
Contents

1 Introduction page1
1.1 Some Programs 1
1.2 The LEDA System 8
1.3 The LEDA Web-Site 10
1.4 Systems that Go Well with LEDA 11
1.5 Design Goals and Approach 11
1.6 History 13

Bibliography 16

Index 18

1

1

Introduction

In this chapter we introduce the reader to LEDA by showing several short, but powerful,
programs, we give an overview of the structure of the LEDA system, we discuss our design
goals and the approach that we took to reach them, and we give ashort account of the
history of LEDA.

1.1 Some Programs

We show several programs to give the reader a first impressionof LEDA. In each case we
will first state the algorithm and then show the program. It isnot essential to understand the
algorithms in full detail; our goal is to show:

• how easily the algorithms are transferred into programs and

• how natural and elegant the programs are.

In other words,

Algorithm + LEDA = Program.

The directory LEDAROOT/demo/book/Intro (see Section 1.2)contains all programs dis-
cussed in this section.

1.1.1 Word Count
We start with a very simple program. Our task is to read a sequence of strings from standard
input, to count the number of occurrences of each string in the input, and to print a list of
all occurring strings together with their frequencies on standard output. The input is ended
by the string “end”.

1

2 Introduction

In our solution we use the LEDA typesstring and dictionary arrays (d arrays). The
parametrized data type dictionary array (d array<I , E>) realizes arrays with index typeI
and element typeE. We use it with index typestringand element typeint.

〈word count.c〉�#in
lude <LEDA/d_array.h>#in
lude <LEDA/string.h>main(){ d_array<string,int> N(0);string s;while (true){
in >> s;if (s == "end") break;N[s℄++;}forall_defined(s,N)
out << "\n" << s << " " << N[s℄;}
We give some more explanations. The program starts with the include statement for dic-
tionary arrays and strings. In the first line of the main program we define a dictionary
arrayN with index typestring and element typeint and initialize all entries of the array to
zero. Conceptually, this creates an infinite array with one entry for each conceivable string
and sets all entries to zero; the implementation of darrays stores the non-zero entries in
a balanced search tree with key type string. In the second line we define a strings. The
while-loop does most of the work. We read a strings; if the string is equal to “end”, we
break from the loop. Otherwise, we increment the entryN[s] of the arrayN by one. The
iterationforall defined(s, N) in the last line successively assigns all strings tos for which
the corresponding entry ofN was touched during execution. For each such string, the string
and its frequency are printed on the standard output. A new line is used for each pair. On
inputstefanstefankurtend
the program will printkurt 1stefan 2
1.1.2 Shortest Paths
Dijkstra’s shortest path algorithm [Dij59] takes a directed graphG = (V, E), a nodes ∈ V ,
called the source, and a non-negative cost function on the edgescost : E → R≥0. It
computes for each nodev ∈ V the distance froms, see Figure 1.1. A typical text book

1.1 Some Programs 3

0

1

2

2

1

2

1

1

Figure 1.1 A shortest path in a graph. Each edge has a non-negative cost.The cost of a path is
the sum of the cost of its edges. The source nodes is indicated as a square. For each node the
length of the shortest path froms is shown.

presentation of the algorithm is as follows (we will prove the correctness of the algorithm
in Section 6.6):set dist(s) to 0.set dist(v) to infinity for v different from s.de
lare all nodes unrea
hed.while there is an unrea
hed node{ let u be an unrea
hed node with minimal dist-value. (*)de
lare u rea
hed.forall edges e = (u,v) out of uset dist(v) = min(dist(v), dist(u) +
ost(e))}
The text book presentation will then continue to discuss theimplementation of line (*). It
will state that the pairs{(v, dist(v)); v unreached} should be stored in a priority queue, e.g.,
a Fibonacci heap, because this will allow the selection of anunreached node with minimal
distance value in logarithmic time. It will probably refer to some other chapter of the book
for a discussion of priority queues.

We next give the corresponding LEDA program; it is very similar to the pseudo-code
above. In fact, after some experience with LEDA you should beable to turn the pseudo-
code into code within a few minutes.

〈DIJKSTRA.c〉�#in
lude <LEDA/graph.h>#in
lude <LEDA/node_pq.h>void DIJKSTRA(
onst graph &G, node s,
onst edge_array<double>&
ost,node_array<double>& dist){ node_pq<double> PQ(G);node v; edge e;forall_nodes(v,G)

4 Introduction{ if (v == s) dist[v℄ = 0; else dist[v℄ = MAXDOUBLE;PQ.insert(v,dist[v℄);}while (!PQ.empty()){ node u = PQ.del_min();forall_out_edges(e,u){ v = target(e);double
 = dist[u℄ +
ost[e℄;if (
 < dist[v℄){ PQ.de
rease_p(v,
); dist[v℄ =
; }}}}
We give some more explanations. We start by including the graph and the node priority
queue data types. The functionDIJKSTRAtakes a graphG, a nodes, anedgearray cost,
and anodearray dist. Edge arrays and node arrays are arrays indexed by edges and nodes,
respectively. We declare a priority queuePQ for the nodes of graphG. It stores pairs
(v, dist[v]) and is initially empty. Theforall nodes-loop initializesdistandPQ. In the main
loop we repeatedly select a pair(u, dist[u]) with minimal distance value and then iterate
over all out-going edges to update distance values of neighboring vertices.

We next incorporate the shortest path program into a small demo. We generate a random
graph withn nodes andm edges and choose the edge costs as random number in the range
[0 .. 100]. We call the function above and report the running time.

〈dijkstra time.c〉�
〈DIJKSTRA.c〉main(){ int n = read_int("number of nodes = ");int m = read_int("number of edges = ");graph G;random_graph(G,n,m);edge_array<double>
ost(G);node_array<double> dist(G);edge e; forall_edges(e,G)
ost[e℄ = ((double) rand_int(0,100));float T = used_time();DIJKSTRA(G,G.first_node(),
ost,dist);
out << "\n\nThe shortest path
omputation took " <<used_time(T) << " se
onds.\n\n";}

On a graph with 10000 nodes and 100000 edges the computation takes less than a second.

1.1.3 Curve Reconstruction
The reconstruction of a curve from a set of sample points is animportant problem in com-
puter vision. Amenta, Bern, and Eppstein [ABE98] introduced a reconstruction algorithm
which they called CRUST. Figure 1.2 shows a point set and the curves reconstructed by

1.1 Some Programs 5

Figure 1.2 A set of points in the plane and the curve reconstructed by CRUST. The figure was
generated by the program presented in Section 1.1.3.

their algorithm. The algorithmCRUSTtakes a listS of points and returns a graphG.
CRUST makes use of Delaunay diagrams and Voronoi diagrams (which we will discuss in
Sections 9.4 and 9.5) and proceeds in three steps:

• It first constructs the Voronoi diagramVD of the points inS.

• It then constructs a setL = S∪ V , whereV is the set of vertices ofVD.

• Finally, it constructs the Delaunay triangulationDT of L and makesG the graph of all
edges ofDT that connect points inS.

The algorithm is very simple to implement1.

〈crust.c〉�#in
lude <LEDA/graph.h>#in
lude <LEDA/map.h>#in
lude <LEDA/float_kernel.h>#in
lude <LEDA/geo_alg.h>void CRUST(
onst list<point>& S, GRAPH<point,int>& G){ list<point> L = S;GRAPH<
ir
le,point> VD;VORONOI(L,VD);
1 In 97 the authors attended a conference, where Nina Amenta presented the algorithm. We were supposed to give

a presentation of LEDA later in the day. We started the presentation with a demo of algorithm CRUST.

6 Introduction// add Voronoi verti
es and mark themmap<point,bool> voronoi_vertex(false);node v;forall_nodes(v,VD){ if (VD.outdeg(v) < 2)
ontinue;point p = VD[v℄.
enter();voronoi_vertex[p℄ = true;L.append(p);}DELAUNAY_TRIANG(L,G);forall_nodes(v,G)if (voronoi_vertex[G[v℄℄) G.del_node(v);}
We give some explanations. We start by including graphs, maps, the floating point geometry
kernel, and the geometry algorithms. In CRUST we first make a copy of S in L. Next
we compute the Voronoi diagramVD of the points inL. In LEDA we represent Voronoi
diagrams by graphs whose nodes are labeled with circles. A nodev is labeled by a circle
passing through the defining sites of the vertex. In particular,VD[v].center() is the position
of the nodev in the plane. Having computedVD we iterate over all nodes ofVD and add
all finite vertices (a Voronoi diagram also has nodes at infinity, they have degree one in our
graph representation of Voronoi diagrams) toL. We also mark all added points as vertices
of the Voronoi diagram. Next we compute the Delaunay triangulation of the extended point
set in G. Having computed the Delaunay triangulation, we collect all nodes ofG that
correspond to vertices of the Voronoi diagram in a listvlist and delete all nodes invlist from
G. The resulting graph is the result of the reconstruction.

We next incorporate CRUST into a small demo which illustrates its speed. We generaten
random points in the plane and construct their crust. We are aware that it does really make
sense to apply CRUST to a random set of points, but the goal of the demo is to illstrate the
running time.

〈crust time.c〉�
〈crust.c〉main(){ int n = read_int("number of points = ");list<point> S;random_points_in_unit_square(n,S);GRAPH<point,int> G;float T = used_time();CRUST(S,G);
out << "\n\nThe
rust
omputation took " <<used_time(T) << " se
onds.\n\n";}

For 3000 points the computation takes less than a second.

1.1 Some Programs 7

1.1.4 A Curve Reconstruction Demo
We use the program of the preceding section for a small interactive demo.

〈crust demo.c〉�#in
lude <LEDA/window.h>
〈crust.c〉main(){ window W; W.display();W.set_node_width(2); W.set_line_width(2);point p;list<point> S;GRAPH<point,int> G;while (W >> p){ S.append(p);CRUST(S,G);node v; edge e;W.
lear();forall_nodes(v,G) W.draw_node(G[v℄);forall_edges(e,G) W.draw_segment(G[sour
e(e)℄, G[target(e)℄);}}

We give some more explanations. We start by including the window type. In the main
program we define a window and open its display. A window will pop up. We state that we
want nodes and edges to be drawn with width two. We define the list S and the graphG
required for CRUST. In each iteration of the while-loop we read a point inW (each click of
the left mouse button enters a point), append it toS and compute the crust ofS in G. We
then drawG by drawing its vertices and its edges. Each edge is drawn as a line segment
connecting its endpoints. Figure 1.2 was generated with theprogram above.

1.1.5 Discussion
We hope that you are impressed by the programs which we have just shown you. In each
case only a few lines of code were necessary to achieve complex functionality and, more-
over, the code is elegant and readable. We conclude that LEDAis ideally suited for rapid
prototyping as summarized in the equation

Algorithm + LEDA = Program.

The data structures and algorithms in LEDA are efficient. Forexample, the computation
of shortest paths in a graph with 10000 nodes and 100000 edgesand the computation of the
crust of 3000 points took less than a second each. Thus

Algorithm + LEDA = Efficient Program.

8 IntroductionA
knowledgements a
knowledgementsREADME information about LEDAINSTALL this fileCHANGES most re
ent
hangesFIXES bug fixes sin
e last releaseLEPS/ LEDA extension pa
kagesManual/ user manualMakefile make s
ript
onfdir/
onfiguration dire
toryl
onfig
onfiguration
ommand
md/
ommandsin
l/ in
lude dire
torysr
/ sour
e filesdemo/ demo programstest/ test programsdata/ data files
Figure 1.3 The top level of the LEDA root directory. Depending on the version of LEDA that is
installed at your system, some of the files may be missing or empty.

1.2 The LEDA System

The LEDA system can be downloaded from the LEDA web-site.http://www.mpi-sb.mpg.de/LEDA/leda.html
A commercial version of LEDA is available from Algorithmic Solutions Software GmbH.http://www.algorithmi
-solutions.de
At both places you will also find an installation guide.

Figure 1.3 shows the top level of the LEDA directory; some files may be missing or empty
depending on the version of LEDA that is installed at your system. We use LEDAROOT to
denote the path name of the LEDA directory. In this section wewill discuss essential parts
of the LEDA directory tree.

README and INSTALL tell you how to install the system. In the remainder of this
section all path-names will be relative to the LEDA root directory.

1.2.1 The Include Directory
The include directoryin
l/LEDA contains:

• all header files of the LEDA system,

• subdirectorytemplates for the template versions of network algorithms,

• subdirectorygeneri
 for the kernel independent versions of geometric algorithms,

• subdirectoryimpl for header files of different implementations of dictionaries and
priority queues,

1.2 The LEDA System 9

• subdirectorythread for the classes needed to make LEDA thread-safe,

• subdirectorysys for the classes that adapt LEDA to different compilers and systems,
and

• subdirectoriesbitmaps andpixmaps for bitmaps and pixel maps.

1.2.2 The Source Code Directory
The source code directorysr
 contains the source code of LEDA. If you have downloaded
an object code package, as you probably have, this directorywill be empty. Otherwise, it
has one subdirectory for each of the major parts of LEDA: basic data types, numbers, dictio-
naries, priority queues, graphs, graph algorithms, geometry kernels, geometry algorithms,
windows,

1.2.3 The LEDA Manual
The directoryManual contains the LATEX-sources of the LEDA manual. You may make the
manual by typing “make” in this directory. This requires that certain additional tools are
installed at your system. Alternatively, and we recommend the alternative, you may down-
load the LEDA manual from our web-site. There are two versions of the LEDA manual
available on our web-site:

• A paper version in the form of either a ps-file or a dvi-file.

• An HTML-version.

1.2.4 The Demo Directory
The directorydemo contains demos. All demos mentioned in this book are contained in
either the subdirectoryxlman or the subdirectorybook. We call the demos in the former
directory xlman-demos.

All xlman-demos have a graphical user interface and can be accessed through the xlman-
utility, see Section 1.2.5. Of course, one can also call themdirectly in directory xlman. You
will find many screenshots in this book; many of them are screenshots of xlman-demos.

The demos in thebook-directory typically have an ASCII-interface and demonstrate run-
ning times. The book-directory is structured according to the chapters of this book.

1.2.5 Xlman
Xlman gives you on-line access to the xlman-demos and the LEDA manual (if xdvi is in-
stalled at your system). Figure 1.4 shows a screenshot of xlman.

1.2.6 LEDA Extension Packages
LEDA extension packages (LEPs) extend LEDA into particularapplication domains and
areas of algorithmics not covered by the core system. Anybody may contribute a LEDA
extension package. At the time of writing this there are LEDAextension packages for:

10 Introduction

Figure 1.4 A screen shot of xlman. The upper text line shows the name of a LEDA manual
page, and the lower text line shows the name of an LEP manual page (this line may be missing in
your installation). The six buttons at the bottom have the following functionality: on-line access
to manual pages, printing manual pages, running LEDA demos,access to LEDA documents,
xlman configuration, and exit. Some of the functionality relies on other tools, e.g., xdvi, and may
be missing on your system.

• abstract Voronoi diagrams (by Michael Seel),

• higher-dimensional geometry (by Kurt Mehlhorn, Michael M¨uller, Stefan Näher,
Stefan Schirra, Michael Seel, and Christian Uhrig),

• dynamic graph algorithms (by David Alberts, Umberto Nanni,Guilio Pasqualone,
Christos Zaroliagis, Pippo Cattaneo, and Guiseppe F. Italiano),

• graph iterators (by Marco Nissen and Karsten Weihe),

• external memory computations (by Andreas Crauser),

• PQ-trees (by Sebastian Leipert), and

• SD-trees (by Peter Hilpert).

LEDA extension packages must satisfy a set of basic requirements which guarantee com-
patibility with the LEDA philosophy; the requirements are defined on our web-page.

1.3 The LEDA Web-Site

The LEDA web-site (http://www.mpi-sb.mpg.de/LEDA/leda.html) is an important
source of information about LEDA. We mentioned already thatit allows you to download
the most recent version of the system and the manual. It also gives you information about
the people behind LEDA and latest news, and it contains pointers to other systems which

1.4 Systems that Go Well with LEDA 11

are either built on top of LEDA or which we have used successfully together with LEDA.
We will discuss some of these systems in the next section.

1.4 Systems that Go Well with LEDA

Although LEDA covers many aspects of combinatorial and geometric computing, it cannot
cover all of them. In our own work we therefore also use other systems.

In the realm of exact solution of NP-complete problems we useLEDA together with
ABACUS, a branch-and-cut framework for polyhedral optimization, and with CPLEX and
SoPLEX, two solvers for linear programs. ABACUS was developed by Michael Jünger,
Stefan Reinelt, and Stefan Thienel.

For graph drawing we use AGD, a library of automatic graph drawing, and GDToolkit , a
toolkit for graph drawing. AGD is a joint effort of Petra Mutzel’s group at the MPI, Stefan
Näher’s group in Halle, and Michael Jünger’s group in Cologne. GDToolkit was developed
by Guiseppe Di Battista’s group in Rome. We say a bit more about AGD and GDToolkit in
Section 8.1.

For computational geometry we also use CGAL, a computational geometry algorithms
library. CGAL is a joint effort of ETH Zürich Freie Universität Berlin, INRIA Sophia
Antipolis, Martin-Luther Universität Halle-Wittenberg, Max-Planck-Institut für Informatik
and Universität des Saarlandes, RISC Linz Tel-Aviv University, and Universiteit Utrecht.
We will say more about CGAL in Section 8.11.

1.5 Design Goals and Approach

We had four major goals for the design of LEDA:

• Ease of use.

• Extensibility.

• Correctness.

• Efficiency.

We next discuss our four goals and how we tried to reach them.

We wanted the library to reduce the gap between the algorithms community and the “rest
of the world” and thereforeease of usewas a major concern. We wanted the library to be
useable without intimate knowledge of our field of research;a basic course in data structures
and algorithms should suffice. We also wanted the data types and algorithms of LEDA to
be useable without any knowledge of their implementation.

12 Introduction

We invented the item concept, see Section 2.2, as an abstraction of the concept of “pointer
to a container in a data type” and used it for the specificationof all container-based data
types. We formulated rules (see Chapter 2) that capture key concepts, such as copy con-
structor, assignment, and compare functions, uniformly for all data types. We introduced a
powerful graph type, see Chapter 6, which supports the natural and elegant formulation of
graph and network algorithms and is also the basis for many ofthe geometric algorithms.

Ease of use also means easy access to information. The LEDA manual, see Chapter 14,
gives precise and readable specifications for the LEDA data types and algorithms. The
specifications are short (typically not more than a page), general (so as to allow several
implementations) and abstract (so as to hide all details of the implementation). All spec-
ifications follow a common format, see Section 2.1. We developed tools that support the
production of manual pages and documentations. Finally, wewrote this book that gives a
comprehensive view of LEDA.

Combinatorial and geometric computing is a diverse area andhence it is impossible for
a library to provide ready-made solutions for all application problems. For this reason it is
important that LEDA is easily extensible and can be used as a platform for further software
development. LEDA itself is a good example for theextensibilityof LEDA. The advanced
data types and algorithms discussed in Chapters 5, 7, 8, and 9are built on top of the basic
data types introduced in Chapters 3, 4, 6, and 8. The basic data types in turn rest on a
conceptual framework described in Chapter 2 and the implementation principles discussed
in Chapter 13.

Incorrect software is hard to use at best and dangerous at worst. We underestimated
the difficulties of achievingcorrectness. After all, any publication in our area proves the
correctness of the described algorithms and going from a correct algorithm to a correct
program is tedious and time-consuming, but hardly an intellectual challenge. So we thought,
when we started the project. We now think differently.

Many of the algorithms in LEDA are quite intricate and therefore difficult to implement
correctly. Programmers make mistakes and we are no exception. How do we guard against
errors? Many of our implementations are carefully documented (this book contains many
examples), we test extensively, as does our large user community, and we have recently
adopted the philosophy that programs should give sufficientjustification for their answers
to allow checking, see Section 2.14. We have developed program checkers for many of our
programs.

The correct implementation of geometric programs was particularly difficult, as the the-
oretical underpinning was insufficient. Geometric algorithms are typically derived under
two simplifying assumptions: (1) the underlying machine model is thereal RAM which
can compute with real numbers in the sense of mathematics and(2) inputs are in general
position. However, the number typesint anddoubleoffered by programming languages are
only crude approximations of real numbers and practical inputs are frequently degenerate.
Our approach is to formulate geometric algorithms such thatthey work for all inputs, see
Chapter 9, and to realize the real RAM (as far as it is needed for computational geometry)

1.6 History 13

by exact number types, see Chapter 4, and an exact and yet efficient geometry kernel, see
Chapter 8.

Efficiencywas our fourth design goal. It may surprise some readers thatwe list it last.
However, efficiency without correctness is meaningless andefficiency without ease of use
is a questionable blessing. We achieve efficiency by the use of efficient algorithms and their
careful implementation.

Our implementations are usually based on the asymptotically most efficient algorithms
known for a particular problem. In many cases we even implemented different algorithmic
approaches. For example, there are several shortest path, matching, and flow algorithms,
there are several convex hull, line segment intersection, and Delaunay diagram algorithms,
and there are several realizations of dictionaries and priority queues. In the case of data
types, the implementation parameter mechanism allows the convenient selection of an im-
plementation. For example, the declarationsdi
tionary<string,int> D1;di
tionary<string,int,skip list> D2;
declareD1 as a dictionary fromstring to int with the default implementation and select the
skip list implementation forD2.

The description of many algorithms leaves considerable freedom for the implementor,
i.e., a description typically defines a family of algorithmsall with the same asymptotic worst
case running time and leaves decisions that do not affect worst case running time to the
implementor. The decisions may, however, dramatically affect the running time on inputs
that are not worst case. We have carefully explored the available opportunities; Sections 7.6
and 7.10 give particularly striking examples. We found it useful to concentrate on the best
and average case after getting the worst case “right”.

LEDA has its own memory manager. It provides efficient implementations of thenew
anddeleteoperators.

How efficient are the programs in LEDA? We give many tables of running times in this
book which show that LEDA programs are able to solve large problem instances. We made
comparisons, see Tables 1.1 and 1.2, and other people did, see for example [Ski98, Ski].
The comparisons show that our running times are competitive, despite the fact that LEDA
is more like a decathlon athlete than a specialist for a particular discipline.

1.6 History

We started the project in the fall of 1988. We spent the first six months on specifications and
on selecting our implementation language. Our test cases were priority queues, dictionaries,
partitions, and algorithms for shortest paths and minimum spanning trees. We came up
with the item concept as an abstraction of the notion “pointer into a data structure”. It
worked successfully for the three data types mentioned above and we are now using it
for most data types in LEDA. Concurrently with searching forthe correct specifications

14 IntroductionNumber of list entries: 100000LIST<INT> LEDA STLbuild list 0.020 se
 0.040 se
pop and push 0.030 se
 0.030 se
reversing 0.020 se
 0.030 se

opy
onstr 0.050 se
 0.050 se
assignment 0.020 se
 0.040 se

learing 0.000 se
 0.020 se
sorting 0.130 se
 0.400 se
sorting again 0.140 se
 0.330 se
merging 0.030 se
 0.080 se
unique 0.080 se
 0.080 se
unique again 0.000 se
 0.010 se
iteration 0.000 se
 0.000 se
-------------------------------------total 0.520 se
 1.110 se
LIST<CLASS> LEDA STLbuild list 0.090 se
 0.030 se
pop and push 0.100 se
 0.030 se
reversing 0.070 se
 0.030 se

opy
onstr 0.140 se
 0.060 se
assignment 0.120 se
 0.030 se

learing 0.080 se
 0.020 se
sorting 0.770 se
 0.510 se
sorting again 0.900 se
 0.380 se
merging 0.200 se
 0.090 se
unique 0.250 se
 0.100 se
unique again 0.010 se
 0.000 se
iteration 0.010 se
 0.000 se
-------------------------------------total 2.740 se
 1.280 se

Table 1.1 A comparison of the list data type in LEDA and in the implementation of the Standard
Template Library [MS96] that comes with the GNU C++ compiler. The upper part compares
list<int> and the lower part compareslist<class>, where the objects of typeclassrequire several
words of storage. LEDA lists are faster for small objects andslower for large objects. This table
was generated by the program stlvs leda in LEDAROOT/demo/stl. You can perform your own
comparisons if your C++ compiler comes with an implementation of the STL. All running times
are in seconds.

we investigated several languages for their suitability asour implementation platform. We
looked at Smalltalk, Modula, Ada, Eiffel, and C++. We wanted a language that supported
abstract data types and type parameters (polymorphism) andthat was widely available.
We wrote sample programs in each language. Based on our experiences we selected C++
because of its flexibility, expressive power, and availability.

A first publication about LEDA appeared in the conferences MFCS 1989 and ICALP
1990 [MN89, NM90]. Stefan Näher became the head of the LEDA project and he is the

1.6 History 15

Type of network LEDA CG

random (4000 nodes 28000 edges) 0.31 0.11

CG1 (8002 nodes 12003 edges) 9.26 4.20

CG2 (8002 nodes 12001 edges) 0.11 0.73

AMO (4001 nodes 7998 edges) 0.05 1.74

Table 1.2 A comparison of the maxflow implementation in LEDA and the oneby Cherkassky
and Goldberg [CG97, CG]. The latter implementation is generally considered the best code
available. We used four different kinds of graphs: random graphs and graphs generated by three
different generators. The generators CG1 and CG2 were suggested by Cherkassky and Goldberg
and the generator AMO was suggested by Ahuja, Magnanti, and Orlin. The generators are
discussed in detail in Section 7.10. All running times are inseconds. You may perform your own
experiments by running the program flowtest in LEDAROOT/demo/book/Intro and following
the instructions given in MAXFLOWREADME in the same directory.

main designer and implementer of LEDA. Progress reports appeared in [MN92, Näh93,
MN94, MN95, BKM+95, MNU97, MN98].

In the second half of 1989 and during 1990 Stefan Näher implemented a first version
of the combinatorial part (= data structures and graph algorithms) of LEDA (Version 1.0).
Then there were releases 2.0, 2.1, 2.2, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7. With the
appearance of this book we will release version 4.0. Each newrelease offered new func-
tionality, increased efficiency, and removed bugs.

LEDA runs on many different platforms (Unix, Windows, OS/2)and with many different
compilers.

In early 1995 LEDA Software GmbH was founded to market a commercial version of
LEDA. Christian Uhrig became the Chief Executive Officer. The company was renamed
to Algorithmic Solutions Software GmbH in late 1997 to reflect the fact that it not only
markets LEDA, but also other systems like, for example, AGD and CGAL, and that it also
develops algorithmic solutions for specific needs.

The research version is used at more than 1500 academic and research sites. Try the web-
sitehttp://www.mpi-sb.mpg.de/LEDA/DOWNLOADSTAT to find out whether the system
is already in use at your site.

Bibliography

[ABE98] N. Amenta, M. Bern, and D. Eppstein.
The crust and theβ-skeleton: Combinatorial
curve reconstruction.Graphical Models and
Image Processing, pages 125–135, 1998.

[BKM +95] C. Burnikel, J. Könemann,
K. Mehlhorn, S. Näher, S. Schirra, and
C. Uhrig. Exact geometric computation in
LEDA. In Proceedings of the 11th Annual
Symposium on Computational Geometry
(SCG’95), pages C18–C19, New York, NY,
USA, June 1995. ACM Press.

[CG] B. Cherkassky and A. Goldberg. PRF, a
Maxflow Code.www.inter-trust.
om/star/goldberg/index.html.

[CG97] B.V. Cherkassky and A.V. Goldberg. On
implementing the push-relabel method for the
maximum flow problem.Algorithmica,
19(4):390–410, 1997.

[Dij59] E.W. Dijkstra. A note on two problems in
connection with graphs.Num. Math.,
1:269–271, 1959.

[MN89] K. Mehlhorn and S. Näher. LEDA: A
library of efficient data types and algorithms. In
Antoni Kreczmar and Grazyna Mirkowska,
editors,Proceedings of the 14th International
Symposium on Mathematical Foundations of
Computer Science (MFCS’89), volume 379 of
Lecture Notes in Computer Science, pages
88–106. Springer, 1989.

[MN92] K. Mehlhorn and S. Näher. Algorithm
design and software libraries: Recent
developments in the LEDA project. In
Algorithms, Software, Architectures,

Information Processing 92, volume 1, pages
493–505. Elsevier Science Publishers B.V.
North-Holland, 1992.

[MN94] K. Mehlhorn and S. Näher. The
implementation of geometric algorithms. In
Proceedings of the 13th IFIP World Computer
Congress, volume 1, pages 223–231. Elsevier
Science B.V. North-Holland, Amsterdam, 1994.

[MN95] K. Mehlhorn and S. Näher. LEDA, a
Platform for Combinatorial and Geometric
Computing.Communications of the ACM,
38:96–102, 1995.

[MN98] K. Mehlhorn and S. Näher. From
algorithms to working programs: On the use of
program checking in LEDA. InProceedings of
Mathematical Foundations of Computer Science
(MFCS’98), volume 1450 ofLecture Notes in
Computer Science, pages 84–93, 1998.

[MNU97] K. Mehlhorn, S. Näher, and C. Uhrig.
The LEDA platform for combinatorial and
geometric computing. InProceedings of the
24th International Colloquium on Automata,
Languages and Programming (ICALP’97),
volume 1256 ofLecture Notes in Computer
Science, pages 7–16, 1997.

[MS96] D.R. Musser and A. Saini.STL tutorial and
Reference Guide. Addison-Wesley, Reading,
1996.

[Näh93] S. Näher. LEDA: a library of efficient data
types and algorithms. In Patrice Enjalbert, Alain
Finkel, and Klaus W. Wagner, editors,
Proceedings of the 10th Annual Symposium on
Theoretical Aspects of Computer Science

16

Bibliography 17

(STACS’93), volume 665 ofLecture Notes in
Computer Science, pages 710–723. Springer,
1993.

[NM90] S. Näher and K. Mehlhorn. LEDA: A
library of efficient data types and algorithms. In
Michael S. Paterson, editor,Proceedings of the
17th International Colloquium on Automata,
Languages, and Programming (ICALP’90),
volume 443 ofLecture Notes in Computer
Science, pages 1–5. Springer, 1990.

[Ski] S.S. Skiena. The Stony Brook Algorithm
Repository.www.
s.sunysb.edu/~algorith/index.html.

[Ski98] S.S. Skiena.The Algorithm Design Manual.
Springer, 1998.

Index

ABACUS, 11
AGD, 11
Algorithmic Solutions Software GmbH, 8

CGAL, 11
correctness

design goal, 12
CRUST, 5
curve reconstruction, 5

demo
directory, 9
programs

curve reconstruction, 7
maximum flow, 15
word count, 2

xlman, 9
design goals, 11

correctness, 12
ease of use, 11
efficiency, 13
extensibility, 12

DIJKSTRA, 3
Dijkstra’s shortest path algorithm, 3
directory tree of LEDA, 8

ease of use, 3, 11
efficiency

design goal, 13
extensibility of LEDA, 12
extension packages, 9

GDToolkit, 11
generic directory, 8

history of LEDA, 13
HTML, 9

impl directory, 8
include directory, 8
installation of LEDA, 8

LEDA extension packages, 9
LEDAROOT, 8
LEP, 9

manual
directory, 9
on-line access, 9

running time experiments
curve reconstruction, 6
Dijkstra, 4
LEDA versus STL, 14
maximum flow, comparison, 15
shortest paths, 4
STL, 14

source code directory, 9
STL, 14
sys directory, 9

template directory, 8
thread safety, 9

web-site, 8, 10
word count program, 2

xlman, 9

18

