int k);
return a nodev of T that is closest toT [w], i.e.,

dist(p, pos(v)) = min{dist(p, pos(u)) ; u ∈ T \ w }

and the list of the min(k, |S| − 1) closest points toT [w], respectively. The points in the
result list are ordered by distance fromT [w]. Figure 10.41 illustrates nearest neighbor
queries and the deletion of nodes.

The next three functions concernrange queries.list<node> T.range sear
h(
onst CIRCLE& C);list<node> T.range sear
h(node v,
onst POINT& b);list<node> T.range sear
h(
onst POINT& a,
onst POINT& b,
onst POINT& 
);list<node> T.range sear
h(
onst POINT& a,
onst POINT& b);
return the list of points contained in the closure of diskC, in the closure of the disk centered
at T [v] and havingb in its boundary, in the closure of the triangle(a, b, c), and in the
closure of the rectangle with diagonal(a, b), respectively. Figure 10.42 illustrates circular
range queries.list<edge> T.minimum spanning tree()
returns a list of edges ofT that comprise a minimum spanning tree ofSandvoid T.
ompute voronoi(GRAPH<CIRCLE,POINT>& V)
computes the Voronoi diagramV for the sites inS. Each node ofV is labeled with its
defining circle and each edge is labeled with the site lying inthe face to its left.

The class POINTSET also provides functions that support the drawing of Delaunay
triangulations, Delaunay diagrams, and Voronoi diagrams.For example,void T.draw nodes(void (*draw node)(
onst POINT&))
callsdrawnode(pos(v)) for every nodev of T .
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Figure 10.41 Illustration of nearest neighbor searching plus deletion.We generated a point set
of 500 random point and then performed the following operation about thirty times: Locate the
nearest neighbor of a point in the center of the screen and delete it. The resulting point set is
displayed.

10.6.2 Implementation
We start with an overview and explain how point sets are represented.

〈POINT SET.h〉+�
lass __exportC POINT_SET : publi
 GRAPH<POINT,int>{private:edge 
ur_dart;edge hull_dart;bool 
he
k; // fun
tions are 
he
ked if true// for marking nodes in sear
h pro
eduresint 
ur_mark;node_map<int> mark;
〈handler functions for animation〉
〈functions to mark nodes〉
〈auxiliary functions〉publi
:
〈public member functions〉
〈public member functions for checking〉};

〈inline functions〉
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Figure 10.42 We generated a point set of 500 random points and then performed a circular
range query. The points returned by the query are highlighted.

We store a POINTSET as a planar mapGRAPH<POINT, int> T plus two edgescur dart
andhull dart. For each nodev of T we store its position in the plane inT [v] and for each
edgeewe store its type inT [e]. The edge type is an element of the global enumeration type
delaunayedgeinfo defined in geoglobal enums.enum delaunay edge info { DIAGRAM EDGE = 0, DIAGRAM DART = 0,NON DIAGRAM EDGE = 1, NON DIAGRAM DART = 1,HULL EDGE = 2, HULL DART = 2}
The darts ofT are labeled as defined in Section 10.4 on static Delaunay diagrams. Hull
darts are labeledHULL DART and non-hull darts are labeled eitherDIAGRAMDART or
NONDIAGRAMDART. The former label is used for non-hull darts that belong to the
Delaunay diagram.

In hull dart we always store a dart of the convex hull and incur dart we store an arbitrary
dart of the triangulation. We usecur dart as the starting point for searches.

Many member functions ofPOINTSETcome with a checker. The booleancheckcon-
trols whether checking is done or not.

Most query operations require graph searches. We use anodemap<int> mark and an
integercur markto mark visited nodes in these searches. More precisely, a nodev is marked
if mark[v] == cur markand in order to unmark all nodes we increasecur markby one. We
start withcur markequal to zero and all node marks equal to−1 and hence this solution is
safe as long ascur markdoes not wrap around by overflow. Overflow occurs after MAXINT
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search operations. Assuming that a query takes at least 100 instructions one can do at most
106 (about 220) queries per second. Thus the solution would work for at least 212 seconds
or about an hour. We conclude that we should guard against this error, in particular, since it
will be very difficult to locate once it occurs. The solution is simple. Whenevercur mark
reaches MAXINT we reinitialize.

〈functions to mark nodes〉�void init_node_marks() { mark.init(*this,-1);
ur_mark = 0;}void mark_node(node v) 
onst { ((node_map<int>&)mark)[v℄ = 
ur_mark; }void unmark_node(node v) 
onst{ ((node_map<int>&)mark)[v℄ = 
ur_mark - 1; }bool is_marked(node v) 
onst { return mark[v℄ == 
ur_mark; }void unmark_all_nodes() 
onst{ ((int&)
ur_mark)++;if ( 
ur_mark == MAXINT)((POINT_SET*)this) -> init_node_marks(); //
ast away 
onstness}
Checking: We have two general routines for purposes of checking:

• savestate(POINT p) saves the current state of the data structure and the pointp
(which is typically the argument of a query operation) to a file, and

• checkstate(string loc) checks the state of the data structure and prints diagnostic
information tocerr if an error is found.

Checking is controlled by the boolean flagcheck, i.e., if check is true, savestate and
checkstateperform as described, and ifcheckis false, they do nothing andcheckstate
returnstrue.

A typical functionF of class POINTSET has a body of the following form.if ( 
he
k ) save state(POINT p);/* proper body of F */if ( 
he
k && !
he
k state("POINT SET::F") ){ 
err << additional information ; }
Assume now that check is set totrueand that some functionF contains an error. The error
will be caught bycheckstate. Since the state before the execution ofF was saved, the
error is reproducible. We added this feature to POINTSET because an earlier version of
POINT SET contained errors which arose very infrequently. For example, at one point we
ran a test program for more than an hour before it failed.
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Auxiliary Functions: The functionmarkedgeis used to assign adelaunayedgeinfo to
an edge. The call tomarkedgehandler is for the purposes of animation which we do not
discuss here. Readers interested in the animation of the point set class should read [MN98].

〈auxiliary functions〉�void mark_edge(edge e, delaunay_edge_info k){ assign(e,k);if (mark_edge_handler) mark_edge_handler(e);}
The Constructors: The constructors allow us to construct a point set for eitherthe empty
set of points or for a setSof points. In the latter case the Delaunay triangulation algorithm
of Section 10.4 is used, i.e., an arbitrary triangulation isconstructed by plane sweep and then
Delaunay flips are performed to obtain a Delaunay triangulation. The work horse for the
second step is a member functionmakedelaunay(E) that takes a list of edges (it is required
that all edges not inE have the Delaunay property) and turns the current triangulation into
a Delaunay triangulation.

Locate: The functionedge T.lo
ate(POINT p)
is the basis for all query functions. It returns an edgee of T (nil if T has no edge) with the
following properties:

• If there is an edge ofT containingp, such an edge is returned. Ifp lies on the
boundary of the convex hull then a hull dart is returned (and not the reversal of a hull
dart).

• If p lies in the interior of a facef of T (if p lies outside the convex hull ofS, f is the
unbounded face) then a dart on the boundary off is returned. This dart hasp to its
left, except if all points inSare collinear andp lies on the line passing through the
points inS. In this case,target(e) is the point inSclosest top.

The implementation oflocateis non-trivial. We therefore define a functionchecklocate
that checks the output oflocate.

〈auxiliary functions〉+�void 
he
k_lo
ate(edge answer,
onst POINT& p) 
onst;
The implementation ofchecklocate is left to the reader; it can be found in [MN98]. We
turn to the implementation oflocate. We distinguish cases according to the dimension of
the triangulation.

〈POINT SET.c〉+�edge POINT_SET::lo
ate(POINT p) 
onst{ if (number_of_edges() == 0) return nil;
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〈locate: two-dimensional case〉}

If the dimension is less than one we return nil.
Let us assume next that the affine dimension ofS is one. If p does not lie in the affine

hull of S, i.e., p does not lie on the line supportinghull dart, we return eitherhull dart or
its reversal. Ifp lies on the line supportinghull dart we determine the answer by a walk in
the triangulation. triangulations!walk through a triangulation

We initializee to eitherhull dart or its reversal such thatp lies in the halfspace orthogo-
nal13 to e. We walk in the direction ofe. Let e1be the face cycle successor ofe. As long
ase1points into the same direction ase, i.e., is not the reversal ofe, and containsp in the
halfspace orthogonal to it, we advancee to e1.

The walk ends whene1 is either the reversal ofe or does not containp in the halfspace
orthogonal to it. In the former casep lies one or target(e) is the point inSclosest top and
in the latter casep lies one. In either case we may therefore returne.

〈locate: one-dimensional case〉�edge e = hull_dart;int orient = orientation(e,p);if (orient != 0) { if (orient < 0) e = reversal(e);if (
he
k) 
he
k_lo
ate(e,p);return e;}// p is 
ollinear with the points in S. We walkif ( !IN_HALFSPACE(e,p) ) e = reversal(e);// in the dire
tion of e. We know IN_HALFSPACE(e,p)edge e1 = fa
e_
y
le_su

(e);while ( e1 != reversal(e) && IN_HALFSPACE(e1,p) ){ e = e1;e1 = fa
e_
y
le_su

(e);}if (
he
k) 
he
k_lo
ate(e ,p);return e;
We come to the two-dimensional case. Assume w.l.o.g thatcur dart is not a hull dart

(otherwise, replacecur dart by its reversal).
If p is equal to the source ofcur dart, we are done and return the reversal ofcur dart;

recall that we want to return a hull dart ifp lies on the boundary of the convex hull.
So assume thatp is distinct from the source ofcur dart. The face cycle containing

cur dart is a triangle sincecur dart is not a hull dart and hencep either does not lie on
the line supportingcur dart or the line supportingfacecyclepred(cur dart). Let e be the

13 The halfspace orthogonal toe has normal vectore, hassource(e) in its boundary, and contains the target ofe. We
need this definition only for this paragraph.



10.6 Point Sets and Dynamic Delaunay Triangulations 81
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Figure 10.43 In order to locatep we walk along the segments from source(e0) to p; s
intersects the half-closures of the dartse0, e1, . . . ,e5; e0, . . . ,e5 are directed downwards.

appropriate dart and assume thatp lies in the positive halfspace14 of e (replacee by its
reversal otherwise).

We walk along the rays starting in the source ofeand ending inp, see Figure 10.43. We
will maintain the following invariant during the walk:

• p lies in the positive subspace with respect toe.

• s intersects the half-closure ofe, where the half-closure ofe consists of the interior of
e plus its source. However, the target of the dart does not belong to the half-closure.

〈locate: two-dimensional case〉�edge e = is_hull_dart(
ur_dart) ? reversal(
ur_dart) : 
ur_dart;if (p == pos_sour
e(e) ) return reversal(e);int orient = orientation(e,p);if (orient == 0) { e = fa
e_
y
le_pred(e);orient = orientation(e,p);}if (orient < 0) e = reversal(e);SEGMENT s(pos_sour
e(e),p);while ( true ){ if (is_hull_dart(e)) break;
〈locate: determine the next edge e or break from the loop〉}if (
he
k) 
he
k_lo
ate(e ,p);((edge&)
ur_dart) = e;return e;

The while-loop performs the walk. We distinguish cases according to whethere is a hull
dart or not. Ife is a hull dart, we stop and returne.

Otherwise, lete, e1, e2 be the face cycle of the triangleF to the left ofe. We need to find
out whether the walk ends inF or whether we are leaving the triangle throughe1 or through

14 The positive halfspace with respect toe is the halfspace to the left of the oriented line supportinge.
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Figure 10.44 A step of the walk through the triangulation: In the left partof the figure,c lies to
the right ofs and in the right part it does not.

e2. Let c be the common endpoint ofe1 ande2. We distinguish cases according to whether
c lies to the right ofs or not.

Assume first thatc lies to the right ofs, i.e.,s intersects the half-closure of the reversal
eR

2 of e2, see Figure 10.44. Ifp lies to the left ofeR
2 , we replacee by eR

2 and continue. Ifp
lies oneR

2 , we returneR
2 , and if p lies to the right ofeR

2 and hence in the interior ofF , we
returne.

Assume next thatc does not lie to the right ofs, i.e.,s intersects the half-closure of the
reversaleR

1 of e1, see Figure 10.44. Ifp lies to the left ofeR
1 , we replacee by eR

1 and
continue. If p lies oneR

1 , we returneR
1 , and if p lies to the right ofeR

1 and hence in the
interior of F or one2 (the latter case can only occur whens passes through the source ofe
andp lies one2), we returne in the former case andeR

2 in the latter.

〈locate: determine the next edge e or break from the loop〉�edge e1 = fa
e_
y
le_su

(e);edge e2 = fa
e_
y
le_pred(e);int d = ::orientation(s,pos_target(e1));edge e_next = reversal( (d < 0) ? e2 : e1 );int orient = orientation(e_next,p);if ( orient > 0 ) { e = e_next; 
ontinue; }if ( orient == 0 ) { e = e_next; break; }if ( d == 0 && orient < 0 && orientation(e2,p) == 0 ) e = reversal(e2);break;
This completes the description oflocate. We still need to argue termination. We clearly

make progress when the new darte intersectss closer top than the old darte. It may,
however, be the case that the intersections are the same. In this situation the new darte
forms a smaller angle withs than the old one.

Having locate, we can easily implement thelookupoperation.
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Figure 10.45 The nodea lies in the interior of darte0 but infinitesimally close to the source
node ofe0. The dartse0, e1, . . . havep on their left and are directed downwards. The rays′

intersects only the interior of darts.

〈POINT SET.c〉+�node POINT_SET::lookup(POINT p) 
onst{ if (number_of_nodes() == 1) { node v = first_node();return (pos(v) == p) ? v : nil;}edge e = lo
ate(p);if (pos(sour
e(e)) == p) return sour
e(e);if (pos(target(e)) == p) return target(e);return nil;}
It took us a long time to come up with the short and elegant inner loop for locategiven

above. Earlier attempts were longer and less elegant (and some were plain wrong). Why
did we have such difficulties and how did we finally arrive at the program given above?
The difficulties stemmed from degeneracies; we had difficulties handling the case that the
ray s passes through some node of the triangulation or even runs ontop of an edge of the
triangulation. Under the additional assumption that thereare no degeneracies, i.e., thats
enters and leaves triangles through relative interiors of edges, it was easy to write a correct
program. We had difficulties extending the solution to the case wheres enters and/or leaves
through a vertex. Our original solution was clumsy because we used the weaker invariant
that s intersects the closure ofe (and not only the half-closure as we stated above). This
resulted in a lengthy case distinction.

The key to the simpler program was a thought experiment usingperturbation. Recall
that we locatep by a walk through the triangulation starting at the source node of some
darte0. The idea of perturbation is to simulate the walk along a perturbed rays′ that starts
in a nodea that lies in the interior ofe0 but infinitesimally close to the source ofe0, see
Figure 10.45. The perturbed ray will only pass through the interior of darts (except maybe
at p); it may pass infinitesimally close to the source of a dart butnot infinitesimally close to
the target. We concluded that source nodes of darts play a different role than target nodes of
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darts and came up with the concept of the half-closure of a dart. Once we had the concept
of a half-closure, we arrived at a correct program within an hour.

We close this section with a remark about the efficiency oflocate. Clearly, the running
time of locate is proportional to the number of darts of the Delaunay triangulation crossed
by the segments. Bose and Devroye [BD95] have shown that the expected numberof
edges of a Delaunay triangulation of random points crossed by a line segment of lengthl is
O(l

√
γ ), whereγ is the point density.

Insert: The functionnode T.insert(POINT p);
inserts the pointp into T and returns the corresponding node. More precisely, if there is
already a nodev in T positioned atp (i.e., pos(v) is equal top) thenpos(v) is changed to
p (i.e., pos(v) is made identical top) and if there is no such node then a new nodev with
pos(v) = p is added toT . In either case,v is returned.

We first define our return statement

〈insert::check and return v〉�if ( 
he
k && !
he
k_state("POINT_SET::insert") ){ 
err << "The point inserted was " << p;exit(1);}return v;
and then give an overview. We first deal with the case thatT has at most one node. IfT
has more than one node, we locatep in the triangulation. Lete be the edge returned by
locate(p). If p is equal to an endpoint ofe, we replace the endpoint byp and return.

Otherwise, we determine whetherp lies one and then distinguish cases according to
the dimension of the triangulation after the insertion. Thedimension is one if the current
dimension is one andp lies in the affine subspace ofS.

〈POINT SET.c〉+�node POINT_SET::insert(POINT p){ if ( 
he
k ) save_state(p);node v;
〈T has zero or one node〉edge e = lo
ate(p);if (p == pos_sour
e(e)) { assign(sour
e(e),p); return sour
e(e); }if (p == pos_target(e)) { assign(target(e),p); return target(e); }bool p_on_e = seg(e).
ontains(p);if ( dim() == 1 && orientation(e,p) == 0 ){ 〈dimension is one after the insertion〉 }
〈dimension is two after the insertion〉}
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Assume first thatT has at most one node. IfT has no node, we create a node, label it
with p and return it, ifT has one node, we either relabel this node withp or we create a
new node with labelp and connect it to the old node.

〈T has zero or one node〉�if (number_of_nodes() == 0){ v = new_node(p); 〈insert::check and return v〉 }if (number_of_nodes() == 1){ node w = first_node();if (p == pos(w)){ assign(w,p);v = w;
〈insert::check and return v〉}else{ v = new_node(p);edge x = new_edge(v,w); edge y = new_edge(w,v);mark_edge(x,HULL_DART); mark_edge(y,HULL_DART);set_reversal(x,y);hull_dart = 
ur_dart = x;
〈insert::check and return v〉}}

If dim is one andp lies in the affine hull ofS there are two cases. Ifp is one then we
split e into two edges and ifp does not lie one we simply add new edges betweenp and
target(e).

〈dimension is one after the insertion〉�v = new_node(p);edge x = new_edge(v,target(e)); edge y = new_edge(target(e),v);mark_edge(x,HULL_DART); mark_edge(y,HULL_DART);set_reversal(x,y);if (p_on_e){ x = new_edge(v,sour
e(e));y = new_edge(sour
e(e),v);mark_edge(x,HULL_DART);mark_edge(y,HULL_DART);set_reversal(x,y);hull_dart = 
ur_dart = x;del_edge(reversal(e));del_edge(e);}
〈insert::check and return v〉

In the remaining case the hull is guaranteed to be two-dimensional after the insertion. We
now have to triangulate the face that containsp. p lies in the interior of the convex hull iff
e is not a hull dart.

If p lies in a bounded face (= triangle), we connect it to all (three) nodes of the face.
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One of the three new triangles could have height zero. We madesure thatmakedelaunay
handles this case correctly.

If p lies in the outer face or on its boundary, we first determine the set of hull darts visible
from p by walking in both directions along the hull starting ine. We call the two extreme
darts reached by these walkse1ande2. We then add an edge for each visible vertex, i.e. for
all vertices fromtarget(e1) to source(e2).

There is one subtle point. It is important how ties are brokenwhen p lies on a hull dart.
Only one triangle should be added to the triangulation and not three (the latter would be
the case if we break the tie in favor of the triangle incident to the hull dart). In order to
guarantee that ties are broken correctly, we havelocatereturn a hull dart ifp does not lie in
the interior of the triangulation.

In the implementation we retriangulate the outer face and bounded faces in a uniform
way; we add new edges for all nodes fromtarget(e1) to source(e2) for two dartse1ande2.
In the case of a bounded face we choosee1= e2= e and in the case of the outer face we set
e1ande2 to the extreme (tangent) darts as described above.

〈dimension is two after the insertion〉�v = new_node(p);edge e1 = e;edge e2 = e;list<edge> E;bool outer_fa
e = is_hull_dart(e);if (outer_fa
e){ // move e1/e2 to 
ompute upper/lower tangentsdo e1 = fa
e_
y
le_pred(e1); while (orientation(e1,p) > 0);do e2 = fa
e_
y
le_su

(e2); while (orientation(e2,p) > 0);}// insert edges between v and target(e1) ... sour
e(e2)e = e1;do { e = fa
e_
y
le_su

(e);edge x = new_edge(e,v);edge y = new_edge(v,sour
e(e));set_reversal(x,y);mark_edge(e,DIAGRAM_DART);E.append(e);E.append(x);} while (e != e2);if (outer_fa
e){ // mark last visited and new edges as hull edgesmark_edge(fa
e_
y
le_su

(e1),HULL_DART);mark_edge(fa
e_
y
le_pred(e2),HULL_DART);mark_edge(e2,HULL_DART);hull_dart = e2;}make_delaunay(E); // restores Delaunay property
〈insert::check and return v〉



10.6 Point Sets and Dynamic Delaunay Triangulations 87

Deletion: The functionsvoid T.del(node v)void T.del(POINT p)
remove the nodev and the pointp, respectively, i.e., makeT a Delaunay triangulation for
S\ {pos(v)} andS\ p, respectively.

The strategy to remove a node is simple. Removal of a node fromthe interior of a two-
dimensional triangulation (of course, the program also hasto handle the removal of a node
from a triangulation that is not two-dimensional or of a nodewhich lies on the boundary
of the convex hull) creates a cavity in the triangulation. The cavity is retriangulated in an
arbitrary way and thenmakedelaunay(E) is called to restore the Delaunay property, where
E is the set of new edges and the set of edges on the boundary of the cavity.

After this general outline we define our return statement andgive an overview of the
deletion procedure.

〈del: check and return〉�if ( 
he
k && !
he
k_state("POINT_SET::del(node v)") ){ 
err << "deleted the node with position " << pos(v);exit(1);}return;
〈POINT SET.c〉+�void POINT_SET::del(node v){ if (v == nil) error_handler(1,"POINT_SET::del: nil argument.");if (number_of_nodes() == 0)error_handler(1,"POINT_SET::del: graph is empty.");if (
he
k) save_state(inf(v));if ( dim() < 2 ){ if ( outdeg(v) == 2){ node s = target(first_adj_edge(v));node t = target(last_adj_edge(v));edge x = new_edge(s,t); edge y = new_edge(t,s);mark_edge(x,HULL_DART); mark_edge(y,HULL_DART);set_reversal(x,y);}del_node(v);
ur_dart = hull_dart = first_edge();

〈del: check and return〉}
〈removal of v from a two-dimensional triangulation〉
〈del: check and return〉}
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Figure 10.46 The right part of the figure shows the effect of flipping the edges(v, a), (v, c) and
(v, e).

If the dimension of the triangulation is less than two, the removal of v is trivial. If the
dimension is zero or the dimension is one andv is an extreme node of the triangulation (i.e.,
the outdegree ofv is one), we simply removev. If v has outdegree two, we connect the two
neighbors ofv by a new edge and then deletev. Of course,cur dart or hull dart could have
been incident tov and hence have to be given new values.

We come to the interesting case, the removal ofv from a two-dimensional triangulation.
We first discuss the case thatv lies in the interior of the triangulation. We will later see that
the same strategy also handles the case wherev lies on the boundary of the convex hull.

Removal ofv creates a faceP that is, in general, not a triangle. It is only a triangle if
the degree ofv is three. We need to retriangulate this face. A natural approach would be
to removev and to retriangulate after the removal ofv. However, this approach does not
exploit the fact thatP is a so-calledstar-shaped polygonwith respect tov, i.e., thatv can
see all vertices ofP. We will exploit this fact as follows in the retriangulationprocess.
We will show below that there is always an edgee incident tov such that the two triangles
incident tov form a convex quadrilateral. We “flipe away fromv” by replacing it by the
other diagonal of the triangle. In this way the degree ofv is decreased by one. We continue
until the degree ofv is three. At this point,v is removed and the created face is a triangle,
see Figure 10.46.

We now give the details. We need a slightly more general definition of star-shapedness
than was alluded to in the text above. The more general definition is needed to cope with
the case that three or more points ofS lie on a common line.

We call a polygonP star-shapedwith respect to a pointv if either:

• v lies in the interior ofP and for every vertexp of P the open line segmentvp is
contained in the interior ofP, or

• v lies in the relative interior of an edgee of P and for every vertexp of P that is not
an endpoint ofe the open line segmentvp is contained in the interior ofP.

Lemma 8 Let P be a polygon which has at least four vertices and is star-shaped with
respect to some pointv. Then there are three consecutive vertices p, q, r of P such that
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Figure 10.47 (p, q, r, v) forms a convex quadrilateral. In the situation on the leftv will lie on
an edge ofP′ after the flip of edge(v, q) and in the situation on the right it will still lie in the
interior of P′. The quadruple(q, r, r ′, v) does not qualify for a flip.

(v, p, q, r ) form a convex quadrilateral. In this quadrilateral the angle atv maybe equal to
π . The angle atv can be equal toπ only if v lies in the interior of P, see Figure 10.47.

Let P′ be the polygon obtained from P by replacing the edges pq and qrby the edge pr.
Then P′ is star-shaped with respect tov.

Proof Consider any triangulationT of P. T consists of at least two triangles. Since the dual
of a triangulation is a tree and every tree has at least two leaves, there must be at least two
triangles inT whose edges consist of two consecutive edges ofP plus the chord connecting
the source of the first edge with the target of the second edge and hence there must be at
least one such triangle which, in addition, does not containv in its interior. Consider one
such triangle, sayt , and lete1 = (p, q) ande2 = (q, r ) be the edges ofP that are contained
in its boundary. Since(p, q, r ) is a triangle ofT the angle atq is less thanπ .

Sincev is not contained in the interior oft , (v, p, q, r ) forms a convex quadrilateral.
In this quadrilateral the angles atp andr must be less thanπ sinceP is star-shaped with
respect tov. Also by the star-shapedness, the angle atv can be equal toπ only if v lies in
the interior ofP.

P′ is clearly star-shaped with respect tov.

Call an edge incident tov flipableif the two triangles incident to it form a convex quadri-
lateral. As long as there is a flipable edge incident tov flip it. The lemma above guarantees
that the process does not terminate beforev has degree three.

How can we find flipable edges quickly? We scan through the edges incident tov. Let e
be the current edge. Ife is not flipable, we advancee to the cyclic successor ofe, and ife is
flipable, we flip it and sete to the cyclic predecessor ofe.

When do we terminate? We terminate whenv has degree three. Since we want to use the
same procedure also for nodes on the hull we develop a more general termination condition.
We terminate when the degree ofv reachesmindeg, wheremindegis three for nodes in the
interior and is two for hull nodes. We also keep a countercountwhich is a lower bound on
the number of edges out ofv that are certainly not flipable. We incrementcountwhenever a
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non-flipable edge is found, we decrementcountby two whenever a flip is performed, as this
may make the two neighbors of the flipped edge flipable, and we terminate ifcountreaches
outdeg(v).

Why is this correct? Call an edgecertified non-flipableif it has been tested for flipping
and its two neighbors have not changed since. In the procedure just outlined the edges that
are certified non-flipable are consecutive in the cyclic adjacency list ofv andcount is a
lower bound on their number. This shows correctness.

The running time of retriangulation is linear in the initialdegree ofv. This follows from
the fact that the total decrement ofcount is bounded by twice the initial degree ofv and
hence the total increase ofcountis bounded by thrice the initial degree ofv.

We obtain the following code.

〈removal of v from a two-dimensional triangulation〉�list<edge> E;int min_deg = 3;edge e;forall_adj_edges(e,v){ E.append(fa
e_
y
le_su

(e));if (is_hull_dart(e)) min_deg = 2;}int 
ount = 0;e = first_adj_edge(v);while ( outdeg(v) > min_deg && 
ount < outdeg(v) ){ edge e_pred = 
y
li
_adj_pred(e);edge e_su

 = 
y
li
_adj_su

(e);POINT a = pos_target(e_pred); POINT 
 = pos_target(e_su

);if ( !right_turn(a,
,pos(v)) && right_turn(a,
,pos_target(e)) ){ // e is flipableedge r = reversal(e);move_edge(e,reversal(e_su

),target(e_pred));move_edge(r,reversal(e_pred),target(e_su

),LEDA::before);mark_edge(e,DIAGRAM_DART);mark_edge(r,DIAGRAM_DART);E.append(e);e = e_pred;
ount = 
ount - 2;if ( 
ount < 0 ) 
ount = 0;}else{ e = e_su

;
ount++;}}if ( min_deg == 2 ){ 〈adjust marks of new hull darts and their reversals〉 }
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ur_dart = E.head();del_node(v);make_delaunay(E);
We give some more explanations. The while-loop performs theretriangulation. During the
retriangulation we build up a listE of edges whose Delaunay property needs to be checked:
E consists of all edges in the boundary of the cavity created bythe removal ofv and all
edges created during retriangulation.

After retriangulation we removev and add callmakedelaunay(E) to restore the Delaunay
property.

We also have to take care ofcur dart. It may have been incident tov. We set it to an
arbitrary edge in the boundary of the cavity created by the removal ofv.

This completes the discussion of the case when a node in the interior of the triangulation
is removed. We will next argue that the same retriangulationstrategy works whenv is a
node in the boundary of the triangulation.

Again we flip edges away fromv until no further edges are flipable. When this is the
case, the neighbors ofv form a chain that is concave as seen fromv and hence removal
of v leaves us with a triangulation of the remaining nodes. Removal of v also turns some
darts into hull darts. Their labels have to be changed toHULL DARTand the edges of their
reversal have to be changed toDIAGRAMDART. There is a small exception to the latter
rule, namely when a reversal is a hull dart itself. This will be the case when the removal of
v reduces the dimension of the triangulation from two to one.

〈adjust marks of new hull darts and their reversals〉�edge e,x;forall_adj_edges(e,v){ x = fa
e_
y
le_su

(e);mark_edge(x,HULL_DART);if ( !is_hull_dart(reversal(x)) ) mark_edge(reversal(x),DIAGRAM_DART);}hull_dart = x;
Nearest Neighbor Searching:The functionsnode T.nearest neighbor(POINT p);list<node> T.k nearest neighbors(POINT p, int k);
return a nodev closest top, i.e.,dist(p, pos(v)) = min{dist(p, pos(u)) ; u ∈ T }, and the
list of the min(k, |S|) closest points top, respectively. The points in the result list are
ordered by distance fromp. One can also ask for the nearest neighbor(s) of a node.node T.nearest neighbor(node w);list<node> T.k nearest neighbors(node w, int k);
return a nodev different fromw that is closest toT [w] and the list of the min(k, |S| − 1)

closest points toT [w], respectively.
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The following observation paves the way for a simple algorithm for both problems and
is also the basis of the range query algorithms to be discussed in the next section.

Lemma 9Let s and t be two nodes of a Delaunay triangulation T and let d be their distance.
Then there is a path from s to t in T such that all intermediate nodes have distance less than
d from s.

Proof We use induction ond. Let D be the disk with radiusd centered ats. If st is an edge
of T , we are done. Otherwise leta andb be the two neighbors oft such that the segment
st runs between the edgesta andtb of T . The pointsa, b, andt form a triangle ofT . If
one ofa andb has distance less thand from s, we can apply the induction hypothesis and
are done. So assume otherwise, i.e., neithera nor b lies in the interior ofD. The segments
st andab intersect (sinces cannot lie in the interior of the triangle with cornersa, b, andt)
and hence(s, a, t, b) is a convex quadrilateral. The diskD proves that the segmentab does
not belong to the Delaunay triangulation of{a, b, s, t } and hence cannot be an edge ofT .

The lemma suggests a simple strategy to find thek-nearest neighbors ofp = T [v]. If
the number of points inT is no more thank, we simply return all nodes inT . So assume
otherwise. We start a graph search starting inv. We keep all reached nodes in a priority
queue according to their (squared) distance fromv and always continue the exploration
from a node with smallest distance. The lemma above guarantees that this strategy explores
the nodes ofT in order of increasing distance fromv.

〈POINT SET.c〉+�#in
lude <LEDA/p_queue.h>list<node> POINT_SET::nearest_neighbors(node v, int k) 
onst{ list<node> result;int n = number_of_nodes();if ( k <= 1 ) return result;if ( n + 1 <= k ){ node w;forall_nodes(w,*this) if ( w != v ) result.append(w);return result;}POINT p = pos(v);unmark_all_nodes();p_queue<RAT_TYPE,node> PQ;PQ.insert(0,v); mark(v);while ( k > 0 ){ pq_item it = PQ.find_min();node w = PQ.inf(it); PQ.del_item(it);if ( w != v ) { result.append(w); k--; }node z;forall_adj_nodes(z,w)
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We come to the case where we want to search for the nearest neighbors of a pointp. We

simply insertp into T and then use the procedure above.
A small complication arises from the fact thatp may lie on a node ofT . We test for this

case by performing a lookup forp. If p does not lie on a node ofv, we insert it. Of course,
it has to removed again after calling the procedure above andp has to be removed from the
list of answers.

〈POINT SET.c〉+�list<node> POINT_SET::nearest_neighbors(POINT p, int k){ list<node> result;int n = number_of_nodes();if ( k <= 0 ) return result;if ( n <= k ) return all_nodes();// insert p and sear
h neighbors graph starting at pnode v = lookup(p);bool old_node = true;if ( v == nil ) { v = ((POINT_SET*)this)->insert(p);old_node = false;}else k--;result = nearest_neighbors(v,k);if ( old_node )result.push_front(v);else((POINT_SET*)this)->del(v);return result;}
The nearest neighbor of a nodev in a Delaunay diagram is a node adjacent tov. Thus

one only has to find the minimum (squared) distance betweenv and its neighboring nodes.

〈POINT SET.c〉+�node POINT_SET::nearest_neighbor(node v) 
onst{ if (number_of_nodes() <= 1) return nil;POINT p = pos(v);edge e = first_adj_edge(v);node min_v = target(e);while ((e = adj_su

(e)) != nil)
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n I NN NNA

50000 128.2 2.32 18.08

Table 10.5 We constructed a point set ofn random points in the unit square and performed a
nearest neighbor query for each node in the triangulation. NN shows the time for the function
nearestneighborand NNA shows the time with alternative implementation of the inner loop.
Column I shows the time for then insertions. The table was made with the rational kernel.{ node u = target(e);if ( p.
mp_dist(pos(u),pos(min_v)) < 0 ) min_v = u;}return min_v;}

An alternative way to write the inner loop is:

〈alternative inner loop〉�node min_v = target(e);RAT_TYPE min_d = p.sqr_dist(pos(min_v));while ((e = adj_su

(e)) != nil){ node u = target(e);RAT_TYPE d_u = p.sqr_dist(pos(u));if ( d_u < min_d ) { min_v = u;min_d = d_u;}}
This is much slower, see Table 10.5. Why is the alternative somuch slower; aren’t the two
programs doing exactly the same thing? Both programs compute the squared distance from
v to all its neighbors and find the minimum.

The difference is that the alternative version computes allsquared distancesexactlyas
rational numbers15 and finds the minimum of these rational numbers. The originalversion
asks the kernel to compare distances. The kernel first computes floating point approxi-
mations to the squared distances and uses them in the comparisons. If the floating point
approximation suffices to decide the comparison, the exact squared distance is never com-
puted and a lot of work is saved.

Range Searches:We have functions for circular, triangular, and rectangular range searches.
In order to perform a circular range query with centerv we perform a DFS starting atv.

The search is restricted to the nodes that lie in the circularrange. Correctness follows from
Lemma 9.
15 We assume for this paragraph that the rational kernel is used.
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〈POINT SET.c〉+�void POINT_SET::dfs(node s, 
onst POINT& pv,
onst POINT& p, list<node>& L) 
onst{ L.append(s);mark_node(s);node u;forall_adj_nodes(u,s)if (!is_marked(u) && pv.
mp_dist(pos(u),p) <= 0 ) dfs(u,pv,p,L);}list<node> POINT_SET::range_sear
h(node v,
onst POINT& p) 
onst{ list<node> L;POINT pv = pos(v);unmark_all_nodes();dfs(v,pv,p,L);return L;}
The other two kind of queries can be reduced to circular queries by first performing a

range query with the circumcircle of the triangle or rectangle and then filtering the returned
list of points with the triangle or rectangle, respectively. We leave the implementation of
the other queries to the reader.

Experimental Data: Table 10.6 contains running times. The table shows that nearest
neighbor queries for nodes are very efficient in comparison to nearest neighbor queries
for points. This comes from the fact that the latter involve alookup, an insertion, a deletion,
as well as a nearest neighbor query for a node. For queries that ask for the ten nearest neigh-
bors the difference is not as pronounced. This stems from thefact thatk-nearest neighbor
queries involve rational arithmetic.

Exercises for 10.6
1 Implement circular range queries.
2 Implement triangular and rectangular range queries. You may use circular range queries.
3 Animate the Delaunay class such that the actions performedafter the insertion of a point

are visualized.
4 Thenearestneighborsalgorithm uses ap queue<RATTYPE, node>. The code becomes

slightly simpler if anodepq<RATTYPE> is used. Why is it better to use ap queue
instead of anodepq? Time both programs and explain.

5 Develop a version of thek-nearest neighbor search that cuts down on the use of rational
arithmetic.

6 Our implementation ofnearestneighbor(POINT p) modifies the Delaunay triangulation
by an insertion and a deletion. It is not guaranteed that the original Delaunay triangu-
lation is restored. Can you modify the implementation such that it becomes a const-
operation? Try to determine the setL of all edges of the current triangulation whose
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K n I L NNP NNV NNP(10) NNV(10) D

S 1000 1.14 0.66 2.15 0.05 10.22 7.07 1.16

2000 2.79 1.83 4.92 0.09 21.25 14.06 2.77

4000 6.83 5.36 11.68 0.2 44.4 28.29 6.65

D 1000 1.15 0.68 2.22 0.03999 10.27 7.03 1.18

2000 2.78 1.89 4.99 0.11 21.21 14.04 2.75

4000 6.76 5.23 11.53 0.2 44.25 28.25 6.65

C 1000 0.82 0.41 0.99 0.03 5.43 4.65 2.84

2000 1.75 0.9 2.08 0.06 11.09 9.31 8.2

4000 3.78 2.03 4.42 0.13 22.35 18.48 29.09

Table 10.6 The performance of point sets. As in the other tables of this chapter we used three
kinds of inputs: random points in the unit square, random points in the unit disk, and random
points on the unit circle. We generated two setsL andLQ of n points, built a point setT by
inserting the points inL (I), performedn lookups for the points inLQ (L), performed nearest
neighbor queries for the points inLQ (NNP), performed nearest neighbor queries for the nodes of
T (NNV), computed the ten nearest neighbor queries for the points inLQ (NNP(10)), computed
the ten nearest neighbor queries for nodes ofT (NNV(10)), and finally deleted all points.

Delaunay property is destroyed byp. The nearest neighbor ofp must be a vertex of the
triangle containingp or an endpoint of an edge inL.

10.7 Line Segment Intersection

The line segment intersection problem asks to compute the set of intersections of a setS
of line segments in the plane. It is one of the basic geometricproblems and has numerous
applications, e.g., in computer aided design, geographic information systems, and cartogra-
phy. We will see an application to boolean operations on polygons in Section 10.8. Many
different algorithms have been designed for the problem andseveral of them are available in
LEDA. The line segment intersection problem comes in many different flavors as different
applications have different output requirements. One may be interested in the number of
intersections, or one may want to trigger an action for everypair of intersecting segments,
or one may want to compute the graph induced by the segments, or one may want to com-
pute the trapezoidal decomposition induced by the set of segments. In LEDA we provide
functions for several output conventions which we survey inSection 10.7.1. We also give
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Figure 10.48 A screen shot of the intersectsegments demo in xlman. The sweep line algorithm
was used to compute the graph induced by a set of 203 random segments. The induced graph has
1424 nodes and 2638 edges.

some experimental data in this section. In the remaining sections we discuss the sweep line
algorithm for segment intersection.

The algorithms discussed in this section are illustrated bythe intersectsegments demo in
xlman. Figure 10.48 shows a screen shot.
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S G(S)

Figure 10.49 A setSof segments and the induced planar graph.

10.7.1 Functionality
We first introduce some terminology. Two segmentss1 and s2 intersectif they have at
least one point in common andoverlapif they have more than one point in common. Two
segmentss1 ands2 are said to have aproper intersectionif they share exactly one point and
this point lies in the relative interior of both segments. A segment of length zero is called a
trivial segment.

The undirect graphU (S) induced byS is defined as follows. The vertices ofU (S) are all
endpoints of segments and all proper intersection points between segments inS. The edges
of U are the maximal relatively open and connected subsets of segments inSthat contain no
vertex ofU (S). Figure 10.49 shows an example. Note that the graphU (S) contains parallel
edges ifS contains segments that overlap. We usen to denote the number of segments in
S, s to denote the number of nodes ofU , m to denote the number of edges ofU , andk to
denote the number of pairs of intersecting segments. IfScontains no overlapping segments,
m = O(n + s). If S contains overlapping segments,m may be as large asn(n + s) since
an input segment may be divided inton + s pieces by the endpoints and intersection points.
The number of nodes ofU is at mostn + k ≤ n + n(n − 1)/2. If many segments have
a common intersection,k may be much larger thans. For example, if alln segments pass
through a common point thens = n + 1 andk = n(n − 1)/2.

The functionvoid SEGMENT INTERSECTION(
onst list<SEGMENT>& S,GRAPH<POINT,SEGMENT>& G, bool embed = false)
computes a directed graphG(s) representingU (S). The algorithm makes no assumption
about the segments inS. They may be overlapping, they may have multiple intersections,
they may share endpoints, they may have length zero, . . . .

G andU have the same set of nodes; each node ofG is labeled by its position in the
plane.

The edges ofG correspond to the edges ofU . If embedis false, there is exactly one dart
in G for each edge inU ; the dart is labeled by the segment inS containing it and inherits
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its direction from the segment containing it, i.e, ife = (v, w) is a dart ofG thenG[e] is
directed fromG[v] to G[w].

If embedis true,G is a plane map. For each edge ofU there are two darts inG and the
two darts are reversal of each other. For each nodev of G the cyclic list of darts out ofv
are counter-clockwise ordered.

The functionvoid SEGMENT INTERSECTION(
onst list<SEGMENT>& S, list<POINT>& P)
returns the list of points that correspond to nodes ofG of degree two or more and the
functionSEGMENT INTERSECTION(
onst list<SEGMENT>& S,void (*report)(
onst SEGMENT&, 
onst SEGMENT&) )
calls report(s1, s2) for every pair(s1, s2) of intersecting segments. Observe that the points
in P are a subset of the points for whichreport is called. For example, ifSconsists of two
identical trivial segments, thenG(S) consists of a single node and no edge and henceP will
be empty. On the other hand,report will be called for this pair of segments.

For all functions above several implementations are available. The implementations are
based on the algorithms of Bentley and Ottmann ([BO79]), Mulmuley ([Mul90]), and Bal-
aban ([Bal95]). For the reporting version of segment intersection we also have the trivial
implementation which simply checks every pair of segments in S for an intersection.void MULMULEY SEGMENTS(
onst list<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G,bool embed = false);void SWEEP SEGMENTS(
onst list<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G,bool embed = false, bool use optimization = true);void SWEEP SEGMENTS(
onst list<SEGMENT>& S , list<POINT>& P);void BALABAN SEGMENTS(
onst list<SEGMENT>& S,void (*report)(
onst SEGMENT&, 
onst SEGMENT&));void TRIVIAL SEGMENTS(
onst list<SEGMENT>& S,void (*report)(
onst SEGMENT&, 
onst SEGMENT&));
The asymptotic running time of the Bentley–Ottmann algorithm isO(m+(n+s) logn), the
asymptotic running time of the Mulmuley algorithm isO(m+s+n logn). Both algorithms
can be used for all functions above. Ifembedis true the running time of the Bentley–
Ottmann algorithm increases byO(m logm), since an additional sorting step is required.
The asymptotic running time of the Balaban algorithm isO(n log2 n + k). It can only be
used for the functions that report intersections. The asymptotic running time of the trivial
implementation isO(n2).

Table 10.7 compares the running time of our various implementations. In the examples,
Balaban’s algorithm is always better than the trivial algorithm. Mulmuley’s algorithm is
better than the Bentley–Ottmann algorithm when the number of intersections is large. It also
incurs a smaller additional cost for turningG(S) into a planar map (as it always computes an
undirected planar map). When the number of intersections issmall, the Bentley–Ottmann
algorithm and Mulmuley’s algorithm behave about the same.
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n d V E S S + E M M + E T B

2000 22 4007 2014 1.14 1.3 1.74 1.76 15.13 1.94
2000 23 4026 2052 1.18 1.37 2.25 2.29 14.87 2.07
2000 24 4136 2272 1.25 1.42 2.91 2.91 15.26 2.17
2000 25 4428 2856 1.39 1.63 3.44 3.47 15.06 2.33
2000 26 5857 5714 1.81 2.37 4.44 4.5 15.31 2.48
2000 27 10954 15908 3.03 5.02 5.93 6.02 15.41 2.74
2000 28 29683 53366 7.57 16.43 9.71 10.02 16.01 3.22
2000 29 91789 177578 22.84 58.31 20.04 20.94 16.62 5.38
2000 30 267045 528090 70.24 193.7 48.96 51.95 18.42 11.54

Table 10.7 The running time of the functions related to segment intersections. S stands for the
sweep line algorithm of Bentley and Ottmann ([BO79]), M and Bstand for the algorithms of
Mulmuley and Balaban ([Mul90, Bal95]), and T stands for the trivial algorithm that checks every
pair of segments for an intersection. The “+ E” indicates that the graphG(S) is returned as a
planar map. The first three columns contain the number of input segments, the number of nodes
of G, and the number of edges ofG, respectively.
We chosen segments. For each segment we chose randomk bit integer for the Cartesian
coordinates of the first endpoint and obtained the second endpoint from the first by adding a
vector with randomd bit integer coordinates. We usedk = 30 and different values ofd. The
number of intersections is an increasing function ofd.

Let us interpret the experimental findings in terms of asymptotic running time. When
the number of intersections is very large, theO(k logn) term16 in the time bound of the
sweep algorithm dominates theO(k) term in the time bound of the other algorithms. The
trivial algorithm has a running time2(n2 + k · Treport), whereTreport is the cost of calling
the functionreport. In our tests,report increases a counter and hence does minimal work.
Thus the constant factor in the big-O expression is small. This explains why the running
time of the trivial algorithm depends very little on the number of intersections and why
the trivial algorithm is competitive when the number of intersections is large. When the
number of intersections is small the Bentley–Ottmann algorithm and Mulmuley’s algorithm
have running timeO(n logn) and Balaban’s algorithm has running timeO(n log2 n). We
should therefore expect that the former two algorithms are superior when the number of
intersections is small. This is confirmed by the experiments.

10.7.2 The Sweep Line Algorithm
We discuss the Bentley–Ottmann sweepline algorithm for line segment intersection and give
an implementation of the function

16 In our examples, there are hardly any intersections of threeor more segments and hences ≈ k. Observe that if all
nodes are endpoints or proper intersections of exactly two segments thenE = n + 2(V − 2n), asU(S) contains
2n nodes of degree one and(V − 2n) nodes of degree four. In our examples we haveE ≈ n + 2(V − 2n). We
will therefore replaces by k in the discussion to follow.
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onst list<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G,bool embed, bool use optimization)
that takes a listS of segments and computes the graphG induced by it. For each vertexv
of G it also computes its position in the plane, and for each edgee of G it computes the
segment containing it.

If embed= true, the algorithm turnsG into a planar map, i.e.,G is made bidirected and
the adjacency lists are sorted according to the geometric embedding in clockwise order.

If useoptimization= true, an optimization described below is used.
The algorithm runs in timeO((n+s) log(n+m)+m), wheren is the number of segments,

s is the number of nodes ofG, and m is the number of edges ofG. If S contains no
overlapping segments thenm = O(n + s). If embedis true, the running time is increased
by an additive factor ofO(m logm). Note thats ≤ 3(n + k) and thatk can be as large as
s2.

We want to stress that the implementation makes no assumptions about the input, in
particular, segments may have length zero, may be vertical or may overlap, several segments
may intersect in the same point, endpoints of segments may lie in the interior of other
segments, . . . .

We achieve this generality by reformulating the plane sweepalgorithm so that it can
handle all geometric situations. The reformulation makes the description of the algorithm
shorter and it also makes the algorithm faster, sincek is replaced bys in the time bound17.
The only previous algorithm that could handle all degeneracies is due to Myers [Mye85].
Its expected running time for random segments isO(n logn+ k) and its worst case running
time is O((n + k) logn).

In the sweepline paradigm a vertical line is moved from left to right across the plane
and the output (here the graphG(S)) is constructed incrementally as it evolves behind the
sweep line. One maintains two data structures to keep the construction going: the so-called
Y-structurecontains the intersection of the sweep line with the scene (here the setS of
line segments) and the so-calledX-structurecontains the events where the sweep has to be
stopped in order to add to the output or to update the X- or Y-structure. In the line segment
intersection problem an event occurs when the sweep line hits an endpoint of some segment
or an intersection point. When an event occurs, some nodes and edges are added to the graph
G(S), the Y-structure is updated, and maybe some more events are generated. When the
input is in general position (no three lines intersecting ina common point, no endpoint lying
on a segment, no two endpoints or intersections having the samex-coordinate, no vertical
lines, no overlapping segments, . . . ) then at most one event can occur for each position of
the sweep line and there are three clearly distinguishable types of events (left endpoint, right
endpoint, intersection) with easily describable associated actions, cf. [Meh84b, VII.8]. We
want to place no restrictions on the input and therefore needto proceed slightly differently.
We now describe the required changes.

We define the sweep line by a pointp sweep= (x sweep, y sweep). Let ǫ be a positive
17 Bentley and Ottmann formulated their algorithm for line segments in general position and stated a time bound of

O((n + k) logn).
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infinitesimal (readers not familiar with infinitesimals maythink of ǫ as an arbitrarily small
positive real). Consider the directed lineL consisting of a vertical upward ray ending in
point(x sweep+ǫ2, y sweep+ǫ) followed by a horizontal segment ending in(x sweep−
ǫ2, y sweep+ ǫ) followed by a vertical upward ray. We callL thesweep line. Note that18

no endpoint of any segment lies onL, that no two segments ofS intersectL in the same
point except if the segments overlap, and that no non-vertical segment ofS intersects the
horizontal part ofL. All three properties follow from the fact thatǫ is arbitrarily small but
positive. Figure 10.50 illustrates the definition ofL and the main data structures used in the
algorithm: the Y-structure, the X-structure, and the graphG.

The Y-structure contains all segments intersecting the sweep lineL ordered as their in-
tersections withL appear on the directed lineL. Overlapping segments are ordered by their
ID-numbers. Every segment has an associated ID-number; distinct segments are guaranteed
to have distinct IDs.

The X-structure contains all endpoints that are to the rightof the sweep line and also
some intersection points between segments in the Y-structure. More precisely, for each
pair of segments adjacent in the Y-structure their intersection point is contained in the X-
structure (if it exists and is to the right of the sweep line).The X-structure may contain
other intersection points. The graphG contains the part ofG(S) that is to the left of the
sweep line.

Initially, the Y-structure and the graphG are empty and the X-structure contains all end-
points of all input segments. The events in the X-structure are then processed in left to right
order. Events with the samex-coordinate are processed in bottom to top order.

Assume that we need to process an event at pointp and that the X-structure and Y-
structure reflect the situation forp sweep= (p.x, p.y − 2ǫ). Note that this is true initially,
i.e., before the first event is removed from the X-structure.We now show how to establish
the invariants forp sweep= p. We proceed in seven steps.

1. We add a nodev at positionp to our graphG.
2. We determine all segments in the Y-structure containing the pointp. These segments

form a possibly empty subsequence of the Y-structure.
3. For each segment in the subsequence we add an edge to the graph G.
4. We delete all segments ending inp from the Y-structure.
5. We update the order of the subsequence in the Y-structure.This amounts to moving

the sweep line across the pointp.
6. We insert all segments starting inp into the Y-structure.
7. We generate events for the segments in the Y-structure that become adjacent by the

actions above and insert them into the X-structure.

This completes the description of how to process the eventp. The invariants now hold
for p sweep= p and hence also forp sweep= (p′.x, p′.y − 2ǫ) wherep′ is the new first
element of the X-structure.
18 We defined the sweep line in this seemingly complicated way inorder to be able to write this “Note that”. The

note will allow us to define a linear order on the segments intersecting the sweep line.
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Figure 10.50 A scene of nine segments. The segmentss1 ands8 overlap. The sweep line is
shown in bold. The part ofG(S) to the left of the sweep line is already constructed. Its nodes are
shown filled. The sweep line intersects the segmentss1, s8, s2, s9, s4, ands3 and in this order.
The Y-structure contains one item for each one of them. The X-structure contains pointsa, b, c,
d, e, f , g, h, andi and in this order.
The information associated with the items in the X- and Y-structure will be explained in the next
section.

10.7.3 The Implementation of the Sweep Line Algorithm
This section is joint work with Ulrike Bartuschka.

The implementation follows the algorithm closely. It makesuse of several data types
discussed in earlier chapters. The main “ingredients” are the basic geometric objects and
primitives, sorted sequences for the X- and Y-structure, priority queues for storing events,
and graphs for representing the output.

To make this section self-contained we briefly review the data types used.

Points and Segments:The typesrat point andrat segmentrealize points and segments in
the plane with rational coordinates and are part of the rational kernel. Arat point is specified
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by its homogeneous coordinates of typeinteger– the type of arbitrary precision integers.
If p is a rat point then p.X( ), p.Y( ), and p.W( ) return its homogeneous coordinates
and p.xcoord( ) and p.ycoord( ) return its Cartesian coordinates. Ifx, y, andw are of
type integer with w 6= 0 thenrat point(x, y) and rat point(x, y, w) create therat point
with homogeneous coordinates(x, y, 1) and(x, y, w), respectively. Two points are equal
(operator==) if they agree in their Cartesian coordinates. Arat segmentis specified by its
two endpoints; so ifp andq arerat points thenrat segment(p, q) is the directed segment
with sourcep and targetq. If s is a rat segmentthens.source( ) ands.target( ) return the
source and target ofs, respectively.

There are also points (classpoint) with coordinates of typedouble. The corresponding
segment class is calledsegment. The classespoint andsegmenthave the same interface
asrat point andrat segment. However, the internal representation is different: instead of
storing the homogeneous coordinates asintegers, the Cartesian coordinates are stored as
doubles.

The sweep program can be executed with either the rational orthe floating point geometry
kernel. Be aware, however, that the instantiation with the floating point kernel is not fully
reliable, see Section 10.7.2. In the sequel we use POINT to denote the point class and
SEGMENT to denote the segment class.

POINTS and SEGMENTS come with a large number of geometric primitives. In the
sweep program the following primitives are used:

• int compare(POINT p, POINT q)
compares points by their lexicographic order;p precedesq if either
p.xcoord( ) < q.xcoord( ) or
p.xcoord( ) = q.xcoord( ) andp.ycoord( ) < q.ycoord( ). The function returns−1 if
p precedesq, returns 0 ifp andq are equal, and returns+1 otherwise. The
lexicographic order of points is the default order on points.

• int orientation(POINT p, POINT q, POINT r)
computes the orientation of pointsp, q, andr in the plane, i.e., 0 if the points are
collinear,−1 if they define a clockwise oriented triangle, and+1 if they define a
counter-clockwise oriented triangle.

• int orientation(SEGMENT s, POINT p)
computesorientation(s.source( ), s.target( ), p).

• int cmpslopes(SEGMENT s1, SEGMENT s2)
compares the slopes ofs1ands2. If one of the segments is degenerate, i.e., has length
zero, the result is zero. Otherwise, the result is the sign ofslope(s1) − slope(s2).

• bool intersectionof lines(SEGMENT s1, SEGMENT s2, POINT& p)

returnsfalseif segmentss1ands2are parallel or one of them is degenerate.
Otherwise, it computes the point of intersection of the two straight lines supporting the
segments, assigns it to the third parameterq, and returnstrue.
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Our program maintains its own set of segments which we callinternal segmentsor simply
segments and store in the listinternal; input segments are called input segments or original
segments when the need for distinction arises. Internal segments are directed from left to
right; vertical segments are directed upwards. There is oneinternal segment for every non-
trivial input segment. Themap<SEGMENT, SEGMENT> original stores for each internal
segment the corresponding original segment.

〈local declarations〉�list<SEGMENT> internal;map<SEGMENT,SEGMENT> original;
Sorted Sequences:The typesortseq<K , I > realizes sorted sequences of pairs inK ×
I , see Section 5.6;K is called the key type andI is called the information type of the
sequence. The key type must be linearly ordered, i.e., the function int compare(const K& ,

const K& ) must be defined for the typeK and the relation< on K defined byk1 < k2 iff
compare(k1, k2) < 0 must be a linear order onK . An object of typesortseq<K , I > is a
sequence of items (typeseqitem) each containing a pair inK × I . We use<k, i> to denote
an item containing the pair(k, i ) and callk the key andi the information of the item. The
keys in a sorted sequence〈k1, i1〉, 〈k2, i2〉, . . . , 〈km, im〉 form an increasing sequence, i.e.,
kl < kl+1 for 1 ≤ l < m.

Let S be a sorted sequence of typesortseq<K , I > and letk and i be of typeK and I ,
respectively. The operationS.lookup(k) returns the itemit = 〈k, .〉 in Swith keyk if there is
such an item and returnsnil otherwise. IfS.lookup(k) == nil thenS.insert(k, i ) adds a new
item 〈k, i 〉 to S and returns this item. IfS.lookup(k) == it thenS.insert(k, i ) changes the
information in the itemit to i . If it = 〈k, i 〉 is an item ofS thenS.key(it) andS.inf (it) return
k andi , respectively, andS.succ(it) andS.pred(it) return the successor and predecessor item
of it, respectively; the latter operations returnnil if these items do not exist. The operation
S.min( ) returns the first item ofS, S.empty( ) returnstrue if S is empty andfalseotherwise.
Finally, if it1 andit2 are items ofSwith it1 beforeit2 thenS.reverseitems(it1, it2) reverses
the subsequence ofSstarting at itemit1 and ending at itemit2.

In our implementation the X-structure has typesortseq<POINT, seqitem> and the Y-
structure has typesortseq<SEGMENT, seqitem>. The Y-structure has one item for each
segment intersecting the sweep line. The information field in the Y-structure is used for
cross-links with the X-structure and for linking overlapping segments.

The X-structure is ordered according to the default order ofpoints and the Y-structure is
ordered according to the intersections of the segments withthe directed sweep lineL. The
position of the sweep line is determined byp sweepand the comparison objectcmprealizes
the order in the Y-structure. The classsweepcmpwill be defined below.
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〈local declarations〉+�POINT p_sweep;sweep_
mp 
mp(p_sweep);sortseq<POINT,seq_item> X_stru
ture;sortseq<SEGMENT, seq_item> Y_stru
ture(
mp);
In the example of Figure 10.50 the sweep line intersects the segmentss1, s8, s2, s9, s4, and
s3. The Y-structure therefore consists of six items, one each for segmentss1, s8, s2, s9, s4,

ands3.
The X-structure contains an item for each endpoint of an input segment that is to the right

of the sweep line and an item for each intersection point between segments that are adjacent
in the Y-structure and that intersect to the right of the sweep line. It may also contain
intersection points between segments that are not adjacentin the Y-structure.19 The points
in the X-structure are ordered according to the lexicographic ordering of their Cartesian
coordinates. As mentioned above this is the default order onpoints.

In the example of Figure 10.50 the X-structure contains items for the endpointsb, c, d, e,
g, h, i and for intersectionsa and f . Here,a and f are the intersections between segments
s4 ands3, ands1 ands2, respectively.

The informations associated with the items of both structures serve as cross-links between
the two structures: the information associated with an itemin the X-structure is eithernil
or an item in the Y-structure; the information associated with an item in the Y-structure is
eithernil or an item of either structure. The precise definition follows: consider first an item
〈s, it〉 in the Y-structure and lets′ be the segment associated with the successor itemit ′ in
the Y-structure. Ifs ands′ overlap thenit = it ′. If s ands′ do not overlap ands ∩ s′ exists
and lies to the right of the sweep line thenit is the item in the X-structure with keys ∩ s′.
In all other cases we haveit = nil.

Consider next an item〈p, sit〉 in the X-structure. Ifsit 6= nil thensit is an item in the
Y-structure and the segment associated with it containsp. Moreover, if there is a pair of
adjacent segments in the Y-structure that intersect inp thensit 6= nil. We may havesit 6= nil
even if there is no pair of adjacent segments intersecting inp.

In our example, the Y-structure contains the items〈s1, sit8〉, 〈s8, xit f 〉, 〈s2, nil〉, 〈s9, nil〉,
〈s4, xita〉, and〈s3, nil〉 wheresit8 is the item of the Y-structure with associated segments8

andxita andxit f are the items of the X-structure with associated pointsa and f , respec-
tively. Let’s turn to the items of the X-structure next. All items except〈d, nil〉 point back
to the Y-structure. Ifsiti denotes the item〈si , . . .〉, i ∈ {1, 2, 9, 4, 3}, of the Y-structure
then the items of the X-structure are〈a, sit4〉, 〈b, sit4〉, 〈c, sit1〉, 〈d, nil〉, 〈e, sit9〉, 〈 f, sit1〉,
〈g, sit2〉, 〈h, sit3〉, and〈i , sit1〉.
The Order on the Y-structure: The segments in the Y-structure are ordered according to
their intersection with the sweep line. Overlapping segments are ordered according to their

19 Our X-structure may contain intersection points between segments that are no longer adjacent in the Y-structure.
These events could be removed from the X-structure. Removing these events would guarantee an X-structure of
linear size, however, at the cost of complicating the code. Since the size of the X-structure is always bounded by
the size of the output graph we do not remove these events.
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ID-number. All segments in the Y-structure are non-trivialand the position of the sweep
line is determined byp sweep.

The Y-structure is realized as a sorted sequence. In a sortedsequence comparisons be-
tween keys are only made during insertions and lookups and then one of the keys involved
in the comparison is an argument of the operation. We conclude that compare is only called
for segmentss1 ands2 where one of the segments has its source point equal top sweep.
Also, at least one of the segments is non-trivial and if one ofthe segments is trivial it has
both endpoints equal top sweep. Let us assume first that both segments are non-trivial.

Assumesi has its source point equal top sweep. If p sweepdoes not lie ons1−i , i.e.,
orientation(s1−i , p sweep) 6= 0, then the orientation test is also the outcome of compare.

If both segments containp sweepwe compare the slopes ofs1 ands2 (orientation(s2,
s1.target( ))). Only overlapping segments are equal after this comparison. They are ordered
according to their ID-numbers. Since only internal segments are stored in the Y-structure
and since internal segments are pairwise non-identical, any two internal segments have
different ID-numbers.

The compare classsweepcmpis derived fromledacmpbase, see Section 2.10. It has a
private data memberp sweepwhose value will always be equal to the position of the sweep
line; in the constructor the data member is initialized to the initial position of the sweep line
andsetpositionis used to inform the compare object about any advance of the sweep line.

〈geometric primitives〉�
lass sweep_
mp : publi
 leda_
mp_base<SEGMENT>{ POINT p_sweep;publi
:sweep_
mp(
onst POINT& p) : p_sweep(p) {}void set_position(
onst POINT& p) { p_sweep = p; }int operator()(
onst SEGMENT& s1, 
onst SEGMENT& s2) 
onst{ // Pre
ondition:// p_sweep is identi
al to the left endpoint of either s1 or s2.if (identi
al(s1,s2)) return 0;int s = 0;if ( identi
al(p_sweep,s1.sour
e()) ) s = orientation(s2,p_sweep);elseif ( identi
al(p_sweep,s2.sour
e()) ) s = orientation(s1,p_sweep);else error_handler(1,"
ompare error in sweep");if (s || s1.is_trivial() || s2.is_trivial()) return s;s = orientation(s2,s1.target());// overlapping segments will be ordered by their ID_numbers :return s ? s : (ID_Number(s1) - ID_Number(s2));}};
We still need to explain the purpose of the testsis trivial . We will also have to locate trivial
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segments in the Y-structure. These segments will have both endpoints equal top sweep.
We want the search to be successful iff the Y-structure contains a segment passing through
p sweep. In the order defined above, the trivial segment(p sweep, p sweep) is larger than
all segments intersecting the sweep line beforep sweep, is equal to all segments passing
throughp sweep, and is larger than all segments intersecting the sweep lineafterp sweep.
We conclude that a search for the trivial segment will returna segment passing through
p sweepif there is one.

It is important to observe that the compare function for segments changes as the sweep
progresses. What does it mean then that the keys of the items in a sorted sequence form
an increasing sequence? The requirement is that whenever a lookup or insert operation
is applied to a sorted sequence, the sequence must be sorted with respect to the current
compare function. The other operations may be applied even if the sequence is not sorted.

The Graph G: The graphG has typeGRAPH<POINT, SEGMENT>, i.e., it is a directed
graph where aPOINT, respectivelySEGMENT, is associated with each node, respectively
edge, of the graph. The graphG is the part ofG(S) that is left of the sweep line. The
point associated with a vertex defines its position in the plane and the segment associated
with an edge is an input segment containing the edge. We use two operations to extend the
graphG. If p is a POINT thenG.newnode(p) adds a new node toG, associatesp with
the node, and returns the new node. Ifv andw are nodes ofG ands is aSEGMENTthen
G.newedge(v, w, s) adds the edge(v, w) to G, associatess with the edge, and returns the
new edge. In order to facilitate the addition of edges we maintain amap<SEGMENT, node>
lastnode: it gives for each segment in the Y-structure the rightmost vertex lying on the
segment.

〈local declarations〉+�map<SEGMENT,node> last_node(nil);
The Priority Queue: We use a priority queuesegqueueto drive the insertion of segments
into the Y-structure. The queue contains all internal segments that are ahead of the sweep
line ordered according to their left endpoint. In particular, the first segment insegqueue
is always the segment that is encountered next by the sweep line. Segqueuehas type
p queue<POINT, SEGMENT>.

The data typep queue<P, I > realizes priority queues with priority typeP and informa-
tion typeI . P must be linearly ordered. Priority queues are an item-baseddata type. Every
item (of typepqitem) stores a pair(p, i ) from P × I , p is called the priority andi is called
the information of the item. The usual operations on priority queues (insert, deletemin,
findmin) are available.

〈local declarations〉+�p_queue<POINT,SEGMENT> seg_queue;
We are now ready for the program. It has the following structure:
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〈sweepsegments.c〉+�
〈geometric primitives〉
〈embedding〉void SWEEP_SEGMENTS(
onst list<SEGMENT>& S, GRAPH<POINT, SEGMENT>& G,bool embed, bool use_optimization){ 〈local declarations〉

〈initialization〉
〈sweep〉
〈post processing〉}

Initialization: We describe the initialization of the data structures. We clear the graphG,
we compute a coordinateInfinity that is larger than the absolute value of the coordinates
of all endpoints and that plays the role of∞ in our program, we insert the endpoints of
all input segments into the X-structure, and we create for each non-trivial input segment an
internal segment with the same endpoints, insert this segment into segqueueand link the
input segment to it (through maporiginal), we create two sentinel segments at−∞ and
+∞, respectively, and insert them into the Y-structure, we putthe sweep line at its initial
position by settingp sweepto (−∞, −∞), and we add a stopper point with coordinates
(+∞, +∞) to segqueue. The sentinels avoid special cases and thus simplify the code.
Finally, we introduce a variablenextsegthat always contains the first segment insegqueue.

〈initialization〉�G.
lear();COORD Infinity = 1;SEGMENT s;forall(s,S){ COORD x1 = s.x
oord1(), y1 = s.y
oord1();COORD x2 = s.x
oord2(), y2 = s.y
oord2();if (x1 < 0) x1 = -x1;if (y1 < 0) y1 = -y1;if (x2 < 0) x2 = -x2;if (y2 < 0) y2 = -y2;while (x1 >= Infinity || y1 >= Infinity ||x2 >= Infinity || y2 >= Infinity ) Infinity *= 2;seq_item it1 = X_stru
ture.insert(s.sour
e(), seq_item(nil));seq_item it2 = X_stru
ture.insert(s.target(), seq_item(nil));if (it1 == it2) 
ontinue; // ignore zero-length segmentsPOINT p = X_stru
ture.key(it1);POINT q = X_stru
ture.key(it2);SEGMENT s1 = ( 
ompare(p,q) < 0 ? SEGMENT(p,q) : SEGMENT(q,p) );original[s1℄ = s;internal.append(s1);seg_queue.insert(s1.sour
e(),s1);}SEGMENT lower_sentinel(-Infinity,-Infinity,Infinity,-Infinity);



110 Geometry AlgorithmsSEGMENT upper_sentinel(-Infinity, Infinity,Infinity, Infinity);p_sweep = lower_sentinel.sour
e();
mp.set_position(p_sweep);Y_stru
ture.insert(upper_sentinel,seq_item(nil));Y_stru
ture.insert(lower_sentinel,seq_item(nil));POINT pstop(Infinity,Infinity);seg_queue.insert(pstop,SEGMENT(pstop,pstop));SEGMENT next_seg = seg_queue.inf(seg_queue.find_min());
There is one subtle point in the code above. An insert operation into a sorted sequence with
a key that is already present in the sorted sequence returns the item containing the key; it
does not add a new item to the sequence and its does not change the key of the item returned.
We exploit this feature of sorted sequences to ensure that internal segments share endpoints.
Assume for concreteness thats1 ands2 are two input segments with a common source point
and assume thats1 is processed first. When the source point ofs2 is inserted into the X-
structure, the item containing the source point ofs1 will be returned and hence the internal
segments corresponding tos1 ands2 have the same (not just equal) source point20.

Processing Events:We now come to the heart of procedure sweep: processing events. Let
event= 〈p, sit〉 be the first event in the X-structure and assume inductively that our data
structure is correct forp sweep= (p.x, p.y − 2ǫ). Our goal is to changep sweepto p, i.e.,
to move the sweep line across pointp. As long as the X-structure is not empty we perform
the following actions.

We first extract the next event pointp sweepfrom the X-structure by assigning the min-
imal key in the X-structure top sweep, adjusting the compare function for segments to the
new position of the sweep line, and adding a vertexv with positionp sweepto the output
graphG. Then, we handle all segments passing through or ending atp sweep. Finally,
we insert all segments starting atp sweepinto the Y-structure, check for possible intersec-
tions between pairs of segments now adjacent in the Y-structure, and update the X-structure.
Finally, we delete the event from the X-structure.

〈sweep〉�while ( !X_stru
ture.empty() ){ seq_item event = X_stru
ture.min();p_sweep = X_stru
ture.key(event);
mp.set_position(p_sweep);node v = G.new_node(p_sweep);
〈handle passing and ending segments〉
〈insert starting segments〉
〈compute new intersections and update X-structure〉X_stru
ture.del_item(event);}

20 A point is realized as a pointer to a representation class. Two points are equal if they have the same Cartesian
coordinates and two points are identical if they share the representation. Testing two points for identity is faster
than testing them for equality.
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Handling Passing and Ending Segments:We first determine the segments passing through
or ending inp sweepand then handle them by reversing their order in the Y-structure.

〈handle passing and ending segments〉�seq_item sit = X_stru
ture.inf(event);if (sit == nil) sit = Y_stru
ture.lookup(SEGMENT(p_sweep,p_sweep));seq_item sit_su

 = nil;seq_item sit_pred = nil;seq_item sit_pred_su

 = nil;seq_item sit_first = nil;if (sit != nil){ 〈determine passing and ending segments〉
〈reverse order of passing segments〉}

We first determine whether there is any segment passing through or ending inp sweep.
Recall that the current event is〈p sweep, sit〉.

If sit 6= nil, the segment associated withsit containsp sweep. If sit = nil, there is no pair
of adjacent non-overlapping segments in the Y-structure intersecting inp sweep. However,
there may be a bundle of overlapping segments in the Y-structure that containp sweep. We
can decide whether there is such a bundle and determine some segment in the bundle by
locating the pointp sweepin the Y-structure21. We defined the comparison function for
segments such that a search for the trivial segment(p sweep, p sweep) in the Y-structure is
successful iff the Y-structure contains a segment containingp sweep.

If there is no segment in the Y-structure containingp sweep, there is nothing to do. As-
sume otherwise. Thensit points to one such segment. We determine all such segments. The
corresponding items form a subsequence of the Y-structure,see Figure 10.51. We compute
the first (sit first) and last (sit last) item of this bundle of items and also the predecessor
(sit pred) and successor (sit succ) item of the bundle. We also store insit predsucc the
successor ofsit predbefore the insertion, i.e,sit first.

The items in the bundle are easily recognized by their informations. The information of
every item in the bundle except for the last is either equal tothe current event itemevent
or equal to the successor item in the Y-structure (in the caseof a segment overlapping with
its successor). The information of the last item in the bundle is eithernil or an item in the
X-structure different fromevent(such an item stands for an intersection withsit succ).

We determine the items in the bundle as follows. Starting atsit we first walk up until
sit succis reached. Then we walk down tosit pred. During the downward walk we also
start to update the data structures. For every segments in the bundle we do the following:

• We add an edge toG connectinglastnode[s] andv and label it withs. The new edge
gets its direction from the original segment containing it,if embedis false, and is
directed fromv to lastnode[s], if embedis true.

21 The Y-structure contains segments and hence only segments can be located in it. In order to locate the point
p sweepin the Y-structure, we locate the zero-length segment(p sweep, p sweep) instead.
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Figure 10.52 The edges out ofv are constructed in the order(v, u1), (v, u2), (v, u3), (v, u4).

• If s ends atp sweepthen we delete it from the Y-structure. If the predecessor segment
overlaps withs, we copy the information about the successor segment ofs (if any) to
the predecessor and set a flag that the downward walk is not finished yet.

• If s continues throughp sweepthen we change the intersection information associated
with it to nil and setlastnodeto v.

We explain why we direct the edge constructed for a segments from v to lastnode[s] if
embedis true. Sincenewedgeappends the edge constructed to the list of outgoing edges
of v and since we construct edges during the downward walk the edges out ofv will be
constructed in their proper counter-clockwise order, see Figure 10.52. We will exploit this
fact when we construct the planar embedding ofG in the post-processing step.

The identification of the subsequence of segments incident to p sweeptakes constant time
per element of the sequence. Moreover, the constant is smallsince the test of whetherp
is incident to a segment involves no geometric computation but only identity tests between
items. The code is particularly simple due to our sentinel segments:sit can never be the
first or last item of the Y-structure.
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〈determine passing and ending segments〉�// walk upwhile ( Y_stru
ture.inf(sit) == event ||Y_stru
ture.inf(sit) == Y_stru
ture.su

(sit) )sit = Y_stru
ture.su

(sit);sit_su

 = Y_stru
ture.su

(sit);seq_item sit_last = sit;if ( use_optimization ) { 〈optimization, part 1〉 }// walk downbool overlapping;do{ overlapping = false;s = Y_stru
ture.key(sit);if ( !embed && s.sour
e() == original[s℄.sour
e() )G.new_edge(last_node[s℄, v, s);elseG.new_edge(v, last_node[s℄, s );if ( identi
al(p_sweep,s.target()) ) // ending segment{ seq_item it = Y_stru
ture.pred(sit);if ( Y_stru
ture.inf(it) == sit ){ overlapping = true;Y_stru
ture.
hange_inf(it, Y_stru
ture.inf(sit));}Y_stru
ture.del_item(sit);sit = it;}else // passing segment{ if ( Y_stru
ture.inf(sit) != Y_stru
ture.su

(sit) )Y_stru
ture.
hange_inf(sit, seq_item(nil));last_node[s℄ = v;sit = Y_stru
ture.pred(sit);}} while ( Y_stru
ture.inf(sit) == event || overlapping ||Y_stru
ture.inf(sit) == Y_stru
ture.su

(sit) );sit_pred = sit;sit_first = Y_stru
ture.su

(sit_pred);sit_pred_su

 = sit_first;
All segments in the bundle starting withsit first and ending insit last pass through node

v and moving the sweep line throughp sweepchanges the order of these segments in the
Y-structure. More precisely, ifs ands′ are two segments passing throughp sweepthen
moving the sweep line throughp sweepreverses their order iffs ands′ do not overlap.

If the bundle is non-empty, we update its order as follows: first we reverse all subse-
quences of overlapping segments and then we reverse the entire bundle, see Figure 10.53.

The bundle of segments passing throughp sweepis empty iffsit first is equal tosit succ.
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Figure 10.53 Three segments passing throughp sweep, two of them overlapping. The order of
the segments is reversed, but the order within the sub-bundle of overlapping segments is retained.

〈reverse order of passing segments〉�sit = sit_first;// reverse subsequen
es of overlapping segments (if existing)while ( sit != sit_su

 ){ seq_item sub_first = sit;seq_item sub_last = sub_first;while (Y_stru
ture.inf(sub_last) == Y_stru
ture.su

(sub_last))sub_last = Y_stru
ture.su

(sub_last);if ( sub_last != sub_first )Y_stru
ture.reverse_items(sub_first, sub_last);sit = Y_stru
ture.su

(sub_first);}// reverse the entire bundleif ( sit_first != sit_su

 )Y_stru
ture.reverse_items(Y_stru
ture.su

(sit_pred),Y_stru
ture.pred(sit_su

));
Insertion of Starting Segments:The last step in handling the event pointp sweepis to in-
sert all segments starting atp sweepinto the Y-structure and to test the new pairs of adjacent
items(sit pred, . . .) and(. . . , sit succ) for possible intersections. If there were no segments
passing through or ending inp sweepthen the itemssit succandsit predstill have the value
nil and we have to compute them now.

We use the priority queuesegqueueto find the segments to be inserted. As long as the
first segment insegqueuestarts atp sweep, i.e.,nextseg.source( ) is identical22 to p sweep,
we remove it from the queue and locate it in the Y-structure. Lets it be the item returned by
locateand letp sit be its predecessor.

We insertnextsegafters it into the Y-structure; this will add an itemsit to the Y-structure.
We set the information ofsit to ssit if the new segment overlaps with the segment associated

22 Recall that we ensured that endpoints of internal segments that are equal are identical.
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with ssit and we set it tonil otherwise. Similarly, if the new segment overlaps with the
segment associated withp sit we change the information ofp sit to sit.

We associate the new itemsit with the right endpoint ofnextsegin the X-structure; note
that the point is already there but it does not have its link tothe Y-structure yet. We also set
lastnode[s] to v, and if sit succandsit pred are still undefined, i.e, there was no segment
passing through or ending inp sweep, we set them to the successor and predecessor of the
new item, respectively, and we setsit predsuccto sit succ.

〈insert starting segments〉�while ( identi
al(p_sweep,next_seg.sour
e()) ){ seq_item s_sit = Y_stru
ture.lo
ate(next_seg);seq_item p_sit = Y_stru
ture.pred(s_sit);s = Y_stru
ture.key(s_sit);if ( orientation(s, next_seg.start()) == 0 &&orientation(s, next_seg.end()) == 0 )sit = Y_stru
ture.insert_at(s_sit, next_seg, s_sit);elsesit = Y_stru
ture.insert_at(s_sit, next_seg, seq_item(nil));s = Y_stru
ture.key(p_sit);if ( orientation(s, next_seg.start()) == 0 &&orientation(s, next_seg.end()) == 0 )Y_stru
ture.
hange_inf(p_sit, sit);X_stru
ture.insert(next_seg.end(), sit);last_node[next_seg℄ = v;if ( sit_su

 == nil ){ sit_su

 = s_sit;sit_pred = p_sit;sit_pred_su

 = sit_su

;}// delete minimum and assign new minimum to next_segseg_queue.del_min();next_seg = seg_queue.inf(seg_queue.find_min());}
Computing New Intersections: If sit pred still has the valuenil, there were no ending,
passing or starting segments and hencep sweepis an isolated point and we are done. Iso-
lated points result from segments of length zero.

So assume thatsit pred exists. We have to update its information field (which still has
the value from before the event). We set it tonil if there is no intersection betweensit pred
and its successor. If the intersection exists, we insert it into the X-structure and set the
information field ofsit pred to it. If there are segments leavingp sweep, i.e, sit pred is
not the predecessor ofsit succ, we also check for an intersection betweensit succand its
predecessor.
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〈compute new intersections and update X-structure〉�if ( sit_pred != nil ){ if ( !use_optimization ){ Y_stru
ture.
hange_inf(sit_pred,seq_item(nil));
ompute_interse
tion(X_stru
ture, Y_stru
ture, sit_pred);sit = Y_stru
ture.pred(sit_su

);if ( sit != sit_pred )
ompute_interse
tion(X_stru
ture, Y_stru
ture, sit);}else{ 〈optimization, part 2〉 }}
The functioncomputeintersectiontakes an itemsit0 of the Y-structure and determines
whether the segment associated withsit0 intersects the segment associated with its suc-
cessor itemsit1 to the right of the sweep line. If so, it updates the X- and the Y-structure.
Let s0 ands1 be the segments associated withsit0 andsit1, respectively, and letℓ0 andℓ1

be the supporting lines ofs0 ands1, respectively.
We know thats0 intersects the sweep lineL befores1. Thuss0 ands1 intersect right of the

sweep line if the right endpoint ofs1 lies below or onℓ0 (orientation(s0, s1.target( )) ≥ 0)
and the right endpoint ofs0 lies above or onℓ1 (orientation(s1, s0.target( )) ≤ 0).

If the segments intersect, we compute the point of intersection, call it q, by a call of
s0.intersectionof lines(s1, q), insert a new pair (q, sit0) into the X-structure and associate
this pair withsit0 in the Y-structure.

〈geometric primitives〉+�stati
 void 
ompute_interse
tion(sortseq<POINT,seq_item>& X_stru
ture,sortseq<SEGMENT,seq_item>& Y_stru
ture, seq_item sit0){ seq_item sit1 = Y_stru
ture.su

(sit0);SEGMENT s0 = Y_stru
ture.key(sit0);SEGMENT s1 = Y_stru
ture.key(sit1);if ( orientation(s0,s1.target()) <= 0 &&orientation(s1,s0.target()) >= 0 ){ POINT q;s0.interse
tion_of_lines(s1,q);Y_stru
ture.
hange_inf(sit0, X_stru
ture.insert(q,sit0));}}
Post Processing:We associate with each edge ofG an input segment containing it. This is
easily done as each edge has an internal segment associated with it. Thus we only have to
replaceG[e] by original[G[e]].

The graphG constructed during the sweep is planar but is not in the form of a planar map
yet. In particular, the order of the adjacency lists dependson the insertion order.

Whenembedis true, we turnG into a planar map.
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Figure 10.54 Before the call of embedding there is only one edge leaving node 1, namely, the
edgee. There are three parallel edges(2, 1); their counter-clockwise order around node 2 is in
decreasing order of ID-number. We need to add the reversals of the edgesa, b, c, andd to the list
of edges out of 1. Sorting the edges by increasing slope and edges of equal slope by ID-number
gives the desired order.

〈post processing〉�if (embed) 
onstru
t_embedding(G);edge e;forall_edges(e, G) G[e℄ = original[G[e℄℄;
Whenembedis trueall edges ofG are directed from right to left (vertical edges are directed
downwards). Moreover, the edges out of any node are already in their proper counter-
clockwise order.

In order to turnG into a planar map we need to add the reversal of every edge and to
insert the new edges at their proper position into the adjacency lists.

Edge reversals are directed from left to right (the reversalof a vertical edge is directed
upwards). The proper order of edge reversals is therefore byslope. Reversals of parallel
edges should be ordered by ID-number. Consider Figure 10.54.

Let R be a copy (!!!) of the set of all edges ofG. We useR instead ofE to indicate thatR
represents the set of edge reversals. We sort the edges inR according to slope and then add
for each edgee in R the edge(target(e), source(e)) to G. Since new edges are appended to
the lists of outgoing edges, this will result in properly ordered adjacency lists.

〈embedding〉�
lass sweep_
mp_edges : publi
 leda_
mp_base<edge>{ 
onst GRAPH<POINT,SEGMENT>& G;publi
:sweep_
mp_edges(
onst GRAPH<POINT,SEGMENT>& g): G(g) {}int operator()(
onst edge& e1, 
onst edge& e2) 
onst{ SEGMENT s1 = G[e1℄;SEGMENT s2 = G[e2℄;int 
 = 
mp_slopes(s1,s2);if (
 == 0) 
 = 
ompare(ID_Number(s1),ID_Number(s2));return 
;}};
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 void 
onstru
t_embedding(GRAPH<POINT,SEGMENT>& G){ list<edge> R = G.all_edges();sweep_
mp_edges 
mp(G);R.sort(
mp);edge e;forall(e,R){ edge r = G.new_edge(target(e),sour
e(e),G[e℄);G.set_reversal(e,r);}}
In the post-processing step we first compute the embedding and then replace internal seg-
ments by input segments. It would be incorrect to change the order of two steps: first, the
ordering of the Y-structure is an ordering on internal segments and we must use the same
ordering in the embedding step. Second, the input may contain multiple occurrences of
the same segment and the ordering by ID-number does not breakties between identical
segments.

An Optimization: The running time of SWEEPSEGMENTS isO((n+s) log(n+m)+m)

wheren is the number of segments,s is the number of nodes ofG andm is the number of
edges ofG. If there are no overlapping segments thenm = O(n + s) sinceG is planar.
In the presence of overlapping segments,m may be as large asn(n + s). The time bound
can be seen as follows. There areO(n + k) lookups, insertions, and deletions in the X- and
Y-structure, each for a cost ofO(log(n + m)). Observe thatn + m is an upper bound on
the number of items in the Y-structure and thatn + s is an upper bound on the number of
items in the X-structure. Sinces ≤ n2 we have log(n+ s+ m) = O(log(n+ m)). The total
number of items handled by thereverseitemsoperations on the Y-structure isO(m). Since
the cost ofreverseitemsis proportional to the number of items reversed, the total cost for
all reverseitemsoperations isO(m). The number of operations onG is O(n+k+m), each
for a cost ofO(1).

Experiments show that a significant fraction of the running time is spent in the geometric
primitivessweepcmpandcomputeintersection, in particular, if the rational kernel is used
(which we recommend). The rational kernel has a built-in floating point filter, i.e., all geo-
metric tests are first performed in floating point arithmetic, the rounding error is estimated,
and only if the error estimation indicates that the result ofthe floating point computation
may be wrong, the computation is repeated with exact arithmetic. The floating point filter
is discussed in detail in Section 8.7.

The functioncomputeintersectionperforms orientation tests and computes an intersec-
tion point. The floating point filter applies to the orientation tests but does not apply to the
computation of intersection points since constructions ofnew points are always performed
with exact arithmetic.

The functioncomputeintersectionis called whenever two segments become adjacent in
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Figure 10.55 The intersectionp is first discovered whent is inserted into the Y-structure and is
rediscovered whens is removed from the Y-structure.

the Y-structure. Segments may become adjacent in the Y-structure more than once, see
Figure 10.55. We show how to avoid the recomputation of intersections.

We maintain a dictionaryinter dic which maps pairs of segments to items in the X-
structure. The appropriate data type is a two-dimensional map.

〈local declarations〉+�map2<SEGMENT,SEGMENT,seq_item> inter_di
(nil);
Whenever a pair of segments that is adjacent in the Y-structure becomes non-adjacent we
store their intersection in the dictionary and whenever a pair of segments becomes adjacent
we consult the dictionary to find out whether their intersection was already computed.

When processing an event two intersections may get lost. Consider the sequence of
items corresponding to segments passing through or ending in p sweep. Let sit last be the
last item in this sequence and letsit pred and sit succbe the items before and after the
sequence, respectively;sit last does not exist if there are no segments passing through or
ending inp sweep.

Sweeping throughp sweepreverses the subsequence starting withsit first and ending
with sit last and hence two intersections can get lost, the intersection stored insit last and
the intersection stored insit pred. The intersection stored insit last is with the segment
associated withsit succand the intersection stored insit pred is with the segment associated
with the successor ofsit pred. This is the itemsit predsucc.

〈optimization, part 1〉�seq_item xit = Y_stru
ture.inf(sit_last);if (xit) { SEGMENT s1 = Y_stru
ture.key(sit_last);SEGMENT s2 = Y_stru
ture.key(sit_su

);inter_di
(s1,s2) = xit;}
〈optimization, part 2〉�seq_item xit = Y_stru
ture.inf(sit_pred);
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ture.key(sit_pred);SEGMENT s2 = Y_stru
ture.key(sit_pred_su

); // sit_firstinter_di
(s1,s2) = xit;Y_stru
ture.
hange_inf(sit_pred, seq_item(nil));}
ompute_interse
tion(X_stru
ture, Y_stru
ture,inter_di
,sit_pred);sit = Y_stru
ture.pred(sit_su

);if ( sit != sit_pred )
ompute_interse
tion(X_stru
ture, Y_stru
ture,inter_di
,sit);
We also need to change the functioncomputeintersection. Before computing an intersection
point we check whether the two segments already have an intersection event in the X-
structure by a lookup ininter map. If the lookup fails we compute the intersection and add
it to the X-structure.

〈geometric primitives〉+�stati
 void 
ompute_interse
tion(sortseq<POINT,seq_item>& X_stru
ture,sortseq<SEGMENT,seq_item>& Y_stru
ture,
onst map2<SEGMENT,SEGMENT,seq_item>& inter_di
,seq_item sit0){ seq_item sit1 = Y_stru
ture.su

(sit0);SEGMENT s0 = Y_stru
ture.key(sit0);SEGMENT s1 = Y_stru
ture.key(sit1);if ( orientation(s0,s1.target()) <= 0 &&orientation(s1,s0.target()) >= 0 ){ seq_item it = inter_di
(s0,s1);if ( it == nil){ POINT q;s0.interse
tion_of_lines(s1,q);it = X_stru
ture.insert(q,sit0);}Y_stru
ture.
hange_inf(sit0, it);}}
10.7.4 Experimental Evaluation of the Sweep Line Algorithm

We report about tests forthree kinds of test data, namely random, difficult, and highly de-
generate inputs,three different implementations of points and segments, namely the floating
point kernel (FK), the rational kernel (RK) and the rationalkernel with turned-off floating
point filter (FK−), andwith and without the optimization. We describe the test data, list
running times, and comment on the results.

Random Inputs: The random data set consists ofn segments whose endpoints have random
k bit coordinates. Table 10.8 gives the number of nodes and edges of the output graph and
the running time forn = 200 and different values ofk. The experiments indicate that the
optimization described above and the floating point filter are effective. The optimization
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k V E RK− RK−O RK RKO FK FKO

10 4813 9028 2.27 2 1.2 1.09 0.73 0.67
20 4742 8884 2.63 2.19 1.31 1.1 0.7 0.67
30 5467 10334 3.07 2.57 1.52 1.26 0.8 0.77
40 5478 10356 3.78 3.13 1.69 1.38 0.81 0.77
50 5168 9736 3.66 3.13 1.62 1.3 0.76 0.73
60 5558 10516 4.36 3.59 1.81 1.43 0.82 0.79
70 5909 11218 5.2 4.23 2.13 1.6 0.86 0.83
80 5174 9748 4.75 3.78 1.86 1.43 0.78 0.74
90 4808 9016 4.86 3.82 1.77 1.34 0.71 0.68

100 5080 9560 5.92 4.5 2.12 1.54 0.75 0.73

Table 10.8 200 random segments, coordinates are randomk-bit integers. An “O” indicates the
use of the optimization.

is more effective for the rational kernels because the computation of intersections is more
costly in exact arithmetic. Floating point arithmetic is faster than exact arithmetic but the
difference is never more than a factor of two in running time.We have to admit though that
the difference can be made arbitrarily larger by choosing larger values ofk.

Difficult Inputs: Let size= 2k and lety = 2size/(n − 1). The random data set consists
of n segments where thei -th segment has endpoints(size+ rx1, size+ i · y + ry1) and
(3 · size+ rx2, 3 · size− i · y + ry2) andrx1, rx2, ry1, ry2 are random integers in [−s, s] for
some small integers. Fors = 0 all segments in the difficult data set pass through the point
(2·size, 2·size), and for small but non-zero values ofs they intersect in the neighborhood of
this point. Table 10.9 gives the results for the difficult data set withs = 10,k = 10, 20,. . .
, 100, andn = 200. The floating point filter and the optimization are again quite effective.
The floating point implementation produced incorrect results for all values ofk; the floating
point implementation does, however, work correctly for smaller values ofn and/or larger
values ofs.

Highly Degenerate Inputs: The highly degenerate test set consists ofn segments with
random coordinates in a small grid with side lengths. For example, forn = 100 and
s = 10 one should expect a large number of degeneracies. We used this test set to support
our claim that the algorithm handles all degeneracies. We donot report running times for
the highly degenerate inputs.

The readers may perform their own experiments by running either the sweep-segments-
demo in xlman or the sweeptime program in the demo directory.

We were surprised by two outcomes of our experiments.
First, we expected the implementation using the rational kernel to be much slower than

the floating point computation and not just by a factor of two.We achieve the small factor by
the use of the floating point filter, by the optimization whichavoids the costly recomputation
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k V E RK− RK−O RK RKO FK FKO

10 20134 39669 9.84 8.29 5.07 4.46 error error
20 20298 39997 11.75 9.71 5.65 4.64 error error
30 20296 39994 12.33 10.5 6.04 4.88 error error
40 20298 39997 14.79 11.71 6.5 5.13 error error
50 20300 40000 16.12 12.5 6.7 5.22 error error
60 20298 39997 16.32 12.95 6.91 5.45 error error
70 20300 40000 18.77 14.84 7.51 5.69 error error
80 20300 40000 19.82 15.91 7.62 5.72 error error
90 20298 39997 21.27 16.25 7.68 5.71 error error

100 20296 39994 24.61 18.39 8.58 6.24 error error

Table 10.9 The difficult example with 200 segments. An “O” indicates theuse of the
optimization and error indicates that the computation withthe floating point kernel gave the
incorrect result.

of intersections, and by the observation that many equalitytests for points can be replaced
by tests for identity of points.

Second, we expected the floating point implementation to have difficulties with the dif-
ficult example. However, we were surprised by the fact that itnever crashed. It always
produced an output, albeit an incorrect one. We try to explain this phenomenon by argu-
ing that the program does not crash as long as the sentinels are handled correctly, i.e, the
segmentslowersentinelanduppersentinelhave all segments between them and all inter-
section points precedepstop. We do not care what the geometric tests do with segments
that are not sentinels. If sentinels are handled correctly,every lookup in the Y-structure will
return an item different from the first item in the Y-structure23. Also the walks performed in
the Y-structure will determine a subsequence that does not include the sentinel items. For
this reason none of the operations on the Y-structure will fail; i.e., it will never happen that
we ask for the successor of the last or the predecessor of the first item. Also sincepstopis
handled correctly, we will never attempt to extractnextsegfrom an emptysegqueue.
Exercises for 10.7
1 Let G0 andG1 be graphs of typeGRAPH<POINT, SEGMENT>. Write a function that

checks whether the graphs are isomorphic, i.e., whether there are bijectionsi V : V0 →
V1 andi E : E0 → E1 such thatG0[v] = G1[i V (v)] for all nodes ofG0 and such that
i E(e) = (i V(v), i V(w)) andG0[e] = G1[i E(e)] for all edgese = (v, w) of G0.

2 Use the solution to the previous exercise to write a function that runs two implemen-
tations of SEGMENTINTERSECTION and then checks the computed graphs for iso-
morphism.

23 This sentence requires knowledge of the implementation of sorted sequences. The implementation is such that if
the comparisons with the first and the last element of the sorted sequence are correct and the outcome of any other
comparison is arbitrary, lookup will not return the first element.
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3 Write a trivial implementation ofSEGMENTINTERSECTION(G, report) that simply
checks every pair of segments for an intersection.

4 Extend the sweep line algorithm or any of the other algorithms such that it computes the
trapezoidal decomposition induced by a set of segments.

10.8 Polygons

We define the types polygon and generalized polygon. A polygon is an open region of the
plane whose boundary is a closed polygonal chain24 and a generalized polygon is anything
that can be obtained from polygons by regularized set operations. Both classes offer func-
tions for point location, for intersection with lines and segments, and for moving objects
around. Generalized polygons offer, in addition, the regularized set operations complement,
union, intersection, difference, and symmetric difference.

This section is structured as follows: in Section 10.8.1 we discuss the functionality of
polygons and generalized polygons, in Section 10.8.2 we give the essentials of the im-
plementation of polygons, in Section 10.8.3 we give the mathematics underlying the rep-
resentation of generalized polygons, and in Section 10.8.4we give the highlights of the
implementation of generalized polygons.

We advise you to exercise the polygon demo in xlman before reading this section, see
Figure 10.56.

10.8.1 Functionality
A closed polygonal chainP is a cyclic sequence(p0, p1, . . . , pn−1) of points. The points
are called the vertices of the chain and the number of vertices is called the size of the chain.
The vertices of a closed polygonal chain are indexed modulo the sizen of the chain, in
particular, pn = p0. A closed polygonal chain induces a setS(P) of segments, namely
the set of segmentspi pi+1, 0 ≤ i ≤ n − 1, connecting consecutive vertices. A closed
polygonal chain is calledsimpleif all nodes of the graphG(S(P)) defined by the segments
in S(P) have degree equal to two, i.e., if no two segments inS(P) except for consecutive
segments share a point. A closed polygonal chainP is calledweakly simpleif the segments
in S(P) are disjoint except for common endpoints25 and if the chain does not cross itself.
Figure 10.57 shows some examples.

A weakly simple polygonal chain splits the plane into an unbounded region and one or
more bounded regions. For a simple polygonal chain there is just one bounded region.
When a weakly simple polygonal chainP is traversed either the bounded region is consis-
tently to the left ofP or the unbounded region is consistently to the left ofP; this follows
from the fact that a weakly simple chain does not cross itself. We say thatP is positively
oriented in the former case and negatively oriented in the latter case. We call the region

24 A precise definition is given below.
25 It is allowed that segments that are not consecutive onP share an endpoint.
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Figure 10.56 A screen shot of the polygon demo in xlman. The display shows ageneralized
polygon. The boundary cycles are indicated by arrows and theinside of the polygon is shaded.
The various buttons allow the user to construct polygons by mouse input or by calling
generators, to force vertices to a grid, to compute intersections, unions, differences, and
symmetric differences, to perform point location queries,and to compute complements.

to the left of P the positive side ofP. We overload notation and useP also to denote the
positive side ofP, see Figure 10.58. The positive side ofP is an open set andP is its
boundary.

Frequently, we do not want to distinguish between a polygonal chain and the polygonal
region defined by it. We use the wordpolygonto cover both aspects.

We have two classes of polygons:rat polygonshave rat points as their vertices and
polygonshavepointsas their vertices. Both classes offer essentially the same function-
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Figure 10.57 P is simple andQ is weakly simple but not simple.R is not weakly simple
because it crosses itself atr = r1 = r4, andS is not weakly simple sinces2 lies in the interior of
another segment.
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Figure 10.58 The bounded region is to the left ofP; P is positively oriented. The unbounded
region is to the left ofQ, Q is negatively oriented.

ality, but, of course, onlyrat polygonsguarantee correct results. We userat polygonsin this
section.

The declarationsrat polygon P1;rat polygon P2(
onst list<rat point>& pl,CHECK TYPE 
he
k = rat polygon::SIMPLE,bool respe
t orientation =rat polygon::RESPECT ORIENTATION);
introduce polygonsP1 andP2; P1 is initialized to the empty polygon andP2 is initial-
ized to the polygon with vertex sequencepl. The second argument takes one of the values



126 Geometry Algorithms

NO CHECK, SIMPLE, WEAKLY SIMPLE of a local enumeration type CHECKTYPE.
If check is SIMPLE, the polygon must be simple, and ifcheck is WEAKLY SIMPLE,
the polygon must be weakly simple. The third argument takes one of the values RE-
SPECTORIENTATION or DISREGARDORIENTATION. If respectorientation is DIS-
REGARD ORIENTATION, the orientation ofpl is chosen such that the bounded region
with respect topl lies to the left ofpl. The meaning of this flag is undefined ifpl is not
weakly simple.

Simplicity and weak simplicity can also be checked by the functionsbool P.is simple();bool P.is weakly simple();
Assignment and copy constructor are available for polygons. The functionslist<rat point> P.verti
es();list<rat segment> P.edges();
return the list of vertices and the list of segments ofP, respectively. The second function is
also available asP.segments( ).

Let l be a line and lets be a segment. The functionslist<rat point> P.interse
tion(l);list<rat point> P.interse
tion(s);
return the crossings between the chainP andl or s, respectively. The functionrat polygon P.
omplement()
returns the polygon whose list of vertices is the reversal ofP’s list. If P is weakly simple,
the positive side of the complement is the negative side ofP and vice versa.

The remaining functions for polygons assume that P is weaklysimple. Their meaning is
undefined if P is not weakly simple.Recall that a weakly simple polygonP splits the plane
in an unbounded region and one or more bounded regions. Also recall that we designated
the region(s) to the left ofP as the positive side ofP and useP also for the positive side of
P.

Let p be a point. The functionint P.side of(p);
returns the side ofP to which p belongs, i.e.,+1 if p belongs to the positive side, 0 ifp
lies onP, and−1 if p belongs to the negative side, see Figure 10.59. The functionregion kind P.region of(p);
returns the region with respect toP to which p belongs, i.e., BOUNDEDREGION if p lies
in the bounded region ofP, ON REGION if p lies onP, and UNBOUNDEDREGION if
p lies in the unbounded region. One can also ask for the containment in a specific region
bybool P.inside(p);bool P.on boundary(p);bool P.outside(p);
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Figure 10.59 Side-of tests: We performed side-of tests with respect to the generalized polygon
of Figure 10.56 for 5000 random points. The points on the different sides are shown at different
grey level.

P Q

R

Figure 10.60 The intersection ofP andQ is a line segment;R \ (P ∩ Q) is a rectangle minus a
line segment.

The functionRAT TYPE P.area();
returns the signed area of the bounded region ofP. The sign of the area is positive ifP is
positively oriented and is negative ifP is negatively oriented.

We come to generalized polygons. The class of polygons is notclosed under boolean
operations. In fact, very strange objects can be generated from polygons by boolean opera-
tions, see Figure 10.60. The class of generalized polygons encompasses all sets that can be
constructed from polygons by the so-calledregularized set operations, see [Req80, TR80,
Hof89]. We refer the reader to [Nef78] for the general case.

In order to define the regularized set operations we need to review some elementary
concepts of topology. For a setX we use intX, cl X, bdX, and cplX to denote itsinterior,
closure, boundary, andcomplement, respectively. An open setX is calledregular if X =
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Figure 10.61 In (a), the polygonsPandQ share an edge,P ∩ Q is a closed line segment, and
reg(P ∩ Q) is the empty set. In (b),P \ Q is the half-closed region between the cyclesP andQ;
the chainP does not belong toP \ Q and the chainQ belongs to it. The regularized set
difference reg(P \ Q) is the open region with boundariesP andQ.

int cl X. The following sets are non-regular: the plane minus a single point or the plane
minus a line. A set is calledpolygonalif its boundary consists of a finite number of points
and open line segments. The regularization of a setX is defined as int clX; we use regX
as a shorthand for int clX. We show that regularization generates regular sets and that the
regularized set operations26 applied to regular polygonal regions generate regular polygonal
regions, see Figure 10.61.

Lemma 10

(a) Let X be any set. ThenregX is regular.
(b) Let X be any open set. X is regular iff X andint cpl X have the same boundary.
(c) Let P be a weakly simple polygonal chain. Then the bounded region and the unbounded

region with respect to P are regular polygonal sets.
(d) If P and Q are regular polygonal regions then so arereg cplP, reg(P∩Q), reg(P∪Q),

reg(P \ Q), andreg(P ⊕ Q).

Proof We start with part (a). LetX be any set and letY = regX. We need to show thatY
is regular. We haveY ⊆ cl Y and henceY ⊆ int cl Y sinceY is open. We haveY ⊆ cl X by
definition ofY and hence clY ⊆ cl cl X = cl X. Thus int clY ⊆ int cl X = Y.

We turn to part (b). Assume first thatX is regular, i.e.,X = int cl X, and letx be any
point in the boundary ofX. Thenx ∈ cl X \ X sinceX is open. Assume that there is a
neighborhoodU of x such thatU ∩ int cpl X = ∅. ThenU ⊆ cl X and hencex ∈ int cl X,
a contradiction to the regularity ofX.

To prove the converse we observe thatX ⊆ int cl X sinceX is open. We need to show
that the containment is not proper. Consider any pointx ∈ bdX. By assumption every
neighborhoodU of x hasU ∩ int cpl X 6= ∅. Thusx 6∈ int cl X and hence int clX ⊆ X.

For part (c) we observe that the boundary of the bounded as well as the unbounded
region with respect toP is equal toP and hence both regions are certainly polygonal. The
regularity of both regions follows from part (b) and the factthat P is weakly simple.

26 The regularized union of two setsX andY is defined as reg(X ∪ Y); the definition of the other regularized set
operations is analogous.
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The results of the regularized set operations are certainlypolygonal; regularity follows
from part (a).

The classesrat genpolygonandgenpolygonrepresent regular polygonal regions over the
rational and the floating point kernel, respectively. In ourexamples we userat genpolygons;
genpolygonstands for generalized polygon.

The constructorsrat gen polygon P;rat gen polygon Q(rat polygon R);
construct the empty generalized polygon and the generalized polygon corresponding toR,
respectively. The second constructor requires thatR is a weakly simple polygon. There are
two special generalized polygons, the empty one and the fullone. Thefull polygonis the
entire plane.

The functionsbool P.is empty();bool P.is full();
return true ifP is the empty set or the entire plane, respectively.

If p is a point andP is a generalized polygon thenbool P.side of(p)
returns+1 if p ∈ P, returns 0 ifp lies onP, and returns−1 otherwise, see Figure 10.59.

The functionregion kind P.region of(p);
returns the region with respect toP to which p belongs, i.e., BOUNDEDREGION if p lies
in the bounded region ofP, ON REGION if p lies onP, and UNBOUNDEDREGION if
p lies in the unbounded region. The bounded region of the emptypolygon is empty and the
bounded region of the full polygon is the entire plane.
The functionRAT TYPE P.area();
returns the signed area of the bounded region ofP. The sign of the area is positive ifP
is bounded and is negative ifP is unbounded. This function cannot be applied to the full
polygon.

For the following operations letP andQ be generalized polygons.rat gen polygon P.
omplement()
returns the regularized complement ofP andgen rat polygon P.unite(Q);gen rat polygon P.interse
tion(Q);gen rat polygon P.diff(Q);gen rat polygon P.sym diff(Q);
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P

Q
P ∩ Q

P ∪ Q

P \ Q

Figure 10.62 Two polygonsP andQ and the results of the three boolean operations∩, ∪, and\.

P

Q
P ∩ Q

P ∪ Q

P \ Q

Figure 10.63 Two polygonsP andQ and the results of the three boolean operations∩, ∪, and
\. Observe that the positive side ofQ is unbounded.

return reg(P ∪ Q), reg(P ∩ Q), reg(P \ Q), and reg(P ⊕ Q), respectively. The wordunion
is a reserved word of C++, hence the nameunite for the union-operation. Figures 10.62
and 10.63 show some examples.

A generalized polygon can be represented by its boundary cycles as will be explained in
Section 10.8.3. The function
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Figure 10.64 The complement of the generalized polygon of Figure 10.56. Observe that the
orientation of all boundary cycles is reversed.list<rat polygon> P.polygons();

returns the list of boundary cycles ofP. The list is ordered according to nesting, i.e., if a
boundary cycleD is nested in a boundary cycleC, thenC is beforeD in the list of boundary
cycles.

10.8.2 The Implementation of Polygons
Polygons are a handle type, i.e., a polygon is realized as a pointer to a representation class
(calledpolygonrepandrat polygonrep, respectively) which contains the actual representa-
tion. The member functionptr( ) of class polygon returns the pointer to the representation
object.

The representation consists of a list of points, a list of segments, four extreme points,
and an integer which stores the orientation of the polygon. The orientation is positive if the
bounded region is to the left of the polygon and is negative otherwise.list<POINT> pt list;list<SEGMENT> seg list;POINT xmin, ymin, xmax, ymax;int orient;
Here,pt list contains the list of points,seglist contains the list of segments (thei -th segment
in seglist connects thei -th point inpt list to thei + 1-th point inpt list), andxmin, ymin,
xmax, andymaxare vertices with minimalx-coordinate, minimaly-coordinate, maximal
x-coordinate, and maximaly-coordinate, respectively.



132 Geometry Algorithms

We will next discuss some of the member functions ofpolygon.

The Signed Area of a Simple Polygon:Assume thatseglist is the list of boundary seg-
ments of a simple polygonP. We show how to compute the signed areaA(P) of the
bounded face ofP. The sign of the area is positive if the bounded face lies to the left of P
and is negative otherwise.

Lemma 11Let P be a simple polygon and let n be the number of segments in the boundary
of P. For 0 ≤ i < n, let pi be the source point of the i-th boundary segment. Let p
be an arbitrary point in the plane and let Ai = A(1i ) be the signed area of the triangle
1i = (p, pi , pi+1). Then

A(P) =
∑

0≤i<n

Ai

is the signed area of A.

Proof We use induction onn and assume w.l.o.g. that the signed area is positive. Assume
first that P is a triangle, see Figure 10.65. Ifp lies in the bounded face ofP or on P,
the bounded face ofP is partitioned by the triangles△0, △1, and△2, and henceA(P) =
A(△0) + A(△1) + A(△2). If p lies in the unbounded face ofP, thenp can see either one
or two edges ofP. If p can see one edge ofP, sayp0 p1, then

A(P) = |A(△1)| + |A(△2)| − |A(△0)| = A(△1) + A(△2) + A(△0),

where the second equality follows from the fact that△1 and△2 are positively oriented and
△0 is negatively oriented. Ifp can see two edges ofP, sayp0 p1 andp1 p2, then

A(P) = |A(△2)| − |A(△1)| − |A(△0)| = A(△2) + A(△1) + A(△0),

where the second equality follows from the fact that the orientation of△2 is positive and
the orientations of△0 and△1 are negative. This completes the base step of the induction.

Assume next thatn ≥ 4. Then there is ani such that the segmentpi pi+2 is contained
in the interior ofP 27. Let Q be the polygon obtained fromP by replacing the segments
pi pi+1 andpi+1 pi+2 by the segmentpi pi+2. Then

A(P) = A(Q) + A(△)

where△ = (pi , pi+1, pi+2). Applying the induction hypothesis toQ yields

A(Q) =
i−1
∑

j =0

A(△ j ) + A(p, pi , pi+2) +
n−1
∑

j =i+2

A(△ j )

and applying the induction hypothesis to△ yields

A(△) = A(△i ) + A(△i+1) + A(pi+2, pi , p) = A(△i ) + A(△i+1) − A(p, pi , pi+2).

27 Consider an arbitrary triangulation ofP. The dual of the triangulation is a tree and hence there is at least one
triangle in the triangulation which has two edges ofP in its boundary. The two edges arepi pi+1and pi+1 pi+2
for somei .
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Figure 10.65 Let △i = (p, pi , pi+1) for i = 0, 1, 2, and letP = (p0, p1, p2). Then
A(P) = A(△0) + A(△1) + A(△2) in all three cases.

Adding the two equations completes the induction step.

The implementation follows directly from the lemma above.

〈polygon: compute area〉�stati
 RAT_TYPE 
ompute_area(
onst list<SEGMENT>& seg_list){ if (seg_list.length() < 3) return 0;list_item it = seg_list.get_item(1);POINT p = seg_list[it℄.sour
e();it = seg_list.su

(it);RAT_TYPE A = 0;while (it){ SEGMENT s = seg_list[it℄;A += ::area(p,s.sour
e(),s.target());it = seg_list.su

(it);}return A;}
The time to compute the signed area of a polygon isO(n). The constant factor in theO-
expression is fairly large, in particular, with the rational kernel. Observe that the areas ofn
triangles are computed and that an area computation of a triangle amounts to the evaluation
of a 3× 3 determinant.

Determining the Orientation: The simplest way to compute the orientation of a polygon
P is to take the sign of the area. This takes linear time but is slow; see the remark at the end
of the preceding section. A faster approach is as follows.

Let q be the lexicographically smallest vertex ofP and let p andr be the predecessor
and successor vertices ofq on P. Then the orientation ofP is equal to the orientation of
the triple(p, q, r ), see Figure 10.66. Observe that this statement is not true for an arbitrary
vertexq; it is only true for a vertex that is extreme in some direction.
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Figure 10.66 The triple(p, q, r ) has positive orientation. Ifq is the lexicographically smallest
vertex of the polygon, the region to the left of the polygonalchain is bounded. This conclusion
cannot be drawn for an arbitrary vertex.

The implementation oforientationfollows directly from the preceding paragraph.

〈polygon: compute orientation〉�stati
 int 
ompute_orientation(
onst list<SEGMENT>& seg_list){ list_item q_it = seg_list.first();POINT q = seg_list[q_it℄.sour
e();list_item it;forall_items(it,seg_list)if ( 
ompare(seg_list[it℄.sour
e(),q) < 0 ){ q_it = it;q = seg_list[q_it℄.sour
e();}POINT p = seg_list[seg_list.
y
li
_pred(q_it)℄.sour
e();POINT r = seg_list[seg_list.
y
li
_su

(q_it)℄.sour
e();return ::orientation(p,q,r);}
Point Containment: Let P be a weakly simple polygon. The functionregion kind P.region of(
onst POINT& p) 
onst
returns the region ofP containingp. In order to decide containment we first use the extreme
vertices for a quick test. Ifp lies to the left ofxminor to the right ofxmaxor belowymin
or aboveymax, we return UNBOUNDEDREGION. Next we check whetherp lies on P.
Assume this is not the case, i.e.,p lies either in the bounded face or the unbounded face of
P.

We use the following observation. Consider a vertical upward ray r p starting in p and
assume thatr p does not pass through any vertex ofP. Thenr p intersects an odd number of
segments ofP iff p lies in the bounded region ofP. The observation solves the problem iff
r p does not pass through any vertex ofP.

We useperturbationto extend the solution to arbitrary pointsp. If p does not lie onP,
the pointq obtained fromp by moving p by an infinitesimal amount to the right belongs
to the same face with respect toP as p. Moreover, the vertical upward rayrq starting atq
does not pass through any vertex ofP. In particular,rq does not intersect any vertical edge
of P.
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Consider a segments of P. If s is vertical,rq does not intersect it. So assume thats is
not vertical. Leta be the endpoint ofs with the smallerx-coordinate and letb be the other
endpoint ofs. Thenrq intersectss if xa < xq < xb andq lies to the right of the oriented
line ℓ througha andb. Here, we usedxz to denote thex-coordinate of a pointz. Since
xq = xp + ǫ for an infinitesimalǫ, the first condition is equivalent toxa ≤ xp < xb and the
second condition is equivalent top being to the right ofℓ.

We obtain the following code.

〈polygon: regionof and sideof〉�region_kind POLYGON::region_of(
onst POINT& p) 
onst{ // use extreme verti
es for a qui
k test.int 
x1 = POINT::
mp_xy(p,ptr()->xmin);int 
x2 = POINT::
mp_xy(p,ptr()->xmax);int 
y1 = POINT::
mp_yx(p,ptr()->ymin);int 
y2 = POINT::
mp_yx(p,ptr()->ymax);if (
x1 < 0 || 
x2 > 0 || 
y1 < 0 || 
y2 > 0) return UNBOUNDED_REGION;list<SEGMENT>& seglist = ptr()->seg_list;// 
he
k boundary segmentslist_item it;forall_items(it,seglist){ SEGMENT s = seglist[it℄;if (s.
ontains(p)) return ON_REGION;}// 
ount interse
tions with verti
al ray starting in pint 
ount = 0;forall_items(it,seglist){ SEGMENT s = seglist[it℄;POINT a = s.sour
e(); POINT b = s.target();int orient = POINT::
mp_x(a,b);if ( orient == 0 ) 
ontinue;if ( orient > 0 ) { // a is right of bleda_swap(a,b);}if ( POINT::
mp_x(a,p) <= 0 && POINT::
mp_x(p,b) < 0&& ::orientation(a,b,p) < 0 )
ount++;}return ( 
ount % 2 == 0 ? UNBOUNDED_REGION : BOUNDED_REGION );}
Given the functionregionof it is easy to implementsideof . The positive side ofP is
equal to the bounded region ifP is positively oriented and is equal to the unbounded region
otherwise.
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〈polygon: regionof and sideof〉+�int POLYGON::side_of(
onst POINT& p) 
onst{ region_kind k = region_of(p);swit
h (k) {
ase ON_REGION: return 0;
ase BOUNDED_REGION: return ptr()->orient;
ase UNBOUNDED_REGION: return -(ptr()->orient);default: assert( 0 == 1); return 0;}}
The Complement of a Polygon:The complement of a weakly simple polygon is easy
to compute. We simply reverse the list of segments. The complement has the opposite
orientation.

〈polygon: complement〉�POLYGON POLYGON::
omplement() 
onst{ list<SEGMENT> R;SEGMENT s;forall(s,ptr()->seg_list) R.push(SEGMENT(s.target(),s.sour
e()));return POLYGON(R, - orientation());}
10.8.3 The Mathematics of Generalized Polygons
The purpose of this section is to give the mathematical underpinning for the representation
of regular polygonal sets. We show that a regular polygonal set can be represented by its
list of boundary cycles.

If X is a regular polygonal set andp is an arbitrary point in the plane the intersection
U ∩ X for U a sufficiently small neighborhood ofp has one of the following three forms:

• If p is contained in (the interior of)X thenU ∩ X ⊆ X.

• If p is contained in the interior of the complement ofX thenU ∩ X = ∅.

• If p is contained in the boundary ofX thenU ∩ X andU ∩ int cpl X are unions of
“pieces of pie” as shown in Figure 10.67.

We call a setX trivial if either X = ∅ or X = IR2. Let X be a non-trivial polygonal set.
We call a collectionP1, . . . , Pk of weakly simple polygons arepresentationof X if:

• the set of segments in the boundary ofX is the disjoint union of the set of segments of
the Pi ’s, and

• the orientation of eachPi is such thatX is locally to the left ofPi , and

• the Pi are pairwise non-crossing, i.e., there are no consecutive segmentspq andqr on
somePi andxq andqy on somePj with i 6= j and the segments interleaving around
q, see Figure 10.68.
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p
p

Figure 10.67 The shaded part of the plane belongs to the polygonal regionX and p lies in the
boundary ofX. If p is a vertex ofX andU is a sufficiently small neighborhood ofp thenU ∩ X
andU ∩ int cpl X are unions of pieces of pie. Ifp lies in the relative interior of a boundary
segment ofX thenX looks like an open half-plane in the vicinity ofp.

q

x

r

p

y

Figure 10.68 The chains(. . . , p, q, r, . . .) and(. . . , x, q, y, . . .) cross inq.

Figure 10.69 shows an example.

Lemma 12Every non-trivial polygonal set has a representation.

Proof Consider a boundary segments of X. SinceX is regular,X lies on only one of the
sides ofs and hences can be oriented such thatX is locally to the left ofs.

Consider next a pointp as shown in Figure 10.67. SinceX is the union of pieces of pie
in the neighborhood ofp we can join the boundary segments ofX incident top such that
any two consecutive segments define one of the pieces of the pie. In this way no crossings
are introduced. Also, since none of the pieces of the complement of X is degenerated to a
line, every boundary segment incident top is used only once.

The construction guarantees that the polygons formed are weakly simple and satisfy the
two properties of a representation stated above.

The representation of a polygonal set is not unique as Figure10.69 shows. We still need
to justify the choice of the name representation. In what sense does a representation of a
polygonal set “represent” the set?

We start with the observation that the polygons in a representation form a so-called nested
family. Let Pi and Pj be two polygons in a representation. SincePi and Pj do not cross,
we have either bRPi ∩ bR Pj = ∅ or bRPi ⊂ bR Pj or bRPj ⊂ bR Pi , where bRP
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p0

p2
p5

p4

p9

p3

p8

p1

p7
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Figure 10.69 The open shaded region consists of two connected sets, one ofwhich is simple.X
can be represented by(p0, p1, p2, p4, p5, p6, p2, p3, p9, p8, p7, p3) or by (p0, p1, p2, p3),
(p2, p4, p5, p6), (p3, p9, p8, p7), or by(p0, p1, p2, p4, p5, p6, p2, p3), (p9, p8, p7, p3).

denotes the bounded region with respect to a polygonP. We say thatPj is nestedin Pi if
bRPj ⊂ bRPi .

We can now define a forestF on the polygons in a representation. A polygonPj is a
child of a polygonPi if Pj is nested inPi and there is noPk such thatPj is nested inPk and
Pk is nested inPi . If Pj is a child of Pi in F , we say thatPj is directly nested inPi . We
have:

Lemma 13 If Pj is a child of Pi in F then Pj and Pi have different orientations. All roots
of F have the same orientation.

Proof If Pi is positively oriented then bRPi belongs toX in the vicinity of Pi and to the
left of Pi . SincePj is directly nested inPi and since it is part of the boundary ofX, Pj

must be negatively oriented. IfPi is negatively oriented then bRPi belongs to int cplX in
the vicinity of Pi and to the left ofPi . SincePj is directly nested inPi and since it is part
of the boundary ofX, Pj must be positively oriented.

If X is bounded, all roots ofF are positively oriented and ifX is unbounded, all roots of
P are negatively oriented.

It is convenient to turn the forestF into a tree by adding an artificial root. The polygon
associated with the root represents the “circle at infinity”. The circle at infinity is positively
oriented ifX is unbounded and is negatively oriented ifX is bounded. We useP0 to denote
the artificial polygon representing the circle at infinity. Every point of the plane is contained
in the bounded region with respect to the circle at infinity.

We assume from now on that the polygonsP0, P1, . . . , Pk in a representation are ordered
such that noPi is nested in aPj for i < j . In other words, parents precede their children.

Lemma 14Let P0, P1, . . . , Pk be a representation of a polygonal set X and let p be a point
in the plane that does not lie on any of the polygons in the representation. Let i be maximal
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such that p∈ bRPi . If Pi is positively oriented then p∈ X and if Pi is negatively oriented
then p 6∈ X.

Proof Observe first thati exists since every point is contained in the bounded region of
the circle at infinity. Assume w.l.o.g. thatPi is positively oriented. LetPj1 to Pjl be the
children ofPi in F . We have

bR Pi \ (bR Pj1 ∪ . . . ∪ bRPjl ) ⊆ X

andi < j1, . . . , i < jl . Thusp 6∈ (bR Pj1 ∪ . . . ∪ bR Pjl ) by the definition ofi . This shows
that p ∈ X.

10.8.4 The Implementation of Generalized Polygons
Generalized polygons are a handle type, i.e., a generalizedpolygon is realized as a pointer to
a representation class (calledgenpolygonrep andrat genpolygonrep, respectively) which
contains the actual representation. The member functionptr( ) returns the pointer to the
representing object.

The representation consists of a flagk which indicates whether the polygon is trivial and
a list pol list of polygons. More precisely, we have a local enumeration type kind with
elements EMPTY, FULL, and NONTRIVIAL and k is equal to EMPTY or FULL iff the
polygon is empty or full and is equal to NONTRIVIAL, otherwise. If the polygon is trivial,
pol list is empty, and if the polygon is non-trivial,pol list is the list of boundary cycles.enum kind { EMPTY, FULL, NON TRIVIAL };kind k;list<rat polygon> pol list;

We next discuss some member function of generalized polygons.

Checking a Representation:We define a functioncheckrepresentationthat applies to a
list pol list of polygons. It returns true ifpol list is a legal boundary representation, i.e., if:

• the segments of the polygons inpol list meet only at endpoints, i.e, the planar mapG
defined by them has 2m edges, wherem is the number of segments, and no parallel
edges.

• there are no crossings between polygons,

• if D is directly nested inC thenD andC have alternate orientations, andC is before
D in the list of polygons, and

• all outermost polygons have the same orientation.
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In the following program we check only the first two items. We know of no method to
check the other items that is substantially different from our method to compute boundary
representations. The latter method will be described in Section 10.8.4.

〈genpolygon: check representation〉�stati
 bool 
he
k_rep(
onst list<POLYGON>& pol_list){ GRAPH<POINT,SEGMENT> G;list<SEGMENT> seg_list;POLYGON P;forall(P,pol_list){ list<SEGMENT> SL = P.segments();seg_list.
on
(SL);}SEGMENT_INTERSECTION(seg_list,G,true);if ( G.number_of_edges() != 2*seg_list.length() )return False("
he
k_rep: wrong number of edges");// no parallel edgesnode v; edge e;forall_edges(e,G)if ( target(e) == target(G.
y
li
_adj_su

(e)) )return False("
he
k_rep: parallel edges");
〈checkrepresentation: check for crossings〉return true;}bool GEN_POLYGON::
he
k_representation() 
onst{ if ( trivial() ) return polygons().empty();return 
he
k_rep(polygons());}

We describe how to check for crossings. Consider any nodev of G. Each edgee out
of v corresponds to a segments of one of the polygons inpol list. The polygons running
throughv introduce a pairing on the edges incident tov, where two edges are paired if they
correspond to consecutive edges of one of the polygons. We number the pairs and replace
each edge by the label of its pair. Then it must not happen thatwe have distinct labelsa
andb interlacing aroundv, i.e., the cyclic sequence of labels induced by the edges outof v

must not contain a subsequence of the forma, . . . , b, . . . , a, . . . , b. This is easily checked
by means of a push down storeS. We iterate over the edgese out of v. If the edge label of
e agrees with the label on the top ofS, we popS, if it does not agree, we push the label of
e. There is no crossing atv iff the push down store is empty at the end of the iteration.

〈checkrepresentation: check edge labels〉�forall_nodes(v,G){ sta
k<int> S;forall_adj_edges(e,v){ if ( S.empty() || label[e℄ != S.top() )S.push(label[e℄);else
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he
k_rep: 
rossing");}
It remains to compute the edge labels. We do so in a two step process. We first construct a
dictionary that stores for every segments the edgee(s) in G corresponding to it, i.e., having
the same source and sink. We then iterate over all pairs(s, t) of consecutive segments and
givee(s)rev ande(t) the same label.

〈checkrepresentation: check for crossings〉�map<SEGMENT,edge> segment_to_edge;forall_edges(e,G){ SEGMENT s = G[e℄;node v = G.sour
e(e);segment_to_edge[s℄ = ( s.sour
e() == G[v℄ ? e : G.reversal(e) );}edge_array<int> label(G);int 
ount = 0;forall(P,pol_list){ list_item it;
onst list<SEGMENT>& seg_list = P.segments();forall_items(it,seg_list){ edge e = segment_to_edge[seg_list[it℄℄;e = G.reversal(e);edge f = segment_to_edge[seg_list[seg_list.
y
li
_su

(it)℄℄;label[e℄ = label[f℄ = 
ount++;}}
〈checkrepresentation: check edge labels〉

Point Containment: The implementation ofsideof follows directly from Lemma 14. If
P is either empty or full, the answer is obvious. IfP is non-trivial, we scan through the list
of polygons in the representation. Ifp lies on one of the polygons, we return ONREGION.
Otherwise, we find the lastPi such thatp lies in the bounded region ofPi ; Pi might not
exist, i.e., be equal to the fictitious polygonP0. We return the orientation ofPi .

〈genpolygon: sideof〉�int GEN_POLYGON::side_of(
onst POINT& p) 
onst{ if ( empty() ) return -1;if ( full() ) return +1;POLYGON P, P_i;bool P_i_exists = false;forall(P,polygons()){ region_kind k = P.region_of(p);if ( k == ON_REGION ) return 0;if ( k == BOUNDED_REGION ) { P_i = P; P_i_exists = true; }}
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Boolean Operations: We only discuss the binary boolean operations and leave the im-
plementation ofcomplementas an exercise. The implementations of all binary boolean
operations follow a common principle. LetP0 andP1 be two generalized polygons and let
R be the result of the boolean operation. We constructR in stages:

(1) We first deal with the case that eitherP0 or P1 is trivial. The remaining stages are not
needed if this is the case.

(2) We construct the planar mapG induced byP0 andP1.
(3) We classify the face cycles ofG, i.e., compute for each face its status with respect to

P1 andP2.
(4) Given the classification of the edges computed in the preceding stage, we mark all edges

of G that are relevant for the resultR of the boolean operation. An edge is relevant if the
face to its left belongs toR.

(5) We simplify the graphG by deleting edges. We keep only those edges that separate a
face belonging toR from a face belonging to the complement ofR.

(6) We trace the face cycles ofG and compute the representation ofR.

Only the first and the fourth stage depend on the boolean operation. All other stages are
generic and apply to all boolean operations. In the sequel weconcentrate on theintersection
routine.

We define constantsP0 fa
e, non P0 fa
e, P1 fa
e, andnon P1 fa
e which we use
to label edges in stages two and three. The constants are chosen such that boolean operations
are possible on them. After stages two and three every edgee of G will have a label
describing the status of the face to its left with respect toP0 andP1.

The functions defined in〈construct labeled map〉 realize stages two and three, the func-
tions defined in〈simplify graph〉 realize stage five, and the functions defined in〈collect
polygon〉 realize stage six. We will discuss them below.

Stage one is easy. If either argument is empty the intersection is empty, and if either
argument is full the result is the other argument.

In stage four we label those edges as relevant which border a face ofG which belongs to
P0 andP1. These are precisely the edges whose label is equal toP0face+ P1face.

〈genpolygon: boolean operations〉+�stati
 int P0_fa
e = 1;stati
 int not_P0_fa
e = 2;stati
 int P1_fa
e = 4;stati
 int not_P1_fa
e = 8;
〈construct labeled map〉
〈simplify graph〉
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〈collect polygon〉GEN_POLYGON GEN_POLYGON::interse
tion(
onst GEN_POLYGON& P1) 
onst{ // stage Iif ( empty() || P1.empty() )return GEN_POLYGON(GEN_POLYGON_REP::EMPTY);if ( full() ) return P1;if ( P1.full() ) return *this;// stages II and III
〈gen boolean operations: set up labeled map〉// label relevant edges, stage IVedge_array<bool> relevant(G,false);int d = P0_fa
e + P1_fa
e;edge e;forall_edges(e,G) if (label[e℄ == d) relevant[e℄ = true;// stages V and VI
〈gen boolean operations: extract result〉}

We come to stages two and three. We define the graphG, we introduceP0 as a syn-
onym for thethis-argument of the intersection, we define an edge arraylabel, and call
constructlabeledmap. It computes the planar map defined by the segments ofP0 and P1

and labels all edges of this map.

〈gen boolean operations: set up labeled map〉�GRAPH<POINT,SEGMENT> G;
onst GEN_POLYGON& P0 = *this;edge_array<int> label;
onstru
t_labeled_map(P0,P1,G,label);
The functionconstructlabeledmaprealizes stages two and three. It first callsconstructinitial map
for stage two and then usesextendlabeling for stage three. A call ofextendlabelingwith
argumente labels the edges of the face cycle ofG containinge.

〈construct labeled map〉�
〈construct initial map〉
〈extend labeling〉stati
 void 
onstru
t_labeled_map(
onst GEN_POLYGON& P0,
onst GEN_POLYGON& P1,GRAPH<POINT,SEGMENT>& G,edge_array<int>& label){ 
onstru
t_initial_map(P0,P1,G,label);edge_array<bool> visited(G,false);edge e;forall_edges(e,G){ if (visited[e℄) 
ontinue;
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Stage two is realized byconstructinitial map. It takes two generalized polygonsP0 andP1

and computes the planar mapG induced by their segments using the segment intersection
algorithm of Section 10.7. It also computes a label for everydart ofG. The label of a dart
e = (v, w) of P0 is P0 fa
e if P0 is locally to the left ofe and isnon P0 fa
e otherwise.
The analogous statement holds true for darts ofP1.

We proceed in several steps. In the first step we collect the segments ofP0 and P1 into
a list seglist and label each segment with the genpolygon to which it belongs. Note that a
segment may belong toP0 andP1. We therefore use the labels 1, 2 and 3, where 3 indicates
that a segment belongs to both polygons and labeli , 1 ≤ i ≤ 2, indicates that the segment
belongs toPi−1.

In a second step we compute the planar map induced by the segments in seglist. In
this planar map every node must have even degree. If the floating point kernel is used the
map returned by SEGMENTINTERSECTION may be non-plane or have a vertex of odd
degree; if this is the case we recommend use of the rational kernel.

In the third step we compute the label of each dart. We discussit below.

〈construct initial map〉+�stati
 void 
onstru
t_initial_map(
onst GEN_POLYGON& P0,
onst GEN_POLYGON& P1,GRAPH<POINT,SEGMENT>& G,edge_array<int>& label){ list<SEGMENT> seg_list;map<SEGMENT,int> seg_label(0);
onst list<SEGMENT>& L0 = P0.edges();
onst list<SEGMENT>& L1 = P1.edges();SEGMENT s;forall(s,L0) { seg_label[s℄ = 1;seg_list.append(s);}forall(s,L1) { seg_label[s℄ += 2;seg_list.append(s);}SEGMENT_INTERSECTION(seg_list,G,true);node v;#if ( KERNEL == FLOAT_KERNEL )if ( Genus(G) != 0 ) error_handler(1,mes + "Genus(G) != 0.");forall_nodes(v,G){ int deg = G.outdeg(v);if (deg % 2 != 0) error_handler(1,mes + "odd degree vertex.");}



10.8 Polygons 145#endif
〈constructinitial map: compute dart labels〉}

It remains to compute the dart labels.
Consider a darte and its reversal. We assign a polygon toe as follows. If the segment

s = G[e] belongs to a unique polygon,e inherits the polygon fromG[e]. Otherwise, either
the cyclic adjacency predecessor or the cyclic adjacency successor ofe must be parallel to
e, i.e., have the same target ase. We arbitrarily assigne to P0 in the former case and toP1

in the latter case.
The polygonPi is locally to the left ofe if s ande point into the same direction, i.e., if

the dot product of the underlying vectors is positive.

〈constructinitial map: compute dart labels〉�label.init(G,0);edge e0;forall_edges(e0,G){ if ( label[e0℄ != 0 ) 
ontinue;edge e = e0; edge e_rev = G.reversal(e);POINT a = G[sour
e(e)℄;POINT b = G[target(e)℄;SEGMENT s = G[e℄;if ( (b - a) * (s.target() - s.sour
e()) <= 0 )leda_swap(e,e_rev);// now s and e point into the same dire
tionswit
h ( seg_label[s℄ ){ 
ase 1: label[e℄ = P0_fa
e;label[e_rev℄ = not_P0_fa
e;break;
ase 2: label[e℄ = P1_fa
e;label[e_rev℄ = not_P1_fa
e;break;
ase 3: { edge f = G.
y
li
_adj_pred(e);if ( target(f) != target(e) ) f = G.
y
li
_adj_su

(e);label[e℄ = P0_fa
e;label[e_rev℄ = not_P0_fa
e;label[f℄ = P1_fa
e;label[G.reversal(f)℄ = not_P1_fa
e;}}}
The functionextendlabelingclassifies the faceF to the left of darte. It scans the face

cycle containinge, marks all darts of the cycle as visited, and computes the “or” of all dart
labels on the cycle ind.



146 Geometry Algorithms

If all darts of the face cycle originate from eitherP0 (d is less than four) orP1 (d is
divisible by four), we still have to classify the face cycle with respect to the other polygon
and updated accordingly. This will be discussed below.

Finally, the labeld is propagated to all darts of the cycle. If the label is contradictory, i.e.,
claims that the face is aPi -face and a not-Pi -face, we raise an error.

〈extend labeling〉�stati
 void extend_labeling(
onst GEN_POLYGON& P0,
onst GEN_POLYGON& P1,
onst GRAPH<POINT,SEGMENT>& G, edge e,edge_array<bool>& visited,edge_array<int>& label){ int d = 0; int length = 0;edge x = e;do { visited[x℄ = true; length++;//node v = sour
e(x);//if (G.outdeg(v) == 2) v2 = v;d |= label[x℄;x = G.fa
e_
y
le_su

(x);} while (x != e);if ( d % 4 == 0 || d < 4 ){ 〈extendlabeling: face cycle has only darts from one polygon〉 }x = e;#if ( KERNEL == FLOAT_KERNEL )if ( d % 4 == P0_fa
e + not_P0_fa
e ||(d/4)*4 == P1_fa
e + not_P1_fa
e )error_handler(1,mes + "
ontradi
ting edge labels.");#endifdo { label[x℄ = d;x = G.fa
e_
y
le_su

(x);} while (x != e);}
It remains to deal with the case that all darts of the face cycle F belong to the same
genpolygon, say Pi . Let v be the source ofe. We distinguish two cases: either no dart
out of v has a determined status with respect toP1−i or this is not the case. In the former
casev cannot lie on the boundary ofP1−i and hencev’s side with respect toPi−1 determines
the status ofF with respect toPi−1. In the latter case letf be the nearest adjacency pre-
decessor ofe such that the status off with respect toP1−i is already known. For all darts
betweeneand f the status is still unknown and hence none of them can be contained in the
boundary ofP1−i ; f may be contained in the boundary ofP1−i or not (in the latter case,f
belongs to a face cycle which was already considered and hence its status with respect to
both polygons is known). In either case the status ofF with respect toP1−i is given by the
status off with respect toP1−i , see Figure 10.70.
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Figure 10.70 The dart f is the nearest adjacency predecessor ofe whose status with respect to
P1−i is known. The edges betweene and f do not belong to the boundary ofP1−i and henceF
and the face to the left off have the same status with respect toP1−i .

〈extendlabeling: face cycle has only darts from one polygon〉�edge f;for ( f = G.
y
li
_adj_pred(e); f != e; f = G.
y
li
_adj_pred(f) ){ if ( d % 4 == 0 && label[f℄ % 4 != 0 || d < 4 && label[f℄ > 4 )break;}if ( f == e ){ node v = sour
e(e);if ( d % 4 == 0 )d |= ( P0.side_of(G[v℄) == 1 ? P0_fa
e : not_P0_fa
e );if ( d < 4 )d |= ( P1.side_of(G[v℄) == 1 ? P1_fa
e : not_P1_fa
e );}else{ if ( d % 4 == 0 ) d |= ( label[f℄ % 4 );if ( d < 4 ) d |= ( ( label[f℄ / 4 ) * 4 );}
We come to stage five. At this point all darts ofG are labeled as relevant or non-relevant.

A dart is labeled relevant if the face to its left belongs to the resultR of the boolean opera-
tion.

We simplify the graph by removing darts. We proceed in two steps. In the first step
we remove parallel darts that come from overlapping segments in the two arguments of the
boolean operation, see Figure 10.71. This turns all face cycles of G into weakly simple
polygons. In the second step we remove all edges from the graph that do not separateR
from its complement.

The details of the first step are as follows. Lete and f be two parallel darts and assume
that f is the cyclic adjacency successor ofe. This implies that we have a face cycle(e, f rev)

of length two. This face cycle defines a polygon of area zero which we can remove. We
remove the face cycle by removing its two constituent darts and making f anderev reversals
of each other. There cannot be a set of three parallel darts and hence the target off should
be different from the target of its cyclic adjacency successor.
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e

f

erev

f rev
u v

Figure 10.71 The dartse and f come from a segment ofP0 andP1, respectively. The face cycle
(e, f rev) consists of only two darts. We removee and f rev and makef anderev reversals of each
other.

The first simplification step leaves us with a planar map without parallel darts. This im-
plies that all face cycles are weakly simple polygons. In thesecond step we merge adjacent
faces that belong to the same side of the result polygon.

A darte does not separateR from its complement ife anderev are either both relevant or
both irrelevant. In the former caseR exists on both sides of the edge and in the latter case
the complement ofR lives on both sides of the edge.

The second step may remove all edges from the graph. This willbe the case if the result
is either empty or full. We need to distinguish these cases. We have the former case if
there are no relevant edges before simplification and we havethe latter case if all edges are
relevant before simplification. We return true in the lattercase.

〈simplify graph〉�stati
 bool simplify_graph(GRAPH<POINT,SEGMENT>& G,edge_array<bool>& relevant){ edge e; node v;forall_nodes(v,G){ list<edge> E = G.out_edges(v);forall(e,E){ edge f = G.
y
li
_adj_su

(e);if ( target(e) != target(f) ) 
ontinue;edge e_rev = G.reversal(e);G.del_edge(e); G.del_edge(G.reversal(f));G.set_reversal(e_rev,f);}}bool non_trivial_result = false;forall_nodes(v,G){ list<edge> E = G.out_edges(v);forall(e,E){ if ( relevant[e℄ || relevant[G.reversal(e)℄ )non_trivial_result = true;if ( relevant[e℄ == relevant[G.reversal(e)℄ ){ G.del_edge(G.reversal(e)); G.del_edge(e); }}}return non_trivial_result;}
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After simplification every uedge ofG separatesR from its complement and hence be-
longs to the boundary representation. Also all face cycles are weakly simple polygons.
We conclude that the face cycles ofG form the representation of the result of the boolean
operation.

The following functioncollectpolygontakes a darte, marks all darts in the face cycle of
e as visited, and collects the segments corresponding to the face cycle in a listpol.

〈collect polygon〉�stati
 void 
olle
t_polygon(
onst GRAPH<POINT,SEGMENT>& G, edge e,edge_array<bool>& visited,list<SEGMENT>& pol){ pol.
lear();edge x = e;do { visited[x℄ = true;node v = sour
e(x);node w = target(x);POINT a = G[v℄;POINT b = G[w℄;pol.append(SEGMENT(a,b));x = G.fa
e_
y
le_su

(x);} while (x != e);}
The function above is the main ingredient for the last stage.We first simplify G. If this
trivializes G, i.e., removes all edges from it, we either return the full gen polygon or the
empty genpolygon; the return value ofsimplifygraphtells us which.

〈gen boolean operations: extract result〉�bool non_trivial_result = simplify_graph(G,relevant);if (G.number_of_edges() == 0 ){ if ( non_trivial_result )return GEN_POLYGON(GEN_POLYGON_REP::FULL);elsereturn GEN_POLYGON(GEN_POLYGON_REP::EMPTY);}edge_array<bool> visited(G,false);list<POLYGON> result;
〈gen boolean operations: form boundary cycles〉return GEN_POLYGON(result,GEN_POLYGON::NO_CHECK);

So assume thatG is non-trivial. We cycle over all darts ofG and collect all face cycles
consisting of relevant darts.

〈gen boolean operations: form boundary cycles, first try〉�forall_edges(e,G){ if ( visited[e℄ || !relevant[e℄ ) 
ontinue;list<SEGMENT> pol;
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(a) (b)

v v

e

f

e

f

Figure 10.72 The dashed boundary cycle is nested in the solid cycle and both cycles havev as
their leading node. In situation (a) the leading dart of the solid cycle ise and the leading dart of
the dashed cycle isf rev . In situation (b) the leading dart of the solid cycle iserev and the leading
dart of the dashed cycle isf . In either case the leading dart of the solid cycle has smaller slope.
olle
t_polygon(G,e,visited,pol);POLYGON P(pol);result.append(P);}

The code above generates the boundary cycles in no particular order. We want an order that
reflects nesting, i.e., no polygon should be nested in a polygon following it.

There are several ways to achieve a proper ordering. Our firstsolution took timeO(n +
k logk) and, moreover, was burdened with a fairly large constant factor. We exploited the
fact that if D is nested inC then D has smaller unsigned area thanC. We generated the
polygons in an arbitrary order and then sorted the polygons in decreasing order of their
unsigned area.

We describe an alternative approach. We show that one can rearrange the darts ofG such
that the code above generates the polygons in the proper order. Our approach is based on
the following definition and observation. Define the leadingnode and dart of a boundary
cycle as follows:

• The leading nodev(C) of a boundary cycleC is the lexicographically smallest node of
the boundary cycle.

• The leading darte(C) of a boundary cycle is the shallowest (= smallest slope) dartof
C starting inv(C) if C is positively oriented, and is the reversal of the shallowest dart
in C ending inv(C) if C is negatively oriented.

Lemma 15If D is nested in C then either:

• v(C) is lexicographically smaller thanv(D) or

• v(C) is equal tov(D) and e(C) has smaller slope than e(D).
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Proof Clearly the leading node ofC cannot be lexicographically larger than the leading
node ofD. If C andD have the same leading node, the situation is as shown in Figure 10.72
and the leading dart ofC has smaller slope than the leading dart ofD.

Consider the following order on darts. A darte = (v, w) precedes a dartf = (x, y) if
eitherv lexicographically precedesx or v is equal tox ande has smaller slope thanf . This
order has the following properties:

• For any boundary cycleC the leading dart ofC precedes all darts ofC.

• If D is nested inC then the leading dart ofC precedes the leading dart ofD.

The following compare class realizes the dart ordering; thebase classledacmpbaseis
discussed in Section 2.10.

〈collect polygon〉+�template <
lass POINT, 
lass SEGMENT>
lass 
mp_for_
y
le_tra
ing : publi
 leda_
mp_base<edge> {
onst GRAPH<POINT,SEGMENT>& G;publi
:
mp_for_
y
le_tra
ing(
onst GRAPH<POINT,SEGMENT>& g): G(g) {}int operator()(
onst edge& e1, 
onst edge& e2) 
onst{ node v = G.sour
e(e1);node w = G.sour
e(e2);if ( v != w ) return 
ompare(G[v℄,G[w℄);SEGMENT s1 = G[e1℄;SEGMENT s2 = G[e2℄;return 
mp_slopes(s1,s2);}};
It is now easy to generate the boundary cycles in the appropriate order. We sort the darts
of G according to the ordering above and then iterate over all darts of G. Whenever we
encounter a uedge that is not contained in a boundary cycle yet, we collect the boundary
cycle. The uedge is a pair{e, erev } and eithere or its reversal is relevant (but not both). If
e is relevant, the cycle to be traced is positively oriented, and if erev is relevant, the cycle
to be traced is negatively oriented, see Figure 10.72. Thus there is no need to compute
the orientations of the boundary cycles; our method of generating boundary cycles in an
ordered fashion yields the orientations as a by-product.

We obtain:

〈gen boolean operations: form boundary cycles〉�
mp_for_
y
le_tra
ing<POINT,SEGMENT> 
mp(G);list<edge> E = G.all_edges();E.sort(
mp);edge e0;forall(e0,E)
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P

Q

P ∩ Q

P \ Q

Q \ P

cpl P ∩ cpl Q

Figure 10.73 The vertexv is an intersection between the boundaries ofP andQ. There are four
faces incident tov and at least one but not all of them belong to the result of the boolean
operation.{ edge e = e0;if ( visited[e℄ || visited[G.reversal(e)℄) 
ontinue;int orient;if ( relevant[e℄ ){ orient = +1; }else{ e = G.reversal(e); orient = -1; }list<SEGMENT> pol;
olle
t_polygon(G,e,visited,pol);POLYGON P(pol,orient);result.append(P);}

We conclude our treatment of boolean operations on polygonswith a discussion of their
asymptotic running time. Consider a boolean operation withinput polygonsP andQ and
result polygonR. Let n be the total number of vertices ofP, Q, andR, and letG be the
graph induced by the two input polygons. Any vertex ofG is either a vertex of one of the
input polygons or is an intersection between the boundariesof the input polygons. In the
latter case it will be a vertex of the result polygon, as Figure 10.73 shows. We conclude that
G has at mostn vertices and hence can be computed in timeO(n logn). The time required
to sort the edges before tracing the boundary cycles is alsoO(n logn). Let f be the number
of face cycles ofG which have darts from only one of the polygons;f can be as large
as O(n). For each such face cycle we spend timeO(n) to classify it with respect to the
other polygon for a total time ofO( f n) (this time bound could be reduced toO( f logn)

by using a more refined data structure for point location). All other steps take timeO(n).
We conclude that the total time to compute boolean operations is O(n + n logn + f n).

A Demo Program: We give a small demo program. We construct an n-gonP with vertices
near the unit circle. We also construct an affine transformation T that rotates the plane by
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n m P T Q P∩ Q |P ∩ Q|

5000 6.175e+06 1.35 0 0.36 12.92 20000

5000 2.47e+07 1.33 0 0.37 13.06 20000

5000 9.88e+07 1.35 0.01 0.39 13.44 20000

5000 3.952e+08 1.35 0 0.35 13.71 20000

5000 1.581e+09 1.35 0 0.36 – –

20000 2.47e+07 5.65 0 1.47 56.13 80000

20000 9.88e+07 5.71 0 1.61 – –

Table 10.10 Execution times with floating point kernel: The first two columns shown andm,
respectively, the next four columns show the time to construct P, T , Q = T(P), andP ∩ Q,
respectively, and the last column shows the number of vertices ofP ∩ Q. A dash in the next to
last column indicates that the program produced an error message and recommended use of
rat polygons.

an angleα = 2π/(2nm) ± epsabout the origin, whereeps= 1/(10nm). Let Q = T(P) be
the result of turningP by angleα and letR be the union ofP andQ.

〈n gon time〉�double eps = 1/(10.0*n*m);POLYGON P = N_GON(n,C,eps);GEN_POLYGON PG(P,GEN_POLYGON::NO_CHECK);report_time("time to generate P = ");TRANSFORM T = rotation(ORIGIN, LEDA_PI/(n * m), eps);report_time("time to generate the transformation T = ");POLYGON Q = T(P);GEN_POLYGON QG(Q,GEN_POLYGON::NO_CHECK);report_time("time to 
ompute T(P) = ");GEN_POLYGON R = PG.unite(QG);report_time("time to 
ompute P union T(P) = ");
Tables 10.10 and 10.11 show the execution times for the floating point and the rational
kernel and different values ofn andm. Observe that we ran extreme examples. We took
5000-gons and 20000-gons and rotated them by angles 2π/(2 ∗ n ∗ m), wherem ranges
between 106 and 109. This amounts to rotations by angles between 10−8 and 10−10 degrees.

The floating point kernel did not always obtain a result. In the two cases where it did not
obtain a result, it discovered that there is a problem. Forn = 5000 andn = 1.581 · 109

it reported that the map computed by SEGMENTINTERSECTION is not planar and for
n = 20000 andm = 9.88 · 107 it reported that there is a node of odd degree in the map.
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n m P T Q P∩ Q |P ∩ Q|

5000 6.175e+06 1.69 0 1.4 30.8 20000

5000 2.47e+07 1.73 0 1.41 31.45 20000

5000 9.88e+07 1.74 0.01 1.4 33.93 20000

5000 3.952e+08 1.77 0 1.41 34.01 20000

5000 1.581e+09 1.78 0.009995 1.41 34.7 20000

20000 2.47e+07 7.25 0 5.66 140.9 80000

20000 9.88e+07 7.37 0 5.69 141.6 80000

20000 3.952e+08 7.45 0 5.66 143.2 80000

20000 1.581e+09 7.52 0.01001 5.58 145.1 80000

20000 6.323e+09 7.53 0 5.6 149.2 80000

Table 10.11 Execution times with rational kernel: The meaning of the columns is the same as
for Table 10.10.

It is instructive to study the output of the program when the test for the planarity ofG
is not made. The graphG constructed by SEGMENTINTERSECTION had 19994 nodes
(and so 6 nodes are missing) and 59952 edges, 10012 nodes had degree two (12 too many)
and 9982 nodes had degree four (18 too few). The genus ofG was one.G had face cycles
of length two and three andonly oneface cycle of length larger than three (there should be
two). All edges of the graph were declared relevant and hence removed by simplifygraph.
The full polygon was returned. It took several hours of detective work to discover this
explanation for the behavior of the floating point implementation. The detective work was
considerably helped by the fact that the execution with the rational kernel produced the
correct result and hence weknewthat the error must be in the floating point arithmetic.

It would be fantastic if the floating point implementation would always degrade grace-
fully, i.e., either compute the correct result or tell that the problem is too difficult for a
floating point computation. We are not making this claim.

Although the floating point implementation did not always obtain the correct result it can
handle surprisingly difficult cases.

The rational kernel always worked correctly, as it is supposed to do. There is about a
factor three overhead for the use of the rational kernel.

Exercises for 10.8
1 Implement the functioncomplementfor generalized polygons.
2 Implement the functionunite for generalized polygons. Start from the implementation

of intersectionand describe the required modifications.
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10.9 A Glimpse at Higher-Dimensional Geometric Algorithms

We give an overview of the extension package for higher-dimensional computational geom-
etry, exhibit a relationship between convex hulls and Delaunay triangulations, and use it to
derive the formula for the side-of-sphere test. For a detailed treatment of higher-dimensional
geometry we refer the reader to [Ede87].

10.9.1 The Extension Package for Higher-Dimensional Geometry
The extension package [MMN+98] features a higher-dimensional kernel, simplicial com-
plexes, convex hulls and Delaunay diagrams.

Thehigher-dimensional kerneloffers points, lines, segments, rays, vectors, hyperplanes,
spheres, affine transformations, and geometric operationsand predicates ind-dimensional
Euclidian space for arbitrary dimensiond. Examples for geometric predicates are the ori-
entation test, the side-of-sphere test, the test of whethera point is contained in a simplex,
and the computation of the affine rank of a set of points. Examples for geometric construc-
tions are the construction of a hyperplane from a set of points, or the computation of the
intersection of a line and a hyperplane.

The extension package offers three geometric data structures: regular simplicial com-
plexes, convex hulls and Delaunay diagrams.

A simplicial complexis a collection of simplices in which the intersection of anytwo
simplices in the collection is a face of both28. A simplicial complex isregular iff all max-
imal simplices of the collection29 have the same dimension and if its maximal simplices
are connected under the neighboring relation30. The data typeregl complexrealizes regular
simplicial complexes. It supports navigation in the complex (go to thei -th neighbor) and
update operations on the complex (add a new simplex and make it the neighbor of some
existing simplices). Regular simplicial complexes generalize triangulations to arbitrary di-
mension.

Convex hullsare represented as regular simplicial complexes, namely bya complex aris-
ing from a triangulation of the hull. Figure 10.11 shows an example in two-dimensional
space.

The convex hull complex is built by a natural generalizationof the incremental hull algo-
rithm of Section 10.1.2. Whenever a pointp is added to a convex hull, a simplex with peak
p is added to the convex hull for every facet of the hull visiblefrom p.

The data typeconvexhull supports navigation through the underlying triangulation, navi-
gation over the boundary of the hull, visibility queries (find all facets visible from a pointp),
point location queries (does a pointp lie in the interior, on the boundary, or in the exterior
of the hull) and insertion of new points.

Delaunay triangulationsare also represented as simplicial complexes. The data type

28 The empty set is a face of any simplex.
29 A simplex is maximal if it is not contained in any other simplex.
30 Two simplices of dimensionk are neighbors if they share a face of dimensionK − 1.



156 Geometry Algorithms

delaunayextends the functionality of the typepointsetof Section 10.6 to higher dimen-
sions. It supports navigation in the complex, insertion of new points, point location queries
(return the simplex containing a query pointp), nearest neighbor queries (return the point
closest to a query pointp), and range searches with spheres and simplices (return allpoints
contained in a query sphere or query simplex, respectively).

10.9.2 Delaunay Diagrams and Convex Hulls
The implementation of Delaunay diagrams in higher-dimensional space is based on a pow-
erful relationship between Delaunay diagrams, Voronoi diagrams, and convex hulls in one
higher dimension.

Let d be a positive integer. We usex0, x1, . . . ,xd−1, andz for the Cartesian coordinates of
ad+1-dimensional space. Our Delaunay triangulations live in thed-dimensional subspace
with coordinatesx0, x1, . . . , xd−1 and the corresponding convex hulls will live in thed + 1-
dimensional space with coordinatesx0, x1, . . . , xd−1, andz. We call the former space the
base space.

Theparaboloid of revolution Pis defined by

z = x2
0 + x2

1 + . . . + x2
d−1.

It is obtained by rotating the two-dimensional parabolaz = x2
0 about thez-axis. The key

for the entire section is the following observation.

Lemma 16 The intersection between P and any hyperplane h that is not parallel to the
z-axis is a curve C whose projection into the base space is a sphere and any sphere in the
base space can be obtained in that way.

Proof Sinceh is not parallel to thez-axis it is defined by an equation

z = a0x0 + a1x1 + . . . + ad−1xd−1 + ad.

Any point (x0, x1, . . . , xd−1, z) in the intersection betweenP andh satisfies

x2
0 + x2

1 + . . . + x2
d−1 = z = a0x0 + a1x1 + . . . + ad−1xd−1 + ad

and hence

(x0 − a0/2)2 + . . . + (xd−1 − ad−1/2)2 = ad + (a2
0 + . . . + a2

d−1)/4.

This is the equation of a sphere in base space with centerc and radiusr where

c = (a0/2, . . . ad−1/2) and r =
√

ad + (a2
0 + . . . + a2

d−1)/4.

Thus the projection ofP ∩ h into base space is a sphere. Conversely, if we start with any
sphereB with centerc and radiusr in base space and define coefficientsa0, a1, . . . , ad

throughc = (a0/2, . . . ad−1/2) andr 2 = ad + (a2
0 + . . . + a2

d−1)/4 then the hyperplane
z = a0x0 + a1x1 + . . . + ad−1xd−1 + ad will intersectP in a curve projecting intoB.
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Figure 10.74 The connection between Delaunay diagrams in the plane and convex hulls in
three-space. The lifting map is indicated by dashed lines. The four points on the left are not
co-circular and hence the convex hull of the lifted points isa tetrahedron. The Delaunay diagram
is the projection of the lower part of the tetrahedron.
The four points on the right are co-circular and hence the lifted points lie in a common plane.
The convex hull of the lifted points is a rectangle containedin this plane. The Delaunay diagram
is the projection of the rectangle and the projection of any triangulation of the rectangle is a
Delaunay triangulation.

For a pointp = (x0, x1, . . . , xd−1) in base space we call

lift (p) = (x0, x1, . . . , xd−1, x2
0 + x2

1 + . . . + x2
d−1)

its lifting onto P, i.e., the intersection ofP with a vertical upward ray starting inp. We use
the lifting map to establish a surprising connection between Delaunay diagrams and convex
hulls.

Let Sbe any full-dimensional finite set of points in base space andlet p0, p1, . . . , pd be
d+1 affinely independent points inS. The lifted pointslift (p0), lift (p1), . . . , lift (pd) define
a hyperplaneh. By the above, this hyperplane intersectsP in a curveC whose projection
into the base space is a sphereB. Of course,B passes throughp0, p1, . . . , pd. In other
words,B is the circumsphere of the simplex spanned byp0, p1, . . . , pd.

Next consider an arbitrary additional pointp in base space. Ifp lies insideB thenlift (p)

lies belowh, if p lies on B then lift (p) lies onh, and if p lies outsideB then lift (p) lies
aboveh. We conclude that the interior of the circumsphere ofp0, p1, . . . , pd is void of
points ofS if and only if no point of

lift (S) = {lift (p) | p ∈ S}
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Figure 10.75 A screen shot of the delaunayand convexhull demo (in demo/book/Geo). The
screen shot shows the lower convex hull of 32 random points inthe unit square lifted to the
paraboloid of revolution.

lies belowh, or in other words, ifh supports the lower convex hull oflift (S). The lower
convex hullof a point set consists of all points of the convex hull which are visible from
z = −∞.

Let us take a closer look at the lower convex hull. We need to distinguish cases according
to whether the points inSare co-spherical or not, see Figures 10.74 and 10.75.

If the points inS are not co-spherical, the dimension oflist(S) is one higher than the
dimension ofSand hencelist(S) is full-dimensional. The convex hull oflift (S) is ad + 1-
dimensional object. The lower convex hull consists of all facets with a downward normal.

If the points inS are co-spherical, the points inlift (S) lie in a common hyperplane and
the dimension oflift (S) is the same as the dimension ofS. The Delaunay diagram ofS
is identical to the convex hull ofS and any triangulation of the convex hull is a Delaunay
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triangulation. The convex hull oflift (S) is ad-dimensional object; it is simply the lifting of
the convex hull ofS to a plane ind + 1-dimensional space.

We summarize.

Theorem 3 For any finite point set S in base space the Delaunay diagram DD(S) is the
vertical projection of the lower convex hull of lift(S) into base space31. A Delaunay trian-
gulation is the vertical projection of a triangulation of the lower hull.

The preceding theorem is the basis for the implementation ofDelaunay diagrams. We
maintain the convex hull of the lifted points. All queries about Delaunay diagrams are
translated into queries about the corresponding hull.

10.9.3 Sidedness and Orientation
In this section we show how the results of the preceding section can be used to define the
orientation, side-of, and region-of predicate for spheres.

Let p0, p1, . . . , pd be d + 1 points in base space and letp be an additional point in
base space and letS be the sphere passing throughp0, p1, . . . , pd. Defineorientation(S),
sideof sphere(S, p), andregionof sphere(S, p) by

orientation(S) = orientation(p0, p1, . . . , pd),

sideof sphere(S, p) = −orientation(lift (p0), lift (p1), . . . , lift (pd), lift (p)),

regionof sphere(S, p) =







boundedregion if o(S) · o(S, p) > 0
onregion if o(S) · o(S, p) = 0
unboundedregion if o(S) · o(S, p) < 0

where we usedo as an abbreviation fororientationin the last formula to save space.
We will next show thatsideof sphere(S, p) and regionof sphere(S, p) have their in-

tended meaning.

Lemma 17Let p0, p1, . . . , pd be d+ 1 affinely independent points in base space and let p
be an additional point in base space. Then we have

sideof sphere(S, p) =







+1 if p lies inside S
0 if p lies on S

−1 if p lies outside S

if orientation(S) > 0 and

sideof sphere(S, p) =







+1 if p lies outside S
0 if p lies on S

−1 if p lies inside S

31 In the discussion above we assumed thatS is full-dimensional. IfS is contained in a lower dimensional subspace,
we only need to restrict the discussion to this subspace. Moreprecisely, assume thatS is contained in a
k-dimensional subspace. We may assume w.l.o.g that the firstk coordinates span this subspace and can then use
the argument above withd replaced byk.
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if orientation(S) < 0. Also

regionof sphere(S, p) =







boundedregion if p lies inside S
onregion if p lies on S
unboundedregion if p lies outside S

Proof Observe first that the assumption thatp0, p1, . . . , pd are affinely independent implies
that

orientation(S) = orientation(p0, p1, . . . , pd) 6= 0.

Furthermore, by symmetry, we may assume without loss of generality that the pointsp0,
p1, . . . , pd are positively oriented. Under the assumption thatp0, p1, . . . , pd are positively
oriented the following three statements are equivalent:

(a) p is inside (on, outside) the sphereS.
(b) lift (p) lies below (on, above) the hyperplane through pointslift (p0), lift (p1), . . . , lift (pd).
(c) (lift (p0), lift (p1), . . . , lift (pd), lift (p)) is negatively oriented.

We argued the equivalence of the first two items in the preceding section. The equivalence
between the last two items follows from Lemma 3 in Section 8.2.2. This establishes the first
claim. The second claim follows directly from the first.

Exercises for 10.9
1 Let p0, p1, . . . , pd bed + 1 affinely dependent points (orientation(p0, p1, . . . , pd) = 0)

in base space and letp be an additional point. Discuss the possible values ofsideof sphere
andregionof spherefor thed + 2 tuple(p0, p1, . . . , pd, p).

2 Assume that the base space is two-dimensional and that all points in S lie on the line
x0 + x1 = 1. What does the convex hull oflift (S) look like?

3 Assume that the base space is two-dimensional and that all points in S lie on a circle.
What does the convex hull oflift (S) look like?

4 Consider a circular range query with a squareC in a setS. Translate the query by the
lifting map. What is the result?

5 Show how to implement a nearest neighbor query by use of the lifting map.

10.10 A Complete Program: The Voronoi Demo

We discuss the voronoidemo in xlman. The demo illustrates many of the geometric algo-
rithms available in LEDA and we have already seen several screen shots. The demo is also a
representative example for the design of geometric demos inLEDA and useful as a starting
point for the development of further demos. We start with an overview, then give the details
of the implementation, and end with a discussion of what can go wrong when the demo is
run with the floating point kernel.

It is best to have the demo running while reading this section. Figure 10.76 shows yet
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another screen shot of the demo. The window consists of a panel part and a display part.
The panel part in turn is structured in four parts. There is a list of eleven choice items which
control which geometric structures are to be displayed; in the situation shown only the
button for the Delaunay diagram is pressed and hence only theDelaunay diagram is shown.
There is a list of three choice items which control how mouse clicks in the display part of
the window are to be interpreted. In the situation shown every click of the left mouse button
adds a point. The other two buttons allow the user to input points and circles respectively.
There is a choice item which allows the user to switch betweenthe rational kernel and the
floating point kernel, and there is a boolean item and a slideritem that control whether the
input points are rounded to a grid and how many grid lines there are. Finally, there are six
buttons for opening sub-menus, for clearing the window, forasking for help, and for exiting
the demo.

10.10.1Overview
The Voronoi demo allows the user to construct a scene of points and to visualize several
fundamental geometric data structures for it: the nearest and furthest site Delaunay diagram,
the nearest and furthest site Voronoi diagram, the convex hull and the width, the minimum
spanning tree, the minimum enclosing and the maximum empty circle, the minimum width
and the minimum area annuli, and the crust of the point set.

The point set is constructed either by mouse input or by calling one of the generators
(sub-menu points). For mouse input there is the choice between single points, points on
a line segment, and points on a circle. The current set of points is maintained as a list
p list of rat points. The list is initially empty and is cleared by the clear-button. Any newly
constructed point is added to it. It is important to rememberthat adding a line segment or
adding a circle adds points that lieexactlyon a line or a circle.

The geometric structures to be displayed can be computed with the use of three differ-
ent geometry kernels: the rational kernel with the built-infloating point filter (this is the
default), the rational kernel without the built-in floatingpoint filter, and the floating point
kernel. This allows the user to compare the relative speeds of the kernels and also to check
visually whether the floating point kernel worked correctly. When the floating point kernel
is used, the program may abort or produce incorrect results.

The geometric structures are not computed directly for the points inp list but for a derived
set of points. The derived set of points is calledrp list for use with the rational kernel and
is calledfp list for use with the floating point kernel. The following procedure adds a point
to rp list andfp list.

〈manipulate plist, rp list, and fplist〉�void move_point(
onst rat_point& p){ point fp = p.to_point();if ( !round_to_grid ){ fp_list.append(fp); rp_list.append(p); return; }double x = trun
ate(fp.x
oord(),trun
ation_pre
);double y = trun
ate(fp.y
oord(),trun
ation_pre
);
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Figure 10.76 A screen shot of the Voronoi demo. A Delaunay triangulation is displayed.point tp(x,y);fp_list.append(tp);rp_list.append(rat_point(tp));}
The addition of a point is controlled by variablesroundto grid andtruncationprec. Let p
be arat point. If roundto grid is false,p is added torp list andfp = p.to point( ) is added
to fp list; the Cartesian coordinates offp are the optimal approximations of the rational
coordinates ofp by doubles. Observe that whenroundto grid is false, the pointsp and
fp are in general distinct. In particular, ifp list contains points on a circle or segment, the
corresponding points infp list will lie close to the circle or segment but not exactly on it.
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Such inputs will frequently overburden the floating point kernel, e.g., try to construct the
crust of co-circular points.

Whenroundto grid is true, the mantissae of the Cartesian coordinates offp are truncated
to truncationprecbinary places, i.e., all but the firsttruncationprecbits are set to zero. This
moves the points on a grid with 2truncat ion prec grid lines. The point with the truncated coor-
dinates is then added tofp list andrp list. Truncation with small values oftruncationprec
will visibly move the points. Whenroundto grid is true,rp list andfp list contain the same
set of points.

The demo also gives a feeling for the running time of the various algorithms. Whenever
the user requests to change the display (for example, by requesting for an additional ge-
ometric structure, by dropping a request, or by switching toanother kernel)all requested
structures are recomputed.

The demo can make mistakes when run with the floating point kernel. When using the
floating point kernel, setroundto grid to true and play withtruncationprecto get a feeling
for the limits of the floating point kernel. You can always switch to the rational kernel for
a visual comparison of the result. We want to point out one frequently occurring mistake.
When the crust of points on a circle is constructed and a high value of truncationprec
is used, the output is frequently completely wrong. This comes from the fact that crust
constructs the Delaunay diagram offp list ∪ VD(fp list), whereVD(fp list) denotes the set
of vertices of the Voronoi diagram offp list. The latter set contains many points crowding
near the center of the circle and this confuses the computation of the Delaunay diagram.

When the scene contains many points on circles or segments, the running time with the
rational kernel may go up sharply. The reason is that these inputs are very difficult, because
our generators guarantee that the points lie exactly on a circle or line, respectively.

10.10.2Implementation
We start with the global structure of the program.

We use a global variablep list to store the current set of points, a listfp list to store the
corresponding list of float points, a pointerWp to the display window, and integersdisplay
andinput that govern which geometric structure to display and which kind of geometric ob-
ject is selected for input. The variablekernelcontrols which kernel is used and the variable
usefilter controls whether the filter is used in the rational kernel (itcan be changed in the
settings menu). We have already explained the role ofuseto grid andtruncationprec.

In the main program we first set up the display windowW and then go into an infinite
loop. At the beginning of the loop we wait for a mouse button tobe pressed. The mouse
button is either pressed on one of the seven buttons in the lower row of the panel section
(cases zero to six) or in the display part of the window (case MOUSEBUTTON(1)); the
buttons in the top row of the display part are handled elsewhere as will be explained below.

In case of the event MOUSEBUTTON(1) we put back the event, so that the mouse click
can be processed again, and callgetinput(W, input) to further process the mouse click.

At the end of the inner loop we draw the window as governed by the variabledisplay.
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〈voronoi demo.c〉�#in
lude <LEDA/plane_alg.h>#in
lude <LEDA/ve
tor.h>#in
lude <LEDA/rat_ve
tor.h>#in
lude <LEDA/window.h>#in
lude <LEDA/graphwin.h>#in
lude <LEDA/bitmaps/button32.h>#in
lude <math.h>#in
lude <LEDA/rat_window.h>
〈definition of bit maps〉
〈definition of display mask〉stati
 list<rat_point> p_list, rp_list;stati
 list<point> fp_list;stati
 window* Wp;stati
 int display = 0;stati
 int input = 0;enum { RK = 0, FK = 1};stati
 int kernel = RK;stati
 bool use_filter = true;stati
 int trun
ation_pre
 = 40;stati
 bool round_to_grid = true;
〈further global variables〉
〈manipulate plist, rp list, and fplist〉#in
lude <LEDA/rat_kernel_names.h>
〈displaying geometric structures〉
〈graph edit for graphwin〉#in
lude <LEDA/kernel_names_undef.h>#in
lude <LEDA/float_kernel_names.h>
〈displaying geometric structures〉
〈graph edit for graphwin〉#in
lude <LEDA/kernel_names_undef.h>
〈global drawing functions〉
〈action functions〉
〈point generators〉
〈adding a geometric object〉int main(){ window W(630,720,"VORONOI DIAGRAMS");Wp = &W;

〈set up window〉for(;;){int but = W.read_mouse();rat_point::use_filter = use_filter;if (but == 0) break;
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h (but) {
ase MOUSE_BUTTON(1): put_ba
k_event();get_input(W,input);break;
ase 1: { 〈generate points menu〉; break; }
ase 2: { 〈settings menu〉; break; }
ase 3: 
lear_all(); break;
ase 4: // start GraphWinif ( kernel == FK )graph_edit(display,fp_list);elsegraph_edit(display,rp_list);break;
ase 5: // helphelp_win.open(W); break;}draw(display);}rat_point::print_statisti
s();return 0;}
The drawing functions are needed for both kernels and hence are included twice. We com-
ment below why we did not use templates.

We give more details.

Setting up the Window: We start by defining ahelpstringand the panelhelpwin that pops
up when the “about”-button is pressed. We then define the panel section ofW. It consists of
three sets ofchoiceitems, a boolean item, a slider item, and a set of six buttons. We come
back to them below.

Having defined the panel part we open the display, state that window coordinates for the
x-coordinate are between 0 and 1000 and that they start at 0 forthey-coordinate (the upper
bound for they-coordinate depends on the actual geometry ofW, state that nodes are drawn
with width two, and that coordinates are to be shown.

〈set up window〉�string help_string;help_string += "This program demonstrates some of the algorithms ";help_string += "for two dimensional geometry of points based on ";help_string += "Delaunay triangulations and Voronoi Diagrams.";panel help_win;help_win.text_item("\\bf Voronoi Demo");help_win.text_item("");help_win.text_item("K. Mehlhorn and S. Naeher (1997)");help_win.text_item("");help_win.text_item("see LEDAROOT/demo/do
umentation/voronoi_demo.ps");



166 Geometry Algorithmshelp_win.text_item(help_string);help_win.button("ok");W.set_bitmap_
olors(bla
k,blue);W.
hoi
e_mult_item("",display,11,32,32,display_bits,draw);W.
hoi
e_item("",input,3,32,32,input_bits);list<string> kernel_
hoi
es;kernel_
hoi
es.append("RK"); kernel_
hoi
es.append("FK");W.
hoi
e_item("kernel",kernel,kernel_
hoi
es,
hange_kernel);W.bool_item("round_to_grid",round_to_grid,
hange_round_to_grid);W.int_item("# of grid lines = 2^x, where x =",trun
ation_pre
,2,52,
hange_trun
ation_pre
);W.button("points", 1, "Opens a point generator panel.");W.button("
lear", 3, "Clears point set and window.");W.button("graphwin", 4, "Loads graph into GraphWin.");W.button("settings", 2, "Opens an option setting dialog.");W.button("exit", 0, "Exits the program.");W.button("about", 5, "Displays information about this program.");W.display();W.init(0,1000,0);W.set_redraw(redraw);W.set_node_width(2);W.set_show_
oordinates(true);
We need to say a few more words about the panel part of the window. The first choice
item controls the variabledisplayand consists of eleven items. Whenever thei -th button
is pressed thei -th bit of display is flipped and the function calldraw(display) is made.
Each item is drawn as a 32x32 pixel map taken from the collection of pixel maps defined in
LEDA/bitmaps/button32.h. The pixel maps selected are defined by the arraydisplaybits.
The pixel maps are shown black when the corresponding buttonis released and are shown
in blue when the button is pressed.

The second choice item controls the variableinput. The effect of pressing one of the
buttons in this collection of buttons is to setinput to the number of the button.

The third choice item controls the use of the filter, the boolean item controls whether the
input is rounded to a grid, and the slider item controls the number of grid lines.

The other buttons are added by the sevenbuttonstatements. Each button is given a name,
a number, and a help string that is displayed when the mouse rests over the button for an
extended period of time.

〈definition of bit maps〉�stati
 
har* input_bits [℄ = { point_bits, line_bits, 
ir
le_bits };stati
 
har* display_bits [℄ = { triang_bits, voro_bits, f_triang_bits,f_voro_bits, tree_bits, hull_bits, empty_
ir
le_bits,en
l_
ir
le_bits, w_annulus_bits, a_annulus_bits, help_bits };



10.10 A Complete Program: The Voronoi Demo 167

Action Functions: Some of the items in the menu part of the window have action functions
associated with them. Recall that action functions are called with the new value of the
variable associated with the item (the value of the variableitself is only changed after return
from the action function such that new and old values of the variable are available during the
action). All action functions follow the same scheme. They set the corresponding variable
to the new value (since we want the new value during the execution of the action), clear the
window and redraw the sites, recomputerp list andfp list, and recompute the display. The
functiondrawwill be discussed below.

〈action functions〉�void 
hange_trun
ation_pre
(int new_pre
){ trun
ation_pre
 = new_pre
;Wp->
lear();draw_sites(p_list);re
ompute_rp_and_fp_list();draw(display);}void 
hange_round_to_grid(int new_mode){ round_to_grid = new_mode;Wp->
lear();draw_sites(p_list);re
ompute_rp_and_fp_list();draw(display);}void 
hange_kernel(int new_kernel){ kernel = new_kernel;Wp->
lear();draw_sites(p_list);draw(display);}
The functionrecomputerp andfp list clears both lists and then moves all points fromp list.
The functionaddpoint will be called whenever a new point is added top list andclearall
clears the window and all lists.

〈manipulate plist, rp list, and fplist〉+�void add_point(
onst rat_point& p){ p_list.append(p);move_point(p);}void re
ompute_rp_and_fp_list(){ fp_list.
lear(); rp_list.
lear();rat_point p;forall(p,p_list) move_point(p);}void 
lear_all(){ Wp->
lear();p_list.
lear(); fp_list.
lear(); rp_list.
lear();}
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Global Drawing Functions: The functiondrawarea(disp, x0, y0, x1, y1, L) draws the part
of W covered by the rectangle with lower corner(x0, y0) and upper corner(x1, y1). It is
our master drawing function. The geometric structures shown are governed bydispandL
is eitherp list or fp list. If L is p list the drawing functions use the rational kernel and ifL
is fp list the drawing functions use the floating point kernel.

〈global drawing functions〉�template <
lass POINT>void draw_area(int disp, double x0, double y0, double x1, double y1,
onst list<POINT>& L){ if (L.empty()) return;Wp->start_buffering();Wp->
lear();if (disp & MWA_MASK) draw_min_width_annulus(L);if (disp & MAA_MASK) draw_min_area_annulus(L);if (disp & HULL_MASK) draw_
onvex_hull(L);if (disp & DT_MASK) draw_delaunay(L);if (disp & VD_MASK) draw_voronoi(L);if (disp & FDT_MASK) draw_f_delaunay(L);if (disp & FVD_MASK) draw_f_voronoi(L);if (disp & LEC_MASK) draw_max_empty_
ir
le(L);if (disp & SEC_MASK) draw_min_en
l_
ir
le(L);if (disp & MST_MASK) draw_min_span_tree(L);if (disp & CRUST_MASK) draw_
rust(L);draw_sites(L);Wp->flush_buffer(x0,y0,x1,y1);Wp->stop_buffering();}
If our current set of sites is empty,drawareahas nothing to do. Otherwise we clear the win-
dow, draw the selected geometric structures (the constantsMWA MASK, MAA MASK, . . .
are defined in an enumeration type and denote 20, 21, 22, . . . ), and draw the sites. The ap-
pearance of the window is better if the sites are displayed after the selected geometric struc-
tures. We want the new drawing to appear in a single blow and therefore put the window in
buffering mode before constructing the drawings of the selected geometric structures.

Once all drawings are constructed we flush the buffer and stopthe buffering mode.

〈definition of display mask〉�enum display_mask {DT_MASK = 1, VD_MASK = 2, FDT_MASK = 4,FVD_MASK = 8, MST_MASK = 16, HULL_MASK = 32,LEC_MASK = 64, SEC_MASK = 128, MWA_MASK = 256,MAA_MASK = 512, CRUST_MASK = 1024};
The master drawing function is used by the functionsdrawarea, drawandredraw.
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Draw area (now without thelist<POINT>-argument) makes the distinction between the
use of the rational kernel and the floating point kernel.

Draw is called whenever one of the choice items changingdisplay is called and at the
end of each iteration of the main loop and redraw is called whenever the geometry of the
window is changed. Accordingly, we redraw either only the display part of the window (in
draw) or the entire window (inredraw).

〈global drawing functions〉+�void draw_area(int disp, double x0, double y0, double x1, double y1){ if ( kernel == FK ) draw_area(disp,x0,y0,x1,y1,fp_list);else draw_area(disp,x0,y0,x1,y1,rp_list);}void draw(int disp){ draw_area(disp,Wp->xmin(),Wp->ymin(),Wp->xmax(),Wp->ymax()); }void redraw(window* wp, double x0, double y0, double x1, double y1){ draw_area(display,x0,y0,x1,y1); }
Displaying Specific Geometric Structures:For each of our geometric structures we have
a function that displays it. We discuss only a representative sample of the functions.

We draw each site as a filled node of colorsitecolor, wheresitecolor is a global variable
defined in〈further global variables〉. This code is not shown. The default value ofsitecolor
is red; the color can be changed in the settings menu.

〈displaying geometric structures〉�void draw_sites(
onst list<POINT>& L){ POINT p;forall(p,L) Wp->draw_filled_node(p.to_point(),site_
olor);}
Most of our geometric structures are graphs. We have to deal with two kinds of graphs.

Voronoi diagrams have typeGRAPH<CIRCLE, POINT> and Delaunay diagrams have type
GRAPH<POINT, int>. We define a drawing function for each kind of graph. Recall that we
use bidirected graphs to represent Delaunay diagrams and Voronoi diagrams. We therefore
have to draw uedges and not edges.

In order to draw aGRAPH<POINT, int> we simply draw each uedge as the segment
defined by the endpoints of the edge.

〈displaying geometric structures〉+�void draw_graph_edges(
onst GRAPH<POINT,int>& T, 
olor 
ol){ edge_array<bool> drawn(T,false);edge e;forall_edges(e,T)if (!drawn[e℄){ drawn[e℄ = true;edge r = T.reversal(e);
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e(e)℄;POINT q = T[target(e)℄;Wp->draw_edge(p.to_point(),q.to_point(),
ol);}}
Voronoi diagrams are a bit harder to draw. The positions of the nodes are determined

by the circles associated with them. A proper node, i.e., a node of degree at least three, is
positioned at the center of the circle associated with it. A node of degree one is positioned at
the circle at infinity. If its circle isCIRCLE(a, , b) then the node lies on the perpendicular
bisector ofa andb, and to the left of the oriented segment froma to b. Each edge is labeled
by the site owning the region to the left of the edge. An edgee is part of the perpendicular
bisector of sitesa andb, wherea = G[e] andb = G[G.reversal(e)].

After these preliminaries it is clear how to draw a Voronoi edge (v, w). An edge con-
necting two improper nodes is drawn as the perpendicular bisector of the pointsa andb, an
edge connecting a proper node and an improper node is drawn asa ray starting at the proper
node, running along the perpendicular bisector of pointsa andb and extending towards the
position of the improper node at the circle at infinity, and anedge connecting two proper
nodes is drawn as a segment connecting the nodes. We obtain the following code.

〈draw voro edges〉�void draw_voro_edges(
onst GRAPH<CIRCLE,POINT>& VD, 
olor 
ol){ edge_array<bool> drawn(VD,false);edge e;forall_edges(e,VD){ if (drawn[e℄) 
ontinue;drawn[VD.reversal(e)℄ = drawn[e℄ = true;node v = sour
e(e);node w = target(e);POINT a = VD[e℄;POINT b = VD[VD.reversal(e)℄;VECTOR ve
 = (b - a).rotate90();line l = p_bise
tor(a,b).to_line();if (VD.outdeg(v) == 1 && VD.outdeg(w) == 1){ Wp->draw_line(l,
ol); }elseif (VD.outdeg(w) == 1){ POINT 
v = VD[v℄.
enter();VECTOR ve
 = VD[w℄.point3() - VD[w℄.point1();POINT rp = 
v + ve
.rotate90();Wp->draw_ray(
v.to_point(),rp.to_point(),
ol);}elseif (VD.outdeg(v) == 1){ POINT 
w = VD[w℄.
enter();VECTOR ve
 = VD[v℄.point3() - VD[v℄.point1();POINT rp = 
w + ve
.rotate90();



10.10 A Complete Program: The Voronoi Demo 171Wp->draw_ray(
w.to_point(),rp.to_point(),
ol);}else{ POINT 
v = VD[v℄.
enter();POINT 
w = VD[w℄.
enter();Wp->draw_segment(
v.to_point(),
w.to_point(),
ol);}}}
The procedure above has serious numerical differences. Consider the following example.
Assume that we compute the Voronoi diagram of three points that lie almost on a common
line. The Voronoi diagram consists of one vertex and three rays. The vertex has very
large coordinates and even if its coordinates are computed exactly (as they will be with the
rational kernel) the conversion to point indrawray will suffer some loss of accuracy. We
are now drawing a ray from a distant point. It is unlikely thatthis ray intersects the window
in the desired form.

The window class offers drawing functions that are appropriate for this situation as dis-
cussed in Section 8.1. The modified drawing functions have anadditional argumentl of
type line, which is supposed to be the line underlying the segments or rayr to be drawn.
In our casel is the bisector ofa andb and hence determined with high precision. The
additional argument is used as follows.

If the source ofr lies inW or the two endpoints ofs lie in W, l is ignored. Otherwise, the
intersectiont betweenl and the window is determined and the part oft which also belongs
to r or s is drawn.

〈displaying geometric structures〉+�// template <
lass POINT, 
lass CIRCLE, 
lass VECTOR, 
lass LINE>void draw_voro_edges(
onst GRAPH<CIRCLE,POINT>& VD, 
olor 
ol){ edge_array<bool> drawn(VD,false);edge e;forall_edges(e,VD){ if (drawn[e℄) 
ontinue;drawn[VD.reversal(e)℄ = drawn[e℄ = true;node v = sour
e(e);node w = target(e);POINT a = VD[e℄;POINT b = VD[VD.reversal(e)℄;line l = p_bise
tor(a,b).to_line();if (VD.outdeg(v) == 1 && VD.outdeg(w) == 1){ Wp->draw_line(l,
ol); }elseif (VD.outdeg(w) == 1){ POINT 
v = VD[v℄.
enter();VECTOR ve
 = VD[w℄.point3() - VD[w℄.point1();POINT rp = 
v + ve
.rotate90();Wp->draw_ray(
v.to_point(),rp.to_point(),l,
ol);
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w = VD[w℄.
enter();VECTOR ve
 = VD[v℄.point3() - VD[v℄.point1();POINT rp = 
w + ve
.rotate90();Wp->draw_ray(
w.to_point(),rp.to_point(),l,
ol);}else{ POINT 
v = VD[v℄.
enter();POINT 
w = VD[w℄.
enter();Wp->draw_segment(
v.to_point(),
w.to_point(),l,
ol);}}}
The function above uses points, lines, circles, and vectorsand hence would require four

template arguments. Moreover, we would have to add artificial arguments of type LINE and
VECTOR such that the appropriate type inference can be made by the compiler. We decided
to use our primitive renaming mechanism instead. An alternative would be to introduce a
classrat kernel
lass rat kernel{typedef rat point POINT;typedef rat segment SEGMENT;// and so on}
and a similar classfloatkernel, to use a single template argument calledkernel, and to use
qualified type names such askernel::POINT andkernel::SEGMENTin drawvoroedges.
This design is used extensively in CGAL [CGA].

We come to the drawing functions for the individual geometric structures. Nearest and
furthest sites Delaunay diagrams, crusts, and minimum spanning trees are drawn by first
computing the structure and then callingdrawgraphedges. For example,

〈displaying geometric structures〉+�void draw_delaunay(
onst list<POINT>& L){ GRAPH<POINT,int> DT;DELAUNAY_TRIANG(L,DT);draw_graph_edges(DT,triang_
olor);}
Nearest and furthest site Voronoi diagrams are drawn by computing the structure and calling
drawvoroedges. For example,
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〈displaying geometric structures〉+�void draw_voronoi(
onst list<POINT>& L){ GRAPH<CIRCLE,POINT> VD;VORONOI(L,VD);draw_voro_edges(VD,voro_
olor);}
In order to display the convex hull and the width of our set of points we compute the convex
hull (a list of POINTs), convert the list to a list ofpoints, and draw the list of points as a
filled polygon ofhull color and as a black polygonal line. We also compute the minimum
width slab containing our set of points and display the two lines bounding the slab.

〈displaying geometric structures〉+�void draw_
onvex_hull(
onst list<POINT>& L){ list<POINT> CH = CONVEX_HULL(L);list<point> pol;POINT p;forall(p,CH) pol.append(p.to_point());Wp->draw_filled_polygon(pol,hull_
olor);Wp->draw_polygon(pol,bla
k);// widthLINE l1,l2;WIDTH(L,l1,l2);Wp->draw_line(l1.to_line(),blue);Wp->draw_line(l2.to_line(),blue);}
In order to draw a minimum width annulus we either draw the twocircles or the two

parallel lines defining the annulus. In the first case we want the annulus to be shown in
orange. We therefore draw the larger disk in orange first and then the smaller disk in white.
This leaves the annulus in orange.

〈displaying geometric structures〉+�void draw_min_width_annulus(
onst list<POINT>& L){ POINT a,b,
; LINE l1,l2;if ( MIN_WIDTH_ANNULUS(L,a,b,
,l1,l2) ){ // proper annulus
ir
le 
1(a.to_point(),b.to_point());
ir
le 
2(a.to_point(),
.to_point());Wp->draw_dis
(
2,orange);Wp->draw_dis
(
1,white);Wp->draw_
ir
le(
1,bla
k);Wp->draw_
ir
le(
2,bla
k);Wp->draw_point(a.to_point(),orange);}else{ // stripWp->draw_line(l1.to_line(),bla
k);
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k);}}
Adding a Geometric Object: We come to the mouse input of points, lines, and circles.
The functiongetinput(W, input) reads either a point, or a segment, or a circle and then
calls the appropriate insertion function.

〈adding a geometric object〉�
〈adding a point, segment or circle〉void get_input(window& W, int inp){ rat_point p; rat_segment s; rat_
ir
le 
;swit
h (inp) {
ase 0: if (W >> p) insert_point(p); break;
ase 1: if (W >> s) insert_segment(s); break;
ase 2: if (W >> 
) insert_
ir
le(
); break;}}

〈adding a point, segment or circle〉�void insert_point(rat_point p){ Wp->draw_filled_node(p.to_point(),site_
olor);add_point(p);}
Addition of a point does the obvious. In order to add points ona segment we generaten
points on the segment, wheren is determined by the ratio between the length of the segment
and the global variablepointdist.

In order to add a circle we generaten uniformly spaced points on the circle, wheren
is determined by the ratio between the circumference of the circle and the global variable
pointdist.

〈adding a point, segment or circle〉+�void insert_segment(rat_segment s){ double l = s.to_segment().length();int n = Wp->real_to_pix(l)/point_dist + 1;list<rat_point> L;points_on_segment(s,n,L);rat_point p;forall(p,L){ add_point(p);Wp->draw_filled_node(p.to_point(),site_
olor);}}void insert_
ir
le(rat_
ir
le C)
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ir
le().radius() * LEDA_PI;int n = Wp->real_to_pix(L)/point_dist + 1;double d = (2*LEDA_PI)/n;double eps = 0.001;double a = 0;for(int i = 0; i < n; i++){ rat_point q = C.point_on_
ir
le(a,eps);add_point(q);Wp->draw_filled_node(q.to_point(),site_
olor);a += d;}}
Point Generators: The point generator menu allows the user to select between three gen-
erators. A generator for random points in a square, a generator for regularly spaced points,
and a generator for random points near a circle. The third generator produces inputs which
are useful to illustrate the computation of annuli.

〈generate points menu〉�panel P;P.text_item("\\bf Generate input points");P.text_item("");P.
hoi
e_item("",k_gen,"random","latti
e","near 
ir
le");P.int_item("",n_gen,0,500);P.button("
reate",0);P.button("
an
el",1);if (P.open(W) == 0){ swit
h (k_gen) {
ase 0: random_square(n_gen); break;
ase 1: latti
e_points(n_gen); break;
ase 2: near_
ir
le(n_gen,point_dist); break;}}
We only show thenearcircle generator. It generates points in an annulus with inner radius
rmin and outer radiusrmax; rmax is chosen such that the annulus fits nicely on the screen
andrmin is chosen as 90% ofrmax.

For each point to be generated we generate a random point on a circle of radiusr where
r is randomly chosen betweenrmin andrmax.

〈point generators〉+�void near_
ir
le(int n, int point_dist){ double x0 = Wp->xmin(), y0 = Wp->ymin();double x1 = Wp->xmax(), y1 = Wp->ymax();point 
ent((x0+x1)/2,(y0+y1)/2);int rmax = int(0.35 * (x1-x0));
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lear_all();for(int i=0; i < n; i++){ //
ir
le C(
ent,rand_int(rmin,rmax));
ir
le C(
ent,(double)rand_int(rmin,rmax));double a;rand_int >> a;point q = C.point_on_
ir
le(2*a*LEDA_PI);int x = (int)q.x
oord();int y = (int)q.y
oord();add_point(rat_point(x,y,1));Wp->draw_filled_node(x,y,site_
olor);}}
Calling GraphWin: The functiongrapheditvisualizes the graphs underlying our geomet-
ric structures. We do not discuss it here.

Settings: The settings menu allows the user to set some of the global variables. It is self-
explanatory.

〈settings menu〉�panel SP("SETTINGS");SP.bool_item("use filter in rat kernel", use_filter);SP.bool_item("draw lines with width 2",thi
k_lines);SP.int_item("grid", grid_width,0,50,10);SP.int_item("pix dist", point_dist,1,64);SP.
olor_item("sites ", site_
olor);SP.
olor_item("voro ", voro_
olor);SP.
olor_item("triang", triang_
olor);SP.
olor_item("hull", hull_
olor);SP.
olor_item("tree", tree_
olor);SP.button("
ontinue");SP.open(W);W.set_grid_mode(grid_width);W.
lear();W.set_line_width( thi
k_lines ? 2 : 1);draw_sites(p_list);re
ompute_rp_and_fp_list();draw(display);
10.10.3Floating Point Errors
What can go wrong when the demo is executed with the floating point kernel?

When a segment or circle is added a certain number of points onthe segment or circle are
added top list. The rational kernel guarantees that these points lie exactly on the segment
or circle, respectively. When therat pointsare converted topoints, they will lie only almost
on the circle or segment.
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Consider now a scene that consists of points on two segments.The Delaunay triangula-
tion will contain extremely flat triangles. This can cause the computation of the Delaunay
diagram and the Voronoi diagram to fail.

Crust is also a good source of error. It computes the Delaunaydiagram of the points is
fp list plus the vertices of the Voronoi diagram ofp list. Whenfp list contains points that lie
almost on a circle there will be many Voronoi vertices near the center of the circle and the
Delaunay diagram computation will get confused. This can lead to strange crusts.
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