3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Contents

Basic Data Types

Stacks and Queues

Lists

Arrays

Compressed Boolean Arrays (Type gett)
Random Sources

Pairs, Triples, and such

Strings

Making Simple Demos and Tables

Bibliography

Index

page2

17
21
23
38
39
40

43

44

3
Basic Data Types

The basic data typestack queuglist, array, random numbertuple, andstring are ubiqui-
tous in computing. Most readers are probably thoroughhilfarmwith them already. All
sections of this chapter can be read independently.

3.1 Stacks and Queues

A stackis a last-in-first-out store for the elements of some tifpand a queue is a first-in-
first-out store. Both data types store sequences of eleroktyige E; they differ in the set
of operations that can be performed on the sequence. Inlkaatacend of the sequence is
designated as thtep of the stack and all queries and updates on a stack operate tod
end of the sequence. Incueueall insertions occur at one end, thear of the queue, and
all deletions occur at the other end, finent of the queue. The definitions

stack<E> S;
queue<E> Q;

define a stacks and a queud& for the element typdc, respectively. Both structures are
initially empty. The following operations are available stacks. Ifx is an object of type
E then the insertiorgpush(x) addsx as the new top element. We can inspect the contents
of a stack:Stop() returns the top element ai®pop() deletes and returns the top element.
Of course, both operations are illegalSfis empty. The calSempty) returnstrue if the
stack is empty anthlseotherwise and&sizg) returns the number of elements in the stack.
So Sempty) is equivalent toSsizg) == 0. All elements of a stack can be removed by
Sclear().

We illustrate stacks by a program to evaluate a simple clesgmessions. The character
1 is an expression and E; and E, are expressions thefE; + E) and (E; x E») are

3.1 Stacks and Queues 3

expressions. Thugl + 1) and((1 + 1) = (1 + (1 + 1))) are expressions, but 1 and
(14 2) are not. The former is not an expression since it is not coralyleracketed and the
latter is not an expression since we only allow the constaag &n operand. We will ask
you in the exercises to evaluate more complex expressidmxelis a simple algorithm to
evaluate expressions. It uses two stackstaglint> Sto hold intermediate results and a
staclkchar> Opto hold operator symbols. Initially, both stacks are emptye expression
is scanned from left to right. Letbe the current character scannect i§ an open bracket,
we do nothing, ifc is a 1, we push it ontd, if c is a+ or %, we push it ontdOp, and
if cis a closing bracket, we remove the two top elements frsayx andy, and the
top element fromOp, sayop, and push the valug op yonto S. When an expression is
completely scanned, its value is the top elemen§h fact, it is the only element ir®.
The following program assumes that a well-formed expresgitiowed by a dot is given
on standard input. It prints the value of the expression etandard output.

(stackdemo.¢=
#include<LEDA/stack.h>

main()
{ char c;
stack<int> S; stack<char> Op;
while ((¢ = read_char("next symbol = ")) != 7.2)
{ switch(c)
{ case ’(’ : break;
case 1’ : { S.push(1); break; }
case ’+’ : { Op.push(c); break; }
case ’*’ : { Op.push(c); break; }
case ’)’ : { int x = S.pop(); int y = S.pop(Q);
char op = Op.popQ);
if (op = ’+’) S.push(x+y); else S.push(x*y);
break;
}
}
}
cout << "\m\nvalue = " << S.pop() << "\n\n";
}

Oninput((1+1) % (14 (14 1))) this program prints 6, on inp@l + (1+ 1)) it prints 3, and
on input() it crashes because it attempts to pop from an empty stack.i¥bad software
engineering practice and we will ask you in the exercisestaedy this shortcoming.

We turn to queues. The two ends of a queue are callefidheand therear of the queue,
respectively. An insertiorQ.appendx) appends at the rear,Q.top() returns the front
element, andQ.pop() deletes and returns the front element. Of course, the kattecalls
requireQ to be non-empty. The functio@.empty) checks for emptiness arng.sizg)
returns the number of elements in the quewgclear() removes all elements from the
gueue.

4 Basic Data Types

Queues and stacks are implemented as singly linked listsop&frations take constant
time exceptclear, which takes linear time. The space requirement is line&@DA also
offers bounded queues and stacks, for example,

b_stack<E> S(n);

defines a stacls that can hold up tm elements. Bounded stacks and queues are imple-
mented by arrays and hence always use the same amount ofisgapendently of the
actual number of elements stored in them. They are prefetablinbounded queues and
stacks when the maximal size is known beforehand and the ewailelements stored in
the data structure is always close to the maximal size.

In the remainder of this section we show how to implement aiqumy two stacks. This
is to demonstrate the versatility of stacks, to illustrasg the same abstract data type can be
implemented in many ways, to give an example of an amortinatyais of a data structure,
and to amuse the user; it is not the implementation of quesied in LEDA. We use two
stacksSfrontand Srear and split the queue into two parts: &f, ..., ay is the current
content ofSfrontandby, .. ., b, is the current contents &rearwith a,, andb, being the
top elements, respectively, thag, ..., as, by, ..., b, is the current contents of the queue.
Appending an element to the queue is realized by pushindgadt@mar. Popping an element
from the queue is realized by popping an element f@fnont If Sfrontis empty, we first
move all elements frorrearto Sfront(by popping fromSrearand pushing ont&fron).
Note that this will reverse the sequence as it should be.

(strangequeue.h=
#include <LEDA/stack.h>

template<class E>
class queue {

stack<E> Sfront, Srear;

public:
queue<E>(){ } // initialization to empty queue
void append(const E& x){ Srear.push(x); }
E pop()
{ if (Sfront.empty())
{ while (!Srear.empty()) Sfront.push(Srear.pop()); }
if (Sfront.empty()) error_handler(1,'"queue: pop from empty queue");

return Sfront.pop();
}

bool empty() { return Sfront.empty() && Srear.empty(); }

int size() { return Sfront.size() + Srear.size(); }

};

It is interesting to analyze the time complexity of this geémplementation. We claim
that a sequence of queue operations takes total tifgn). To see this we note first that
the constructor and the operatioagpend empty andsizerun in constant time. Aoop

operation may take an arbitrary amount of time. More prégisetakes constant time

3.2 Lists 5

Figure3.1 Alist of five integers.

plus time proportional to the number of elements moved f@rearto Sfront Since each
elementis moved at most once fr@rearto Sfront we incur a constant cost per element for
moving elements frorBrearto Sfront We conclude that the time spentinpdipoperations

is linear.

Exercisesfor 3.1
Implement the typstack
Implement the typgueue
Extend the expression evaluator such that it complainatalbegal inputs.
Extend the expression evaluator such that it can handieagbintegers as operands.
Extend the expression evaluator such that it can handlessipns that are not com-
pletely bracketed. The usual precedence rules should Hedppe.,a + b * c is in-
terpreted aga + (b * ¢)). More specifically, the evaluator should be able to handle al
expressions that are generated by the following four rules:

A factor is either an integer or a bracketed expression.

A term is either a factor or a factor times a term.

An expression is either a term or a term plus an expression.

That's all.

abwnN P

3.2 Lists

Lists are a simple, yet powerful, data type. It is difficultifplement a combinatorial or

geometric algorithm without using lists. Moreover, the lempentation of several LEDA

data types, e.g., stacks, queues, and graphs, is basetsoimlihis section we discuss lists
for unordered and ordered element types, we sketch the ingpitation of lists, and in the

final subsection we treat singly linked lists.

3.2.1 Basics
list<E> L;

declares a list. for elements of typdc and initializes it to the empty list. Generally, a list
L over element typ& (typelist<E>) is a sequence of items (of predefined tjigeiten),

6 Basic Data Types

each holding an element of tyge Figure 3.1 shows a list of integers. It consists of five
items shown as rectangular boxes. The contents of the frstig 5, the contents of the
second item is 3, and so on. We call the number of items in @hestength of the list
and use(x) to denote an item with contenks Lists offer an extremely rich repertoire of
operations.

L.empty();
checksL for emptiness. Let's assume tHais non-empty. Then

E

x = L.head();
list_item it

L.first();

assign the contents of the first item bfto x and the first item tat. Please pause for a
moment to grasp the differencé.first() returns the first item andl.head) returns the
contents of the first item. Thus, [if is the list of Figure 3.1, the value afis now 5 and the
value ofit is the first box. The content of the item (bdkEan be accessed lycontentsit)
or LJ[it]. So

x == L.contents(it)
evaluates tdrue and so do

3 == L.contents(L.succ(L.first());

L.last() '= L.first();

nil == L.pred(L.first());

L.tail() == L[L.cyclicpred(L.first())];

L.last() == L.cyclic pred(L.first()).

We need to explain these expressions a bit further. For d_Jidt.head) and L.tail()
return the contents of the first and last itemLgfrespectively (5 and 2 in our example) and
L.first() andL.last() return the first and last item df, respectively (the first and the fifth
box in our example). The items in a list can be viewed as e#hranged linearly or arranged
cyclically. The operationsuccandpred support the linear view of a list and the operations
cyclicsuccandcyclicpredsupport the cyclic view. Thus, if is an item of a list_ different
from the last item therL.sucdit) returns the successor item bfand L.sucdL.last())
returnsnil and ifit is different from the first item theh.pred(it) returns the predecessor
item ofit andL.pred(L.first()) returnsnil. L.cyclicpred(it) andL.cyclicsucdit) return the
cyclic predecessor and successor, respectively, wheoythie predecessor of the firstitem
is the last item. So in the next to last expression above hdds €valuate to the contents of
the last item ofL and in the last expression both sides evaluate to the lastotd..

We further illustrate the use of items by the member funciant. It takes two argu-
ments, an output streafd and a charactepaceand prints the elements of a list separated
by spaceonto O. The default value ofpaceis the space character. It requires that the type
E offers a functiorPrint(x, O) that prints an object of type E onto O, see Section 2.8 for
a discussion of therint-function for type parameters.

template<class E>

void 1list<E>::print(ostream& 0, char space = " ")
{ list_item it = first();

3.2 Lists 7

while (it !'= nil)
{ Print(contents(it),0);
if (it != last_item()) 0 << space;
it = succ(it);
}
}

Note howit steps through the items of the list. It starts at the first itemhe general step,
we first print the contents df and then advandié to its successor item. We do so uritil
falls off the list.

Iterating over the items or elements of a list is a very freqlyeoccurring task and there-
fore LEDA offers corresponding iteration macros. The it@rastatements

forall(x,L) << body >>

and
forall items(it,L) << body >>

step through the elements and itemd_gfrespectively, and executedyfor each one of
them. Thus,

list_item it;

forall_items(it,L) Print(L[it],cout);

E x;

forall(x,L) Print(x,cout);
prints the elements df twice. Theforall_itemsloop is a macro that expands into

for (list_item loop_it = L.first();
it = loop-it, loop_it = L.next_item(loop_it), it;)
{ << body >> }

and theforall loop is a macro that essentially expands into

for (list_item it = L.first(); it; it = L.succ(it))
{ x = L[it];

<< body >>;
}

As one can see from the expansions both iteration statememksin time proportional to
the length of the list. However, since the assignment L[it] may be a costly operation
(if E is a complicated type) it is usually more efficient to useftrallLitemsloop. The fact
that the iteration statements for lists (and any other LE@#adype, for that matter) are
realized as macros is a possible source for programmingsen@ advisdo never write
forallLitemgit, f()), where f is a function that produces a lisee Sections 2.5 and 13.9
for details.

Next, we turn to update operations on lists.
L[it] = x;

changes the contents of the iténand

8 Basic Data Types

L.append(x);

adds a new itenx) after the last item oL and returns the item. We may store the item for
later use:

list_item it = L.append(x);
The operations

L.del_item(it);

L.pop(Q);

L.Pop();
remove the itenit, the first item, and the last item &f respectively. Each operation returns
the contents of the item removed. So we may wxite= L.pop(). The program fragment

list<int> L;

L.append(5);

L.append(3);

list_item it = L.append(1);

L.append(5);

L.append(2);
builds the list of Figure 3.1 and assigns the third itenbdb it. SoL[it] evaluatesto 1 and
L.delitem(it) removes the third item fromh, i.e., L consists of four items with contents 5,
3, 5, and 2, respectively, after the call.

Two listsL andL1 of the same type can be combined by

L.conc(L1,dir);

wheredir determines whethdrl is appended to the rear endinl = LEDA::after) or front
end dir = LEDA::beforg of L; beforeandafter are predefined constants. As a side effect,
concclears the list 1. The listsL andL1 must be distinct list objects. A lidt can be split
into two parts. [fit is an item ofL then

L.split(it,L1,L2,dir);

splitsL before @lir = LEDA::beforg or after dir = LEDA::after) itemit into listsL1 and

L2. The listsL1 andL2 must be distinct list objects. It is allowed, however, thae of them

is equal toL. If L is distinct fromL1 andL2 thenL is empty after the splitSplitandconc

take constant time. Givesplit andcong it is easy to write a functiosplice* that inserts a
list L1 after itemit into a listL. If it = nil, L1 is added to the front of .

if (it == nil)
L.conc(L1,LEDA: :before);

else

{ list<E> L2;
L.split(it,L,L2,LEDA: :after);
L.conc(L1,LEDA: :after);
L.conc(L2,LEDA: :after);

}

1 spliceis a member function dists and so there is no need to define it at the user level. We give its
implementation in order to illustratplit andconc

3.2 Lists 9

Theapplyoperator applies a function to all elements of a list, ifef, is a function defined
for objects of typeE then

L.apply(£);

performs the callf (x) for all items(x) of L. The elemenk is passed by reference. For
example, ifL is a list of integers then

void incr(int& i) { i++; }

L.apply(incr);
increases all elements &f by one. apply takes linear time plus the time for the function
calls.

LEDA provides many ways to reorder the elements of a list.
L.reverse_items();

reverses the items in and
L.permute();

randomly permutes the items &f Both functions take linear time and both functions
are good examples to illustrate the difference betweensitend their contents. The call
L.reversatemg) does not change the set of items comprising thellisind it does not
change the contents of any item, it changes the order in wihi<ems are arranged in the
list. The last item becomes the first, the next to last itenobess the second, and so on.
Thus,

list_item it = L.first();
L.reverse_items();
bool b = (it == L.last());

assigngrueto b.

For contrast, we give a piece of code that reverses the dsrdétine items but leaves the
order of the items unchanged. It makes use of a fundddaswapthat swaps the contents
of two variables of the same type. We use two itétsanditl which we position initially
at the first and last item df. We interchange their contents and advance both of them. We
do so as long as the items are distinct @&0ds not the successor @fL.. The former test
guarantees termination for a list of odd length and ther#ts guarantees termination for
a list of even length. If the list is empty the first and the Igsh arenil and the former test
guarantees that the loop body is not entered.

/* this is not the implementation of reverse_items */

list_item itO L.first();
list_item it1l L.last();

while (itO '= it1 && itO !'= L.succ(itl))
{ leda_swap(L[it0],L[it1]);

it0 L.succ(it0);

itl = L.pred(itl);

}

10 Basic Data Types

The above code implements
L.reverse().

We turn to sorting. We will discuss general sorting methadshie next section and
discuss bucket sorting now. ff is an integer-valued function da then

L.bucket_sort (£f);

sortsL into increasing order as prescribed byMore preciselybucketsort rearranges the
items ofL such that thef -values are non-decreasing after the sort and such thatlttare
order of two items with the samé-value is unchanged by the sort. Such a sort is called
stable For an example, assume that we applgketsortto the listL of Figure 3.1 withf
the identity function. This will make the third item the fiiggm, the fifth item the second
item, the second item the third item, the first item the fouteéin, and the fourth item the
fifth item. bucketsorttakes timeO(n +r — |), wheren is the length of the list andandr
are the minimum and maximum value bfe) ase ranges over the elements of the list.

We give an application of bucket sort. Assume thais a list of edges of a grapt
(typelist<edge) and thatdfsnumis a numbering of the nodes &f (typenodearray<int>).
Our goal is to reordeL such that the edges are ordered according to the number of the
source of the edge, i.e., all edges out of the node with sstallenber come first, then all
edges out of the node with second smallest number, and so@mmanFedges of a graph
G, G.sourcée) returns the source node of the edge and helfieeun] G.sourcge)] is the
number of the source of the edge. We define a funatimhthat, given an edge, returns
dfsnuniG.sourcée)] and then calbucketsort with this function.

int ord(edge e){ return dfs num[G.source(e)]; };
L.bucket_sort (ord);

3.2.2 Listsfor Ordered Sets

Recall that a typé& is linearly ordered if the functiomt comparégconst &, const B) is
defined and establishes a linear ordeiEgref. Section 2.10. For lists over linearly ordered
element types additional operations are available.

list_item L.search(E x);

searches for an occurrencefin L. It usescompareto comparex with the elements
of L. If x occurs inL, the leftmost occurrence is returned anaifloes not occur irL,

nil is returned. The running time akearchis proportional to the distance of the leftmost
occurrence ok from the front of the list. We next show how to usearchin a primitive
but highly effective implementation of theetdata type, the so-callesklf-organizing list
implementation We realize a set over type (type sasekE>) as a list overE and use
searchto realize thanembermperation; the prefix “so” stands for self-organizing. Wél wi
make the member operation more effective by rearrangindishafter each successful
access. We use the operatioovetafront(it) that takes an itenit of a list, removes it

3.2 Lists 11

from its current position, and makes it the first element ef liet. The effect of moving
each accessed item to the front of the list is to collect teguently accessed items near
the front of the list. Since the access time in a list is lineathe distance from the front,
this strategy keeps the expected access time small. Wethefezader to [Meh84, 111.6.1.1]
for the theory of self-organizing lists and turn to the impkntation. We deriveasek E>
from list<E> and accordingly define sasetitemas a new name forlgstitem We realize
the membership test Isearchfollowed by moveta front (if the search was successful), we
realizeinsertby a membership test followed by append (if the memberstsipregurned
false). The other member functions are self-explanatory.

(saset.h=
#include <LEDA/list.h>
typedef list_item so_set_item;

template <class E>
class so_set: private list<E>{
public:
bool member (const E& e)
{ list_item it = search(e);
if (it) { move_to_front(it); }

return (it '= nil);
}
void insert(const E& e) { if (!member(e)) append(e); }
so_set_item first() const { return list<E>::first(); }

so_set_item succ(so_set_item it) const { return list<E>::succ(it); }

E contents(so_set_item it) const { return list<E>::contents(it); }

};

We give an application of our new data type. We read the filéaznmg the source of this
chapter, insert all its words intosset and finally print the first thirty words in the set.

(sa.setdemo=
main() {
so_set<string> S;
file_istream I("datatype.lw");
string s;
float T = used_time();
while (I >> s) S.insert(s);
cout << '"time required = " << used_time(T);
so_set_item it = S.first();
for (int i = 0; i < 30; i++)
{ cout << (1 % 5 ==07 "\n" : " ") << S.contents(it);
it = S.succ(it);

}
}

12 Basic Data Types

The output of this program is:

time required = 13.58

} \end{exercises} respectively. and s
of length the are 3m

n where $0(n+m)$ time in

runs program that Show substring

a is p if only

success this @ else p.length())

As expected, we see frequent English words, because the-todrk@nt-heuristic tends to
keep them near the front of the list, and words that occureed the end of the text, because
they were accessed last.

We turn to merging and sorting. émpdefines a linear order on the element typd.of
then

L.sort(cmp); L1.sort(cmp);
L.merge (L1, cmp)

sortsL andL1 according to the linear order and then merges the two sadisd If we call
the functions without thempargument

L.sort(); Li.sort();
L.merge(L1);

the default order on the element type is used. Merging tvis @iElengthn andm, respec-
tively, takes timeO(n 4+ m) and sorting a list oh elements takes expected tird&n logn).
Let us verify this fact experimentally. We start wittequal to 128000 and repeatedly dou-
ble n. For each value of we generate a list of lengtin make two copies of the list and
merge them, and we permute the items of the list and thenlsslist. For each value of
n we outputn, the measured running time for the merge and the sort, régplgcand the
running time divided by andnlogn, respectively.

(sortmergetimes =
main()
{ int min, max;
(sort merge times: read max
for (int n = min; n <= max; n = 2%n)
{ list<int> L;
for (int j = 0; j < n; j++) L.append(j);
list<int> L1 L;
list<int> L2 L;

float T1 = used_time();
L1.merge(L2);

T1 = used_time(T1);
L.permute();

float T2 = used_time();
L.sort();

3.2 Lists 13

Merging Sorting

n time normalized time normalized

128000 0.07 0.547 0.64 0.425
256000 0.15 0586 1.35 0.423
512000 0.3 0.586 3.15 0.468
1024000 0.58 0.566 6.31 0.445

Table 3.1 The table produced by the experiment. All running times argeiconds. The
normalized time is the AT /n in the case of merging and D/(n logn) in the case of sorting.
The normalized time of sorting grows slowly. This is due te thcreased memory access time
for larger inputs. You can produce your own table by runniog_mergetimes.

Figure3.2 The listL before and after the call gfermute

T2 = used_time(T2);
(sort merge times: produce table

Table 3.1 shows the outcome of the experiment. Does it comfunstatement that the
running time of merge i® (n) and that the running time of sort@&(nlogn)? In the case of
merging one may say yes, since the numbers in the third cobfrour table are essentially
constant, however, in the case of sorting the answer is aitdefio, since the numbers in
the last column of our table certainly grow. Why is this so?e Bxplanation lies in the
influence of cache memory on the running time of algorithms.

The internal memory of modern computers is organized loéreally. There are at least
two levels of internal memory, a small and very fast firstelesnemory (usually called
cache) and a larger and slower second-level memory (uscalllyd main memory). On
many machines the hierarchy consists of more than two leseés[HP90] for an excellent
account of computer architecture. In the example above wedilocate a list ofi items:
this puts the items consecutively into storage. Then wegiéme order of the items in the
list randomly. This leaves the items where they are and ahatige links, i.e., aftgpermute
the links jump around widely in memory, see Figure 3.2. Thegbsortis to untangle this

14 Basic Data Types

Build Traverse Permute Traverse

0.59 0.16 2.77 0.44

Table 3.2 lllustration of cache effects on running time: We built & & 1000000 items,
traversed it, permuted it, and traversed it again. You mafopa your own experiments with the
cacheeffects demo.

mess. In doing so, it frequently has to access items thatari@ the fastest memory. This
explains the last column of our table, at least qualitagivel

Next, we attempt a quantitative explanation. Consider ¢tfiewing program:

list<int> L;

for (int i = 0; i < 1000000; i++) L.append(i);

// L.permute();

float T = used_time();

list_item it = L.first();

while (it !'= nil) it = L.succ(it);

cout << used_time(T);
We make the following assumptions (see [HP90] for a justiticg: It takes ten machine
instructions to execute one iteration of the while-loop.mey is organized in two levels
and the first level can hold 10000 items. An access to an itahidtin first level is serviced
immediately and an access to an item that is not in the firsel Ests an additional twenty
machine cycles. An access to an item in second level moveddin and the seven items
following it in second-level memory from second-level magnto first-level memory. An
access to an item that is not in first-level memory in calledehe miss

What behavior will we see? First assume that the list is pe>huSince the first level
memory can hold only 10000 items it is unlikely that the sssoe of the current item is also
in memory. We should therefore expect that each iteraticghefoop takes thirty machine
cycles, ten for the instructions executed in the loop andtyvéor the transport of an item
into fast memory. Next assume that the list is not permutemly We will incur the access
time for slow memory only once in eight iterations and henighteiterations will take a
total of 100 machine cycles. In contrast, the eight iterstiwill take a total of 240 machine
cycles on the permuted list. Thus, permuting the list wilkeaghe program about 2.4 times
slower for largen. Forn = 10000 we will see no slowdown yet, as the entire list fits it fas
memory. For very larga we will see a slowdown of 2 and for intermediate we will see
a slowdown less than2.

Table 3.2 shows actual measurements.

3.2.3 Thelmplementation of Lists
Lists are implemented as doubly linked lists. Each itemesponds to a structure (type
dlink) with three fields, one for the contents of the item and oné éacthe predecessor

3.2 Lists 15

and the successor item, and the list itself is realized byuetire (typedlist) containing
pointers to the first and last item of the list and additionadkkeeping information. The
space requirement of a list af items is 16+ 12n bytes plus the space needed for the
elements of the list. The contents of an item is either stdiegttly in the item (if it fits
into four bytes) or is stored through a pointer, i.e., ¢higeld of adlink either contains the
contents of the item or a pointer to the contents of the itemthé former case there is no
extra space needed for the elements of the list and in ther ledise additional space for
objects of typeE is needed (her& denotes the type of the objects stored in the list). All of
this is discussed in detail in the chapter on implementation

(storage layout for lists=
typedef dlink* list_item;
class dlink {

dlink* succ;
dlink* pred;

GenPtr e; // for the contents of the item

// space: 3 words = 12 bytes
};
class dlist {

dlink* h; // head

dlink* t; // tail

link* iterator // iterator, historical

int count; // length of list

// space: four words = 16 bytes

{(member functions of class dlist
1

There is no space to show the implementations of all memimetifuns. We show only the
implementation of bucket sort. The implementation is vemy-level and therefore hard to
understand.Bucketsort assumes that a functiaord and integers and j are given such
thatord maps the elements of the list into the range []. It uses an arrapucketof linear
lists; buckefi] points to the end of the-th bucket list as shown in Figure 3.3. Initially,
all bucket lists are empty. The algorithm runs through teend of the list to be sorted,
computes for each item the indexk = ord(x — €) of the bucket into which the item
(recall thatx — e contains the object stored in itex)belongs, and appends the item to the
appropriate bucket. Afterwards, it joins all bucket listtoi a single list. This is done from
right to left.

(list: bucket sornt=
void dlist::bucket_sort(int i, int j)
¢ if (h == nil) return; // empty list
int n = j-i+l1;
register list_item* bucket = new list_item[n+1];
register list_item* stop = bucket + n;

Basic Data Types

I = R =

Figure 3.3 lllustration of bucket sort. We have two non-empty buck@tse list items are shown
as rectangular boxes, successor pointers go from left lw, and predecessor pointers go from
right to left. The pointers from the bucket array to the redrthe bucket lists are shown
vertically.

register list_item* p;

register list_item q;
register list_item x;
for(p = bucket; p <= stop; p++) *p = 0;
while (h)
{ x = h;
h = h->succ;
int k = ord(x->e);
if (k>=1i&& k <=3j)
{ // add x at end of k-th bucket
p = bucket + k - 1i;
xX->pred = *p;
if (*p) (*p)->succ = x;
*p = X;
}
else
error_handler (1, "bucket_sort: value out of range") ;

}
for(p = stop; *p == 0; p--);
// now p points to the end of the rightmost non-empty bucket
// make it the new tail of the list.
t = *p;
t->succ = nil;
for(q = *p; q->pred; q = gq->pred);

// now q points to the start of this bucket

// link buckets together from right to left:

// q points to the start of the last bucket
// p points to end of the next bucket
while(--p >= bucket)
if (xp)
{ (xp)->succ = q;
q->pred = *p;
for(q = *p; gq->pred; q = gq->pred);
}

3.3 Arrays 17

h = q; // head = start of leftmost non-empty bucket

delete[] bucket;
}

Aren’t you glad that one of us wrote this program?

3.2.4 Singly Linked Lists

LEDA also offers singly linked lists (typglist) in which each item only knows its successor.
They require space 16 8n bytes but offer a smaller repertoire of operations. Sinigldd
lists are used to implement stacks and queues.

Exercisesfor 3.2

1 Implement queues by singly linked lists.

2 Implement more operations on lists, e@pncor merge

3 Write a procedure that reverses the order of the items st.ali

4 Extend the data typsasetto a dictionary. Realize a dictionary frok to | as a list of
pointer to pairs (ist<twatuple<K, I > x >). Then proceed in analogy to the text.

5 (Topological sorting) LeL be a list of pairs of integers in the range from htdCompute
an ordering of the integers 1 tosuch that if(x, y) is any pair in the list thew precedes
y in the ordering, or decide that there is no such ordering.f 8ds 4 andL is (2, 1),
(1, 4), (3,4 then 2 3, 1, 4is a possible ordering. Hint: 2 can go first because it doés no
appear as the second component of any pair.

6 Redo the calculation for the slowdown due to cache missabéacase that an iteration
of the loop takes 100 clock cycles instead of ten.

7 Find out what a cache miss costs on the machine that you isg us

3.3 Arrays

Arrays are what they are supposed to be: collections of bimsaof a certain typ& that
are indexed by either an interval or a two-dimensional baxigfgers. The declarations
array<string> A(3,5);
array<string> B(10);
array2<int> C(1,2,4,6);
define two one-dimensional arrays and one two-dimensiorast A is a one-dimensional
array of strings with index set [35], B is a one-dimensional array of strings with index
set [0..9], andC is a two-dimensional array of integers with index set.] x [4 .. 6],
respectively. Each entry is initialized with the approteidefault value. So each entry Af
andB is initialized to the empty string and each entry®fs initialized to some integer.
We use the standard+&€ subscript operator for the selection of variables in ormaetisional
arrays. ScA[4] evaluates to the variable with index 4 & For two-dimensional arrays we

18 Basic Data Types

need to use round brackets sincef@oes not allow the use of angular brackets with two ar-
guments. S&(1, 5) evaluates to the variable with ind€k, 5) in C. Arrays check whether
their indices are legal (this can be turned off by the comnjiliée) ~-DLEDA_CHECKING_OFF)
and hence we get an error in the following assignment:

A[8] = "Kurt" // "ERROR array:: index out of range"

An array knows its index set. The callslow() and A high() return the lower and upper
index bound ofA, respectively. For two-dimensional arrays we have theesmonding
functionslowl, highl, low2, andhigh2

We illustrate arrays by two sorting functions: straigh&rnsn sort and merge sort. Both
operate on amrray<E> A and assume that the element tyipas linearly ordered by the
functioncompare see Section 2.10. We ude.[h] to denote the index range @&f Straight
insertion sort follows a very simple strategy; it sorts gesingly larger initial segments of
A. Assume that we have already sorted an initial segm@it . .., Ali — 1] of Afor some
i. Initially, i =1 + 1. In the incremental step we ad{i] to the sorted initial segment by
inserting it at the proper position. We determipavith A[j] < A[i] < Alj + 1], move
A[j+1],..., Ali —1] one position to the right, and p#é{i] into A[j + 1], see Figure 3.4.
Straight insertion sort is a stable sorting method. Its mgtime is quadratic.

(straightinsertionsort)=

template<class E>
void straight_insertion_sort(array<E>& A)
{int 1 = A.1low();
int h = A.high(Q);
for (int i =1 + 1; i <= h; i++)
{ Ex = A[i];
int j =1 - 1;
while (j >= 1 && compare(x,A[j]) < 0)
{ A[j+1] = A[j1;
J==s
}
A[j+1] = x;

We turn to merge sort. It is much more efficient than straigkértion sort and runs in
time O(nlogn) on an array of size. The underlying strategy is also simple. Merge sort
operates in phases. At the beginning of kil phasek > 0, the array is partitioned into
sorted blocks of size*2 These blocks are paired and any pair is merged into a singieds
block. In the program below we ugé to denote ® and we use an auxiliary arra with
the same index set & In even phases the merge step reads ffoamd writes intoB, and
in odd phases the roles éfand B are interchanged. In this way the data moves back and
forth betweenA andB. If it ends up inB at the end ofnergesort, we need to copy it back
to A. We use a boolean varialdgenphasethat is true iff the next phase is even. The actual
merging is done by the functiomerge A call mergeX, Y, i, K, h) takes the blocks oK

3.3 Arrays 19

Figure 3.4 We insertA[i] into the already sorted initial segment by inserting ibittie proper
position, say positiorj + 1, and moving element&[j + 1], ..., Ali — 1] one element to the
right.

starting at positionsandi + K, respectively, and merges them into the block cftarting
at position and having the combined size of the two blocks to be merged lagt element
of the two blocks to be merged is to be found at positipthis information is important if
the size ofA is not a power of two.

(mergesorty =
(merge routing

template<class E>
void merge_sort (array<E>& A)
{int 1 = A.low(); int h = A.high(); int n = h - 1 + 1;
array<E> B(1,h);
bool even_phase = true;
for (int K = 1; K < n; K = 2xK)
{ for (int 1 = 1; i <= h; 1 = i + 2x*K)
{ if (even_phase) merge(A,B,i,K,h);
else merge(B,A,i,K,h);
}
even_phase = !even_phase;

}

if (!even_phase)
{ for (int i = 1; i <= h; i++) A[i] = B[i]; }

It remains to definamergéX, Y, i, K, h). Our goal is to fill the block ofy starting at
positioni and extending to positiom wherem = min(+ 2K — 1, h) from the two
blocks of X starting at positions andi + K, respectively. The two blocks iX extend to

ml = min(i + K — 1, h) andm, respectively. We maintain one index in each of the three
blocks to control the merging process: The indeindicates the position itY that is to

be filled next and the indicakandih point to the smallest remaining elements in the two
blocks of X. We always move the smaller &ffil] and X[ih] to Y[j]. We break ties in favor

of X[il]. This makes merge sort a stable sorting method.

20

Basic Data Types

n 2 4 8 16 32 64 128 256
insertionsort 0.83 3.27 135
mergesort 0.03 0.06 0.14 0.29 066 128 285 5.99
insertion sort 0.47 1.74 7.07
mergesort 0.02 0.03 0.09 0.17 038 0.78 1.66 3.49
member function 0.01 0.01 0.03 0.07 015 03 06 1.33

Table 3.3 Running times of our sorting routines and the member functat All running
times are in seconds and for an array of 190@egers. Insertion sort and merge sort have been
compiled without and with the flagbLEDA_CHECKING_OFF. You may produce you own table by

calling arraysorttimes.

(merge routing=
#include <LEDA/misc.h>
template<class E>

// to include Min

void merge(array<E>& X, array<E>& Y, int i, int K, int h)

{ int il = i;
int ml =
for (int j =

int ih = i + K;
Min(i + K - 1,h); int m =
i; j <=m ; j++)

Min(i + 2*%K - 1,h);

{if (ih <=m && (i1l > ml || compare(X[ih],X[il]) < 0))

{ Y[j] = X[ih]; ih++; }

else

{ Y[j] = x[i1]; il++; }

Table 3.3 shows the running times of our two sorting proceslir comparison to the mem-
ber functionsort for the task of sorting an array of ints Observe how the running time
of insertion sort explodes. Since its running time growspprtional ton?, it quadruples
wheneven is doubled. In contrast, the running time of the two othermds isO(n logn)
and hence basically doubles whenemes doubled. The member functi@ort beats our
implementation of merge sort because it exploits the feat e objects to be sorted are

ints, see Section 13.5.

Arrays are implemented by+2 arrays. There are important differences, however:

e The index sets may be arbitrary intervals of integers arayarcheck whether their
indices are legal. The index check can be turned off by thepdlenflag

-DLEDA_CHECKING_OFF.

e The entries of an array are initialized to the default valiie entry type.

e Anassignmenf = B assigns a copy dB to A, i.e., A is made to have the same

3.4 Compressed Boolean Arrays (Type §et) 21

number of variables aB and these variables are initialized with copies of the v&lue
of the corresponding variables & Thus, it is perfectly legal to assign an array of size
100 to an array of size 5.

e One-dimensional arrays offer some additional higher lawettions which we discuss
next.

We can reorder the elements of a one-dimensional array @iogoio a linear order on
the typeE. The linear order may either be the default order of the typleeogiven by a
compare function. Thus,

A.sort();

sorts the entries of our arraf according to the lexicographic ordering on strings. On a
sorted array we may use binary search.

A.binary search("Stefan");

returns the index € [3..5] containing"Stefan" if there is such an index and returns
Alow() — 1if there is no such index. We can permute the entries of ay dny

A .permute();

The space required for an arrayro€élements i1 times the space required for an object of
type E. All access operations on arrays take constant tgog,takes timeO(nlogn) and
binarysearchtakes timeO(logn).

In many applications one needs arrays with large but spauseld index sets, e.g., we
may have 16indices in the range from 0 to 10In this situation it would be a complete
waste of space and time to allocate an array dfdl@ments and therefore a different data
structure is called for. The data typempandharray are appropriate. They will be dis-
cussed in Section 5.1.

Exercisesfor 3.3

1 Implement other sorting routines for arrays. Candidatedabble sort, shell sort, heap
sort, quick sort, and others.

2 Implement the typarray by C++ arrays.

3 (Sparse arrays) Use lists to realize arrays whose indeggesaare the integers from 0
to 2°0. Call the typesparsearray<E>. The constructor for the class should have an
argument of typeE. All elements of the array are initialized with this valueheTtime
efficiency of your method is not important. However, the speejuirement should be
proportional to the number of indices for which the subsaijgerator was executed.

3.4 Compressed Boolean Arrays (Typeint_set)

Boolean arrays are often used to represent sets. In thaisituone also wants to perform
the set operationgnion intersection andcomplemenbesides the usual operations on ar-

22 Basic Data Types

rays (read the value of an entry or set the value of an enttyg. data typent. setprovides
these operations in a space- and time-efficient way. It stooelean arrays as bit-vectors,
i.e., A entries are stored in a single word on a machine with word sjznd it uses the
parallelism available at the word level to perform the setrafions fori entries in a single
machine instruction. A speed-up of abaduis thus obtained for the set operations. On the
other hand, reading or setting a single entry takes sligbtiger than for an array.

int_set S(n),T(n),R(n);

definesS, T, and R as subsets of [0n — 1] and initializes them to the empty set; the
alternative definitiorint.set Sa, b) definesS as a subset off.. b]. If x is an integer with
0<x <n-1then

S.insert(x);

S.del(x);
S.member (x) ;

insertsx into S, deletesx from S, and tests for membership &f respectively.Sclear()
makesSthe empty set. The set operations union, intersection, amghement are denoted
by the corresponding logical operator. So

S=T/| R;
S =T & R;
S = "T;

assigns the union of and R, the intersection off and R, and the complement df to
S, respectively. We also have the shortha®lg= Rfor S= S| RandS &= R for
S= S & R. Note that the shorthands are more efficient than the venms®ns since the
verbose versions first construct a temporary object and¢bpy that object into the left-
hand side (except if your compiler is clever). The spaceirement of intsets isO(n/1);
insert, del, andmembetake timeO(1), and the other operations take tirdgn/2).

As an application of compressed boolean arrays we give amitdm for the multiplica-
tion of boolean matrices that runs in tin@n®/1). Let A and B be boolean matrices with
index sets [0.n — 1] x [0..n — 1], and letC be their product, i.e.,

n—-1

Cai,k =\/ Ad,) A B(j, k)

j=0
for all i andk. The obvious method to obtal® from A andB takes timeO(n®). We can
obtain a faster algorithm by observing that for eacl < i < n, thei-th row of C is the
bit-wise or of certain rows ofB, namely those that are selected by thé& row of A. If
we represent the rows @ andC as compressed arrays we obtain each ro ah time
O(n?/A) and hence can multiply two matrices in tirf@gn3/1).

We give the details. First we compute a compressed versién of

array<int_set*> B_compressed(0,n-1);
int i;
for (i = 0; i < n; i++)

3.5 Random Sources 23

{ B_compressed[i] = new int_set(0,n-1);
for (int j = 0; j < nj; j++)
if (B(i,j)) B_compressed[i]->insert(j);
}

Next we perform the multiplication. We compute each row finstcompressed form and
then expand it intc.

int_set compressedrow(0,n-1);
for (i = 0; i < n; i++)
{ for (int j = 0; j < n; j++)
if (A(i,j)) compressed_row |= *B_compressed[j];
for (j = 0; j < n; j++)
C(i,j) = compressed row.member[j];
compressed_row.clear () ;

}

Exercisefor 3.4
1 Compare the method described above with the followingwanf the traditional method.

for (int i =
for (int k 0; k < n; k++)
{ C(i,k) = false;
for (int j = 0; j < nj; j++)
if (A(i,j) && B(j,k))
{ C(i,k) = true;
break;

}

0; i < n; i++)

}

How do the two algorithms perform whekandB contain only zeros and ones, respec-
tively? Is there a way to combine the advantages of both ndstho

3.5 Random Sources

We frequently need random values in our programsraAdom sourceprovides an un-
bounded stream of integers in some rangev[. high], wherehigh andlow areints with
low < highandhigh — low < 231, The size restriction comes from the fact that the imple-

mentation of random sources usesgs. The definition
random_source S(7,319);

defines a random sourc&and sets its range to [7319]. Ranges of the form [02F] are
particularly useful. Therefore we have also the definition

random source S(p);

24 Basic Data Types

that sets the range to [2P—1] (1 < p < 31isrequired) and the definitisandomsource S
that sets the range to [23! — 1]. The random sourcendint is already defined in the
header filerandom. h; it has range [0. 2°1 — 1]. A random value is extracted from a source
by the operator>. So

S>> x > y;

extracts two integers in the rangey .. high] and assigns them t® andy; this assumes
thatx andy are defined as ints. Note that we are using the @put stream syntax for
random sources, i.e§ > X assigns tx and returns a reference &

We may also extract characters, unsigned integers, bandsdaubles from a random
source. For the first three types this works as follows: firsirdeger from the range
[low.. high] is extracted and then this integer is converted to the gpate type. Thus,
if bis a boolean variable the® > b extracts a truth value. Note that the valuéa$ not
uniformly distributed ifhigh — low + 1 is an odd number. In particular, lidw = 0 and
high = 2 then we should expect the valisdseabout twice as often as the valuge (as 0
and 2 are converted falseand only 1 is converted tioue). Werecommendo extract char-
acters and boolean values only from sources whose range aganwer of two. If a source
Sis asked for a doubld by S > d then a random integer € [0.. 23! — 1] is extracted
andu/(23! — 1) is assigned tal, i.e., the value assigned tblies in the unit interval.

The range of a random source can be changed either permaneifdlr a single oper-
ation: The operation§setrangglow, high) and Ssetrangg p) change the range @& to
[low.. high] and [0.. 2P — 1], respectively, an&(low, high) and S(p) change the range for
a single operation and return an integerlow.. high] and [0.. 2P — 1], respectively.

Of course, the stream of integers generated by a randomes@uonly pseudo-random.
It is generated from a@eedthat can either be supplied by the user @getseeds)) or
is generated automatically from the internal clock. If adseesupplied then the source
behaves deterministically; this is particularly usefulidg debugging. If no seed is supplied
the sequence produced depends on the time of the day.

In the remainder of this section we describe several usethanchplementation of ran-
dom sources.

A Chance Experiment: We use random sources for a chance experiment that is rélevan
the analysis of merge sort for secondary memory; see [Moaed][Knu81, section 5.4.1].
Assume that we have to sort a sethat is too large to fit into main memory. Merge sort
for external memory approaches this problem in two phasethd first phase it partitions
Sand sorts each subset and in the second phase it mergestdtesdrsets (usually called
runs). Of course, it is desirable that the number of runs prodiicelde first phase is kept
small, or in other words, that the runs produced in the firstsghare long. Assume thistt
elements ofS can be kept in main memory. Then runs of lenfthcan be produced by
readingM elements into main memory and sorting them. Longer runs egrdduced by
a method calledeplacement selectionThis method partitions its internal memory into a

3.5 Random Sources 25

priority queueQ and a reservoiR that can together stofd elements. The production of
runs starts by readinlyl elements into the priority queue. A run is generated by riguea
selection of the minimum eleme@min from Q. This element is added to the current run
(and written to secondary memory) and the spot freed in ma&imany is filled by the next
elementx from S. If x is smaller tharQ.min thenx is added toR and it is added tdQ
otherwise. We continue untl) becomes empty. When this is the case, the elemerfs in
are moved td and the production of the next run starts. Each run produgeedacement
selection has length at lealst. The two extreme situations arise wh8iis sorted: ifSis
sorted in descending order then each run has exactly léngthd if Sis sorted in ascending
order then a single run will be produced.

The program below simulates the behavior of replacemeatteh for a se6 of random
doubles We maintain a priority queu® and a stacks. We initialize Q with M random
doubles andR to the empty stack. Then we start the production of runs. ¢ égration
we remove the smallest eleme@imin from Q and then produce a new random doukle
If x < @minwe addx to Q, and we add it tdR otherwise. WherQ is empty we move all
elements fromR to Q and start the production of the next run. For each run we ceitwr
quotient of the length of the run ard.

(runlength=
main() {
int M, n;
(read M and i

p_queue<double,int> Q; // second type parameter is not used
stack<double> R;
random_source S;
double x;
int i;
for (i = 0; i < M; i++) { S >> x; Q.insert(x,0); }
array<double> RL(1,n); // RL[il = length of i-th run
for (i = 1; i <= n; i++)
{ // production of i-th run

int runlength = O;

while (!Q.empty())

{ double Q_min = Q.del_min(); runlength++ ;

S >> x;
if (x < Q_min) R.push(x);
else Q.insert(x,0);

}
RL[i] = (double)runlength / M;

while (!'R.empty()) Q.insert(R.pop(),0);
}

(produce table runlength
}

Table 3.4 shows the output of a sample run; we ugee- 10°. The length of thé-th run

26 Basic Data Types

Round Length Round Length Round Length Round Length

1 1.717 6 1.998 11 2 16 2.001
2 1.95 7 1.998 12 2 17 2.002
3 1.998 8 2.002 13 1.999 18 1.992
4 2.002 9 1.997 14 2.002 19 2
5 1.996 10 2 15 2 20 2.003

Table 3.4 Run formation by replacement selection, we use= 10° andn = 20. You may
perform your own experiments by calling program runlength.

seems to converge tdv2 asn grows. We refer the reader to [Moo61] and [Knu81, section
5.4.1] for a proof of this fact.

We give a second interpretation of the chance experimenteab@onsider a circular
track on which a snow plow is operating. When the snow plovwtsta operate there are M
snow flakes on the track (at random locations). In every timiethe snow plow removes
one snow flake and one new flake falls (at a random locationcaffgoute how many snow
flakes the snow plow removes in its i-th circulation of thekia

Random Permutations and Graphs. We show how to generate more complex random
objects, namely random permutations and random graphs.

Let A be an array. We want to permute the elementé ohndomly. Letay, ...,a,_1 be
the elements oA. We can generate a random permutation of these elementédayilsg a
random element and putting it into the last position of themeation, selecting a random
element from the remaining elements and putting it into thet o last position of the
permutation, and so on. In the program below we realize tlusgss in-place. We keep an
index | into A, initially j = n— 1. We maintain the invariant that the elements in position 0
to j have not been selected for the permutation yet and thaig@usit+ 1 ton — 1 contain
the part of the permutation that has been produced so farder ¢o fill the next position
of the permutation we choose a random intager[O .. j] and interchangé\[i] and A[j].

We obtain

random_source S;

for (int j =n - 1; j >= 1; j--) 1leda_swap(A[j],A[S(0,j)1);
whereledaswapinterchanges its arguments. The method just describe@dsin®peration
permuté) of typesarray andlist.

Our next task is to generate a random graph withodes andn edges. This is very
easy. We start with an empty grafh then add nodes toG, and finally choosen pairs
of random nodes and create an edge for each one of them. A aadsecadded to a graph
G by G.newnodg€). This call also returns the newly added node. We store thesimdan

3.5 Random Sources 27

array<node> V. In order to add a random edge we choose two random integsrsasd
k,in[0..n— 1] and then add the edge frow{l] to V[k] to G.

random_source S;
graph G; //empty graph
array<node> V(0,n-1);
for (int 1 = 0; i < n; i++) V[i] = G.new_node();
for (int i = 0; i < m; i++)
G.new_edge(V[S(0,n-1)] , V[S(0,n-1)]);
The program above realizes the functramdomgraph(G, n, m). LEDA also offers func-
tions to generate other types of random graphs, e.g., raqd@nar graphs. We discuss
these generators in later chapters.

Non-Uniform Distributions. We show how to generate integers according to an arbitrary
discrete probability distribution. The method that we aoéng to describe is called the
alias-methodand has been invented by Walker [Wal77]. Lg0..n — 1] be an array of
positive integers. For all, 0 < i < n, we interpretw[i] as the weight of. Our goal is to
generate with probabilityw[i]/W, whereW = w[0] + ... + w[n — 1]. We start with the
simplifying assumption that dividesW and letKk = W/n. We will remove this restriction
later. We viewW as ann by K arrangement of squareascolumns ofK squares each and
labelw[i] squares by foralli, 0 <i < n, see Figure 3.5. In order to generate an integer we
select a random square and return its label. This makes tiezateon of a random integer a
constant time process. The drawback of this method is thatjitires space/. The space
requirement can be improved ©(n) by observing that there is always a labeling of the
squares such that at most two different labels are used irc@oynn. This can be seen
as follows. Call a weighsmallif it is less than or equal t& and call itlarge otherwise.
Clearly, there is at least one small weight. Let] be an arbitrary small weight. Ho[i]
is equal toK then we assign an entire columnitand if w[i] is less tharK then we take
an arbitrary large weight (there must be one!), sdy], and assignu[i] squares ta and
K — w[i] squares tg. We also reduca[j] by K — wli]. In either case, we have reduced
the number of weights by one and are left with- 1 weights whose sum iK(n — 1).
Proceeding in this way we label each column by at most two reumb

We still need to remove the assumption thalividesW. We redefinek asK = [W/n]
and add an additional weighi[n] = K(n + 1) — W. This yieldsn + 1 weights whose
sum is equal td&k (n 4+ 1). We can now construct a labeling as described above. We also
need to modify the generation process slightly, becausenibw possible that the number
n is generated. When this happens we declare the generdatigonpata failure and repeat.
The probability of success M//(K (n 4+ 1)) and hence the expected number of iterations
required isK (n + 1)/W. We need to bound this quantity. We hawé > n since each
weightwli] it at least one and we hayen < W + n and henceV > (K — 1)n by the
definition of K. Thus if K = 1 thenK(n +1)/W < (n+1)/n < 2 and ifK > 2 then
K+ 1)/W < K+ 1)/(K —1)n) < 4. In either case we conclude that the expected
number of iterations required is bounded by 4.

28 Basic Data Types

2 2 2 2 2
2 1 2 2 2
0 1 2 3 2
0 1 2 3 2
0 1 2 3 4

Figure 3.5 lllustration of alias-method. We have= 5, w = (3, 4, 14, 3, 1), andK = 5. The
labeling shown is succinctly encoded by the vecibrs: (3,4,5,3,1), L = (0, 1, 2, 3, 4), and
U= (22 .2 2): for each columnj the lowestT; squares are labeldd; and the highest

K — Tj squares are labeled;.

We turn to an implementation. We define a clemsdomvariate Its constructor takes an
array<int> w of non-negative integers and index range li] and sets up the vectofs, L,
andU and the integeK defined above. Its member functiganerategenerates any integer
i € [l..h]with probabilityw[i]/W whereW =, w[i].

(definition of class randomariate)=
class random_variateq{

array<int> T, L, U;
int 1, h, n, K;

public:
random_variate(const array<int>& w) { (random variate: constructor}
int generate() { (random variate: generaje}
};

The constructor operates in two phases. In the first phasemeute the total weightV,
the numben of non-zero weights, the integ&r, and an arragrray<int> u(l, h + 1) with
the additional weigha[h + 1] = K(n + 1) — W.

(random variate: constructoe
1= w.low(); h = w.high();
int W = 0;
array<int> u(l,h+1);
n = 0; // number of non-zero weights

int i;
for (i = 1; i <= h; i++)
{ W += uli] = w[il;

if (uli]l <0)
error_handler (1, "random variate: negative weight");
if (ulil > 0) n++;
}

3.5 Random Sources 29

if (n == 0) error_handler(l,"random_variate: no non-zero weight");
K=Wmn+ (W% n==07?0:1);
ulh + 1] = Kx(n+1) - W; n++;

In the second phase we set up the arfBys, andU. We use two stackSmallandLarge
In Smallwe store all ali such thau[i] is small and inLarge we store all such thai[i]
is large. We store the labeling in three arrdysL, andU such that for every columa,
0 <c <n-—1,squares 1td|[c] are labeled_[c] and squareJ [c] + 1 to K are labeled
U[c].

(random variate: constructos-=
stack<int> Small,Large;

for (i = 1; i <= h + 1; i++)

{ if (ulil == 0) continue;
if (uli] <= K) Small.push(i);
else Large.push(i);
}

U=T =1L = array<int>(n);

for (int ¢ = 0; ¢ < n; c++)
{ int i = Small.pop();
Tlc] = ulil;
Lfc] = i;
if (ulil] < K)
{ int j = Large.pop(Q);
Ulcl = j;
ulj]l -= (K—ulil);
if (ulj] <= K) Small.push(j); else Large.push(j);

The generator chooses a randamw and a randontolumnand looks up the table entry
defined by this row and column. If the table entry is differéotm h + 1, it is returned.
Otherwise the process is repeated.

(random variate: generaje=
int r;
do { int row = rand_int(1,K);
int column = rand_int(0,n-1);
r = (row <= T[column] ? L[column] : U[column]);
}
while (r == h + 1);
return r;

Random Walksin Graphs(Simulating Markov Chains): We give an application of class
randomvariate We perform arandom walk on a graph. It (V, E) be a directed graph
and for each edge let w[e] be a non-negative weight. We start our walk in an arbitrary

30 Basic Data Types

node ofG and move according to the following rule: Suppose that weareently in node
vand letey, ...,eq4_1 be the edges out af. We follow edges with probability proportional
tow[g]foralli, 0 <i < d. If there is no edge out af the walk terminates. We define a
classmarkovchainthat allows us to simulate such a process.

(definition of class markaehain=
class markov_chain {
graph& G;
int N;
node_array<int> visits;
node vcur;

node_array<array<node> > neighbors;
node_array<random_variate*> variate;

public:

markov_chain(const graph& g, const edge_array<int>& w,
node s = nil): G(g)
{ (markov chain: constructor }

void step(int T = 1) { (markov chain: step }
int number_of_visits(node v) { return visits[v]; }

{markov chain: further member functigns
};

The constructor takes a gra@ an edge array of weights, and a start vertex. If no start
vertex is specified the first node Gf is taken as the start vertex. The functsie(T) per-
formsT steps of the random walk and the functimmmberof_visits(v) returns the number

of visits to nodev. We give the details below.

The constructor sets up the required data structures. Vit tteo data structures for each
nodev: anarray<node> neighbor$v] that stores for each 0 < i < outdegv), the target

of thei-th edge out ofv and a random variateariatd v] that produces with probability
proportional to the weight of thieth edge out ob. We set up both data structures by scan-
ning through the edges out of collecting the target of the edges outwin neighbor§v]
and their weights in a temporary arragights Then we use the latter array to construct the
random variate fop.

{markov chain: constructoe
N = 0;
visits = node_array<int>(G,0);
veur = s; if (s == nil) vcur = G.first_node();
neighbors = node_array<array<node> >(G);
variate = node_array<random_variate*>(G) ;

node v; edge e;

forall_nodes(v,G)

{ if (G.outdeg(v) == 0) continue;
neighbors[v] = array<node>(G.outdeg(v));
array<int> weights(G.outdeg(v));
int i = 0;

3.5 Random Sources 31

1/3
s (o) O~
1/2

Figure 3.6 A graph with two nodes. The edge probabilities are shown twegich edge.

forall_adj_edges(e,v)
{ neighbors[v][i] = G.target(e);
weights[i] = wlel;
i++;
}

variate[v] = new random_variate(weights);

Given these data structures it is easy to perfdrsteps of the walk. If the outdegree of the
current node is zero we stay put. Otherwise, we generateghlo@i at random and move
to the neighbor.

(markov chain: step=

if (T <= 0) return;

for (int i = 0; i < T; i++)

{ if (G.outdeg(vcur) == 0) return;
vcur = neighbors[vcur][variate[vcur] -> generate()];
visits[vcur]++;
N++;

’

Let us perform a random walk on the graph shown in Figure 3.6.

(randomwalk examplé=

main() {

graph G;

node vO = G.new_node();

node vl = G.new_node();

edge e00 = G.new_edge(v0,v0); edge e01 = G.new_edge(vO,vl);
edge el0 = G.new_edge(v1l,v0); edge ell = G.new_edge(vl,vl);

edge_array<int> weight (G);
weight[e00] = 2; weight[e01] = 1;
weight[e10] = 1; weight[ell] 1;

while(true)

{ int N = read_int("number of steps = ");
markov_chain M(G,weight) ;
M.step(N);
cout << "# of visits of vO = " << M.number_of_visits(v0) <<"\n";
cout << "# of visits of vl = " << M.number_of_visits(vl) <<"\n";

e

32 Basic Data Types

n 1 10 100 1000 10000 100000 1000000 10000000

w 0 3 63 570 6058 60180 600704 6003568

viv 1 7 37 430 3942 39820 399296 3996432

Table 3.5 The statistics of a random walk on the graph of Figure 3.6 hEEatumn gives the
number of visits to both nodes in the firssteps of the walk. You may perform your own
experiments by calling randamvalk.

Table 3.5 shows a sample output of this program. There is plsiemalytical explanation
for the output based on the theory of Markov chains, see [K&HKar an introduction to
Markov chains. Letp; 5 be the relative frequency of nodeduring the firsin steps of the
random walk. It is known that thp; , converge to so-called stationary probabilitigsand
that the stationary probabilities satisfy a system of lireguations directly related to the
transition graph. For each nogiehere is an equation expressimgas a sum over all edges
directed intoj. The contribution to this sum of an edge j) is q; - 7, whereq;; is the
transition probability of the edge. In our example we ohtain

7T = 2/3-7T0+1/2-7T1
m = 1/3-mp+1/2- 7.

This system has solutiaty = 6/10 andr; = 4/10. In Table 3.5 we see the convergence
of the visit frequencies to the stationary probabilities.

Dynamic Random Variates. We generalize the clagandomvariate to a class called
dynamicrandomvariatewhich offers an additional operati@etweightthat allows the user
to change weights dynamically. More preciselyRfis a dynamic random variate with
weight vectorw andi is in the index range oy thensetweighti, g) changesv[i]to g; g

is an arbitrary non-negative integer. The generation @®oé dynamic random variates is
less efficient than the one for (static) random variateskiés timeO(logn), wheren is the
size of the index range ab.

The implementation is fairly simple. We put the weights ittte leaves of a balanced
binary tree withn leaves andh — 1 internal nodes. In each node we store the sum of the
weights of the leaves in its subtree. In particult,=), w[i] is stored in the root of
the tree. A weight change amounts to updating the weightgadoe leaf to root path. In
order to generate a random variate we choose a random irdegdgd.. W — 1]. If sis
less than the total weight of the left subtree, we proceedrsaéely to the left subtree and
if sis larger or equal to the total weight of the left subtree, witsact the weight of the
left subtree and proceed recursively to the right subtreénis way, changing a weight and
generating a random variate takes time proportional to ¢ight of the tree. If a balanced
tree is used the height @ (logn).

A particularly simple implementation results when the reodéthe tree are numbered

3.5 Random Sources 33

Figure3.7 A tree with five leaves and a total of nine nodes. The numbeadf @ode is shown.
The children of nodé have numbersizand 2 + 1.

with the integers 1 tor2— 1 in preorder, i.e., the root is given the number 1, the childr
of the node with numbeir, 1 < i < n have numbersi2and 2 + 1, and the leaves are
numberedhto 2n — 1. See Figure 3.7 for an example. The parentof rig@e<i <2n—1
has numbeti /2].

In the implementation we use anray<int> u with index range [1. 2n — 1] to store the
tree.

(definition of class dynamimndomvariate)=
class dynamic_random_variate{

private:
array<int> u;
int n, h, 1;

public:

dynamic_random_variate(const array<int>& w)
{ (dynamic random variate: constructor}

int generate() { (dynamic random variate: generat&

int set_weight(int i, int g) { (dynamic random variate: set weight
};

The constructor stores the weight vectoin the entries to 2n — 1 of u and then fills
each entryu;, n — 1 > i > 1 as the sum of the entries of its children.

34

Basic Data Types

(dynamic random variate: constructae

in

1 =w.low(); h = w.highQ; n=h - 1 + 1;
= array<int>(1,2*n - 1);

15
for (i = 0; 1 < n ; i++)
{ uln + il = w1 + il;
if (u[n + i] < 0) error_handler(1,"dynamic variate: negative weight");

}

for (i =n-1; i > 0; i--)
uli] = ul[2*%i] + ul[2*i + 1];
if (u[1] == 0) error_handler(l,"dynamic variate: no non-zero weight");

The generator chooses a random integer [0.. W — 1] and then walks down a path
the tree. When the walk reaches nads is a random integer in [Qu[i] — 1]. If i is

a leaf we returd + (i — n) since the leaf numberadcorresponds to ently+ (i — n) of
weight vectorw. If i is not a leaf and < u[2i], we proceed to childizand ifs > u[2i], we
subtractu[2i] from s and proceed to childi2} 1.

(dynamic random variate: generate

int s = rand_int(0,u[1] - 1);
int i = 1;
while (i < n)
{ int j = 2%i;
if (s < ulj])
i=j;
else
{i=3+1;
s —= ul[jl;
}
}

return 1 + i - n;

In order to change weiglitto g we walk the path from leafi + (i —I) to the root and

change all entries af along the path bgelta= g — u[i]. The old value olu[i] is returned.

(dynamic random variate: set weight

int ui = ulil;
i=n+ ({1 -1);
int delta = g - ul[i];
if (g < 0) error_handler(1l,"dynamic variate: negative weight");
while (i > 1)
{ ul[i] += delta;
i=1i/2;
}
ul[1] += delta;
if (u[1] == 0) error_handler(1,"dynamic variate: no positive weight");
return ui;

3.5 Random Sources 35

n Static Dynamic

100 32.02 52.7

10000 41.07 90.34

Table 3.6 Running time of random variate generation: We set up a weigttor withn entries
and then generated 16andom variates according to it. We used clasaadomvariateand
dynamicrandomvariate.

You can make your own experiments using the rand@amatedemo.

Table 3.6 illustrates the speed of our two methods for geimgreandom variates. Surpris-
ingly, the O(logn) method is faster than the constant time method.

Dynamic Markov Chains. The use of dynamic random variates instead of static random
variates in Markov chain data type yields a dynamic Markoaighdata type which also
supports the change of edge weights.

Simulating a Supermarket Check-Out: We use dynamic random variates to simulate a
supermarket check-out. We consider a supermarketnvitheck-out stations. We assume
that there is a queue (maybe empty) in front of every chedkstation and usej[i] to
denote the queue length in front of theh check-out station. Servicing a customer at a
check-out station takes either 1 (probabili82 or 2 (probability ¥3) time units. Thus the
average servicing time is/8 time units.

We assume thatri¥4 customers arrive at every time unit. Customers tend to s#oo
check-out stations with short queues. We assume that amsestthooses quelewith
probability proportional to A(1 + q[i]).

In the program we define random variaRsand S; Sis a static random variate which
models the distribution of service times aRds a dynamic random variate which yields
check-out stations. IR we use[M/(1 + q[i])] as the weight of, whereM is a large
constant. In each time step we first generatgdustomers. For each customer we choose
the service length by callinfgeneraté) and the service station by callifiggeneraté).

We update the queue lengths after each generation of a ceistom

We collect all customers requiring short service in agisortserviceand all customers
requiring long service in a lidbngservice After having generated the new customers we
service all customers ishortservice update queue lengths appropriately, and move all
customers ilong serviceto shortservice

(supermarket check-out

array<int> q(n);
array<int> w(n);
int M = 10000;

for (int i = 0; i < n; i++) { ql[i] = 0; w[i] = M; }

36 Basic Data Types

dynamic_random_variate R(w);

array<int> wi(1,2); wi[1] = 2; wi[2] = 1;
random_variate S(wl);

list<int> short_service, long_service;

for (int t = 0; t < T; t++)
{ for (int k = 0; k < 3%n/4; k++)
{ int i = R.generate(); ql[il++; R.set_weight(i,M/(1 + ql[il));
if (S.generate() == 1)
short_service.append(i);
else
long_service.append (i) ;
}
int i;
forall(i,short_service)
{ qlil--; R.set_weight(i,M/(1 + ql[il)); }
short_service.clear();
short_service.conc(long_service);

(report queue lengths

Implementation of random_source: Our implementation of random sources follows the
description in [Knu81, Vol2, section 3.2.2]. We first giveetinathematics and then the
program. Internally, we always generate a sequence oférgdg the range [023% — 1].
We define 32 unsigned long&, X4, ..., X31 by

Xo = seed

and
Xi = (1103515245 Xi_1 + 12345 modm

for 1 <i < 31. Herem = 2%2, We extend this sequence by
Xi = (Xi—3 + Xj_32) modm

fori > 32. In this way an infinite sequencé&, Xi, ... of unsigned longs is obtained.
Following [Knu81, Vol2, section 3.2.2], we discard the fiBR0 elements of this sequence
(they are considered as a warm-up phase of the generatowenatso drop the right-most
bit of each number (since it is the least random). Thus,ittle number output by the
internal generator is

(X[1i + 320] >> 1) & Ox7fffffff.

We next show how to generate a number uniformly at randotown.[high]. Let X be a
number produced by the internal generator. Tloanrt X modhigh—low+1) is a number in
the rangelpw .. high]. However, this number is not uniformly distributed (calesi the case
wherelow = 0 andhigh = 23! — 2 and observe that in this case the number 0 is generated
with probability twice as large as any other number). Weefae proceed differently. Our

3.5 Random Sources 37

approach is based on the observation thxti§ a random number in [0231—1] andpis an
integer less than 32 theimod 2° is a random number in [02P —1]. Letdiff = high—low
and letp be such that2! < diff < 2P. We generate random numbetsising the internal
source untilX mod 2* < diff and then outpuiow + X mod 2. Since 2! < diff at most
two X's have to be tried on average. The complete program follows.

(generation of a random number in [low..higk
int diff = high - low;
/* compute pat = 2°p - 1 with 2°{p-1} <= diff < 27p */

unsigned long pat = 1;
while (pat <= diff) pat <<= 1;

pat-—;

/* pat = 0...01...1 with exactly p ones.
Now, generate random x in [0 .. pat]
until x <= diff and return low + x */

unsigned long x = internal_source() & pat;
while (x > diff) x = internal_source() & pat;

return (int) (low + x);

Exercisesfor 3.5

1 Add an operatop> to the typerandomsourcethat allows you to extract a random point
in the two-dimensional unit square.

2 Consider the following program.

int i,j,x;
array<int> A(0,n-1);
for (i = 0; i < n; i++)
{ while (true)
{ x = rand_int (0,n-1);
for (j = 0; j <1 && x !'= A[j]; j++) ; // empty body
if (j == i) break;
}
A[i] = x;
}
a) Does it generate a random permutation of the integers0+t4.?
b) What is the expected running time of the program?

3 Change the random graph generator such that it generagmssgrithout self-loops, i.e.,
no edgesv, v), and without parallel edges, i.e., no two edges with the ssonece and
target.

4 Letdy, ...,dy_1 be non-negative integers whose sum is even. Generate amnaunuiti-
rected graph where nodéhas degred; for alli, 0 < i < n. Hint: Create an array of
length 2n = }; d;, write the integer into d; entries ofA for all i, permuteA, and then
generate the edg\[2j], A[l2] +1]) forall j,0< j <m.

5 Balls and bins: Throw balls randomly inton bins, i.e, choosa random integers in the
range [0.. m— 1] and tabulate how often each number is chosen. Perfornxfieienent

38 Basic Data Types

with n = 10° andm = 100,m = 1000, ..., m = 10°. If you want to understand the
outcome of the experiment analytically consult [MR95].

6 Use classesandomvariate andsasetto perform the following experiment. Let be
any vector ofn non-negative integers witlyg > wy > ... > wp_1. Store the integers
0ton — 1 in asasetand performN access operations. For eagld < i < n access
i with probability proportional tav;. Determine the total cost of all accesses where the
cost of an access is the distance of the accessed item froimottief the list (you need
to modify saset:memberslightly in order to get this information) and compare it to
C = N>, wi(i +1)/W whereW =), wi. Note thatC is the expected cost of the
accesses if the list were arranged in order of decreasinghivei

3.6 Pairs, Triples, and such

A tuple is an aggregation of variables of arbitrary types.DiéEoffers two-tuples, three-
tuples, and four-tuples. We use two-tuples as our runnignge in this section. For any
typesA andB and object& andb belonging to these types the declarations

two_tuple<A,B> p;
two_tuple<A,B> q(a,b);

define a two-tuplg and a two-tupley, respectively. The components pfare initialized
to the default values oA and B, respectively, and the componentsgadire initialized with
copies ofa andb, respectively. The operatiorisst andsecondreturn the two variables
contained in a two-tuple. So we may write

a = p.first();
p-second() = b;

The operators==, <, > and the functionsompareandHashare defined for two-tuples.
They assume that the corresponding functions are definetthéocomponent types. The
operators« and > read and write a two-tuple, respectively, the operater realizes
component-wise equalitgpmpareamounts to the lexicographic ordering of two-tuples and
Hashreturns the bitwise exclusive or of the hash values of thepmmants. All of these
functions and operators are defined as template functiamrsexXample,

template <class A, class B>
int compare(const two_tuple<A,B>& p, const two_tuple<A,B>& q)
{ int s = compare(p.first(),q.first());

if (s !'= 0) return s;

return compare(p.second(),q.second());

}

If one uses two-tuples in a situation that requires the comfamction for two-tuples, e.g.,
if one defines dist<twatupleint, int> > L and then calld_.sort(), it is wise to give the
compiler a hint that it should make the compare functiontfeatuple<int, int>. In the

3.7 Strings 39

following program this is done by defining a variabpeof type twatupleint, int> and
callingcomparép, p).

(two_tupletesy =

main()
{ list< two_tuple<int,int> > L;

two_tuple<int,int> p;
compare(p,p); // dummy compare
L.sort();

3.7 Strings

A stringis a sequence of characters, where a character is an elefitbat@-+ typechar.
The number of characters in a string is called the length@fthing and the characters in
a string are numbered starting at zero. \Bis the character at position one Kurt. The
string of length zero is called the empty string; it is theaddtf value of the type. Strings are
related to thehar« type of C++. There are, however, two significant differences:

e The value of a variable of type string is a sequence of chargdt is not a pointer. In
particular, assignment and parameter passing by value pvogerly for strings.
Strings are a primitive type, see Section 2.3.

e Strings offer a large number of additional operations, @attern matching, substring
replacement, and comparison according to the lexicogcapliering. We have to
admit, however, that some programming languages, e.g.L.LRBR AWK, offer much
more elaborate string classes.

Let us see strings at work.
string s("Stefan");

defines a string variabkand initializes it with the valu¢Stefan".
string t = s + s;

defines another string varialiland initializes it to"StefanStefan"; the operato#- is the
concatenation operation on strings. The expressiarb) returns the substring éfstarting
at position 2 and ending at position 5. Since we start cogratr® this is the strinfjefan".
We can also search for the occurrence of one string in ansettieg: If a andb are strings
thena.pogb) searches for an occurrenceloih a. If b does not occur i thenposreturns
—1 and ifb does occur then it returns the first positioraiat whichb occurs. Thus

t.pos("efa");

40 Basic Data Types

returns 2, i.e., the first position trat which an occurrence #gfa" starts, and.pog*Kurt”)
returns—1. Another useful operation on strings is substring reptear®. It comes in sev-
eral forms:areplacdi, j, b) returnsa(0,i — 1) + b+ a(j + 1,a.lengthl) — 1), i.e.,bis
substituted for the substrirayi, j), andareplacebl, b2 n) replaces tha-th occurrence
of blin a by b2, and finallya.replaceall (b1, b2) replaces all occurrencesbtin a by b2.
Itis important to notice that all three versions do not cheatig stringa. Rather, they return
a new string. So after

string u
string v

t.replace(2,5,"Kurt");
t.replace(s, "Kurt",2);

we have a stringl with value"StKurtStefan", i.e., the substring df starting at position
2 and ending at position 5 is replaced'®urt", and a string with value"StefanKurt",
i.e., the second call akplacereturns a string in which the second occurrencs wft is
replaced by'Kurt".

The operatok realizes the lexicographic ordering of strings. So

(t < (s +s +s));

evaluates to true sinc&StefanKurt" precedes'StefanStefanStefan" in the lexico-

graphic ordering of strings. Many other operations on ggican be found in the manual.
Strings are implemented by+& character vectors. All operations on strings that do not

involve pattern matching take linear time. Pattern matgtiakes quadratic time. More

precisely, it takes tim®(nm) in the worst case to search for a string of lengtin a string

of lengthn. There areD(n + m) pattern matching algorithms, see for example [CLR90].

3.8 Making Simple Demos and Tables

This book contains many tables. For many of these tableg tealso a corresponding
demo which allows the reader to perform experiments on hiseorown. We wanted to
have a single program that handles both cases. In this seggalescribe the 10-interface
used in these programs.

The program below serves as the randemniatedemo and also produces Table 3.6.
It makes all its input and output throudB_interface I. The program can be executed
in two modes: in book-mode it produces a t&bded in demo-mode it realizes the ran-
dom.variatedemo. The demo-mode is the default and the book-mode igsdlatcompile-
time by compiling with the flagDBOOKS.

2 This book is typeset usingTgX and hence the program generates a sequendd@gf-commands that produce a
table.

3 An alternative design would be to use an integer variabléstinguish between the cases and set the variable
through a command line argument.

3.8 Making Simple Demos and Tables 41

(randomvariate.demo.¢=

#include <LEDA/random_variate.h>
#include <LEDA/IO_interface.h>

main()
{ I0_interface I("Random Variates");

I.write_demo("This demo illustrates the speed of classes \
random variate and dynamic random variate. \nYou will be asked \
to input integers n and N. We set up the weight vector w with \
w[2] = 2, w[3] =3, ..., w[n+t1] = n + 1 and generate N random \
variates according to this weight vector.");

int n, N;

n = I.read_int("n = ",100);

N = I.read_int ("N " 100000) ;

if (n < 1) error_handler(l,"n must be at least one");

#ifdef BOOK
N = 10000000;
for (n = 100; n <= 10000; n = n*n)
{ I.write_table("\n ", n);
#endif
array<int> w(2, 1 + n);
array<double> Rfreq(2,n+1), Qfreq(2,n+1);
int W = 0; int i;
for (i = 2; i < n + 2; i++) { W += w[i] = i; Qfreq[i] = Rfreq[i] = 0; }

dynamic_random_variate R(w);

random_variate Q(w);

float T = used_time(); float UT;

for (i = 0; i < N; i++) QfreqlQ.generate()]++;

UT = used_time(T);
I.write_demo("static random variate, time = ",UT);
I.write_table(" & ",UT);

for (i = 0; i < N; i++) Rfreq[R.generate()]++;

UT = used_time(T);
I.write_demo("dynamic random variate, time = ",UT);
I.write_table(" & ",UT, " \\\\ \\hline");

I.write_demo("We report some frequencies.");

for (i =n + 1; i >= Max(2,n - 3); i--)

{ I.write_demo("relative frequency, i = ",i);
I.write_demo(0,", w[il/W = ", ((double)w[i])/W);
I.write_demo(1,"generated freq, static variate = ", Qfreq[i]l/N);
I.write_demo(1,"generated freq, dynamic variate = ", Rfreq[i]/N);
}
#ifdef BOOK
}
#endif
}

The output statements come in two kinegite table andwrite demo The output state-
mentwrite xxx produces output when executedxxxmode and produces no output oth-

42 Basic Data Types

erwise. Thus, the introductory text that explains the desnouitput in demo-mode, but is
suppressed in book-mode. The output statements come énattfforms:
I.writexxx(string mes);

.write xxx(string mes, double T, string mes2
.write xxx(string mes, int T, string mes2

uu);
||||);

.write xxx(int k, string mes);
.write xxx(int k, string mes, double T, string mes2 = "y,
.writexxx(int k, string mes, int T, string mes2 = "");

HHH HH

The first form outputs the stringesand the second and the third form output the strives
followed by the numbef, followed by the optional stringhnes2 The output is preceded by
an empty line. The last three forms allow a finer control olerpositioning of the output;
the output is preceded tkyline feeds, i.e., witkk = 0 the output is printed on the same line
as the previous output, with = 1 the output is printed on a new line, and with= 2 the
output is preceded by an empty line.

The input statement

int I.read_int(string mes, int n = 0);

returnsn in book-mode and asks for an integer input with prommgisin demo-mode.
The precision of the output of double-values is controllg@lprecision parametqy. It
is set to 4 by default and can be changed by

I.set_precision(int prec);

We come to the implementation. It is quite simple. We defimsstdO_interfacebook
and IO interfacedemoin the obvious way (see LEDAROOT/incl/LEDA/l@terface.h)
and defindQO_interfaceas one of them depending on the compile-time flag.

(IO_interface =

#ifdef BOOK

#define I0_interface I0_interface_book
(definition of 1Qinterfacebook

#else

#define I0_interface I0_interface_demo
(definition of IQinterfacedemo

#endif

Bibliography

[CLR9O] T.H. Cormen, C.E. Leiserson, and R.L.
Rivest. Introduction to AlgorithmsMIT
Press/McGraw-Hill Book Company, 1990.

[HP90] J.L. Hennessy and D.A. Patterson.
Computer Architecture: A Quantitative
Approach Morgan Kaufmann, 1990.

[Knu81] D.E. Knuth.The Art of Computer
Programming (Volume 11): Seminumerical
Algorithms Addison-Wesley, 1981.

[KSK76] G. Kemeny, L. Snell, and A.W. Knapp.
Denumerable Markov Chain$Springer, 1976.

[Meh84] K. Mehlhorn.Data Structures and
Algorithms 1: Sorting and Searchin@pringer,
1984.

[Moo61] E.F. Moore. U.S. Patent 2983904, 1961.

[MR95] R. Motwani and P. RaghavaRandomized
Algorithms Cambridge University Press, 1995.

[Wal77] A.J. Walker. An efficient method for
generating discrete random variables with
general distributionsACM Transaction on
Mathematical Software3:253-256, 1977.

43

| ndex

alias method, 27 int_set 22—-23
amortized analysis, 4 IO_interface 41-43
array, 17-21 iteration
binary search, 21 in lists, 7
boolean, 22
index out of range, 18 list, 5-17
permute, 21 basics, 5-8
set operations, 22 bucket sort, 15
sorting, 21 concatenation and split, 8
for ordered sets, 10-14
balls and bins experiment, 38 forall, 7
boolean arrays, 22 implementation, 14-17
bounded queue, 4 iteration, 7
bounded stack, 4 list item, 6
bucket sort for lists, 10, 15 merging, 12
permute 9
cache effects, 13 reverse 9
cache miss, 14 singly linked, 17
compare function sorting, 10, 12
instantiation of, 39
compressed boolean array, 22 Markov chain, 30
matrix, 17,seearray
demo memory hierarchy, 13
detailed examples merge sort
tables for ATEX, 41-43 basic algorithm, 12
programs run generation, 25
markov chain, 30 multiplication of boolean matrices, 22
random walk, 31
run lengths, 25 non-uniform distribution, 27
stacks and expressions, 3
dynamic random variatsge randonvariate ordered sets, 10
expression evaluation, 3 pair, 38
graph queue, 2-5
random walk, 31 bounded, 4
implementation by stacks, 4
110
tables for ATgX, 41-43 rand.int, 24

44

Index

random number, 24
random permutations, 26
random walk in graph, 31
randomsource 23—-38
functionality, 23-36
implementation, 36—37
randomvariate, 27—-30
replacement selection, 25
run generation for merge sort, 25
running time experiments
cache effects, 14
random variates, 35
sorting and merging, 13
sorting of arrays, 20

saset 11

self-organizing search, 11
sets and boolean arrays, 22
singly linked list, 17

sorting
bucket sort, 10
for lists, 10
stable sort, 10
straight insertion sort, 18
sparse arrays, 21
stable sorting, 10
stack, 2-5
bounded, 4
straight insertion sort, 18
string, 39-40
subscript operator
for arrays, 17
for lists, 6
supermarket checkout simulation, 36

triple, 38
tuple, 38
two-tuple, 38

45

