11
1.2
13
14
15
1.6

Contents

Introduction

Some Programs

The LEDA System

The LEDA Web-Site

Systems that Go Well with LEDA
Design Goals and Approach
History

Bibliography

Index

pagel

10
11
11
13

16

18

1
| ntroduction

In this chapter we introduce the reader to LEDA by showingesavshort, but powerful,

programs, we give an overview of the structure of the LEDAeys we discuss our design
goals and the approach that we took to reach them, and we gera account of the

history of LEDA.

1.1 Some Programs

We show several programs to give the reader a first impresdibEDA. In each case we
will first state the algorithm and then show the program. ttasessential to understand the
algorithms in full detail; our goal is to show:

e how easily the algorithms are transferred into programs and
e how natural and elegant the programs are.
In other words,

Algorithm + LEDA = Program.

The directory LEDAROOT/demo/book/Intro (see Section @ptains all programs dis-
cussed in this section.

1.1.1 Word Count

We start with a very simple program. Our task is to read a sezpuef strings from standard
input, to count the number of occurrences of each stringerirput, and to print a list of
all occurring strings together with their frequencies amstard output. The input is ended
by the string “end”.

2 Introduction

In our solution we use the LEDA typestring and dictionary arraysd(arrays). The
parametrized data type dictionary arrayafray<|, E>) realizes arrays with index typle
and element typ&. We use it with index typstring and element typant.

{(word_count.¢=

#include <LEDA/d_array.h>
#include <LEDA/string.h>

main()

{ d_array<string,int> N(O);
string s;
while (true)
{ cin >> s;

if (s == "end") break;
N[s]++;
}
forall_defined(s,N) cout << "\n" << s << " " << N[s];

We give some more explanations. The program starts withntlede statement for dic-
tionary arrays and strings. In the first line of the main peogrwe define a dictionary
array N with index typestring and element typ@t and initialize all entries of the array to
zero. Conceptually, this creates an infinite array with ameyefor each conceivable string
and sets all entries to zero; the implementation @rys stores the non-zero entries in
a balanced search tree with key type string. In the secoedwim define a string. The
while-loop does most of the work. We read a strggf the string is equal to “end”, we
break from the loop. Otherwise, we increment the emfg] of the arrayN by one. The
iterationforall_defineds, N) in the last line successively assigns all strings for which
the corresponding entry & was touched during execution. For each such string, thegstri
and its frequency are printed on the standard output. A nasvi$ used for each pair. On
input

stefan
stefan
kurt
end

the program will print

kurt 1
stefan 2

1.1.2 Shortest Paths

Dijkstra’s shortest path algorithm [Dij59] takes a direttgaphG = (V, E), anodes € V,
called the source, and a non-negative cost function on tgessmst: E — R.p. It
computes for each node € V the distance frons, see Figure 1.1. A typical text book

1.1 Some Programs 3

Figure 1.1 A shortest path in a graph. Each edge has a non-negativeldwstost of a path is
the sum of the cost of its edges. The source roddndicated as a square. For each node the
length of the shortest path frosis shown.

presentation of the algorithm is as follows (we will prove ttorrectness of the algorithm
in Section 6.6):

set dist(s) to O.
set dist(v) to infinity for v different from s.

declare all nodes unreached.

while there is an unreached node
{ let u be an unreached node with minimal dist-value. (%)

declare u reached.

forall edges e = (u,v) out of u
set dist(v) = min(dist(v), dist(u) + cost(e))
}

The text book presentation will then continue to discusdrifdementation of line (*). It
will state that the pair§(v, dist(v)); v unreachefishould be stored in a priority queue, e.g.,
a Fibonacci heap, because this will allow the selection afrmeached node with minimal
distance value in logarithmic time. It will probably refersome other chapter of the book
for a discussion of priority queues.

We next give the corresponding LEDA program; it is very sanilo the pseudo-code
above. In fact, after some experience with LEDA you shouldble to turn the pseudo-
code into code within a few minutes.

(DIJKSTRA.E=

#include <LEDA/graph.h>
#include <LEDA/node_pq.h>

void DIJKSTRA(const graph &G, node s,
const edge_array<double>& cost,
node_array<double>& dist)
{ node_pg<double> PQ(G);
node v; edge e;

forall_nodes(v,G)

4 Introduction

{ if (v == s) dist[v] = 0; else dist[v] = MAXDOUBLE;
PQ.insert(v,dist[v]);
}

while (!'PQ.empty())
{ node u = PQ.del_min();
forall_out_edges(e,u)
{ v = target(e);
double ¢ = dist[u] + cost[e];
if (¢ < distl[v])
{ PQ.decrease_p(v,c); dist[v] = c; }
}

We give some more explanations. We start by including thefgend the node priority
queue data types. The functiGdlJKSTRAtakes a grapi®, a nodes, anedgearray cost
and anodearray dist Edge arrays and node arrays are arrays indexed by edgesd@sl n
respectively. We declare a priority queB& for the nodes of grapls. It stores pairs
(v, disv]) and is initially empty. Thdorall_.nodesloop initializesdistandPQ. In the main
loop we repeatedly select a pair, disfu]) with minimal distance value and then iterate
over all out-going edges to update distance values of neigipvertices.

We next incorporate the shortest path program into a smalbd&Ve generate a random
graph withn nodes anan edges and choose the edge costs as random number in the range
[0..100]. We call the function above and report the running time.

(dijkstra_time.g=

(DIJKSTRA.&
main()
{ int n read_int ("number of nodes ")

int m = ")
graph G;

random_graph(G,n,m) ;
edge_array<double> cost (G);

node_array<double> dist(G);

edge e; forall_edges(e,G) costl[e]

float T = used_time();

DIJKSTRA(G,G.first_node(),cost,dist);

cout << "\n\nThe shortest path computation took " <<
used_time(T) << " seconds.\n\n";

read_int ("number of edges

((double) rand_int(0,100));

On a graph with 10000 nodes and 100000 edges the computakies less than a second.

1.1.3 Curve Reconstruction

The reconstruction of a curve from a set of sample points isigortant problem in com-
puter vision. Amenta, Bern, and Eppstein [ABE98] introdii@ereconstruction algorithm
which they called CRUST. Figure 1.2 shows a point set and timees reconstructed by

1.1 Some Programs 5

i

Figure1.2 A set of points in the plane and the curve reconstructed by ERUhe figure was
generated by the program presented in Section 1.1.3.

their algorithm. The algorithn€CRUSTtakes a listS of points and returns a grap@.
CRUST makes use of Delaunay diagrams and Voronoi diagramstfwe will discuss in
Sections 9.4 and 9.5) and proceeds in three steps:

e It first constructs the Voronoi diagrawD of the points inS.
e Itthen constructs a sét= SU V, whereV is the set of vertices dfD.

e Finally, it constructs the Delaunay triangulatibi of L and make< the graph of all
edges oDT that connect points is.

The algorithm is very simple to implemént

(crust.o=

#include <LEDA/graph.h>
#include <LEDA/map.h>
#include <LEDA/float_kernel.h>
#include <LEDA/geo_alg.h>

void CRUST(const list<point>& S, GRAPH<point,int>& G)
{
list<point> L = §;

GRAPH<circle,point> VD;
VORONOI(L,VD);

1 In 97 the authors attended a conference, where Nina Ameespted the algorithm. We were supposed to give
a presentation of LEDA later in the day. We started the prasien with a demo of algorithm CRUST.

6 Introduction

// add Voronoi vertices and mark them
map<point,bool> voronoi_vertex(false);

node v;

forall_nodes(v,VD)

{ if (VD.outdeg(v) < 2) continue;
point p = VD[v].center();
voronoi_vertex[p] = true;
L.append(p);

}

DELAUNAY_TRIANG(L,G);

forall_nodes(v,G)
if (voronoi_vertex[G[v]]) G.del_node(v);

We give some explanations. We start by including graphssirtap floating point geometry
kernel, and the geometry algorithms. In CRUST we first makegy ©f Sin L. Next
we compute the Voronoi diagraWD of the points inL. In LEDA we represent Voronoi
diagrams by graphs whose nodes are labeled with circles.d& nés labeled by a circle
passing through the defining sites of the vertex. In paricMD[v].centeX) is the position
of the nodev in the plane. Having computedD we iterate over all nodes &D and add
all finite vertices (a Voronoi diagram also has nodes at ityfitihey have degree one in our
graph representation of Voronoi diagrams).toWe also mark all added points as vertices
of the Voronoi diagram. Next we compute the Delaunay tridauipn of the extended point
set inG. Having computed the Delaunay triangulation, we colletthaldes ofG that
correspond to vertices of the Voronoi diagram in avlgt and delete all nodes wist from

G. The resulting graph is the result of the reconstruction.

We next incorporate CRUST into a small demo which illussétespeed. We generate
random points in the plane and construct their crust. Wewegathat it does really make
sense to apply CRUST to a random set of points, but the goakadémo is to illstrate the
running time.

{(crusttime.g=

(crust.q

main()

{ int n = read_int ("number of points = ");
list<point> S;
random_points_in_unit_square(n,S);
GRAPH<point,int> G;

float T = used_time();

CRUST(S,G) ;

cout << "\n\nThe crust computation took " <<
used_time(T) << " seconds.\n\n";

For 3000 points the computation takes less than a second.

1.1 Some Programs 7

1.1.4 A Curve Reconstruction Demo
We use the program of the preceding section for a small ictiggademo.

{crustdemo.¢=
#include <LEDA/window.h>
(crust.q

main()

{ window W; W.display();
W.set_node_width(2); W.set_line_width(2);
point p;
list<point> S;

GRAPH<point,int> G;

while (W >> p)
{ S.append(p);
CRUST(S,G);

node v; edge e;

W.clear();

forall_nodes(v,G) W.draw_node(G[v]);

forall edges(e,G) W.draw_segment (G[source(e)], G[target(e)]);

}
}

We give some more explanations. We start by including thedaintype. In the main
program we define a window and open its display. A window wolbp. We state that we
want nodes and edges to be drawn with width two. We define $h& ind the grapic
required for CRUST. In each iteration of the while-loop wade point inW (each click of
the left mouse button enters a point), append iBtand compute the crust &in G. We
then drawG by drawing its vertices and its edges. Each edge is drawn iag aé¢gment
connecting its endpoints. Figure 1.2 was generated witpribgram above.

1.1.5 Discussion

We hope that you are impressed by the programs which we hatvshown you. In each
case only a few lines of code were necessary to achieve cariysietionality and, more-
over, the code is elegant and readable. We conclude that LIER#eally suited for rapid
prototyping as summarized in the equation

Algorithm + LEDA = Program.

The data structures and algorithms in LEDA are efficient. &@mple, the computation
of shortest paths in a graph with 10000 nodes and 100000 edgele computation of the
crust of 3000 points took less than a second each. Thus

Algorithm + LEDA = Efficient Program.

Introduction

Acknowledgements acknowledgements

README information about LEDA
INSTALL this file

CHANGES most recent changes
FIXES bug fixes since last release
LEPS/ LEDA extension packages
Manual/ user manual

Makefile make script

confdir/ configuration directory
lconfig configuration command
cmd/ commands

incl/ include directory

src/ source files

demo/ demo programs

test/ test programs

data/ data files

Figure 1.3 The top level of the LEDA root directory. Depending on thesien of LEDA that is
installed at your system, some of the files may be missing @tym

1.2 TheLEDA System

The LEDA system can be downloaded from the LEDA web-site.

http://www.mpi-sb.

mpg.de/LEDA/leda.html

A commercial version of LEDA is available from Algorithmiofitions Software GmbH.

http://www.algorithmic-solutions.de

At both places you will also find an installation guide.

Figure 1.3 shows the top level of the LEDA directory; somesfiteay be missing or empty
depending on the version of LEDA that is installed at youteys We use LEDAROOT to
denote the path name of the LEDA directory. In this sectionmediscuss essential parts
of the LEDA directory tree.

README and INSTALL tell you how to install the system. In themainder of this
section all path-names will be relative to the LEDA root diry.
1.2.1 Thelnclude Directory
The include directoryncl/LEDA contains:
e all header files of the LEDA system,
e subdirectorytemplates for the template versions of network algorithms,
subdirectorygeneric for the kernel independent versions of geometric algorithm

subdirectoryimpl for header files of different implementations of dictiomsrand
priority queues,

1.2 The LEDA System 9

e subdirectorythread for the classes needed to make LEDA thread-safe,

e subdirectorysys for the classes that adapt LEDA to different compilers arslesys,
and

e subdirectorieditmaps andpixmaps for bitmaps and pixel maps.

1.2.2 The Source Code Directory

The source code directoggc contains the source code of LEDA. If you have downloaded
an object code package, as you probably have, this direatifirpe empty. Otherwise, it
has one subdirectory for each of the major parts of LEDA:ddata types, numbers, dictio-
naries, priority queues, graphs, graph algorithms, gegnkernels, geometry algorithms,
windows,

1.2.3 TheLEDA Manual

The directoryManual contains theAIgX-sources of the LEDA manual. You may make the
manual by typing “make” in this directory. This requirestticartain additional tools are
installed at your system. Alternatively, and we recomméredaiternative, you may down-
load the LEDA manual from our web-site. There are two versiohthe LEDA manual
available on our web-site:

e A paper version in the form of either a ps-file or a dvi-file.

e An HTML-version.

1.2.4 TheDemo Directory

The directorydemo contains demos. All demos mentioned in this book are coethin
either the subdirectorylman or the subdirectorpook. We call the demos in the former
directory xlIman-demos.

All ximan-demos have a graphical user interface and can ¢esaed through the xlman-
utility, see Section 1.2.5. Of course, one can also call theactly in directory xIman. You
will find many screenshots in this book; many of them are stkets of ximan-demos.

The demos in theook-directory typically have an ASCII-interface and demoatgrun-
ning times. The book-directory is structured accordindhdhapters of this book.

1.25 Xliman
Xlman gives you on-line access to the xIman-demos and theA_EBnual (if xdvi is in-
stalled at your system). Figure 1.4 shows a screenshot @frxlm

1.2.6 LEDA Extension Packages

LEDA extension packages (LEPs) extend LEDA into partic@pplication domains and
areas of algorithmics not covered by the core system. Anyloay contribute a LEDA
extension package. At the time of writing this there are LE®#ension packages for:

10 Introduction

nka 10. November 1998 :

09:25 T |d_array

additional % |chull

60|] @ [

Figure 1.4 A screen shot of xIman. The upper text line shows the name &@A.manual

page, and the lower text line shows the name of an LEP mangal (plais line may be missing in
your installation). The six buttons at the bottom have thiefang functionality: on-line access
to manual pages, printing manual pages, running LEDA deauxgss to LEDA documents,
xlman configuration, and exit. Some of the functionalityeelon other tools, e.g., xdvi, and may
be missing on your system.

e abstract Voronoi diagrams (by Michael Seel),

e higher-dimensional geometry (by Kurt Mehlhorn, MichaelilMt, Stefan Naher,
Stefan Schirra, Michael Seel, and Christian Uhrig),

e dynamic graph algorithms (by David Alberts, Umberto Na@ijlio Pasqualone,
Christos Zaroliagis, Pippo Cattaneo, and Guiseppe Faiia),

e graph iterators (by Marco Nissen and Karsten Weihe),
e external memory computations (by Andreas Crauser),
e PQ-trees (by Sebastian Leipert), and

e SD-trees (by Peter Hilpert).

LEDA extension packages must satisfy a set of basic reqeinésrtwhich guarantee com-
patibility with the LEDA philosophy; the requirements areficied on our web-page.

13 The LEDA Web-Site

The LEDA web-site §ttp://www.mpi-sb.mpg.de/LEDA/leda.html) iS an important
source of information about LEDA. We mentioned already thallows you to download
the most recent version of the system and the manual. It alss gou information about
the people behind LEDA and latest news, and it contains prib other systems which

1.4 Systems that Go Well with LEDA 11

are either built on top of LEDA or which we have used succdlystogether with LEDA.
We will discuss some of these systems in the next section.

1.4 Systemsthat Go Well with LEDA

Although LEDA covers many aspects of combinatorial and getoimcomputing, it cannot
cover all of them. In our own work we therefore also use otlgstesns.

In the realm of exact solution of NP-complete problems we IUSBA together with
ABACUS, a branch-and-cut framework for polyhedral optiatian, and with CPLEX and
SoPLEX, two solvers for linear programs. ABACUS was devebbpy Michael Junger,
Stefan Reinelt, and Stefan Thienel.

For graph drawing we use AGD, a library of automatic graplwiltg, and GDToolkit , a
toolkit for graph drawing. AGD is a joint effort of Petra Mts group at the MPI, Stefan
Naher’s group in Halle, and Michael Junger’s group in @ole. GDToolkit was developed
by Guiseppe Di Battista’s group in Rome. We say a bit more 8A@ID and GDToolkit in
Section 8.1.

For computational geometry we also use CGAL, a computdtigeametry algorithms
library. CGAL is a joint effort of ETH Zirich Freie Univertit Berlin, INRIA Sophia
Antipolis, Martin-Luther Universitat Halle-Wittenberylax-Planck-Institut fur Informatik
and Universitat des Saarlandes, RISC Linz Tel-Aviv Unsitgt and Universiteit Utrecht.
We will say more about CGAL in Section 8.11.

15 Design Goalsand Approach

We had four major goals for the design of LEDA:
e Ease of use.

e Extensibility.

e Correctness.

e Efficiency.

We next discuss our four goals and how we tried to reach them.

We wanted the library to reduce the gap between the algasitommunity and the “rest
of the world” and thereforease of usavas a major concern. We wanted the library to be
useable without intimate knowledge of our field of reseaadbasic course in data structures
and algorithms should suffice. We also wanted the data typegsigorithms of LEDA to
be useable without any knowledge of their implementation.

12 Introduction

We invented the item concept, see Section 2.2, as an albsiratthe concept of “pointer
to a container in a data type” and used it for the specificatioall container-based data
types. We formulated rules (see Chapter 2) that capture &meygepts, such as copy con-
structor, assignment, and compare functions, uniformiyafidata types. We introduced a
powerful graph type, see Chapter 6, which supports the aledind elegant formulation of
graph and network algorithms and is also the basis for mattyeofleometric algorithms.

Ease of use also means easy access to information. The LEDAah&ee Chapter 14,
gives precise and readable specifications for the LEDA daiast and algorithms. The
specifications are short (typically not more than a pagejeg® (so as to allow several
implementations) and abstract (so as to hide all detailb®firhplementation). All spec-
ifications follow a common format, see Section 2.1. We dgwedbtools that support the
production of manual pages and documentations. Finallywvade this book that gives a
comprehensive view of LEDA.

Combinatorial and geometric computing is a diverse areahande it is impossible for
a library to provide ready-made solutions for all applicatproblems. For this reason it is
important that LEDA is easily extensible and can be used dattopm for further software
development. LEDA itself is a good example for theaensibilityof LEDA. The advanced
data types and algorithms discussed in Chapters 5, 7, 8, arall@uilt on top of the basic
data types introduced in Chapters 3, 4, 6, and 8. The basictgaes in turn rest on a
conceptual framework described in Chapter 2 and the impi¢atien principles discussed
in Chapter 13.

Incorrect software is hard to use at best and dangerous a&t.wive underestimated
the difficulties of achievingorrectness After all, any publication in our area proves the
correctness of the described algorithms and going from eecbalgorithm to a correct
program is tedious and time-consuming, but hardly an ietélial challenge. So we thought,
when we started the project. We now think differently.

Many of the algorithms in LEDA are quite intricate and therefdifficult to implement
correctly. Programmers make mistakes and we are no exoeptmv do we guard against
errors? Many of our implementations are carefully documerithis book contains many
examples), we test extensively, as does our large user caitynand we have recently
adopted the philosophy that programs should give suffigiestification for their answers
to allow checking, see Section 2.14. We have developed anogheckers for many of our
programs.

The correct implementation of geometric programs was @adily difficult, as the the-
oretical underpinning was insufficient. Geometric alduoris are typically derived under
two simplifying assumptions: (1) the underlying machinedelois thereal RAM which
can compute with real numbers in the sense of mathematic§2anidputs are in general
position. However, the number typed anddoubleoffered by programming languages are
only crude approximations of real numbers and practicaltspre frequently degenerate.
Our approach is to formulate geometric algorithms suchttiegt work for all inputs, see
Chapter 9, and to realize the real RAM (as far as it is neededdimputational geometry)

1.6 History 13

by exact number types, see Chapter 4, and an exact and ya&rdffieometry kernel, see
Chapter 8.

Efficiencywas our fourth design goal. It may surprise some readersatbdist it last.
However, efficiency without correctness is meaninglessedficiency without ease of use
is a questionable blessing. We achieve efficiency by the Usticent algorithms and their
careful implementation.

Our implementations are usually based on the asymptatioadist efficient algorithms
known for a particular problem. In many cases we even impidgatedifferent algorithmic
approaches. For example, there are several shortest patthing, and flow algorithms,
there are several convex hull, line segment intersectioth elaunay diagram algorithms,
and there are several realizations of dictionaries andifyriqueues. In the case of data
types, the implementation parameter mechanism allowsdheenient selection of an im-
plementation. For example, the declarations

dictionary<string,int> D1i;

dictionary<string,int,skip_list> D2;
declareD1 as a dictionary fronstring to int with the default implementation and select the
skip list implementation fob2.

The description of many algorithms leaves considerablediven for the implementor,
i.e., adescription typically defines a family of algorithaiswvith the same asymptotic worst
case running time and leaves decisions that do not affecitwase running time to the
implementor. The decisions may, however, dramaticallgafthe running time on inputs
that are not worst case. We have carefully explored theablaibpportunities; Sections 7.6
and 7.10 give particularly striking examples. We found gfusto concentrate on the best
and average case after getting the worst case “right”.

LEDA has its own memory manager. It provides efficient impdemations of thenew
anddeleteoperators.

How efficient are the programs in LEDA? We give many tablesuohing times in this
book which show that LEDA programs are able to solve largélera instances. We made
comparisons, see Tables 1.1 and 1.2, and other people didosexample [Ski98, Ski].
The comparisons show that our running times are competiispite the fact that LEDA
is more like a decathlon athlete than a specialist for aqaetr discipline.

1.6 History

We started the project in the fall of 1988. We spent the fisstrsdnths on specifications and
on selecting our implementation language. Our test casespririty queues, dictionaries,
partitions, and algorithms for shortest paths and minimpansing trees. We came up
with the item concept as an abstraction of the notion “poiirito a data structure”. It

worked successfully for the three data types mentioned elaond we are now using it
for most data types in LEDA. Concurrently with searching floe correct specifications

14 Introduction

Number of list entries: 100000

LIST<INT> LEDA STL

build list 0.020 sec 0.040 sec
pop and push 0.030 sec 0.030 sec
reversing 0.020 sec 0.030 sec
copy constr 0.050 sec 0.050 sec
assignment 0.020 sec 0.040 sec
clearing 0.000 sec 0.020 sec
sorting 0.130 sec 0.400 sec
sorting again 0.140 sec 0.330 sec
merging 0.030 sec 0.080 sec
unique 0.080 sec 0.080 sec
unique again 0.000 sec 0.010 sec
iteration 0.000 sec 0.000 sec
total 0.520 sec 1.110 sec
LIST<CLASS> LEDA STL

build list 0.090 sec 0.030 sec
pop and push 0.100 sec 0.030 sec
reversing 0.070 sec 0.030 sec
copy constr 0.140 sec 0.060 sec
assignment 0.120 sec 0.030 sec
clearing 0.080 sec 0.020 sec
sorting 0.770 sec 0.510 sec
sorting again 0.900 sec 0.380 sec
merging 0.200 sec 0.090 sec
unique 0.250 sec 0.100 sec
unique again 0.010 sec 0.000 sec
iteration 0.010 sec 0.000 sec
total 2.740 sec 1.280 sec

Table 1.1 A comparison of the list data type in LEDA and in the implenagiain of the Standard
Template Library [MS96] that comes with the GNU-€compiler. The upper part compares
list<int> and the lower part comparést<class, where the objects of typgdassrequire several
words of storage. LEDA lists are faster for small objects slodver for large objects. This table
was generated by the programg$lleda in LEDAROOT/demo/stl. You can perform your own
comparisons if your €& compiler comes with an implementation of the STL. All rurgniimes
are in seconds.

we investigated several languages for their suitabilitp@simplementation platform. We
looked at Smalltalk, Modula, Ada, Eiffel, and+€. We wanted a language that supported
abstract data types and type parameters (polymorphism}hetdvas widely available.
We wrote sample programs in each language. Based on ouriexpes we selected+@
because of its flexibility, expressive power, and availghil

A first publication about LEDA appeared in the conferences08FL989 and ICALP
1990 [MN89, NM90]. Stefan Naher became the head of the LED#egt and he is the

1.6 History 15

Type of network LEDA CG

random (4000 nodes 28000 edges) 0.31 0.11

CG1 (8002 nodes 12003 edges) 9.26 4.20
CG2 (8002 nodes 12001 edges) 0.11 0.73
AMO (4001 nodes 7998 edges) 0.05 1.74

Table 1.2 A comparison of the maxflow implementation in LEDA and the bgeCherkassky
and Goldberg [CG97, CG]. The latter implementation is galeconsidered the best code
available. We used four different kinds of graphs: randoapgs and graphs generated by three
different generators. The generators CG1 and CG2 were staghley Cherkassky and Goldberg
and the generator AMO was suggested by Ahuja, Magnanti, alil @he generators are
discussed in detail in Section 7.10. All running times arsénonds. You may perform your own
experiments by running the program flaest in LEDAROOT/demo/book/Intro and following
the instructions given in MAXFLOWREADME in the same directory.

main designer and implementer of LEDA. Progress reporteaga in [MN92, Nah93,
MN94, MN95, BKM*95, MNU97, MN98].

In the second half of 1989 and during 1990 Stefan Naher impided a first version
of the combinatorial part (= data structures and graph dlguos) of LEDA (Version 1.0).
Then there were releases 2.0, 2.1, 2.2, 3.0, 3.1, 3.2, 313335, 3.6, and 3.7. With the
appearance of this book we will release version 4.0. Eachretsase offered new func-
tionality, increased efficiency, and removed bugs.

LEDA runs on many different platforms (Unix, Windows, OS#2)d with many different
compilers.

In early 1995 LEDA Software GmbH was founded to market a consiakversion of
LEDA. Christian Uhrig became the Chief Executive Officer.eT¢dompany was renamed
to Algorithmic Solutions Software GmbH in late 1997 to refléwe fact that it not only
markets LEDA, but also other systems like, for example, AGD €GAL, and that it also
develops algorithmic solutions for specific needs.

The research version is used at more than 1500 academicsaatch sites. Try the web-
sitehttp://www.mpi-sb.mpg.de/LEDA/DOWNLOADSTAT to find out whether the system
is already in use at your site.

Bibliography

[ABE98] N. Amenta, M. Bern, and D. Eppstein.
The crust and thg-skeleton: Combinatorial
curve reconstructionGraphical Models and
Image Processingages 125-135, 1998.

[BKM *t95] C. Burnikel, J. Kbnemann,

K. Mehlhorn, S. Naher, S. Schirra, and

C. Uhrig. Exact geometric computation in
LEDA. In Proceedings of the 11th Annual
Symposium on Computational Geometry
(SCG'95) pages C18—C19, New York, NY,
USA, June 1995. ACM Press.

[CG] B. Cherkassky and A. Goldberg. PRF, a
Maxflow Code.www.inter-
trust.com/star/goldberg/index.html.

[CG97] B.V. Cherkassky and A.V. Goldberg. On
implementing the push-relabel method for the
maximum flow problemAlgorithmicag
19(4):390-410, 1997.

Information Processing 920lume 1, pages
493-505. Elsevier Science Publishers B.V.
North-Holland, 1992.

[MN94] K. Mehlhorn and S. Naher. The

implementation of geometric algorithms. In
Proceedings of the 13th IFIP World Computer
Congressvolume 1, pages 223-231. Elsevier
Science B.V. North-Holland, Amsterdam, 1994.

[MN95] K. Mehlhorn and S. Naher. LEDA, a

Platform for Combinatorial and Geometric
Computing.Communications of the ACM
38:96-102, 1995.

[MN98] K. Mehlhorn and S. Naher. From

algorithms to working programs: On the use of
program checking in LEDA. IfProceedings of
Mathematical Foundations of Computer Science
(MFCS'98) volume 1450 ofecture Notes in
Computer Scienggages 8493, 1998.

[Dij59] E.W. Dijkstra. A note on two problems in [MNU97] K. Mehlhorn, S. Naher, and C. Uhrig.

connection with graphdNum. Math,
1:269-271, 1959.

[MN89] K. Mehlhorn and S. Naher. LEDA: A
library of efficient data types and algorithms. In
Antoni Kreczmar and Grazyna Mirkowska,
editors,Proceedings of the 14th International

The LEDA platform for combinatorial and
geometric computing. IRroceedings of the
24th International Colloquium on Automata,
Languages and Programming (ICALP’97)
volume 1256 oL ecture Notes in Computer
Sciencepages 7-16, 1997.

Symposium on Mathematical Foundations of [MS96] D.R. Musser and A. SainBTL tutorial and

Computer Science (MFCS’89)olume 379 of
Lecture Notes in Computer Scienpages
88-106. Springer, 1989.

[MN92] K. Mehlhorn and S. Naher. Algorithm
design and software libraries: Recent
developments in the LEDA project. In
Algorithms, Software, Architectures,

16

Reference GuideAddison-Wesley, Reading,
1996.

[Nah93] S. Naher. LEDA: a library of efficient data

types and algorithms. In Patrice Enjalbert, Alain
Finkel, and Klaus W. Wagner, editors,
Proceedings of the 10th Annual Symposium on
Theoretical Aspects of Computer Science

Bibliography

(STACS'93)volume 665 ol ecture Notes in
Computer Scienggages 710-723. Springer,
1993.

[NM90] S. Naher and K. Mehlhorn. LEDA: A
library of efficient data types and algorithms. In
Michael S. Paterson, editd?roceedings of the
17th International Colloquium on Automata,
Languages, and Programming (ICALP’90)
volume 443 ofLecture Notes in Computer
Sciencepages 1-5. Springer, 1990.

[Ski] S.S. Skiena. The Stony Brook Algorithm
Repository.
www.cs.sunysb.edu/~“algorith/index.html.

[Ski98] S.S. SkienaThe Algorithm Design Manual
Springer, 1998.

17

ABACUS, 11
AGD, 11
Algorithmic Solutions Software GmbH, 8

CGAL, 11
correctness
design goal, 12
CRUSTS5
curve reconstruction, 5

demo
directory, 9
programs
curve reconstruction, 7
maximum flow, 15
word count, 2
xIman, 9
design goals, 11
correctness, 12
ease of use, 11
efficiency, 13
extensibility, 12
DIJKSTRA3
Dijkstra’s shortest path algorithm, 3
directory tree of LEDA, 8

ease of use, 3, 11
efficiency

design goal, 13
extensibility of LEDA, 12
extension packages, 9

GDToolkit, 11
generic directory, 8

| ndex

history of LEDA, 13
HTML, 9

impl directory, 8
include directory, 8
installation of LEDA, 8

LEDA extension packages, 9
LEDAROCOQT, 8
LEP, 9

manual
directory, 9
on-line access, 9

running time experiments
curve reconstruction, 6
Dijkstra, 4
LEDA versus STL, 14
maximum flow, comparison, 15
shortest paths, 4
STL, 14

source code directory, 9
STL, 14
sys directory, 9

template directory, 8
thread safety, 9

web-site, 8, 10
word count program, 2

xIman, 9

18

