6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

Contents

Graphsand their Data Structures

Getting Started

A First Example of a Graph Algorithm: Topological Orawyi
Node and Edge Arrays and Matrices

Node and Edge Maps

Node Lists

Node Priority Queues and Shortest Paths
Undirected Graphs

Node Partitions and Minimum Spanning Trees
Graph Generators

Input and Output

Iteration Statements

Basic Graph Properties and their Algorithms
Parameterized Graphs

Space and Time Complexity

Bibliography

Index

page2

11
13
15
19

25
31
33

42
43

45

46

21

36

6
Graphsand their Data Structures

The graph data type is one of the central data types in LED#difirst two sections we give
a gentle introduction to it. Each of the remaining sectiandavoted to a particular aspect
of the graph data type: node and edge arrays, hode and edgemodp lists, node priority
queues, node partitions, undirected graphs, graph gengratput and output, iteration
statements, basic graph properties, parameterized grapthsime and space complexity.

6.1 Getting Started

A directed graph G= (V, E) consists of a se¥ of nodes or vertices and a sEtof
edges. Figure 6.1 shows a directed graph. Every edges asource node sour¢e) and a
target node targee). In our figures we draw an edgeas an arrow starting aburcge) and
ending atarget(e). We refer to the source and the target of an edge asritipointf the
edge. An edge is said to lrecidentto its endpoints. We also say that an edds an edge
out of sourcée) andinto targe(e). The edges out af are also called the edgadjacentto
v. For an edge with source node and target node we will write (v, w).

The declarations

graph G;

node v, w;

edge e, f;
declare variable&, v, w, eand f of typegraph node andedge respectively. The values
of these variables are graphs, nodes, and edges, respec@ves initialized to the empty
graph, i.e., a graph with no node and no edge, and the indiakg ofv, w, e, and f are
unspecified (since nodes and edges are pointer types). €b@bypaluenil is not a node or

6.1 Getting Started 3

Figure6.1 A directed graph.

edge of any graph and can be used to initialize nodes and &dldpess definite value, as, for
example, in

node v = nil;

Graph algorithms frequently need to iterate over the noddseages of a graph and the
edges incident to a particular node. The iteration statémen

forall nodes(v,G){ }

iterates over all nodes of a graph, i.e., the nodé&s afe successively assigneditand the
body of the loop is executed once for each value.ddimilarly,

forall edges(e,G){ }

iterates over all edgesof G. There are three ways to iterate over the edges incident to a
nodev. The iteration statements

forall out_edges(e,v){ }
forall adj_edges(e,v){ }

iterate over all edgesout of v, i.e, all edges whose source node is equal,to
forall in edges(e,v) { }

iterates over all edgesinto v, i.e., over all edges whose target node is equal &tnd
forall_inout_edges(e,v){ }

iterates over all edgesinto and out ofv. So

int s = 0;

forall edges(e,G) s++;
computes the number of edged®f This number is also available @numberof_edges).

In many situations it is useful to associate additional infation with the nodes and
edges of a graph. LEDA offers several ways to do so. We brigflyussnode arraysedge
arrays andparameterized graphsWe will give more details and also discuss node and
edge maps later.

4 Graphs and their Data Structures

The declarations

node_array<string> name(G) ;

edge_array<int> length(G,1);
introduce arraymiameandlengthindexed by the nodes and edges of @Gerespectively.
The entries ohameare strings and the entries leihgthare integers. All entries afame
are initialized to the empty string (= the default valuestifng) and all entries ofengthare
initialized to 1. Ifv is a vertex ofG andeis an edge ofz we may now write

"Saarbruecken";
5;

name [v]
length[e]

The following piece of code numbers the nodes of a graph vki¢hittegers O tan — 1,
wheren is the number of nodes @. As is customary in the literature on graph algorithms
we will usually writen for the number of nodes amd for the number of edges.

node_array<int> number (G);

int count = 0;

forall nodes(v,G) number[v] = count++;

A second method to associate information with nodes andseidge use so-calleda-
rameterized graphsThe declaration

GRAPH<string,int> H;

declareH as a parameterized graph where a string variable is assdeiéth every vertex
of H and an integer is associated with every edgkl oiVe may now write

H[v]
H[el

"Saarbruecken";
5;

to associate the stringSaarbrueckehwith v and the integer 5 witke. Of course, both
operations are only legal if ande actually denote a vertex and edgetbf respectively.

There is an important difference between the two methodssbd@ating information
with nodes and edges. Node and edge arrays work only foc spatphs, i.e., when a new
node or edge is added to a graph it will not have a correspgratitry in the node and edge
arrays of the graph (in Section 6.3 this condition will beaxgld somewhat). Parameterized
graphs, on the contrary, are fully dynamic. Information banassociated with new edges
and nodes without any restriction. In this sense, parametégraphs are more flexible.
Also, the access to the information stored in the nodes agdsdf a parameterized graph
is somewhat more efficient than the access to the informatiamed in a node or edge array.
On the other hand, the great strength of node and edge asrthet ian arbitrary number of
them can be defined for a graph.

It's time to learn how to build non-trivial graphs. A graphnche altered by adding and
deleting nodes and edges. For example,

graph G;

G.new_node();

G.new_node();

node v;

forall nodes(v,G) cout << G.outdeg(v);

6.1 Getting Started 5

makesG a graph with two nodes and no edge and then outputs the oa@egdall nodes,
i.e., outputs the number O twice. In order to add an edge we tregpecify its source and
its target. For example,

node w = G.first node();
G.new_edge (w,G.succmnode(w)) ;

will add an edge whose source and target are the first and dexme ofG respectively;
note that LEDA internally orders the nodes of a graph in tlikenm which they were added
to G. G.firstnodd) returns the first node in this ordering a@isuccnodgw) returns
the node added immediately after There is a more interesting way to add edges. The
operationG.newnodd) does not only add a new node to the gr&phut also returns the
new node. We can remember the new node in a variable ofrtgge So

graph G;

node v0 = G.new_node();
node vl = G.new_node();
node v2 = G.new_node();

node v3 = G.new_node();
G.new_edge(v0,v1); G.new_edge(v0,v2);
G.new_edge(vl,v2); G.new_edge(vl,v3);

creates the graph of Figure 6.1.

Let us do something more ambitious next. Suppose that weectr@agraphG and that
we want to make an isomorphic copyof it. Moreover, we want every node and edgd-bf
to know its original inG. Here is an elegant way to do this. We use parameterized gjraph
node arrays and edge arrays.

void CopyGraph(GRAPH<node,edge>& H, const graph& G)
{ H.clear(); // reset H to the empty graph
node_array<node> copy-in_H(G) ;
node v;
forall nodes(v,G) copy_in H[v] = H.new node(v);
edge e;
forall edges(e,G)

H.new_edge (copy_in H[source(e)],copy_in H[target(e)],e);
}

We defineH as a parameterized graph where a node can be associatecdwehth@le and
an edge can be associated with each edge. We also define arreydeppyin H for G that
allows us to associate a node with every nod&of\We then iterate over the nodes Gf

For every node of G the operatiorH.newnodgv) adds a new node tbl and associates

v with the new node. Note that thmeewnodeoperation for a parameterized graph has an
argument, namely the information that is to be associatéutive new node. The operation
H.newnodgv) also returns the new node. We remember icapyinH[v]. The overall
effect of theforall_.nodesloop is to giveH as many nodes &3 and to establish bidirectional

1 The outdegree of a vertaxis the number of edgeswith sourcée) = v.

6 Graphs and their Data Structures

copyin_H[V]

G H

Figure6.2 A graphG and an isomorphic copil of it. Each node of G knows its partner irH
throughcopyin.H[v] and each node of H knows its partner ifs throughH [w].

links between the nodes @& andH: in particular, we haved [copyinH[v]] = v for all
nodesv of G andcopyinH[H[w]] = w for all nodesw of H, see Figure 6.2. It is now easy
to add the edges. We iterate over the edgeG.ofor every edge we add an edge tél
that runs fronrcopyin H[sourcé€e)] to copyin H[target(e)] and also make the information
associated with the new edge. Observe thatewedgé€Xx, vy, inf) adds an edge from node
X to nodey and associates the informatior with it.

Exercise for 6.1
1 Write a program that makes a copy of a gr&plwith all edges reversed, i.e., for every
edgee = (v, w) in G there should be an edge from the copyofo the copy ofv in H.

6.2 A First Example of a Graph Algorithm: Topological Ordering

A graph is calledacyclicif it contains no cycle. A cycle is a path that closes on itself
i.e., a sequencey, ey, ..., & of edges such thatargetle) = sourc€e ;1 mogkr1) for all

i, 0 <i < k. The graph in Figure 6.1 is acyclic. The nodes of an acyclphrcan be
numbered such that all edges run from smaller to higher ntedb®odes. The function

bool TOPSORT(const graph& G, node_array<int>& ord);

returns true ifG is acyclic and false ifs contains a cycle. In the former case it also returns
a topological ordering of the nodes Gfin ord.

The procedure works by repeatedly removing nodes of inédezgeo and numbering the
nodes in the order of their removal.

In the example of Figure 6.1 we first number node 0. Removirdgribmakes the inde-
gree of node 1 zero and hence this node is numbered next. Réofawde 1 makes the
indegree of node 2 zero,

For reasons of efficiency we keep track of the current indegfeall nodes and also
maintain the list of nodes whose current indegree is zero.

6.3 Node and Edge Arrays and Matrices 7

#include <LEDA/graph.h>
#include <LEDA/queue.h>

bool procedure TOPSORT (const graph& G,node_array<int>& ord)
{ (initialization)

(removing nodes of indegree zgro
}

In the initialization phase we determine the indegree ohafles and initialize a queue of
nodes of indegree zero.

(initialization)=
node_array<int> INDEG(G);

queue<node> ZEROINDEG;
node Vv,w;

forall_nodes(v,G)
if ((INDEGLv] = G.indeg(v)) == O) ZEROINDEG.append(v);

In the main phase of the algorithm we consider the nodes efjrek zero in turn. When
a vertexv is considered we number it and we decrease the indegredsanfjatent nodes
by one. Nodes whose indegree becomes zero are added tortioé ZEROINDEG

(removing nodes of indegree zgr

int count = 0;
node_array<int> node_ord(G) ;

while (!ZEROINDEG.empty())
{
v = ZEROINDEG.pop();
node_ord[v] = ++count;

forall_out_edges(e,v)
{ node w = G.target(e);
if (--INDEG[w] == 0) ZEROINDEG.append(w);
}
}

return (count == G.number_of_nodes());

TOPSORTconsiders every edge @ only once and hence has running tir@gn + m).
In the section on depth-first search (see Section 7.3) wesedllan alternative program for
topological sorting.

6.3 Node and Edge Arraysand Matrices

Node and edge arrays and matrices are the main means ofaswpuiformation with the
nodes and edges of a graph. The declarations

node_array<E> A(G);
node_array<E> B(G,E x);

8 Graphs and their Data Structures

A B

Figure 6.3 The realization of node arrays: Node arrayand B are realized by regular arrays.
The nodes of a graph are numbered and the node numbers ar@subedndices into the arrays.

declare node array# and B for the nodes ofG, respectively. The elements & are
initialized with the default value oE and the elements dB are initialized tox. Edge
arrays are declared in a similar way. So

node_array<bool> visited(G,false);

declares a node arragsitedand initializes all its entries to false. The cost of declgra
node array foiG is proportional to the number of nodes®fand the cost of declaring an
edge array is proportional to the number of edges.

Node and edge arrays are a very flexible way of associatimgrrdtion with the nodes
and edges of a graph: any number of node or edge arrays carfibedd®r a graph and
they can be defined at any time during execution.

Node and edge arrays are implemented as follows. The nodesdgres of a graph are
numbered in the order of their construction, starting abz&ve call the number of a node
or edge itsindex The index of a node or edgee is available asndexv) andindexe),
respectively. Node and edge arrays are realized by stardeags. The node and edge
indices are used to index into the arrays, see Figure 6.3.

The access to an enti#v] of a node arrayA (similarly, edge arrays) requires two
accesses to memory, first the structure representing the nalaccessed to determine
indexv) and second the enti[indexv)] is accessed.

When the number of node and edge arrays that are needed faph g known, the
following alternative is possible. Assume timeglotsnode arrays andslotsedge arrays are
needed. The constructor

graph G(int n_slots, int e_slots);

constructs a graph where the structures representing rieesroom for the entries of
nslotsnode arrays and the structures representing edges havdaptita entries o slots
edge arrays. In order to use one of the slots for a particalay,cone writes:

6.3 Node and Edge Arrays and Matrices 9

Figure 6.4 The alternative realization of node arrays: In a gr&bonstructed by
graph G(2, 0), every node has room for the entries of two node arrays.

node_array<E> A;
A.usenode_data(G, E x);

This will reserve one of the slots in the node structuresand initialize all entries of the
array tox. If no slot is available, the node array is realized by a stath@rray. Figure 6.4
illustrates the alternative. The alternative realizabbnode and edge arrays is frequently,
but not always, faster (see the next section), as only onesado memory is needed to
access an entry of a node or edge array, but it is also lesgoi@mt, as the number of node
and edge arrays that can use the alternative is fixed at tleedirthe construction of the
graph.

We recommend that you experiment with the alternative desiging the optimization
phase of program development

Node and edge arrays, as discussed so far, are primarilyl deestatic graphs.

node_array<int> dist(G);

node v = G.new_node();

dist[v] = 5;
is illegal and produces the error messagedearray|v] not defined forn”. We next discuss
node and edge arrays for dynamic graphs. We have to admitgithahat we hardly use
node and edge arrays for dynamic graphs ourselves. We predier and edge maps and
parameterized graphs.

node_array<E> A(graph G, int n, E x);

declaresA as a node array of sizefor the nodes ofs and initializes all entries oA to x;
x must be specified even if it is the default valuekof

The constructor requires that> |V|. The arrayA has room fom — |V| additional
nodes, i.e., for the nodes created by the mext V| calls of G.newnodg). In this way one

10 Graphs and their Data Structures

can have the convenience and efficiency of node arrays alstyfmamic graphs. Deletion
of nodes is no problem for node arrays.

The following doubling and halving strategy is useful fordecand edge arrays on dy-
namic graphs. Suppose that is the current number of nodes & and that we want to
create a node arraf for G. We makeA an array of size @, and initialize two counters
inscountanddelcountto zero. We incremenhscountfor everyG.newnoded) operation
anddelcountfor every G.delLnodg) operation. Wherinscountreaches or delnode
reache%/2 we allocate a new arrdy of size Ang + inscount— delcouny and move the
contents ofA to B. This scheme ensures that node arrays are always at leasit?z#d
and that the overhead for moving information around inasdlise running time by only a
constant factor (since the cost of movingdsng) and since there ai® (ng) newnodeand
delnodeoperations between reorganizations of the node array).

We next turn to node matrices. The definition
node matrix<int> M(G,0);

definesM as a two-dimensional matrix indexed by pairs of node§&dnd initializes all
entries ofG to zero. This takes tim®(n?), wheren is the number of nodes @. The
space requirement for a node matrix is quadratic in the nurmberodes. So they should
only be used for small graphs.

M(v,w) = 1;

sets the entry for paiv, w) to one.

A node matrix can also be viewed as a node array of node arrmayshe typenodematrix< E>
is equivalent to the typrodearray<nodearray<E> >. This view is reflected in the opera-
tion

M[v];

which returns a node array.

We give an example of the use of node matrices. The followhrge:-liner checks
whether a graph is bidirected (also called symmetric), idether for every edge =
(v, w) the reversed edgev, v) is also present.

node_matrix<bool> M(G,false);

forall edges(e,G) M(G.source(e),G.target(e)) = true;

forall edges(e,G)
{ if ('M(G.target(e),G.source(e))) error_handler(l,"not bidirected"); }

The program above has running tiregn? + m), ®(n?) for initializing M and ® (m) for
iterating over all edges twice. As we will see later therels® anO(m) algorithm for the
same task. It is available as

bool Is_Bidirected(G);

6.4 Node and Edge Maps 11

6.4 Node and Edge M aps

Nodes and edge maps are an alternative to node arrays. Theatiens

node map<E> A(G);
node_map<E> B(G,E x);

declare node map& andB for the nodes of5, respectively. The elements éfare initial-
ized with the default value dE and the elements @ are initialized tox. Edge maps are
declared in a similar way. So

node _map<bool> visited(G,false);

declares a node magisitedand initializes all its entries to false.

What is the difference between node and edge arrays and natledge mapsNode
and edge maps use hashing (see Section 5.1.2). The demlavht node or edge map has
constant cost (compare this to the linear cost for node agd adays) and the access to an
entry of a node or edge map has constant expected cost.

Table 6.1 compares three ways of associating informatidim tie nodes of a graph, the
standard version of node arrays, the version of node arletsrakes use of a data slot
in the node, and node maps. The table was produced by theapndzglow. We give the
complete program because the numbers in the table are s@hswiprising. We create a
graph withn nodes and no edge and iter&dimes over the nodes of the graph. In each
iteration we access the information associated with thendée iterate over the nodes once
in their natural order and once in random order.

(nodearrays.versusnodemaps$=
main(){
(node arrays versus node maps: read n and R
graph G; graph G1(1,0); node v; int j;
random_graph(G,n,0); random_graph(G1,n,0);
float T = used_time();
float TA, TB, TM, TAP, TBP, TMP;

{ node_array<int> A(G,0);
for (j =0; j <R; j++)
forall_nodes(v,G) A[v]++;
TA = used_time(T);

{ node_array<int> A;
A.use_node_data(G1,0);
for (j =0; j <R; j++)
forall_nodes(v,G1l) A[v]++;
TB = used_time(T);

{ node_map<int> A(G,0);
for (j =0; j <R; j++)
forall_nodes(v,G) A[v]++;
TM = used_time(T);

12 Graphs and their Data Structures

Linear scan Random scan

array nodedata map array nodedata map

3.25 439 348 8.96 59 9.56

Table 6.1 Node arrays versus node maps: The table shows the outpug pfdlgram
nodearraysversusnodemaps.c. We used a node array (columns one and four), a naalsldat
(columns two and five), and a node map (columns three andkused a graph with one
million nodes andk = 10. The nodes were scanned in linear order and in random. arder
nodearray versusnodemaps demo allows you to perform your own experiments.

}

array<node> perm(n); array<node> perml(n);
int i = 0;
forall_nodes(v,G) perm[i++] = v;
i=0;
forall_nodes(v,Gl) permi[i++] = v;
perm.permute(); perml.permute();
used_time(T);
{ node_array<int> A(G,0);

for (j =0; j <R; j++)

for(i = 0; i < n; i++) Alperm[i]]++;
TAP = used_time(T);

{ node_array<int> A;
A.use_node_data(G1,0);
for (j =0; j <R; j++)
for(i = 0; i < n; i++) Alpermi[i]]++;
TBP = used_time(T);

{ node_map<int> A(G,0);
for (j =0; j <R; j++)
for(i = 0; i < n; i++) Alperm[i]]++;
TMP = used_time(T);
}

(node arrays versus node maps: report running times
}

In the random scan over the nodes, node data slots outpenfmimarrays which in turn
outperform node maps. This was to be expected, since nodeskids avoid one level of
indirection, and since maps have the overhead of hashingasMee only slightly slower
than arrays due to our very efficient realization of maps,3eetion 5.1.2. In the linear
scan the situation is different. Node data slots are theedbwnd maps are even closer
to arrays. We believe that this is due to caching. We compade arrays and node data
slots. When node data slots are used, the node structurésrgee and hence fewer of

6.5 Node Lists 13

them fit into a cache line. Node arrays use the cache moretigéflscin the linear scan
because they can use one cache line for node structures anchohe line for the array
itself and only the cache lines for the array itself are wnitt Thus the number of write-
faults reduces. A similar explanation applies to node m&psce it requires knowledge of
the implementation of maps, we do not give it here.

We recommend to use node and edge maps in situations wheaesa spap on nodes or
edges, respectively, has to be maintained. If more tharof#ie entries are actually used,
it is better to use node arrays.

We next turn to two-dimensional node maps. The definition

node_map2<int> M(G,0);

definesM as a two-dimensional map indexed by pairs of nhode§&aind initializes all
entries ofG to zero. This takes constant time.

M(v,w) = 1;

sets the entry for paifv, w) to one. The space requirement for a two-dimensional node
map is proportional to the number of entries used.

We give an example for the use of two-dimensional node malps fdllowing three-liner
checks whether a graph is bidirected (also called symmetric, whether for every edge
e = (v, w) the reversed edgev, v) is also present.

node_map2<bool> M(G,false);

forall edges(e,G) M(G.source(e),G.target(e)) = true;

forall _edges(e,G)
{ if ('M(G.target(e),G.source(e))) error_handler(l,"not symmetric"); }

The program above has running tir@gm), O(1) for initializing M andO(m) for iterating
over all edges twice. The space requireme@{s). Observe, that this is much better than
what we obtained with node arrays in the preceding section n.

Exercises for 6.4

1 Write a program that checks whether a graph is symmetriciisaol, computes an edge
arrayreversalthat stores for each edge a reversal of the edge. The soureesp$al€]
must be equal to the target @aind vice versa.

2 Extend the program of the previous item so that it can alswllesparallel edges. We
wantreversa|reversale]] = e for all edge<.

3 Extend the program of the previous item so that it can alsallesself-loops. We want
reversaje] # eforall e.

6.5 NodeLists

A node list is a combination of a doubly linked list of nodeslannode map which gives,
for each node, its position in the list, see Figure &%ode can be contained in a node list

14 Graphs and their Data Structures

Figure 6.5 Node lists: A node list for a graph with four nodasb, ¢, andd. The node list
contains the nodes, ¢, andd in this order. The top part of the figure shows a doubly linked |
and the lower part of the figure indicates a node map. The nagemaps each node contained
in the node list to the list item containing the node.

In asnoddist a singly linked list is used instead of a doubly linked list.

at most oncelt can be contained in several node lists, but in each paatimode list it can
appear only once.

node_list L(G);

creates a node list for the graghand initializes it with the empty list. Node lists offer all
the usual list operations, e.g@ppend push pop insert, head tail, pred sucg cyclicpred,
cyclicsucg empty and the possibility to iterate over the nodes in the listaddition, node
lists offer constant time member ship test.

The related data typenoddist is the combination of a singly linked list and a node map.
It offers all the operations of singly linked lists plus ctargt time member ship test.

A prime example for the use of node lists is breadth-firstgearhe goal is to explore
the nodes of a graph starting from some source maderder of increasing distance from
s. The distance of a nodefrom s is the smallest number of edges in a path frota v.

The following program realizes breadth-first search. Wdecblthe nodes ofs in a
shoddist Q in the order in which they are reached. We always explore dige® out of
the first unprocessed node@ Whenever a node is encountered that has not been reached
before (= is not inQ) we add it to the rear of.

snode_list @;
Q.append(s);
node v = Q.head();
while (v != nil)
{ edge e;
forall adj_edges(e,v)
{ node w = G.target(e);
if (!'Q.member(w)) Q.append(w);
}
v = Q.succ(v);

}

We will discuss breadth-first search in more detail in theptdiaon graph algorithms.

6.6 Node Priority Queues and Shortest Paths 15

Exercises for 6.5

1 Give an implementation anoddist that uses @odemapnode> succnode two nodes
firstnodeandlastnode and an integesize

2 Give an implementation afodelist that uses two maps from nodes to nodes, namely,
succnodeandprednode two nodedirst nodeandlastnode and an integesize

6.6 Node Priority Queues and Shortest Paths

The declaration
node_pq<P> Q(G);

declares anode priority queue Quith priority type P for G and initializes it to the empty
queue. A node priority queue with priority tygeis a partial function from the nodes &f
to the setP. The setP must be linearly ordered. [Q(v) is defined we call it the priority of
nodev. We use donf to denote the set of nodes for whi€(v) is defined, thelomainof
Q. Node priority queues allow us to manipulate the funci@ty insertion, deletion, and
(restricted) modification of values, and they allow us t@seha node with smallest priority.

We next discuss some of the operations available on nodetpripieues in more detail,
then show how to use them in an implementation of Dijkstrédgoathm for the single-
source shortest-path problem, and finally show how nodeifyrigueues are implemented
in terms of node arrays and general priority queues.

We come to the operations available on node priority queues:

node Q.find min();

returns a node € domQ with minimal associated priorityn{l if Q is empty),
bool Q.member (node v);

checks whether nodeis contained in the queug, i.e., if v € domQ,
void Q.insert(node v, P p);

adds the node with associated priorityp to the queud (the effect of this operation is
unspecified ifv is already contained iQ) and

void Q.decrease_p(node v, P p);

makesp the new priority of nodev (the effect of this operation is unspecifiedvifis not
contained inQ or p is larger than the old priority associated with

The implementation of node priority queues is based onipyiqueues and node arrays.
The operationgindmin and decreasg take constant time, all other operations take time
O(logs) wheres is the current size o). The space requirement is proportional to the
number of nodes o&. We give the details of the implementation at the end of ticti@e.

16 Graphs and their Data Structures

We illustrate the use of node priority queues on Dijkstrérgyke-source shortest-path
algorithm. LetG be a graph, leédgearray<NT> costbe a non-negative cost functoan
the edges of5, and lets be a node of5. For any nodev of G let w(v) be the cost of a
shortest path frons to v, where the cost (or length) of a path is the sum of the costs of i
edges; if there is no path froeito v thenu (v) = co. We usecost p) to denote the cost of
a pathp.

The task is to compute in anodearray<NT> dist and anodearray<edge predwhich
contains for each node £ s the last edge of a shortest path freno v. We need to be
more precise. Observe that not every number type has a espadion foroo, and hence the
previous sentence does not specify how the algorithm sheplatt the fact that (v) = oo
for a nodev. We refine the specification to the following:

e If visreachable frons thendisfv] = w(v).
e preds] = nil.

e If v # sandv is reachable frons thenpredv] is the last edge of a shortest path from
stow.

e If v # sandv is not reachable frora thenpredv] = nil.

Dijkstra’s algorithm [Dij59] “simulates” the following p¥sical process. Imagine the
graph as a network of uni-directional wires, imagine thatext is injected into the network
at nodes and time zero, and imagine that current spreads with ungdp&hus current
requirescos{e] time units to spread across an edgdn this model, the current will reach
every nodev at timeu (v).

In order to carry out the simulation, we turn the nodes of thisvork into active compo-
nents. As soon as current reaches a ngdmy at time = u(u), the node sends a message
to each node with e = (u, v) € E with the content:

You will receive current through edgeat timet + cos{e].

Every nodev keeps track of all the messages sent to it. More preciselpda keeps
track of the earliest time at which current will reach it, i) @henever a node receives a
message, it checks whether the message promises it amr datli@ry time and, if so, the
node updates its time estimate. In our implementation wp ke current time estimate of
nodev in disfv] and we keep the edge through which the node will receiveeoiat time
disfv] in predv]. If v has received no message yet we haree{ v] = nil.

The simulation is driven by a global clock which we call wathé. At any timet there
will be a setS of nodes which have already been reached by the current aiuth Wwave
accordinglysent messages to their neighbors, and there will be the $8tof the remaining
nodes which have not been reached yet by the current wavh.reade inV \ Shas received
zero or more messages and keeps track of its earliest delives. Clearly, the node which

2 NT denotes an arbitrary number type.

6.6 Node Priority Queues and Shortest Paths 17

is reached next by the current is the nade V \ Swith the smallest delivery time, i.e., the
smallest valuaisfu]. It is the next node to send out messages.

In an implementation the crucial question is how to find thdew with minimal dist
value among the nodes h\ S. The data type node priority queue is ideally suited for that
purpose. Simply haver@odepg<NT> P with

domP = {v ;v € V \ Sandpredv] # nil}

andP(v) = distfv] for anyv € domP, i.e., P contains all nodes outsid® which have

received at least one message and records, for each suchimeearliest delivery time to
the node. TherP.delmin() returns the desired node and deletes it fflBmThe complete
program follows.

(dijkstra.t+=
template <class NT>

void DIJKSTRA_T(const graph& G, node s, const edge_array<NT>& cost,

node_array<NT>& dist, node_array<edge>& pred)
{

node_pq<NT> PQ(G);
node v; edge e;
dist[s] = 0;
PQ.insert(s,0);
forall_nodes(v,G) pred[v] = nil;
while (!PQ.empty())
{ node u = PQ.del_min(); // add u to S
NT du = dist[ul;
forall_adj_edges(e,u)
{ v = G.opposite(u,e); // makes it work for ugraphs
NT ¢ = du + costl[e]l;
if (pred[v] == nil && v != s)
PQ.insert(v,c); // first message to v
else if (c < dist[v]) PQ.decrease_p(v,c); // better path
else continue;
dist[v] = c;
pred[v] = e;

The program runs in tim®(m + nlogn) since every node is deleted from the queue at
most once andlelLmin has costO(logn) and since every other operation is executed at
mostO(n 4+ m) times and has constant amortized cost.

In the remainder of this section we show how to implement npderity queues in
terms of node arrays and priority queues. The constructioreiy simple. We realize a
nodeprio< P> NPQ for a graphG by ap.queugP, node PQ and anodearray<pqitenm>
itemof such that:

18 Graphs and their Data Structures

nil

Figure 6.6 A node priority queue for a graph with four nodesv, w, andx. The priority ofu is
6, the priority ofw is 4, andv andx have no entry in the queue.

e ifanodev is stored ilNPQwith priority p then there is an iterpit = (p, v) in PQ
anditemof[v] = pit.

e ifanodev is not contained iNPQthenitemof[v] = nil.
Figure 6.6 illustrates these invariants and npdec shows the complete implementation.

(nodepq.0=
#include <LEDA/graph.h>
#include <LEDA/p_queue.h>

template <class P> class node_pq {
private:
p_queue<P,node> PQ;
node_array<pq_item> item_of;
public:
node_pq(const graph& G): item_of(G,nil) { }
“node_pq() { }
void insert(node v, P p) { item_of [v]= PQ.insert(p,v); }
P prio(node v) { return PQ.prio(item_of[v]); }
void decrease_p(node v, P p) { PQ.decrease_p(item_of[v],p); }
void del(node v)
{ PQ.del_item(item_of[v]);
item_of [v] = nil;
}
node find min() { return PQ.inf (PQ.find_min()); }
node del_min()
{ node v= PQ.inf (PQ.find_min());
PQ.del_min();
item_of[v] = nil;
return v;

}

(nodepq::other operations
};

6.7 Undirected Graphs 19

Only a few words are required to explain this code. We coostaunodepg< P> for a
graphG by constructing an empty priority que) and a node arragemof for G and

by initializing all entries ofitemof to nil. The former is done by the default constructor
of priority queues and requires no code and the latter iseaehli by the constructor call
itemof (G, nil). In order to insert a paifv, p) we insert the paitp, v) into PQ and store
the item that is returned itemof[v]. In order to look up the priority of a nodewe return
PQprio(itemof[v]),

Exercises for 6.6

1 Modify Dijkstra’s algorithm such that it does not start i single source nodebut
with a setlL of sources. Itis supposed to compute., v) for all nodesvy wherew (L, v)
is the minimum distance from a nodelinto v.

2 (Single sink shortest path). Letandt be distinct nodes in a directed graph with non-
negative edge weights. The goal is to compute a shortestfaths to t. Assume
that there is heuristic information available which gives &ny nodev a lower bound
Ib(v) for the length of a shortest path froeto t. Modify Dijkstra’s algorithm such that
dist(v) + Ib(v) is used as the priority of node

3 Use the algorithm of the previous item to compute shortaipin graphs embedded
into the plane, e.g., Delaunay diagrams (see Section 1Ddfine the cost of an edge
as the Euclidean distance between its endpoints anith(et for any nodev be the
Euclidean distance betweerandt. Which improvement in running time results from
the use of heuristic information?

4 Implement operationmembeyclear, size andemptyof nodepa.

6.7 Undirected Graphs

In anundirectedgraph the edges have no direction. Mathematically speakimgdge in an
undirected graph is an unordered plair w} of nodes and an edge in a directed graph is an
ordered paifv, w) of nodes. As for directed graphs, we calhindw the endpoints of the
edge. The endpoints of an edge in an undirected graph musstecti(since an edge is a
set of vertices of cardinality two).

6.7.1 Viewing Directed Graphs as Undirected Graphs
Every directed graph without self-loops can be viewed asmalirected graph.
For an edge and an endpoint of e

G.opposite(v,e)

returns the other endpoint efi.e., returngarget(e) if v = sourcége) and returnsourcee)
otherwise.
The iteration statement

forall inout_edges(e,v){ 2}

20 Graphs and their Data Structures

iterates over all edgeshavingv as one of their endpoints. It iterates first over all edges out
of v and then over all edges into

The iterationforallLinoutedgesand the functioroppositecan also be applied to graphs
with self-loops. Observe, however, that the iterationestegnt will consider a self-loop
e = (v, v) twice, once as an edge, whose source is equal &md once as an edge, whose
target is equal t@.

It is our experience that the two statements above sufficeabwlith undirected graphs.
We can foresee one situation where they do not suffice: if araswo iterate over the edges
incident tov in some mixed order, first some edges oub pthen some edges intg then
again some edges outof... . We will see in Section 6.11 that the order of the outesdg
and the order of the in-edges can be modified. Neverthelasgdnyes always come before
in-edges in théorall_inoutedgesteration. If a more flexible scanning order is required, the
following operation is useful:

G.make undirected();

appends for every nodethe list of in-edges o to the list of out-edges aof and removes
all self-loops. All edges incident to any node are now in al&rist and hence can be
rearranged freely using the operations to be describeddtidhes.11.

G.make directed();

partially reverses the operation above. It moves, for enedev, all edges with target(e) =
v from the list of out-edges af to the list of in-edges of. Note that the operation does not
reinsert self-loops.

6.7.2 The Data Type ugraph
We also have a data typmggraph We use it very rarely. Ugraphs offer the same operations
as graphs but theewedgeoperation is interpreted differently. For example,

ugraph G;

node v = G.new.node(); node w = G.new_node();

edge e = G.new_edge(v,w);

creates an undirected graph with two nodes and one edge. dfjee és inserted into the
out-lists ofv andw (which in this context is better called the list of adjacetges). Thus

e == G.first_adj_edge(v) && e == G.first_adj_edge(w)

evaluates to true. As for directed graphs the functemsce) andtarget() yield the two
endpoints of an edge, g8.sourc€e) returnsv and G.target(e) returnsw. Note that the
role of the two nodes andw in the definition of the edge is not symmetricv is made
the source ok because it is mentioned first, amdis made the target of because it is
mentioned second.

6.8 Node Partitions and Minimum Spanning Trees 21

e

Figure 6.7 A node partition for a graph with six nodesv, w, X, y, andz: u, v, andz are in the
same blockw andy are in the same block andis a block of its own.

6.8 Node Partitions and Minimum Spanning Trees

We discuss node partitions. We first discuss their functipnand then illustrate their use
in Kruskal’'s minimum spanning tree algorithm.

A node patrtitionis a partition of the nodes of a graf@ i.e., a family of pairwise disjoint
sets (calledlockg whose union is the set of nodes®f see Figure 6.7 for an example.

node_partition P(G);

declaresP as a node partition foB and initializes it to the finest partition @&, i.e., every
nodev of G forms its own blocKv}. Node partitions offer the following operations:

bool P.same_block(node v,node w);

returnstrueiff v andw belong to the same block &,

void P.union_blocks(node v,node w);

combines the blocks containingandw. Each block has aanonical representativeThe
canonical representative of a block is some element in thekbit is not specified which.
The operations

node P.find(node v);
node P(node v);

return the canonical representative of the block contgimin So, in the example of Fig-
ure 6.7,P.find(x) returnsx (for the singleton block there is no choice of canonical edath
and P.find(u) and P.find(v) return the same element of blo¢k, v, z} (it is not specified
which). When the functional notatioR(v) is used for the find operation it is convenient to
name the partition after the name for the canonical elenfenexample, in the matching
algorithm of Section 7.7 we will call the node partitibase After a union operation the
data structure chooses the canonical representative bkiblkeformed (among the elements
of the block). We can makethe canonical representative of the block containirxy

void P.make rep(node v);

22 Graphs and their Data Structures

The operation
void P.split(list<node> T);

splits the blocks containing the nodesTninto singleton blocks. The operation requires

thatT is a union of blocks oP. So, in the example of Figure 6.7 we can apply split with

the argumentu, v, z, x} but not with the argumenu, y} and not with the argumeft, v}.
The implementation of node partitions is based on the datspartition andnodearray.

A sequence ofm operations (except for split) on a node partitionrohodes takes time

O((n+m)a(n)) wherex is the functional inverse of the Ackermann function. Thechion

« is extremely slowly growing, in particular(n) < 5 forn < 10*°%. The running time of

node partitions is therefore linear for all practical puses. A split takes time proportional

to the size ofT.

We turn to Kruskal’s minimum spanning tree algorithm.

Let G be a graph whose edges have an associated cost of some nypgbantl letmp
be a function that compares edges according to their cestcinpel, e2) returns—1, 0,
and+1, respectively, if the cost adlis smaller than, equal to, or larger than the cost of
e2 A subsefT of the edges of5 is called aspanning foresof G if any two nodes that
are connected i are also connected using only edgediand if the subgrapkV, T) is
acyclic. A spanning forest of a connected graph is a tree .cdbeof a spanning forest is the
sum of the costs of its edges. rAinimum spanning fores a spanning forest of minimal
cost, see Figure 6.8 for an example. Kruskal [Kru56] discedea very simple method for
computing minimum cost spanning forests; it is customaryefer to his algorithm as a
spanning tree algorithm although it will not compute a treeagyraph consisting of more
than one connected component.

Kruskal's algorithm starts with an empty setof edges and considers the edge&adh
order of increasing cost. When considering an eglge{u, v} it checks whether addition
of eto T would close a cycle. If it does not close a cycle tieemadded talr and if it closes
a cycle there is discarded. In this way] gradually evolves into a minimum spanning
forest.

We give a proof. Less mathematically inclined readers may 8ie proof. For the
following argument leky, e, ..., en be the sequence of edges®fordered in order of
increasing cost and €%, be the lexicographically smallest minimum spanning foreate
show thatT N {ey,...,e} = Fon{ey...,g} foralli, 0 < i < m, by induction on
i. This is clearly true foi = 0. Consideli > 0. If g closes a cycle with respect to
TN{ey...,q}thenit closes a cycle with respectfg and hence; belongs to neither of
the two sets. I does not close a cycle with respectfion {ey, ..., g} then it is added
to T. We need to show, € Fy. SinceFg is a spanning forest there must be a pptim
Fo connecting the endpoints ef and since the endpoints ef are not connected by the
edgesinT N{ey,...,e_1} = FoN{e, ..., e_1} there must be an edgg with j > i in
3 We may view a spanning forest as a string of@rl} of lengthm where a 1 in thé-th position indicates tha

belongs to the spanning forest and a 0 indicates that it dae§ he lexicographic ordering on these strings
defines an ordering on spanning forests.

6.8 Node Partitions and Minimum Spanning Trees 23

Figure 6.8 A minimum spanning forest in a grafgh. The edges in the minimum are indicated
in bold. The cost of each edge is indicated. This figure wasigeed with the spanning tree
demo in xIman.

p. If j =i we are done. So assunje> i and considelr’ = Fo \ € Ug. The cost
of F’ is at most the cost oy, F’ is a spanning forest (since the removalkpfsplits one
component of into two components each containing one of the endpoirgsarfid hence
the addition ofg glues them together again), aRdis lexicographically smaller thaRy, a
contradiction. Thug =1i.

In an implementation the crucial question is how to checktiwiiean edge should be
added tol . The data typ@eodepartition is ideally suited for that purpose. We maintain the
connected components &fas a node partitiol, i.e., two nodes oG belong to the same
block of P iff they are connected by a path of edgesofThen an edge = {u, v} closes a
cycle with respect td iff u andv belong to the same block &f, i.e., if P.sameblock(u, v).

If e does not close a cycle we addo T and updateP by uniting the blocks containing
andv (P.unionblockgu, v)). We obtain the following algorithm:

24 Graphs and their Data Structures

(Kruskal.¢ =

#include <LEDA/graph.h>
#include <LEDA/node_partition.h>

list<edge> MIN_SPANNING_TREE (const graph& G,
int (*cmp) (const edge&, const edge&))

{
list<edge> T;
node_partition P(G);

list<edge> L = G.all_edges();
L.sort(cmp);

edge e;
forall(e,L)
{ node u = source(e);
node v = target(e);
if (! P.same_block(u,v))
{ T.append(e);
P.union_blocks(u,v);
}
}

return T;

The running time of Kruskal’s algorithm i®((n + m) log(n 4+ m)), wherem is the num-
ber of edges of5, since it takes time& (mlogm) to sort the edges by cost and since the
forall_,edgedoop has cosO((n + mya(n)) = O((n+ m) log(n+ m)). Kruskal’s algorithm

is efficient, but there are asymptotically more efficientogithms known. In particular,
there is a randomized algorithm with linear running time [K36].

The algorithm in LEDA combines Kruskal's algorithm with aunistic and works in
three phases. In the first phase it selects thetzapest edges and runs Kruskal’s algorithm
on them. This yields a foredt. In the second phase it goes through the remaining edges
and discards all edges that do not connect distinct compgsr# ; this amounts to a
sameblockoperation for each edge. In the third phase the still remgiadges are sorted by
cost and are considered for inclusionlirin order of increasing cost. The hope underlying
this heuristic is that therBedges selected in the first phase will already form a large par
of the spanning tree and hence most remaining edges aredtisida the second phase. A
saving results since the edges discarded in the second ghas# have to be sorted. In
particular, if the third phase is empty the running tim&ign + mya (n)).

Table 6.2 shows some running times of the minimum spannéegatgorithm.

Exercises for 6.8

1 Experiment with the following modification of Kruskal'sgarithm. First select then
edges of smallest cost for some small constasayc = 3. Run Kruskal's algorithm
on them. Then scan through the remaining edges and disdaedgsds that close a
cycle. Sort the remaining edges in order of increasing acodtpoceed with Kruskal's
algorithm.

2 Implement Prim’s minimum spanning tree algorithm. Gebe a connected graph and

6.9 Graph Generators 25

n m Time

25000 250000 2.843
50000 500000 6.414
100000 1000000 13.83

Table 6.2 Running time of minimum spanning tree algorithm: For ea@ndm we generated
10 random graphs with andm edges and random edge weights in.[D00000] and ran

MIN _SPANNING_.TREE on them. You may perform your own experiments by runttireg
minspantregime demo.

lets be an arbitrary node &. Prim’s algorithm grows a minimum spanning tree frem
It maintains a subsed of the nodes ofs and a sef of edges that comprise a minimum
spanning tree oB. Initially, S = {s} andT = (. For each node ¢ S let dist(v)
be the smallest cost of an edge conneciing a node inS. In each iteration Prim’s
algorithm selects the node¢ Swith the smallestlist-value and adds it t&. What is
an appropriate data structure for tiist-values and how can trdistvalues be updated
upon the addition of a node &?

3 Implementnodepartitions

6.9 Graph Generators

Constructing graphs by a sequenceeftnodeandnewedgeoperations is a boring process,
at least for humans. LEDA offers sorgeaph generators

complete _graph(graph& G, int n);

makesG the complete graph on nodes. A graphG is completeif for every pair (v, w)
of distinct nodes there is an edgavith sourcéde) = v andtargetle) = w. A complete
graph om nodes has(n — 1) edges.

random graph(graph& G, int n, int m, bool no_anti parallel edges,
bool loopfree, bool no_parallel_edges) ;

makesG a random graph with nodes anan edges in the so-calle@,, ,-model of random
graphs. A graph in this model consistsrohodes anan random edges. A random edge is
generated by selecting a random element from a candida@defined as follows:

e Cisinitialized to the set of alh? pairs(v, w) of nodes, ifloopfreeis false, and to the
set of alln(n — 1) pairs of distinct nodes, ibopfreeis true.

e Upon selection of a paifv, w) from C the pair is removed fror@, when
naparalleLedgess true, and the reversed péip, v) is removed fronC, when
naantiparalleledgess true.

26 Graphs and their Data Structures

(v, w1) e (v, w2) e (v, w3)

Figure 6.9 The storage layout of a graph generateddrydomgraphnoncompactMemory is
indicated as a horizontal band with low addresses at thahefthigh addresses at the right.
Observe that the edges contained in any adjacency listdpkea a large area of memory.

Several special cases mindomgraph are available. The following pairs of calls are
equivalent:

random graph(G,n,m) ;

random graph(G,n,m,false,false,false);

random simple_graph(G,n,m) ;
random graph(G,n,m,false,false,true);

random simple_ loopfree graph(G,n,m);
random graph(G,n,m,false, true,true);

random simple undirected graph(G,n,m);

random graph(G,n,m,true,true,true);

We give two implementations sdndomgraph The firstimplementation works only for
the case that all flags are set to false. The second impletimnisito be preferred and we
give the first implementation mainly for didactic reasonieTirst implementation makes
n calls ofnewnodeand thenm calls ofnewedgév, w) for random nodes andw.

(randomgraph.g+=

void random_graph_noncompact(graph& G, int n, int m)

{
node* V = new node[n];
int i;
G.clear();

for(i=0; i<n; i++) V[i] = G.new_node();

for(i = 0; i < m; i++)
G.new_edge(V[rand_int(0,n-1)],V[rand_int(0,n-1)]);

delete[] V;

Figure 6.9 indicates the storage layout generatecdbgomgraphnoncompactThe edges
are stored in the order in which they are generated. Thisiémphat the edges belonging
to any particular adjacency list are spread over a large @rezemory and hence makes
the layout not well suited for the most frequent iteratioatesnent in graph algorithms:
the iteration over the edges out of a node. A compact layohigtwstores for each node
all edges out of the node consecutively, is much better. Atiiadive comparison will be
given later in the section.

We turn to the functiomandomgraphcompacthat generates a representation where all
edges out of any node are stored consecutively. It also stgthe flagsiaantiparalleLedges

6.9 Graph Generators 27

w,w1) | (v,wz) |(,w3)

Figure6.10 The storage layout of a graph generateddorydomgraphcompact Memory is
indicated as a horizontal band with low addresses at thahefthigh addresses at the right.
Observe that the edges contained in any adjacency list@edstext to each other.

loopfree andnaparalleledgesIn the generation process we distinguish cases accomling t
whether the candidate s€tis modified during the generation process or not.

We first deal with the simple case that the candidat€dstnot modified by the process.
We choose the edges in two phases. In the first phase we ch@seurce node of each
edge and hence determine the out-degree of each node. ladhedsphase we iterate over
the nodes of the graph and generate for each node the requimgaer of outgoing edges. In
this way all edges out of a node are generated consecutiMadyrunning time i€Q(n+ m).

(randomgraph.q¢+=
void random_graph_compact(graph& G, int n, int m,
bool no_anti_parallel_edges,
bool loopfree, bool no_parallel_edges)
{if (n==0&& m >0)
error_handler(1,"random graph: m to big");
if (n==1&& m > 0 & loopfree)
error_handler(1,"random graph: m to big");

node*x V = new node[n];
int* deg = new int[n];

int i;
G.clear();
for (i = 0; i < n; i++) { V[i] = G.new_node();
deglil = 0;
}
if (!'mo_anti_parallel_edges && !'mo_parallel_edges)
{
for (i = 0; i < m; i++) degl[rand int(0,n-1)]++;
for (i = 0; i < n; i++)
{ node v = V[i];
int d = deglil;

while (d > 0)
{ int j = rand_int(0,n-1);

if (loopfree && j == i) continue;
G.new_edge(v,V[jl);
d--;
}
}
}

else { (random graph: difficult cage}

28 Graphs and their Data Structures

delete[] V;
delete[] deg;
}

We come to the case where the candidat€sstmodified during the generation process.
In this situation we have to work harder.

We first check whethem is too large. If only parallel edges are forbidden tinenan be
at mostn?, if parallel edges and self-loops are forbidden thenan be at most(n — 1),
if parallel and anti-parallel edges are forbidden theoan be at most + n(n — 1) /2, and
if parallel edges and anti-parallel edges and self-loops@bidden them can be at most
nn-—1)/2.

For the generation process we maintaimoalemapZboob C with the following prop-
erties:

e |If loopfreeis false therC(v, w) = trueiff (v, w) € C.

e If loopfreeis true then for alb andw with v £ w: C(v, w) = trueiff (v, w) € C, i.e.,
the mapC is equal to the se&f except on the diagonal. This relaxed “equality”
removes the obligation to s€l(v, v) to false for allv.

We build the graph as follows. We generate a random(@ain) of nodes. If it does not
belong to the candidate set, we discard it, and if it belondké candidate set, we add it to
the graph and update the candidate set accordingly. We théldraph temporarily as an
arrayE of lists of nodes. Once we have constructed all edges of @qghgn E we actually
constructG.

(random graph: difficult cage=
(random graph: check whether m is too pig
node_map2<bool> C(G,true);
array<list<node> > E(n);
int i = m;
while (i > 0)

{ int vi = rand_int(0,n-1);
node v = V[vi];
node w = V[rand_int(0,n-1)1;

if ((v == w &% loopfree) || !C(v,w)) continue;
E[vi] .append(w);

if (no_parallel_edges) C(v,w) = false;

if (no_anti_parallel_edges) C(w,v) = false;
i--;

}
for (i = 0; i < n; i++)
{ node v = V[i];

node w;

forall(w,E[i]) G.new_edge(v,w);
}

6.9 Graph Generators 29

Random Simple Simple loopfree Simple undirected

10.97 21.05 20.98 24.24

Table 6.3 Running time of random graph generation: We generated amampglaph with

n = 10° nodes anadn = 10° edges. The first column shows the running time with all flag$cse
false, and the other columns show the time to generate aesignaph, a simple loopfree graph,
and a simple undirected graph, respectively. You may perfau own experiments using the
random graph demo.

What is the running time of the generation process? The latisamatically inclined reader
may skip the remainder of this section. We do the analysighicase that no parallel edges
are allowed and leave the other cases to the reader. In thaien the maximal number

of edges isM = n? and each edge generated decreases the number of candigesebgd
one. Thus there argl — j candidate edges whgredges have already been generated, and
hence an expected numberMf/ (M — j) iterations are needed to generate a candidate. We
conclude that the expected total number of iterations requb generate edges is

> M/(M =).

0<j<m

If m > M/2 this sum is less than (we use the estinjatg ;_, 1/j ~ Ink)

2m > j=0mdInM —In(M —m))) = O(mIn(M/(M — m)))
M—m+1<j<M
and ifm < M/2 this sum iSO(m). In either case the running time@m(1+ In(M/(M —
my))).

We still need to implement the check of whetheis too big. This check is non-trivial to
implement due to the danger of overflow. Note thdmay be a number which does not fit
into anint. We therefore cannot simply compute the upper bound for timeber of edges
in a variable of typant. We use a variable of typgoubleinstead. This will work as long
asn < 226, which is safe for some time to come. We only show one caseeahieck.

(random graph: check whether m is too &g
double md = m; double nd = n;

if (no_parallel_edges && 'loopfree &&
'no_anti_parallel_edges &% md > nd#*nd)
error_handler(1,"random graph: m too big");

(random graph: more checks whether m is tog)big

Table 6.3 shows the running time of our random graph genetato

The storage representation of a graph can have significguatdnon the running time of
graph algorithms. We give an example. We generate a randaphgvith either one of the

30 Graphs and their Data Structures

n m Compact Non-compact

100000 1000000 0.34 0.85

Table 6.4 Influence of representation on running time: We generateshdam graph witi
nodes anan edges with our two random graph generators and thefdetermine number of
edges on both of them. Observe that the running time is more thablédor the non-compact
representation. You may perform your own experiments byingthe
compactversusnoncompactepresentation demo.

two generators above and then count the number of edges graph by iterating over all
the edges out of all nodes.

(determine the number of edges

count = 0;
forall_nodes(v,G)
forall_adj_edges(e,v) count++;

Table 6.4 shows the running times for the compact and thecoampact representation.
The difference is huge. The running time for the non-compgatesentation is more than
double the running time for the compact representation. il&irbut not as striking dif-
ferences can be obtained for other graph algorithms. Thetei§ less pronounced for
other graph algorithms because they usually do more thaerimenting a counter in the
forall_adjedgesoop.

The difference in speed is due to the influence of cache menmlbimpakes access to
consecutive locations faster than access to random losatid/e discuss the influence of
cache memory on running time in some detail in Section 3.2.2.

In earlier versions of LEDA we usedndomgraphnoncompacts our random graph
generator. When we moved tandomgraphcompactthe running time of all our graph
algorithms improved significantly.

random graph(graph& G, int n, double p);

makesG a random graph witlm nodes and an expected numberpfn - (n — 1) edges.
The graph is generated by the following experiment. Finsbdes are created and then for
any pair(v, w) of distinct nodes the edge, w) is added toG with probability p. In the
graph literature this model of random graphs is called3hg-model. The running time is
O(n?). Graphs generated according to tBg ,-model behave similar to graphs generated
according to th&, pnn—1)-model.

random bigraph(graph& G, int a, int b, int m,

list<node>& A, list<node>& B);

makesG a random bipartite graph with nodes on the one side,nodes on the other side,
andm edges directed from th&-side to theB-side. The nodes on the two sides are returned
in AandB.

6.10 Input and Output 31

The generators for planar graphs are treated in the chaptemiedded graphs, see
Section 8.9.

Exercises for 6.9

1 Compare the compact and the non-compact representatigraphs for other graph
algorithms.

2 Leto = (0g,...,0n_1) andi = (ig, ..., in_1) be vectors of non-negative integers with
2 0<j<n0j = D o<j-nij- Show that there is a graph withnodes ana; edges out of
nodej andi; edges into nodg for all j, 0 < j < n— 1. Generate a random graph
of this kind. Hint: Use the clasdynamicrandomvariate of Section 3.5. Set up random
variatesS andT according to the weight vectoosandi, respectively. Usé& to choose
sources and to choose targets. After every generation of an edge dearghmweight
of its source and its target.

3 Userandomgraph(G, n, m) to generate a random graph and test the graph for simplicity
(usingls Simpl€G)). Try to find the value ofn (in relation ton) where about 50% of
the generated graphs are simple. If you want to understanexperiment, read up on
the so-called Birthday paradox, see for example [Fel68MR95].

4 Write aO(n 4+ m) generator for random graphs in tkE p-model. Hint: Reduce the
problem to generating a graph in tlg n-model. Letpy, be the probability that a ran-
dom graph in theGy, p-model hasm edges. Show that the probability is maximal for
m ~ pn(n — 1) by considering the quotierdn/ pm+1. Also show that the probability
falls off quickly as one goes away from ~ pn(n — 1). The idea is now to generate
m according to the distribution given by thg,’s and to callrandomgraph(G, n, m)
afterwards. The problem with this approach is that fags are numbers with long
representations. A possible way around this problem is tteveachp, as a sum
Pm1+ Pmz2 + ... where for eachmn the py,; decrease exponentially in Consider the
collection{ Pmi;0<m<n(n-1),i> O} and order it approximately by size. Gener-
atem according to this distribution and then cedndomgraph(G, n, m). Provide your
solution as an LEP.

6.10 Input and Output

We discuss how to write graphs to a file (or standard output)remw to read graphs from
a file. We support two formats, the format shown in Figure gHdnceforth called the
standard representation) and the GML-format [HIm97]. Wi mat formally define either
format.

G.write();
writes the standard representation@®bn standard output.
G.write(string s);

writes G onto the file with name and

32 Graphs and their Data Structures

LEDA.GRAPH
void

void

4

[{}]

[{}]

[{}]

[{}]

5

120 [{}
130 [{}
230 I{}I
240 |{}I
340 [{}I

Figure6.11 The standard representation of the graph of Figure 6.1.eicéise of a
parameterized graph the node and edge labels are enclogedangular brackets.

G.write_gml(string s,...);

writes G in gml-format. The additional argumentswfite gmlcan be used to fine-tune the
way nodes and edges are output.
G.read(string s);
G.read gml (string s, ...);
read a graplG from the file with names. Either the standard representation or the GML-
representation is expected.
The following piece of code is useful during the debuggingg#hof a graph algorithm.
while (true)
{ generate G;
G.write("graph.gu");
run graph algorithm on G;

check result and abort if incorrect;

}

If the program aborts, a witness that falsifies the algorittan be found in the file with
name graph.gw.
There are several ways to inspect the witness graph:

e One can visually inspect the file to which the graph was writihis is tedious even
for very small graphs.

e One can load the graph into a graph window. This is the mostesoant method and
we give more details below.

e One can send it through a graph drawing algorithm, see $e8tig and display the
result.

6.11 lteration Statements 33

We give more details on how to load a graph into a graph winde®, Chapte?? for
more information about the graphwin type. The followinggaef code assumes that the
graph written has an integer node label and an integer ethgédad that a parameterized
graph was used. We define a grapRAPHint, int> G and read it from the file. We then
define aGraphWin gwfor G. We tellgwthat we want the so-called data labels of the nodes
and edges displayed, we open the display andypunto edit modé. When this program
is executed, a window will pop up in which the gra@his displayed. The nodes & will
appear at random positions. The layout can be modified bygdrggodes around.

(simplevisualization.¢=
#include <LEDA/graphwin.h>

main()

{
GRAPH<int,int> G;
G.read("graph.gu");

GraphWin gw(G);
node v; edge e;

gw.set_node_label_type(data_label);
gw.set_edge_label_type(data_label);

gw.display();
gw.edit();

Actually, there is no need even to write the program abov#.abg of the programs starting
with “gw” in xIman and use the file menu to load the graph.

6.11 Iteration Statements

Iterating over the nodes and edges of a graph or all the edgigkent to a particular node
is an essential component of any graph algorithm. Accofdinge have seen iteration
statements already many times in this chapter. In this@eegte treat them in detail. We
first give a precise definition of the semantics, then disthisgossibility of hiding and
unhiding edges and the possibilities of changing the orfléeration, and finally discuss
which modifications of a graph are legal during iteration.

6.11.1 Basics

In order to understand the iteration statements we needtio &ebit about the representation
of graphs in LEDA. A graph is a collection of nodes and edge&lwlre arranged into
several lists:

e The nodes are arranged into a list of nodes.

4 If the statemengwedit() is omitted, the program will briefly flash the graph and themtaate.

34

Graphs and their Data Structures

The edges are arranged into a list of edges.
In directed graphs two lists of edges are associated wittyexalev:
adjedgesv) = {ee€ E ; v = sourcde)},
i.e., the list of edges starting in and
inedgesv) = {e € E ; v = target(e)},

i.e., the list of edges ending in The listadjedgesv) is called the adjacency list of
nodev. For directed graphs we often usetedgesv) as a synonym foadjedgesv).

In undirected graphs only the liatliedgesv) is defined for every node. Here it
contains all edges incidenttgi.e.,

adjedgesv) = {e € E ; v € {sourcde), target(e)}} .

An undirected graph must not contain self-loops, i.e., istmot contain an edge
whose source is equal to its target.

The semantics of the iteration statements for graphs noucesito the semantics of the

iteration statements for lists.

forall nodes(v,G) {17}
forall rev_nodes(v,G) {17}

iterate over the list of nodes in either forward or backwarddation,

forall edges(e,G) {1
forall rev_edges(e,G) { }

iterate over the list of edges in either forward or backwardation,

forall adj_edges(e,v) {1}
forall out_edges(e,v) {1}
forall_in_edges(e,v) {1
forall inout_edges(e,v) { }

iterate over the listadjedgesv), outedgesv), inedgesv), andoutedgesv) followed by
inedgesv), respectively, and

forall adj nodes(u,v) { }

iterates over the other endpoint, i.6.ppposit€v, €), of all edges in adjedgesv).

6.11.2 Modification during Iteration
The rules are simple:

It is unsafe to modify an object while iterating over it.

However, the item under the iterator can be removed from Itijech

6.11 lteration Statements 35

In our experience the exception covers most of the situgitidrere one wants to perform
modifications during an iteration.

The following piece of code iterates over the edges of a gampldeletes all edges whose
cost is negative.

forall edges(e,G) if (cost[e] < 0) G.del_edge(e);

The following piece of code is an infinite loop as new edgesaamended to the list of
edges during iteration.

forall edges(e, G) G.new_edge(G.target(e), G.source(e));
A safe way to add the reversal of every edgétes to write:

list<edge> L = G.all_edges();
forall(e, L) G.new_edge(G.target(e), G.source(e));

6.11.3 Hiding and Restoring Edges
Sometimes itis convenient to remove edges only tempotfaoity a graph. For this purpose
we have the concept of a hidden edge.

G.hide_edge(e);
removes temporarily fromG until restored by
G.restore_edge(e);

The implementation is simplélide edgéde) deletes from G and storesitin a list of hidden
edges andestoreedgde) removese from the list of hidden edges and puts it back into the
list of real edges. The list of all hidden edges is availaBl&.iddenedges), one can ask
whether an edgeis hidden G.ishiddene)),

The following lines of code hides all edges with negativetctdsen runs some graph
algorithm on the resulting graph, and finally restores atje=d

forall edges(e,G) if (cost[e] < 0) G.hide_edge(e);

// some graph algorithm
G.restore_all edges();

The operationkideedgeandrestoreedgechange the order of the adjacency lists and hence
should be used witbxtreme care on embedded graphs

6.11.4 Rearranging Nodes and Edges

The lists of nodes and edges may be arranged by sorting. Bhemmany different ways
to sort. We go through the possibilities for nodes and renttzak a similar set of sorting
routines exists for edges.

G.sort_nodes(int (*cmp) (const node&, const node&));

sorts the nodes according to the compare funatiopand

G.sort_nodes(const node_array<NT>& A);

36 Graphs and their Data Structures

sorts the nodes according to the values in the node &irglye typeNT must be a number
type). The running time of both functions@(n logn).

G.sort nodes(const list<node>& vl);

assumes thatl is a permutation of the nodes &f. This permutation is taken as the new
node ordering. The running time is linear.

G.bucket_sort nodes(int (*ord) (const node&));

uses bucket sort to sort the nodes according to the valudseofunctionord(v). The
running time isO(n + (b — a + 1)) wherea andb are the minimal and maximal values of
ord, respectively.

void bucket_sort nodes(const node_array<int>& A);

uses bucket sort with the ordering functiom(v) = Alv].

Sorting the set of nodes rearranges the list of nodes. Subs#dqgrall_nodedoops iterate
over the nodes in the modified order.

Sorting the set of edges rearranges the list of edges andifaeeacy lists of all nodes.
Subsequenforall_edges forall_adjedgesandforall_outedgedoops iterate over the nodes
in the modified order.

For example, itostis an edge array that assigns an integer or double valuetboeatry
edge, then

G.sort_edges(cost);

rearranges the list of all edges and also the adjacencyfistsnodes in order of increasing
cost.

6.12 Basic Graph Propertiesand their Algorithms

We define some basic graph properties and give the algoritmemsiecide them. For some
of the algorithms we give the implementation. Many of thections discussed in this
section are illustrated by Figure 6.12 and by the submersi™td menu “graph” of any
xIman-demo starting with the characters “gw”.

6.12.1 Functionality
The function

void CopyGraph(GRAPH<node,edge>& H, const graph& G);
constructs an isomorphic copy of G. For each node of H the corresponding node @&

is stored inH[v] and for each edge of H the corresponding edge & is stored inH[€].
The mappingg — H{[v] is a bijection from the nodes df to the nodes o6 and for each

6.12 Basic Graph Properties and their Algorithms 37

e

f
€Y (b)
() (d)

Figure 6.12 lllustration of basic graph properties: The graph (a) issimiple (the edgesand

f are parallel) and has a self-lobp The graph (b) is simple and bidirected. The graph (c) is
connected but not biconnected (the full node is an artimrgioint). The graph (d) is
biconnected but not triconnected (the full nodes form & gglir).

edgee = (v, w) of H we havesourcé€H[e]) = H[v] andtarget(H[e]) = H[w]. We have
already seen the implementation@bpyGraphn Section 6.1.

A graph is callecsimpleiff is has no parallel edges, i.e., no two distinct edgesd f
with the same source and sink, and a graph is cddiegfreeif it has no self-loop, i.e., no
edge whose source is equal to its sink.

bool Is_Simple(const graph& G);

returns true ifG is simple and returns false otherwise.

A directed graphG = (V, E) is calledbidirectedif for every edgee the reversed edge
(target(e), sourcée)) also belongs t&, more precisely, if there is a bijectioev: E — E
such that:

e sourcge) = target(rev(e)) andtarget(e) = sourcerev(e)) for everye € E and
e rev(e) # eforeverye e E.

The conditionrev(e) # e ensures that a self-loop cannot be its own reversal. A bidi-
rected graph has an even number of edges. The main use addvedirgraphs is in the
representation of embedded graphs, the topic of Chapter 8.

The calls

bool Is Bidirected(const graph& G);
bool Is Bidirected(const graph& G, edge_array<edge>& rev);

38 Graphs and their Data Structures

check whethef is bidirected. The second version also computes an apptefrijection
between the edges & (if it exists).

void Make Bidirected(graph& G, list<edge>& R)
list<edge> Make_Bidirected(graph& G)

adds edges t@ to make it bidirected. The added edges are return&tlonas the result of
the function. An alternative tMakeBidirectedare the member functiortd makebidirected
andG.makemap() which are discussed in Section 8.2.

bool Is_Acyclic(const graph& G);
bool Is_Acyclic(const graph& G, list<edge>& L);

return true if theG is acyclic and return false otherwise. The second versism @turns
a list of edges whose removal makésacyclic. We have already seen an implementation
of the first version ofsAcyclicin Section 6.2. The second version performs a depth-first
search orG (see Section 7.3) and returns the list of back edges.

A path in a directed graplis a sequence

[U07 el’ Ul’ e27 U27 AR Uk_].’ e" Uk]

of nodes and edges such tsaurcée) = vi_; andtarget(e) = v; foralli, 1 <i < k. We
call vg the source of the path ang the target of the path. The number of edges in the path
is called the cardinality or length of the path. We will fremily abuse notation and write

[er, e, ..., &]
or
[vo, v1, v2, ..., Uk—1, VK]

instead of the more verbose notation above. A pasiinipleif all nodes (except maybe for
the source and the target of the path) are pairwise distlctycleis a path whose source
is equal to its target.

A path in an undirected grapls a sequence

[U07 el’ Ul’ e27 U27 AR Uk_].’ e" Uk]

of nodes and edges such thhaburcee), target(e)} = {vi_1,vj} foralli, 1 <i < kand
e_1#e¢gforalli,1 < i < k. We callvg andvk the endpoints of the path. The number
of edges in the path is called the cardinality or length ofgthth. We will frequently abuse
notation and write

[vo, v1, v2, ..., Vk_1, VK]

instead of the more verbose notation above.

If Gis agraph aneis an edge o thenG \ eis the graph that results from removiag
from G. If v is a node ofG thenG \ v denotes the graph that results from removirend
all edges incident to from G.

6.12 Basic Graph Properties and their Algorithms 39

An undirected grapl® is connectedf for any two nodesy andw of G there is a path
fromwv tow in G. An articulation pointof an undirected grap@ is any node ofs such that
G \ v is not connected. An undirected graph is callécbnnectedf is has no articulation
point. A split pair of an undirected graph is a pd#sy, s;} of nodes such thds \ {s1, S} is
not connected.

bool Is_Connected(const graph& G);

returns true ifG (viewed as an undirected graph) is connected and retuses déherwise.

void Make _Connected(graph& G,list<edge>& L);
list<edge> Make_Connected(graph& G);

makeG connected by adding edges and return the list of insertedsedghe number of
edges added is minimal.

void Make Biconnected(graph& G,list<edge>& L);
list<edge> Make Biconnected(graph& G);

makeG biconnected by adding edges and return the list of insedgdse

bool Is Biconnected(const graph& G);
bool Is Biconnected(const graph& G, node& s);

test whethelG is biconnected. The second version returns an articulgtamt in s if the
graph is not biconnected.

A (directed or undirected) graphligpartiteif the nodes of the graph can be colored with
two colors such that every edge @fconnects nodes with different colors.

bool Is Bipartite(const graph& G);
bool Is Bipartite(const graph& G, list<node>& A, list<node>& B);

return true ifG is bipartite and return false otherwise. The second veraiso returns a
bipartition of the nodes o in A andB (if the graph is bipartite).

A graphisplanarif it can be drawn into the plane such that all nodes are platdidtinct
points in the plane and such that no two edges cross.

bool Is Planar(const graph& G);

returns true ifG is planar and returns false otherwise. We will see a lot ménglanar
graphs in Chapter 8.
All functions above have linear running tin@(n 4+ m).

bool Is_Triconnected(const graph& G);
bool Is_ Triconnected(const graph& G, node& sl1, node& s2);

returns true iiG (viewed as an undirected graph) is triconnected and retalsesotherwise.
The second version returns a split pairsihands?2 if the graph is not triconnected. The
running time isO(n(n + m)).

Table 6.5 reports some running times of the basic graph ighgas.

40 Graphs and their Data Structures

n G L C B S D A N T

1000 0.07 0.01 0.01 0.03 004 01 0.01 0 179

10000 1.08 003 0.29 0.63 048 1.85 0.28 0.01 3342

Table 6.5 Speed of basic graph algorithms: We generated a random gi#tph nodes and
m = 10n edges and then ran various graph algorithms on it:

G = generation of random graph,

L = time for removing self-loops,

C =time for testing connectedness,

B = time for testing biconnectedness,

S = time for testing simplicity,

D = time for testing bidirectedness,

A = time for testing acyclicity,

N = time for testing bipartiteness,

T = time for testing triconnectivity.

The time for testing bipartiteness is so small because atidol to bipartiteness is found very
quickly in a random graph. For bipartite graphs the runnimgetwill be about the time to test
connectedness. You may perform your own experiments byimgrthe speed of basic graph
algorithms demo.

6.12.2 Implementations
We give the implementation of the functiémBidirected

We make two copies of the edges®fin lists ESTandETSand sort both lists.

In the sorted version dESTthe edges are sorted by their source node, and edges with
equal source node are sorted by their target node, i.e.dgdseout of the first node come
first, then all out of the second node, Within each groupdges the ordering is by
target node.

In the sorted version cETSthe edges are sorted by their target node, and edges with
equal target node are sorted by their source node, i.e.dg#isinto the first node come
first, then all into the second node,

We use bucket sort for both sorts. This will play a role below.

Figure 6.13 shows an example. After having sorted the tvie tieei -th edge ofESTis
the reversal of the-th edge ofETSfor all i (if G is bidirected).

Self-loops cause a small problem. As described so far, damgifcan be matched with
itself. There is a simple remedy. We use the fact that buakgts stable, i.e., the relative
order of parallel edges is not changed.

Suppose now that we reverisé Sbefore the sorting step. Consider all self-loops incident
to a particular node, sayey, e, ..., &. In ESTthey will appear exactly in the same order
as in the original list of edges and Bl Sthey will appear in the reversed order. We match
thei-th edge of one sequence with thé&h edge of the other sequence. Wheis even we
obtain a legal matching and whéris odd we will attempt to match one of the edges with
itself. This leads to the following program.

6.12 Basic Graph Properties and their Algorithms 41

Figure 6.13 The listsESTandETSin the implementation of IBidirected: It is assumed that
the original edge list o6 is E = (a, b, ¢, d). Observe that the edgesandd are parallel. In
ESTthe edges are sorted by source, and edges with equal soarsertad by target. Parallel
edges appear in the same order aginmThusEST= (a, c, b, d). In ETSthe edges are sorted by
target, and edges with equal source are sorted by souradldPadges appear in the reverse
order as inE. ThusEST= (c, a, d, b).

The program uses the fact that the nodes of a graph are itfemanbered and that
indexv) returns the number of a node

static int edge_ordl(const edge& e) { return index(source(e)); }
static int edge_ord2(const edge& e) { return index(target(e)); }

bool Is Bidirected(const graph& G, edge_array<edge>& reversal)
{

int n = G.max_node_index();
edge e,r;
list<edge> EST = G.all_edges();

EST.bucket_sort (0,n,&edge ord2) ;
EST.bucket _sort(0,n,&edge ord1) ;

list<edge> ETS = G.all_edges();

ETS.reverse(); //crucial
ETS.bucket _sort(0,n,&edge ordl) ;
ETS.bucket_sort(0,n,&edge ord2) ;

// merge EST and ETS to find corresponding edges

while (! EST.empty() && ! ETS.empty())
{ e = EST.pop();
r = ETS.pop(Q);
if (target(r) == source(e) && source(r) == target(e)
& e '=1)
reversall[e] = r;
else return false;

}

return true;

Exercises for 6.12
1 Give animplementation of the functideSimple Use anodemap?2

42 Graphs and their Data Structures

Implement a function that tests whether a graph has acsaf-|

Implement the functioMakeAcyclic Read Section 7.3 first.

As above, but for functiots Connected

As above, but for functioMakeConnected

Provide a better implementation of the triconnectedressts A linear time algorithm is
described in [HT73]. Provide it as an LEP.

OO WN

6.13 Parameterized Graphs

Parameterized graphs are another convenient way to atsodiarmation with the nodes
and edges of a graph.

GRAPH<vtype,etype> G;

declaress as a parameterized graph and initiali£Zz$o the empty graph. With every node
of G a variable of typevtypeis associated and with every edge ®fa variable of type
etypeis associated. The variables associated with nodes or edgebe accessed using
array notation, i.e.G[v] and G[€] return the variables associated with nadand edge
e, respectively. We have illustrated the use of parametgtigees already in Section 6.1.
We will see extensive use of parameterized graphs in thetetsapn embedded graphs and
on geometry. Here we want to discuss the relationship betyweaeameterized graphs and
graphs.

All operations defined on instances of the data tgmphare also defined on instances
of any parameterized graph ty@RAPHvtype etype, i.e., instances of a parameterized
graph type can be used wherever an instance of the dategtgpé can be used, in par-
ticular, as arguments to functions with formal parametényjoe graph&. If a function
f (graph& G) is called with an argumern® of type GRAPHvtype etype then insidef
only the basic graph structure & (the adjacency lists) can be accessed. The node and
edge entries are hidden.

The operations

node_array<vtype>& G.node_data()
edge_array<etype>& G.edge_data()

make the information associated with the nodes (edgeS)adailable as a node array (edge
array) of typenodearray<vtype> (edgearray<etype). These operations are extremely use-
ful when one wants to run a graph algorithm that requires & moedge array as a parameter
on a parameterized graph where one has stored the appedpf@imation in the nodes and
edges, respectively. For example,

GRAPH<int,int> G;

node_array<edge> pred(G) ;

DIJKSTRA(G,G.firstnode(), G.edge data(), G.node data(), pred);

6.14 Space and Time Complexity 43

runs Dijkstra’s algorithm o1 taking the edge data @ as the edge costs and storing the
node distances in the nodes®f

We have four different ways to associate information with tlodes, and similarly with
the edges, of a graph in this section: node arrays, node dsa sode maps, and param-
eterized graphs. We use all four of them in our own work. Wepsameterized graphs
when the node information is an essential part of the graphekample, we use the type
GRAPHpoint, ...> for graphs embedded into the plane; the position of any nadagiven
asGJ[v]. If the information is only temporarily associated witlethode, as, for example, in
a graph algorithm, we use node arrays and node maps. We usenaqd for sparse arrays,
where only a fraction of the nodes need an entry, and we use awwdys for dense arrays.
We use node data slots, if speed is of utmost importance atel information is accessed
many times and in random order, and we use standard nodes artiagrwise. Standard
node arrays are the most convenient and most widely used avagsociate information
with nodes.

6.14 Spaceand Time Complexity

Graphs are represented in their adjacency lists repragentand hence the space require-
ment isO(n + m), wheren andm are the number of nodes and edges of the graph, respec-
tively. Most operations on graphs take constant time exaégburse, those which change
or inspect the entire graph. The iterators take time propmat to the number of objects
they iterate over, storall_edgese, G) takes timeO(m). We give some more information
about the constant factors involved.

The space requirement ofgraph or GRAPH with n nodes andn edges isO(1) +
44m + 52n bytes, i.e., a graph with fodes and 10edges needs about 5 megabytes. For
GRAPHKTL, T2 where an object of typ€l or T2needs more than one word of storage one
also has to account for the information associated with tddes and edges. For example,
a point requires 8 bytes and henc€ RAPH point, int> requires an additionalrBbytes.

There is a trade-off between the space requirement of geaphthe functionality offered
by them. We give some examples. Our graphs are fully dyndaraichodes and edges can
be added and deleted at any time, and hence the adjacencynation of every node is
stored in a doubly linked list. For static graphs the adjagenformation could be stored
in an array. Our graphs support the dynamic addition of &t node and edge labels (in
the form of node and edge arrays and maps) and hence everpnedge needs to have an
integer index. This index could be saved if all node and edbels have to be declared at
the time of the construction of the graph.

We turn to running time. There is a large number of tables witining times of graph
algorithms in this book. The tables prove that it is posstblsolve problems on fairly

44 Graphs and their Data Structures

large graphs using our algorithms. Moreover, the time bewwhieved by (most of) our
algorithms are competitive with what other researchersntep

Exercises for 6.14

1 Implement a version of directed graphs where each nodekmolys about its outgoing
edges but not about its incoming edges and where the adjaligisare stored as singly
linked lists and hence can only be traversed from front to. rééake the graph class
compatible with LEDA's graphs and provide it as an LEP.

2 Implement static directed graphs where all edges arecstoi@single array, all edges in
a adjacency list are stored consecutively, and each nodevbgsointers into the array,

one to the first edge of its adjacency list, and one to the eftgethe last edge of its
adjacency list.

Bibliography

[Dij59] E.W. Dijkstra. A note on two problems in
connection with graphdNum. Math,
1:269-271, 1959.

[Fel68] W. Feller.An Introduction to Probability
Theory and its Applicationslohn Wiley &
Sons, 1968.

[Him97] M. Himsolt. The graphlet systenhecture
Notes in Computer Scienc&190:233-?7?, 1997.

[HT73] J. E. Hopcroft and R. E. Tarjan. Dividing a
graph into triconnected componen&AM
Journal on Computing2(3):135-158, ???7?
1973.

[KKT95] David Karger, Philip N. Klein, and
Robert E. Tarjan. A randomized linear-time
algorithm for finding minimum spanning trees.
J. Assoc. Comput. Maghl2:321-329, 1995.

[Kru56] J.B. Kruskal. On the shortest spanning
subtree of a graph and the travelling salesman
problem. InProceedings of the American
Mathematical Societypages 48-50, 1956.

[MR95] Rajeev Motwani and Prabhakar Raghavan.
Randomized Algorithm&Cambridge University
Press, 1995.

45

acyclic graph, 6
adjacency list, 34
array
edge array, 8
node array, 8
articulation point, 39

biconnected graph, 39
bidirected graph, 37
bidirectedness, test for, 41
bipartite graph, 39
breadth-first search, 14

cache effects, 30
complete graph, 25
connected graph, 39
CopyGraph5, 36
copying a graph, 5

demo
programs
basic graph algorithms, 40
minimum spanning trees, 23
DIJKSTRA17
directed graph, 2

edge, 2
array, 8
map, 11
matrix, 8

generation of random graphs, 27
GML-format, 31
graph, 2-44

acyclic, 6

adjacency list, 34

articulation point, 39

| ndex

associating information with nodes and edges, 8-13

basics, 2—7

46

biconnected, 39
bidirected, 37
bipartite, 39
breadth-first search, 14
connected, 39
degree, 5
directed, 2
edge, 2

data, 8

map, 11
forall, 3, 33
hiding edges, 35
1/0, 31-33
isomorphic copy, 5
iteration, 3, 33-36
list

of edges, 34

of nodes, 33
loopfree, 37
makedirected 20
makeundirected 20
node, 2

array, 8

data, 8

list, 14-15

map, 11

matrix, 8, 11

partition, 21-25

priority queue, 15-19
opposite node, 19
parameterized, 42
path, 38
planar graph, 39
priority queue, 15
random graph generators, 25
read 32
rearranging nodes and edges, 35
representation, 30, 34

Index 47

restoring edges, 35 edge map, 11
running time, 12 node map, 11
simple, 37 MIN_SPANNINGTREE 23
sorting, 35 minimum spanning tree, 22
source node, 2
space requirement, 43 node, 2
split pair, 39 array, 8
subgraph, 35 list, 14
target node, 2 map, 11
time complexity, 43 matrix, 8
topological sorting, 6 partition, 21
triconnected, 39 priority queue, 15
undirected graph, 19-20
visualization, 33 parameterized graph, 42
write, 31 partition

graph algorithms node partition, 21
breadth-first search, 14 path, 38
copying a graph, 5 planar graph, 39
generation of random graphs, 27 p_queue
minimum spanning tree, 22 node priority queue, 15
test for bidirectedness, 41
topological sorting, 6 random graph, 25

graph generators, 25-31 randombigraph, 30
complete graph, 25 randomgraph, 25
random graphs, 25 restoring the edges of a graph, 35

running time experiments
arrays vs maps, 12
basic graph algorithms, 40

hiding edges of a graph, 35

le} .
compact vs non-compact graph representation, 30
for graphs, 31-33 . .
Is_Acyclic, 38 minimum spanning trees, 25

Is_Biconnected39 random graph generation, 29

Is_Bidirected 10, 37
Is_Bipartite, 39
Is_.Connected39

shortest paths
non-negative edge costs, 17
sorting

Is_Planar, 39 ' .
Is_Simple 37 topological sorting, 6
Is_Triconnected39 source node, 2
iteration subgraph, 35
addition of objects, 35
deletion of object under iterator, 34 iﬁrpgo?égi?:gle:sgrting 5
for graphs, 3, 33-36 '
grap TOPSORT6
Kruskal's algorithm, 22 triconnected graph, 39
Make Biconnected39 ugraph 20
Make Bidirected 38 undirected graph, 19-20
Make Connected39

map(data type) visualizing a graph, 33

