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10
Geometry Algorithms

We discuss convex hulls, triangulations, the verificatibgenmetric structures, Delaunay
triangulations and Delaunay diagrams, Voronoi diagrarpplieations of Delaunay and
\Voronoi diagrams, geometric dictionaries, line segmetgrgection, polygons, and close
with a glimpse at higher-dimensional computation geome#fgr each problem we in-
troduce the required mathematics and derive algorithmstlagid implementations. The
books [Meh84b, Ede87, PS85, Mul94, Kle97, BY98, dBKOS9dvite a wider view of
computational geometry.

The chapter uses results of all preceding chapters and teisisense, the culmination
point of the book, e.g., we use lists and arrays from the baaia types, integers and
rationals from the number types, dictionaries, maps aneédsequences from the advanced
data types, graphs and graph algorithms, embedded grajhtyeageometry kernels.

Computational geometry is a very rich area and LEDA cenaioles not provide every-
thing there is to it. Other good sources of geometric sovwaae CGAL [CGA] and the
LEDA extension packages [LEP].

10.1 Convex Hulls

The convex hull problem in the plane is one of the simpleshgsdc problems and hence
a good starting point for our exploration of geometry altjoris. It will allow us to address
five important themes in a simple setting:

e Thesweep paradigmin this paradigm the input points are first sorted accordinte
lexicographic order and then the desired geometric stragsuconstructed
incrementally during a single sweep over the points. Weaélive and implement a
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Figure 10.1 A convex and a non-convex set.

Figure 10.2 A point set, its convex hull, and its width. The figure was geated with the
xlman-demo voronademo. The width of point sets is discussed in Section 10.1.3.

sweep algorithm for convex hulls. We will see more applmagi of the sweep
paradigm in later sections.

e The(randomized) incremental construction paradigmthis paradigm the input
points are considered one by one in either arbitrary or randi@er and the desired
geometric structure is constructed incrementally. We aallive and implement an
incremental algorithm for convex hulls.

e The careful handling aflegeneraciesThe literature on computational geometry
frequently makes the so-callggneral position assumptiomhich states that only
inputs are considered for which none of the geometric pegdgrequired by the
algorithm (recall that the evaluation of a geometric pratiiccalls for the evaluation of
the sign of an expression) ever evaluates to zero. For exanhg incremental
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U3 w1

v1 wo

Figure 10.3 Two point sets and their convex hulls. The hulls are represkas cyclic lists of
points, namelyo, v1, v2, v3 for the example on the left andy, w; for the example on the right.

algorithm for convex hulls uses the orientation predicate lzence the general
position assumption excludes all inputs containing thaknear points. Of course,
we do not want to exclude any inputs and hence cannot maketiera position
assumption. Dropping the general position assumptiorcéiyi requires a more
careful formulation of the algorithms. The sweep as welhasihcremental algorithm
for convex hulls will work for all inputs. In fact, all algdahims in this chapter do.

e \Verification of geometric structure&eometric programs require checking. Although
the convex hull problem is one of the simplest geometric j@mls, the programs
derived in this section will be non-trivial. We will see howpartially check the output
of convex hull programs in Section 10.3.

e The importance oéxact geometric primitivesn the preceding chapter we introduced
the rational geometry kernel; in this section we will profidrh it.

A setC is calledconvexf for any two pointsp andq in C the entire line segmeniq is
contained inC, see Figure 10.1. Theonvex huliconvS of a setS of points is the smallest
(with respect to set inclusion) convex set containBigA point p € Sis called arextreme
pointof Sif there is a closed halfspace containiBguch thatp is the only point inS that
lies in the boundary of the halfspace. A pojmie Sis called aweak extreme poirdf Sif
there is a closed halfspace containf@guch thatp lies in the boundary of the halfspace.
Clearly, an extreme point is also a weak extreme point, bertetimay be weak extreme
points that are not extreme points. The pgarih Figure 10.3 is an example.

From now on we restrict our discussion to the planeS fontains no three collinear
points then every weak extreme point is also extreme, ireleuthe general position as-
sumption there is no need to distinguish between weak egtpmints and extreme points.
We define the convex hull problem as the problem of computiegeixtreme points of a
finite set of points as a cyclically ordered list of point, $egure 10.3. The cyclic order is
the clockwise order in which the extreme points appear omtile
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Figure 10.4 Adding point p. We determine the two tangents froorby a clockwise and
counter-clockwise walk along the current hull startinghegt inost recently added poigt

The function

1list<POINT> CONVEX_HULL(const 1ist<POINT>& L);

computes the convex hull of the pointslinand returns its list of vertices. The cyclic order
of the vertices in the result corresponds to the clockwiskeioof the vertices on the hull.
The algorithm uses randomized incremental constructighitsrexpected running time is
O(nlogn).

10.1.1 The Sweep Algorithm
The sweep algorithm for convex hulls consists of the follugvihree steps:

e The input points are sorted in increasing lexicographieord
e The convex hull is initialized with the two lexicographilyesmallest points irL.

e The remaining points are considered in increasing lexigigic order and the convex
hull is updated for each point. Assume thmis the next point to be considered and
that we have already constructed the convex hull of the giegeoints. The new hull
can be obtained from the old hull by constructing the two &antg fromp. The
construction of the tangents is simple since guaranteed to see the poinadded
just beforep. We only have to walk frong| in clockwise and counter-clockwise
direction along the hull in order to determine the other arils of the tangents, see
Figure 10.4.

We now turn this strategy into a program. We assume that tieisegjiven as a lisL.0 of
points. We allow multiple occurrences of points. We folldve tgeneral outline above and
proceed in three steps. We first make a local chpyf LO and sortL. Next we initialize
the list of hull vertices with the first two points (in the sedtversion) ofL, and finally, we
add all other points of.. We call the resulting program CONVEMULL _S since it uses
the sweep paradigm to compute convex hulls.
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(convexhull.c)=

1list<POINT> CONVEX_HULL_S(const 1ist<POINT>& LO)
{ 1ist<POINT> CH;

1ist<POINT> L = LO;
L.sort();

(initialize hull with two point$
(add all other points
return CH;

We prepare for the sweep by sorting the points accordingetéetticographic order. A point

p precedes a poirg in the lexicographic ordelif either its x-coordinate is smaller or the
two x-coordinates are equal and itscoordinate is smaller. The default ordering on points
is the lexicographic ordering and henceort( ) rearranges. in the desired way.

We can now start building the hull. We begin with the first twaings in L and make
them the vertices of the first hull. As said above we repreentull as a linear lisCH
that contains the hull vertices atockwiseorder. The listis to be interpreted as a cyclic list.
We maintain an itentastvertexinto the list; it contains the point added last.

(initialize hull with two point$=
if ( L.empty() ) return CH;

POINT last_p;
CH.append(last_p = L.pop());

// remove duplicates of first point
while ( !L.empty() && last_p == L.head() ) L.popQ);

if ( L.empty() ) return CH;
list_item last_vertex = CH.append(last_p = L.pop());

We process the remaining points. If the next pgiris equal to the last point added we
do nothing. If the current hull consists of only two vertieesl the new poinp is collinear
with these vertices we replace the second vertep b@therwise, we determine two items
upitemanddownitemin CH which correspond to the other endpoints of the two tangents
starting atp. To determinaipitemwe scan the hull in counter-clockwise direction starting
atlastvertex If the point stored at the predecessowgfitem, the point stored atpitem,
and p do not form a right turn we movepitemto its predecessor vertex. We determine
downitemby the symmetric procedure.

After having determinedpitemanddownitemwe update the hull. We delete all items
strictly betweerupitemanddownitemand insertp instead of them. Note thajpitemand
downitem are guaranteed to be different sinpesees at least one of the edges incident to
the most recently added vertex.

(add all other points=

POINT p;
forall(p,L)
{ if ( p == last_p ) continue; // duplicate point
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last_p = p;

if (CH.length() == 2 && collinear (CH.head(),CH.tail(),p))
{ CH[last_vertex] = p; continue; }

// the interesting case
// compute up_item

list_item up_item = last_vertex;
while (!right_turn(CH[CH.cyclic_pred(up_item)], CH[up_item], p))
{ up_item = CH.cyclic_pred(up_item); }

// compute down_item

list_item down_item = last_vertex;
while (!left_turn(CH[CH.cyclic_succ(down_item)], CH[down_item], p))
{ down_item = CH.cyclic_succ(down_item); }

// update hull

while (down_item != CH.cyclic_succ(up_item))
{ CH.del_item(CH.cyclic_succ(up_item)); }

last_vertex = CH.insert(p,up_item,after);

The running time of the convex hull program@(n logn). It takes timeO(nlogn) to sort
the points lexicographically. After that everything isdiar as the following amortization
argument shows. Adding a point to the hull takes constare fifaos time proportional to
the number of points removed from the hull. Since any pointdigappear from the hull
at most once, the total time to add all points is linear. Theniog time of the algorithm
is never better thanlogn since it takes® (nlogn) time to sort the points. The sweep
algorithm for convex hulls is due to Andrew (JAnd79]); it nedis an earlier algorithm of
Graham ([Gra72]).

The convex hull program makes use of the primitives provigethe geometry kernels.
The rational kernel guarantees that all geometric priregtivehave according to their math-
ematical specification and hence binding the program wighrégtional kernel will yield a
correct executable. The program may behave incorrectlguild with the floating point
kernel. Consider the following example.

We compute the convex hull of the 4§¢+M + 1, —M), (0, 0), (M, M + 1), (0, —2)} for
M = 2™ and increasing values ofi. All four points are extreme and hence the following
program will print “everything went fine”, when executed wthe rational kernel.

(convex hull and kerngE

for (int m = 20; m < 50; m++)

¢ double M = ldexp(1.0,m);
INT_TYPE IM(M);
POINT p(-IM + 1, -IM) , q(0, 0), r(IM, IM + 1), s(0, -2);
1list<POINT> L;
L.append(p); L.append(q); L.append(r); L.append(s);
1ist<POINT> CH = CONVEX_HULL_S(L);
if ( CH.length() !'= 4 )
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{ cout << "\m\nlength = " << CH.length() << " for m = " << m;
return O;

}
}

cout << "\n\neverything went fine";

However, when executed with the floating point kernel theypmm will print
length = 3 for m = 27,

since the floating point kernel believes that the triggheq, r) is collinear form > 27.

10.1.2 Incremental Construction
We will next describe an alternative algorithm to computevex hulls. The algorithm
is based on the paradigm @andomized) incremental constructioihe algorithm has a
worst case running time dd(n?), an average running time @(nlogn), and a best case
running time ofO(n).

The algorithm starts by searching for three non-collineangsa, b, andc. If there are
none, then all points are collinear and the vertices of tHeana simply the lexicographi-
cally smallest and largest point.

{convexhull.c)+=
(ch_edgeclass

1ist<POINT> CONVEX_HULL_IC(const list<POINT>& L)
{

if (L.length() < 2) return L;

list<POINT> CH;

POINT a = L.head(), b = L.tail();
POINT c, p;

if (a==Db ) { forall(p,L) if (p != a) { b = p; break; } }
if (a==b ) { // all points are equal

CH.append(a) ;

return CH;

}

int orient;
forall(c,L) if ( (orient = orientation(a,b,c)) != 0 ) break;
if ( orient == 0 )
{ // all points are collinear
forall(p,L) { if ( compare(p,a) < 0 ) a = p;
if ( compare(p,b) > 0 ) b = p;
}
CH.append(a); CH.append(b);
return CH;
}

// a, b, and c are not collinear
if ( orient < 0 ) leda_swap(b,c);
(full-dimensional case: initialization
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P2

Figure 10.5 The initial convex hull consists of the poirasb, andc. When pointp; is added
the edge®; ande, are deleted from the hull and the edgasndes are added, and whepy is
added to the hull the edges ande, are deleted from the hull and the edgesinde; are added.
The boundary of the current hull consists of edggss, andeg in counter-clockwise order.
Every edge ever deleted from the hull points to the two edggtsreplaced it, e.ges andey
point toes andey.

forall(p,L) { (full-dimensional case: insertion of p}
(full-dimensional case: prepare result and cleanrup

return CH;

}

We come to the interesting case that not all point& iare collinear. We have already
determined three non-collinear poiatsh, andc. Their orientation is positive, i.e., the three
points form a counter-clockwise oriented triangle.

The algorithm maintains the current hull as a cyclicallkéd list of edges and also keeps
all edges that ever belonged to a hull. Every edge that is m¢h® current hull anymore
points to the two edges that replaced it. More preciselyrassthatS is the set of points
already seen and thatis a point outside the current hlIH(S). There is a chairC of
edges of the boundary @H(S) that do not belong to the boundary 6H(SU p). The
chain is replaced by the two tangents frgnto the previous hull. All edges i@ are made
to point to the two new edges, see Figure 10.5.

We use a classhedgeto represent convex hulls. Every edge stores its two entiyoin
three linkssucg pred, andlink to other edges, and a boolean flagiside We usdlink to
collect all edges into a linear list in the order of their d¢re; every edge points to the edge
created just before it andstedgepoints to the edge created last. The only purpose of this
linear list is to help in the destruction of edges.
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The boolean flagutsideindicates whether an edge belongs to the current hull orAibt.
edges in the current hull form a cyclic doubly linked listvLiccpointing to the clockwise
successor angred pointing to the clockwise predecessor. All edges that dobetdng
to the current hull anymore use themccandpred fields to point to the two replacement
edges.

(ch_edgeclass=
class ch_edge;
static ch_edge* last_edge = nil;
class ch_edge {
public:

POINT source, target;
ch_edge* succ, pred, link;
bool outside;

ch_edge(const POINT& a, const POINT& b) : source(a), target(b)
{ outside = true;

link = last_edge;

last_edge = this;
}

“ch_edge() {}
};

In order to initialize the data structure we create the edgeb), (b, ¢) and(c, a), store
them in an arrayl’, and turn them into a doubly-linked cyclic list. We initzdilastedgeto
nil before doing any of this, such that the list of all edges hastrrect anchor.

(full-dimensional case: initializatiorE=
last_edge = nil;
ch_edgex T[3];

T[O] = new ch_edge(a,b);
T[1] = new ch_edge(b,c);
T[2] = new ch_edge(c,a);
int i;

for(i = 0; i < 2; i++) TI[il->succ = T[i+1];
T[2]->succ = T[0];
for(i = 1; i < 3; i++) T[i]->pred
T[0]->pred = T[2];

T[i-1]1;

We are now ready to deal with the insertion of a pgniVe proceed in two steps. We first
determine whethep is outside the current hull and then update the hulp(i$ outside).

In order to find out whethep lies outside the current hull, we walk through the history
of hulls. We first find out whethep can see one of the edges of the initial triangbdies
outside the initial triangle if there is an edg®f the initial triangle such thap lies to the
right of the edge.

More generallyp is outside one of the intermediate hull$i(S) if there is an edge on
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e

Figure 10.6 eis a (counter-clockwise) edge of the current hull aniies to the right of it;e is
replaced by andr1 when the poing is added. Ifp lies neither to the right afy nor to the right
of r1 thenp lies in the shaded region and hencé&&H(SU q).

its boundary such thap lies to the right of the edge. H is an edge on the boundary of
the current hull therp lies outside the current hull. Eis not an edge on the boundary of
the current hull, letg andr, be the two edges that replacedrhenCH(S) was enlarged to
CH(SU Q). pisoutsideCH(SU q) if it lies to the right of eitherg orr,, see Figure 10.6.

(full-dimensional case: insertion of &
int i = 0;
while (i < 3 && !'right_turn(T[i]->source,T[i]->target,p) ) i++;
if (i == 3) { // p inside initial triangle
continue;

}
ch_edge* e = T[i];

while (! e->outside)
{ ch_edge* r0 = e->pred;
if ( right_turn(rO->source,rO->target,p) ) e = r0;
else { ch_edge* r1 = e->succ;
if ( right_turn(rl->source,rl->target,p) ) e = ri;
else { e = nil; break; }
}
}

if (e == nil) continue; // p inside current hull

(insertion of p: p is outside current hull

Assume now thap lies outside the current hull and to the right of the couicteckwise hull
edgee. We determine all edges visible fromby walking along the hull in both directions.
This is exactly as in the previous algorithm. Letv be the first predecessor ethat is not
visible and lethigh be the first successor that is not visible.

We then add the new tangents betwemsmandhighand mark all edges that were deleted
from the hull as inside and make the two new tangents thegeplant edges of all deleted
edges.
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(insertion of p: p is outside current hii
// compute "upper" tangent (p,high->source)

ch_edge* high = e->succ;
while (orientation(high->source,high->target,p) <= 0) high = high->succ;

// compute "lower" tangent (p,low->target)
ch_edge* low = e->pred;

while (orientation(low->source,low->target,p) <= 0) low = low->pred;
e = low->succ; // e = successor of low edge
// add new tangents between low and high
ch_edge* e_1 = new ch_edge(low->target,p);
ch_edge* e_h = new ch_edge(p,high->source);
e_h->succ = high;

e_l->pred = low;

high->pred = e_l->succ = e_h;

low->succ = e_h->pred = e_1;

// mark edges between low and high as "inside"
// and define refinements

while (e !'= high)

{ ch_edge* q = e->succ;
e->pred = e_l
e->succ = e_h;
e->outside = false;
e =q;

}

bl

Having computed the hull we prepare the output and deletedgles. We prepare the
output by running around the hull once and we clean up by idelall edges.

(full-dimensional case: prepare result and cleanys=p
ch_edge* 1_edge = last_edge;

CH.append(1_edge->source) ;
for(ch_edge* e = 1_edge->succ; e != 1_edge; e = e->succ)
CH.append (e->source) ;

// clean up

while (1_edge)

{ ch_edge* e = 1_edge;
1l_edge = 1l_edge->link;
delete e;

}

What is the running time of the incremental constructionafvex hulls?

The worst case running time 3(n?) since the time to insert a point 3(n). The time
to insert a point iD(n) since there are at mos{i’+ 1) edges after the insertion kipoints
and since every edge is looked at at most once in the insentomess.

The best case running time @&(n). An example for the best case is when the pomts
b, andc span the hull.
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The average case running time@nlogn) as we will show next. What are we aver-
aging over? We consider a fixed but arbitrary Seif n points and average over time
possible insertion orders. The following theorem is a sezase of the by now famous
probabilistic analysis of incremental constructiosiarted by Clarkson and Shor [CS89].
The books [Mul94, BY98, MR95, dBKOS97] contain detailedgmetations of the method.
The reader may skip the proof of Theorem 1. Why do we includeoafgat all given the
fact that the method is already well treated in textbooks)ie a proof because the cited
references prove the theorem only for points in generaliposiWe want to do without the
general position assumption in this book.

Theorem 1 The average running time of the incremental constructiothofor convex
hulls is O(nlogn).

Proof We assume for simplicity that the points 8are pairwise distinct. The theorem is
true without this assumption; however, the notation rezpliin the proof is more clumsy.

The running time of the algorithm is linear iff all points Bare collinear. So let us
assume thab contains three points that are not collinear. In this caswildirst construct
a triangle and then insert the remaining points. pét one of the remaining points. When
p is inserted, we first determine the positionfvith respect to the initial triangle (time
0(1)), then search for a hull edgevisible by p, and finally update the hull. The time to
update the hull i€0(1) plus some bounded amount of time for each edge that is removed
from the hull. We conclude that the total time (= time summeedrall insertions) spent
outside the search for a visible hull edgedsn).

In the search for a visible hull edge we perform tegjhtturn(x, y, p) wherex andy are
previously inserted points. We call a tesiccessfuf it returns true and observe that in each
iteration of the while-loop at most two rightturn tests aegfprmed and that in all iterations
except the last at least one rightturn test is successfuhetefore suffices to bound the
number of successful rightturn tests.

For an ordered paix, y) of distinct points inSwe useKy y to denote the set of points
z in Ssuch thatightturn(x, y, z) is true plus the set of points on the line througk, y)
but not betweex andy, see Figure 10.7. We usgy to denote the cardinality dfy y, Fx
to denote the set of pairx, y) with kyy = Kk, F<x to denote the set of pair, y) with
kxy < k, and fx and f_ to denote the cardinalities & andF, respectively. We have

Lemma 1The average number A of successful rightturn tests is baliog®", _; 2 -/ K.
Proof Consider a pairx, y) with kyy = k. If some point inKy y is inserted before both

x andy are inserted thefk, y) is never constructed as a hull edge and hence no rightturn

1 The set to be defined next is emptySis in general position. The probabilistic analysis of imental
constructions usually assumes general position. We do aot ts assume it here and hence have to modify the
proof somewhat.
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Figure 10.7 Ky y consists of all points in the shaded region plus the two saljd.

tests(x, y, —) are performed. However, ¥ andy are inserted before all points Ky y then
up tok successful rightturn testg, y, z) are performed.
The probability thak andy are inserted before all points Ky y is

21k /(k + 2)!

since there ar¢k + 2)! permutations ok + 2 points out of which ! havex andy as
their first two elements. Thus the expected number of sufidefghtturn tests(x, vy, z) is
bounded by

2K /(K+2)! k=2-k/(k+ DK+ 2) <2/(K+ 1).

The argument above applies to any pairy) and hence the average number of successful
rightturn tests is bounded by

> 2f/(k + D).

k>1
We next writef, = fox — f<x_1 and obtain
A < > 2fa—facn/k+D = Y 2fa@/Kk+1D —1/(K+2)
k>1 k>1

= Z 2f/((K+ DK+ 2)).
k>1 O

It remains to bound .. We use random sampling to derive a bound.
Lemma?2 fo < 2e?n-kforallk,1 <k <n.

Proof There are onlyr? pairs of points ofS and hence we always have, < n?. Thus,
the claim is certainly true fon < 10 ork > n/4.
So assume that > 10 andk < n/4 and letR be a random subset &of sizer. We will
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fix r later. Clearly, the convex hull dR consists of at most edges. On the other hand, if
for some(x, y) € F<, x andy are inR but none of the points iy y is in R, then(x, y)
will be an edge of the convex hull d&. The probability of this event is

—i-2 —k—2
(nrl—z) - (nr—2 )
@ 0
wherei = ky y. Observe that the event occuriindy are chosen and the remaining 2

points inR are chosen fron®\ {x, y}\ Ky y. The expected number of edges of the convex
hull of R is therefore at least
(%)
r_

()

Since the number of edges is at moste have

¢ n—k—-2 n <t
«(1590):

n (m-k-2y  nn-1 [n—2]
ffkfr(r)/( r—2 >_r'r(r—1)'[n—k—2]r—2’

where p]; = n(n—1)---(n —i + 1). Next observe that

[n— 2} M _ Fg_on-i _F k
k-2, 2 ~ [n—K, _ i = H<l+n—k—i)

i=0 i=0

or

[y

r—1
exp< In(1+k/(n—k—i))> < exp(rk/(n—k-r)),

i=0
where the last inequality follows from (& + x) < x for x > 0 and the fact thak/(n —
k—i) <k/(n—k—-r)forO<i <r — 1. Settingr = n/(2k) and using the fact that
n—k—r >n/4fork <n/4andn > 10, we obtain

fo < €n?/r = 2e’nk.

O
Putting our two lemmas together completes the proof of Téraat
A < 4e* > “nk/k* = O(nlogn).
k>1 O

There are two important situations when the assumptionseatteorem above are satis-
fied:

e When the points irS are generated according to a probability distribution f@ings in
the plane.

e When the points are randomly permuted before the increrhemtatruction process is
started. We then speak aboutaadomized incremental construction



16 Geometry Algorithms

CONVEX_HULL _RIC realizes the randomized incremental construction afer hulls.

(convexhull.c)+=

1ist<POINT> CONVEX_HULL_RIC(const 1list<POINT>& L)
{ 1ist<POINT> L1 = L;

L1.permute();

return CONVEX_HULL_IC(L1);
}

1ist<POINT> CONVEX_HULL(const 1ist<POINT>& L)
{ return CONVEX_HULL_RIC(L); }

Itis important to understand the difference betwd€rand_RIC. The former is aetermin-
istic procedure whose average running tim&ig logn) if the assumptions of Theorem 1
are satisfied. The latter is a randomized algorithm whosea®gd running time for any
input is O(nlogn). Table 10.1 shows the difference. We generated d_lisf n random
points for each of three distributions: random points inthg square, random points in the
unit disk, and random points close to the boundary of the cindte. We also generated a
second input sdtShby sortingL lexicographically. On the random inputC does slightly
better thanRIC because the latter does something that is unnecessaanftom inputs: it
randomly permutes an input that is already random. Howéwethe sorted inputs the situ-
ation is completely differentRIC behaves about the same as for random inputs. However,
_IC behaves much worse. For the points on the circle the behagems to be quadratic
and for the points in the square and the disk the behavior séeimen® for somes > 1.
For this reason RIC is to be preferred over IC.

We next compare the sweep line algorithm with the randomize@mental construction
algorithm. Table 10.2 shows the results. Observe that werusdh larger inputs sizes for
this table. The randomized incremental algorithm is faltan the sweep algorithm for
inputs with only few hull vertices and is somewhat slowergomts on the unit circle. Ob-
serve that the proof of Theorem 1 implies that the runningtohrandomized incremental
construction ia(nlogn) if a random subset of the input points has a small convex hull.

There are many more convex hull algorithms than sweep anddgraized) incremental
construction. Schirra [Sch98] discusses implementations

10.1.3 The Width of a Point Set

The width of a point setL is the minimal width of a stripe containing all pointsin A
stripe is the region of the plane between two parallel linkBnimum width stripes are
illustrated in the xIman-demo voronoi-demo, see Figur@.10he function

RAT_TYPE WIDTH(const list<POINT>& L, LINE& 11, LINE& 12)
assumes thdt is non-empty and returns the squanéthe minimum width stripe containing
L and the boundaries of the stripe.

We show how to compute the minimum width stripe by the soechaibtating caliber
method We start with a partial characterization of the minimum thigtripe.

2 We return the square of the width instead of the width becthisehoice avoids the use of square roots.



10.1 Convex Hulls

17

IC RIC
K n Gen V Random Sorted Random Sorted
S 4000 0.29 18 0.09 0.27 0.11 0.13
S 8000 0.64 23 0.16 0.76 0.22 0.21
S 16000 1.34 29 0.33 2.53 0.42 0.41
D 4000 0.27 59 0.1 0.45 0.11 0.1
D 8000 0.59 66 0.17 1.26 0.23 0.2
D 16000 1.25 87 0.43 3.48 0.5 0.41
C 4000 9.32 4000 0.32 15.57 0.34 0.37
C 8000 18.87 7995 0.7 65.93 0.75 0.71
C 16000 37.62 1.599e+04 1.47 253.4 1.53 1.57

Table 10.1 A comparison of incremental and randomized incrementasttoation: We
generatedh points according to one of three distributions, either fsowith random integer
coordinates inf R.. R], or random points with integer coordinates in the disc wéttiusR
centered at the origin, or random points with integer cawtdis that lie approximately on the
circle with radiusR centered at the origin. We us&i= 16000. The columns show from left to
right the kind of the point set (S for points in a square, D foings in the disc, and C for points
on a circle), the numbaer of points, the time to generate thepoints, the number of vertices of
the hull, the running time of the incremental algorithttQ(), and the running time of the
randomized incremental algorithmRIC). For both algorithms the first column gives the time
for random inputs and the second column gives the time facdgxaphically sorted inputs.
Observe the bad behavior dC on sorted inputs. Also observe that the time to computéattie

is usually smaller than the time to generate the points.

Lemma 3 Let S be a minimum width stripe containing L. Then one of thenfaries
contains an edge of the convex hull of L and the other bounctamyains at least one vertex

of the convex hull of L.

Proof Clearly, both boundaries & must contain at least one vertex of the convex hull of
S. Assume that neither boundary contains an edge of the cdndéand letp andq be
the two vertices of the convex hull &f that are contained in the boundary®f Since the
boundary ofL contains no edge of the convex hull we can rotate both linesratp and
g, respectively. Letr be the acute angle between the segnmntnd the boundary of
incident top, see Figure 10.8. Then

width(S) = |pq| - sina

and hence the width decreases whean decreased.
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Sweep RIC
K n Gen V Random Sorted Random Sorted
S 20000 1.72 25 1.68 1.54 0.55 0.55
S 40000 3.77 29 3.6 3.26 1.26 1.43
S 80000 7.92 31 7.72 6.98 2.06 2.07
D 20000 1.62 106 1.75 1.59 0.55 0.56
D 40000 3.49 109 3.76 3.33 1.17 1.25
D 80000 7.32 152 8 7.02 2.42 2.58
C 20000 47  1.999e+04 1.82 1.67 2.13 212
C 40000 94.68 3.994e+04 3.96 3.57 4.46 4.41
C 80000 188.8 7.979e+04 8.6 7.78 10.31 10.04

Table 10.2 The running times of the sweep algorithm and the randomizetimental
construction algorithm for convex hulls. The meaning of¢bkimns is the same as for
Table 10.1.

width

Figure 10.8 The stripeS with boundarie$; andl, contains all points ok, but neither boundary
contains an edge of the convex hulllof Rotating its boundaries decreases the width of the

stripe.

We conclude from the lemma above that the minimum width stisplefined by an edge
of the convex hull and the vertex of maximum distance fromlithe supporting this edge.
The next lemma constrains the part of the convex hull whesertirtex of maximal distance

may lie.

Lemma4Letug, vy, ..., vk—1 be the vertices of the convex hull of L, letll (vk_1, vo) be
the line passing througby_; andvg, and letvy, be the vertex of maximal distance from I.
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Uk-1

Figure 10.9 lllustration of the proof of Lemma 4.

Letl’ = I (vg, v1), let vy be the vertex of maximal distance fromThen m< m’ < k — 1.
Also mi is minimal such thaty, 1 has smaller distance td thanvyy.

Proof Consider Figure 10.9. All verticag with 1 < i < m are contained in the triangle
with cornersvy, vy, and the intersection betwe&nand the line parallel tb throughvp,.
Any point in this triangle has smaller distancdtthanvy,. Thusm <m’ < k — 1.

For the second claim consider the distance betwWweandv; as a function of and as
ranges from 1 t& — 1. It follows from convexity that this function is first sttig increasing
then reaches its maximum for either one or two vertices atitisagain strictly decreasing.

O

It is easy to derive an algorithm from the preceding lemma.détermine for each hull
edgepq the vertexm of maximal distance from the lingp, q). We initialize p andq to
the first two hull vertices and finegh by a search over all vertices. We then scan once around
the convex hull olL in order to check all other edges.

We maintain the square of the width of the currently bespstin minsqrwidth and the
boundaries of the stripe i and|2.

(width.g=
RAT_TYPE WIDTH(const list<POINT>& L, LINE& 11, LINE& 12)
{
if ( L.empty() )
error_handler (1,"WIDTH applies only to non-empty sets");

1ist<POINT> CH = CONVEX_HULL(L);

if ( CH.length() == 1)

{ 11 = 12 = LINE(L.head(), VECTOR(INT_TYPE(1),INT_TYPE(1)));
return 0;

}
if ( CH.length() == 2 )
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{ 11 = 12 = LINE(CH.head(), CH.tail()); return O; }
list_item p_it = CH.first();
list_item q_it = CH.cyclic_succ(p_it);
list_item m_it = g_it;
list_item it;
LINE 1(CH[p_it],CH[q_ it]);
RAT_TYPE min_sqr_width = 0; RAT_TYPE sqr_dist;
// find vertex with maximal distance from 1
forall_items(it,CH)
{ if ( (sqr_dist = 1l.sqr_dist(CH[it])) > min_sqr_width )
{ min_sqr_width = sqr_dist;
m_it = it;

}
}
11 = 1; 12 = LINE(CH[m_it], CH[q_it] - CH[p_it]l);

(rotate caliber around CHl

return min_sqr_width;

Letr be the successor vertex gf We want to determine the vertex with maximal
distance froml’ = I(q,r). The last sentence of the lemma above implies thiais the
closest successor af (inclusive) such that the successormafhas smaller distance t6
thanm'.

(rotate caliber around Chi=

do // move caliber to next edge
{
list_item r_it = CH.cyclic_succ(q_it);
LINE 1(CH[q_it],CH[r_itl);
RAT_TYPE cur_sqr_dist = 1l.sqr_dist(CH[m_it]);
list_item new_m_it = m_it;
it = CH.cyclic_succ(m_it);
while ( (sqr_dist = 1l.sqr_dist(CH[it])) >= cur_sqr_dist )
{ new_m_it = it; it = CH.cyclic_succ(it);
cur_sqr_dist = sqr_dist;
}
if ( cur_sqr_dist < min_sqr_width )
{ min_sqr_width = cur_sqr_dist;
11 = 1; 12 = LINE(CH[new_m_it], CH[r_it] - CH[q_it]);
}
p_it = q_it; q_it = r_it; m_it = new_m_it;
} while ( p_it != CH.first() );

The running time of the width computation is the time to cotegihe convex hull plus an
amount of time that is linear in the number of vertices of tbavex hull. It takes linear
time to compute the vertex of maximal distance from the fitdt édge and it takes linear
time to compute the vertex of maximal distance for all othdgyess. The latter follows from
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the observation that both the edge and the vertex of maximtdnte “travel around the
convex hull once”.

Exercises for 10.1

1 Design an example where the running time of CONVHXLL _IC is quadratic.

2 Design an example where the running time of CONVBXLL _IC is linear.

3 Redo the proof of Theorem 1 under the assumption that thecéeg number of hull
edges in the convex hull efrandom points ig'~? for somes > 0.

4 Modify either convex hull algorithm such that it returnmdints that lie on the boundary
of the convex hull.

5 LetP andQ be two disjoint convex polygons given by their cyclic listvatices. Write
a program that computes the common tangenf? ahd Q.

6 Use the solution of the previous exercise to compute theecohull by divide-and-
conquer. Sort the points lexicographically and split thero itwo halves. Compute
the hull of both halves recursively. Merge the two hulls byistoucting the common
tangents.

7  Generaten random points in the unit square and compute their convdx Bal so for
different values ofh and derive a conjecture concerning the expected numbetrefnes
points in a set of random points. Try to prove your conjecture or do a litemsgarch
to find out what is known about the problem. Do the same for@amgoints in the unit
disk.

10.2 Triangulations

A triangulationof Sis a partition of the convex hull o0& into triangles. This assumes that
not all points ofS are collinear. Each triangle in the partition has three foaf S as its
vertices and any two triangles in the partition are eithejailit, or share a vertex, or an
edge and two vertices. The union of all triangles is the coiudl of S, see Figure 10.10
for two examples. What is a triangulation of cdavf all points of S are collinear? It is
simply a partition of coninto line segments see Figures 10.10 and 10.11.

Triangulations are a versatile data structure. We will heert for point location queries,
nearest neighbor queries, and range queries in Sectiorah@.fescribe their use inter-
polationnow. Assume that we are given the values of some functi@ some finite set
S of points and want to interpolate for all points in the convex hull 0§. Triangulations
offer an elegant way to approach this problem. We computeiagulationT of Sand lift
it to three-dimensional space. More precisely, for eveantyle (p, q,r) of T we define
3 More generally, ifS has affine dimensiod then a triangulation o8 is a partition of com&into d-dimensional

simplices. Ad-dimensionakimplexis the convex hull ofl + 1 affinely independent points. Thus, triangles are

two-dimensional simplices and line segments are one-difoeal simplices and hence a triangulation of a

one-dimensional s&is a partition of its convex hull into line segments, a triafagion of a two-dimensional set

is a partition of its convex hull into triangles, and a triafagion of a three-dimensional set is the partition of its
convex hull into tetrahedra.
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Figure 10.10 A triangulation of a two-dimensional and of a one-dimenaigoint set.

Figure 10.11 A triangulation computed by the function TRIANGULATEOINTS discussed in
this section.

a triangle((p, f(p)), (q, f(Q)), (r, f(r))) in three-space, see Figure 10.12. In this way
we obtain a surface in three-space. In order to determinmtegolating value at a point

X € convSwe determine the height of the interpolating surface abosged return it. This
requires us to find the triangle @f containingx (a point location query) and to determine
the height ak by linear interpolation from the height at the vertices @& thangle contain-
ing X. Assume thak lies in the triangle with verticep, q, andr. We writex as a convex
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@, f(@)

Figure 10.12 A triangle in the plane and its lifting to three-space.

combination ofp, g, andr, i.e.,

wherecy, + ¢q + ¢ = 1 and computd (x) as

fxX)=cpf(p) +cqf(a)+c fr).

The coefficients, ¢q, andc; are called thévarycentric coordinatesf x with respect to
the triangle(p, g, r).

We next discuss how to represent triangulations. We reptésangulations as straight
line embedded plane maps; embedded graphs are the subfeleapfer 8 and we recom-
mend that you read the first four sections of that chapterrbgfooceeding. LeT be a
triangulation of a se® of points. We use a grap@ of type GRAPHPOINT, int> to repre-
sentT; G has the following properties, see Figure 10.14:

e The nodes of5 are in one-to-one correspondence to the poin& iRor a nodey of G
the point inS corresponding to it is stored & v].

e G is adirected graph whose edges will be catliedts. We use the word dart instead
of edge in order to distinguish the edges of the represegtiagh from the edges of
the represented geometric object. The darte @bme in pairs. For every dart
e = (v, w) of G the reversed dag® = (w, v) is also a dart of5. Moreover, the
member functiomeversalmaps each dart to its reversal, i ®.reversale) = eR and
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cyclic_adj_succ

cyclic.adj_pred

Figure 10.13 The relationship between the cyclic ordering of the adjagdist A(v) of a nodev
and the counter-clockwise ordering of the edges incide@®][ig.

G.reversaleR) = e. We call a pair consisting of a dart and its reversal a uedge (=
undirected edge). The uedges®torrespond to the edges ®fand a dar{v, w) of
G corresponds to the oriented ed@& v], G[w]) of T.

For each node of G the list A(v) of edges out of is ordered cyclically. For an edge
e with sourcev the functions

G.cyclic_adj_succ(e);

G.cyclic_adj_pred(e);
return the cyclic successor and the cyclic predecesseirpf(v). The cyclic ordering
of the edges irA(v) agrees with the counter-clockwise ordering of the edgedémt
to G[v] in the triangulation, i.e.G.cyclicadjsucde) is the next dart out of in
counter-clockwise direction ar@.cyclicadjpred(e) is the next dart out of in
clockwise direction, see Figure 10.13.

The preceding items guarantee that the faces of the triatigalcorrespond to the
face cycles of. For each counter-clockwise triangl&[u], G[v], G[w]) of the
triangulation the edge@l, v), (v, w), (w, u) form a face cycle ofs. There is also a
face cycle corresponding to the unbounded fac€.ohs a face cycle is traversed the
face lies to the left of the face cycle. The functions

G.face_cycle_succ(e);
G.face cycle pred(e);

support the convenient traversal of the face cycles of a ey give the successor
and predecessor efin the face cycle containing respectively. The face cycle
successor is the cyclic adjacency predecessor of the edwéis see Figure 8.10.

Each dart has an integer label (availablézgs]) that gives information about the dart.
The labels come from the enumeration type
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Figure 10.14 A graphG representing a triangulation. For each edge of the triatigul there
are two darts irG, e.g., the edg&[v]G[w] is represented by the dars = (v, w) and

e = (w, v). We haveG.reversale;) = & andG.reversale;) = e;. For each dart its name is
shown near the source of the dart and to the left of the dag.li§hA(w) of edges out ofv is a
cyclic shift (it is not specified which) ofes, e3, €2). The two triangles correspond to the face
cycles(ey, €3, &) and(es, €7, e1). The unbounded face corresponds to the face cycle

(es, €2, €10, €3).

enum delaunay edge_info{ DIAGRAM EDGE = O, DIAGRAMDART = O,
NON_DIAGRAM EDGE = 1, NON_DIAGRAMDART = 1,
HULL_EDGE = 2, HULL_DART = 2

};
defined inkLEDA/geaglobalenumd>. We discuss them in Section 10.4.

A dart is called &wull dart if the unbounded face d& lies to its left. IfhullLdart is any
hull dart, the following lines of code traverse all hull dart

edge e = hull_dart;
do { e = G.facecycle succ(e); } while (e != hull dart);

We next extend the hull program of the preceding section tagaadgulation program.
This algorithm was first described in [Meh84a]. Again, wetsty sorting the points lexi-
cographically. Then we set up the triangulation of the finsi points and finally add point
by point to the triangulation.

(triangulation.¢=
inline int left_bend(const POINT& p, const GRAPH<POINT,int>& G,
const edge& e)
{ return (orientation(p,G[source(e)],G[target(e)]) > 0); }
edge TRIANGULATE_POINTS(const 1ist<POINT>& LO, GRAPH<POINT,int>& G)

{
G.clear();
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if (LO.empty()) return nil;

1ist<POINT> L = LO;

L.sort();

if ( L.empty() ) return nil;

// initialize G with a single edge starting at the first point

POINT last_p = L.popQ); // last visited point
node last_v = G.new_node(last_p); // last inserted node

while (!L.empty() && last_p == L.head()) L.pop();
if ('L.empty())

{ last_p = L.popQ);
node v = G.new_node(last_p);
edge x = G.new_edge(last_v,v,0);
edge y = G.new_edge(v,last_v,0);

G.set_reversal(x,y);
last_v = v;
}

(triangulate points: scan remaining points
}

In order to facilitate the addition of points we maintain ttetelast; it is the hull dart that
leaves the most recently added vertex. pdte the point to be added and &tip andelow
be hull darts such that exactly the hull vertices betweentdrget ofeup and the source
of elow are visible fromp, see Figure 10.15. All edgesbetweereup andelow are such
that p, the source o&, and the target o form a left turn, buteup andelow do not have
this property. Moreovereup is a proper face cycle predecessoreddist, andelow is a
face cycle successor elast Thus it is easy to determireup andelow. For example, the
former is the first proper face cycle predecessof elast such thatp, the source o€, and
target ofe do not form a left turn.

Having determinec.up we walk toelow and extend the triangulation by adding edges
betweernv, wherev is a new node corresponding to point and the hull vertices visible
from p. We must be careful to add the new edges in a way that refleztsiéimgulation.
We iterate over the hull darts betweenp inclusive andelow exclusive, starting atup
and walking toward®low. Consider any suck and letesuccbe its face cycle succes-
sor. We add the daKssourcgesuco, v) afteresuccto A(sourcg€esucg) and we append
the dart(v, sourcéesuco) to A(v). Observe that this way of adding darts buildév)
in counter-clockwise order and adds the dadurcg€esuco, v) at the proper position to
A(sourc&esuco).

The update step just described works correctly even if tinepwnt is collinear with all
preceding points. In this situation only a line segment w@eabito the triangulation.

(triangulate points: scan remaining points

POINT p;
forall(p,L)
{ if (p == last_p) continue;

edge e = G.last_adj_edge(last_v);
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e low

Figure 10.15 Edgese_last, e.up, ande_low.

last_v = G.new_node(p);
last_p = p;
// walk up to upper tangent
do e = G.face_cycle_pred(e); while (left_bend(p,G,e));
// now e = e_up
// walk down to lower tangent and triangulate
do { edge succ_e = G.face_cycle_succ(e);
edge x = G.new_edge(succ_e,last_v,after,0);
edge y = G.new_edge(last_v,source(succ_e),0);
G.set_reversal(x,y);
e = succ_e;
} while (left_bend(p,G,e));
}
(mark edges of convex hull as HUIDARTS

In the pieces of code above we labeled all new edges with 28®now relabel all hull
darts as such. The last edge added to the triangulation i dartiand all other hull darts
are reached by tracing the face cycle containing it. Theliladpef the hull darts will prove
useful in the section on Delaunay diagrams.

We return a hull dart.

(mark edges of convex hull as HUIDARTS=
edge hull dart = G.last_edge();

if (hull_dart)
{ edge e = hull_dart;
do { G[el = HULL_DART;
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K n Gen V  Hull Hullcheck Triang Triang check
S 20000 0.44 25 171 0 3.1 23.7
S 40000 0.92 29 3.65 0 6.43 47.35
S 80000 1.84 35 752 0 13.04 94.31
D 20000 041 91 1.9 0 3.13 24.72
D 40000 0.73 123 36 0 6.26 47.29
D 80000 147 147 7.72 0 13.15 94.36
C 20000 47.3 19992 1.69 0.17 2.62 21.19
C 40000 9559 39958 3.59 0.42 5.47 42.01
C 80000 190.9 79756 8.08 132 11.65 86.39

Table 10.3 The running times of the sweep algorithms for convex hult$ taiangulations. We
generated unsorted lists ofpoints according to the same distributions as in Table Ithe.
meaning of the first four columns is as in Table 10.1. The coltkull” shows the time to
compute the convex hull, the column “Hull check” shows tineetito verify that any three
consecutive vertices @H form a right turn, the column “Triang” shows the time to corteothe
triangulation, and the column “Triang check” shows the thmeun|s Triangulation(G).

e = G.face_cycle_succ(e);
} while (e '= hull_dart);
}

return hull_dart;

Table 10.3 compares the running times of the sweep algasifbnconvex hulls and tri-
angulations. We generatedandom points in a square, a disc, and on a circle, respgtive
The triangulation algorithm takes about twice as long agtim¥ex hull program. The table
also shows the time for partially checking the output of@itbrogram. For the convex hull
program we checked that any three consecutive vertices doright turn and in the case
of triangulations we called the checHKarTriangulation(G), which will be discussed in the
next section.

Both checks are only partial. In the case of triangulatioesde not check that exactly
the input points appear as vertices of the triangulations ®mission could be corrected
by the use of a dictionary. In the case of the convex hull @mogwe do not verify that all
input points lie inside the produced convex chain. This i@anssion which is not easily
corrected; the obvious approach takes quadratic time.

Exercises for 10.2
1  Write a program that verifies that the nodes @RAPHPOINT, int> agree with the
points in alist<POINT>. Add this to the check of the triangulation program.
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2 Extend the randomized incremental construction of cotmngis to an incremental con-
struction of triangulations.

10.3 Verification of Geometric Structures, Basics

We have by now seen programs to compute convex hulls, minimwidth stripes, and
triangulations. The programs are non-trivial and we wilk $e8ore complex programs in
later sections. Although we wrote the documentation anadtheectness proofs in parallel
to the development of these programs, we nevertheless mistiekes, some minor, like
testing for positive orientation instead of non-negativiermtation, and some major, like
assuming that every set of points contains three non-ealfipoints. Visual debugging
i.e., displaying the output of a geometric computation, aasndispensible aid in getting
the programs correct, but visual debugging has its limiisu& debugging is most useful
in the plane; already displaying a partition of three-spaasext to impossible. Also, the
representation underlying a geometric object may be iectralthough the object itself
“looks correct”.

One of our key experiences was the development of a prograomipute convex hulls in
arbitrary dimensions. It took some time to get the programsiag for points in the plane,
but after some time it produced convex hulls which “lookeghti. We moved to three-space
and a few hours later the convex hulls in three-space lodkéd \We got adventurous and
tried an example in seven-dimensional space. The progranoreompletion and claimed
that it had computed the convex hull. Given our past expegeme had every reason to
believe the contrary. At that time we had no way to check tsailteof the convex hull
computation. We teamed up with some collegues and wrote [MME In this paper
we discuss how to verify convex hulls, triangulations, Delay diagrams, and Voronoi
diagrams. Alternative checkers are discussed in [DLPT97].

In this section and in Sections 10.4.3, 10.4.6, and 10.5.8evize procedures to verify
properties ofgeometric graphsA geometric graph is a straight line embedded map. Ev-
ery node is mapped to a point in the plane and every dart is etafipthe line segment
connecting its endpoints. We start with procedures to clieakthe edges around vertices
are cyclically ordered, that face cycles define convex pagg and that a graph defines a
convex subdivision or a triangulation. In later sectionswik extend these functions to
check Delaunay triangulations, Delaunay diagrams, andndirdiagrams.

We usegeagraph as a template parameter for geometric graphs. Any instamtia
geagraphinst of geagraphmust provide a function

VECTOR edge_vector(const geo_graph inst& G, const edge& e)

that returns a vector from the source to the target.ofVe will use two instantiations of
geagraphin this chapter: GRAPHPOINT, int> for triangulations, Delaunay triangula-
tions, and Delaunay diagrams, a@GRAPHCIRCLE POINT> for Voronoi diagrams. In
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the first case, the position of a nodés given by the poinG[v] and hence the edge vector
function can be realized as

(GRAPHPOINT,inb: edge vector functiorE

static VECTOR edge_vector(const GRAPH<POINT,int>& G, const edge& e)
{ return G[G.target(e)] - G[G.source(e)]; }

In the second case, the position of a nede given by the center of the circl8[v]. We
will define the corresponding edge vector function in thdisamn Voronoi diagrams.
All functions that check properties of geometric graphscaréected in the file

(geacheck.t=
(comparing edges by angle
(cyclically ordered lists
(verifying the order of adjacency lists and the convexityaces

in directory LEDA/templates. This file must be included te asy of these functions.

10.3.1 Monotone and Cyclically Monotone Sequences

Let X = (X, X2, ..., Xn) be a sequence of elements from some orderedxset;called
non-decreasingf xi < xjy1 foralli, 1 <i < n, andx is calledincreasingif xi < Xj11
foralli, 1 <i < n, x is calledcyclically non-decreasingf some cyclic shift ofx is non-
decreasing, and is calledcyclically increasingff some cyclic shift ofx is increasing. The
notions non-increasing, decreasing, cyclically nongasing, and cyclically decreasing are
defined analogously.

The functionds C_Nondecreasingndls C_Increasingcheck whether a sequence is cycli-
cally non-decreasing or increasing. They take alligif elements of some typ€ and a
compare objeatmpfor typeT.

The implementation is simple. We iterate over the elemehtis and compare every
element with its cyclic successor. We count how often theasssor is smaller (smaller or
equal for the second function). If the count reaches twos#tgience violates the property.

(cyclically ordered lists=

template <class T>
bool Is_C_Nondecreasing(const 1ist<T>& L, const leda_cmp_base<T>& cmp)
{ list_item it;

int number_of_less = 0;

forall_items(it,L)
if ( emp(L[L.cyclic_succ(it)],L[it]) < O ) number_of_less++;
return (number_of_less < 2);

X

template <class T>

bool Is_C_Increasing(const 1list<T>& L, const leda_cmp_base<T>& cmp)
{ list_item it;
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int number_of_lesseq = O;

forall_items(it,L)
if ( cmp(L[L.cyclic_succ(it)],L[it]) <= O ) number_of_lesseq++;

return (number_of_lesseq < 2);

The functionsls C_Nonincreasingand s C decreasingare defined analogously. We leave
their implementation to the reader.

10.3.2 Comparing Edges by Angle

For a non-zero two-dimensional vectotet « (v) be the angle between the positixexis
andv, i.e., the angle by which the positiweaxis has to be turned counter-clockwise until
it aligns withv. The geo kernels provide functions

int compare_by_angle(const VECTOR& v1,const VECTOR& v2)

that compare vectors by angle, i.e., the functions retutnif v1 precedev2, 0 if vl and
v2 define the same angle, and. if vl succeeds2. The zero vector precedes all non-zero
vectors in the ordering by angle.

In a geometric grapfs the functionedgevector G, e) returns the vector from the source
to the target of edge. The compare objeatmpedgedyangle compares the edges of
any geagraph G according to the vectors defined by the edge&oflt is derived from
ledacmpbase&edge, has a constructor that takes a geometric gi@pnd stores a refer-
ence to it in the object, and a function operator that takesauges and f and compares
them according to the vectors defined by them.

(comparing edges by angke
template <class geo_graph>
class cmp_edges_by_angle: public leda_cmp_base<edge> {

const geo_graph& G;
public:
cmp_edges_by_angle(const geo_graph& g): G(g){}

int operator() (const edge& e, const edge& f) const
{ return compare_by_angle(edge_vector(G,e), edge_vector(G,f)); }
};

10.3.3 Counter-Clockwise Ordered Adjacency Lists
The function

bool Is_CCW_Ordered(const geo_graph& G)

returns true if for all nodes the neighbors of are in increasing counter-clockwise order
aroundv, and the function

bool Is_CCW_Ordered Plane Map(const geo_graph& G)

returns true if, in additionG is a plane map. The function
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void SORT_EDGES(geo_graph& G)

reorders the adjacency lists such that for every nodé G the edges inA(v) are in non-
decreasing order by angle.

All three functions are very easy to implement. For the fuisiction, we define a compare
objectcmpto compare the darts @ by angle, and then check whether the darts out of every
nodev are cyclically increasing. The second function calls thet find checks wheth&
is a plane map, and the third function sorts the set of dadshaan rearranges the adjacency
lists.

(verifying the order of adjacency lists and the convexityaoEs=
template <class geo_graph>
bool Is_CCW_0Ordered(const geo_graph& G)
{ node v;
cmp_edges_by_angle<geo_graph> cmp(G) ;
forall_nodes(v,G)
if ( !Is_C_Increasing(G.out_edges(v),cmp) ) return false;
return true;
}
template <class geo_graph>
bool Is_CCW_Ordered_Plane_Map(const geo_graph& G)
{ return Is_Plane_Map(G) && Is_CCW_Ordered(G); }
template <class geo_graph>
bool Is_CCW_Weakly_Ordered(const geo_graph& G)
{ node v;
cmp_edges_by_angle<geo_graph> cmp(G) ;
forall_nodes(v,G)
if ( !Is_C_Nondecreasing(G.out_edges(v),cmp) ) return false;
return true;
}
template <class geo_graph>
bool Is_CCW_Weakly_Ordered_Plane_Map(const geo_graph& G)
{ return Is_Plane_Map(G) && Is_CCW_Weakly_Ordered(G); }
template <class geo_graph>
void SORT_EDGES(geo_graph& G)
{
cmp_edges_by_angle<geo_graph> cmp(G) ;
list<edge> L = G.all_edges();
L.sort(cmp);
G.sort_edges(L);

10.3.4 Convex Faces
We define functions that check for convexity of faces. Cossihy face cyclef of a
geometric graplts; f defines a closed polygonal chdihin the plane. We want to know
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Figure 10.16 A strictly convex counter-clockwise polygonal chain, a Wigaconvex clockwise
polygonal chain, and a chain which is not simple.

whether the polygonal chain is the boundary of a convex regiore precisely, we calC
aweakly convex counter-clockwise polygonal chi&i@ is simple, i.e., does not intersect
itself, and the region to the left & is convex. We calC astrictly convex counter-clockwise
polygonal chairor simplyconvex counter-clockwise polygonal chijrin addition, any two
consecutive edges @ do not have the same direction, see Figure 10.16. For cleekwi
chains the region to the right € must be convex.

In a convex subdivision, e.g., a triangulation, the facdesof all bounded faces form
convex counter-clockwise polygonal chains, and the fackeayf the unbounded face forms
a weakly convex clockwise polygonal chain.

Let po, p1, -- -, Pk—1 be the points associated with the node€of

Lemma 5 C is a counter-clockwise weakly convex polygonal chairhdf $equence s-
(p1— Po, P2 — P1,--., Po— Pk_1) is cyclically non-decreasing.

Proof If C is a counter-clockwise weakly convex polygonal chain thierclearly cyclically
non-decreasing.

Assume next thas is cyclically non-decreasing. Then no pair of consecutigetors
forms a right turn and the angles between all pairs of cortsecuectors sum to2. We
conclude thaC is simple, i.e, does not intersect itself, and that the regiahe left ofC is
convex. O

The functions

bool Is_CCW_Convex Face Cycle(const geo_graph& G,const edge e)
bool Is_CCW._Weakly Convex Face Cycle(const geo_graph& G, const edge e)
bool Is_CW_Convex Face Cycle(const geo_graph& G, const edge e)
bool Is_CW_Weakly Convex Face Cycle(const geo_graph& G, const edge e)

return true if the face cycle db containinge has the stated property, i.e., if the face cycle
forms a cyclically increasing, non-decreasing, decregsin non-increasing, respectively,
sequence of edges according to the compare-by-anglesrayder

We give the implementation of the first function. We collde edges of the face cycle
in a listL, define a compare objecinpthat compares edges &, and then check whether
L is cyclically increasing.



34 Geometry Algorithms

(verifying the order of adjacency lists and the convexityaoeg+=

template <class geo_graph>
bool Is_CCW_Convex_Face_Cycle(const geo_graph& G, const edge& e)

{
list<edge> L;
edge el = e;
do { L.append(el);
el = G.face_cycle_succ(el);
} while (el !'= e );

cmp_edges_by_angle<geo_graph> cmp(G) ;

return Is_C_Increasing(L,cmp);

10.3.5 Convex Subdivisions
A geometric grapl is aconvex planar subdivisigif G is a plane map and if the positions
assigned to the nodes Gfdefine a straight line embedding @Gfin which all bounded faces
are strictly convex and in which the unbounded face is weasitwex.

The function

bool Is_Convex_Subdivision(const GRAPH<POINT,int>& G)

returns true ifG is a convex planar subdivision, and the function

bool Is Triangulation(const geo_graph& G)

returns true ifG is a convex planar subdivision in which every bounded fa@ssnplex.
More precisely, if all nodes d& lie on a common line, then every face cycle of a bounded
face is simply a pair of anti-parallel edges, and if the naofeS do not lie on a common
line, then every bounded face Gfis a triangle.

Both functions are implemented in terms of the function

bool Is_Convex_Subdivision(const GRAPH<POINT,int>& G,
bool& is_triangulated)

that returns true if5 is a convex subdivision and se¢driangulatedto true if, in addition,
G is a triangulation.

We discuss the theory behind the latter function and themitgimplementation. 16 is
a convex subdivision, then the following conditions ardaiety satisfied:

e G s aconnected plane map.
e All nodes ofG have counter-clockwise ordered adjacency lists.

e If all vertices lie on a common line, i.e., the underlying miset has affine dimension
less than 2, thef® is a path which reflects the ordering of its vertices on the.lin

e If the underlying point set has affine dimension 2, then eackh fs either a bounded
counter-clockwise oriented convex polygon or a clockwiserded weakly convex
polygon. There is only one face of the latter kind.
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Lemma 6If G satisfies the four conditions above, then G is a convenxgslaubdivision.

Proof Assume first that all vertices @ lie on a linel and letvy, vo, ..., v, be the ordering
of the vertices orh. Then the points assigned to adjacent vertices must bedisti and
vn Must have degree one, apdmust have neighborg_1 andvj.; for1 < i < n. The
number of edges dB is 2n — 2 wheren is the number of nodes @.

Assume next that not all vertices Gflie on a common line. LeR be the region that is
enclosed by the unique face cydlavhich is a weakly convex clockwise polygon. We claim
that all vertices that are not part éflie in the interior ofR. Assume otherwise. Then there
must be a vertex that is not part off and a directior such thaw is a maximal vertex o6
in directiond (note that we said “a maximal vertex” and not “the maximalkegf). Since
v Is maximal there must be a pair of edges incident tghich span an angle of at least
and hencev must be part of a weakly convex chain. Thukelongs tof, a contradiction.

Every face cycle ofG different from f defines a counter-clockwise oriented convex
polygonal region in the plane. We need to show that thesemediorm a partition ofR.
Consider a poinp moving in the plane such that it avoids vertice&ofWheneveip crosses
a directed edge it will enter another region (namely, the one to the leftefersale)) ex-
cept whenreversale) belongs tof. This shows that all points in the interior & are
covered by the same number of regions. Also, since all \e=ton the boundary dR are
part of f, exactly one bounded region is incident to each edgé.oAltogether we have
shown that the regions defined by the face cycles differem ff partition R. The number
of edges ofG must be at leastrsince every node must have degree at least two. [

We turn to the implementation. We first check whetleis a connected plane map in
which all adjacency lists are counter-clockwise orderetierTwe comparen andn. If
m = 2n— 2 we must be in the situation that all vertices®#re collinear and ifn > 2n—2
we must be in the situation that the underlying point set lffaseedimension 2.

(subdivisioncheck.¢+=

static bool False(const string& s)
{ cerr << "Is_Convex_Subdivision: " << s; return false; }

bool Is_Convex_Subdivision(const GRAPH<POINT,int>& G,
bool& is_triangulated)
{

is_triangulated = true;
if ( !'Is_Connected(G) ) return False("G is not connected");

if ( !Is_CCW_Ordered_Plane_Map(G) )
return False("G is not a CCW-ordered plane map");

G.number_of_nodes();
G.number_of_edges();

cmp_edges_by_angle<GRAPH<POINT,int> > cmp(G);
if ( m == 2*n - 2) { (ICS: collinear points }
(ICS: affine dimension is two

int n
int m



36 Geometry Algorithms

If m = 2n — 2, the fact thatG is a connected bidirected graph guarantees@ist a tree.
It therefore suffices to check that there is no vertex of degreee and that for every vertex
of degree two the two incident edges point in opposite divast

(ICS: collinear points=
node v;
if ( n <=1 ) return true;

forall_nodes(v,G)
{ if ( G.outdeg(v) > 2 ) return False("G is a tree but not a chain");

if (G.outdeg(v) == 1) continue;

edge el = G.first_adj_edge(v), e2 = G.last_adj_edge(v);
node w = G.target(el);
node u = G.target(e2);
if ( GLv] == G[w] || G[v] == G[ul )
return False("nodes at equal positions");
if ( cmp(el,G.reversal(e2)) != 0 )
return False('"direction not opposite");
}

return true;

It remains to deal with the situation that the affine dimensibthe underlying point set is
2. We trace all face cycles @. One face cycle must be a weakly convex clockwise oriented
polygon and all other face cycles must be strongly convextatclockwise polygons. We
make the distinction by considering three consecutive sofla face cycle and determining
their orientation. If the orientation is positive, the facgcle must be a strongly convex
counter-clockwise polygon, and if the orientation is nasifive, the face cycle must be the
boundary of the unbounded face.

If the number of edges of the face cycle is three, the oriemtaest itself guarantees
strong convexity and there is no need to trace the face cyakdck convexity.

(ICS: affine dimension is twee
edge e;
edge_array<bool> considered(G,false);
bool already_seen_unbounded_face = false;
forall_edges(e,G)
{ if ( !'considered[e] )
{ // check the face to the left of e
POINT a = G[source(e)l;
POINT b G[target(e)];
POINT c = G[target(G.face_cycle_succ(e))];
int orient = orientation(a,b,c);
int n = 0;
edge e0 = e;
do { considered[e] = true;
e = G.face_cycle_succ(e);
n++;

3

} while ( e != e0);
if ( orient > 0 )
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{if (n> 3)
{ is_triangulated = false;
if ( !'Is_CCW_Convex_Face_Cycle(G,e) )
return False("non-convex bounded face");
}
}
else
{ if ( already_seen_unbounded_face )
return False("two faces qualify for unbounded face");
already_seen_unbounded_face = true;
if ( !'Is_CW_Weakly_Convex_Face_Cycle(G,e) )
return False("unbounded face is not weakly convex");
}
}
}

return true;

Exercises for 10.3

1 Improve the implementation 6 CWWOrderedand the functions checking convexity
of faces. In our implementation we first construct a list ojesland then check this list
for cyclic monotonicity. Avoid the construction of the list

2 Improve the theory underlyinig. ConvexSubdivision Is it necessary to check whether
the edges imA(v) are CCW-ordered or does this property follow from the cdodithat
all bounded faces are counter-clockwise strongly convéygaomal chains?

3 Extend the functiots ConvexSubdivisiorsuch that it works fogeagraphand not only
for GRAPHPOINT, int>.

10.4 Delaunay Triangulations and Diagrams

A point set may in general be triangulated in many differeaysv Depending on the ap-
plication one triangulation is preferable over anotherridrgulation that is useful in many
contexts is the so-callddelaunay triangulation A triangulation of a point se§ is called
Delaunayif the interior of the circumcircle of any triangle in thearigulation contains
no point of S. Figure 10.17 shows a Delaunay triangulation. The voralemno and the
pointsetdemo in xIman illustrate Delaunay diagrams.

In this section we will first show the existence of Delaunagrtgulations. The exis-
tence proof is constructive and yields a simple algorithonghe construction of Delaunay
triangulation, the so-callinfipping algorithm We give an implementation of the algo-
rithm based on the so-callédcircle test a powerful geometric primitive. The Delaunay
triangulation of a point set is in general not unique (if th@np set contains co-circular
points); it has, however, a substructure which is unique sitrcalledDelaunay diagram
We characterize Delaunay diagrams and give some applisatibDelaunay diagrams and
triangulations.
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Figure 10.17 A Delaunay triangulation. The figure was produced with theoxsoidemo in
xlman.

10.4.1 Delaunay Triangulations and the Flipping Algorithm
Our immediate goal is to prove that Delaunay triangulatiexist. Consider the simplest
situation first, four pointg, q, r, ands forming the corners of a convex quadrilateral.
There are two triangulations corresponding to the chpradmdgs respectively, see Figure
10.18. We show that at least one of the two triangulationsaainay. Assume that the
triangulation corresponding to the chagmdis not Delaunay, say becausis contained in the
circumcircle of triangleA(p, g, r). Thenq is also contained in the circumcircle of triangle
A(p, r,s). We can obtain the circumcircle of trianghg(p, g, s) from the circumcircle of
A(p, g,r) by reducing the size of the circle while simultaneouslyistisg that it passes
throughp andq. This shows that is outside the circumcircle of triangl&(p, g, s) and
that the radius of the circumcircle af(p, q, s) is smaller than the radius of the circumcircle
of A(p, g, r). The symmetric argument shows thats outside the circumcircle of triangle
A(q, r, s) and that the radii of both circles in the Delaunay triantjataare smaller than
the radii of the circles in the other triangulation.

Let us next turn to point sets of larger cardinality. We shbat tany triangulation which
is not Delaunay contains two adjacent triangles, i.e.nglas sharing an edge, that form a
convex quadrilateral and such that the circumcircles di bntingles contain the third vertex
of the other triangle. Clearly, a triangulation which is milaunay contains a triangle,
say A(p, g, r) whose circumcircle is non-empty. Assume w.l.0.g. thatehe a points
contained in the regioR formed by the chorghg and the circular arc connectingandq
and not containing, see Figure 10.19. Consider the other triangle incidentdgepq. If
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7 TN

Figure 10.18 The two triangulations of a convex quadrilateral.

p

Figure 10.19 A triangle A(p, g, r) with non-empty circumcircle. RegioR is shown shaded.

the third vertex of this triangle is also contained®nhwe have identified the desired pair of
triangles. If the third vertex, sdy is outsideR thens is also contained in the circumcircle
of triangleA(p, g, t) ands s closer toA(p, g, t) than toA(p, g, r). Here, the distance of a
point to a triangle is the distance to the closest point ofila@gle. We repeat the argument
with triangleA(p, g, t) and points. After a finite number of steps we must arrive at the first
case.

We have now shown that any triangulation that is not Delawasyains a convex quadri-
lateral formed by two adjacent triangles such that the gueattion of this quadrilateral is
not Delaunay. The deletion of the common edge of both tresighd the insertion of the
other diagonal of the quadrilateral is calledlagonal-flipor simply flip. A flip makes
the triangulation locally Delaunay and also decreasestuiredf the radii of the circumcir-
cles of all triangles. We have thus arrived at the so-callpegifig algorithm for Delaunay
triangulations:
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T = some triangulation;

while (T is not Delaunay)

{ find a pair of adjacent triangles that form a convex quadhitdtand whose triangula-
tion is not Delaunay;

flip the diagonal of the quadrilateral;

The algorithm terminates since every flip reduces the sutmeofadii of all circumcircles
and hence no triangulation can repeat. The maximal numbéipsfperformed by the
flipping algorithm is® (n?). We ask you in the exercises to construct a worst case pdint se
The upper bound follows from the fact that once a segmgi flipped away it will never
be reintroduced into the triangulation. The flipping alfum is due to Lawson ([Law72]).

For points in convex positidrthere is also a so-callddrthest site Delaunay triangula-
tion. In a furthest site Delaunay triangulation of a S¢he circumcircle of any triangle has
no point of Sin its exterior. The flipping algorithm can also be used tostarct furthest site
Delaunay triangulation. We start with an arbitrary trialagion of a set of points in convex
position and flip as long as the triangulation is not furthetst Delaunay. Of course, this
time we flip the diagonal of a convex quadrilateral if the dhiertex of the other triangle is
outside the circumcircle.

When it is necessary to emphasize the difference betweenaoydDelaunay triangu-
lations and furthest site Delaunay triangulations we ¢l former nearest site Delaunay
triangulations. Some algorithms work for nearest and &stisite Delaunay triangulations.
In these algorithms we use the enumeration type

enum delaunay voronoi kind { NEAREST, FURTHEST };

defined in LEDA/geoglobalenums.h to distinguish between the two kinds of triangula-
tions.

As in the preceding section we use the ty@BRAPHPOINT, int> to represent trian-
gulations. For every node of G the associated point is given I6§{v]. For every edge
e of G, G[€] is an integer in the enumeration tygkelaunayedgeinfo. In the Delau-
nay triangulation all hull darts are labeled HUIRART, and every other dart is labeled
either DIAGRAM.DART or NON_DIAGRAM _DART. A non-hull dart is labeled DIA-
GRAM_DART if the circumcircles of the triangles incident to it adéstinct and is la-
beled NONDIAGRAM _DART otherwise. The reversals of hull darts are labeled DIA-
GRAM _DART.

The functions

void DELAUNAY TRIANG( const list<POINT>& L, GRAPH<POINT,int>& G);
void F_DELAUNAY_TRIANG(const 1ist<POINT>& L, GRAPH<POINT,int>& G);

compute the nearest site and the furthest site Delaunagtriation of a listL of points.

4 A setSof points is in convex position if every point iBis a vertex of the convex hull .
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10.4.2 The Flipping Algorithm
We turn the flipping algorithm into a progr&mThe flipping algorithm works for nearest
and furthest site Delaunay triangulations.

We assume that we start with a triangulat®tin which all hull darts are labeled with the
label HULL DART and in which all other darts have a label different frotdlHL_DART.
The algorithm terminates with a Delaunay triangulation aetdirns the number of flips
performed. For furthest site triangulations we assumdéurthat the vertices db are in
convex position.

The algorithm maintains a s& of darts which may potentially violate the Delaunay
property. Initially, S consists of one dart in each uedge®f The algorithm terminates
whenSis empty. As long a$is non-empty, an arbitrary deetof Sis chosen. If it violates
the Delaunay property, a flip is performed.

We define the integef to be+1 if we are aiming for a nearest site diagram and to be
—1 if we are aiming for a furthest site diagram. It will be usadhe test for the Delaunay

property.

(flip_delaunay.t=

int DELAUNAY_FLIPPING(GRAPH<POINT,int>&% G, delaunay_voronoi_kind kind)
{

if (G.number_of_nodes() <= 3) return O;

int £ = ( kind == NEAREST 7 +1 : -1);

list<edge> S;

edge e;

forall edges(e,G) if ( index(e) < index(G.reversal(e)) ) S.append(e);

int flip_count = 0;

while ( !S.empty() )

{ edge e = S.pop();

edge r G.reversal(e);

(check e for the Delaunay property and flip if necesgary
}

return flip_count;

Let e be a dart of the current triangulation. dfis a hull dart or the reversal of a hull
dart, then no action is required as hull darts belong to eetaunay triangulation. I& is
not a hull dart, define edgese;, andes, and pointsa, b, ¢, andd as in Figure 10.20; is
the reversal ok, e is the face cycle successormfe; is the face cycle successor gfa
andb are source and target ef, andc andd are source and target ef. The quadrilateral
(a, b, c, d) is convex if and only if the interior angles at vertiandc are less than 180
i.e., if (d, a, b) and(b, c, d) are left turns.

5 The program delaunafjip_anim in LEDAROOT/book/Geo animates the algorithm.
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Figure 10.20 The edgeg, r, €1, €, €3, andey, and the points, b, ¢, andd.

(check e for the Delaunay property and flip if necessary
if (G[e] == HULL_DART || G[r] == HULL_DART) continue;
G[e] = DIAGRAM_DART;
G[r] = DIAGRAM_DART;

// el,e2,e3,e4: edges of quadrilateral with diagonal e
edge el = G.face_cycle_succ(r);

edge e3 = G.face_cycle_succ(e);
// flip test

POINT a = G[source(el)];

POINT b = G[target(el)];

POINT c = G[source(e3)];

POINT d = G[target(e3)];

if ( left_turn(d,a,b) && left_turn(b,c,d) )
{ // the quadrilateral is convex

(check circle property and flip if necessary
}

Assume now that the quadrilategal b, c, d) is convex. The triangulation is locally Delau-
nay if d does not lie inside the circle defined @, b, ¢), and can be improved by a flipdf
lies inside the circle. For the furthest site triangulatibe situation is reversed. The test

side_of _circle(a,b,c,d)

returns
+1 if d is left of the oriented circle througd, b, andc,
0 if |[{a, b, c}| < 2 ord lies on the oriented circle through b, andc,
—1 if dis right of the oriented circle througd b, andc.

Letsoc= f - sideof_circle(a, b, c, d). If socis zero, the four points are co-circular, and
no flip is required. Howevee andr have to be relabeled with NQRIAGRAM _DART. If
socis positive d lies inside the circumcircle of the triangla, b, ¢) (outside for furthest site
triangulations) and a flip is required. Letande, be the other two edges of the quadrilateral
(a, b, ¢, d). We movee andr to the other diagonal of the quadrilateral. More precissby,
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inserte aftere, into A(sourcée,))® and makesourcege4) the target ofe, and we insert
afterey into A(sourcde,)) and makesourcée?) the target of . We also add all four sides
of the quadrilateral t& to make sure that their Delaunay property is rechecked. i@bse
that flippinge may affect the “Delaunay-ness” of the sides of the quadniédt

(check circle property and flip if necessasy

int soc = f * side_of_circle(a,b,c,d);

if (soc == 0) // co-circular quadrilateral(a,b,c,d)
{ G[e] = NON_DIAGRAM_DART;

G[r] = NON_DIAGRAM_DART;
}

if (soc > 0) // flip

{ edge e2 = G.face_cycle_succ(el);
edge e4 = G.face_cycle_succ(e3);
S.push(el);
S.push(e2);
S.push(e3);
S.push(e4);
// flip diagonal
G.move_edge(e,e2,source(ed));
G.move_edge(r,e4,source(e2));
flip_count++;

In order to construct the Delaunay triangulation for a sgtahts we first triangulate the
set of points and then call the flipping algorithm to turn thartgulation into a Delaunay
triangulation.

In the case of the furthest site Delaunay triangulation wat éxktract the vertices of the
convex hull, then construct a triangulation of them, andlinsse the flipping algorithm to
obtain a furthest site Delaunay triangulation.

(flip_delaunay.g+=
int DELAUNAY_FLIP(const 1ist<POINT>& L, GRAPH<POINT,int>& G)
{ TRIANGULATE_POINTS(L,G);
if (G.number_of_edges() == 0) return O;
return DELAUNAY_FLIPPING(G,NEAREST);
}

int F_DELAUNAY_FLIP(const 1ist<POINT>& L, GRAPH<POINT,int>& G)
{

1ist<POINT> H = CONVEX_HULL(L);

TRIANGULATE_POINTS(H,G);

if (G.number_of_edges() == 0) return O;

return DELAUNAY_FLIPPING(G,FURTHEST);

6 Recall that for a node, A(v) is the counter-clockwise ordered cyclic list of darts out of
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10.4.3 Verifying Delaunay Triangulations
The function
bool Is Delaunay Triangulation(const GRAPH<PQOINT,int>& G,
delaunay_voronoi kind kind);
checks whethe6 is a Delaunay triangulation of the points associated winddes. The
flag kind allows us to choose between nearest and furthest site diagra

Let Sbe the set of points associated with the nodeG o6 is a Delaunay triangulation
of S, if G is a triangulation and every triangle Gf has the Delaunay property.

Thus the implementation is simple. First we check whetBeis a triangulation. If
the affine dimension 0§ is less than 2 this suffices; the affine dimension is less thién 2
m = 2n — 2. Otherwise, we walk over all edges. If an edge separatedriargles that
form a convex quadrilateral we check the Delaunay property.

(delaunaycheck.¢+=

static bool False(const string& s)
{ cerr << "Is_Delaunay_Triangulation: " << s; return false; }

bool Is_Delaunay_Triangulation(const GRAPH<POINT,int>& G,
delaunay_voronoi_kind kind)
{ if ( !'Is_Triangulation(G) ) return False("G is no triangulation");

if (G.number_of_edges() == 2*G.number_of_nodes() - 2) return true;
(check Delaunay property

return true;

}

where

(check Delaunay properntse
edge e;
edge_array<bool> considered(G,false);
forall_edges(e,G)
{ if ('considered[e])
{ // check the faces incident to e and reversal(e)
considered[e] = considered[G.reversal(e)] = true;

POINT a G[source(e)];

POINT b = G[target(G.cyclic_adj_pred(e))];

POINT c = G[target(e)];

POINT 4 G[target (G.face_cycle_succ(e))];

if (left_turn(a,b,c) && left_turn(b,c,d) &&
left_turn(c,d,a) && left_turn(d,a,b) )

{ // the faces to the left and right of e are bounded

int s = side_of_circle(a,b,c,d);

/* +1 for inside, -1 for outside */
if ( (kind == NEAREST &% s > 0) || (kind == FURTHEST && s < 0) )
return False("violated Delaunay property");
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K n Flipping Guibas-Stolfi Dwyer Check
S 20000 26.4 17.36 8.57 25.63
S 40000 56.89 3745 1744 51.66
S 80000 122.1 79.61 36.35 102.7
D 20000 26.13 17.22 8.71 2553
D 40000 56.28 371 17.62 51.09
D 80000 120.8 78.49 36.92 102.7
C 20000 14.66 10.6 11.09 27.72
C 40000 29.74 21.73 2289 55.87
C 80000 60.74 44.55 45.29 111

Table 10.4 The running times of Delaunay triangulation algorithmseTinst column designates
the kind of input (S for random points in a square, D for randmimts in a disk, C for random
points near a circle), and the other columns show the nunfiiots, the running time of the
flipping algorithm, the running time of the algorithm of Gaiand Stolfi, the running time of
the algorithm of Dwyer, and the time to verify the correctesthe result, respectively.

10.4.4 Other Algorithms for Delaunay Triangulations

The flipping approach yields a simple but not the most efficl2elaunay triangulation
algorithm. There ar€O(nlogn) algorithms based on sweeping [For87], on divide-and-
conquer [GS85, Dwy87], and on randomized incremental coation [BT93]. The pa-
per [SD97] compares many Delaunay algorithms.

In LEDA the divide-and-conquer algorithms of Guibas andfsamd of Dwyer are avail-
able. Table 10.4 shows an experimental comparison of tharilipalgorithm with the two
divide-and-conquer algorithms. The algorithm of Dwyerassistently the best and there-
fore we use it as our default implementation. For the fuitthiés diagram we only have the
flipping algorithm.

(delaunay.g=

void DELAUNAY_TRIANG(const 1ist<POINT>& L, GRAPH<POINT,int>& G)
{ DELAUNAY_DWYER(L,G); }

void F_DELAUNAY_TRIANG(const list<POINT>& L, GRAPH<POINT,int>& G)
{ F_DELAUNAY_FLIP(L,G); }

10.4.5 Delaunay Diagrams
The Delaunay triangulation of a s8is in general not unique, e.g., ¥consists of the cor-
ners of a square, or more generally of four co-circular @ititen both triangulations &
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Figure 10.21 stis essential bu;t; is not.

a

Figure 10.22 An essential segmest with its disk D and an edge = (a, b) of a Delaunay
triangulation intersectingt.

are Delaunay. We now characterize the segments that bel@iigielaunay triangulations.
Let s andt be two distinct points irB. A segmenstis calledessentialf there is a closed
disk D with SN D = {s, t}. In other words, there is a circle passing throggimdt such
thats andt are the only points 0§ contained in the closure of the circle, see Figure 10.21.
We have

Lemma 7 Let S be a finite set of points in the plane and let s and t bendigpioints in S.
The segment st is essential if and only if it belongs to evedgihay triangulation of S.
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Figure 10.23 The discsD,, Dp, andD.

Proof We first show that essential segments belong to all Delauiangulations. Assume
otherwise, sagtis essential but does not belong to some Delaunay triangalat Then
st cannot be an edge of the convex hull®because any such edge belongs to every tri-
angulation. The open segmesttis therefore contained in the interior of coBv Imagine
travelling along the segmestfrom sto t. In the vicinity of s the segmenst runs inside
some triangle off and in the vicinity oft it runs inside some other triangle ®f We con-
clude that the segmestmust intersect an edge = (a, b) of T. Sincestis essential there
is a closed diskD with SN D = {s,t}. Leta’ andb’ be the intersections of the boundary
of D with edgee, see Figure 10.22. The four poird§ s, b/, andt form the corners of a
convex quadrilateral and are co-circular. This implieg Hrey closed disk containing the
segmeng’b’ must also contain eitharort. Consider next any of the trianglesbfincident
toe. The circumcircle of this triangle contains the segne&hbtin its interior and hence also
contains eithes or t in its interior. The triangle is therefore not Delaunay, atcadiction.
This proves that essential edges are part of every Delauiaagtilation.

To show the converse consider a non-essential segshafe will construct a Delaunay
triangulation that does not contash Let T be any Delaunay triangulation & If stis not
an edge ofl we are done. Otherwise, consider the two triangleend A’ incident tostin
T; it is easy to see that is not a hull edge and hence the two triangles exist.d.ahdb
be the third vertices oA andA’, respectively. If the four points, a, t, b are co-circular
then we may replacst by ab and stay Delaunay. So, assume that the four points are not
co-circular. Therb is outside the closed disR, havings, a, andt on its boundary and
is outside the closed didRy, havings, b, andt on its boundary, see Figure 10.23. Consider
the closed dislD havings andt on its boundary and having its center at the midpoint of the
centers ofD, and Dy; all of D (except fors andt) is contained in the interior db, U Dy,
Thus,D N S C {s, t} andstis essential, a contradiction. O
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We can now define thBelaunay diagranof a setS of points. It consists of all essential
segments defined by the points $and is denotedD(S). The Delaunay diagram is a
subgraph of every Delaunay triangulation. The Delaunagrdia is a planar graph whose
bounded faces are convex polygons all of whose verticesaoircular. If no four points
of S are co-circular then all bounded faces are triangles and#iaunay diagram is a
triangulation.

It is trivial to construct the Delaunay diagram from a Delayitriangulation. We only
have to delete all edges that are labeled NDIRGRAM _DART.

(delaunay.g+=
void DELAUNAY_DIAGRAM(const 1ist<POINT>& L, GRAPH<POINT,int>& DD)

{
DELAUNAY_TRIANG(L,DD);

list<edge> el;
edge e;
forall_edges(e,DD) if ( DD[e] == NON_DIAGRAM_DART) el.append(e);

forall(e,el) DD.del_edge(e);

For furthest site diagrams the construction is completej@gous and therefore not shown.

10.4.6 Verifying Delaunay Diagrams
We show how to verify Delaunay diagrams. The function

bool Is Delaunay Diagram(const GRAPH<POINT,int>& G,
delaunay_voronoi kind kind) ;

checks whethe6 is a Delaunay diagram of the points associated with its no@es flag
kind allows us to choose between nearest and furthest site diagrhet S be the set of
points associated with the nodes®f

It is clearly necessary thdb is a convex subdivision in which the vertices of every
bounded face (= a face whose face cycle is a convex courtekwglse polygon) are co-
circular. Assume this is the case. Tharis a Delaunay diagram if an arbitrary triangulation
of G is a Delaunay triangulation. It therefore suffices to chéekDelaunay property of all
edges ofG as in{check Delaunay property

(delaunaycheck.¢+=
static bool False_IDD(const string& s)
{ cerr << "Is_Delaunay_Diagram: " << s; return false; }

bool Is_Delaunay_Diagram(const GRAPH<POINT,int>& G,
delaunay_voronoi_kind kind)
{
if ( !'Is_Convex_Subdivision(G) )
return False_IDD("G is no convex subdivision");
edge e;
edge_array<bool> considered(G,false) ;
forall_edges(e,G)
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{ if ('consideredl[e])
{ // check the face to the left of e

POINT a = G[source(e)];
POINT c¢ = G[target(e)];
POINT d = G[target(G.face_cycle_succ(e))];

if ( left_turn(a,c,d) )
{ // face is bounded
CIRCLE C(a,c,d);
edge e0 = e;
do { considered[e] = true;
if ( !C.contains(G[source(e)]) )
return False_IDD('"face with non-co-circular vertices");
e = G.face_cycle_succ(e);
} while (e !'= e0 );
}
else
{ // face is unbounded
edge e0 = e;
do { considered[e] = true;
e = G.face_cycle_succ(e);
} while (e != e0 );
}
}
}
{ (check Delaunay property}
return true;

}

10.4.7 Applications
Delaunay triangulations have several useful propertiesm&ntion three:

e For atriangulatioT let u(T) be the smallest interior angle of any triangl€Tin
Delaunay triangulations maximize(T).

e Delaunay triangulations tend to produce “rounder” trisghan other triangulations,
see Figure 10.24, a property desirable for numerical agidios of triangulations. For
example, the interpolation scheme presented at the begjmhiSection 10.2 is
numerically more stable if the triangulation contains nkifigy” triangles.

e The Euclidian minimum spanning tree of a &6 a tree of minimum cost connecting
all points inS, where the cost of an edge is its Euclidian length. The Eizclid
minimum spanning tree is a subgraph of the Delaunay diagram.

The function
void MIN_SPANNING TREE(const list<POINT>& L, GRAPH<POINT,int>& T)

computes the Euclidian minimum spanning tree for the paimts. It first constructs the
Delaunay diagranT for L, then runs the minimum spanning tree algorithmTonand
finally deletes all edges froff that do not belong to the minimum spanning tree.
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39 I

Figure 10.24 A Delaunay triangulation and a triangulation produced bgeming. The
Delaunay triangulation is shown on the left. The triangtethe Delaunay triangulation are
“rounder” than in the triangulation by sweeping. The figu@svgenerated with the
triangulationdemo (see LEDAROOT/demo/book/Geo).

o
(LW;

Figure 10.25 A point set and its Euclidian minimum spanning tree. The figuas generated
with the voronoidemo in xIman.

Exercises for 10.4
1  Show that the flipping algorithm constructs a furthest Bigdaunay triangulation for a
set of points in convex position.
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N

10.5

Extend the functions for checking Delaunay triangulatiand Delaunay diagrams such
that they also check the edge labels.

Write a program that takes a Delaunay triangulation andslieinto a graphicsvindow

For each triangle the circumcircle should also be displayed

Consider the point§, i%), 0 < i < n. Show that the Delaunay triangulation of this point
set has a fan-like shape. Show that the flipping algorithm pesormg2 (n?) flips when
starting with the “opposite fan”.

(Euclidian minimum spanning tree (EMST)) For a Saif points in the plane a tre€

of minimum cost connecting all points Bis called a Euclidian minimum spanning tree
of S. The cost of an edge is defined as its Euclidian length.

a) Show that every edge of an EMST is essential. (Hint: Fordgee with endpoints

a andb consider the circle centered at the midpoineand passing througa andb.
Assume that it contains a poiate S\ {a, b}. Show that a better tree can be obtained by
removinge and adding eithefa, c) or (c, b).)

b) Conclude from part a) that an EMST is a subgraph of the Delpuliagram. Write

a program to compute an EMST. Make use of programs for Deladiegrams and
minimum spanning trees. Try to work with the squared lendtbdmyes instead of their
length.

For a triangulatio let «(T) be the sorted tuple of all interior angles of all triangles in
T. Consider Figure 10.18 and [€t andT> be the two triangulations shown wiih being
Delaunay. Show that(T;) < «(T2) where the ordering on tuples is the lexicographic
one. Consider next any triangulatidnof a setS that is not Delaunay and I&’ be
obtained fromT by a diagonal flip. Show that(T) < «(T’). Conclude that Delaunay
triangulations maximize the smallest interior angle.

Improve the implementation of the flipping algorithm by enisg that, for any pair of
darts in a uedge, at most one is$n Observe that we ensure this property only at the
time of initialization. Does the running time improve?

Voronoi Diagrams

We discuss Voronoi diagrams. We define them and discussrémiesentation by graphs.
We relate them to Delaunay triangulations and show how tainboronoi diagrams from

Delaunay triangulations. Finally, we discuss applicatiand the verification of Voronoi

diagrams.

10.5.1 Definition and Representation

A structure closely related to the Delaunay diagram is theadledVoronoi diagram Let
Sbe a set of points in the plane. We will refer to the elementS a§sites For any point
p of the plane letlosd p) be the set of sites that realize the closest distance betpraad
the sites inS, i.e.,s € closd p) if dist(s, p) < dist(t, p) forallt € S. In other words, there
is a circle with centerp passing through all points iclos€ p) and having no points of
in its interior, see Figure 10.26. For most poiptef the planeclosg p) consists of only a
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Figure 10.26 Sites are shown as dots. The pomthasi sites inclosgp;).

Figure 10.27 A Voronoi diagram. The figure was generated with the voratesino in ximan.

single site. For some poings, closg p) contains two or more sites. These points form the
so-called Voronoi diagrariD(S) of S.

VD(S) = {p € R?% |clos&p)| > 2}.

Figure 10.27 shows a Voronoi diagram. The Voronoi diagram gsaph-like structure.
Its vertices are all pointg with |clos€p)| > 3, its edges are maximal connected sets of
points p with |clos€p)| = 2, and its faces are maximal connected sets of pgnisth
|clos&p)| = 1.

We derive some more properties of edges and faces. Consigledgee of the Voronoi
diagram, and les andt be the two sites 08 such thatlosgp) = {s, t} for all points p
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®,

Figure 10.28 The Voronoi region ofl is the intersection of three open halfspavé¥d, a),
VR(, b), andVR(, c).

of e. Any suchp lies on the perpendicular bisector®andt and hence is a straight line
segment contained in the perpendicular bisectaranidt.

Consider next any facé of the Voronoi diagram and let be the site ofS such that
closgp) = {s} for all points p of f. Thendist(s, p) < dist(t, p) forallt € S\ {s} and
hencef is contained in the open halfplane bounded by the perpeladibisector ok andt
and containing. We useVR(s, t) to denote this halfplane, see Figure 10.28, and call it the
halfplane where dominates over. We have just shown thdt C VR(s, t) forallt € S\ {s}
and hence

f CVRE) == () VR D.
teS\{s}
We even have equality singee VR(s) impliesp € VR(s, t) forallt € S\ {s} whichin turn
implies thatp is closer tos than to any other site i6. We callVR(s) the Voronoi regionof
sites. Itis the intersection of open halfspaces and hence an aperex polygonal region.
How are we going to represent Voronoi diagrams? We use plaps of type

GRAPH<CIRCLE,POINT>.

We defined the Voronoi diagraD(S) as a set of points. We turn it into a gra@by plac-
ing a “vertex at infinity” on every unbounded edgeMdd(S)” and by deleting the portion of
the edge that goes beyond the vertex at infinity, see Figug91@ nodev of G has either
degree one or degree three or more. We callnode at infinity in the former case and a
proper node in the latter case.

The node and edge labels give information about the positidrthe node ofs in the
plane and about the Voronoi regions:

e Everydartis labeled with the site whose region lies to ifs le

e Every proper node is labeled by a circl€IRCLEa, b, ¢), wherea, b, andc are

7 If all sites are collinear and hens#(S) consists of a set of parallel lines, we put two vertices ahityfion every
line.
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CIRCLE(C, b, b)

¢ |b
[ eb CIRCLEb, ¢, d)

od

[ 2PN CIRCLKa, ¢, c) CIRCLED, a, a)

VDS G

Figure 10.29 A Voronoi diagram for a set of four sites and its graph repmést@n.

distinct sites whose regions are incidenvtol' he center of this circle is the position of
v in the plane.

e Every nodev at infinity lies on the perpendicular bisector of two siéezndb. We
labelv by CIRCLEa, x, b), wherex is an arbitrary point collinear ta andb (e.g.,a)
andv lies to the left of the oriented segment franto b.

The function
void VORONOI(const 1ist<POINT>& L, GRAPH<CIRCLE,POINT>& VD);

computes the Voronoi diagram of the sited.inn time O(nlogn).

There is also a so-callddrthest site Voronoi diagrapsee Figure 10.30 for an example.
Its definition is the same as for (nearest site) Voronoi diagy except for replacing closest
by furthest. For any poinp letfurthest p) be the set of sites that realize the furthest distance
betweenp and the sites ir§, i.e., s € furthestp) if dist(s, p) > dist(t, p) forallt € S.

In other words, there is a circle with centempassing through all points ifurthest p) and
having no points olSin its exterior. For most pointp of the plangurthestp) consists of
only a single site. For some poings furthest p) contains two or more sites. These points
form the so-called furthest site Voronoi diagr&vD(S) of S.

FVD(S) = {p € R?; [furthestp)| > 2}.
The furthest site Voronoi region of a sies given by

FVR(s) ;= (] FVRt,s).
teS\{s}
Only vertices of the convex hull have non-empty regions @ftirthest site Voronoi digram.
The rules for the graph representation of furthest siterdiag are the same as for nearest
site diagrams.
The function

void F_VORONOI(const list<POINT>& L, GRAPH<CIRCLE,POINT>& FVD);
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Figure 10.30 A furthest site Voronoi diagram. The figure was generateti thié voronaidemo
in xlman.

computes the furthest site Voronoi diagram of the points.in
We recommend that the readers exercise the Voronoi demaiarkbefore proceeding.

10.5.2 The Duality between Voronoi and Delaunay Diagrams

Voronoi diagrams and Delaunay diagrams are closely rekttedtures. In fact, each one
of them is easily obtained from the other. L®be a set of sites and I#D(s) andDD(S)
be its Voronoi and Delaunay diagram, respectively. We show to obtainVD(S) from

DD(S).

(1) For every bounded facé of DD(S) there is a vertex(f) of VD(S) located at the
center of the circumcircle of .

(2) Consider an edgst of DD(S) and let f; and f, be the faces incident to the two sides
of the edge.
a) If f; and f, are both bounded, then the edgd;)c( f,) belongs tovD(S).
b) If f; is unbounded and, is bounded, then a ray with sourcéf,) and contained
in the perpendicular bisector efandt belongs tovD(S). It extends into the halfplane
containing the unbounded face.
c) If f; and f, are unboundébiand hencef, = f,, then the entire perpendicular bisector
of s andt belongs tovD(S).

8 Casec arises only if all sites irB are collinear. Then cases a) and b) do not arise.
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Figure 10.31 A Voronoi diagram and a Delaunay diagram for the same setes.sThis figure
was generated with the vorondemo in xIman.

(3) That's all.

Figure 10.31 shows a Delaunay and a Voronoi diagram for theesset of sites. Use
the Voronoi demo to construct your own examples. The rulesvalare called auality
relation because they map faces (= 2-dimensional objautis)viertices (= 0-dimensional
objects), edges into edges, and vertices into faces. Ttex lagp is implicit. There is a
corresponding set of rules that construct the Delaunayrailadrom the Voronoi diagram.
We leave them to the exercises.

Theorem 2The rules above construct the Voronoi diagram from the Dadgudiagram.

Proof We proceed in two steps. We first show that everything thabistucted by the
rules does indeed belong to the Voronoi diagram and in a sest@p we show that the
complete Voronoi diagram is obtained.

Consider any bounded fadeof DD(S). The vertices off are co-circular and hence the
circumcentec(f) is a point with|clos€ p)| > 3, i.e., a vertex oV D(S).

Consider next any edget of DD(S). View it as oriented frons tot and letf; and f, be
the faces to its left and right, respectively. Assume firat th and f, are both bounded.
The centerg( f;) andc( f,) of the circumcircles off; and f, both lie on the perpendicular
bisector ofs andt and any point betweet( f1) andc(f,) is the center of a dislo with
D N S= {s, t}, see Figure 10.32. Thus(fi)c(f») is an edge oVD(S).

Assume next thaf; is unbounded and, is bounded, i.estis a clockwise convex hull
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Figure 10.32 An edgee = (s, t) of DD(S), the two incident face$; and f, and the
circumcircles off; and f,. Each point on the open line segmenfs)c( f,) is the center of an
empty circle passing throughandt.

Figure 10.33 stis a clockwise convex hull edge and the fafedo its right is bounded.

edge, see Figure 10.33. Then the same argument shows thiaythrting inc( f2), con-
tained in the perpendicular bisector ®andt, and extending into the left halfplane with
respect tast belongs tovD(S).

Finally, if f; and f, are both unbounded then the entire perpendicular bisettandt
is an edge oVD(S).

We have now shown that the rules above construct only feafrine Voronoi diagram.
We show next that the entire Voronoi diagram is construdzmhsider any edgeof VD(S),
say separating the regioW&R(s) andVR(t). Thenclosg p) = {s, t} for every pointp € e,
i.e., everyp € e witnesses that the segmestis essential and hence is an edg®ai(S).
Imagine a disk centered gtand havings andt in its boundary ap moves along. When
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p moves into an endpoint & (e may have 0, 1, or 2 endpointg)losg p) grows to at
least three points, namely the vertices of a facBD{S) incident tost. Thus, applying the
appropriate rule 2a, 2b, or 2c $byieldse. Moreover, applying rule 1 to the bounded faces
incident tost produces the endpoints ef(if any). We have now shown that all edges of
VD(S) are constructed and since every verteX0X(S) is incident to at least one (actually
three) edge we have also shown that all vertices are cotestiuc O

We next give the program that constructs a Voronoi diagrammfa Delaunay diagram.
The Voronoi diagram is empty if the number of sites is less tiwa. So assume that there
are at least two sites. We first determine a hull edge, theate=dl nodes of the Voronoi
diagram and finally all darts of the Voronoi diagram. We usedge arraywnodein order
to associate with each dabf DD the node oD that lies in the face to the left &

{(voronoi.¢=

void DELAUNAY_TO_VORONOI(const GRAPH<POINT,int>& DD,
GRAPH<CIRCLE,POINT>& VD)
{
VD.clear();

if (DD.number_of_nodes() < 2) return;

// determine a hull dart

edge e;

forall_edges(e,DD) if (DD[e] == HULL_DART) break;
edge hull_dart = e;

edge_array<node> vnode(DD,nil);

(DD to VD: create Voronoi nodés

(DD to VD: create Voronoi darts

We create the Voronoi nodes in two phases. We first createdtiesnat infinity and then
the proper nodes.

There is one node at infinity for each hull dartelis a hull dart andh andb are the sites
associated with the source and targe¢,aespectively, then the label of the node at infinity
is CIRCLHa, x, b), wherex is any point collinear witla andb. We use the midpoint ai
andb for x.

If eis not a hull dart then there is a proper nadassociated with the face cycleaf\We
labelv with CIRCLEa, b, c), wherea, b, andc are any three vertices of the face cycle, and
associate with every dart of the face cycle.

(DD to VD: create Voronoi nodé=
// create Voronoi nodes for outer face

POINT a = DD[source(e)];
do { POINT b = DD[target(e)];
vnode[e] = VD.new_node(CIRCLE(a,center(a,b),b));
e = DD.face_cycle_succ(e);
a = b;
} while ( e !'= hull_dart );
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Figure 10.34 Tracing a face cycle in forward direction generates thesdadident to the node
dual to the face in counter-clockwise order.

// and for all other faces

forall_edges(e,DD)
{ if (vnodel[el]) continue;

edge x = DD.face_cycle_succ(e);
POINT a = DD[source(e)];

POINT b = DD[target(e)];

POINT c = DD[target(x)];

node v = VD.new_node(CIRCLE(a,b,c));
vnode[e] = v;

do { vnodelx] = v;
x = DD.face_cycle_succ(x);
} while( x '= e );

We come to the construction of the Voronoi darts. &bk a dart oDD, letr be its reversal,
and letp be the point associated with the targeteofThe dart dual te starts at the node
associated witle, ends at the node associated witland is labeled by.

We want to construct the darts incident to any nodevof in their proper counter-
clockwise order. For the nodes at infinity this is no problents they have degree one.
We therefore construct the Voronoi darts in two phases. \&edanstruct the Voronoi darts
out of the nodes at infinity and then the Voronoi darts out efgiloper nodes. Finally, we
link the two darts in each. For each dardf DD we record the dart dual to it in the edge
arrayvedge

Consider a proper node It corresponds to a bounded facel@D and has one incident
dart for each dart of the face cycle. We construct the dattsdsin proper counter-clockwise
order if we trace the face cycle in forward direction, seeufFégl0.34.
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(DD to VD: create Voronoi darts=
edge_array<edge> vedge(DD,nil);
// construct Voronoi darts out of nodes at infinity
e = hull_dart;
do { edge r = DD.reversal(e);
POINT p = DD[target(e)];
vedge[e] = VD.new_edge(vnodel[e] ,vnode[r],p);
e = DD.cyclic_adj_pred(r); // same as DD.face_cycle_succ(e)
} while ( e !'= hull_dart );

// and out of all other nodes.
forall_edges(e,DD)
{ node v = vnode[e];
if (VD.outdeg(v) > 0) continue;
edge x = e;
do { edge r = DD.reversal(x);
POINT p = DD[target(x)];
vedge[x] = VD.new_edge(v,vnodel[r],p);
x = DD.cyclic_adj_pred(r);
} while ( x '= e);
}

// assign reversal edges

forall_edges(e,DD)
{ edge r = DD.reversal(e);
VD.set_reversal(vedgel[e] ,vedge[r]);

}

This completes the construction of Voronoi diagrams frontaDeay diagrams. The con-
struction runs in linear time.

In order to construct the Voronoi diagram for a $ebf points we first construct the
Delaunay diagram and then the Voronoi diagram from the Delgaliagram.

(voronoi.¢+=

void VORONOI(const 1ist<POINT>& L, GRAPH<CIRCLE,POINT>& VD)
{ GRAPH<POINT,int> DD;

DELAUNAY_DIAGRAM(L,DD);

DELAUNAY_TO_VORONOI (DD,VD) ;
3

The construction of furthest site Voronoi diagrams frontHest site Delaunay triangula-
tions is completely analogous. We leave it to the exercises.

10.5.3 Verifying Voronoi Diagrams

Let G be a graph of typ&SRAPHCIRCLE POINT>. We want to verify thaiG is the
Voronoi diagram of the sites associated with its nodes. Tbeqaure to be described is
fairly complicated and we wished we had a simpler one. Thegquore is probably the
least elegant piece of code contained in this book. We cersitito drop this section, but
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decided against it for two reasons. We had invested a loir@ in it, and more importantly,
the check discovered several mistakes.

G must satisfy the following conditions:
e G is a CCW-ordered plane map.

e The site information associated with edges is consistent,ie ande’ are
consecutive edges on some face cycle then both edges haantleeassociated site.

e The sites associated wighandreversale) are distinct.

e Call avertex whose associated circle is non-degeneratérivied and call it trivial
otherwise. Every non-trivial vertex has degree at leasigland every trivial vertex has
degree one.

e For each non-trivial vertex each of the three points defitimegassociated circle is
associated with one of the incident edges and the sitesiatswuvith all incident
edges lie on the associated circle.

e Each trivial vertex has an associated circle of the f@RCLEa, _, ¢), wherea andc
are distinct. Let be the unigue outgoing edge. In a nearest site diagram the sit
associated with the face to the left®is ¢ and the site associated with the face to the
right of eis a and in a furthest site diagram the rolesacdindc are interchanged.

e Forevery edge = (v, w) such thaty andw are non-trivial, the centers of the circles
associated withy andw are distinct. Letp andq be these centers and kebe the site
associated witle. In a nearest site diagraanlies to the left of the segmemiq and in a
furthest site diagrara lies to the right of the segmeipig.

e Each faceis a convex polygonal region and the regions agedoivith the different
sites partition the plane.

In the implementation we first check the first six conditionsl ghen distinguish cases
according to whetheB is connected or not. For the first item we want to use the fancti
IsCCW.OrderedPlaneMap and therefore we need to define thégevectorfunction for
circle-points. Lete be an edge and l€ and D be the circles associated with the source
and the target o, respectively. If both circles are non-degenerate the gdger is simply
the vector from the center & to the center ofD. So assume that one of the circles is
degenerate. ID is degenerate theD = CIRCLEa,_, ¢) and D represents a point at
infinity on the perpendicular bisector afandc and to the right of the line segmeat.
Let m be the midpoint ofa andc and leta; be the point obtained by rotatirey by 90°
in a clockwise direction abouh. We may return the vectan — a;. The case tha€ is
degenerate is symmetric.
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(voronoicheck: edge vector functife

static VECTOR edge_vector(const GRAPH<CIRCLE,POINT>& G, const edge& e)
{ const CIRCLE& C = G[G.source(e)];
const CIRCLE& D = G[G.target(e)];
if ( D.is_degenerate() ) { POINT a = D.pointl1();
POINT c¢ = D.point3();
POINT m = midpoint(a,c);
return m - a.rotate90(m);

}
if ( C.is_degenerate() ) { POINT a = C.point1();
POINT c¢ = C.point3();
POINT m = midpoint(a,c);

return a.rotate90(m) - m;

}
// both circles are non-degenerate
return D.center() - C.center();
}
and

(voronoicheck.¢+=
(voronoicheck: edge vector functipn

static bool False_IVD(const string& s)
{ cerr << "Is_Voronoi_Diagram: " << s; return false; }

bool Is_Voronoi_Diagram(const GRAPH<CIRCLE,POINT>& G,
delaunay_voronoi_kind kind)
{ if ( G.number_of_nodes() == 0 ) return true;
node v,w; edge e;

if ( !Is_CCW_Ordered_Plane_Map(G) )
return False_IVD("G is not CCW-ordered plane map");

forall_edges(e,G)
{ if ( G.outdeg(target(e)) != 1)
{ // e does not end at a vertex at infinity
if ( G[e] '= G[G.face_cycle_succ(e)] )
return False_IVD("inconsistent site labels'");
}
if ( G[e]l == G[G.reversal(e)] )
return False_IVD("same site on both sides");

}

forall_nodes(v,G)
{ CIRCLE C = G[v];
if ( C.is_degenerate() )
{ // vertex at infinity
if ( G.outdeg(v) '= 1)
return False_ IVD("degree of vertex at inf");
edge e = G.first_adj_edge(v); edge r = G.reversal(e);
POINT a = C.point1(); POINT ¢ = C.point3();
if ( (kind == NEAREST) && (c !'= G[e]l || a !'= G[r]) ||
(kind == FURTHEST) && (a'= G[e] || ¢ !'= G[r]) )
return False IVD("vertex at inf: wrong edge labels");
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}
else
{ // finite vertex
if ( G.outdeg(v) < 3 )
return False_IVD('"degree of proper vertex");
forall_adj_edges(e,v)
{ if ( 'C.contains(G[e]) )
return False_IVD("label of proper vertex");
}

for (int i = 1; i <= 3; i++)
{
POINT a = (i == 1 ? C.pointl1() :
(i == 2 7 C.point2() : C.point3() ) );
bool found_a = false;
forall_adj_edges(e,v) if ( a == G[e] ) found_a = true;
if ( !found_a ) return False_IVD("wrong cycle");
}
forall_adj_edges(e,v)
{ w = G.target(e);
if ( G.outdeg(w) == 1 ) continue;
if ( C.center() == G[w].center() )
return False_IVD('"zero length edge");
int orient = orientation(C.center(),G[w].center(),G[e]);
if ( kind == NEAREST && orient <= 0 ||
kind == FURTHEST && orient >= 0 )
return False_IVD("orientation");
}
}
¥

if ( Is_Connected(G) )
{ (Gisconnected }
else
{ (Gisnotconnected}

return true;

WhenG has passed all tests above we can construct a geometri¢ rbjedt as follows.
We assign a positiopogv) to each non-trivial vertex and a segment, ray, or lirgeae)

to each edge. For a non-trivial vertexw let pogv) be the center of the circle associated
with v. For an edge = (v, w) let a andc be the sites separated byi.e., one ofa and

c is associated witle and the other witlieversale). If v is non-trivial thena andc lie on
the circle associated withhand hencgogv) lies on the perpendicular bisectoratndb.
Definegeqe) as follows. First assume thatandw are both non-trivial. Thegede) is the
segment directed frormpoqv) to poqw). Note that this segment has non-zero length and
is part of the perpendicular bisector @fandc. Next assume that exactly one ofand w

is non-trivial. Assume w.l.0.g. that the triple of pointsasiated with the trivial vertex is
of the form(a,_, ¢). If w is trivial thengeqe) is the ray starting gbogv), running along
the perpendicular bisector afandc, and extending to infinity to the right of the segment
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ac. If w is trivial thengeq(e) is the ray ending irpoSv), running along the perpendicular

bisector ofa andc, and coming from infinity to the right of the segmertt Finally, assume

thatv andw are trivial and assume w.l.0.g. that the triple of pointoasged withv is of

the form(a, _, ¢). Thengedq(e) is the bisector o& andc oriented such tha lies to its left.
Now we distinguish cases according to whet@es connected or not.

G is connected: Define a face chain as a minimal sequeegey, ..., & of edges such that
e .1 is the face cycle successor@ffor alli, 0 <i < k, and eithetarget(ex) = sourceey)
or sourcdep) andtarget(ey) have degree one. We call face chains of the former kind closed
and face chains of the latter kind open. All face chains aietistconvex counter-clockwise
oriented. Moreover, the rays going to infinity wind around trigin once and open face
chains cover only a half-circle. There is no need to checlsdo®nd half-sentence as it is
implied by the first half-sentence.

Below, we first search for a vertex of degree one and then ctieckpen face chains
one by one. Simultaneously we build the list of all rays; rtbeg they will wind clockwise
around the origin. Having checked all open face chains wettuthe closed face chains.

(G is connecteg=
cmp_edges_by_angle<GRAPH<CIRCLE,POINT> > cmp(G) ;
node v;
forall nodes(v,G) if ( G.outdeg(v) == 1 ) break;

edge_array<bool> considered(G,false);
list<edge> rays;

edge e = G.first_adj_edge(v);
do { rays.push(e);

list<edge> D;
do { considered[e] = true;
D.append(e);
e = G.face_cycle_succ(e);
} while ( G.outdeg(source(e)) != 1);

if ( !Is_C_Increasing(D,cmp) ) return False IVD(": wrong order");
} while ( G.source(e) !'= v);

if ( !Is_C_Nondecreasing(rays,cmp) )
return False_IVD("wrong order, rays");

forall_edges(e,G)
{ if ( 'consideredl[e] )
{ edge €0 = e;
do { considered[e] = true;
if ( G.outdeg(target(e)) == 1)
return False_IVD("unexpected vertex of degree one");
e = G.face_cycle_succ(e);
} while ( e != e0);
if ( !Is_CCW_Convex_Face_Cycle(G,e) )
return False_IVD("wrong order");
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We claim that we are done at this point. Let us see why. Consiagface chainf. All
edges on the boundary df have the same associated site, aayhe circles associated
with all non-trivial vertices off pass througla, for each edge of f, gedle) is part of the
perpendicular bisector @ and the site associated with the other side,@nda lies to the
left of geqe) if kindis NEARESTand to the right of it itkindis FURTHEST Define

reg(f) = ﬂ H (a, siteof_reversale)),
e eis an edge of

whereb = siteof_reversale) is the site associated with the reversaéaindH (a, b) is the
halfplane defined by andb and containing if kind is NEARESTand not containing
otherwise. Themeg( f) is a convex polygonal region which contains the Voronoisagf
sitea (since in the definition of a Voronoi region the intersectismver all sites different
from a). We still need to show that the regions partition the pla@ensider a point moving
in the plane and avoiding vertices of regions. Such a poialvigys covered by the same
number of regions. Moreover, when the point travels alongdcecat infinity it is always
covered by exactly one region since the rays of the diagrama &round the origin once.
Altogether we have shown that the regions partition theglan

G is not connected: If G is not connected it can only be the Voronoi diagram of a set of
collinear sites. As such it must have the following addiibproperties:

e All nodes have out-degree one.

e All sites are collinear.

e No site is associated with three edge<sof

e The number of distinct sites is equalng’2 4 1.

We show that these conditions suffice. Clearly, the geomigi@rpretation ofs is a set of
parallel line segments. Consider the placement of theaitéiseir common underlying line.
For each sites which is associated with two edges, it is guaranteed thatwbeadjacent
sites (= sites for which there is an edge havéran one of its sides) lie on opposite sides of
s; this follows from the fact that we have already checked ¢a&h edge incident to a trivial
node separates the sites it is supposed to separate. Weiderticht the conditions above
suffice.

(G is not connecteds

forall_nodes(v,G)
if ( G.outdeg(v) > 1 ) return False_IVD("degree larger than 1");

d_array<POINT,int> count(0);
int n_dual = O;

edge e = G.first_edge();

LINE 1(G[e]l,G[G.reversal(e)]);
forall_edges(e,G)

{ if ( 'l.contains(G[e]) )
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Figure 10.35 The smallest circle enclosing a set of points. The figure veaepted with the
voronoiLdemo in xIman.

return False_IVD("non-collinear sites");
int& pc = count[G[el];

if (pc == 0) n_dual++;
pct+t;
if (pc == 3) return False_IVD(": site mentioned thrice");

}
if ( n_dual '= (G.number_of_edges()/2 + 1) )
return False_IVD(": two many sites");

10.5.4 Applications of Voronoi Diagrams
We discuss some applications of Voronoi diagrams. All ofithare illustrated in the
voronoi-demo of xIman.

Extremal Circles: Thesmallest enclosing circlior a setL of points is the circle with the
smallest radius containing all points iy see Figure 10.35. The smallest enclosing circle
is the best approximation a&f by a circle. It is easy to see that such a circle has at least two
points inL on its boundary and hence its center lies on the furthesYsi@noi diagram of

L.

We conclude that the center of the minimum enclosing cirgleither a vertex of the
furthest site diagram (and then has three pointk ion its boundary) or lies on an edge
of the furthest site diagram (and then is the circle of minimmadius passing through the
two sites defining the edge). In this way each edge and veftthedurthest site Voronoi
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Figure 10.36 The largest empty circle for a set of points. The figure wasgsed with the
voronoiLdemo in xIman.

diagram defines a candidate circle. The minimum enclosirgecis the smallest of these
circles.
The function

CIRCLE SMALLEST ENCLOSING CIRCLE(const 1ist<POINT>& L);

computes a smallest enclosing circle according to theeglygtist described.

Thelargest empty circldéor a setL of points is the circle with the largest radius whose
interior is void of points inL and whose center lies inside the convex hulLofsee Fig-
ure 10.36. We know of no good motivation for considering éstgempty circles. It is easy
to see that such a circle has at least two points an its boundary and hence its center lies
on the nearest site Voronoi diagramlof

We conclude that the center of the largest empty circle iei vertex of the nearest site
diagram (and then has three pointd.ion its boundary) or lies on an edge of the nearest site
diagram (and then is the circle of maximum radius passingutin the two sites defining
the edge and having its center inside the convex hull). by each edge and vertex of
the nearest site Voronoi diagram defines a candidate ciftle.largest empty circle is the
largest of these circles.

The function

CIRCLE LARGEST EMPTY CIRCLE(const 1list<POINT>& L) ;

computes a largest empty circle according to the strategjydescribed.
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Figure 10.37 The minimum width and the minimum area annulus for a set aiitgoiT he figure
was generated with the vorondemo in xIman.

The application of Voronoi diagrams to find enclosing and gropcles is due to Shamos
and Hoey ([SH75]).

Minimum Width and Minimum Area Annuli:  An annulus Ais the region between two
concentric circles. When the common center of the circlesgeint at infinity, an annulus
degenerates to a stripe between parallel lines. Annulilased sets. An annulus covers
a setL of points if all points inL are contained in the annulus. Thédth of an annulus
is the difference between the radius of the outer circle Ardadius of the inner circle of
the annulus (in the case of a stripe the width is the distart@den the two boundaries of
the stripe). Thereaof an annulus is the area of the region between the outer andriler
circle (it is infinite in the case of a stripe of non-zero widihd is zero in the case of a stripe
of width zero). We are interested in computing minimum widtid minimum area annuli
covering a given selt of points, see Figure 10.37 for an example. Minimum width and
minimum area annuli are used to estimate the “roundness’ef af points.

It can be shown that there is always a minimum annulus cogerigiven set. of points
that is either:

e the minimum width stripe covering the points, or

e a pair of concentric circles whose center is either a vertelaenearest site Voronoi
diagram, or a vertex of the furthest site diagram, or an setetion between an edge of
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the nearest site diagram and an edge of the furthest siteadiad his observation was
made in [SH75].

The idea for the proof is as follows. Consider an annulus ogethe points inL.
Clearly, if one of the boundaries does not contain a point ithen the annulus can be
improved. So both boundaries must contain at least one point If the two boundaries
together contain a total of four points bfthen the center of the annulus is either a vertex
of one the diagrams (if one boundary contains three poindsttaa other contains one) or
an intersection between edges (if both boundaries contairpbints). So assume that the
boundaries together contain less than four points, sa @@ two pointg andq on one
of the boundaries and one pointon the other boundary. Then the centdies on the
perpendicular bisector gh andqg. Letd be a vector in the direction of the perpendicular
bisector and consider the annulag) with centerc + ¢ - d and havingp, g andr on its
boundaries. For small enough A(¢) coversL. Consider the optimization criterion as
a function ofe and conclude that the center can be moved either in the dine¢td or
the direction—d without increasing the objective value. Move until a furtpeint lies on
one of the boundaries. For example, if the objective valubésarea, the area &(¢) is
proportional to

dist(p,c+ ¢ -d)? —distr,c+e-d)?>=(p—c)?> —(r —c)>+2¢(p—r) - d,

i.e., is alinear function of. If (p—r)-d # 0 then the annulus can be improved by moving
the center, and ifp — r) - d = 0 then the center can be moved in either direction without
increasing the area of the annulus.

The two items above suggest a strategy to compute minimurhwitd minimum area
annuli. One simply checks all the candidates listed. Ttsslte in quadratic algorithms.
The functions
bool MIN_AREA_ANNULUS(const 1ist<POINT>& L, POINT& center,
POINT& ipoint, POINT& opoint, LINE& 11);

bool MIN WIDTH_ANNULUS (const list<POINT>& L, POINT& center,
POINT& ipoint, POINT& opoint,
LINE& 11, LINE& 12);

compute minimum area and minimum width annuli covering thm{s in L, respectively.
The functions returirue, if the optimal annulus is the region between two circles, r@turn
falseif the optimal annulus is a stripe. In the former case theereoit the annulus and a
point on the inner and the outer circle are returneckinter, ipoint andopoint, respectively.
In the latter case the boundaries of the stripe are retumédandI2. In the case of the
a minimum area annulus a stripe can only be optimal if it hattlwzero. Hence only one
line is returned in the former function.

Both functions have quadratic running time and hence shbeldsed only for small
input size. There are much faster algorithms: the minimusa annulus can be computed
in linear time by linear programming ([Sei91]) and the minom width annulus can be
computed in timeD(n®5*+¢) by parametric search ([AST94]).
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Figure 10.38 A set of points in the plane and the curve reconstructe@RYST The figure
was generated by the Voronoi-demo in xIman.

Curve Reconstruction: The reconstruction of a curve from a set of sample points iman
portant problem in computer vision. We describe a reconstm algorithm due to Amenta,
Bern, and Eppstein [ABE98]. Figure 10.38 shows a point sdttha curves reconstructed
by their algorithm.

The precise problem formulation is as follows. l[Eebe a smooth curve in the plane and
let S C F be a finite set of sample points frof. A polygonal reconstructionf F is a
graph that connects every pair of samples adjacent éqragd no others.

The algorithmCRUSTto be described takes a liStof points and returns a grafgh. The
graphG is guaranteed to be a polygonal reconstructior-daf F is sufficiently densely
sampled bys. We refer the reader to [ABE98] to the definition of sufficidense sampling
density.

The algorithm proceeds in three steps:
e It first constructs the Voronoi diagrawD of the points inS.
e Itthen constructs a sét = SU V, whereV consists of all proper vertices ¥D.

e Finally, it constructs the Delaunay triangulatibi of L and make< the graph of all
edges oDT that connect points ih.

The algorithm is very simple to implemént

9 In 1997 the authors attended a conference, where Nina Arpegsanted the algorithm. We were supposed to
give a presentation of LEDA later in the day. We started tles@ntation with a demo of algorith@RUST
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(crust.o+=
void CRUST(const 1ist<POINT>& S, GRAPH<POINT,int>& G)

{
1ist<POINT> L = S;

map<POINT,bool> voronoi_vertex(false);
GRAPH<CIRCLE,POINT> VD;

VORONOI(L,VD);

// add Voronoi vertices and mark them

node v;

forall_nodes(v,VD)

{ if (VD.outdeg(v) < 2) continue;
POINT p = VD[v].center();
voronoi_vertex[p] = true;
L.append(p);

DELAUNAY_TRIANG(L,G);

forall_nodes(v,G)
if (voronoi_vertex[G[v]]) G.del_node(v);

The program above owes much of its elegance to the fact thaisegraphs to represent
Delaunay diagrams and hence have the full power of the graftgpe available to us.
Observe that after having constructed the Delaunay triatign of L in G, we treatG as
an “ordinary graph”. We simply delete all auxiliary nodeasrfrit, a step that does not make
sense on the level of Delaunay triangulations.

10.5.5 Voronoi Diagrams of Line Segments

The Voronoi diagram of a set of point sites under the Eudidieetric is just one instance
in a wide class of Voronoi diagrams. Other diagrams are nbthby choosing a different
metric and/or a different class of sites.

Figure 10.39 shows a Voronoi diagram of line segments. Ih sudiagram the sites are
points and open line segments; the endpoints of every ligmmeat must belong to the point
sites. The edges of a Voronoi diagram of line segments at@pangular bisectors between
line segments, of parabola, and of lines perpendiculargmsets at their endpoints.

Michael Seel [See97] has written a package to compute Vomdiagrams of line seg-
ments. It is available as a LEDA extension package.

The Voronoi diagram of line segments has played an importéein the development of
the number types in LEDA, see Section 4.4. Our first progranvdéoonoi diagrams of line
segments used floating point arithmetic in a naive way and&agbonly for a small number
of examples. The main difficulty was a correct implementatidthe incircle test. Observe
that the coordinates of Voronoi vertices are non-ratiofgelaraic numbers and hence the
incircle test requires to compute the sign of certain algiebtumbers. This computation is
very error-prone when executed with floating point arithmet

In [Bur96, BMh94, BFMh97] we laid the theoretical basis for efficient and correct
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Figure 10.39 A Voronoi diagram of line segments. The figure was generaiddMichael
Seel's extension package for Voronoi diagrams of line setse

sign test of simple algebraic numbers which is used in [BMti@émplement the number
typereal. Michael Seel uses this number type in his implementation.

Exercises for 10.5

1

2

N

Construct a seswhere the Voronoi diagram contains no vertices 8iiés at least three
points. What is the Delaunay diagram$?

Give the rules for obtaining the Delaunay diagram from tloeoxoi diagram for the
same set of sites.

Write a program that constructs the Delaunay diagram of & géven its Voronoi dia-
gram.

Write a program to compute the largest empty circle.

Write a program to compute the smallest enclosing circle.
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10.6  Point Sets and Dynamic Delaunay Triangulations

The classPOINT.SET? maintains a set of points in the plane under insertions atet de
tions. It offers dictionary operations, nearest neighbggrggs, point location queries, and
circular, triangular and rectangular range queries. A tpséh is maintained as a Delaunay
triangulation of its elements and hence the class may gqualll be called dynamic De-
launay triangulatioh'. The class is derived froRAPHPOINT, int> and hence all graph
algorithms and all operations for graphs are available fontpsets?.

In this section we will first give an impression of the funciadity and then give part of
the implementation. The full implementation can be founMiN98]. We close the section
with some experimental data. POINSETS are illustrated by the poisetdemo in xIman,
see Figure 10.40.

10.6.1 Functionality
The constructors

point_set T; // set of points
point_set T(list<point> L);
rat_point_set RT; // set of rat_points

rat _point_set RT(list<rat_point> L);

create a point set for the empty set and the set of points iespectively. We mentional
already thatPOINT.SET is derived fromGRAPHPOINT, int>. Every instance of class
POINT.SETis an embedded planar map. The position of a vertexgiven byT.pogv)
and also byl [v] and we use

S={T.pogw) |v e T}

to denote the underlying point set. Each edge is labeled ®leanent in the enumeration
type delaunayedgeinfo defined in Section 10.2. If the lidt in the constructor contains
multiple occurrences of equal points, only the last ocaweeof each point is retained and
the others are discarded.

The function

int T.dim()

returns the affine dimension of the point set, i-€l,if Sis empty, 0 ifSconsists of only one
point, 1 if S consists of at least two points and all pointsSare collinear, and 2 otherwise.

The functiondookup insertanddel give point sets the functionality of dictionary for
points

node T.lookup (POINT p)

10 The instantiations angointsetfor pointsandrat.pointsetfor rat.points

11 |n an earlier version of LEDA we called the clagslaunaytriang. We found, however, that the typical use of the
class emphasizes the query operations and hence we nowdindie point set more appropriate.

12 Only constgraph operations and graph algorithms should be used as oty destroy the additional invariants
imposed by POINTSET.
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{Lil Delaunay Diagram
mode insert | delste [[Tlocate | _nearest | range |

input [T point | segment | cirde | triang | rect |
display [Delaunay _Voronoi | MS Tree | ConvHull |
X grid |7 rand | ¥ lattice | _ clear | GraphWin | quit |
124.80 79.54

Figure 10.40 A screenshot of the point-set-demo in xIman. A locate queryte highlighted
point was performed. The edge returned by the query is lyltdd.

returns a node of T with T.poqv) = p, if there is such a node, and retumikotherwise.
node T.insert(POINT p)

insertsp into T and returns the corresponding node. More precisely, ifetlierlready
a nodev in T positioned atp (i.e., pogv) is equal top) thenpogv) is changed top
(i.e., pogv) is made identical t) and if there is no such node then a new nedsith
pogv) = pisaddedtdr. In either casey is returned.

void T.del(node v)

removes node, i.e., maked a point set forS\ {pogv)}.
We come tgpoint locationandnearest neighboqueries. The function

edge T.locate(POINT p)
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performs point location. It returns a dat(nil if T has no edge) such thatlies in the
closure of the face to the left & see Figure 10.40.
The functions

node T.nearest neighbor (POINT p);
list<node> T.k nearest neighbors(POINT p, int k);

return a node of T that is closest t@, i.e.,

dist(p, pogv)) = min{dist(p, pogu)) ;uec T}
and the list of the mick, |S|) closest points t@, respectively. The points in the result list
are ordered by distance from One can also ask for the nearest neighbor(s) of a node.

node T.nearest neighbor (node w) ;

list<node> T.k nearest neighbors(node w, int k);

return a node of T that is closest td@ [w], i.e.,
dist(p, pogv)) = min{dist(p, poqu)) ;ue T\ w }

and the list of the mick, |S| — 1) closest points td [w], respectively. The points in the
result list are ordered by distance frofjw]. Figure 10.41 illustrates nearest neighbor
queries and the deletion of nodes.

The next three functions concerange queries

list<node> T.range search(const CIRCLE& C);

list<node> T.range search(node v,const POINT& b);

list<node> T.range search(const POINT& a,const POINT& b,const POINT& c);
list<node> T.range search(const POINT& a,const POINT& b);

return the list of points contained in the closure of diskn the closure of the disk centered
at T[v] and havingb in its boundary, in the closure of the triangle, b, ¢), and in the
closure of the rectangle with diagon@l, b), respectively. Figure 10.42 illustrates circular
range queries.

list<edge> T.minimum spanning tree()
returns a list of edges df that comprise a minimum spanning treeénd
void T.compute_voronoi(GRAPH<CIRCLE,PQOINT>& V)

computes the Voronoi diagram for the sites inS. Each node ol is labeled with its
defining circle and each edge is labeled with the site lyinpéface to its left.

The class POINTSET also provides functions that support the drawing of Dredy
triangulations, Delaunay diagrams, and Voronoi diagrédfos.example,

void T.draw nodes(void (*draw_node) (const POINT&))

callsdrawnodgpogv)) for every nodey of T.
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Figure 10.41 lllustration of nearest neighbor searching plus deletitée.generated a point set
of 500 random point and then performed the following operatibout thirty times: Locate the
nearest neighbor of a point in the center of the screen armdedi¢l The resulting point set is

displayed.

10.6.2 Implementation

We start with an overview and explain how point sets are sapried.

(POINT.SET.h+=

class __exportC POINT_SET

{

private:
edge cur_dart;
edge hull_dart;

: public

GRAPH<POINT,int>

bool check; // functions are checked if true

// for marking nodes in search procedures

int cur_mark;
node_map<int> mark;

(handler functions for animatign
{functions to mark nodés
(auxiliary function$
public:
{public member functions
{public member functions for checking

(inline function$
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Figure 10.42 We generated a point set of 500 random points and then pextbentircular
range query. The points returned by the query are highlighte

We store a POINISET as a planar maBRAPHPOINT, int> T plus two edgesur.dart
andhullLdart. For each node of T we store its position in the plane T v] and for each
edgee we store its type il [€]. The edge type is an element of the global enumeration type
delaunayedgeinfo defined in geaglobalenums.

enum delaunay edge_info { DIAGRAM EDGE = 0, DIAGRAMDART = O,
NON_DIAGRAM_EDGE = 1, NON_DIAGRAMDART = 1,
HULL_EDGE = 2, HULL_DART = 2
}

The darts ofT are labeled as defined in Section 10.4 on static Delaunayadesy Hull
darts are labeletlULL DART and non-hull darts are labeled eitHetAGRAMDART or
NONDIAGRAMDART. The former label is used for non-hull darts that belong ® th
Delaunay diagram.

In hulLdart we always store a dart of the convex hull andim.dart we store an arbitrary
dart of the triangulation. We usmir.dart as the starting point for searches.

Many member functions dPOINT.SET come with a checker. The booleaheckcon-
trols whether checking is done or not.

Most query operations require graph searches. We ussdamagxint> mark and an
integercur.markto mark visited nodes in these searches. More preciselyjewns marked
if marl{v] == cur.markand in order to unmark all nodes we increasemarkby one. We
start withcurmarkequal to zero and all node marks equattb and hence this solution is
safe as long asur.markdoes not wrap around by overflow. Overflow occurs after MAXINT
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search operations. Assuming that a query takes at leash&@0étions one can do at most
10° (about 2% queries per second. Thus the solution would work for attl2&sseconds
or about an hour. We conclude that we should guard agairsstitor, in particular, since it
will be very difficult to locate once it occurs. The solutiasimple. Wheneverurmark
reaches MAXINT we reinitialize.

{functions to mark nodéx=

void init_node_marks() { mark.init(*this,-1);
cur_mark = O;
}

void mark_node(node v) const { ((node_map<int>&)mark)[v] = cur_mark; }

void unmark_node(node v) const
{ ((node_map<int>&)mark) [v] = cur_mark - 1; }

bool is_marked(node v) const { return mark[v] == cur_mark; }

void unmark _all nodes() const
{ ((int&)cur_mark) ++;
if ( cur_mark == MAXINT)

((POINT_SET*)this) -> init_node_marks(); //cast away constness
}

Checking: We have two general routines for purposes of checking:

e savestatdPOINT p saves the current state of the data structure and the point
(which is typically the argument of a query operation) to @, fdnd

e checkstatestring loc) checks the state of the data structure and prints diagnostic
information tocerr if an error is found.

Checking is controlled by the boolean flapeck i.e., if checkis true, savestate and
checkstate perform as described, and ¢heckis false they do nothing andheckstate
returnstrue.

A typical functionF of class POINTSET has a body of the following form.

if ( check ) save_state(POINT p);
/* proper body of F */

if ( check && !check_state("POINTSET::F") )
{ cerr << additional information ; }

Assume now that check is setttoie and that some functioR contains an error. The error
will be caught bycheckstate Since the state before the executionFolwas saved, the
error is reproducible. We added this feature to POISHT because an earlier version of
POINT_SET contained errors which arose very infrequently. Fongda, at one point we
ran a test program for more than an hour before it failed.
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Auxiliary Functions: The functionmarkedgeis used to assign delaunayedgeinfo to
an edge. The call tmmarkedgehandleris for the purposes of animation which we do not
discuss here. Readers interested in the animation of timé geticlass should read [MN98].

(auxiliary function$=
void mark_edge(edge e, delaunay_edge_info k)
{ assign(e,k);
if (mark_edge_handler) mark_edge_handler(e);
}

The Constructors: The constructors allow us to construct a point set for eitherempty
set of points or for a seB of points. In the latter case the Delaunay triangulatiomatgm

of Section 10.4 is used, i.e., an arbitrary triangulatiooisstructed by plane sweep and then
Delaunay flips are performed to obtain a Delaunay trianguiatThe work horse for the
second step is a member functimakedelaunayE) that takes a list of edges (it is required
that all edges not it have the Delaunay property) and turns the current triatigalinto

a Delaunay triangulation.

Locate: The function
edge T.locate(POINT p)

is the basis for all query functions. It returns an edgé T (nil if T has no edge) with the
following properties:

e Ifthere is an edge of containingp, such an edge is returned.pflies on the
boundary of the convex hull then a hull dart is returned (aoidtime reversal of a hull
dart).

e |If pliesin the interior of a facd of T (if p lies outside the convex hull &, f is the
unbounded face) then a dart on the boundary & returned. This dart hgsto its
left, except if all points inS are collinear ang lies on the line passing through the
points inS. In this casetarget(e) is the point inS closest top.

The implementation dbcateis non-trivial. We therefore define a functichecklocate
that checks the output ddcate

(auxiliary function$+=

void check_locate(edge answer,const POINT& p) const;

The implementation ofhecklocateis left to the reader; it can be found in [MN98]. We
turn to the implementation dbcate We distinguish cases according to the dimension of
the triangulation.

(POINT.SET.g+=

edge POINT_SET::locate(POINT p) const
{

if (number_of_edges() == 0) return nil;
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if (dim() == 1) { (locate: one-dimensional cas&

(locate: two-dimensional case
}

If the dimension is less than one we return nil.

Let us assume next that the affine dimensiorsad one. If p does not lie in the affine
hull of S, i.e., p does not lie on the line supportidmilLdart, we return eithehullLdart or
its reversal. Ifp lies on the line supportingulLdart we determine the answer by a walk in
the triangulation. triangulations!walk through a triafagion

We initialize e to eitherhullLdart or its reversal such that lies in the halfspace orthogo-
nal'® to e. We walk in the direction oé. Letelbe the face cycle successorefAs long
aselpoints into the same direction asi.e., is not the reversal & and containg in the
halfspace orthogonal to it, we advaret el

The walk ends wherlis either the reversal & or does not contaip in the halfspace
orthogonal to it. In the former cagelies one or target(e) is the point inS closest top and
in the latter case lies one. In either case we may therefore ret@n

(locate: one-dimensional case

edge e = hull_dart;
int orient = orientation(e,p);

if (orient '= 0) { if (orient < 0) e = reversal(e);
if (check) check_locate(e,p);
return e;
}

// p is collinear with the points in S. We walk
if ( !IN_HALFSPACE(e,p) ) e = reversal(e);
// in the direction of e. We know IN_HALFSPACE(e,p)

edge el = face_cycle_succ(e);
while ( el !'= reversal(e) && IN_HALFSPACE(el,p) )
{e=c¢el;
el = face_cycle_succ(e);
}
if (check) check_locate(e ,p);

return e;

We come to the two-dimensional case. Assume w.l.o.g¢hatlart is not a hull dart
(otherwise, replaceur.dart by its reversal).

If pis equal to the source @ur.dart, we are done and return the reversataf.dart;
recall that we want to return a hull dartflies on the boundary of the convex hull.

So assume thap is distinct from the source ofurdart. The face cycle containing
curdart is a triangle sinceurdart is not a hull dart and hencp either does not lie on
the line supportingur.dart or the line supportindacecyclepred(cur.dart). Let e be the

13 The halfspace orthogonal echas normal vectoe, hassourcee) in its boundary, and contains the targeeofVe
need this definition only for this paragraph.
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Figure 10.43 In order to locatep we walk along the segmentfrom sourcé&ep) to p; s
intersects the half-closures of the daggsey, ..., es; €y, ..., 6 are directed downwards.

appropriate dart and assume thmties in the positive halfspaé&of e (replacee by its
reversal otherwise).

We walk along the rag starting in the source @&fand ending inp, see Figure 10.43. We
will maintain the following invariant during the walk:

e pliesin the positive subspace with respecéto

e sintersects the half-closure ef where the half-closure @& consists of the interior of
e plus its source. However, the target of the dart does nonigetim the half-closure.

(locate: two-dimensional case
edge e = is_hull_dart(cur_dart) ? reversal(cur_dart) : cur_dart;
if (p == pos_source(e) ) return reversal(e);
int orient = orientation(e,p);

if (orient == 0) { e = face_cycle_pred(e);
orient = orientation(e,p);

}
if (orient < 0) e = reversal(e);
SEGMENT s(pos_source(e),p);

while ( true )
{
if (is_hull_dart(e)) break;

(locate: determine the next edge e or break from the Joop
}

if (check) check_locate(e ,p);

((edge&) cur_dart) = e;
return e;

The while-loop performs the walk. We distinguish cases atiog to whethee is a hull
dart or not. Ifeis a hull dart, we stop and retue

Otherwise, leg, e1, e; be the face cycle of the triangke to the left ofe. We need to find
out whether the walk ends i& or whether we are leaving the triangle throwggltor through

14 The positive halfspace with respecteis the halfspace to the left of the oriented line supporéing
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Figure 10.44 A step of the walk through the triangulation: In the left pafrthe figurec lies to
the right ofs and in the right part it does not.

e. Letc be the common endpoint ef ande,. We distinguish cases according to whether
c lies to the right ofs or not.

Assume first that lies to the right ofs, i.e., s intersects the half-closure of the reversal
el of &, see Figure 10.44. Ip lies to the left ofeR, we replaces by e} and continue. Ifp
lies oneR, we returneR, and if p lies to the right ofel} and hence in the interior d¥, we
returne.

Assume next that does not lie to the right of, i.e., s intersects the half-closure of the
reversalel of e, see Figure 10.44. Ip lies to the left ofeR, we replacee by el and
continue. Ifp lies onel, we returnef, and if p lies to the right ofel and hence in the
interior of F or one;, (the latter case can only occur whepasses through the sourceeof
andp lies one,), we returne in the former case aref} in the latter.

(locate: determine the next edge e or break from the Jeop

edge el = face_cycle_succ(e);

edge e2 = face_cycle_pred(e);

int d = ::orientation(s,pos_target(el));
edge e_next = reversal( (d < 0) 7 e2 : el );
int orient = orientation(e_next,p);

if ( orient > 0 ) { e = e_next; continue; }

if ( orient == 0 ) { e = e_next; break; }
if (d == 0 && orient < O && orientation(e2,p) == 0 ) e = reversal(e2);
break;

This completes the description lofcate We still need to argue termination. We clearly
make progress when the new darintersectss closer top than the old dare. It may,
however, be the case that the intersections are the samaislsituation the new dasg
forms a smaller angle withthan the old one.

Havinglocate we can easily implement tHeokupoperation.
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€& € € €3

Figure 10.45 The nodea lies in the interior of dargp but infinitesimally close to the source
node ofey. The dartsy, €1, ... havep on their left and are directed downwards. The say
intersects only the interior of darts.

(POINT.SET.¢+=

node POINT_SET::lookup(POINT p) const
{ if (number_of_nodes() == 1) { node v = first_node();
return (pos(v) == p) ? v : nil;
}
edge e = locate(p);
if (pos(source(e)) == p) return source(e);
if (pos(target(e)) == p) return target(e);
return nil;

It took us a long time to come up with the short and elegantrifo@p for locategiven
above. Earlier attempts were longer and less elegant (and sere plain wrong). Why
did we have such difficulties and how did we finally arrive a ffrogram given above?
The difficulties stemmed from degeneracies; we had difiesibhandling the case that the
ray s passes through some node of the triangulation or even rubspoof an edge of the
triangulation. Under the additional assumption that tteeeno degeneracies, i.e., tisat
enters and leaves triangles through relative interiorgiges, it was easy to write a correct
program. We had difficulties extending the solution to theeo&heres enters and/or leaves
through a vertex. Our original solution was clumsy becausaused the weaker invariant
thats intersects the closure @& (and not only the half-closure as we stated above). This
resulted in a lengthy case distinction.

The key to the simpler program was a thought experiment uysarturbation Recall
that we locatep by a walk through the triangulation starting at the sourcdenof some
dartey. The idea of perturbation is to simulate the walk along aysbed rays’ that starts
in a nodea that lies in the interior ofy but infinitesimally close to the source &f, see
Figure 10.45. The perturbed ray will only pass through therior of darts (except maybe
at p); it may pass infinitesimally close to the source of a dartimttinfinitesimally close to
the target. We concluded that source nodes of darts playeaatit role than target nodes of
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darts and came up with the concept of the half-closure of a @arce we had the concept
of a half-closure, we arrived at a correct program within aarh

We close this section with a remark about the efficienciooate Clearly, the running
time of locate is proportional to the number of darts of théaDeay triangulation crossed
by the segmens. Bose and Devroye [BD95] have shown that the expected nuwiber
edges of a Delaunay triangulation of random points crosgedlime segment of lengthis
O(/y), wherey is the point density.

Insert: The function

node T.insert(POINT p);

inserts the poinp into T and returns the corresponding node. More precisely, ifetler
already a node in T positioned atp (i.e., pogv) is equal top) thenpogv) is changed to
p (i.e., pogv) is made identical tg) and if there is no such node then a new nodeith
pogv) = pisaddedtdl. In either casey is returned.

We first define our return statement

(insert::check and return=

if ( check && 'check_state("POINT_SET: :insert") )

{ cerr << "The point inserted was " << p;
exit(1);

}

return v;

and then give an overview. We first deal with the case Thags at most one node. T
has more than one node, we locatén the triangulation. Let be the edge returned by
locatg(p). If pis equal to an endpoint & we replace the endpoint yand return.

Otherwise, we determine whetherlies one and then distinguish cases according to
the dimension of the triangulation after the insertion. Tiraension is one if the current
dimension is one ang lies in the affine subspace &

(POINT.SET.g+=

node POINT_SET::insert(POINT p)
{ if ( check ) save_state(p);

node v;
(T has zero or one nogle

edge e = locate(p);
if (p == pos_source(e)) { assign(source(e),p); return source(e); }
if (p == pos_target(e)) { assign(target(e),p); return target(e); }

bool p_on_e = seg(e).contains(p);

if ( dim() == 1 && orientation(e,p) == 0 )
{ (dimension is one after the insertipr}

(dimension is two after the insertipn
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Assume first thall has at most one node. Tf has no node, we create a node, label it
with p and return it, ifT has one node, we either relabel this node vgtbhr we create a
new node with labep and connect it to the old node.

(T has zero or one nofke

if (number_of_nodes() == 0)
{ v = new_node(p); (insert::check and returnjv}

if (number_of nodes() == 1)
{ node w = first_node();
if (p == pos(w))
{ assign(w,p);
v = W;
(insert::check and returnyv
}
else
{ v = new_node(p);
edge x = new_edge(v,w); edge y = new_edge(w,v);
mark_edge (x,HULL_DART) ; mark_edge (y,HULL_DART) ;
set_reversal(x,y);
hull_dart = cur_dart = x;
(insert::check and returnjv

If dimis one andp lies in the affine hull ofS there are two cases. ffis onethen we
split e into two edges and ip does not lie ore we simply add new edges betweprand
target(e).

(dimension is one after the insertiaa
v = new_node(p);
edge x = new_edge(v,target(e)); edge y = new_edge(target(e),v);
mark_edge (x,HULL_DART) ; mark_edge (y,HULL_DART) ;
set_reversal(x,y);
if (p_on_e)
{ x = new_edge(v,source(e));
y = new_edge(source(e),v);
mark_edge (x,HULL_DART) ;
mark_edge (y,HULL_DART) ;
set_reversal(x,y);
hull_dart = cur_dart = x;
del_edge(reversal(e));
del_edge(e);
}

(insert::check and returnv

In the remaining case the hull is guaranteed to be two-dirneakafter the insertion. We
now have to triangulate the face that contging lies in the interior of the convex hull iff
eis not a hull dart.

If pliesin a bounded face (= triangle), we connect it to all @reodes of the face.
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One of the three new triangles could have height zero. We readethatmakedelaunay
handles this case correctly.

If pliesinthe outer face or on its boundary, we first determieestt of hull darts visible
from p by walking in both directions along the hull startingenWe call the two extreme
darts reached by these wakksande2 We then add an edge for each visible vertex, i.e. for
all vertices frontarget(el) to sourcee?).

There is one subtle point. It is important how ties are brokben p lies on a hull dart.
Only one triangle should be added to the triangulation aridhree (the latter would be
the case if we break the tie in favor of the triangle incidenthte hull dart). In order to
guarantee that ties are broken correctly, we Hagatereturn a hull dart ifp does not lie in
the interior of the triangulation.

In the implementation we retriangulate the outer face anthtded faces in a uniform
way; we add new edges for all nodes freanget(el) to sourcge2) for two dartselande2
In the case of a bounded face we choete e2= e and in the case of the outer face we set
elande2to the extreme (tangent) darts as described above.

(dimension is two after the insertig

v = new_node(p);
edge el = e;
edge e2 = e;

list<edge> E;
bool outer_face = is_hull_dart(e);

if (outer_face)

{ // move el/e2 to compute upper/lower tangents
do el = face_cycle_pred(el); while (orientation(el,p) > 0);
do e2 = face_cycle_succ(e2); while (orientation(e2,p) > 0);

}

// insert edges between v and target(el) ... source(e2)
e = el;
do { e = face_cycle_succ(e);

edge x = new_edge(e,v);

edge y = new_edge(v,source(e));

set_reversal(x,y);

mark_edge (e,DIAGRAM_DART) ;

E.append(e);

E.append(x);

} while (e !'= e2);

if (outer_face)

{ // mark last visited and new edges as hull edges
mark_edge(face_cycle_succ(el) ,HULL_DART) ;
mark_edge(face_cycle_pred(e2) ,HULL_DART) ;
mark_edge (e2,HULL_DART) ;
hull_dart = e2;

}

make_delaunay(E); // restores Delaunay property
(insert::check and returnv
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Deletion: The functions

void T.del(node v)
void T.del(POINT p)

remove the node and the pointp, respectively, i.e., maké a Delaunay triangulation for
S\ {pogv)} andS\ p, respectively.

The strategy to remove a node is simple. Removal of a node thherinterior of a two-
dimensional triangulation (of course, the program alsotbdsndle the removal of a node
from a triangulation that is not two-dimensional or of a nedgch lies on the boundary
of the convex hull) creates a cavity in the triangulation e Havity is retriangulated in an
arbitrary way and themakedelaunayE) is called to restore the Delaunay property, where
E is the set of new edges and the set of edges on the bounday cdfty.

After this general outline we define our return statement gind an overview of the
deletion procedure.

(del: check and retune=

if ( check && !check_state("POINT_SET: :del(node v)") )

{ cerr << "deleted the node with position " << pos(v);
exit(1);

}

return;

(POINT.SET.¢+=

void POINT_SET: :del(node v)
{
if (v == nil) error_handler (1,"POINT_SET::del: nil argument.");

if (number_of_nodes() == 0)
error_handler (1,"POINT_SET::del: graph is empty.");

if (check) save_state(inf(v));

if ( dim() < 2 )
{
if ( outdeg(v) == 2)
{ node s = target(first_adj_edge(v));
node t target (last_adj_edge(v));
edge x = new_edge(s,t); edge y = new_edge(t,s);
mark_edge (x,HULL_DART); mark_edge(y,HULL_DART);
set_reversal(x,y);

}

del_node(v);
cur_dart = hull_dart = first_edge();

(del: check and returmn

}
(removal of v from a two-dimensional triangulatjon

(del: check and returm
}
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Figure 10.46 The right part of the figure shows the effect of flipping theesi@, a), (v, ¢) and
(v, e).

If the dimension of the triangulation is less than two, thmogal of v is trivial. If the
dimension is zero or the dimension is one arid an extreme node of the triangulation (i.e.,
the outdegree af is one), we simply remove. If v has outdegree two, we connect the two
neighbors ol by a new edge and then deleteOf coursecur.dart or hulLdart could have
been incident tew and hence have to be given new values.

We come to the interesting case, the removal bm a two-dimensional triangulation.
We first discuss the case thalies in the interior of the triangulation. We will later sd&t
the same strategy also handles the case wihbes on the boundary of the convex hull.

Removal ofv creates a fac® that is, in general, not a triangle. It is only a triangle if
the degree of is three. We need to retriangulate this face. A natural agpgravould be
to removev and to retriangulate after the removalwof However, this approach does not
exploit the fact thaP is a so-calledstar-shaped polygowith respect to, i.e., thatv can
see all vertices oP. We will exploit this fact as follows in the retriangulatigmocess.
We will show below that there is always an edgmcident tov such that the two triangles
incident tov form a convex quadrilateral. We “flip away fromv” by replacing it by the
other diagonal of the triangle. In this way the degree of decreased by one. We continue
until the degree of is three. At this pointp is removed and the created face is a triangle,
see Figure 10.46.

We now give the details. We need a slightly more general digfinof star-shapedness
than was alluded to in the text above. The more general defirig needed to cope with
the case that three or more pointsife on a common line.

We call a polygorP star-shapedvith respect to a point if either:

e v liesin the interior ofP and for every vertex of P the open line segmenp is
contained in the interior oP, or

e v liesin the relative interior of an edgeof P and for every vertexy of P that is not
an endpoint of the open line segmenp is contained in the interior dP.

Lemma 8 Let P be a polygon which has at least four vertices and is skeped with
respect to some point. Then there are three consecutive vertices p, q, r of P suath th



10.6 Point Sets and Dynamic Delaunay Triangulations 89

Figure 10.47 (p, q, r, v) forms a convex quadrilateral. In the situation on the detill lie on
an edge ofP’ after the flip of edg&v, g) and in the situation on the right it will still lie in the
interior of P’. The quadrupléq, r,r’, v) does not qualify for a flip.

(v, p, g, r) form a convex quadrilateral. In this quadrilateral the argltv maybe equal to
7. The angle ab can be equal tar only if v lies in the interior of P, see Figure 10.47.

Let P be the polygon obtained from P by replacing the edges pq arydine edge pr.
Then P is star-shaped with respect to

Proof Consider any triangulatioh of P. T consists of at least two triangles. Since the dual
of a triangulation is a tree and every tree has at least tweetedhere must be at least two
triangles inT whose edges consist of two consecutive edgd3 plius the chord connecting
the source of the first edge with the target of the second eddéance there must be at
least one such triangle which, in addition, does not contdmits interior. Consider one
such triangle, say, and lete; = (p, q) ande, = (q, r) be the edges d? that are contained
in its boundary. Sincép, g, r) is a triangle ofT the angle ag is less thanr.

Sincev is not contained in the interior df (v, p, g,r) forms a convex quadrilateral.
In this quadrilateral the angles ptandr must be less than sinceP is star-shaped with
respect taw. Also by the star-shapedness, the angle ean be equal ter only if v lies in
the interior of P.

P’ is clearly star-shaped with respectito O

Call an edge incident to flipableif the two triangles incident to it form a convex quadri-
lateral. As long as there is a flipable edge incident flip it. The lemma above guarantees
that the process does not terminate befohas degree three.

How can we find flipable edges quickly? We scan through thesithgédent tov. Lete
be the current edge. #is not flipable, we advanceto the cyclic successor ef and ifeis
flipable, we flip it and se¢ to the cyclic predecessor ef

When do we terminate? We terminate whelmas degree three. Since we want to use the
same procedure also for nodes on the hull we develop a moezajéarmination condition.
We terminate when the degreewfeachesnindeg wheremindegis three for nodes in the
interior and is two for hull nodes. We also keep a countmmtwhich is a lower bound on
the number of edges out ofthat are certainly not flipable. We incremeoiuntwhenever a
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non-flipable edge is found, we decremeatintby two whenever a flip is performed, as this
may make the two neighbors of the flipped edge flipable, andewsihate ifcountreaches
outdedv).

Why is this correct? Call an edgertified non-flipabléf it has been tested for flipping
and its two neighbors have not changed since. In the proegdsiroutlined the edges that
are certified non-flipable are consecutive in the cyclic eeljmy list ofv andcountis a
lower bound on their number. This shows correctness.

The running time of retriangulation is linear in the initdedgree ofv. This follows from
the fact that the total decrement obuntis bounded by twice the initial degree ofand
hence the total increase obuntis bounded by thrice the initial degreewf

We obtain the following code.

(removal of v from a two-dimensional triangulatiea
list<edge> E;
int min_deg = 3;
edge e;
forall_adj_edges(e,v)
{ E.append(face_cycle_succ(e));
if (is_hull_dart(e)) min_deg = 2;
}

int count = 0;
e = first_adj_edge(v);

while ( outdeg(v) > min_deg && count < outdeg(v) )
{ edge e_pred = cyclic_adj_pred(e);
edge e_succ = cyclic_adj_succ(e);
POINT a = pos_target(e_pred); POINT c = pos_target(e_succ);

if ( !'right_turn(a,c,pos(v)) && right_turn(a,c,pos_target(e)) )
{ // e is flipable
edge r = reversal(e);

move_edge(e,reversal (e_succ) ,target(e_pred));
move_edge (r,reversal (e_pred) ,target(e_succ) ,LEDA: :before);

mark_edge (e ,DIAGRAM_DART) ;
mark_edge (r ,DIAGRAM_DART) ;
E.append(e);
e = e_pred;
count = count - 2;
if ( count < 0 ) count = O;
}
else
{ e = e_succ;
count++;
}
}
if ( min_deg == 2 )
{ (adjust marks of new hull darts and their reversals
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cur_dart = E.head();

del_node(v);
make_delaunay (E) ;

We give some more explanations. The while-loop performsébh@ngulation. During the
retriangulation we build up a lidE of edges whose Delaunay property needs to be checked:
E consists of all edges in the boundary of the cavity createthbyremoval ofv and all
edges created during retriangulation.

After retriangulation we removeand add calinakedelaunayE) to restore the Delaunay
property.

We also have to take care ofirdart. It may have been incident tan We set it to an
arbitrary edge in the boundary of the cavity created by theoral of v.

This completes the discussion of the case when a node intdrgoinof the triangulation
is removed. We will next argue that the same retriangulagioaitegy works whem is a
node in the boundary of the triangulation.

Again we flip edges away from until no further edges are flipable. When this is the
case, the neighbors ef form a chain that is concave as seen frorand hence removal
of v leaves us with a triangulation of the remaining nodes. Rehofw also turns some
darts into hull darts. Their labels have to be changddWd L DART and the edges of their
reversal have to be changed@VAGRAMDART. There is a small exception to the latter
rule, namely when a reversal is a hull dart itself. This wdlthe case when the removal of
v reduces the dimension of the triangulation from two to one.

(adjust marks of new hull darts and their reversats

edge e,x;
forall_adj_edges(e,v)
{ x = face_cycle_succ(e);
mark_edge (x,HULL_DART) ;
if ( !is_hull_dart(reversal(x)) ) mark_edge(reversal(x),DIAGRAM_DART) ;

}
hull_dart = x;

Nearest Neighbor Searching: The functions

node T.nearest neighbor (POINT p);
list<node> T.k nearest neighbors(POINT p, int k);

return a node closest top, i.e.,dist(p, pogv)) = min{dist(p, pogu)) ;u € T }, and the
list of the mink, |S]) closest points top, respectively. The points in the result list are
ordered by distance fromp. One can also ask for the nearest neighbor(s) of a node.

node T.nearest neighbor (node w) ;
list<node> T.k nearest neighbors(node w, int k);

return a node different fromw that is closest td [w] and the list of the mitk, |S] — 1)
closest points td [w], respectively.
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The following observation paves the way for a simple aldgonitftor both problems and
is also the basis of the range query algorithms to be disdusgbe next section.

Lemma9Llets andt be two nodes of a Delaunay triangulation T and led thieir distance.
Thenthereis a pathfromstotin T such that all intermediateas have distance less than
d from s.

Proof We use induction od. Let D be the disk with radiud centered as$. If stis an edge
of T, we are done. Otherwise latandb be the two neighbors dfsuch that the segment
st runs between the edgéa andtb of T. The pointsa, b, andt form a triangle ofT. If
one ofa andb has distance less thahfrom s, we can apply the induction hypothesis and
are done. So assume otherwise, i.e., nei#eor b lies in the interior ofD. The segments
st andab intersect (sincs cannot lie in the interior of the triangle with cornexsb, andt)
and hencds, a, t, b) is a convex quadrilateral. The digk proves that the segmeab does
not belong to the Delaunay triangulation{@, b, s, t} and hence cannot be an edgeTof

O

The lemma suggests a simple strategy to findktimearest neighbors gf = T[v]. If
the number of points i is no more thark, we simply return all nodes iii. So assume
otherwise. We start a graph search starting.ifWe keep all reached nodes in a priority
queue according to their (squared) distance fromnd always continue the exploration
from a node with smallest distance. The lemma above guarsitheat this strategy explores
the nodes ofl in order of increasing distance from

(POINT_SET.¢+=
#include <LEDA/p_queue.h>

list<node> POINT_SET: :nearest_neighbors(node v, int k) const
{ list<node> result;
int n = number_of_nodes();
if ( k <= 1 ) return result;
if (n+1<=k)
{ node w;
forall_nodes(w,*this) if ( w != v ) result.append(w);
return result;
}
POINT p = pos(v);
unmark_all_nodes();
p_queue<RAT_TYPE,node> PQ;
PQ.insert(0,v); mark(v);
while ( k > 0 )
{ pg_item it = PQ.find _min();
node w = PQ.inf(it); PQ.del_item(it);
if (w !'= v ) { result.append(w); k-—; }
node z;
forall_adj_nodes(z,w)



10.6 Point Sets and Dynamic Delaunay Triangulations 93

{ if ( !'is_marked(z) ) { PQ.insert(p.sqr_dist(pos(z)),z);
mark(z) ;
}
}
}

return result;

}

We come to the case where we want to search for the nearebbioesgf a poinp. We
simply insertp into T and then use the procedure above.

A small complication arises from the fact thaimay lie on a node of . We test for this
case by performing a lookup fqr. If p does not lie on a node of we insert it. Of course,
it has to removed again after calling the procedure abovepamak to be removed from the
list of answers.

(POINT.SET.¢+=

list<node> POINT_SET: :nearest_neighbors(POINT p, int k)
{ list<node> result;
int n = number_of_nodes();

if ( k <= 0 ) return result;
if ( n <= k ) return all_nodes();

// insert p and search neighbors graph starting at p

node v = lookup(p);

bool old_node = true;

if ( v == nil ) { v = ((POINT_SET*)this)->insert(p);
old_node = false;

}

else k——;
result = nearest_neighbors(v,k);

if ( old_node )
result.push_front (v);

else
((POINT_SET*)this)->del(v);

return result;

The nearest neighbor of a nodén a Delaunay diagram is a node adjacent torhus
one only has to find the minimum (squared) distance betwesTd its neighboring nodes.

(POINT.SET.g+=

node POINT_SET::nearest_neighbor(node v) const
{

if (number_of_nodes() <= 1) return nil;

POINT p = pos(v);
edge e = first_adj_edge(v);

node min_v = target(e);

while ((e = adj_succ(e)) != nil)
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n I NN NNA

50000 128.2 2.32 18.08

Table 10.5 We constructed a point set nfrandom points in the unit square and performed a
nearest neighbor query for each node in the triangulatioth shbws the time for the function
nearesmeighborand NNA shows the time with alternative implementation &fittmer loop.
Column | shows the time for theinsertions. The table was made with the rational kernel.

{ node u = target(e);
if ( p.cmp_dist(pos(u),pos(min_v)) < 0 ) min_v = u;

}

return min_v;

}

An alternative way to write the inner loop is:

(alternative inner loop=

node min_v = target(e);
RAT_TYPE min_d = p.sqr_dist(pos(min_v));

while ((e = adj_succ(e)) !'= nil)
{ node u = target(e);
RAT_TYPE d_u = p.sqr_dist(pos(u));
if (d_u < min_d ) { min_v = u;
min_d = d_u;

}

This is much slower, see Table 10.5. Why is the alternativmsoh slower; aren’t the two
programs doing exactly the same thing? Both programs cahatsquared distance from
v to all its neighbors and find the minimum.

The difference is that the alternative version computesdliared distancesxactlyas
rational number® and finds the minimum of these rational numbers. The origiaedion
asks the kernel to compare distances. The kernel first casagldating point approxi-
mations to the squared distances and uses them in the cempsrilf the floating point
approximation suffices to decide the comparison, the expered distance is never com-
puted and a lot of work is saved.

Range SearchesWe have functions for circular, triangular, and rectangrdage searches.
In order to perform a circular range query with centeve perform a DFS starting at

The search is restricted to the nodes that lie in the circalage. Correctness follows from
Lemma 9.

15 We assume for this paragraph that the rational kernel is.used
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(POINT.SET.g+=

void POINT_SET::dfs(node s, const POINT& PV,
const POINT& p, list<node>& L) const

{ L.append(s);

mark_node(s);

node u;

forall_adj_nodes(u,s)

if (!is_marked(u) && pv.cmp_dist(pos(u),p) <= 0 ) dfs(u,pv,p,L);

}

list<node> POINT_SET: :range_search(node v,const POINT& p) const
{

list<node> L;

POINT pv = pos(v);
unmark_all_nodes();
dfs(v,pv,p,L);

return L;

The other two kind of queries can be reduced to circular gsdby first performing a
range query with the circumcircle of the triangle or rectarand then filtering the returned
list of points with the triangle or rectangle, respectivélye leave the implementation of
the other queries to the reader.

Experimental Data: Table 10.6 contains running times. The table shows thatesear
neighbor queries for nodes are very efficient in comparigondarest neighbor queries
for points. This comes from the fact that the latter involteakup, an insertion, a deletion,
as well as a nearest neighbor query for a node. For querieaskéor the ten nearest neigh-
bors the difference is not as pronounced. This stems fronfatttehatk-nearest neighbor

queries involve rational arithmetic.

Exercises for 10.6

1 Implement circular range queries.

2 Implement triangular and rectangular range queries. Yayiuse circular range queries.

3 Animate the Delaunay class such that the actions perfoaftedthe insertion of a point
are visualized.

4 Thenearesineighborsalgorithm uses aqueugRATTYPE node>. The code becomes
slightly simpler if anodepg<RATTYPE is used. Why is it better to use@gueue
instead of axodepg? Time both programs and explain.

5 Develop a version of thienearest neighbor search that cuts down on the use of rationa
arithmetic.

6  Ourimplementation afiearesneighbokPOINT p modifies the Delaunay triangulation
by an insertion and a deletion. It is not guaranteed that tiggnal Delaunay triangu-
lation is restored. Can you modify the implementation sudt it becomes a const-
operation? Try to determine the detof all edges of the current triangulation whose
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K n | L NNP NNV NNP(10) NNV(10) D
S 1000 1.14 066 215 0.05 10.22 7.07 1.16
2000 2.79 1.83 4.92 0.09 21.25 14.06  2.77
4000 6.83 5.36 11.68 0.2 44.4 28.29  6.65
D 1000 1.15 0.68 222 0.03999 10.27 7.03 1.18
2000 2.78 1.89 4.99 0.11 21.21 14.04 275
4000 6.76 5.23 11.53 0.2 44.25 28.25 6.65
C 1000 082 041 0.99 0.03 5.43 465 284
2000 175 09 208 0.06 11.09 9.31 8.2
4000 3.78 2.03 442 0.13 22.35 18.48 29.09

Table 10.6 The performance of point sets. As in the other tables of thégpter we used three
kinds of inputs: random points in the unit square, randomtsan the unit disk, and random
points on the unit circle. We generated two detandLQ of n points, built a point set by

inserting the points it (1), performedn lookups for the points iLQ (L), performed nearest
neighbor queries for the points Q (NNP), performed nearest neighbor queries for the nodes of
T (NNV), computed the ten nearest neighbor queries for thetpan LQ (NNP(10)), computed

the ten nearest neighbor queries for node$ gNNV(10)), and finally deleted all points.

Delaunay property is destroyed Ipy The nearest neighbor @f must be a vertex of the
triangle containingp or an endpoint of an edge In.

10.7 Line Segment Intersection

The line segment intersection problem asks to compute thef setersections of a seb

of line segments in the plane. It is one of the basic geomptdblems and has numerous
applications, e.g., in computer aided design, geograpfacrnation systems, and cartogra-
phy. We will see an application to boolean operations onguhg in Section 10.8. Many
different algorithms have been designed for the problensardral of them are available in
LEDA. The line segment intersection problem comes in maffemint flavors as different
applications have different output requirements. One meainterested in the number of
intersections, or one may want to trigger an action for eyeaty of intersecting segments,
or one may want to compute the graph induced by the segmerdagamay want to com-
pute the trapezoidal decomposition induced by the set oheats. In LEDA we provide
functions for several output conventions which we surve$éction 10.7.1. We also give
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Figure 10.48 A screen shot of the intersesegments demo in xIman. The sweep line algorithm
was used to compute the graph induced by a set of 203 randaneségy The induced graph has

1424 nodes and 2638 edges.

some experimental data in this section. In the remainintisecwe discuss the sweep line

algorithm for segment intersection.

The algorithms discussed in this section are illustratethbyntersecsegments demo in

xIman. Figure 10.48 shows a screen shot.
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S G(S)

Figure 10.49 A set S of segments and the induced planar graph.

10.7.1 Functionality

We first introduce some terminology. Two segmesitand s, intersectif they have at
least one point in common amyerlapif they have more than one point in common. Two
segments; ands; are said to have proper intersectionf they share exactly one point and
this point lies in the relative interior of both segments.eysent of length zero is called a
trivial segment.

The undirect grapbl (S) induced bySis defined as follows. The verticesdf(S) are all
endpoints of segments and all proper intersection poirttgdmn segments i8. The edges
of U are the maximal relatively open and connected subsets ofesetg inSthat contain no
vertex ofU (S). Figure 10.49 shows an example. Note that the gta@B) contains parallel
edges ifS contains segments that overlap. We nge denote the number of segments in
S, s to denote the number of nodesldf m to denote the number of edgesldf andk to
denote the number of pairs of intersecting segmentSctintains no overlapping segments,
m = O(n + s). If Scontains overlapping segments,may be as large asn + s) since
an input segment may be divided imta- s pieces by the endpoints and intersection points.
The number of nodes df is at mostn + k < n+ n(n — 1)/2. If many segments have
a common intersectiork, may be much larger thasm For example, if alh segments pass
through a common point them=n+ 1 andk = n(n — 1)/2.

The function

void SEGMENT_INTERSECTION(const 1ist<SEGMENT>& S,
GRAPH<POINT,SEGMENT>& G, bool embed = false)

computes a directed gragh(s) representindgJ (S). The algorithm makes no assumption
about the segments i@ They may be overlapping, they may have multiple intersesti
they may share endpoints, they may have length zero, ... .

G andU have the same set of nodes; each nod& a$ labeled by its position in the
plane.

The edges o5 correspond to the edgesdf If embeds false, there is exactly one dart
in G for each edge itJ; the dart is labeled by the segmentSrcontaining it and inherits
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its direction from the segment containing it, i.egit= (v, w) is a dart ofG thenGJe] is
directed fromG[v] to G[w].

If embeds true,G is a plane map. For each edgelbfthere are two darts i and the
two darts are reversal of each other. For each nodeG the cyclic list of darts out of
are counter-clockwise ordered.

The function

void SEGMENT_INTERSECTION(const 1ist<SEGMENT>& S, 1list<POINT>& P)

returns the list of points that correspond to node<zo0b6f degree two or more and the
function

SEGMENT _INTERSECTION(const 1ist<SEGMENT>& S,
void (*report) (const SEGMENT&, const SEGMENT&) )

callsreport(sy, sp) for every pair(s;, s) of intersecting segments. Observe that the points
in P are a subset of the points for whigéportis called. For example, i consists of two
identical trivial segments, theB(S) consists of a single node and no edge and héhasl

be empty. On the other han@port will be called for this pair of segments.

For all functions above several implementations are aviglalhe implementations are
based on the algorithms of Bentley and Ottmann ([BO79]),ivuléy ([Mul90]), and Bal-
aban ([Bal95]). For the reporting version of segment irgetisn we also have the trivial
implementation which simply checks every pair of segman&for an intersection.

void MULMULEY_SEGMENTS (const 1ist<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G,

bool embed = false);

void SWEEP_SEGMENTS (const 1ist<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G,
bool embed = false, bool use_optimization = true);

void SWEEP_SEGMENTS(const 1ist<SEGMENT>& S , 1ist<POINT>& P);

void BALABAN_SEGMENTS (const 1ist<SEGMENT>& S,
void (*report) (const SEGMENT&, const SEGMENT&));

void TRIVIAL_SEGMENTS (const 1ist<SEGMENT>& S,
void (*report) (const SEGMENT&, const SEGMENT&)) ;

The asymptotic running time of the Bentley—Ottmann aldpniis O(m+ (n+s) logn), the
asymptotic running time of the Mulmuley algorithm@m+ s+ nlogn). Both algorithms
can be used for all functions above. dibedis true the running time of the Bentley—
Ottmann algorithm increases §y(mlogm), since an additional sorting step is required.
The asymptotic running time of the Balaban algorithn©iélog? n + k). It can only be
used for the functions that report intersections. The asgtigorunning time of the trivial
implementation i<O(n?).

Table 10.7 compares the running time of our various impldatems. In the examples,
Balaban’s algorithm is always better than the trivial aitjon. Mulmuley’s algorithm is
better than the Bentley—Ottmann algorithm when the numkietersections is large. It also
incurs a smaller additional cost for turni@®y S) into a planar map (as it always computes an
undirected planar map). When the number of intersectioamll, the Bentley—Ottmann
algorithm and Mulmuley’s algorithm behave about the same.
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n d \ E S S+E M M+E T B

2000 22 4007 2014 114 13 174 1.76 15.13 1.94
2000 23 4026 2052 1.18 137 225 229 14.87 2.07
2000 24 4136 2272 125 142 291 291 1526  2.17
2000 25 4428 2856 1.39 163 3.44 3.47 1506  2.33
2000 26 5857 5714 181 237 444 45 1531 248
2000 27 10954 15908 3.03 5.02 5.93 6.02 1541 274
2000 28 29683 53366 7.57 16.43 9.71 10.02 16.01 3.22
2000 29 91789 177578 22.84 58.31 20.04 2094 16.62 5.38
2000 30 267045 528090 70.24 193.7 4896 5195 18.42 1154

Table 10.7 The running time of the functions related to segment intdiges. S stands for the
sweep line algorithm of Bentley and Ottmann ([BO79]), M andt8&nd for the algorithms of
Mulmuley and Balaban ([Mul90, Bal95]), and T stands for tfxal algorithm that checks every
pair of segments for an intersection. The “+ E” indicated tha graphG(S) is returned as a
planar map. The first three columns contain the number oftisggments, the number of nodes
of G, and the number of edges Gf, respectively.

We chosen segments. For each segment we chose raridbininteger for the Cartesian
coordinates of the first endpoint and obtained the secongagmdfrom the first by adding a
vector with randomd bit integer coordinates. We uskd= 30 and different values af. The
number of intersections is an increasing functiom of

Let us interpret the experimental findings in terms of asyriptrunning time. When
the number of intersections is very large, ek logn) term'® in the time bound of the
sweep algorithm dominates tl@&(k) term in the time bound of the other algorithms. The
trivial algorithm has a running tim®n? + k - Treport), WhereTeport is the cost of calling
the functionreport. In our testsyeportincreases a counter and hence does minimal work.
Thus the constant factor in the big-O expression is smalis €kplains why the running
time of the trivial algorithm depends very little on the nuentof intersections and why
the trivial algorithm is competitive when the number of nstections is large. When the
number of intersections is small the Bentley—Ottmann dtigorand Mulmuley’s algorithm
have running timeéD(nlogn) and Balaban’s algorithm has running tirdgn log?n). We
should therefore expect that the former two algorithms apesor when the number of
intersections is small. This is confirmed by the experiments

10.7.2 The Sweep Line Algorithm

We discuss the Bentley—Ottmann sweepline algorithm ferdiegment intersection and give
an implementation of the function

16 |n our examples, there are hardly any intersections of toreeore segments and heree- k. Observe that if all
nodes are endpoints or proper intersections of exactly egments thele = n + 2(V — 2n), asU (S) contains
2n nodes of degree one aid — 2n) nodes of degree four. In our examples we hgve n + 2(V — 2n). We
will therefore replaces by k in the discussion to follow.
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SWEEP_SEGMENTS (const 1ist<SEGMENT>& S, GRAPH<POINT,SEGMENT>& G,
bool embed, bool use_optimiza‘tion)
that takes a lis6 of segments and computes the gr&pinduced by it. For each vertax
of G it also computes its position in the plane, and for each edgeG it computes the
segment containing it.

If embed= true, the algorithm turn$ into a planar map, i.eG is made bidirected and
the adjacency lists are sorted according to the geometiedding in clockwise order.

If useoptimization= true, an optimization described below is used.

The algorithm runs in tim@®© ((n+s) log(n+m)+m), wheren is the number of segments,
s is the number of nodes d&, andm is the number of edges @. If S contains no
overlapping segments them = O(n + s). If embeds true, the running time is increased
by an additive factor oD(mlogm). Note thats < 3(n + k) and thatk can be as large as
2,

We want to stress that the implementation makes no assumspaibout the input, in
particular, segments may have length zero, may be verticahy overlap, several segments
may intersect in the same point, endpoints of segments reay lthe interior of other
segments, ... .

We achieve this generality by reformulating the plane swalgprithm so that it can
handle all geometric situations. The reformulation makesdescription of the algorithm
shorter and it also makes the algorithm faster, skisereplaced bys in the time boundl’.
The only previous algorithm that could handle all degenegais due to Myers [Mye85].
Its expected running time for random segmen®®{s logn + k) and its worst case running
time isO((n + k) logn).

In the sweepline paradigm a vertical line is moved from leftight across the plane
and the output (here the gra@(9S)) is constructed incrementally as it evolves behind the
sweep line. One maintains two data structures to keep th&remtion going: the so-called
Y-structurecontains the intersection of the sweep line with the sceeree(the sefS of
line segments) and the so-call¥estructurecontains the events where the sweep has to be
stopped in order to add to the output or to update the X- oriyesdre. In the line segment
intersection problem an event occurs when the sweep lis@hiendpoint of some segment
or an intersection point. When an event occurs, some nodesdges are added to the graph
G(9), the Y-structure is updated, and maybe some more eventeasgajed. When the
inputis in general position (no three lines intersecting s7ommon point, no endpoint lying
on a segment, no two endpoints or intersections having time gecoordinate, no vertical
lines, no overlapping segments, ...) then at most one ewnbccur for each position of
the sweep line and there are three clearly distinguishgptsstof events (left endpoint, right
endpoint, intersection) with easily describable assediattions, cf. [Meh84b, VII.8]. We
want to place no restrictions on the input and therefore t@pdoceed slightly differently.
We now describe the required changes.

We define the sweep line by a pojmsweep= (x_sweep y_sweep. Lete be a positive

17 Bentley and Ottmann formulated their algorithm for linersemts in general position and stated a time bound of
O((n + k) logn).
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infinitesimal (readers not familiar with infinitesimals m#énnk of ¢ as an arbitrarily small
positive real). Consider the directed liheconsisting of a vertical upward ray ending in
point (x_sweep+e€2, y_sweep+¢) followed by a horizontal segment ending(.sweep—

€2, y_sweep+ ¢) followed by a vertical upward ray. We cdll thesweep line Note that®

no endpoint of any segment lies &n that no two segments @ intersectL in the same
point except if the segments overlap, and that no non-wrsiegment ofS intersects the
horizontal part ofL. All three properties follow from the fact thatis arbitrarily small but
positive. Figure 10.50 illustrates the definitionlofind the main data structures used in the
algorithm: the Y-structure, the X-structure, and the gréph

The Y-structure contains all segments intersecting theepviee L ordered as their in-
tersections with. appear on the directed line Overlapping segments are ordered by their
ID-numbers Every segment has an associated ID-number; distinct segraee guaranteed
to have distinct IDs.

The X-structure contains all endpoints that are to the rafhthe sweep line and also
some intersection points between segments in the Y-steictMore precisely, for each
pair of segments adjacent in the Y-structure their intdisegoint is contained in the X-
structure (if it exists and is to the right of the sweep linghe X-structure may contain
other intersection points. The grag@icontains the part o&(S) that is to the left of the
sweep line.

Initially, the Y-structure and the graph are empty and the X-structure contains all end-
points of all input segments. The events in the X-structuedlzen processed in left to right
order. Events with the samecoordinate are processed in bottom to top order.

Assume that we need to process an event at ppiahd that the X-structure and Y-
structure reflect the situation fprsweep= (p.x, p.y — 2¢). Note that this is true initially,
i.e., before the first event is removed from the X-structike. now show how to establish
the invariants fop sweep= p. We proceed in seven steps.

1. We add a node at positionp to our graphG.

2. We determine all segments in the Y-structure contairiegobintp. These segments
form a possibly empty subsequence of the Y-structure.

3. For each segment in the subsequence we add an edge topghd&sgra

4. We delete all segments endingprirom the Y-structure.

5. We update the order of the subsequence in the Y-struclinis.amounts to moving
the sweep line across the poimt

6. We insert all segments startingpninto the Y-structure.

7. We generate events for the segments in the Y-structutdodtmme adjacent by the
actions above and insert them into the X-structure.

This completes the description of how to process the eperithe invariants now hold
for p.sweep= p and hence also fqusweep= (p’.x, p’.y — 2¢) wherep’ is the new first
element of the X-structure.

18 \We defined the sweep line in this seemingly complicated waydier to be able to write this “Note that”. The
note will allow us to define a linear order on the segmentssetting the sweep line.
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L
) N
Y-structure
<s3,nil>
<s4,xita>
. <s9,nil>
i
<s2,nil>
s
<58,xitf >
s6
c
s8 <slsitg >
o/ ‘
(

X-structure: <a,sit4>,<b,sit4>,<c,sitl>,<d,nil>,<e,sit9> <f,sit1>,<g,sit2>,<h,sit3>,<i,sit1>

Figure 10.50 A scene of nine segments. The segmepndsg overlap. The sweep line is
shown in bold. The part d&(S) to the left of the sweep line is already constructed. Its sade
shown filled. The sweep line intersects the segments;, S, So, S4, andsz and in this order.
The Y-structure contains one item for each one of them. TisérXeture contains poings b, c,

d, e f, g, h,andi and in this order.

The information associated with the items in the X- and Vature will be explained in the next
section.

10.7.3 The Implementation of the Sweep Line Algorithm
This section is joint work with Ulrike Bartuschka.

The implementation follows the algorithm closely. It makes of several data types
discussed in earlier chapters. The main “ingredients” lagebtasic geometric objects and
primitives, sorted sequences for the X- and Y-structurierity queues for storing events,
and graphs for representing the output.

To make this section self-contained we briefly review thadgbes used.

Points and SegmentsThe typesat point andrat. segmentealize points and segments in
the plane with rational coordinates and are part of thematikernel. Arat pointis specified
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by its homogeneous coordinates of tyipeeger— the type of arbitrary precision integers.
If pis aratpointthen p.X(), p.Y(), and p.W() return its homogeneous coordinates
and p.xcoord ) and p.ycoord ) return its Cartesian coordinates. Xf y, andw are of
type integerwith w # 0 thenratpoint(x, y) andratpoint(x, y, w) create theratpoint
with homogeneous coordinatés, y, 1) and(x, y, w), respectively. Two points are equal
(operatoe==) if they agree in their Cartesian coordinatestahsegmenis specified by its
two endpoints; so ifp andq areratpoints thenrat. segmentp, q) is the directed segment
with sourcep and targeq. If sis aratsegmenthens.source ) andstarget ) return the
source and target & respectively.

There are also points (clapsint) with coordinates of typelouble The corresponding
segment class is callesegment The classepoint and segmenhave the same interface
asrat point andrat. segment However, the internal representation is different: iadtef
storing the homogeneous coordinatesrdsgers the Cartesian coordinates are stored as
doubles

The sweep program can be executed with either the ratiotla¢dloating point geometry
kernel. Be aware, however, that the instantiation with thatihg point kernel is not fully
reliable, see Section 10.7.2. In the sequel we use POINT rtotdethe point class and
SEGMENT to denote the segment class.

POINTS and SEGMENTS come with a large number of geometrimipivies. In the
sweep program the following primitives are used:

e int comparéPOINT p POINT o)
compares points by their lexicographic ordpmrecedesg if either
p.xcoord ) < g.xcoord ) or
p.xcoord ) = g.xcoord ) and p.ycoord ) < g.ycoord ). The function returns-1 if
p precedes, returns 0 ifp andq are equal, and returnsl otherwise. The
lexicographic order of points is the default order on paints

e int orientationPOINT p POINT g, POINT r)
computes the orientation of poings g, andr in the plane, i.e., O if the points are
collinear,—1 if they define a clockwise oriented triangle, andl if they define a
counter-clockwise oriented triangle.

e int orientationSEGMENT sPOINT p
computesorientations.source ), starget( ), p).

e int cmpslopesSEGMENT s1SEGMENT sp
compares the slopes st ands2 If one of the segments is degenerate, i.e., has length
zero, the result is zero. Otherwise, the result is the sigtapfgsl) — slopgs?).

e bool intersectiorof lineS(SEGMENT s1SEGMENT s2POINT& p)
returnsfalseif segmentslands2are parallel or one of them is degenerate.
Otherwise, it computes the point of intersection of the tivaight lines supporting the
segments, assigns it to the third paramgteand returngrue.
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Our program maintains its own set of segments which warmainal segmentsr simply
segments and store in the listernal, input segments are called input segments or original
segments when the need for distinction arises. Internahsats are directed from left to
right; vertical segments are directed upwards. There isrieenal segment for every non-
trivial input segment. ThenaxSEGMENT SEGMENT original stores for each internal
segment the corresponding original segment.

(local declaration$=
1ist<SEGMENT> internal;
map<SEGMENT , SEGMENT> original;

Sorted Sequences:The typesortsegK, | > realizes sorted sequences of pairskinx

I, see Section 5.6K is called the key type and is called the information type of the
sequence. The key type must be linearly ordered, i.e., thifunint compargconst K&,
const K&) must be defined for the typ€ and the relation< on K defined byk; < kj iff
compareéks, ko) < 0 must be a linear order dk. An object of typesortsegK, 1> is a
sequence of items (typeegitem) each containing a pair iK x 1. We use<k, i> to denote
an item containing the paik, i) and callk the key and the information of the item. The
keys in a sorted sequendle, i1), (ko,i2), ..., (km, im) fOorm an increasing sequence, i.e.,
ki <kyiforl<l <m.

Let S be a sorted sequence of typertsegK, 1> and letk andi be of typeK and |,
respectively. The operatiddlookup(k) returns the itenit = (k, .) in Swith keyk if there is
such an item and returmsl otherwise. IfSlookupk) == nil thenSinsertk, i) adds a new
item (k, i) to Sand returns this item. I8&lookupk) == it then Sinsertk, i) changes the
informationin the itemit toi. If it = (k, i) is an item ofSthenSkeyit) andSinf (it) return
k andi, respectively, an&sucgit) andSpred(it) return the successor and predecessor item
of it, respectively; the latter operations retuihif these items do not exist. The operation
Smin( ) returns the firstitem 08, Sempty ) returnstrueif Sis empty andalseotherwise.
Finally, if it andit2 are items ofSwith it1l beforeit2 thenSreversatemgitl, it2) reverses
the subsequence &starting at itenitl and ending at itent2.

In our implementation the X-structure has typertsegPOINT, seqiten> and the Y-
structure has typsortsegSEGMENT seqiten>. The Y-structure has one item for each
segment intersecting the sweep line. The information fielthe Y-structure is used for
cross-links with the X-structure and for linking overlapgisegments.

The X-structure is ordered according to the default ordgrodfits and the Y-structure is
ordered according to the intersections of the segmentsthétilirected sweep line. The
position of the sweep line is determinedpgweepand the comparison objecinprealizes
the order in the Y-structure. The classeeprmpwill be defined below.
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(local declarations+=

POINT p_sweep;
sweep_cmp cmp (p_sweep) ;

sortseq<POINT,seq_item> X_structure;
sortseq<SEGMENT, seq_item> Y_structure(cmp);

In the example of Figure 10.50 the sweep line intersectsegments,, S, S, S, S4, and
s3. The Y-structure therefore consists of six items, one eackdgments;, Sz, S, So, S4,
andss.

The X-structure contains an item for each endpoint of antispgment that is to the right
of the sweep line and an item for each intersection point eetvsegments that are adjacent
in the Y-structure and that intersect to the right of the gwiee. It may also contain
intersection points between segments that are not adjacére Y-structure® The points
in the X-structure are ordered according to the lexicogi@aphdering of their Cartesian
coordinates. As mentioned above this is the default ordgroamis.

In the example of Figure 10.50 the X-structure contains ténthe endpointb, c, d, e,

g, h, i and for intersectiona and f. Here,a and f are the intersections between segments
s4 andss, ands; ands,, respectively.

The informations associated with the items of both stresgerve as cross-links between
the two structures: the information associated with an itete X-structure is eithemil
or an item in the Y-structure; the information associatethwn item in the Y-structure is
eithernil or an item of either structure. The precise definition fobowonsider first an item
(s, it) in the Y-structure and let’ be the segment associated with the successorittam
the Y-structure. I ands’ overlap thent = it’. If sands’ do not overlap and N s’ exists
and lies to the right of the sweep line thigris the item in the X-structure with keyn' s'.

In all other cases we have= nil.

Consider next an itemp, sit) in the X-structure. Ifsit # nil thensit is an item in the
Y-structure and the segment associated with it contpinMoreover, if there is a pair of
adjacent segments in the Y-structure that interseptthrensit £ nil. We may havsit # nil
even if there is no pair of adjacent segments intersecting in

In our example, the Y-structure contains the itef®s sitg), (Ss, Xits), (S, nil), (Sg, nil),
(4, Xity), and(ss, nil) wheresitg is the item of the Y-structure with associated segnsent
andxity andxit; are the items of the X-structure with associated poménd f, respec-
tively. Let's turn to the items of the X-structure next. Aléims exceptd, nil) point back
to the Y-structure. Ifsit; denotes the itents, ...), i € {1, 2,9, 4, 3}, of the Y-structure
then the items of the X-structure af&, sits), (b, sity), (c, sit1), (d, nil), (e, sity), (f, sity),

(g, sity), (h, sitz), and(i, sity).

The Order on the Y-structure: The segments in the Y-structure are ordered according to

their intersection with the sweep line. Overlapping segisiare ordered according to their

19 Our X-structure may contain intersection points betwegmmnts that are no longer adjacent in the Y-structure.
These events could be removed from the X-structure. Rergdhigse events would guarantee an X-structure of

linear size, however, at the cost of complicating the codieceSthe size of the X-structure is always bounded by
the size of the output graph we do not remove these events.
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ID-number. All segments in the Y-structure are non-tridald the position of the sweep
line is determined by sweep

The Y-structure is realized as a sorted sequence. In a ssetpeknce comparisons be-
tween keys are only made during insertions and lookups arddhe of the keys involved
in the comparison is an argument of the operation. We coedtuat compare is only called
for segments; ands, where one of the segments has its source point equakteeep
Also, at least one of the segments is non-trivial and if onthefsegments is trivial it has
both endpoints equal fmsweep Let us assume first that both segments are non-trivial.

Assumes has its source point equal fosweep If psweepdoes not lie ors;_j, i.e.,
orientations;_;, p.sweep # 0, then the orientation test is also the outcome of compare.

If both segments contaipsweepwe compare the slopes sef ands, (orientations2
sltarget( ))). Only overlapping segments are equal after this compariEbey are ordered
according to their ID-numbers. Since only internal segmeamné stored in the Y-structure
and since internal segments are pairwise non-identicgl,twn internal segments have
different ID-numbers.

The compare classveepcmpis derived fromledacmpbase see Section 2.10. It has a
private data membgrsweepvhose value will always be equal to the position of the sweep
line; in the constructor the data member is initialized ®ittitial position of the sweep line
andsetpositionis used to inform the compare object about any advance oftkesline.

(geometric primitives=

class sweep_cmp : public leda_cmp_base<SEGMENT>

{
POINT p_sweep;

public:
sweep_cmp (const POINT& p) : p_sweep(p) {}
void set_position(const POINT& p) { p_sweep = p; }

int operator() (const SEGMENT& s1, const SEGMENT& s2) const
{ // Precondition:
// p_sweep is identical to the left endpoint of either sl or s2.

if (identical(sl,s2)) return O;
int s = 0;

if ( identical(p_sweep,sl.source()) ) s = orientation(s2,p_sweep);
else

if ( identical(p_sweep,s2.source()) ) s = orientation(sl,p_sweep);
else error_handler(1,"compare error in sweep");

if (s || sl.is_trivial() || s2.is_trivial()) return s;

s = orientation(s2,sl.target());

// overlapping segments will be ordered by their ID_numbers :
return s ? s : (ID_Number(sl) - ID_Number(s2));

We still need to explain the purpose of the tastsivial. We will also have to locate trivial
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segments in the Y-structure. These segments will have badpa@nts equal tg.sweep
We want the search to be successful iff the Y-structure aosisegment passing through
psweep In the order defined above, the trivial segmégmsweeppsweep is larger than
all segments intersecting the sweep line befossveep is equal to all segments passing
throughp.sweep and is larger than all segments intersecting the sweefieep.sweep
We conclude that a search for the trivial segment will retarsegment passing through
psweepf there is one.

It is important to observe that the compare function for seigim changes as the sweep
progresses. What does it mean then that the keys of the itemsorted sequence form
an increasing sequence? The requirement is that whenewekap or insert operation
is applied to a sorted sequence, the sequence must be sattteckspect to the current
compare function. The other operations may be applied é\tbe sequence is not sorted.

The Graph G: The graphG has typeGRAPHPOINT, SEGMENTP, i.e., it is a directed
graph where #OINT, respective\SEGMENT is associated with each node, respectively
edge, of the graph. The gragh is the part ofG(S) that is left of the sweep line. The
point associated with a vertex defines its position in the@land the segment associated
with an edge is an input segment containing the edge. We useperations to extend the
graphG. If pis aPOINT thenG.newnodg p) adds a new node tG, associatep with
the node, and returns the new nodev Hndw are nodes oG ands is aSEGMENTthen
G.newedgédv, w, s) adds the edgév, w) to G, associates with the edge, and returns the
new edge. In order to facilitate the addition of edges we maaramap<SEGMENT node
lastnode it gives for each segment in the Y-structure the rightmastex lying on the
segment.

(local declarations+=
map<SEGMENT ,node> last_node(nil);

The Priority Queue: We use a priority queugegqueueto drive the insertion of segments
into the Y-structure. The queue contains all internal segmthat are ahead of the sweep
line ordered according to their left endpoint. In particuthe first segment isegqueue

is always the segment that is encountered next by the sweep 8egqueuehas type
p.queugPOINT, SEGMEN.

The data typg.queugP, | > realizes priority queues with priority type and informa-
tion typel. P must be linearly ordered. Priority queues are an item-bdattype. Every
item (of typepqitem) stores a paitp, i) from P x |, p is called the priority and is called
the information of the item. The usual operations on progtieues ifsert, deletemin,
findmin) are available.

(local declarations+=
p_queue<POINT, SEGMENT> seg_queue;

We are now ready for the program. It has the following strrestu
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(sweepsegments)e-=
(geometric primitives
(embeddinyg

void SWEEP_SEGMENTS (const 1ist<SEGMENT>& S, GRAPH<POINT, SEGMENT>& G,
bool embed, bool use_optimization)

{ (local declaration$

(
(initialization)
(sweep

(post processing

Initialization: We describe the initialization of the data structures. Véarcthe grapit,

we compute a coordinatefinity that is larger than the absolute value of the coordinates
of all endpoints and that plays the role &f in our program, we insert the endpoints of
all input segments into the X-structure, and we create foh @@n-trivial input segment an
internal segment with the same endpoints, insert this segmi® segqueueand link the
input segment to it (through magriginal), we create two sentinel segments-ato and
+o00, respectively, and insert them into the Y-structure, wetpatsweep line at its initial
position by settingpsweepto (—oo, —o0), and we add a stopper point with coordinates
(400, +00) to segqueue The sentinels avoid special cases and thus simplify the.cod
Finally, we introduce a variableextsegthat always contains the first segmensegqueue

(initialization)=

G.clear();

COORD Infinity = 1;

SEGMENT s;

forall(s,S)

{
COORD x1 = s.xcoordl(), yl = s.ycoordl();
COORD x2 = s.xcoord2(), y2 = s.ycoord2();

if (x1 < 0) x1 = -x1;

if (y1 < 0) y1 = -y1;

if (x2 < 0) x2 = -x2;

if (y2 < 0) y2 = -y2;

while (x1 >= Infinity || y1 >= Infinity ||

x2 >= Infinity || y2 >= Infinity ) Infinity *= 2;

seq_item itl = X_structure.insert(s.source(), seq_item(nil));
seq_item it2 = X_structure.insert(s.target(), seq_item(nil));

if (itl == it2) continue; // ignore zero-length segments

POINT p = X_structure.key(itl);

POINT q = X_structure.key(it2);

SEGMENT s1 = ( compare(p,q) < O ? SEGMENT(p,q) : SEGMENT(q,p) );
original[sl] = s;

internal.append(sl);

seg_queue.insert(sl.source(),sl);

}
SEGMENT lower_sentinel (-Infinity,-Infinity,Infinity,-Infinity);
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SEGMENT upper_sentinel (-Infinity, Infinity,Infinity, Infinity);

p_sweep = lower_sentinel.source();
cmp . set_position(p_sweep);

Y_structure.insert (upper_sentinel,seq_item(nil));
Y_structure.insert(lower_sentinel,seq_item(nil));

POINT pstop(Infinity,Infinity);
seg_queue.insert (pstop, SEGMENT (pstop,pstop)) ;
SEGMENT next_seg = seg_queue.inf (seg_queue.find min());

There is one subtle point in the code above. An insert oeratio a sorted sequence with
a key that is already present in the sorted sequence retwgntetn containing the key; it
does not add a new item to the sequence and its does not chargsytof the item returned.
We exploit this feature of sorted sequences to ensure ttegihied segments share endpoints.
Assume for concreteness tlgaiands, are two input segments with a common source point
and assume tha& is processed first. When the source poinspfs inserted into the X-
structure, the item containing the source poinsolvill be returned and hence the internal
segments correspondinggpands; have the same (not just equal) source péint

Processing EventsWe now come to the heart of procedure sweep: processingse\lagit
event= (p, sit) be the first event in the X-structure and assume inductivedy our data
structure is correct fonsweep= (p.x, p.y — 2¢). Our goal is to changasweego p, i.e.,

to move the sweep line across pomtAs long as the X-structure is not empty we perform
the following actions.

We first extract the next event poipsweegrom the X-structure by assigning the min-
imal key in the X-structure tp sweep adjusting the compare function for segments to the
new position of the sweep line, and adding a veriexith positionp.sweepto the output
graphG. Then, we handle all segments passing through or endipgsateep Finally,
we insert all segments starting@sweepinto the Y-structure, check for possible intersec-
tions between pairs of segments now adjacent in the Y-streichnd update the X-structure.
Finally, we delete the event from the X-structure.

(sweep=

while ( !X_structure.empty() )

{ seq_item event = X_structure.min();
p_sweep = X_structure.key(event);
cmp . set_position(p_sweep) ;
node v = G.new_node(p_sweep);
(handle passing and ending segménts

(insert starting segments
(compute new intersections and update X-strugture

X_structure.del_item(event);

}

20 A point is realized as a pointer to a representation class. fints are equal if they have the same Cartesian
coordinates and two points are identical if they share thessentation. Testing two points for identity is faster
than testing them for equality.
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Handling Passing and Ending Segmentsi/e first determine the segments passing through
or ending inp.sweepand then handle them by reversing their order in the Y-stinect

(handle passing and ending segmésts
seq_item sit = X_structure.inf (event);

if (sit == nil) sit = Y_structure.lookup (SEGMENT (p_sweep,p_sweep)) ;

seq_item sit_succ = nil;
seq_item sit_pred = nil;
seq_item sit_pred_succ = nil;
seq_item sit_first = nil;

if (sit != nil)

{ (determine passing and ending segmgnts
(reverse order of passing segments

}

We first determine whether there is any segment passingghrou ending inp.sweep
Recall that the current event ja.sweepsit).

If sit = nil, the segment associated witih containgasweep If sit = nil, there is no pair
of adjacent non-overlapping segments in the Y-structuersecting inro.sweep However,
there may be a bundle of overlapping segments in the Y-streithat contaim.sweep We
can decide whether there is such a bundle and determine sgmeest in the bundle by
locating the poinfa.sweepin the Y-structuré:. We defined the comparison function for
segments such that a search for the trivial segrestveepp.sweep in the Y-structure is
successful iff the Y-structure contains a segment corigipsweep

If there is no segment in the Y-structure containmgweepthere is nothing to do. As-
sume otherwise. Thesit points to one such segment. We determine all such segmedregs. T
corresponding items form a subsequence of the Y-strudeeefigure 10.51. We compute
the first Gitfirst) and last gitlast) item of this bundle of items and also the predecessor
(sitpred) and successossitsucq item of the bundle. We also store §itpredsuccthe
successor ofit predbefore the insertion, i.esitfirst.

The items in the bundle are easily recognized by their in&groms. The information of
every item in the bundle except for the last is either equah#ocurrent event itemvent
or equal to the successor item in the Y-structure (in the ohaesegment overlapping with
its successor). The information of the last item in the banslleithemil or an item in the
X-structure different fromevent(such an item stands for an intersection vaitsucq.

We determine the items in the bundle as follows. Startingitawe first walk up until
sitsuccis reached. Then we walk down &it pred During the downward walk we also
start to update the data structures. For every seggiarthe bundle we do the following:

e We add an edge tG connectindastnodds] andv and label it withs. The new edge
gets its direction from the original segment containingf iEmbeds false and is
directed fromw to lastnodds], if embeds true.

21 The Y-structure contains segments and hence only segmamtsedocated in it. In order to locate the point
psweepn the Y-structure, we locate the zero-length segnipsstveepp.sweep instead.
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Figure 10.51 The itemssit pred, sitfirst, sitlast, andsitsucc
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Figure 10.52 The edges out of are constructed in the ordér, uy), (v, Up), (v, Uz), (v, Usg).

e If sends apsweephen we delete it from the Y-structure. If the predecessgmsmnt
overlaps withs, we copy the information about the successor segmen(ibainy) to
the predecessor and set a flag that the downward walk is nsididiyet.

e If scontinues through sweepghen we change the intersection information associated
with it to nil and setastnodeto v.

We explain why we direct the edge constructed for a segménin v to lastnodds] if
embeds true. Sincenewedgeappends the edge constructed to the list of outgoing edges
of v and since we construct edges during the downward walk thesedgt ofv will be
constructed in their proper counter-clockwise order, dgare 10.52. We will exploit this
fact when we construct the planar embeddingdh the post-processing step.

The identification of the subsequence of segments incidgréweegakes constant time
per element of the sequence. Moreover, the constant is sina# the test of whethgr
is incident to a segment involves no geometric computatidrobly identity tests between
items. The code is particularly simple due to our sentinghsents:sit can never be the
first or last item of the Y-structure.
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(determine passing and ending segmgsats

// walk up
while ( Y_structure.inf(sit) == event ||
Y structure.inf(sit) == Y_structure.succ(sit) )

sit = Y_structure.succ(sit);
sit_succ = Y_structure.succ(sit);
seq_item sit_last = sit;
if ( use_optimization ) { (optimization, partl }
// walk down
bool overlapping;
do
{ overlapping = false;
s = Y_structure.key(sit);
if ( !'embed && s.source() == original[s].source() )
G.new_edge(last_node[s], v, s);
else
G.new_edge(v, last_node[s], s );
if ( identical(p_sweep,s.target()) ) // ending segment

{
seq_item it = Y_structure.pred(sit);
if ( Y_structure.inf(it) == sit )
{ overlapping = true;
Y_structure.change_inf(it, Y_structure.inf(sit));
}
Y_structure.del_item(sit);
sit = it;
}
else // passing segment
{
if ( Y_structure.inf(sit) != Y_structure.succ(sit) )
Y_structure.change_inf (sit, seq_item(nil));
last_nodel[s] = v;
sit = Y_structure.pred(sit);
}
} while ( Y_structure.inf(sit) == event || overlapping ||

Y_structure.inf(sit) == Y_structure.succ(sit) );

sit_pred = sit;
sit_first = Y_structure.succ(sit_pred);
sit_pred_succ = sit_first;

All segments in the bundle starting wiitfirst and ending irsitlast pass through node
v and moving the sweep line througtsweepchanges the order of these segments in the
Y-structure. More precisely, i§ ands’ are two segments passing througbweepthen
moving the sweep line throughsweepreverses their order if ands’ do not overlap.

If the bundle is non-empty, we update its order as followsst five reverse all subse-
guences of overlapping segments and then we reverse the leatidle, see Figure 10.53.

The bundle of segments passing thropgweeps empty iff sitfirst is equal tositsucc
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Figure 10.53 Three segments passing throygsweeptwo of them overlapping. The order of
the segments is reversed, but the order within the sub-buwidiverlapping segments is retained.

(reverse order of passing segmerts
sit = sit_first;
// reverse subsequences of overlapping segments (if existing)
while ( sit != sit_succ )

{ seq_item sub_first = sit;
seq_item sub_last = sub_first;
while (Y_structure.inf(sub_last) == Y_structure.succ(sub_last))
sub_last = Y_structure.succ(sub_last);
if ( sub_last != sub_first )
Y_structure.reverse_items(sub_first, sub_last);

sit = Y_structure.succ(sub_first);
}
// reverse the entire bundle
if ( sit_first != sit_succ )
Y_structure.reverse_items(Y_structure.succ(sit_pred),
Y_structure.pred(sit_succ));

Insertion of Starting Segments:The last step in handling the event pgirgweegs to in-

sert all segments starting@sweepnto the Y-structure and to test the new pairs of adjacent
items(sitpred ...) and(..., sitsucq for possible intersections. If there were no segments

passing through or ending msweephen the itemsit succandsit predstill have the value
nil and we have to compute them now.

We use the priority queusegqueueto find the segments to be inserted. As long as the

first segment irsegqueuestarts ap.sweepi.e., nextsegsource ) is identicaf? to p.sweep
we remove it from the queue and locate it in the Y-structuetslit be the item returned by
locateand letp sit be its predecessor.

We inserinextsegaftersit into the Y-structure; this will add an itesit to the Y-structure.

We set the information ddit to s sit if the new segment overlaps with the segment associated

22 Recall that we ensured that endpoints of internal segmeatsite equal are identical.
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with ssit and we set it tanil otherwise. Similarly, if the new segment overlaps with the
segment associated wiglsit we change the information gisit to sit.

We associate the new itesit with the right endpoint ohextsegin the X-structure; note
that the point is already there but it does not have its lintkoY-structure yet. We also set
lastnodds] to v, and if sitsuccandsitpred are still undefined, i.e, there was no segment
passing through or ending msweepwe set them to the successor and predecessor of the
new item, respectively, and we sitpredsuccto sitsucc

(insert starting segments

while ( identical(p_sweep,next_seg.source()) )
{ seq_item s_sit = Y_structure.locate(next_seg);
seq_item p_sit = Y_structure.pred(s_sit);

s = Y_structure.key(s_sit);

if ( orientation(s, next_seg.start()) == 0 &&
orientation(s, next_seg.end()) == 0 )
sit = Y_structure.insert_at(s_sit, next_seg, s_sit);
else
sit = Y_structure.insert_at(s_sit, next_seg, seq_item(nil));

s = Y_structure.key(p_sit);

if ( orientation(s, next_seg.start()) == 0 &&
orientation(s, next_seg.end()) == 0 )
Y_structure.change_inf (p_sit, sit);

X_structure.insert(next_seg.end(), sit);
last_node[next_seg] = v;

if ( sit_succ == nil )

{ sit_succ = s_sit;
sit_pred = p_sit;
sit_pred_succ = sit_succ;

}

// delete minimum and assign new minimum to next_seg

seg_queue.del_min();
next_seg = seg_queue.inf (seg_queue.find min());

Computing New Intersections: If sitpred still has the valuenil, there were no ending,
passing or starting segments and hemsweeps an isolated point and we are done. Iso-
lated points result from segments of length zero.

So assume thatit pred exists. We have to update its information field (which stdkh
the value from before the event). We set inibif there is no intersection betwesit pred
and its successor. If the intersection exists, we inseritd the X-structure and set the
information field ofsitpredto it. If there are segments leaviqgsweep i.e, sitpred is
not the predecessor sftsucg we also check for an intersection betwesrsuccand its
predecessor.
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(compute new intersections and update X-strugtare

if ( sit_pred != nil )
{ if ( 'use_optimization )

{ Y_structure.change_inf (sit_pred,seq_item(nil));
compute_intersection(X_structure, Y_structure, sit_pred);
sit = Y_structure.pred(sit_succ);
if ( sit != sit_pred )

compute_intersection(X_structure, Y_structure, sit);

}

else
{ (optimization, part2 }
}

The functioncomputédntersectiontakes an iterrsitO of the Y-structure and determines
whether the segment associated wsttd intersects the segment associated with its suc-
cessor itensitl to the right of the sweep line. If so, it updates the X- and th&tiicture.

Let 55 ands; be the segments associated wsitD andsitl, respectively, and letp and 1

be the supporting lines & ands;, respectively.

We know thaty, intersects the sweep linebefores;. Thussy ands; intersect right of the
sweep line if the right endpoint & lies below or or¢g (orientations0, sltarget( )) > 0)
and the right endpoint af lies above or orf; (orientationsl, sQtarget( )) < 0).

If the segments intersect, we compute the point of intei@ectall it g, by a call of
sQintersectiomf_lines(s1, g), insert a new paird, sit0) into the X-structure and associate
this pair withsitOin the Y-structure.

(geometric primitivest=

static void compute_intersection(sortseq<POINT,seq_item>& X_structure,
sortseq<SEGMENT,seq_item>& Y_structure, seq_item sit0)
Y_structure.succ(sit0);
Y_structure.key(sit0);
Y_structure.key(sitl);

{ seq_item sitl
SEGMENT sO
SEGMENT s1

if ( orientation(sO,sl.target()) <= 0 &&
orientation(s1,s0.target()) >= 0 )
{ POINT q;
sO0.intersection_of_lines(sl,q);
Y_structure.change_inf (sit0, X_structure.insert(q,sit0));
}
}

Post ProcessingWe associate with each edge®fan input segment containing it. This is
easily done as each edge has an internal segment associttét Whus we only have to
replaceGJe] by original[G[€]].
The graphG constructed during the sweep is planar but is not in the fdrangdanar map
yet. In particular, the order of the adjacency lists depeamdthe insertion order.
Whenembeds true, we turnG into a planar map.
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Figure 10.54 Before the call of embedding there is only one edge leavirgrig namely, the
edgee. There are three parallel edge&s 1); their counter-clockwise order around node 2 is in
decreasing order of ID-number. We need to add the reverktie edges, b, ¢, andd to the list
of edges out of 1. Sorting the edges by increasing slope ayebanf equal slope by ID-number
gives the desired order.

(post processing=
if (embed) construct_embedding(G);

edge e;
forall_edges(e, G) G[e]l = original[G[el];

Whenembeds true all edges ofG are directed from right to left (vertical edges are directed
downwards). Moreover, the edges out of any node are alreadiyeir proper counter-
clockwise order.

In order to turnG into a planar map we need to add the reversal of every edgeoand t
insert the new edges at their proper position into the adjachsts.

Edge reversals are directed from left to right (the reven$al vertical edge is directed
upwards). The proper order of edge reversals is thereforddpe. Reversals of parallel
edges should be ordered by ID-number. Consider Figure 10.54

Let R be a copy (!!!) of the set of all edges &f. We useR instead ofE to indicate thaR
represents the set of edge reversals. We sort the edgreadnording to slope and then add
for each edge in R the edggtarget(e), sourcge)) to G. Since new edges are appended to
the lists of outgoing edges, this will result in properly ereld adjacency lists.

(embedding=
class sweep_cmp_edges : public leda_cmp_base<edge>
{
const GRAPH<POINT,SEGMENT>& G;
public:

sweep_cmp_edges (const GRAPH<POINT,SEGMENT>& g): G(g) {}

int operator() (const edge& el, const edge& e2) const
{ SEGMENT s1 = G[el];
SEGMENT s2 = G[e2];
int ¢ = cmp_slopes(sl,s2);
if (c == 0) ¢ = compare(ID_Number(sl),ID_Number(s2));
return c;
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static void construct_embedding (GRAPH<POINT,SEGMENT>& G)

{
list<edge> R = G.all_edges();

sweep_cmp_edges cmp(G) ;
R.sort (cmp);

edge e;
forall(e,R)
{ edge r = G.new_edge(target(e),source(e),G[e]);
G.set_reversal(e,r);
}
}

In the post-processing step we first compute the embedditighem replace internal seg-
ments by input segments. It would be incorrect to change ttieraf two steps: first, the
ordering of the Y-structure is an ordering on internal segimand we must use the same
ordering in the embedding step. Second, the input may comtaitiple occurrences of
the same segment and the ordering by ID-number does not hiesaketween identical
segments.

An Optimization: The running time of SWEERBEGMENTS isO((n+s) log(h+m)+m)
wheren is the number of segmentsjs the number of nodes @& andm is the number of
edges ofG. If there are no overlapping segments tlern= O(n + s) sinceG is planar.

In the presence of overlapping segmemgnay be as large as(n + s). The time bound
can be seen as follows. There @én + k) lookups, insertions, and deletions in the X- and
Y-structure, each for a cost @(log(n + m)). Observe thah + m is an upper bound on
the number of items in the Y-structure and that s is an upper bound on the number of
items in the X-structure. Sin@e< n” we have logn + s+ m) = O(log(n +m)). The total
number of items handled by tmeversetemsoperations on the Y-structure @(m). Since
the cost ofreversatemsis proportional to the number of items reversed, the totat éar
all reverseatemsoperations iSO (m). The number of operations @is O(n+k+m), each
for a cost ofO(1).

Experiments show that a significant fraction of the runningetis spent in the geometric
primitives sweepgzmpandcomputéntersection in particular, if the rational kernel is used
(which we recommend). The rational kernel has a built-intit@apoint filter, i.e., all geo-
metric tests are first performed in floating point arithmetie rounding error is estimated,
and only if the error estimation indicates that the resulthef floating point computation
may be wrong, the computation is repeated with exact aritikm€&he floating point filter
is discussed in detail in Section 8.7.

The functioncomputeantersectionperforms orientation tests and computes an intersec-
tion point. The floating point filter applies to the orientatitests but does not apply to the
computation of intersection points since constructionses points are always performed
with exact arithmetic.

The functioncomputantersectionis called whenever two segments become adjacent in
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Figure 10.55 The intersectiorp is first discovered whenis inserted into the Y-structure and is
rediscovered whesais removed from the Y-structure.

the Y-structure. Segments may become adjacent in the ¥tateimore than once, see
Figure 10.55. We show how to avoid the recomputation of ggetions.

We maintain a dictionarynter.dic which maps pairs of segments to items in the X-
structure. The appropriate data type is a two-dimensiomgl.m

(local declarations+=
map2<SEGMENT , SEGMENT,seq_item> inter_dic(nil);

Whenever a pair of segments that is adjacent in the Y-streidtacomes non-adjacent we
store their intersection in the dictionary and wheneveriagdsegments becomes adjacent
we consult the dictionary to find out whether their intergettvas already computed.

When processing an event two intersections may get lost.si@enthe sequence of
items corresponding to segments passing through or endipgweep Let sitlast be the
last item in this sequence and k&t pred andsitsuccbe the items before and after the
sequence, respectivelgit last does not exist if there are no segments passing through or
ending inp.sweep

Sweeping througlp.sweepreverses the subsequence starting \gittirst and ending
with sitlast and hence two intersections can get lost, the intersectavadinsitlast and
the intersection stored isitpred The intersection stored isitlast is with the segment
associated witkit succand the intersection storedsit predis with the segment associated
with the successor dit pred This is the itensit predsucc

(optimization, part 1=
seq_item xit = Y_structure.inf (sit_last);
if (xit) { SEGMENT sl = Y_structure.key(sit_last);
SEGMENT s2 = Y_structure.key(sit_succ);
inter_dic(s1,s2) = xit;

}

(optimization, part 2=

seq_item xit = Y_structure.inf (sit_pred);
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if ( xit )

{ SEGMENT s1 = Y_structure.key(sit_pred);
SEGMENT s2 = Y_structure.key(sit_pred_succ); // sit_first
inter_dic(s1,s2) = xit;
Y_structure.change_inf (sit_pred, seq_item(nil));

}

compute_intersection(X_structure, Y_structure,inter_dic,sit_pred);
sit = Y_structure.pred(sit_succ);
if ( sit != sit_pred )

compute_intersection(X_structure, Y_structure,inter_dic,sit);

We also need to change the functmmymputantersection Before computing an intersection
point we check whether the two segments already have arséuigon event in the X-
structure by a lookup imtermap If the lookup fails we compute the intersection and add
it to the X-structure.

(geometric primitivest=
static void compute_intersection(sortseq<POINT,seq_item>& X_structure,
sortseq<SEGMENT,seq_item>& Y_structure,
const map2<SEGMENT,SEGMENT,seq_item>& inter_dic,
seq_item sitO0)
{ seq_item sitl = Y_structure.succ(sit0);
SEGMENT sO = Y_structure.key(sitO);
SEGMENT s1 = Y_structure.key(sitl);

if ( orientation(sO,sl.target()) <= 0 &&
orientation(sl,s0.target()) >= 0 )
{
seq_item it = inter_dic(s0,sl);
if ( it == nil)
{ POINT q;
s0.intersection_of_lines(sl,q);
it = X_structure.insert(q,sit0);

<o

_structure.change_inf (sit0, it);

10.7.4 Experimental Evaluation of the Sweep Line Algorithm

We report about tests fainree kinds of test datmamely random, difficult, and highly de-
generate inputshree different implementations of points and segmeatsely the floating
point kernel (FK), the rational kernel (RK) and the ratiokatnel with turned-off floating
point filter (FK™), andwith and without the optimizationWe describe the test data, list
running times, and comment on the results.

Random Inputs: The random data set consistsxdfegments whose endpoints have random
k bit coordinates. Table 10.8 gives the number of nodes aneseafthe output graph and
the running time fon = 200 and different values &. The experiments indicate that the
optimization described above and the floating point filter effective. The optimization
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k \ E RK™ RK™O RK RKO FK FKO

10 4813 9028 2.27 2 12 109 0.73 0.67
20 4742 8884 2.63 219 131 11 0.7 0.67
30 5467 10334 3.07 257 152 126 08 0.77
40 5478 10356 3.78 313 169 138 081 0.77
50 5168 9736 3.66 3.13 1.62 1.3 076 0.73
60 5558 10516 4.36 359 181 143 082 0.79
70 5909 11218 5.2 423 213 16 086 0.83
80 5174 9748 475 378 186 143 0.78 0.74
90 4808 9016 4.86 3.82 177 134 071 0.68
100 5080 9560 5.92 45 212 154 075 0.73

Table 10.8 200 random segments, coordinates are rankldnit integers. An “O” indicates the
use of the optimization.

is more effective for the rational kernels because the caatiom of intersections is more
costly in exact arithmetic. Floating point arithmetic istier than exact arithmetic but the
difference is never more than a factor of two in running tiM& have to admit though that
the difference can be made arbitrarily larger by choosingglavalues ok.

Difficult Inputs: Let size= 2 and lety = 2size/(n — 1). The random data set consists
of n segments where thieth segment has endpointsize+ rx1, size+i -y + ryl) and
(3-size+rx2, 3-size—i - y+ry2) andrxl, rx2, ryl, ry2 are random integers ins, s] for
some small integes. Fors = 0 all segments in the difficult data set pass through the point
(2-size 2-size, and for small but non-zero valuesothey intersect in the neighborhood of
this point. Table 10.9 gives the results for the difficultadaét withs = 10,k = 10, 20,...

, 100, andh = 200. The floating point filter and the optimization are agaiiejeffective.
The floating point implementation produced incorrect ressfalr all values ok; the floating
point implementation does, however, work correctly for Bemavalues ofn and/or larger
values ofs.

Highly Degenerate Inputs: The highly degenerate test set consistsidegments with
random coordinates in a small grid with side lengthFor example, fon = 100 and
s = 10 one should expect a large number of degeneracies. Wehisdddt set to support
our claim that the algorithm handles all degeneracies. Weal@eport running times for
the highly degenerate inputs.

The readers may perform their own experiments by runnirfgeethe sweep-segments-
demo in xIman or the sweejime program in the demo directory.

We were surprised by two outcomes of our experiments.

First, we expected the implementation using the rationaiddeto be much slower than
the floating point computation and not just by a factor of t¥ie achieve the small factor by
the use of the floating point filter, by the optimization whaloids the costly recomputation
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k \ E RK™ RK™O RK RKO FK  FKO

10 20134 39669 9.84 829 5.07 446 error error
20 20298 39997 11.75 9.71 565 4.64 error error
30 20296 39994 12.33 105 6.04 4.88 error error
40 20298 39997 14.79 11.71 6.5 5.13 error error
50 20300 40000 16.12 12.5 6.7 5.22 error error
60 20298 39997 16.32 1295 6.91 5.45 error error
70 20300 40000 18.77 1484 751 5.69 error error
80 20300 40000 19.82 1591 7.62 5.72 error error
90 20298 39997 21.27 16.25 7.68 5.71 error error
100 20296 39994 24.61 18.39 8,58 6.24 error error

Table 10.9 The difficult example with 200 segments. An “O” indicates tise of the
optimization and error indicates that the computation withfloating point kernel gave the
incorrect result.

of intersections, and by the observation that many equtagis for points can be replaced
by tests for identity of points.
Second, we expected the floating point implementation te liifficulties with the dif-
ficult example. However, we were surprised by the fact thakiter crashed. It always
produced an output, albeit an incorrect one. We try to erplais phenomenon by argu-
ing that the program does not crash as long as the sentireetsadled correctly, i.e, the
segmentsower sentinelanduppersentinelhave all segments between them and all inter-
section points precedastop We do not care what the geometric tests do with segments
that are not sentinels. If sentinels are handled correstbty lookup in the Y-structure will
return an item different from the first item in the Y-struefti Also the walks performed in
the Y-structure will determine a subsequence that doeswbtde the sentinel items. For
this reason none of the operations on the Y-structure willifa., it will never happen that
we ask for the successor of the last or the predecessor ofshédim. Also sincgstopis
handled correctly, we will never attempt to extraektsegfrom an emptysegqueue
Exercises for 10.7
1 Let Go andG; be graphs of typ&RAPHPOINT, SEGMENTD. Write a function that
checks whether the graphs are isomorphic, i.e., whethes tre bijection$y : Vo —
Vi andig : Eg — Ej such thatGg[v] = G3[iv (v)] for all nodes ofGg and such that
ie(e) = (iv(v),iv(w)) andGg[e] = G;[ig(e)] for all edgese = (v, w) of Gg.

2 Use the solution to the previous exercise to write a fumctigat runs two implemen-

tations of SEGMENTINTERSECTION and then checks the computed graphs for iso-
morphism.

23 This sentence requires knowledge of the implementatiooméd sequences. The implementation is such that if
the comparisons with the first and the last element of thed@#quence are correct and the outcome of any other
comparison is arbitrary, lookup will not return the firstralent.
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3 Write a trivial implementation 0SEGMENTINTERSECTIONG, reporf) that simply
checks every pair of segments for an intersection.

4  Extend the sweep line algorithm or any of the other algoritisuch that it computes the
trapezoidal decomposition induced by a set of segments.

10.8 Polygons

We define the types polygon and generalized polygon. A palyg@an open region of the
plane whose boundary is a closed polygonal cHaind a generalized polygon is anything
that can be obtained from polygons by regularized set opesatBoth classes offer func-
tions for point location, for intersection with lines andyegents, and for moving objects
around. Generalized polygons offer, in addition, the ragméd set operations complement,
union, intersection, difference, and symmetric diffelenc

This section is structured as follows: in Section 10.8.1 weeuks the functionality of
polygons and generalized polygons, in Section 10.8.2 we tlie essentials of the im-
plementation of polygons, in Section 10.8.3 we give the mmtics underlying the rep-
resentation of generalized polygons, and in Section 1@ 4jive the highlights of the
implementation of generalized polygons.

We advise you to exercise the polygon demo in xIman befordimgahis section, see
Figure 10.56.

10.8.1 Functionality

A closed polygonal chaif® is a cyclic sequencépg, ps, ..., Pn_1) Of points. The points
are called the vertices of the chain and the number of verticealled the size of the chain.
The vertices of a closed polygonal chain are indexed mochdosizen of the chain, in
particular,pn = po. A closed polygonal chain induces a s¥tP) of segments, namely
the set of segmentp; pi+1, 0 < i < n — 1, connecting consecutive vertices. A closed
polygonal chain is calledimpleif all nodes of the grapls(S(P)) defined by the segments
in S(P) have degree equal to two, i.e., if no two segmentS(iR) except for consecutive
segments share a point. A closed polygonal chiis calledweakly simpléf the segments
in S(P) are disjoint except for common endpofititand if the chain does not cross itself.
Figure 10.57 shows some examples.

A weakly simple polygonal chain splits the plane into an wnmbed region and one or
more bounded regions. For a simple polygonal chain therasisgne bounded region.
When a weakly simple polygonal chakhis traversed either the bounded region is consis-
tently to the left of P or the unbounded region is consistently to the lefPofthis follows
from the fact that a weakly simple chain does not cross it3&H say thatP is positively
oriented in the former case and negatively oriented in ttierl@ase. We call the region

24 A precise definition is given below.
25 1t is allowed that segments that are not consecutiv® @hare an endpoint.
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Figure 10.56 A screen shot of the polygon demo in ximan. The display shogergralized
polygon. The boundary cycles are indicated by arrows anihgide of the polygon is shaded.
The various buttons allow the user to construct polygons bysa input or by calling
generators, to force vertices to a grid, to compute intéimes; unions, differences, and
symmetric differences, to perform point location querag] to compute complements.

to the left of P the positive side oP. We overload notation and ustalso to denote the
positive side ofP, see Figure 10.58. The positive side Bfis an open set an® is its
boundary.

Frequently, we do not want to distinguish between a polybohain and the polygonal
region defined by it. We use the wopdlygonto cover both aspects.

We have two classes of polygonsat polygonshave rat points as their vertices and
polygonshavepoints as their vertices. Both classes offer essentially the sametibn-
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Figure 10.57 P is simple andQ is weakly simple but not simpleR is not weakly simple
because it crosses itselfrat= r1 = rg, andSis not weakly simple sincs, lies in the interior of
another segment.

Figure 10.58 The bounded region is to the left &; P is positively oriented. The unbounded
region is to the left ofQ, Q is negatively oriented.

ality, but, of course, onlyat polygongguarantee correct results. We wiaepolygonsn this
section.
The declarations

rat_polygon P1;

rat_polygon P2(const list<rat_point>& pl,
CHECK_TYPE check = rat_polygon::SIMPLE,
bool respect_orientation =
rat_polygon: :RESPECT ORIENTATION) ;

introduce polygon$’1 and P2, P1is initialized to the empty polygon an@2 is initial-
ized to the polygon with vertex sequenge The second argument takes one of the values
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NO_CHECK, SIMPLE, WEAKLY_SIMPLE of a local enumeration type CHECRYPE.
If checkis SIMPLE, the polygon must be simple, andciieckis WEAKLY _SIMPLE,
the polygon must be weakly simple. The third argument takes af the values RE-
SPECTORIENTATION or DISREGARDORIENTATION. If respecirientationis DIS-
REGARD.ORIENTATION, the orientation ofl is chosen such that the bounded region
with respect tgl lies to the left ofpl. The meaning of this flag is undefinedgf is not
weakly simple.

Simplicity and weak simplicity can also be checked by thecfioms

bool P.is_simple();
bool P.is weakly simple();

Assignment and copy constructor are available for polyg®he functions

list<rat point> P.vertices();

list<rat_segment> P.edges();
return the list of vertices and the list of segment#ofespectively. The second function is
also available a®.segments).

Letl be aline and les be a segment. The functions

list<rat_point> P.intersection(1l);
list<rat_point> P.intersection(s);

return the crossings between the chBiandl| or s, respectively. The function
rat_polygon P.complement ()

returns the polygon whose list of vertices is the reversa’sflist. If P is weakly simple,
the positive side of the complement is the negative side ahd vice versa.

The remaining functions for polygons assume that P is weskiple. Their meaning is
undefined if P is not weakly simplRecall that a weakly simple polygd® splits the plane
in an unbounded region and one or more bounded regions. Atsdl that we designated
the region(s) to the left o as the positive side d® and useP also for the positive side of
P.

Let p be a point. The function

int P.side_of (p);
returns the side oP to which p belongs, i.e.;+1 if p belongs to the positive side, O |if
liesonP, and—1 if p belongs to the negative side, see Figure 10.59. The function
region kind P.region of (p);
returns the region with respect Boto which p belongs, i.e., BOUNDEIREGION if p lies
in the bounded region d?, ON_REGION if p lies onP, and UNBOUNDEDREGION if
p lies in the unbounded region. One can also ask for the cantihin a specific region
by

bool P.inside(p);
bool P.on boundary(p);
bool P.outside(p);
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Figure 10.59 Side-of tests: We performed side-of tests with respectaatneralized polygon
of Figure 10.56 for 5000 random points. The points on thesdéffit sides are shown at different
grey level.

Figure 10.60 The intersection oP andQ is a line segmentR \ (P N Q) is a rectangle minus a
line segment.

The function
RAT_TYPE P.area();

returns the signed area of the bounded regioR ofhe sign of the area is positive i is
positively oriented and is negativeHf is negatively oriented.

We come to generalized polygons. The class of polygons i€losed under boolean
operations. In fact, very strange objects can be generadadgolygons by boolean opera-
tions, see Figure 10.60. The class of generalized polygoc@nepasses all sets that can be
constructed from polygons by the so-calledularized set operationsee [Req80, TR80,
Hof89]. We refer the reader to [Nef78] for the general case.

In order to define the regularized set operations we needviewesome elementary
concepts of topology. For a sitwe use intX, cl X, bd X, and cplX to denote itsnterior,
closure boundary andcomplementrespectively. An open séf is calledregularif X =
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Figure 10.61 In (a), the polygon$?and Q share an edge? N Q is a closed line segment, and
reg(P N Q) is the empty set. In (b)P \ Q is the half-closed region between the cycdeandQ;
the chainP does not belong t® \ Q and the chairQ belongs to it. The regularized set
difference regP \ Q) is the open region with boundari€sand Q.

intcl X. The following sets are non-regular: the plane minus a sipgint or the plane
minus a line. A set is callepolygonalif its boundary consists of a finite number of points
and open line segments. The regularization of axs&t defined as intcK; we use regX

as a shorthand for int&{. We show that regularization generates regular sets andhidna
regularized set operatioffsaapplied to regular polygonal regions generate regulargmigl
regions, see Figure 10.61.

Lemma 10

(a) Let X be any set. ThaegX is regular.

(b) Let X be any open set. X is regular iff X aimicpl X have the same boundary.

(c) Let P be aweakly simple polygonal chain. Then the boundedmremd the unbounded
region with respect to P are regular polygonal sets.

(d) If P and Q are regular polygonal regions then so aeg cplP,reg(PNQ), reqPUQ),
reg P\ Q), andreg P & Q).

Proof We start with part (a). LeX be any set and lef = regX. We need to show that
is regular. We hav& C clY and hencé/ C intclY sinceY is open. We hav& C cl X by
definition of Y and hence ¢f C clcl X = ¢l X. ThusintclY Cintcl X =Y.

We turn to part (b). Assume first that is regular, i.e.. X = intcl X, and letx be any
point in the boundary oX. Thenx e cl X \ X since X is open. Assume that there is a
neighborhoodJ of x such tha Nintcpl X = @. ThenU C cl X and hence € intcl X,

a contradiction to the regularity of.

To prove the converse we observe tiatC intcl X since X is open. We need to show
that the containment is not proper. Consider any prirt bd X. By assumption every
neighborhoodJ of x hasU Nintcpl X # @. Thusx ¢ intcl X and hence intcK C X.

For part (c) we observe that the boundary of the bounded asasghe unbounded
region with respect t® is equal toP and hence both regions are certainly polygonal. The
regularity of both regions follows from part (b) and the fewt P is weakly simple.

26 The regularized union of two se¥andyY is defined as regX U Y); the definition of the other regularized set
operations is analogous.
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The results of the regularized set operations are certpiollygonal; regularity follows
from part (a). O

The classermt genpolygonandgenpolygonrepresent regular polygonal regions over the
rational and the floating point kernel, respectively. Inexamples we usat. genpolygons
genpolygonstands for generalized polygon.

The constructors

rat_gen_polygon P;
rat_gen polygon Q(rat_polygon R);

construct the empty generalized polygon and the genedatiabygon corresponding tR,
respectively. The second constructor requires Bhesta weakly simple polygon. There are
two special generalized polygons, the empty one and thehdl Thefull polygonis the
entire plane.

The functions

bool P.is_empty();
bool P.is_full();

return true ifP is the empty set or the entire plane, respectively.
If pisa pointandP is a generalized polygon then

bool P.side_of (p)

returns+1if p € P, returns 0 ifp lies onP, and returns-1 otherwise, see Figure 10.59.
The function

region kind P.region of (p);

returns the region with respect Boto which p belongs, i.e., BOUNDEIREGION if p lies
in the bounded region d?, ON_REGION if p lies onP, and UNBOUNDEDREGION if
p lies in the unbounded region. The bounded region of the epgizgon is empty and the
bounded region of the full polygon is the entire plane.

The function

RAT_TYPE P.area();

returns the signed area of the bounded regio® ofThe sign of the area is positive B
is bounded and is negative i is unbounded. This function cannot be applied to the full

polygon.
For the following operations ld? and Q be generalized polygons.

rat_gen polygon P.complement ()
returns the regularized complement®fnd

gen_rat_polygon P.unite(Q);

gen rat_polygon P.intersection(Q);
gen_rat_polygon P.diff (Q);

gen rat_polygon P.sym diff(Q);
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Figure 10.62 Two polygonsP andQ and the results of the three boolean operations, and\.
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Figure 10.63 Two polygonsP andQ and the results of the three boolean operations, and
\. Observe that the positive side @fis unbounded.

return regP U Q), regP N Q), regP \ Q), and regP & Q), respectively. The wordnion
is a reserved word of €, hence the namenite for the union-operation. Figures 10.62
and 10.63 show some examples.

A generalized polygon can be represented by its boundatgsgs will be explained in
Section 10.8.3. The function
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Figure 10.64 The complement of the generalized polygon of Figure 10.9&edve that the
orientation of all boundary cycles is reversed.

list<rat_polygon> P.polygons();

returns the list of boundary cycles & The list is ordered according to nesting, i.e., if a
boundary cycled is nested in a boundary cyd® thenC is beforeD in the list of boundary
cycles.

10.8.2 The Implementation of Polygons

Polygons are a handle type, i.e., a polygon is realized agndggpdo a representation class
(calledpolygonrep andrat_polygonrep, respectively) which contains the actual representa-
tion. The member functioptr( ) of class polygon returns the pointer to the representation
object.

The representation consists of a list of points, a list ofsegts, four extreme points,
and an integer which stores the orientation of the polygdme drientation is positive if the
bounded region is to the left of the polygon and is negatihetise.

1list<POINT> pt_list;

1list<SEGMENT> seg list;

POINT xmin, ymin, xmax, ymax;
int orient;

Here,ptlist contains the list of pointseglist contains the list of segments (th¢h segment
in seglist connects thé-th point inptlist to thei + 1-th point inptlist), andxmin ymin,
xmax andymaxare vertices with minimak-coordinate, minimal-coordinate, maximal
x-coordinate, and maximat-coordinate, respectively.
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We will next discuss some of the member functionpolygon

The Signed Area of a Simple Polygon:Assume thaseglist is the list of boundary seg-
ments of a simple polygo®. We show how to compute the signed akéP) of the
bounded face oP. The sign of the area is positive if the bounded face lieseddft of P
and is negative otherwise.

Lemma 11lLet P be a simple polygon and let n be the number of segmerits oundary
of P. ForO < i < n, let p be the source point of the i-th boundary segment. Let p
be an arbitrary point in the plane and leti A= A(A) be the signed area of the triangle
Ai = (p, pi, Pi+1). Then

AP =) A

0<i<n

is the signed area of A.

Proof We use induction om and assume w.l.0.g. that the signed area is positive. Assume
first that P is a triangle, see Figure 10.65. fiflies in the bounded face d® or on P,

the bounded face d? is partitioned by the triangleso, A1, andA,, and henceA(P) =
A(Ap) + A(A1) + A(AL). If pliesin the unbounded face &f, thenp can see either one

or two edges oP. If p can see one edge &%, saypop1, then

A(P) = |A(AD] + [A(A2)| — [A(A0)| = A(A1) + A(A2) + A(Lo),

where the second equality follows from the fact thatand A, are positively oriented and
Ao IS negatively oriented. Ip can see two edges &f, saypop1 and p1 p2, then

A(P) = [A(A2)| — [A(AD] — [A(Ao)| = A(A2) + A(A1) + A(Lo),

where the second equality follows from the fact that therdégon of A, is positive and

the orientations of\g andA; are negative. This completes the base step of the induction.
Assume next thah > 4. Then there is an such that the segmemi p;,» is contained

in the interior of P 2’. Let Q be the polygon obtained frorR by replacing the segments

Pi pi+1 and piy1 Pi+2 by the segmenp; pi2. Then

A(P) = A(Q) + A(L)
whereA = (p;, pi+1, Pi+2). Applying the induction hypothesis 1 yields

i—1 n—1
AQ) =D AL+ AP PP+ D AL
j=0 j=i+2

and applying the induction hypothesisAoyields
A(Q) = A(AI) + A(Ai+1) + A(Pit2, Pis P) = A(AD) + A(Ait+1) — AP, Pis Pi+2)-

27 Consider an arbitrary triangulation &. The dual of the triangulation is a tree and hence there iaat one
triangle in the triangulation which has two edgesin its boundary. The two edges apep;+1and pj+1 Pi+2
for somei.
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Figure 10.65 Let Aj = (p, pi, pi+1) fori =0, 1, 2, and letP = (po, p1, p2). Then
A(P) = A(Ap) + A(A1) + A(Ap) in all three cases.

Adding the two equations completes the induction step. O
The implementation follows directly from the lemma above.

(polygon: compute areee

static RAT_TYPE compute_area(const 1ist<SEGMENT>& seg_list)
{
if (seg_list.length() < 3) return O;
list_item it
POINT p
it = seg_list.succ(it);
RAT_TYPE A = O;
while (it)
{ SEGMENT s = seg_list[it];
A += ::area(p,s.source(),s.target());
it = seg_list.succ(it);

}

return A;

seg_list.get_item(1);
seg_list[it].source();

The time to compute the signed area of a polygo@ig). The constant factor in th®-
expression is fairly large, in particular, with the ratibkarnel. Observe that the areasrof
triangles are computed and that an area computation ofrgte@mounts to the evaluation
of a 3x 3 determinant.

Determining the Orientation: The simplest way to compute the orientation of a polygon
P is to take the sign of the area. This takes linear time bubis;s$ee the remark at the end
of the preceding section. A faster approach is as follows.

Let q be the lexicographically smallest vertex Bfand letp andr be the predecessor
and successor vertices gfon P. Then the orientation oP is equal to the orientation of
the triple(p, q, r), see Figure 10.66. Observe that this statement is not trianfarbitrary
vertexq; it is only true for a vertex that is extreme in some direction
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Figure 10.66 The triple(p, g, r) has positive orientation. H is the lexicographically smallest
vertex of the polygon, the region to the left of the polygociadin is bounded. This conclusion
cannot be drawn for an arbitrary vertex.

The implementation obrientationfollows directly from the preceding paragraph.

(polygon: compute orientatiQes

static int compute_orientation(const 1ist<SEGMENT>& seg_list)
{ list_item q_it = seg_list.first();
POINT q = seg_list[q_it].source();
list_item it;
forall_items(it,seg_list)
if ( compare(seg_list[it].source(),q) < 0 )
{ q_it = it;
q = seg_list[q_it].source();
}

POINT p
POINT r

return ::orientation(p,q,r);

seg_list[seg_list.cyclic_pred(q_it)].source();
seg_list[seg_list.cyclic_succ(qg_it)].source();

Point Containment: Let P be a weakly simple polygon. The function
region kind P.region_of (const POINT& p) const

returns the region oP containingp. In order to decide containment we first use the extreme
vertices for a quick test. Ip lies to the left ofixminor to the right ofixmaxor belowymin

or aboveymax we return UNBOUNDEDREGION. Next we check whethgr lies onP.
Assume this is not the case, i.p.]ies either in the bounded face or the unbounded face of
P.

We use the following observation. Consider a vertical uglwayr, starting inp and
assume that, does not pass through any vertexraf Thenr , intersects an odd number of
segments oP iff pliesinthe bounded region d¢f. The observation solves the problem iff
I, does not pass through any vertexrof

We useperturbationto extend the solution to arbitrary poings If p does not lie orP,
the pointg obtained fromp by moving p by an infinitesimal amount to the right belongs
to the same face with respect®as p. Moreover, the vertical upward ray starting atg
does not pass through any vertexfofin particularrq does not intersect any vertical edge
of P.
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Consider a segmestof P. If s is vertical,ry does not intersect it. So assume thas
not vertical. Leta be the endpoint of with the smallex-coordinate and lab be the other
endpoint ofs. Thenrg intersectss if Xa < Xq < Xp andq lies to the right of the oriented
line ¢ througha andb. Here, we used; to denote thex-coordinate of a point. Since
Xq = Xp + € for an infinitesimak, the first condition is equivalent tq, < X, < X, and the
second condition is equivalent fbeing to the right of.

We obtain the following code.

(polygon: regionof and sideof)=

region_kind POLYGON: :region_of (const POINT& p) const
{

// use extreme vertices for a quick test.

int cx1 = POINT::cmp_xy(p,ptr()->xmin);

int cx2 POINT: :cmp_xy(p,ptr()->xmax) ;

int cyl = POINT::cmp_yx(p,ptr()->ymin);

int cy2 = POINT::cmp_yx(p,ptr()->ymax);

if (ex1 <0 || ¢x2 > 0 || ¢yl < O || cy2 > 0) return UNBOUNDED_REGION;
1list<SEGMENT>& seglist = ptr()->seg_list;

// check boundary segments
list_item it;
forall_items(it,seglist)
{ SEGMENT s = seglist[it];
if (s.contains(p)) return ON_REGION;
}
// count intersections with vertical ray starting in p
int count = O;
forall_items(it,seglist)
{ SEGMENT s = seglist[it];
POINT a = s.source(); POINT b = s.target();
int orient = POINT::cmp_x(a,b);
if ( orient == 0 ) continue;
if ( orient > 0 ) { // a is right of b
leda_swap(a,b);
}
if ( POINT::cmp_x(a,p) <= O && POINT::cmp_x(p,b) < O
&& ::orientation(a,b,p) < 0 )
count++;

}
return ( count % 2 == 0 ? UNBOUNDED_REGION : BOUNDED_REGION );

Given the functiorregionof it is easy to implemensideof. The positive side ofP is
equal to the bounded regioni#f is positively oriented and is equal to the unbounded region
otherwise.
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(polygon: regionof and sideof)+=

int POLYGON: :side_of (const POINT& p) const
{ region_kind k = region_of (p);
switch (k) {
case ON_REGION: return O;
case BOUNDED_REGION: return ptr()->orient;
case UNBOUNDED_REGION: return -(ptr()->orient);
default: assert( O == 1); return O;
}
}

The Complement of a Polygon: The complement of a weakly simple polygon is easy
to compute. We simply reverse the list of segments. The cemght has the opposite
orientation.

(polygon: complemeje=

POLYGON POLYGON: : complement() const

{ 1ist<SEGMENT> R;
SEGMENT s;
forall(s,ptr()->seg_list) R.push(SEGMENT(s.target(),s.source()));
return POLYGON(R, - orientation());

10.8.3 The Mathematics of Generalized Polygons
The purpose of this section is to give the mathematical yrideing for the representation
of regular polygonal sets. We show that a regular polygoeatan be represented by its
list of boundary cycles.

If X is a regular polygonal set anglis an arbitrary point in the plane the intersection
U N X for U a sufficiently small neighborhood @ has one of the following three forms:

e |If pis contained in (the interior ofX thenU N X C X.
e If pis contained in the interior of the complement$thenU N X = @.

e If pis contained in the boundary of thenU N X andU Nintcpl X are unions of
“pieces of pie” as shown in Figure 10.67.

We call a seiX trivial if either X = ¢ or X = IR?. Let X be a non-trivial polygonal set.
We call a collectiorPy, ..., P« of weakly simple polygons eepresentatiorof X if:

e the set of segments in the boundaryofs the disjoint union of the set of segments of
the P’s, and

e the orientation of eacP is such thaiX is locally to the left ofP;, and

e theP are pairwise non-crossing, i.e., there are no consecuiymentspg andqr on
someP; andxq andgy on someP; withi # j and the segments interleaving around
g, see Figure 10.68.
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Figure 10.67 The shaded part of the plane belongs to the polygonal regiand p lies in the
boundary ofX. If pis a vertex ofX andU is a sufficiently small neighborhood @fthenU N X
andU Nintcpl X are unions of pieces of pie. {f lies in the relative interior of a boundary
segment ofX then X looks like an open half-plane in the vicinity qf

X p

Figure 10.68 The chaing..., p,q,r,...) and(..., X, q, Y, ...) Cross inq.

Figure 10.69 shows an example.
Lemma 12Every non-trivial polygonal set has a representation.

Proof Consider a boundary segmenof X. SinceX is regular,X lies on only one of the
sides ofs and hence can be oriented such thatis locally to the left ofs.

Consider next a poinp as shown in Figure 10.67. Sin¢€is the union of pieces of pie
in the neighborhood op we can join the boundary segmentsXfncident top such that
any two consecutive segments define one of the pieces oféhérpihis way no crossings
are introduced. Also, since none of the pieces of the comghtf X is degenerated to a
line, every boundary segment incidentgas used only once.

The construction guarantees that the polygons formed aa&lwsimple and satisfy the
two properties of a representation stated above. O

The representation of a polygonal set is not unique as Fibou&9 shows. We still need
to justify the choice of the name representation. In whateeatoes a representation of a
polygonal set “represent” the set?

We start with the observation that the polygons in a reptasien form a so-called nested
family. Let P, and P; be two polygons in a representation. Sirfgeand P; do not cross,
we have either b® N bRP; = @ or bRP, C bRP; or bRP; C bRP;, where bRP
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Figure 10.69 The open shaded region consists of two connected sets, ovtddf is simple.X
can be represented 9%o, P1, P2, P4, Ps. Pe. P2, P3. Po, Ps, P7. P3) Or by (Po, P1, P2, P3),
(P2, Pa, Ps, Pe), (P3, Po, P8, P7), Or by (Po, P1, P2, Pa, Ps. Ps, P2, P3), (P9, P8, P7, P3)-

denotes the bounded region with respect to a polygoiVe say thatlP; is nestedn P if
bRP; C bRP,.

We can now define a fore$t on the polygons in a representation. A polygBnis a
child of a polygonP, if P; is nested irP, and there is nd such thatP; is nested irP and
P« is nested inP;. If P; is a child of P, in F, we say thatP; is directly nested irP;,. We
have:

Lemma 13If P; is a child of Rin F then B and R have different orientations. All roots
of F have the same orientation.

Proof If P, is positively oriented then bR belongs toX in the vicinity of P, and to the
left of . SinceP; is directly nested inP and since it is part of the boundary &f, P;
must be negatively oriented. R, is negatively oriented then bR belongs to intcpK in
the vicinity of P, and to the left of?,. SinceP; is directly nested irP, and since it is part
of the boundary ofK, P; must be positively oriented.

If X is bounded, all roots of are positively oriented and X is unbounded, all roots of
P are negatively oriented. O

It is convenient to turn the fore$t into a tree by adding an artificial root. The polygon
associated with the root represents the “circle at infinifitie circle at infinity is positively
oriented if X is unbounded and is negatively orienteiis bounded. We usB, to denote
the artificial polygon representing the circle at infinitwegy point of the plane is contained
in the bounded region with respect to the circle at infinity.

We assume from now on that the polygd®s P4, .. ., P« in a representation are ordered
such that nd? is nested in &; fori < j. In other words, parents precede their children.

Lemma l4Let R, Py, ..., R be a representation of a polygonal set X and let p be a point
in the plane that does not lie on any of the polygons in theasgntation. Leti be maximal
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such that pe bRP,. If P, is positively oriented then g X and if R is negatively oriented
then pg X.

Proof Observe first that exists since every point is contained in the bounded regfon o
the circle at infinity. Assume w.l.o.g. th& is positively oriented. LePj, to P; be the
children of P, in F. We have

bRP \ (bRP;,, U...UbRP;) C X

andi < ji,...,i < ji. Thusp ¢ (bRPj, U...UDbRP;) by the definition of . This shows
thatp € X. O

10.8.4 The Implementation of Generalized Polygons
Generalized polygons are a handle type, i.e., a generaglidgdon is realized as a pointer to
a representation class (callgdnpolygonrep andrat.genpolygonrep, respectively) which
contains the actual representation. The member fungtion) returns the pointer to the
representing object.

The representation consists of a flagrhich indicates whether the polygon is trivial and
a list pollist of polygons. More precisely, we have a local enumeratior &ipd with
elements EMPTY, FULL, and NONRIVIAL and k is equal to EMPTY or FULL iff the
polygonis empty or full and is equal to NONRIVIAL, otherwise. If the polygon is trivial,
pollist is empty, and if the polygon is non-trivigdpLlist is the list of boundary cycles.

enum kind { EMPTY, FULL, NON_TRIVIAL };

kind k;
list<rat_polygon> pol_list;

We next discuss some member function of generalized pokigon
Checking a Representation: We define a functiorrheckrepresentatiorthat applies to a
list pollist of polygons. It returns true fhollist is a legal boundary representation, i.e., if:

e the segments of the polygonspollist meet only at endpoints, i.e, the planar n@p
defined by them has® edges, wheren is the number of segments, and no parallel
edges.

e there are no crossings between polygons,

e if Disdirectly nested iifC thenD andC have alternate orientations, a@ds before
D in the list of polygons, and

e all outermost polygons have the same orientation.
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In the following program we check only the first two items. Weolw of no method to
check the other items that is substantially different fram imethod to compute boundary
representations. The latter method will be described iniG@e20.8.4.

(genpolygon: check representatigs

static bool check_rep(const 1ist<POLYGON>& pol_list)
{ GRAPH<POINT,SEGMENT> G;

1ist<SEGMENT> seg_list;

POLYGON P;

forall(P,pol_list)

{ 1ist<SEGMENT> SL = P.segments();
seg_list.conc(SL);

}

SEGMENT_INTERSECTION(seg_list,G,true);

if ( G.number_of_edges() != 2*seg_list.length() )
return False("check_rep: wrong number of edges");

// no parallel edges

node v; edge e;

forall_edges(e,G)

if ( target(e) == target(G.cyclic_adj_succ(e)) )

return False('check_rep: parallel edges");
(checkrepresentation: check for crossings
return true;

}

bool GEN_POLYGON::check_representation() const
{ if ( trivial() ) return polygons().empty();
return check_rep(polygons());

}

We describe how to check for crossings. Consider any nodeG. Each edges out
of v corresponds to a segmebf one of the polygons ipollist. The polygons running
throughwv introduce a pairing on the edges incidentvtavhere two edges are paired if they
correspond to consecutive edges of one of the polygons. Wibeuthe pairs and replace
each edge by the label of its pair. Then it must not happenvtkadtave distinct labela
andb interlacing around, i.e., the cyclic sequence of labels induced by the edgesfaut
must not contain a subsequence of the farm.., b, ..., a, ..., b. This is easily checked
by means of a push down stofe We iterate over the edgeut of v. If the edge label of
e agrees with the label on the top 8f we popS, if it does not agree, we push the label of
e. There is no crossing atiff the push down store is empty at the end of the iteration.

(checkrepresentation: check edge labgels

forall_nodes(v,G)
{ stack<int> S;
forall_adj_edges(e,v)
{ if ( S.empty() || labelle] !'= S.top() )
S.push(label[e]);
else
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S.pop();
}
if ( !S.empty() ) return False('"check_rep: crossing");

}

It remains to compute the edge labels. We do so in a two stegepso We first construct a
dictionary that stores for every segmerthe edgee(s) in G corresponding to it, i.e., having

the same source and sink. We then iterate over all gait$ of consecutive segments and
give e(s)™’ ande(t) the same label.

(checkrepresentation: check for crossings
map<SEGMENT,edge> segment_to_edge;

forall_edges(e,G)
{ SEGMENT s = G[e];
node v = G.source(e);
segment_to_edge[s] = ( s.source() == G[v] ? e : G.reversal(e) );

}

edge_array<int> label(G);
int count = 0;
forall(P,pol_list)
{ list_item it;
const list<SEGMENT>& seg_list = P.segments();
forall_items(it,seg_list)
{ edge e = segment_to_edge[seg _list[it]];
e = G.reversal(e);
edge f = segment_to_edge[seg_list[seg_list.cyclic_succ(it)]];
label[e] = label[f] = count++;
}
}

(checkrepresentation: check edge labels

Point Containment: The implementation o$ideof follows directly from Lemma 14. If
P is either empty or full, the answer is obvious.Rfis non-trivial, we scan through the list
of polygons in the representation.pflies on one of the polygons, we return CREGION.
Otherwise, we find the lag® such thatp lies in the bounded region d?; P, might not
exist, i.e., be equal to the fictitious polyg®s. We return the orientation d® .

(genpolygon: sideof)=
int GEN_POLYGON::side_of (const POINT& p) const
{ if ( empty() ) return -1;
if ( full() ) return +1;
POLYGON P, P_i;
bool P_i_exists = false;

forall(P,polygons())
{ region_kind k = P.region_of (p);

if ( k == ON_REGION ) return O;

if ( k == BOUNDED_REGION ) { P_i = P; P_i_exists = true; }
}
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if ( P_i_exists ) return P_i.orientation();
P = (ptr()->pol_list).front();
return -P.orientation(); // = PO.orientation()

}

Boolean Operations: We only discuss the binary boolean operations and leaventhe i
plementation ofcomplements an exercise. The implementations of all binary boolean
operations follow a common principle. L& and P; be two generalized polygons and let
R be the result of the boolean operation. We constRiitt stages:

(1) We first deal with the case that eitheg or P; is trivial. The remaining stages are not
needed if this is the case.

(2) We construct the planar m&p induced byP, and P;.

(3) We classify the face cycles @3, i.e., compute for each face its status with respect to
Plande.

(4) Giventhe classification of the edges computed in the pragedlage, we mark all edges
of G that are relevant for the restR of the boolean operation. An edge is relevant if the
face to its left belongs t&.

(5) We simplify the graphG by deleting edges. We keep only those edges that separate a
face belonging tdR from a face belonging to the complementff

(6) We trace the face cycles & and compute the representationraf

Only the first and the fourth stage depend on the boolean tiperall other stages are
generic and apply to all boolean operations. In the sequebmeentrate on thiatersection
routine.

We define constan®0_face, non PO _face,P1 _face, andnon P1_face which we use
to label edges in stages two and three. The constants arerchiosh that boolean operations
are possible on them. After stages two and three every edgfeG will have a label
describing the status of the face to its left with resped®iand P;.

The functions defined ifconstruct labeled mgprealize stages two and three, the func-
tions defined in(simplify graph realize stage five, and the functions definedanllect
polygor) realize stage six. We will discuss them below.

Stage one is easy. If either argument is empty the intesediempty, and if either
argument is full the result is the other argument.

In stage four we label those edges as relevant which bordereedfG which belongs to
P, and P;1. These are precisely the edges whose label is eqir tace+ P1face

(genpolygon: boolean operatiofs=
1;

’

static int PO_face
static int not_PO_face
static int P1_face
static int not_P1_face

(construct labeled map
(simplify graph

o N

’
’
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(collect polygom

GEN_POLYGON GEN_POLYGON: :intersection(const GEN_POLYGON& P1) const
{ // stage I

if ( empty() || Pl.empty() )

return GEN_POLYGON(GEN_POLYGON_REP: :EMPTY) ;
if ( full() ) return Pi1;
if ( P1.full() ) return *this;

// stages II and III

(gen boolean operations: set up labeled map
// label relevant edges, stage IV
edge_array<bool> relevant(G,false);

int d = PO_face + P1_face;
edge e;
forall_edges(e,G) if (label[e] == d) relevant[e] = true;

// stages V and VI
(gen boolean operations: extract result

We come to stages two and three. We define the gfaptve introduceP0 as a syn-
onym for thethis-argument of the intersection, we define an edge aabgl, and call
constructabeledmap It computes the planar map defined by the segmeng aind P,
and labels all edges of this map.

(gen boolean operations: set up labeled nap
GRAPH<POINT,SEGMENT> G;
const GEN_POLYGON& PO = *this;
edge_array<int> label;
construct_labeled_map(PO,P1,G,label);

The functionconstructiabeledmaprealizes stages two and three. It first cabsistructinitial_map
for stage two and then usestendabelingfor stage three. A call oéxtendabelingwith
argument labels the edges of the face cycle®fcontaininge.

(construct labeled map=
(construct initial map
(extend labeling

static void construct_labeled_map(const GEN_POLYGON& PO,
const GEN_POLYGON& P1,
GRAPH<POINT,SEGMENT>& G,
edge_array<int>& label)
{ construct_initial_map(PO,P1,G,label);

edge_array<bool> visited(G,false);

edge e;
forall_edges(e,G)
{ if (visited[e]) continue;
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extend_labeling(PO,P1,G,e,visited,label);
}
}

Stage two is realized bgonstructinitial_map It takes two generalized polygois and Py
and computes the planar m&pinduced by their segments using the segment intersection
algorithm of Section 10.7. It also computes a label for ewiast of G. The label of a dart
e = (v, w) of PyisP0O_face if Pyis locally to the left ofe and isnon_P0O_face otherwise.
The analogous statement holds true for dartB,of

We proceed in several steps. In the first step we collect tpmsets ofPy and P; into
a listseglist and label each segment with the geslygon to which it belongs. Note that a
segment may belong &, and P;. We therefore use the labels 1, 2 and 3, where 3 indicates
that a segment belongs to both polygons and labkk i < 2, indicates that the segment
belongs toP,_;.

In a second step we compute the planar map induced by the s&gimeseglist. In
this planar map every node must have even degree. If theritpptint kernel is used the
map returned by SEGMENINTERSECTION may be non-plane or have a vertex of odd
degree; if this is the case we recommend use of the rationaéke

In the third step we compute the label of each dart. We disitrsgow.

(construct initial map+=

static void construct_initial_map(const GEN_POLYGON& PO,
const GEN_POLYGON& P1,
GRAPH<POINT, SEGMENT>& G,
edge_array<int>& label)

1ist<SEGMENT> seg_list;
map<SEGMENT, int> seg_label(0);

const 1list<SEGMENT>& LO = P0O.edges();
const 1list<SEGMENT>& L1 = P1.edges();

SEGMENT s;
forall(s,L0) { seg_label[s] = 1;
seg_list.append(s);
}

forall(s,L1) { seg_label[s] += 2;
seg_list.append(s);
}

SEGMENT_INTERSECTION(seg_list,G,true);

node v;
#if ( KERNEL == FLOAT_KERNEL )
if ( Genus(G) '= 0 ) error_handler(l,mes + "Genus(G) != 0.");
forall_nodes(v,G)
{ int deg = G.outdeg(v);
if (deg % 2 !'= 0) error_handler(l,mes + "odd degree vertex.");

}
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#endif

(constructinitial_map: compute dart labéls
}

It remains to compute the dart labels.

Consider a daré and its reversal. We assign a polygoretas follows. If the segment
s = GJe] belongs to a unique polygoe,inherits the polygon fronts[e]. Otherwise, either
the cyclic adjacency predecessor or the cyclic adjacenoyessor ok must be parallel to
e, i.e., have the same target@sWe arbitrarily assigm to Py in the former case and tB;
in the latter case.

The polygonP; is locally to the left ofe if s ande point into the same direction, i.e., if
the dot product of the underlying vectors is positive.

(constructinitial_map: compute dart labels
label.init (G,0);
edge e0;
forall_edges(e0,G)
{ if ( label[e0] !'= 0 ) continue;
edge e = e0; edge e_rev = G.reversal(e);

POINT a = G[source(e)];
POINT b = G[target(e)];
SEGMENT s = G[el;

if ( (b - a) * (s.target() - s.source()) <= 0 )
leda_swap(e,e_rev);
// now s and e point into the same direction
switch ( seg_label[s] )
{ case 1: labelle] = PO_face;
label[e_rev] = not_PO_face;
break;
case 2: labell[e] = P1_face;
label[e_rev] = not_P1_face;
break;
case 3: { edge f = G.cyclic_adj_pred(e);
if ( target(f) != target(e) ) f = G.cyclic_adj_succ(e);
label[e] = PO_face;
label[e_rev] = not_PO_face;
label[f] = P1_face;
label[G.reversal(f)] = not_P1_face;

The functionextendabeling classifies the fac& to the left of darte. It scans the face
cycle containinge, marks all darts of the cycle as visited, and computes thiedfoall dart
labels on the cycle id.
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If all darts of the face cycle originate from eith® (d is less than four) oP; (d is
divisible by four), we still have to classify the face cycléhwespect to the other polygon
and updatel accordingly. This will be discussed below.

Finally, the label is propagated to all darts of the cycle. If the label is catiitiory, i.e.,
claims that the face is B -face and a no®,-face, we raise an error.

(extend labeling=

static void extend_labeling(const GEN_POLYGON& PO,const GEN_POLYGON& P1,
const GRAPH<POINT,SEGMENT>& G, edge e,
edge_array<bool>& visited,
edge_array<int>& label)
{ int 4 = 0; int length = O;
edge x = e;
do { visited[x] = true; length++;

//node v = source(x);
//if (G.outdeg(v) == 2) v2 = v;

d |= label[x];
x = G.face_cycle_succ(x);
} while (x !'= e);

if (d%4==011d<4)
{ (extendlabeling: face cycle has only darts from one polygadn
X = e;
#if ( KERNEL == FLOAT_KERNEL )
if (d % 4 == PO_face + not_PO_face |
(d/4)*4 == P1_face + not_P1_face )
error_handler(1,mes + "contradicting edge labels.");
#endif

do { labellx] = d;
x = G.face_cycle_succ(x);
} while (x !'= e);

It remains to deal with the case that all darts of the faceecyclbelong to the same
genpolygon say P,. Let v be the source oé. We distinguish two cases: either no dart
out of v has a determined status with respecPiq; or this is not the case. In the former
casev cannot lie on the boundary & _; and hence’s side with respect t®,_; determines
the status ofF with respect toP,_;. In the latter case lef be the nearest adjacency pre-
decessor o€ such that the status df with respect toP;_; is already known. For all darts
betweereand f the status is still unknown and hence none of them can beiceudtan the
boundary ofP,_;; f may be contained in the boundaryef ; or not (in the latter casef,
belongs to a face cycle which was already considered ancehenstatus with respect to
both polygons is known). In either case the statub afith respect toP;_; is given by the
status off with respect tdP;_;, see Figure 10.70.
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Figure 10.70 The dartf is the nearest adjacency predecess@whose status with respect to
P1_j is known. The edges betweerand f do not belong to the boundary &_; and henced~
and the face to the left of have the same status with respecPio; .

(extendlabeling: face cycle has only darts from one polygen
edge f;
for ( £ = G.cyclic_adj_pred(e); f !'= e
{if (d % 4 == 0 && label[f] % 4 != 0
break;

G.cyclic_adj_pred(f) )

i £ o=
| d < 4 && labellf] > 4 )

}
if (f==1¢)
{ node v = source(e);

if (d%4==0)
d |= ( PO.side_of(G[v]) == 1 ? PO_face : not_PO_face );
if (d < 4)
d |= ( Pl.side_of(G[v]) == 1 ? P1_face : not_P1_face );
}
else
{if (d% 4==0)4d |=( labellf] % 4 );
if (d < 4) d |= ( ( label[f] / 4 ) *x 4 );
}

We come to stage five. At this point all darts@fare labeled as relevant or non-relevant.
A dart is labeled relevant if the face to its left belongs te tasultR of the boolean opera-
tion.

We simplify the graph by removing darts. We proceed in tw@steln the first step
we remove parallel darts that come from overlapping segsnarthe two arguments of the
boolean operation, see Figure 10.71. This turns all factesyaf G into weakly simple
polygons. In the second step we remove all edges from thendhegh do not separate
from its complement.

The details of the first step are as follows. keind f be two parallel darts and assume
that f is the cyclic adjacency successorofThis implies that we have a face cy¢ke )
of length two. This face cycle defines a polygon of area zerwhvive can remove. We
remove the face cycle by removing its two constituent dartsraakingf ande™’ reversals
of each other. There cannot be a set of three parallel dadthemce the target of should
be different from the target of its cyclic adjacency sucoess
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Figure 10.71 The dartse and f come from a segment &% and P, respectively. The face cycle
(e, f™) consists of only two darts. We remoeand f ¥ and makef ande™' reversals of each
other.

The first simplification step leaves us with a planar map withgarallel darts. This im-
plies that all face cycles are weakly simple polygons. Instheond step we merge adjacent
faces that belong to the same side of the result polygon.

A darte does not separafe from its complement ie ande™” are either both relevant or
both irrelevant. In the former cag exists on both sides of the edge and in the latter case
the complement oR lives on both sides of the edge.

The second step may remove all edges from the graph. Thibeithe case if the result
is either empty or full. We need to distinguish these cases. h&le the former case if
there are no relevant edges before simplification and we thavatter case if all edges are
relevant before simplification. We return true in the lattase.

(simplify graph=
static bool simplify_graph(GRAPH<POINT,SEGMENT>& G,
edge_array<bool>& relevant)
{ edge e; node v;
forall_nodes(v,G)
{ list<edge> E = G.out_edges(v);
forall(e,E)
{ edge £ = G.cyclic_adj_succ(e);
if ( target(e) != target(f) ) continue;
edge e_rev = G.reversal(e);
G.del_edge(e); G.del_edge(G.reversal(f));
G.set_reversal(e_rev,f);
}
}

bool non_trivial_result = false;

forall_nodes(v,G)
{ list<edge> E = G.out_edges(v);
forall(e,E)
{ if ( relevant[e] || relevant[G.reversal(e)] )
non_trivial_result = true;
if ( relevant[e] == relevant[G.reversal(e)] )
{ G.del_edge(G.reversal(e)); G.del_edge(e); }
}
}

return non_trivial_result;
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After simplification every uedge d& separate®R from its complement and hence be-
longs to the boundary representation. Also all face cycteswaeakly simple polygons.
We conclude that the face cycles @fform the representation of the result of the boolean
operation.

The following functioncollectpolygontakes a darg, marks all darts in the face cycle of
e as visited, and collects the segments corresponding tatieedycle in a lispol.

(collect polygon=
static void collect_polygon(const GRAPH<POINT,SEGMENT>& G, edge e,
edge_array<bool>& visited,
1ist<SEGMENT>& pol)
{ pol.clear();
edge x = e;
do { visited[x] = true;
node v = source(x);
node w = target(x);

POINT a = G[v];
POINT b = G[w];

pol.append (SEGMENT (a,b)) ;
x = G.face_cycle_succ(x);
} while (x != e);

The function above is the main ingredient for the last stage. first simplify G. If this
trivializes G, i.e., removes all edges from it, we either return the ful_gelygon or the
empty genpolygon; the return value aimplifygraphtells us which.

(gen boolean operations: extract regut

bool non_trivial_result = simplify_graph(G,relevant);
if (G.number_of_edges() == 0 )
{ if ( non_trivial_result )

return GEN_POLYGON(GEN_POLYGON_REP: :FULL);

else

return GEN_POLYGON(GEN_POLYGON_REP: :EMPTY) ;

}

edge_array<bool> visited(G,false);

1ist<POLYGON> result;

(gen boolean operations: form boundary cy¢les

return GEN_POLYGON(result,GEN_POLYGON: :NO_CHECK) ;

So assume thds is non-trivial. We cycle over all darts @& and collect all face cycles
consisting of relevant darts.

(gen boolean operations: form boundary cycles, first#ry

forall_edges(e,G)
{ if ( visited[e]l || 'relevant[e] ) continue;
1ist<SEGMENT> pol;
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(b)

Figure 10.72 The dashed boundary cycle is nested in the solid cycle arddystes have as
their leading node. In situation (a) the leading dart of thiddscycle ise and the leading dart of
the dashed cycle i$™". In situation (b) the leading dart of the solid cycleef®’ and the leading
dart of the dashed cycle is. In either case the leading dart of the solid cycle has smsitipe.

collect_polygon(G,e,visited,pol);
POLYGON P(pol);
result.append(P);

}

The code above generates the boundary cycles in no partardier. We want an order that
reflects nesting, i.e., no polygon should be nested in a polygllowing it.

There are several ways to achieve a proper ordering. Ousféilstion took timeO(n +
klogk) and, moreover, was burdened with a fairly large constaribfadVe exploited the
fact that if D is nested inC then D has smaller unsigned area th@n We generated the
polygons in an arbitrary order and then sorted the polygordecreasing order of their
unsigned area.

We describe an alternative approach. We show that one cemamga the darts d& such
that the code above generates the polygons in the proper. @de approach is based on
the following definition and observation. Define the leaditagle and dart of a boundary
cycle as follows:

e The leading node(C) of a boundary cycl€ is the lexicographically smallest node of
the boundary cycle.

e The leading dar&(C) of a boundary cycle is the shallowest (= smallest slope)afart
C starting inv(C) if C is positively oriented, and is the reversal of the shalldwlast
in C ending inv(C) if C is negatively oriented.

Lemma 15If D is nested in C then either:
e v(C) is lexicographically smaller than(D) or

e v(C)isequaltov(D) and €C) has smaller slope than(®).
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Proof Clearly the leading node df cannot be lexicographically larger than the leading
node ofD. If C andD have the same leading node, the situation is as shown ind=iguv 2
and the leading dart & has smaller slope than the leading darDof O

Consider the following order on darts. A dat= (v, w) precedes a dart = (x, y) if
eitherv lexicographically precedesor v is equal tox ande has smaller slope thah. This
order has the following properties:

e [For any boundary cycl€ the leading dart o€ precedes all darts .
e If D is nested irC then the leading dart & precedes the leading dart Bf.

The following compare class realizes the dart ordering;ltase clas$edacmpbaseis
discussed in Section 2.10.

(collect polygom+=

template <class POINT, class SEGMENT>
class cmp_for_cycle_tracing : public leda_cmp_base<edge> {

const GRAPH<POINT,SEGMENT>& G;
public:
cmp_for_cycle_tracing(const GRAPH<POINT,SEGMENT>& g): G(g) {}

int operator() (const edge& el, const edge& e2) const
{ node v = G.source(el);
node w = G.source(e2);
if (v !'= w ) return compare(G[v],G[w]);
SEGMENT s1 = G[ell;
SEGMENT s2 = G[e2];
return cmp_slopes(sl,s2);
}
};

It is now easy to generate the boundary cycles in the ap@teporder. We sort the darts
of G according to the ordering above and then iterate over atsddrG. Whenever we
encounter a uedge that is not contained in a boundary cytlewecollect the boundary
cycle. The uedge is a pafe, €’} and eithere or its reversal is relevant (but not both). If
e is relevant, the cycle to be traced is positively oriented] & € is relevant, the cycle
to be traced is negatively oriented, see Figure 10.72. Theietis no need to compute
the orientations of the boundary cycles; our method of geirey boundary cycles in an
ordered fashion yields the orientations as a by-product.
We obtain:

(gen boolean operations: form boundary cy¢ies
cmp_for_cycle_tracing<POINT,SEGMENT> cmp(G);
list<edge> E = G.all_edges();

E.sort (cmp);
edge e0;
forall(eO,E)
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PNQ Q\P

P\Q cplP NncplQ

Figure 10.73 The vertexv is an intersection between the boundarie®and Q. There are four
faces incident tw and at least one but not all of them belong to the result of twdan
operation.

{ edge e = e0;

if ( visited[e] || visited[G.reversal(e)]) continue;
int orient;
if ( relevant[e] )

{ orient = +1; }
else

{ e = G.reversal(e); orient = -1; }
1list<SEGMENT> pol;
collect_polygon(G,e,visited,pol);
POLYGON P(pol,orient);
result.append(P) ;

We conclude our treatment of boolean operations on polygathsa discussion of their
asymptotic running time. Consider a boolean operation impiut polygonsP andQ and
result polygonR. Letn be the total number of vertices &f, Q, andR, and letG be the
graph induced by the two input polygons. Any vertex®fs either a vertex of one of the
input polygons or is an intersection between the boundafiéise input polygons. In the
latter case it will be a vertex of the result polygon, as Fé&gl®.73 shows. We conclude that
G has at mosh vertices and hence can be computed in t@@ logn). The time required
to sort the edges before tracing the boundary cycles is@{sdogn). Let f be the number
of face cycles ofG which have darts from only one of the polygonf;can be as large
as O(n). For each such face cycle we spend ti@é) to classify it with respect to the
other polygon for a total time o®( f n) (this time bound could be reduced @x f logn)
by using a more refined data structure for point location).oftier steps take tim®(n).
We conclude that the total time to compute boolean opemmit®@(n + nlogn + fn).

A Demo Program: We give a small demo program. We construct an n-Bamith vertices
near the unit circle. We also construct an affine transfaonak that rotates the plane by
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n m P T Q PNQ [PNQ]

5000 6.175e+06 1.35 0 036 1292 20000

5000 2.47e+07 1.33 0 037 13.06 20000

5000 9.88e+07 135 0.01 0.39 1344 20000

5000 3.952e+08 1.35 0.35 13.71 20000

5000 1.581e+09 1.35 0.36 - -

20000 2.47e+07 5.65 147  56.13 80000

ol o]l O] O

20000 9.88e+07 5.71 1.61 - -

Table 10.10 Execution times with floating point kernel: The first two colos shown andm,
respectively, the next four columns show the time to coestry T, Q = T(P), andP N Q,
respectively, and the last column shows the number of wertidP N Q. A dash in the next to
last column indicates that the program produced an errosagesand recommended use of
rat polygons.

an anglex = 2w /(2nm) + epsabout the origin, whereps= 1/(10nm). LetQ = T (P) be
the result of turning® by anglex and letR be the union ofP and Q.

(n_gontime =
double eps = 1/(10.0%n*m) ;
POLYGON P = N_GON(n,C,eps);
GEN_POLYGON PG(P,GEN_POLYGON: :NO_CHECK) ;

report_time("time to generate P = ");
TRANSFORM T = rotation(ORIGIN, LEDA_PI/(n * m), eps);
report_time("time to generate the transformation T = ");

POLYGON Q = T(P);
GEN_POLYGON QG(Q,GEN_POLYGON: :NO_CHECK) ;

report_time("time to compute T(P) = ");
GEN_POLYGON R = PG.unite(QG);
report_time("time to compute P union T(P) = ");

Tables 10.10 and 10.11 show the execution times for the ffigpgtoint and the rational

kernel and different values of andm. Observe that we ran extreme examples. We took

5000-gons and 20000-gons and rotated them by anglé&€2: n x m), wherem ranges

between 10and 16. This amounts to rotations by angles between®ldhd 101° degrees.
The floating point kernel did not always obtain a result. e tivo cases where it did not

obtain a result, it discovered that there is a problem. rFer 5000 andn = 1.581- 10°

it reported that the map computed by SEGMENNTERSECTION is not planar and for

n = 20000 andn = 9.88- 10’ it reported that there is a node of odd degree in the map.
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n m P T Q PNQ [|PNQ]
5000 6.175e+06 1.69 0 14 30.8 20000
5000 2.47e+07 1.73 0 1.41 3145 20000
5000 9.88e+07 1.74 0.01 14 33.93 20000
5000 3.952e+08 1.77 0 141 3401 20000

5000 1.581e+09 1.78 0.009995 1.41 34.7 20000

20000 2.47e+07 7.25 0 566 140.9 80000
20000  9.88e+07 7.37 0 569 1416 80000
20000 3.952e+08 7.45 0 566 143.2 80000

20000 1.581e+09 7.52 0.01001 5.58 145.1 80000

20000 6.323e+09 7.53 0 5.6 149.2 80000

Table 10.11 Execution times with rational kernel: The meaning of theuowhs is the same as
for Table 10.10.

It is instructive to study the output of the program when st for the planarity of5
is not made. The grapB constructed by SEGMENINTERSECTION had 19994 nodes
(and so 6 nodes are missing) and 59952 edges, 10012 nodesdrae tivo (12 too many)
and 9982 nodes had degree four (18 too few). The gen@wéhs one.G had face cycles
of length two and three anahly oneface cycle of length larger than three (there should be
two). All edges of the graph were declared relevant and hence remypwaehplifygraph
The full polygon was returned. It took several hours of diétecwork to discover this
explanation for the behavior of the floating point implenation. The detective work was
considerably helped by the fact that the execution with #temal kernel produced the
correct result and hence weewthat the error must be in the floating point arithmetic.

It would be fantastic if the floating point implementation wig always degrade grace-
fully, i.e., either compute the correct result or tell thiaé toroblem is too difficult for a
floating point computation. We are not making this claim.

Although the floating point implementation did not alwaysabh the correct result it can
handle surprisingly difficult cases.

The rational kernel always worked correctly, as it is sugplo® do. There is about a
factor three overhead for the use of the rational kernel.

Exercises for 10.8

1  Implement the functiocomplementor generalized polygons.

2 Implement the functiomnite for generalized polygons. Start from the implementation
of intersectiomand describe the required modifications.
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10.9 A Glimpse at Higher-Dimensional Geometric Algorithms

We give an overview of the extension package for higher-dsmanal computational geom-
etry, exhibit a relationship between convex hulls and Dedguriangulations, and use it to
derive the formula for the side-of-sphere test. For a deddileatment of higher-dimensional
geometry we refer the reader to [Ede87].

10.9.1 The Extension Package for Higher-Dimensional Geometry
The extension package [MMN8] features a higher-dimensional kernel, simplicial com-
plexes, convex hulls and Delaunay diagrams.

Thehigher-dimensional kerneiffers points, lines, segments, rays, vectors, hyperglane
spheres, affine transformations, and geometric operatiodgredicates id-dimensional
Euclidian space for arbitrary dimensidn Examples for geometric predicates are the ori-
entation test, the side-of-sphere test, the test of whetlpaint is contained in a simplex,
and the computation of the affine rank of a set of points. Exasior geometric construc-
tions are the construction of a hyperplane from a set of ppmt the computation of the
intersection of a line and a hyperplane.

The extension package offers three geometric data stesctwegular simplicial com-
plexes, convex hulls and Delaunay diagrams.

A simplicial complexs a collection of simplices in which the intersection of amy
simplices in the collection is a face of béth A simplicial complex isregular iff all max-
imal simplices of the collectici have the same dimension and if its maximal simplices
are connected under the neighboring relaffoffhe data typeeglcomplexrealizes regular
simplicial complexes. It supports navigation in the comlgo to thei-th neighbor) and
update operations on the complex (add a new simplex and make neighbor of some
existing simplices). Regular simplicial complexes gelieedriangulations to arbitrary di-
mension.

Convex hullsare represented as regular simplicial complexes, namedydoynplex aris-
ing from a triangulation of the hull. Figure 10.11 shows aaraple in two-dimensional
space.

The convex hull complex is built by a natural generalizatbthe incremental hull algo-
rithm of Section 10.1.2. Whenever a pojmts added to a convex hull, a simplex with peak
p is added to the convex hull for every facet of the hull visitslem p.

The data typeonvexhull supports navigation through the underlying triangulatitavi-
gation over the boundary of the hull, visibility queries (fiall facets visible from a poin),
point location queries (does a poiptie in the interior, on the boundary, or in the exterior
of the hull) and insertion of new points.

Delaunay triangulationsare also represented as simplicial complexes. The data type
28 The empty set is a face of any simplex.

29 A simplex is maximal if it is not contained in any other simple
30 Two simplices of dimensiok are neighbors if they share a face of dimensior- 1.
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delaunayextends the functionality of the tygmintsetof Section 10.6 to higher dimen-
sions. It supports navigation in the complex, insertion@fpoints, point location queries
(return the simplex containing a query poin), nearest neighbor queries (return the point
closest to a query poir), and range searches with spheres and simplices (retyvaiatks
contained in a query sphere or query simplex, respectively)

10.9.2 Delaunay Diagrams and Convex Hulls

The implementation of Delaunay diagrams in higher-dimemai space is based on a pow-
erful relationship between Delaunay diagrams, Voronog@ims, and convex hulls in one
higher dimension.

Letd be a positive integer. We useg, X1, ..., Xq_1, andz for the Cartesian coordinates of
ad+ 1-dimensional space. Our Delaunay triangulations livéé@dtdimensional subspace
with coordinatexg, X1, ..., Xq—1 and the corresponding convex hulls will live in tte- 1-
dimensional space with coordinates X, ..., X4_1, andz. We call the former space the
base space

Theparaboloid of revolution Hs defined by

Z=XG+XE+ ...+ X5,

It is obtained by rotating the two-dimensional parabole: x3 about thez-axis. The key
for the entire section is the following observation.

Lemma 16 The intersection between P and any hyperplane h that is natliphto the
z-axis is a curve C whose projection into the base space ihiare@nd any sphere in the
base space can be obtained in that way.
Proof Sinceh is not parallel to the-axis it is defined by an equation
Z=1agXp+ a1X1 + ... +ag—1Xd—1 + aq.

Any point (Xo, X1, ..., X4_1, Z) in the intersection betwedp andh satisfies

Xo+ X2+ ... 4+ X5, =z=agXo+aXy +...+ag_1Xd_1 + aq
and hence

(X0 —a0/2)* + ...+ (Xa-1—a4-1/2)* = ag+ (@§ + ... + a3 ) /4

This is the equation of a sphere in base space with cerated radiug where

c=(ap/2,...a4-1/2) andr :\/ad+(a§+...+a§_1)/4.

Thus the projection oP N h into base space is a sphere. Conversely, if we start with any
sphereB with centerc and radiug in base space and define coefficieagsay, ..., ag
throughc = (a9/2, ...a4-1/2) andr? = ag + (a3 + ... + a3_,)/4 then the hyperplane
Z=aoXo + a1X1 + ...+ ag_1Xq—1 + aq will intersectP in a curve projecting int@3. [
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Figure 10.74 The connection between Delaunay diagrams in the plane angxdulls in
three-space. The lifting map is indicated by dashed linég. four points on the left are not
co-circular and hence the convex hull of the lifted pointa tetrahedron. The Delaunay diagram
is the projection of the lower part of the tetrahedron.

The four points on the right are co-circular and hence tiedipoints lie in a common plane.
The convex hull of the lifted points is a rectangle contaimethis plane. The Delaunay diagram
is the projection of the rectangle and the projection of aimngulation of the rectangle is a
Delaunay triangulation.

For a pointp = (Xo, X1, ..., X4—1) in base space we call
lift (P) = (X0, X1, -+ +» Xd—1, X3 + X2 + ... + X5 _,)

its lifting onto P, i.e., the intersection dP with a vertical upward ray starting ip. We use
the lifting map to establish a surprising connection betwBelaunay diagrams and convex
hulls.

Let Sbe any full-dimensional finite set of points in base spacelenpy, pi, ..., pg be
d+ 1 affinely independent points & The lifted pointdift (po), lift (p1), ..., lift (pg) define
a hyperplandr. By the above, this hyperplane interseBtsn a curveC whose projection
into the base space is a sph&e Of course,B passes througho, p1, ..., pg. In other
words, B is the circumsphere of the simplex spannediyps, ..., pd.

Next consider an arbitrary additional poipin base space. Ip lies insideB thenlift (p)
lies belowh, if p lies onB thenlift (p) lies onh, and if p lies outsideB thenlift (p) lies
aboveh. We conclude that the interior of the circumspherepef p1, ..., pqg is void of
points of Sif and only if no point of

lift (S) = {lift(p) | p € S}
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{LLI Delaunay Diagrams and 3D Convex Hulls
input [nen co—circular __co—circular |
numberofpoints 32____ [T
setup | elim | solid |  edges
gen | run | view from —infty | arhitrary view
exit |

left: zoom up middle: zoom daown right: stop

Figure 10.75 A screen shot of the delaunand.convexhull_demo (in demo/book/Geo). The
screen shot shows the lower convex hull of 32 random pointsdaunit square lifted to the
paraboloid of revolution.

lies belowh, or in other words, ith supports the lower convex hull dift (S). Thelower
convex hullof a point set consists of all points of the convex hull which disible from
Z= —o00.

Let us take a closer look at the lower convex hull. We needstirdjuish cases according
to whether the points if$ are co-spherical or not, see Figures 10.74 and 10.75.

If the points inS are not co-spherical, the dimensionlst(S) is one higher than the
dimension ofS and hencdist(S) is full-dimensional. The convex hull dift (S) is ad + 1-
dimensional object. The lower convex hull consists of atefis with a downward normal.

If the points inS are co-spherical, the points ifit (S) lie in a common hyperplane and
the dimension ofift (S) is the same as the dimension &f The Delaunay diagram &
is identical to the convex hull 0% and any triangulation of the convex hull is a Delaunay
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triangulation. The convex hull dift (S) is ad-dimensional object; it is simply the lifting of
the convex hull ofSto a plane ird + 1-dimensional space.
We summarize.

Theorem 3 For any finite point set S in base space the Delaunay diagrani9p» the
vertical projection of the lower convex hull of (i) into base space. A Delaunay trian-
gulation is the vertical projection of a triangulation ofehower hull.

The preceding theorem is the basis for the implementatiddedfunay diagrams. We
maintain the convex hull of the lifted points. All queriesoalb Delaunay diagrams are
translated into queries about the corresponding hull.

10.9.3 Sidedness and Orientation
In this section we show how the results of the preceding sedan be used to define the
orientation, side-of, and region-of predicate for spheres

Let po, p1, ---, Pg bed 4+ 1 points in base space and lptbe an additional point in
base space and |&be the sphere passing through p1, ..., pq. Defineorientation(S),
sideof_spheréS, p), andregionof_sphergsS, p) by

orientationS) = orientation po, p1, ..., Pd),

sideof_spherés, p) —orientation(ift (po), lift(py), ..., lift(pg), lift(p)),
boundedegion if o(§-0o(S, p) >0
regionof spherésS, p) = onregion if o(S)-0(S, p)=0
unboundedegion if o(S)-0o(S, p) <0

where we used as an abbreviation fasrientationin the last formula to save space.
We will next show thatsideof_spheréS, p) and regionof_spheré¢S, p) have their in-
tended meaning.

Lemmal7Let p, p1, --., py be d+ 1 affinely independent points in base space and let p
be an additional point in base space. Then we have

+1 if pliesinside S
sideof_spherésS, p) = 0 ifpliesonS
—1 if p lies outside S

if orientation(S) > 0 and

+1 if p lies outside S
sideof_sphergsS, p) = 0 ifpliesonS
—1 if pliesinside S
31 |n the discussion above we assumed i full-dimensional. IfSis contained in a lower dimensional subspace,
we only need to restrict the discussion to this subspace. Ple@sely, assume th&is contained in a

k-dimensional subspace. We may assume w.l.0.g that th& fi@drdinates span this subspace and can then use
the argument above witth replaced byk.
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if orientation(S) < 0. Also

boundedegion if p liesinside S
regionof_spher¢S, p) = { onregion if plieson S
unboundedegion if p lies outside S

Proof Observe first that the assumption thwgt ps, ..., pg are affinely independentimplies
that

orientationS) = orientation(po, p1, ..., Pg) # 0.

Furthermore, by symmetry, we may assume without loss of rgdityethat the pointspg,
p1, ..., Pqg are positively oriented. Under the assumption tfxatps, ..., pg are positively
oriented the following three statements are equivalent:

(a) pisinside (on, outside) the sphege
(b) lift (p) lies below (on, above) the hyperplane through pdiftt&po), lift (p1), ..., lift (pqg).
(c) dlift(po), lift(py), ..., lift(pqg), lift (p)) is negatively oriented.

We argued the equivalence of the first two items in the precesiection. The equivalence
between the last two items follows from Lemma 3 in SectionZ.Zhis establishes the first
claim. The second claim follows directly from the first. O

Exercises for 10.9

1 Let po, p1, - - -, pd bed + 1 affinely dependent pointsiientation(po, ps, ..., pd) = 0)
in base space and Iptbe an additional point. Discuss the possible valuessd#of_sphere
andregionof_spherefor thed + 2 tuple(po, p1, .- ., Pd, P)-

2  Assume that the base space is two-dimensional and thadialisgn S lie on the line
Xo + X1 = 1. What does the convex hull bft (S) look like?

3 Assume that the base space is two-dimensional and thabialispgn S lie on a circle.
What does the convex hull dift (S) look like?

4 Consider a circular range query with a squ@ra a setS. Translate the query by the
lifting map. What is the result?

5  Show how to implement a nearest neighbor query by use offtimgImap.

10.10 A Complete Program: The Voronoi Demo

We discuss the voronalemo in xlman. The demo illustrates many of the geometrio-alg
rithms available in LEDA and we have already seen severaescshots. The demois also a
representative example for the design of geometric dembEDA and useful as a starting
point for the development of further demos. We start with agraiew, then give the details
of the implementation, and end with a discussion of what ecawigpng when the demo is
run with the floating point kernel.

It is best to have the demo running while reading this sectiigure 10.76 shows yet
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another screen shot of the demo. The window consists of d parteand a display part.
The panel part in turn is structured in four parts. There istaf eleven choice items which
control which geometric structures are to be displayedha dituation shown only the
button for the Delaunay diagram is pressed and hence onpdlainay diagram is shown.
There is a list of three choice items which control how mouass in the display part of

the window are to be interpreted. In the situation shownyeekek of the left mouse button

adds a point. The other two buttons allow the user to inputtsand circles respectively.
There is a choice item which allows the user to switch betvikemational kernel and the
floating point kernel, and there is a boolean item and a sitder that control whether the
input points are rounded to a grid and how many grid linesetlaee. Finally, there are six
buttons for opening sub-menus, for clearing the windowagking for help, and for exiting
the demao.

10.10.10verview

The Voronoi demo allows the user to construct a scene of paind to visualize several
fundamental geometric data structures for it: the nearesfrthest site Delaunay diagram,
the nearest and furthest site Voronoi diagram, the convéxahd the width, the minimum
spanning tree, the minimum enclosing and the maximum emgecthe minimum width
and the minimum area annuli, and the crust of the point set.

The point set is constructed either by mouse input or byraaline of the generators
(sub-menu points). For mouse input there is the choice etwaegle points, points on
a line segment, and points on a circle. The current set oftpénmaintained as a list
plist of rat points The list is initially empty and is cleared by the clear-buatt Any newly
constructed point is added to it. It is important to rementhat adding a line segment or
adding a circle adds points that kgactlyon a line or a circle.

The geometric structures to be displayed can be computédthgtuse of three differ-
ent geometry kernels: the rational kernel with the builfloating point filter (this is the
default), the rational kernel without the built-in floatipgint filter, and the floating point
kernel. This allows the user to compare the relative spettiedernels and also to check
visually whether the floating point kernel worked correciiyhen the floating point kernel
is used, the program may abort or produce incorrect results.

The geometric structures are not computed directly for tietp inplist but for a derived
set of points. The derived set of points is calftedist for use with the rational kernel and
is calledfplist for use with the floating point kernel. The following procedadds a point
to rp.list andfplist.

(manipulate plist, rp_list, and fplist)=
void move_point(const rat_point& p)
{ point fp = p.to_point();
if ( !'round_to_grid )
{ fp_list.append(fp); rp_list.append(p); return; }
double x
double y

truncate(fp.xcoord() ,truncation_prec);
truncate(fp.ycoord() ,truncation_prec);
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k! VORONOI DIAGRAMS
= .- |F F. ot
| ®| ¥ 7 @i 2|00 7
kernel RE FK |
round_to_grid =
# of grid lines = 2A%, where x = 40 |
points | clear | graphwin | settings | exit | about |

42560 388.88

Figure 10.76 A screen shot of the Voronoi demo. A Delaunay triangulat®displayed.

point tp(x,y);

fp_list.append(tp);

rp_list.append(rat_point (tp));
}

The addition of a point is controlled by variablesindta grid andtruncationprec Let p

be arat point If roundtagrid is false,p is added tap.list andfp = p.tapoint( ) is added

to fplist; the Cartesian coordinates ff are the optimal approximations of the rational
coordinates ofp by doubles Observe that wheroundtagrid is false, the pointgp and

fp are in general distinct. In particular, fflist contains points on a circle or segment, the
corresponding points ifplist will lie close to the circle or segment but not exactly on it.
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Such inputs will frequently overburden the floating pointried, e.g., try to construct the
crust of co-circular points.

Whenroundtagrid is true, the mantissae of the Cartesian coordinatgsarie truncated
totruncationprechinary places, i.e., all but the firstincationprecbits are set to zero. This
moves the points on a grid with'gcation-perec grid |ines. The point with the truncated coor-
dinates is then added fp.list andrp_list. Truncation with small values dfuncationprec
will visibly move the points. Whemoundtagrid is true,rp_list andfp.list contain the same
set of points.

The demo also gives a feeling for the running time of the wezialgorithms. Whenever
the user requests to change the display (for example, byestigg for an additional ge-
ometric structure, by dropping a request, or by switchingriother kernelgall requested
structures are recomputed.

The demo can make mistakes when run with the floating poimetemhen using the
floating point kernel, sebundtagrid to true and play withruncationprecto get a feeling
for the limits of the floating point kernel. You can always thito the rational kernel for
a visual comparison of the result. We want to point out onguestly occurring mistake.
When the crust of points on a circle is constructed and a hajbevoftruncationprec
is used, the output is frequently completely wrong. This esrfrom the fact that crust
constructs the Delaunay diagramfpflist U VD(fplist), whereVD(fp.list) denotes the set
of vertices of the Voronoi diagram d@f list. The latter set contains many points crowding
near the center of the circle and this confuses the compatafithe Delaunay diagram.

When the scene contains many points on circles or segmhaatsjtning time with the
rational kernel may go up sharply. The reason is that thgaésrare very difficult, because
our generators guarantee that the points lie exactly orckear line, respectively.

10.10.2Implementation
We start with the global structure of the program.

We use a global variablelist to store the current set of points, a liptlist to store the
corresponding list of float points, a poindpto the display window, and integedssplay
andinputthat govern which geometric structure to display and whicl bf geometric ob-
ject is selected for input. The varialkernelcontrols which kernel is used and the variable
usefilter controls whether the filter is used in the rational kernetéith be changed in the
settings menu). We have already explained the rolesafa grid andtruncationprec

In the main program we first set up the display winddivand then go into an infinite
loop. At the beginning of the loop we wait for a mouse buttotéopressed. The mouse
button is either pressed on one of the seven buttons in therloww of the panel section
(cases zero to six) or in the display part of the window (cas2UBEBUTTON(1)); the
buttons in the top row of the display part are handled elsesvag will be explained below.

In case of the event MOUSBUTTON(1) we put back the event, so that the mouse click
can be processed again, and gatinput(W, input) to further process the mouse click.

At the end of the inner loop we draw the window as governed byériabledisplay.
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(voronoidemo.¢=

#include <LEDA/plane_alg.h>
#include <LEDA/vector.h>

#include <LEDA/rat_vector.h>
#include <LEDA/window.h>

#include <LEDA/graphwin.h>
#include <LEDA/bitmaps/button32.h>
#include <math.h>

#include <LEDA/rat_window.h>
(definition of bit maps
(definition of display mask

static list<rat_point> p_list, rp_list;
static list<point> fp_list;

static window* Wp;

static int display = O;

static int input = O;

enum { RK = 0, FK = 1};

static int kernel = RK;

static bool use_filter = true;
static int truncation_prec = 40;
static bool round_to_grid = true;

(further global variables

(manipulate plist, rp_list, and fplist)
#include <LEDA/rat_kernel_names.h>
(displaying geometric structurgs

(graph edit for graphwii

#include <LEDA/kernel_names _undef.h>
#include <LEDA/float_kernel names.h>
(displaying geometric structurgs

(graph edit for graphwii

#include <LEDA/kernel_names _undef.h>
(global drawing functions

{(action functions

(point generators

(adding a geometric object

int main()

¢ window W(630,720,"VORONOI DIAGRAMS");
Wp = &W;
(set up window

for(;;)

{

int but = W.read_mouse();
rat_point::use_filter = use_filter;
if (but == 0) break;
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switch (but) {
case MOUSE_BUTTON(1): put_back_event();
get_input (W, input);
break;
1 (generate points mefy break; }
2 (settings meny break; }
case 3: clear_all(); break;
4 // start GraphWin
if ( kernel == FK )
graph_edit (display,fp_list);
else
graph_edit(display,rp_list);
break;

case 5: // help
help_win.open(W); break;

case

e

case

case

}

draw(display) ;

}
rat_point::print_statistics();

return 0;

}

The drawing functions are needed for both kernels and herdaauded twice. We com-
ment below why we did not use templates.
We give more details.

Setting up the Window: We start by defining Aelpstringand the pandielpwin that pops

up when the “about”-button is pressed. We then define thel sangon ofW. It consists of
three sets othoiceitems a boolean item, a slider item, and a set of six buttons. Weecom
back to them below.

Having defined the panel part we open the display, state timakow coordinates for the
x-coordinate are between 0 and 1000 and that they start atBegrcoordinate (the upper
bound for they-coordinate depends on the actual geometiyobtate that nodes are drawn
with width two, and that coordinates are to be shown.

(set up window=

string help_string;
help_string += "This program demonstrates some of the algorithms ";
help_string += "for two dimensional geometry of points based on ";

help_string += "Delaunay triangulations and Voronoi Diagrams.";

panel help_win;

help_win.text_item("\\bf Voronoi Demo");

help_win.text_item("");

help_win.text_item("K. Mehlhorn and S. Naeher (1997)");
help_win.text_item("");

help_win.text_item("see LEDAROOT/demo/documentation/voronoi_demo.ps");
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help_win.text_item(help_string);
help_win.button("ok");

W.set_bitmap_colors(black,blue) ;
W.choice_mult_item("",display,11,32,32,display_bits,draw);
W.choice_item("",input,3,32,32,input_bits);

list<string> kernel_choices;

kernel_choices.append ("RK"); kernel_choices.append("FK");
w.choice_item("kernel",kernel,kernel_choices,change_kernel);

W.bool_item("round_to_grid",round_to_grid,change_round_to_grid);
W.int_item("# of grid lines = 27x, where x =",truncation_prec,
2,52, change_truncation_prec);

.init (0,1000,0);
.set_redraw(redraw) ;
.set_node_width(2);
.set_show_coordinates(true);

W.button("points", 1, "Opens a point generator panel.");
W.button("clear", 3, "Clears point set and window.");
W.button("graphwin", 4, "Loads graph into GraphWin.");
W.button("settings", 2, "Opens an option setting dialog.");
W.button("exit", 0, "Exits the program.");
W.button("about", 5, "Displays information about this program.");
W.display();

W

W

W

W

We need to say a few more words about the panel part of the winddne first choice
item controls the variabldisplayand consists of eleven items. Wheneveritlik button
is pressed thé-th bit of displayis flipped and the function catiraw(display) is made.
Each item is drawn as a 32x32 pixel map taken from the colaaf pixel maps defined in
LEDA/bitmaps/button32.h. The pixel maps selected are ddflyy the arrayisplaybits.
The pixel maps are shown black when the corresponding bigtamieased and are shown
in blue when the button is pressed.

The second choice item controls the variabblput. The effect of pressing one of the
buttons in this collection of buttons is to seputto the number of the button.

The third choice item controls the use of the filter, the banlégem controls whether the
input is rounded to a grid, and the slider item controls thebber of grid lines.

The other buttons are added by the selvettonstatements. Each button is given a name,
a number, and a help string that is displayed when the mows$e oger the button for an
extended period of time.

(definition of bit maps=
static char* input_bits [] = { point_bits, line_bits, circle_bits };

static charx display_bits [] = { triang_bits, voro_bits, f_triang_ bits,
f_voro_bits, tree_bits, hull_bits, empty_circle_bits,
encl_circle_bits, w_annulus_bits, a_annulus_bits, help_bits };
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Action Functions: Some of the items in the menu part of the window have actioatfons
associated with them. Recall that action functions areedaiith the new value of the
variable associated with the item (the value of the varidgbégf is only changed after return
from the action function such that new and old values of thiatste are available during the
action). All action functions follow the same scheme. Thelthe corresponding variable
to the new value (since we want the new value during the eietaf the action), clear the
window and redraw the sites, recompupdist andfp.list, and recompute the display. The
functiondrawwill be discussed below.

{(action functions=

void change_truncation_prec(int new_prec)

{ truncation_prec = new_prec;
Wp->clear();
draw_sites(p_list);
recompute_rp_and_fp_list();
draw(display) ;

}

void change_round_to_grid(int new_mode)

{ round_to_grid = new_mode;
Wp->clear();
draw_sites(p_list);
recompute_rp_and_fp_list();
draw(display) ;

}

void change_kernel(int new_kernel)

{ kernel = new_kernel;
Wp->clear();
draw_sites(p_list);
draw(display) ;

}

The functionrecomputep_andfplist clears both lists and then moves all points fraiist.
The functionadd point will be called whenever a new point is addedatbst andclearall
clears the window and all lists.

(manipulate plist, rp_list, and fplist)+=

void add_point(const rat_point& p)
{ p_list.append(p);
move_point (p);

}

void recompute_rp_and_fp_list()

{ fp_list.clear(); rp_list.clear();
rat_point p;
forall(p,p_list) move_point(p);

}

void clear_all()

{ Wp->clear();

p_list.clear(); fp_list.clear(); rp_list.clear();
}
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Global Drawing Functions: The functiordrawarea(disp, x0, y0, x1, y1, L) draws the part
of W covered by the rectangle with lower corn@f, y0) and upper cornetxl, yl). Itis
our master drawing function. The geometric structures shamg governed bgispandL
is eitherplist or fplist. If L is plist the drawing functions use the rational kernel and if
is fplist the drawing functions use the floating point kernel.

(global drawing functions=

template <class POINT>
void draw_area(int disp, double x0, double yO, double x1, double yi,
const 1ist<POINT>& L)

{
if (L.empty()) return;

Wp->start_buffering();
Wp->clear();

if (disp & MWA_MASK) draw_min_width_annulus(L);
if (disp & MAA_MASK) draw_min_area_annulus(L);
if (disp & HULL_MASK) draw_convex_hull(L);

if (disp & DT_MASK) draw_delaunay (L) ;

if (disp & VD_MASK) draw_voronoi(L);

if (disp & FDT_MASK) draw_f_delaunay(L);

if (disp & FVD_MASK) draw_f_voronoi(L);

if (disp & LEC_MASK) draw_max_empty_circle(L);
if (disp & SEC_MASK) draw_min_encl_circle(L);
if (disp & MST_MASK) draw_min_span_tree(L);

if (disp & CRUST_MASK) draw_crust(L);

draw_sites(L);

Wp->flush_buffer(x0,y0,x1,y1);
Wp->stop_buffering();

If our current set of sites is empiyrawareahas nothing to do. Otherwise we clear the win-

dow, draw the selected geometric structures (the condtéis_MASK, MAA MASK, ...

are defined in an enumeration type and den8t@® 22, ...), and draw the sites. The ap-

pearance of the window is better if the sites are displaytst e selected geometric struc-

tures. We want the new drawing to appear in a single blow agktbre put the window in

buffering mode before constructing the drawings of thectetbgeometric structures.
Once all drawings are constructed we flush the buffer andte®puffering mode.

(definition of display mask=
enum display_mask {
DT_MASK = 1, VD_MASK = 2, FDT_MASK = 4,
FVD_MASK = 8, MST_MASK = 16, HULL_MASK = 32,
LEC_MASK = 64, SEC_MASK = 128, MWA_MASK = 256,
= 1024

MAA_MASK = 512, CRUST_MASK
};

The master drawing function is used by the functidresnarea draw andredraw.
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Draw area (now without thelist<POINT>-argument) makes the distinction between the
use of the rational kernel and the floating point kernel.

Draw is called whenever one of the choice items changiisplayis called and at the
end of each iteration of the main loop and redraw is calledngkier the geometry of the
window is changed. Accordingly, we redraw either only thepthy part of the window (in
draw) or the entire window (imedraw).

(global drawing functionst=

void draw_area(int disp, double x0, double yO, double x1, double y1l)
{

if ( kernel == FK ) draw_area(disp,x0,y0,x1,y1,fp_list);

else draw_area(disp,x0,y0,x1,yl,rp_list);
}

void draw(int disp)
{ draw_area(disp,Wp->xmin() ,Wp->ymin() ,Wp->xmax () ,Wp->ymax()); }

void redraw(window* wp, double x0, double yO, double x1, double y1)
{ draw_area(display,x0,y0,x1,y1); }

Displaying Specific Geometric Structures:For each of our geometric structures we have
a function that displays it. We discuss only a represergaample of the functions.

We draw each site as a filled node of cadtie color, wheresitecolor is a global variable
defined in{further global variables. This code is not shown. The default valuesaécolor
is red; the color can be changed in the settings menu.

(displaying geometric structures

void draw_sites(const 1ist<POINT>& L)
{ POINT p;

forall(p,L) Wp->draw_filled_node(p.to_point(),site_color);
}

Most of our geometric structures are graphs. We have to digdatwo kinds of graphs.
\oronoi diagrams have tyg8RAPHCIRCLE POINT> and Delaunay diagrams have type
GRAPHPOINT, int>. We define a drawing function for each kind of graph. Recai the
use bidirected graphs to represent Delaunay diagrams annd®dadiagrams. We therefore
have to draw uedges and not edges.

In order to draw aGRAPHPOINT, int> we simply draw each uedge as the segment
defined by the endpoints of the edge.

(displaying geometric structurps =

void draw_graph_edges(const GRAPH<POINT,int>& T, color col)
{ edge_array<bool> drawn(T,false);
edge e;
forall_edges(e,T)
if (!drawn[e])
{ drawn[e] = true;
edge r = T.reversal(e);
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if (r) drawn[r] = true;
POINT p = T[source(e)];
POINT q T[target(e)];
Wp->draw_edge(p.to_point(),q.to_point(),col);

Voronoi diagrams are a bit harder to draw. The positions efrtbdes are determined
by the circles associated with them. A proper node, i.e.,dertd degree at least three, is
positioned at the center of the circle associated with itoAenof degree one is positioned at
the circle at infinity. If its circle iSCIRCLHa, _, b) then the node lies on the perpendicular
bisector ofa andb, and to the left of the oriented segment frarto b. Each edge is labeled
by the site owning the region to the left of the edge. An eelgepart of the perpendicular
bisector of siteg andb, wherea = G[e] andb = G[G.reversa{e)].

After these preliminaries it is clear how to draw a Voronogedv, w). An edge con-
necting two improper nodes is drawn as the perpendiculactos of the points andb, an
edge connecting a proper node and an improper node is draawagistarting at the proper
node, running along the perpendicular bisector of pardadb and extending towards the
position of the improper node at the circle at infinity, andeglge connecting two proper
nodes is drawn as a segment connecting the nodes. We oledoiltdwing code.

(draw_voro_edge$=

void draw_voro_edges(const GRAPH<CIRCLE,POINT>& VD, color col)
{

edge_array<bool> drawn(VD,false);

edge e;

forall_edges(e,VD)

{ if (drawn[e]) continue;

drawn[VD.reversal(e)] = drawn[e] = true;

node v = source(e);

node w = target(e);

POINT a = VD[e];

POINT b = VD[VD.reversal(e)];
VECTOR vec = (b - a).rotate90();
line 1 = p_bisector(a,b).to_line();

if (VD.outdeg(v) == 1 && VD.outdeg(w) == 1){ Wp->draw_line(l,col); }
else
if (VD.outdeg(w) == 1)
{ POINT cv = VD[v].center();
VECTOR vec = VD[w].point3() - VD[w].pointl1();
POINT rp = cv + vec.rotate90();
Wp->draw_ray(cv.to_point(),rp.to_point(),col);
}
else
if (VD.outdeg(v) == 1)
{ POINT cw = VD[w].center();
VECTOR vec = VD[v].point3() - VD[v].pointl1();
POINT rp = cw + vec.rotate90();
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Wp->draw_ray(cw.to_point () ,rp.to_point(),col);
}
else
{ POINT cv = VD[v].center();
POINT cw = VD[w].center();
Wp->draw_segment (cv.to_point(),cw.to_point(),col);

}

The procedure above has serious numerical differencessi@armhe following example.
Assume that we compute the Voronoi diagram of three poiraslig almost on a common
line. The Voronoi diagram consists of one vertex and thrgs.ralrhe vertex has very
large coordinates and even if its coordinates are compuiactly (as they will be with the
rational kernel) the conversion to pointanawray will suffer some loss of accuracy. We
are now drawing a ray from a distant point. It is unlikely ttfas ray intersects the window
in the desired form.

The window class offers drawing functions that are appedprior this situation as dis-
cussed in Section 8.1. The modified drawing functions havadalitional argumenit of
typeline, which is supposed to be the line underlying the segreemtrayr to be drawn.
In our casd is the bisector o andb and hence determined with high precision. The
additional argument is used as follows.

If the source of liesinW or the two endpoints oflie in W, | is ignored. Otherwise, the
intersectiort betweer and the window is determined and the part @fhich also belongs
tor orsis drawn.

(displaying geometric structurgs =
// template <class POINT, class CIRCLE, class VECTOR, class LINE>
void draw_voro_edges(const GRAPH<CIRCLE,POINT>& VD, color col)
{
edge_array<bool> drawn(VD,false);
edge e;
forall_edges(e,VD)
{ if (drawn[e]) continue;

drawn[VD.reversal(e)] = drawn[e] = true;

node v = source(e);
node w = target(e);
POINT a = VD[e];
POINT b = VD[VD.reversal(e)];
line 1 = p_bisector(a,b).to_line();
if (VD.outdeg(v) == 1 && VD.outdeg(w) == 1){ Wp->draw_line(l,col); }
else
if (VD.outdeg(w) == 1)
{ POINT cv = VD[v].center();
VECTOR vec = VD[w].point3() - VD[w].pointl1();
POINT rp = cv + vec.rotate90();
Wp->draw_ray(cv.to_point(),rp.to_point(),1l,col);
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}
else
if (VD.outdeg(v) == 1)
{ POINT cw = VD[w].center();
VECTOR vec = VD[v].point3() - VD[v].pointl1();
POINT rp = cw + vec.rotate90();
Wp->draw_ray(cw.to_point() ,rp.to_point(),1l,col);

¥

else

{ POINT cv = VD[v].center();
POINT cw = VD[w].center();

Wp->draw_segment (cv.to_point(),cw.to_point(),1,col);
}

The function above uses points, lines, circles, and veetodshence would require four
template arguments. Moreover, we would have to add artiicguments of type LINE and
VECTOR such that the appropriate type inference can be matteelzompiler. We decided
to use our primitive renaming mechanism instead. An altarmavould be to introduce a
classrat kernel

class rat _kernel{
typedef rat_point POINT;
typedef rat_segment SEGMENT;
// and so on

}

and a similar clas8oatkernel to use a single template argument cakedne| and to use
qualified type names such &ernel:POINT andkernel:SEGMENTIn drawvoraedges
This design is used extensively in CGAL [CGA].

We come to the drawing functions for the individual geoneestructures. Nearest and
furthest sites Delaunay diagrams, crusts, and minimumrspgrirees are drawn by first
computing the structure and then callidgaw graphedges For example,

(displaying geometric structurg$ =

void draw_delaunay(const 1ist<POINT>& L)

{ GRAPH<POINT,int> DT;
DELAUNAY_TRIANG(L,DT);
draw_graph_edges (DT, triang_color);

}

Nearest and furthest site Voronoi diagrams are drawn by atingpthe structure and calling
drawvoraedges For example,
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(displaying geometric structurg$ =

void draw_voronoi(const 1ist<POINT>& L)
{ GRAPH<CIRCLE,POINT> VD;
VORONOI(L,VD);
draw_voro_edges (VD,voro_color);

}

In order to display the convex hull and the width of our setaihps we compute the convex
hull (a list of POINTS), convert the list to a list @ioints and draw the list of points as a
filled polygon ofhulLcolor and as a black polygonal line. We also compute the minimum
width slab containing our set of points and display the twedi bounding the slab.

(displaying geometric structurgs =
void draw_convex_hull(const 1ist<POINT>& L)
{ 1ist<POINT> CH = CONVEX_HULL(L);
list<point> pol;
POINT p;
forall(p,CH) pol.append(p.to_point());

Wp->draw_filled_polygon(pol,hull_color);
Wp->draw_polygon(pol,black) ;

// width

LINE 11,12;

WIDTH(L,11,12);
Wp->draw_line(11.to_line() ,blue);
Wp->draw_line(12.to_line() ,blue);

In order to draw a minimum width annulus we either draw the tivcles or the two
parallel lines defining the annulus. In the first case we waatannulus to be shown in
orange. We therefore draw the larger disk in orange first hed the smaller disk in white.
This leaves the annulus in orange.

(displaying geometric structurg$ =

void draw_min_width_annulus(const 1ist<POINT>& L)
{ POINT a,b,c; LINE 11,12;
if ( MIN_WIDTH_ANNULUS(L,a,b,c,11,12) )
{ // proper annulus
circle cil(a.to_point(),b.to_point());
circle c2(a.to_point(),c.to_point());
Wp->draw_disc(c2,orange) ;
Wp->draw_disc(cl,white);
Wp->draw_circle(cl,black);
Wp->draw_circle(c2,black);
Wp->draw_point (a.to_point() ,orange) ;
}
else
{ // strip
Wp->draw_line(11.to_line() ,black);
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Wp->draw_line(12.to_line() ,black);
}
}

Adding a Geometric Object: We come to the mouse input of points, lines, and circles.
The functiongetinput(W, input) reads either a point, or a segment, or a circle and then
calls the appropriate insertion function.

(adding a geometric objecE
(adding a point, segment or cir¢le

void get_input(window& W, int inp)
{ rat_point p; rat_segment s; rat_circle c;

switch (inp) {
case 0: if (W >> p) insert_point(p); break;
case 1: if (W >> s) insert_segment(s); break;
case 2: if (W >> c) insert_circle(c); break;

}
}

(adding a point, segment or cirgks

void insert_point(rat_point p)

{ Wp->draw_filled_node(p.to_point(),site_color);
add_point (p);

}

Addition of a point does the obvious. In order to add pointsasegment we generate
points on the segment, whenes determined by the ratio between the length of the segment
and the global variablpointdist

In order to add a circle we generateuniformly spaced points on the circle, whare
is determined by the ratio between the circumference of ittéecand the global variable
pointdist

(adding a point, segment or cirgl¢-=

void insert_segment (rat_segment s)

{
double 1 = s.to_segment().length();
int n = Wp->real_to_pix(1l)/point_dist + 1;
list<rat_point> L;
points_on_segment(s,n,L);
rat_point p;
forall(p,L)
{ add_point(p);

Wp->draw_filled_node(p.to_point(),site_color);

}

}

void insert_circle(rat_circle C)
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double L = 2 * C.to_circle().radius() * LEDA_PI;
int n = Wp->real_to_pix(L)/point_dist + 1;
double d = (2*LEDA_PI)/n;

double eps = 0.001;

double a = 0;

for(int i = 0; i < n; i++)

{ rat_point q = C.point_on_circle(a,eps);
add_point(q);
Wp->draw_filled_node(q.to_point(),site_color);
a += d;

Point Generators: The point generator menu allows the user to select betweea gen-
erators. A generator for random points in a square, a gesdatregularly spaced points,
and a generator for random points near a circle. The thiréiggor produces inputs which
are useful to illustrate the computation of annuli.

(generate points mehe

panel P;

P.text_item("\\bf Generate input points");
.text_item("");
.choice_item("",k_gen,"random","lattice","near circle");
.int_item("",n_gen,0,500);

.button("create",0);

.button("cancel",1);

if (P.open(W) == 0)

{ switch (k_gen) {

case 0: random_square(n_gen); break;

‘o' 9o

case 1: lattice_points(n_gen); break;

case 2: near_circle(n_gen,point_dist); break;
}
}

We only show thenearcircle generator. It generates points in an annulus with inneusadi
rmin and outer radiusmax rmaxis chosen such that the annulus fits nicely on the screen
andrminis chosen as 90% omax

For each point to be generated we generate a random pointiccieaaf radiusr where
r is randomly chosen betweemin andrmax

(point generatorst=

void near_circle(int n, int point_dist)

{
double x0 = Wp->xmin(), yO = Wp->ymin();
double x1 = Wp->xmax(), yl = Wp->ymax();
point cent ((x0+x1)/2, (yO+y1)/2);

int rmax = int(0.35 * (x1-x0));
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int rmin = int (0.9 * rmax);

clear_all();

for(int i=0; i < n; i++)

{ //circle C(cent,rand_int (rmin,rmax));
circle C(cent, (double)rand_int(rmin,rmax));
double a;
rand_int >> a;
point q = C.point_on_circle(2*a*LEDA_PI);
int x = (int)q.xcoord();
int y = (int)q.ycoord();
add_point (rat_point(x,y,1));
Wp->draw_filled_node(x,y,site_color);

ng GraphWin: The functiongrapheditvisualizes the graphs underlying our geomet-

ric structures. We do not discuss it here.

Settings: The settings menu allows the user to set some of the glob@lbles. It is self-
explanatory.
(settings menE=
panel SP("SETTINGS");
SP.bool_item("use filter in rat kernel", use_filter);
SP.bool_item("draw lines with width 2" ,thick_lines);
SP.int_item("grid", grid_width,0,50,10);
SP.int_item("pix dist", point_dist,1,64);
SP.color_item("sites ", site_color);
SP.color_item("voro ", voro_color);
SP.color_item("triang", triang_color);
SP.color_item("hull", hull_color);
SP.color_item("tree", tree_color);
SP.button("continue");
SP.open (W) ;
W.set_grid_mode(grid_width);
W.clear();
W.set_line_width( thick_lines ? 2 : 1);

dr
re
dr

10.1

aw_sites(p_list);
compute_rp_and_fp_list();
aw(display) ;

0.3Floating Point Errors

What can go wrong when the demao is executed with the floatiivg gernel?

W

hen a segment or circle is added a certain number of poirttssosegment or circle are

added taanlist. The rational kernel guarantees that these points lie gxactthe segment
or circle, respectively. When thrat pointsare converted tpoints they will lie only almost
on the circle or segment.
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Consider now a scene that consists of points on two segmBmésDelaunay triangula-
tion will contain extremely flat triangles. This can cause tlomputation of the Delaunay
diagram and the Voronoi diagram to fail.

Crust is also a good source of error. It computes the Deladizgram of the points is
fplist plus the vertices of the Voronoi diagrampmlfist. Whenfplist contains points that lie
almost on a circle there will be many Voronoi vertices neardbnter of the circle and the
Delaunay diagram computation will get confused. This cau I® strange crusts.
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