12

12.1
12.2
12.3
12.4
125
12.6
12.7
12.8

Contents

GraphWin

Overview

Attributes and Parameters

The Programming Interface

Edit and Run: A Simple Recipe for Interactive Demos
Customizing the Interactive Interface

Visualizing Geometric Structures

A Recipe for On-line Demos of Network Algorithms
A Binary Tree Animation

Bibliography

Index

page2

11

24
35

42
49

50

20

37

12
GraphWin

The GraphWindata type combines thgraphand thewindowdata type. An object of type
GraphWin(short: a GraphWin) is a window, a graph, and a drawing of tteplg, all at
once. The graph and its drawing can be modified either by moperations or by running
a graph algorithm on the graph. The GraphWin data type casée o:

e construct and display graphs,

e visualize graphs and the results of graph algorithms,
e write interactive demos for graph algorithms,

e animate graph algorithms.

All demos and animations of graph algorithms in LEDA are blage GraphWin, many of
the drawings in this book have been made with GraphWin, antgyroithe geometry demos
in LEDA have a GraphWin button that allows us to view the graphcture underlying a
geometric object.

In this chapter we discuss GraphWins and teach the readeséhef GraphWin. We give
an overview and discuss the interactive interface of GrapeBWNext we discuss the node
and edge attributes and the global parameters that cordwlgnaphs are displayed. In
the remaining section we discuss the programming inteida€araphWins and show how
to write demos using GraphWins. You will see that it is susimgly simple to write nice
demos of graph algorithms.

12.1 Overview 3

E EE|

File Edit Craph Layout ‘window Options Help << done‘

(135

Figure 11.24 {pags455)

hodes: 8 edges: 13 116.13 164.98

Figure 12.1 A GraphWin. The display part of the window shows a gr&phnd the panel part
of the window features the default menu of a GraphWin. Weuwtist¢he default menu in
Section 12.1G can be edited interactively, e.g., nodes and edges can led adieleted, and
moved around. It is also possible to run graph algorithm&and to display their result or to
animate their execution.

12.1 Overview

Figure 12.1 shows a GraphWin. We advise that you open a Graph#fore reading on,
e.g., by starting the program gwin in xlman. A window as shawfigure 12.1 will pop
up, but with an empty display region. Press the Help buttdieaon about the interactive
use of GraphWin and then construct a graph.

Most of the interaction is with thkeft mouse buttonA single click on the background

4 GraphWin

Load Cw—Craph ..

Save SW-Craph ..

Load GML-Craph .., Clear
Save GML-Craph .. Create .-
Save Postscript .., Make .-
Print Postscript ... Nodes ~| Test
Export | Edges ~| Delete -
Exit Selection | Sort -

Figure12.2 GraphWin: File, Edit, and Graph menus.

creates a new node. gingle click on a nodselects the node as the source of a new edge.
The next click defines the target of the edge which is eitheexdsting node or a new
node (if clicked on the window background). Before definihg target node, bends may
be introduced using the middle button. The creation of the edge can be canceled by
clicking the right button.

Nodes can be moved by draggingelect the node with the left mouse button, hold the
button down, and drag the object by moving the cursor. Semelbusly pressing a SHIFT
key will move the connected component containing the nodee @ntire graph can be
moved by selecting the background. Of course, when a nodevedrall edges incident to
it will move with it.

A node isresizedby clicking on its boundary and dragging the border line efiode.

A double clickon a node or edge opens a dialog box for setting or changiagfitsutes.
We will discuss the geometric and visual attributes of natesedges in Section 12.2.

For the functionality of the middle and the right mouse buotice refer the reader to the
help menu of GraphWin. Please construct and edit a grapmédefading on.

Let us next have a look at the default menu of a GraphWin . We hanu buttons “File”,
“Edit", “Graph”, “Layout”,“Window”, “Options”, “Help”, “ undo)", “redo (>>)", and
“done”. The first six buttons give access to sub-menus as showigures 12.2 and 12.3.
We next briefly discuss all buttons and the associated menus.

File: A menu that offers file 1/O operations for graphs in eithetvad formats, allows one
to export drawings of graphs, and containsei# button (see Section 12.3 for the effect of
theexit button).

Edit: A menu with panels for setting the (default) attributes ofles and edges.

Graph A menu that offers graph generators, modifiers, and checkEne generators
allow us to construct random, planar, complete, bipargtéd graphs, The modi-
fiers change the current graph (e.g., by removing or addigg®do make it connected,
biconnected, bidirected, The checkers can be usedtkgraph properties, like con-

12.1 Overview

Layout Tools
Simple Layouts

Planar Layouts
Spring Layouts

default window
canter graph

Window Setup
Global Options

ACD0 Algarithms
&S0 Options

Zoom to graph
zoom to area
Zoom +

ZO0Om —

fgnimation
Zoorming

PostSeaript

Gravis Modules

Zoomm undo

Node Defaults
Edge Defaults

Figure 12.3 GraphWin: Layout, Window and Option menus.

nectedness, biconnectedness, and planarity. Figure h8wisshe output of the planarity
test for a graph that is non-planar. Many of the checkers easked for a proof by clicking
the proof button. In the case of the planarity test this will either gerte a planar drawing
or highlight a Kuratowski subgraph as shown in Figure 12.5.

Layout A menu that gives access to tools for simple layout mantpmria (e.g., removing
all edge bends or fitting the graph into a box or window) andlkecton of graph drawing
algorithms. If the graph drawing systems AGD [JMN] or GralliK] are installed, their
layout algorithms are included into the menu as shown infeid.3.

Window A menu with (zoom) operations for changing the user spadhefdrawing
window, e.g., theeoom graptbutton adjusts the window coordinates to the bounding box
of the current graph.

OptionsA menu with various sub-panels for editing the various wivdand editor pa-
rameters.

undo &):A button to undo the last update operation.

redo (). A button to undo the undo.

done The done button, see Section 12.3.

The drawing of a graph in a GraphWin is controlled by node adgkeattributes and by
global parameters. We discuss attributes and paramettrs irext section.

Exercises for 12.1

1 Calla GraphWin, construct a graph, and test whether itdsrbiected.

2 Construct a graph and then change all node shapes fronfecitouectangular.

3 Construct the dependency graph for the chapters of thik &sshown in the preface.
Apply some of the layout algorithms to the graph.

6 GraphWin

|
= Leda Graph Editor {gwin 1.4) 2

13 1ay
1_2,,: 13 14 \EL_S

© O &
This graph is not planar
ak | proof|
® Q

© € € ©)

nodes: 16 edges: 25 undo: 340 -29.45 38.35_
| |

Figure 12.4 An outcome of a planarity test.

12.2 Attributesand Parameters

In this section we discuss global parameters and node arel attiputes. The node and
edge attributes control how nodes and edges are drawn agtbtied parameters control the
general behavior of a GraphWin. Attributes and parametamnde changed either by setup
panels (as shown in Figures 12.6 and 12.7) or by operatiotieegirogramming interface

as discussed in Section 12.3.

Node Attributes: The node attributes are:
positionAn attribute of typepoint (default value: (0, 0)) defining the position of the
center of the node in the user coordinate system of the window

shapeAn attribute of typegwnodeshape(default valuecircle nodg defining the shape
of the node. Possible values aiiecle node ellipsenode squarenode andrectanglenode
The size of a node is determined by its width and its heightdtkMand height are measured

12.2 Attributes and Parameters 7

dene

This graph is not planar, it contains a X537 Kuratowski
subdivison.

X [1 e)
&, |L| i)
| nodes: 16 edges: 25 undo: 340 234.19 210.15

Figure 12.5 The effect of clicking the proof button in Figure 12.4.

in pixels. The horizontal and vertical dimension can alsoeasured in user space; we use
radiuslandradius2for the dimensions in user space.

width:An attribute of typant (default value: 20) defining the width of the node in pixels.
The horizontal dimension of a node is also available as amat# with nameaadiuslthat
gives the horizontal dimension of the node in user space.chaypge of one of these two at-
tributes also changes the other, maintaining the relaidiusl = W.pixtareal(width)/2.

heightAn attribute of typent (default value: 20) defining the height of the node in pixels.
As for the width attribute the vertical dimension of a node can be accessethanged
through aradius2attribute giving the vertical dimension of the node in ugace.

color:An attribute of typecolor (default value:ivory) defining the color used to fill the
interior of the node.

pixmapAn attribute of typechars (default value:NULL) defining a pixrect used to fill
the interior of the node.

8 GraphWin

Node [0]
colar [T N Y Y Y

shape O | <o) O 3T <]

xcoord 201 |
yeoord 308 7
width 70 |
height 35 _ |
Border

color [JT T N N Y
width 1
Label

type | user data | inde><|

user T Vertex 1

color | =)=
T

™ i i :
position i |
as default _|

undo | reset | done |

Figure 12.6 The node setup panel.

border colorAn attribute of typecolor (default value: black) defining the color used to
draw the boundary line of the node.

border width An attribute of typant (default value: 1) defining the line width in pixels
used to draw the border line of the node. We also have a usee spaiant of this attribute
calledborder thicknessborderwidth andborderthicknessre related through the equation
borderthickness= W.pix tareal(borderwidth).

label typeAn attribute of typegw labeltype(default valueindexlabel) specifying which
label of a node is displayed. Possible valueswarabel, userlabel, datalabel, andindexlabel.
Every node of a GraphWin has three labels associated wieimitndex label generated au-
tomatically from the internal numbering of the nodes, a uabkel (of typestring), and a
data label that is used to represent the node data of pandreetgraphs.

12.2 Attributes and Parameters 9

= GaphWin Edge Setup o]

Edge [0--21]
color | l=|=|=i=]=|=[=]n|=[uj=]-]|=]n] |
width 1 |
shape pely | circle |[Tbezier _spline |
style —"T == |
arrow |:—>|4—|4—>|—H—|
Label
type [user data | index |
user |edge 2
color T N T T T I Y
positicn ﬂi"ﬁ
as default _|

= undo | reset | done | =
| |

Figure 12.7 The edge setup panel.

user label An attribute of typestring defining the user label of the node. The default
value is the empty string.

label position An attribute of typegwposition(default value:centralpog defining the
position of the label. Possible values aemtralpos northwesipos north pos northeasipos
eastpos southeaspos southpos southwespos andwestpos Each value defines one of
the eight neighboring cells in a rectangular grid of appiatprdimension or the node posi-
tion itself as the position of the label.

label color. An attribute of typecolor (default value:blacK) defining the color used to
draw the label of the node.

Edge Attributes. Edges have the following attributes:

shapeAn attribute of typegwedgeshape(default value:polyedgg defining the shape
of the edge. Possible values grely edge(polygonal edges);ircle edge(circular arcs),
bezieredge(Bezier curves)splineedge(spline curves).

bendsAn attribute of typdist<point> (default value: empty list) defining the sequence
of bends of the edge. The interpretation of the bends depamdise shape of the edge.
For polyedgethis list defines the sequence of bends of the poly-line.citote.edgeonly

10 GraphWin

the first pointp of the sequence is used. Together with the two terminal nodgipns it
defines a circular arc starting at the source position, pgdkiroughp and ending in the
target position of the edge. Fbezieredgeandsplineedgeedges the list gives the sequence
of control points that define the corresponding Bezier anspturve.

directionAn attribute of typegwedgedir defining whether the edge is drawn as a di-
rected or an undirected edge. Possible valuesiadirectededge(the edge is drawn undi-
rected),directededge(the edge is drawn directed from source to target)jrectededge
(the edge is drawn directed from target to source), l@idttectededge(the edge is drawn
bidirected).

width:An attribute of typeint (default value: 1) defining the width of the edge in pix-
els. The width of an edge can also be specified by an attritalkedthicknesghat gives
the line width of the edge in user coordinatésicknessand width are related through
thickness= W.pixtareal(width).

color:An attribute of typecolor (default valueblacK) defining the color of the edge.

styleAn attribute of typegw edgestyle(default value solid) defining the line style of the
edge. Possible values aselid, dasheddotted anddasheddotted

label typeAn attribute of typegwlabeltype (default value:nalabel) defining the type
of the label of the edge. Possible valuesmadabel, userlabel, datalabel, andindexlabel
(see the corresponding attribute for nodes for an explamgati

user label An attribute of typestring defining the user label of the edge. The default
value is the empty string.

label position An attribute of typegwposition (default value:westpog defining the
position of the label. Possible values aentralpos (the label is placed centered on the
edge) eastpos(the label is placed to the right of the edge), arebsipos(the edge is placed
to the left of the edge).

label color. An attribute of typecolor (default value:blackK) defining the color of the
edge label.

slider positionsEvery edge has thredidersassociated with it. They are only visible if
the corresponding handler (see Section 12.5.1) is defirmdedeh slider thslider position
is an attribute of typelouble(default value: 0) defining the relative position of the shd
on the (directed) edge. The value of slider position liesveen zero and one. Edge sliders
can be used to adjust the value of an edge label interactively

Global Parameters. A GraphWinhas thewindow parameters background color, back-
ground pixmap, grid style, and grid distance, and the falhgnadditional parameters.

flush A parameter of typdool (default value:true) that controls whether changes of
node and edge attributes are shown directly or ndtushis false, changes are invisible up
to the next call of theedrawoperation. In this way, it is possible to hide all intermeedia
steps of a sequence of operations and to show only the enitl resu

animation steps A parameter of typent (default value: 16) that defines the number

12.3 The Programming Interface 11

of intermediate drawings used in the animation of layoutngjes and zoom operations.
Setting animation steps to 0 disables all animations.

zoom objectsA parameter of typdool (default value: true). If this flag is true, the size
of nodes and edges is adjusted automatically during zoomatpes. If the flag is false,
the pixel width and height of all objects is preserved dudngm operations.

show statu\ parameter of typdool (default value: true). If this flag is true, some
selected parameters, e.g., the number of nodes and edgéiseaadrrent position of the
mouse cursor in user coordinates, is shown in a status litleeabottom of the display
region.

12.3 TheProgramming Interface

So far we have concentrated on the interactive interfacaapl®Nins, as most LEDA users
will become acquainted with GraphWins through their intékee use. We now turn to the
programming interface. You must read this section if youtt@mvrite programs that use a
GraphWin.

The GraphWindata type offers a large variety of operations. We discussibst impor-
tant one in the remainder of this chapter and refer the reaadbe manual for the complete
list of operations.

12.3.1 Creating and Opening a Graph Window
A GraphWin has an associated graph and an associated wikdittvr one of them may or
may not be specified in the constructor.

GraphWin gw;

creates a graph windogw that uses its own (private) grag@hand windowW. G is initial-
ized with the empty graph. Three optional arguments may bsquhto initializeVN: alabel
of typestring, the initialwidth, and the initiaheightboth of typeint.

GraphWin gw(graph& G) ;

creates a graph windogw and associates the graghwith it. G may also be a param-
eterized graph of some tyggRAPHvtype etype. In this case, every nodehas an ad-
ditional data labelattribute that contains a string representation ofwtygpevalue G[v]
associated withv. This representation is constructed using the stream buiperator
(operator« (ostrean&, const vtyp&)). In the same way, every edgehas a data label
representings[e]. In Section 12.6 we give a program that usesaphWinto display a
graph of typeGRAPHpoint, int> representing a Delaunay triangulation.

GraphWin gw(window& W);
GraphWin gw(graph& G, window& W);

12 GraphWin

= Grghwimtd 0 s

File Edit Graph Layout ‘window Options Help done|

Figure 12.8 A GraphWin panel for editing a graph in a different window.

do not create their own window but use the supplied wind@vior displaying the graph.
In this case, the display operation opens a small panel wir{dee Figure 12.8) containing
only the standard menu.

References to the graph and window dseaphWin gwcan be retrieved by
window& W = gw.get_window();

and
graph& G = gw.get_graph();

respectively.

A graph window is opened and displayed by calling one of the felowing display
operations:

gw.display()
openggw and displays it at the default position of data tygedowand
gw.display(x,y)

opensgw and displays it with its left upper corner at the positionhyiixel coordinates
(X, y). As for windows the special coordinaténdow.:centercan be used to center the
graph window in either coordinate on the screen.

The interactive interface is started by it operation.
bool gw.edit();

putsgwinto edit modgalso callednteractive mode The buttons ofjware now enabled; in
particular the graph associated wiflv may now be changed interactively. The edit session
is terminated when either tfdonebutton is pressed axitis selected from the file menu.
The edit operation returrtsue in the first case anthlsein the second case.

We are now ready for the first example program. We declare epthy a graph window
gw, and then start an edit loopvkile (gwedit())) that lets the user construct or modify the
graphG associated witlgw. If editis terminated by pressing tltmnebutton, the graph is
tested for planarity, the outcome of the planarity test igtem to standard output, argv

12.3 The Programming Interface 13

is again put into edit mode. If the editor is left by pressingéxit button in thefile menu,
the loop and the program terminate.

(gw.q0=
#include <LEDA/graphwin.h>
#include <LEDA/graph_alg.h>

main()

{
GraphWin gw("Leda Graph Editor");
graph& G = gw.get_graph();
gw.display(window::center,window::center);

while (gw.edit())
{ if (PLANAR(G))
cout << "This graph is planar." << endl;
else
cout << "This graph is non-planar." << endl;

}

return 0O;

The structure of the program above is generic for many sinmpégactive demos of graph
algorithms. The program runs in a loop. In each iterationgtagh is edited and the graph
algorithm is run. We call this scheme thdit-and-run paradignfior interactive demos. We

will see a more elaborate use of the paradigm in Section 12.4.

12.3.2 Graph Operations
A GraphWin has an associated graph. There are two methoqgslaiaithis graph through
the programming interface.

The first method uses the update operations offered by GrapHr example,
node gw.new node(const point& p);

creates a new nodewith default attributes. The position ofis set top.
void gw.del node(node v);

removes from the graph,
edge gw.new_edge(node v, node w);

creates a new edge= (v, w) with default attributes,
void gw.del_edge(edge e);

removes from the graph, and
void gw.clear _graph();

makes the graph empty.

The second method reuses the update operations for graghshtdin a reference to the
graph associated withw by callinggwgetgraph() and then apply graph update operations
toit.

14 GraphWin

graph& G = gw.get_graph();
// some update operations on G

G.new_node();
G.del_edge(e);

gw.update_graph(); // CRUCIAL

Observe thegwupdategraph() statement at the end of the sequence. This statement in-
formsgw about the fact that its graph was modified and allows it to tgds internal data
structures. Without the statement the gr&phnd the internal data structuresgy will go
out of sync and disasters may occur.
We illustrate the use ofipdategraph operation by giving an implementation of the
newnodeoperation of GraphWin; the actual implementation is défgrand more efficient.
node gw new node(GraphWin& gw, const point& p)
{ graph& G = gw.get_graph();
node v = G.new.node();
gw.update_graph() ;
gw.set _position(v,p);
return v;

12.3.3 Attribute and Parameter Operations

Attributes of nodes and edges and global parameters areuolatad bygetandsetoper-
ations. In the case of attributes we distinguish betweeirtigidual attributes of existing
nodes and edges and ttiefault attributesvhich are used to initialize the attributes of new
nodes and edges.

Individual Attributes of Nodes and Edges. The attributes of existing nodes and edges
can be retrieved or changed by the following operations. ¥émbjectfor eithernodeor
edgeandattrib (of typeattrib_type for an arbitrary attribute.

attrib_type gw.get_attrib(object x);
returns the current value of attribuaérib of objectx.
attrib_type gw.set_attrib(object x, attrib_type a);
sets the attributattrib of objectx to a and returns the previous value of the attribute.
void gw.set_attrib(list<object>& L, attrib_type a);
sets attributettrib for all objects inL to a.
void gw.reset_attributes();

resets the attributes of all objects to their default values

The current attributes of all nodes and edges may be savestaded later to the saved
values by the following functions.

12.3 The Programming Interface 15

void gw.save node_attributes();
void gw.save_edge attributes();
void gw.restorenode_attributes();
void gw.restore_edge_attributes();

These functions are very useful if the appearance of thehdrap to be changed temporarily,
e.g., to highlight a substructure of the graph.

We give an example. We replace all nodes of elliptic shapedbipw rectangular nodes
and all blue edges by black dashed edges, wait five secondisham restore all attributes
to their original values.

graph& G = gw.get_graph();
void gw.save node_attributes();
void gw.save_edge attributes();

node v;
forall nodes(v,G) {
if (gw.get_shape(v) == ellipse_node)
{ gw.set_shape(v,rectangle node);
gw.set_color(v,yellow);
}
}

edge e
forall edge(e,G) {
if (gw.get_color(e) == blue)
{ gw.set_style(e,dashed);
gw.set_color(e,black);

}
}

gw.redraw();
leda_wait (5);

void gw.restorenode_attributes();
void gw.restore_edge_attributes();

Default Attribute Values. Every attribute has a default value which is used to iniali
the attributes of new objects. The default attribute vatissbe changed by the following
operations. Note that changing a default attribute alsectdfall existing objects, unless the
optional boolean flagpplyin the correspondingetnodeattrib operation is set tfalse

attrib_type get node_attrib();
attrib_type set_node_attrib(attrib_type x, bool apply=true);

reads or sets the default value of node attrilaitab. If applyis true, theattrib attribute of
all existing nodes is changed in the same way.

attrib_type get_edge_attrib();
attrib_type set_edge_attrib(attrib_type x, bool apply=true);

16 GraphWin

reads or sets the default value of edge attriladteb. If applyis true, theattrib attribute of
all existing edges is changed in the same way.

The current default values of all attributes can be savedite and later reloaded by the
following operations.

void gw.save_defaults(string fname);
void gw.read defaults(string fname);

We close with an example. We declare a Graphiw change the default values of
some attributes, open the window associated githand putgw into edit mode.

(gw_attributes.¢=
#include <LEDA/graphwin.h>

main()
{
GraphWin gw;
// default attributes of nodes

gw.set_node_shape(rectangle_node) ;
gw.set_node_color(yellow);

// default attributes of edges
gw.set_edge_width(2);
gw.set_edge_color(blue);
gw.set_edge_direction(undirected_edge) ;

gw.display();
gw.edit();

Almost every program using a GraphWin starts with a smathpriele that changes default
attributes to settings that are appropriate for the apfpina

Global Parameters. Global parameters can be retrieved or changed by a colfecfio
get andsetoperations. We usparamtypefor the type andoaramfor the value of the
corresponding parameter.

There is agetandsetoperation for each global parameparam

param type guw.get_param();
param type gw.set_param(param type x);

The set operation returns the previous value of the correipg parameter.

In the following example we set thiiRishparameter tdalsebefore changing the individ-
ual attributes of some nodes. Then we redraw the graph téaglifpe changes and reset the
flushparameter to its previous value;

gw.set_animation_steps(12);

bool f1 = gw.set_flush(false);
forall(v,L) {
gw.set_color(v,blue);

12.3 The Programming Interface 17

gw.set_shape (v, rhombus node) ;
}

gw.redraw();
gw.set_flush(fl);

12.3.4 1/O Operations

GraphWinsupports two file formats for the permanant storage of grapbgheir attributes,
the (native) gw-format and the GML-format [Him97] of Himsdlt also allows to generate
a Postscript representation of the current drawing thateeesily be included into LaTeX
documents. Many of the figures of this book have been prodindbis way. The operations
in this section are available in the file-menu.

The read operations

int gw.read gw(istream& istr);
int gw.read gw(string fname);
int gw.read gml(istream& istr);
int gw.read gml(string fname);

clear the current graph and read a new graph and its attsilftdm the input strearnstr
or file fname respectively. The operations return 0 on success and &spewor code if
something goes wrong (see the manual for details). The wpiéeations

int gw.save gw(ostream& ostr);

int gw.save gw(string fname) ;

int gw.save_gml(ostream& ostr);
int gw.save_gml(string fname);

write the current graph and its layout to output streastr or to file fname respectively.
The operations return 0 on success and a hon-zero errorfcsa@ething goes wrong.

Postscript representations of drawings are generated by

bool gw.save ps(ostream& ostr);
bool gw.save ps(string fname);

which write the current drawing as a Postscript file to ougitgamostr or to file fname
respectively.

12.3.5 Layout Operations

We discuss operations for manipulating thgoutof the graph associated with a GraphWin,
i.e., the positions of the nodes and the sequence of bentie eflges. The operations are,
for example, used to realize the functions in the layoutumen

The arguments of the layout operations specify new noddiponsiand/or new sequences
of bends. The layout operation moves the nodes and changefatvings of edges ac-
cordingly. The animation of the layout operations (and aisthe zooming operations) is
controlled by theanimationstepsparameterGraphWinanimates changes in the layout by
linear interpolation. It shows a sequenceamfimationstepsintermediate layouts, where

18 GraphWin

each node and edge moves a fraction gdriimationstepsof its total movement in each
step. Ifanimationstepss set to zero, the layout change is performed instantahgous

In most layout operations the new node position can be spdaiither agpointsor as
pairs ofdoubles We list both versions for the first layout function and onlyedfor the
others. The operations

void gw.set position(const node_array<double>& xpos,

const node_array<double>& ypos) ;
void gw.set position(const node_array<point>& pos);

move every noder of gw from its old position to positionxpogv], ypogv]) or pogv],
respectively, and leave the bends of all edges unchanged,

void gw.set_layout(const node_array<point>& pos,
const edge_array<list<point> >& bends) ;

moves every node to positionpodv] and sets the bend sequence of every edde
bend$e],

void gw.set_layout(const node_array<point>& pos);
moves every node of the graph to positiopoqv] and removes all edge bends from the
layout,

void gw.remove bends();
removes all bends from the layout and leaves the node psitiochanged,

void gw.place_into_box(double x0, double yO, double x1, double y1);
moves the graph into the rectangular b, y0, x1, y1) by scaling and translating the
layout, and

void gw.place_into_win();

moves the graph into the drawing window by scaling and tedims].

Layout coordinate computations. Consider the following situation. We have a graph
window gw and its associated gragh We have computed a new layout 8¢ but the new
layout does not conform to the coordinate spacgwaf We want to adjust the layout data
before applying it. Section 12.4 gives an application.

The operations in this section are very helpful in this ditra They apply the transfor-
mationsplaceinta. boxandplaceintawin to the layout data supplied separately in node and
edge arrays.

void gw.adjust_coords_to_box(node_array<double>& xpos,
node_array<double>& ypos,
edge_array<list<double> >& xbends,
edge_array<list<double> >& ybends,
double x0, double yO, double x1, double yl1);

12.3 The Programming Interface 19

transforms the layout given bypos ypos xbends andybendsin the same way as a call
placeinta box(x0, y0O, x1, y1) would do. However, the actual layout of the current graph is
not changed by this operation.

void gw.adjust_coords_to_box(node_array<double>& xpos,

node_array<double>& ypos,
double x0, double yO, double x1, double y1);

transforms the layout given ypos yposas gwplaceintaboxx0, y0, x1, y1) would do.
It ignores any edge bends. The actual layout of the curreagtgis not changed by this
operation.
void gw.adjust_coords_to_win(node_array<double>& xpos,
node_array<double>& ypos,

edge_array<list<double> >& xbends,
edge_array<list<double> >& ybends);

callsadjustcoordstaboxxpos ypos xbendsybendswx0, wyQ wx1, wyl) with the current
window rectangléwx0, wy0, wx1, wyl). Finally,

void gw.adjust_coords_to_win(node_array<double>& xpos,
node_array<double>& ypos);

callsadjustcoordsta box(xpos ypos wx0 wyQ, wx1, wyl), where as in the preceding oper-
ation (wx0, wyQ wx1, wyl) is the current window rectangle .

12.3.6 Zoom Operations

Zoom operations change the coordinate system of the winddwdonot change the layout
of the graph. A zoom operation is a combination of a stretckhsimk transformation
(changing the scaling factor of the window) with a translatof the window in user space.
The animation stepgparameter specifies the number of intermediate window ipasitto
be shown in the animation of the zoom operation; if the patamis zero the zoom is
performed instantaneously.

void gw.zoom(double f)

zooms the window by the factdrr; this multiplies the scaling factor by and leaves the
coordinates of the center of the window unchanged.

void gw.zoom area(double x0, double yO, double x1, double y1)

zooms the window to rectangl&0, y0, x1, y1). More precisely, if the aspect ratio of the
zoom rectangle = (y1—y0)/(x1— x0) is equal to the aspect ratior of the current
window, the window coordinates are set(i®, y0, x1, y1). Otherwise, ifr is smaller than
wr the new window coordinates a0, y0, x1, y') with y’ = yO+ wr % (x1 — x0) and ifr

is greater thamr the new coordinates af&0, x’, y0, y1) with X’ = x0+ (y1— y0)/wr.

void gw.center _graph()

performs a zoom operation that does not change the scalithge efindow and moves the
center of the bounding box of the current graph layout to #reer of the window.

20 GraphWin

void gw.zoom graph() ;

calls gwzoomarea(x0, y0, x1, y1) such thatx0, x1, andy0 are the left, right and lower
coordinates of the bounding box of the current layout of ttegph.

12.3.7 Miscellaneous Operations
We close our discussion of the programming interface witilstaof small, but useful func-
tions.

void gw.message(string msg);

displaysmsgat the top of the window. Iinsgis the empty string, the previous message
is deleted.

bool gw.wait(const msg);

displaysmsgand waits until the done-button is pressed or exit is sedefttan the file
menu. The result of the operationtise in the first case anthlsein the second case.

int gw.open_panel(panel& P)

displays paneP centered orgw and returns the result &.open(). During the execution
of P.open() all menus ofgw are disabled.

node gw.ask node();

asks the user to select a node by clicking with the left mous®b on it. The selected node
is returnednil is returned if the click does not hit a node.

edge gw.ask_edge();

asks the user to select an edge by clicking with the left mbusion on it. The selected
edge is returnedyil is returned if the click does not hit an edge.

void gw.get bounding box(double& x0, double& yO, double& x1, double& y1);

computes the coordinatésO, y0O, x1, y1) of a minimal area rectangular bounding box con-
taining the current layout of the graph.

12.4 Edit and Run: A Simple Recipefor Interactive Demos

We implement a simple demo that illustrates planarity bgsbased on the edit-and-run
paradigm for interactive demos of graph algorithms. The a@dinstrates many of the
functions discussed in the preceding sections.

We define a GraphWigw with frame label “Planarity Test Demo” and open it. We then

12.4 Edit and Run: A Simple Recipe for Interactive Demos 21

enter the edit-loop. After each edit operation, we run trepbralgorithm on the grap@
associated witlgw and display the result.

(gw_plandemo.i=

#include <LEDA/graphwin.h>
#include <LEDA/graph_alg.h>

(plandemo: highlight

int main()
{
GraphWin gw("Planarity Test Demo");

gw.display(window::center,window::center);

while (gw.edit())
{
graph& G = gw.get_graph();

(run graph algorithm and display result

return 0;

So far the program is generic (except for the frame label)nd¥e come to the part specific
to the planarity demo.

We testG for planarity. If G is planar and has at least three nodes (otherwise the current
drawing is already without crossings), we compute a sttdigh embedding and display
it. The computation of the straight line embedding retuhgsdoordinates of a straight line
embedding in some coordinate system. We adjust the codedina the coordinate space
of gw by calling adjustcoordstawin. Finally, we display the straight line embedding by
callinggwsetlayout(. . .).

If the graph is non-planar, we compute a Kuratowski subdinik = (V, Ex) and
display it by calling thehighlight function. We wait until the user clicks done and then
restore the old drawing. The function KURATOWSKI computes set of nodes and edges
of the subdivision and for each node®fthe degree of the node in the subdivision. For all
v € V the degrealedv] is equal to 2 for subdivision points, 4 for all other nodeKiis a
Ks, and—3 (4-3) for the nodes of the left (right) side i is aKs 3.

(run graph algorithm and display resy=

if (PLANAR(G))

{ if (G.number_of_nodes() < 3) continue;
node_array<double> xcoord(G);
node_array<double> ycoord(G) ;

STRAIGHT _LINE_EMBEDDING (G, xcoord,ycoord) ;
gw.adjust_coords_to_win(xcoord,ycoord) ; // 1t
gw.set_layout (xcoord,ycoord) ;

}

else

{ list<node> V_k;
list<edge> E_k;

22 GraphWin

node_array<int> kind(G);

KURATOWSKI (G,V_k,E_k,kind) ;

gw.save_all_attributes();

highlight (gw,V_k,E_k,kind) ;

gw.wait("This Graph is not planar. I show you a\
Kuratowski Subdivision (click done).");

gw.restore_all_attributes();

We still have to define the functidmighlight that highlights the Kuratowski subgraph.
We setflushto false at the beginning d¢fighlight and callredrawand restore the old value
of flushat the end. This ensures that all changes madadhightwill become effective at
the same time.

We highlight the Kuratowski subgraph by drawing its edgethwiidth two and black
(all other edges are drawn grey and with width one) and bygusthor and shape codes to
highlight its nodes. Figure 12.9 shows an example.

(plandemao: highlight=

void highlight (GraphWin& gw, list<node> V, list<edge> E,
node_array<int>& kind)
{
const graph& G = gw.get_graph();

bool flushO = gw.set_flush(false);

node v;
forall_nodes(v,G) {
switch (kind[v]) {

case O0: gw.set_color(v,greyl);
gw.set_border_color(v,greyl);
gw.set_label_color(v,grey2);
break;

case 2: gw.set_color(v,greyl);
gw.set_label_type(v,no_label);
gw.set_width(v,8);
gw.set_height(v,8);
break;

case 3:

case 4: gw.set_shape(v,rectangle_node);
gw.set_color(v,red);
break;

case -3: gw.set_shape(v,rectangle_node);
gw.set_color(v,blue2);
break;
}

}

edge e;

forall_edges(e,G) gw.set_color(e,greyl);

forall(e,E)

{ gw.set_color(e,black);

12.4 Edit and Run: A Simple Recipe for Interactive Demos 23

This Graph is not planar. | show you a Kuratowski Subdivision

iclick done to continue)

hodes: 12 edges: 21 176.26 331.27

Figure 12.9 The planarity test demo: Highlighting a Kuratowski subsiion.

gw.set_width(e,2);
}

gw.redraw();
gw.set_flush(flush0);

}

Exercises for 12.4

1 Write a program that animates quicksort. Have a graph withrmde for each input and
no edges. Change the layout of the graph as the sort progresse

2 Write a program that animates heapsort.

3 Write a program that always shows a DFS-structure of theently edited graph by
drawing the different edge types (tree, backward, forwerdss) in different colors or
styles.

24 GraphWin

12.5 Customizingthelnteractive Interface

We describe three ways for customizing the interactiveiate:
e Call-back functions,

e Extended and/or additional menus, and

e Redefined edit actions.

Each method will allow us to write nicer demos.

12.5.1 Call-Back Functions

Call-back or handler functions can be used to associatganmpfunctionality with the edit
operations ofGraphWin Two handlers can be defined for every operation. The first one
the so-callecpre-handler is called immediately before the corresponding edit ajemna
The second one, the so-callpdst-handleris called at the end of the operation. For move
operations of nodes and sliders, there is a third handlersdkcallednove-handlervhich

is called for all intermediate positions.

The pre-handlers have a boolean return value which @&iéphWinwhether the corre-
sponding edit operation is to be executed or not. This pesvalsimple way of disallowing
edit operations under certain conditions. In general, @ne-post-handler also have differ-
ent parameter lists.

The null-handler JULL) can be used to remove a pre- or post-handler from an edit
operation.

We give a list of the most important handlers and the cormedipg setoperations. There
are two versions of eackethandler, one each for defining the pre- and post-handler. The
functions have the same name and differ in the type of thetimmpointer argument: func-
tions for setting pre-handlers take an argument of typel (xfunc)(GraphWir&, ...) and
functions for setting post-handlers take an argument af waid (+func)(GraphWirg, ...).

void gw.setnewnode handler(bool (*f) (GraphWin&,point));

sets the pre-handler of the new-node operatiof,toe., f (gw, p) is called before a node
is created at positiop.

void gw.setnewnode handler(void (*f) (GraphWin&,node));

sets the post-handler of the new-node operatiof tae., f (gw, v) is called after a new
nodev has been created.

void gw.set new_edge handler(bool (*f) (GraphWin&,node,node));

sets the pre-handler of the new-edge operatioh,iice., f (gw, v, w) is called before a new
edge(v, w) is created.

void gw.set new_edge handler(void (*f) (GraphWin&,edge)) ;

sets the post-handler of the new-edge operatiofi,toe., f (gw, e) is called after a new
edgee has been created.

12.5 Customizing the Interactive Interface 25

void gw.set_del node_handler(bool (*f) (GraphWin&,node));

sets the pre-handler of the del-node operatioh,tbe., f (gw, v) is called each time before
a nodev is deleted.

void gw.set_del node_handler(void (*f) (GraphWin&));

sets the post-handler of the del-node operatiofi,toe., f (gw) is called each time a node
has been deleted.

void gw.set_del_edge handler(bool (*f) (GraphWin&,edge)) ;

sets the pre-handler of the del-edge operatioh,toe., f (Qw, e) is called each time before
an edgeeis deleted.

void gw.set_del_edge handler(void (*f) (GraphWin&));

sets the post-handler of the del-edge operatioh, tice., f (gw) is called each time an edge
has been deleted.

void gw.set_init_graph handler(bool (*f) (GraphWin&));

sets the pre-handler of the init-graph operatiori ta.e., f (gw) is called every time before
any global update of the graph, e.g., in a clear, generateadroperation.

gw.set_init_graph handler (void (*f) (GraphWin&));

sets the post-handler of the init-graph operationfta.e., f is called after each global
update of the graph.

Node moving and edge slider moving operations may have thifisgent handlers. The
first is called before the moving starts, the second is cddiedvery intermediate position,
and the third one is called at the final position of the noderdffte moving has been finished.
The handlers are set by:

gw.set_start_move node_handler (bool (*f) (GraphWin&,node));
gw.set_move node handler(bool (*f) (GraphWin&,node,point));
gw.set_end move node _handler(void (*f) (GraphWin&,node));

gw.set_start_edge_slider handler(
void (*f) (GraphWin& gw,edge,double),int i);

gw.set_edge_slider_handler (
void (*f) (GraphWin& gw,edge,double),int i);

gw.set_end edge_slider_handler (
void (*f) (GraphWin& gw,edge,double),int i);
Recall that each edge has three sliders associated withetinfeger argumentin the last
three functions selects the slider<0 < 2.

26 GraphWin

12.5.2 A Recipe for On-line Demos of Graph Algorithms
The edit-and-run paradigm for demos of graph algorithmsireg an explicit user action,
namely a click on the done-button, to start the graph algorito be demonstrated. Call-
back or handler functions allow us to write on-line demosclirihow the result of a graph
algorithm while the graph is edited and not only after editin

We give the generic structure of a demo that calls a graplrithgoafter every addition
or deletion of a node or edge and after the initializationhd graph (for example, by
reading it from a file). We define a functionnanddisplaythat runs the graph algorithm
on the graph associated wigilw and updates the display. We then define post-handlers for
thenewnode newedge delnode deledge andinit graphoperations; each handler simply
callsrunanddisplaygw). In the main program we tetBraphWinwhich handlers to use
by calling the correspondirgethandlerfunctions, display the window, and cajvedit().
That's all.

(gw_handler.o=

#include <LEDA/graph_alg.h>
#include <LEDA/graphwin.h>

void run_and_display(GraphWin& gw)
{ (run algorithm and update display}

void new_node_handler (GraphWin& gw, node) { run_and_display(gw); }
void new_edge_handler(GraphWin& gw, edge) { run_and display(gw); }
void del_edge_handler (GraphWin& gw) { run_and _display(gw); }
void del_node_handler (GraphWin& gw) { run_and_display(gw); }
void init_graph_handler (GraphWin& gw) { run_and _display(gw); }

int main()

{
GraphWin gw;
gw.set_init_graph_handler(init_graph_handler) ;
gw.set_new_edge_handler (new_edge_handler) ;
gw.set_del_edge_handler(del_edge_handler);
gw.set_new_node_handler (new_node_handler) ;
gw.set_del_node_handler (del_node_handler);

gw.display();
gw.edit();

return 0;

We will next derive a specific demo from this framework by argtating theun.anddisplay
function. We illustrate the strongly connected componehtle graph associated wigw;
all nodes belonging to the same component should be colbesgbiime and nodes in differ-
ent components should be colored differently.

The “work horse” of our demo is a functiomid runanddisplay GraphWir&) that uses
the graph algorithn S TRONGCOMPONENTSo0 compute a numberingpmpnumof the
nodes of the current graph, such that all nodes of a strorayipected component receive
the same number. Each node is painted with the number ofntpcpent.

12.5 Customizing the Interactive Interface 27

File Edit Graph Llayout ‘window Optiohs Help << done|

nodes: 12 edges: 20 130.78 385.52

Figure 12.10 An screen shot of an on-line demo for the strongly conneatesponents of a
graph.

(run algorithm and update displase

graph& G = gw.get_graph();

node_array<int> comp_num(G) ;
STRONG_COMPONENTS (G, comp_num) ;

node v;

forall nodes(v,G) gw.set_color(v,color(comp_num[v]));

Figure 12.10 shows a screen shot of the program after a fdimgadperations.

12.5.3 Defining and Changing Menus

The menus ofcraphWinare not fixed. New sub-menus and buttons can be added to the
main window and any sub-menu, in this way extending the sttraftions and algorithms
that can be applied to the current graph by a mouse click.hEurtore, the set of default
menus in the main window’s menu bar can be changed by rematamglard menus. All

28 GraphWin

operations for changing menus have to be called before theomi is displayed for the first
time.

Changing the Standard Main Menu: The default menus iGraphWiris menu bar are
determined by a bit mask that is the bitwise-or of an arbjtsubset of the predefined con-
stantsM_FILE, M_EDIT, M.GRAPH M_LAYOUT, M\WINDOW, M_OPTIONS M_HELP,
andM_DONE Each of these constants represents the correspondirgdpstamenu dis-
cussed in Section 12.1. The valveCOMPLETEis defined as the bitwise-or of all con-
stants above, i.e., it specifies a menu bar containing altlsial menus. The operation

long gw.set_default menu(long mask);

defines the set of standard menus, wheaskis the bitwise-or of an arbitrary subset of the
predefined constants listed above. The operation

void gw.del menu(long mask);

removes all menus corresponding to 1-bitsriaskfrom the menu bar.

Adding New Menus. New sub-menus can be added to an existing menu (or the main men
bar) by calling theaddmenuoperation. Each menu is represented by an intagen(id)
from an internal numbering of all menus. The main menu bantesuid zero.

int gw.add menu(GraphWin& gw, string label, int menu._id = 0),

creates a sub-menu in menu withntenuid. The corresponding button is labeled with
label. The operation returns the menu id of the new menu. The meofiadtandard menu
can be obtained by callingetmenuystring) with the name of the menu, e.qg.,

get_menu("Help");

returns the menu id of the help menu.

Adding Simple Functions. We call functions of typevoid fung¢GraphWir& gw) simple
Theaddsimplecall operation oiGraphWincan be used to add (buttons for starting) simple
functions to an existing menu or the main menu bar.

void gw.add_simple_call(void (*func) (GraphWing),
string label, int menu_id = 0);

adds a new button with labklbelto the menu with menu ichenuid. Whenever this button
is pressed during edit modenc(gw) is called.

We give an example. Assume we want to add a button to the main that runs a DFS
algorithm of type

void dfs(graph& G, node s, node_array<bool>& reached)

on the current graph. We write a simple functieoid (run.dfs)(GraphWir&) that tells
GraphWinhow to calldfsand how to display its result.

12.5 Customizing the Interactive Interface 29

void run_dfs(GraphWin& gw)
{
// provide arguments
graph& G = gw.get_graph();
node s = gw.asknode();
node_array<bool> reached(G,false);

// call function
dfs(G,s,reached) ;

// display result
node v;

forall nodes(v,G) if (reached[v]) gw.set_color(v,red);
}

and add the function to the main menu by calling
gw.add simple call (run dfs,"dfs");

The string argument “dfs” will be used as the label of the nesnmbutton. We may also
want to extend the help menu. We define a simple funclooutdfsthat opens a panel and
displays a help string

void about_dfs(GraphWin& gw)
{ window& W = gw.get_window();

p
P.set_panel bg _color(win p->mono() ? white : ivory);
P.text_item("The dfs-button runs dfs on the current graph.");
P.button("0K");

W.disable panel();

P.open(W);

W

.enable _panel();
}

and add it to the help menu.

int h.menu = gw.get menu("Help");
gw.add simple_call (about_dfs, "About DFS",h menu) ;

Adding GraphWin Member Functions: Not every operation of the programming inter-
face of GraphWinis available in the interactive interface. However, theran easy way of
adding operations of typeoid GraphWin:fund), i.e., member functions without parame-
ters and without a result. The operation

gw.add member (void (*GraphWin::func)(), string label, int menu id = 0);

adds a new button with labklbelto the menu with menu ichenuid. Whenever this button
is pressed during edit modpufung) is called.

As an example, we add a "redraw” button, that calls giagedraw() operation, to the
main panel.

gw.adenember_call(&GraphWin::redraw,"redraw");

30 GraphWin

Adding Families of Functions. Sometimes, one wants to add an entire group of functions,
all with the same interface, to a menu. In this case it woultelkous to write a wrapper
for each of these functions. It is more convenient to writly @ansinglecaller function that
can deal with all functions of the group. The caller takesfarence to &GraphWinand a
pointer to the function to be called as arguments. More pedygiif the function to be called
is of typefunctiont, the caller has typeoid (xcaller) (GraphWir&, functiont).

Thegwaddcall function template adds a function together with its calbes tmhenu. This
operation should better be realized by a member functioplee. However, only a few
compilers currently support this feature of-€

template <class function_ t>

void gw_add call(GraphWin& gw, function_t func,
void (*caller) (GraphWin&, function_t),
string label, int menu_id=0) ;

adds a new button with labklbelto the menu with menu ichenuid. Whenever this button
is pressed in edit mode, the functicaller is called with argumentgw andfunc

We use a family of graph drawing functions as an example. igswe have a library
of graph drawing algorithms (e.g., the AGD library [JMN])cawant to build egraphdraw
menu which makes all functions in the library available on@use click. We assume that
all graph drawing algorithms take a gra@hand compute for every nodeof G a position
(xcoordv], ycoordv]).

void draw_algl(const graph& G, node_array<double> xcoord,
node_array<double> ycoord) ;

void draw_alg2(const graph& G, node_array<double> xcoord,
node_array<double> ycoord) ;

A generic caller function for this type of graph algorithmas follows:

typedef void (*draw_alg) (graph&, node_array<double>&,
node_array<double>&) ;

void call _draw_alg(GraphWin& gw, draw_alg draw)
{
// provide arguments
graph& G = gw.get_graph();
node_array<double> xcoord(G) ;
node_array<double> ycoord(G) ;

// call function
draw (G, xcoord,ycoord) ;

// display result
gw.adjust_coords_to_win(xcoord,ycoord) ;
gw.set_layout (xcoord,ycoord) ;
if (!gw.get flush()) gw.redraw();

}

The new menu is how easily created.

12.5 Customizing the Interactive Interface 31

int draw.menu = gw.add menu("graph drawing");

gw_add_call(gw,draw_algl,call draw_alg,"draw_algl",,draw.menu)
gw_add _call(gw,draw alg2,call draw_alg, "draw_alg2",draw_menu)

A Complete Example: We give a complete example that illustrates the possislitd ex-
tend and modify menus. We will write a demo that illustratfss gpanning trees, connected
components, and strongly connected components.

For dfs and spanning trees we use simple functions.

(simple functions=

void dfs_num(GraphWin& gw)

{ graph& G = gw.get_graph();
node_array<int> dfsnum(G) ;
node_array<int> compnum(G) ;

DFS_NUM(G,df snum, compnum) ;

node v;
forall nodes(v,G) gw.set_label(v,string("%d|%d",dfsnum[v],compnum[v]));

if (gw.get_flush() == false) gw.redraw();

}
void span_tree(GraphWin& gw)
{ graph& G = gw.get_graph();
list<edge> L = SPANNING_TREE(G);
gw.set_color(L,red);
gw.set_width(L,2);
if (gw.get_flush() == false) gw.redraw();

The LEDA functions to compute components of a graph all hagesame interface. They
take a graph and compute a node arraintd, and return an int. Any such function can be
added to a GraphWin using the caller

(components callé=
// a caller for component algorithms

void call_comp(GraphWin& gw,
int (*comp) (const graph& G, node_array<int>& compnum))
{ graph& G = gw.get_graph();

node_array<int> compnum(G) ;

comp (G, compnum) ;

node v;

forall_nodes(v,G)

{ int i = compnum[v];
gw.set_label(v,string("%d",i));
gw.set_color (v, (color) (i%16));

}
if (gw.get_flush() == false) gw.redraw();

32 GraphWin

In the main program we define a GraphWin, delete some of thelatd menus (just
to illustrate how it is done), add our simple calls, add atréséton, and finally create a
sub-menu for the components functions.

(gw_menu.¢=

#include <LEDA/graphwin.h>
#include <LEDA/graph_alg.h>
#include <LEDA/graph_misc.h>

(components callér
(simple functions

int main()

{
GraphWin gw;
// we delete some of the standard menus
gw.set_default_menu(M_COMPLETE & ~M_LAYOUT & ~M_HELP);

// add two simple function calls
gw.add_simple_call(dfs_num, "dfsnum");
gw.add_simple_call(span_tree, "spanning");

// a member call
gw.add_member_call(&GraphWin: :reset,"reset");

// and a menu with three non-simple functions using
// a common call function

int menul = gw.add_menu("components");

gw_add_call(gw,COMPUNENTS, call_comp,'"simply connected", menul) ;
gw_add_call(gw,COMPONENTS1, call_comp,"simply connectedl", menul);
gw_add_call(gw,STRONG_CUMPONENTS,call_comp,"strongly connected" ,menul) ;

gw.display();
gw.edit();

return 0;

}

Figure 12.11 shows a screen shot of this demo.

12.5.4 Defining Edit Actions

Mouse operations in the display region cBaaphWingenerate events. An event is charac-
terized by its event bit maskventmask(which is the or of elementary masks to be defined
below) and the current positiamouseposition of the mouse pointer. Event masks have
associateedit actions All edit actions are functions of type

void action(GraphWin& gw, const point& pos);

When an event occurs, the associated action function isctadith theGraphWinobject and

the current mouse pointer positiomousepositionas arguments. The object (node or edge)

under the current position can be queried bydbteditnodeor geteditedgeoperation.
Event masks are the bitwise-or of some of the following pfiege constants:

ALEFT, AMIDDLE, ARIGHT: If one of these bits is set, the corresponding mouse
button (left, middle, or right) has been clicked.

12.5 Customizing the Interactive Interface

File Edit Graph ‘wWindow Options

33

spanning | dfsnum |

| = components

1180

nodes: 16 edges: 24 wundo: 3/0

189,31 267.24

Figure12.11 Extending the menu: Computing a DFS-numbering.

ADRAG This bit indicates that the mouse is moved with one or mottohs (specified

by the bits discussed above) held down.

ADOUBLE This bit indicates a double click , i.e., the event that a ssbutton has

been clicked twice.

ASHIFT, ACTRL, AALT: If one of these bits is set, the corresponding keyboardobnt

key (Shift,Ctrl,Alt) is pressed.

ANODE If this bit is set, the mouse pointer is located over a nodkthe node can be

queried by thegwgeteditnodd) operation.

AEDGE If this bit is set, the mouse pointer is located over an edgkthe edge can be

queried by thgwgeteditedge) operation.

34 GraphWin

ASLIDER If this bit is set, the mouse pointer is located over a slifean edge. The
corresponding edge can be queried as above and the numbersiider (0,1, or 2) can be
obtained by calling thgwgeteditslider() operation.

An event mask is defined by a combination of these bits, faaime
(ALLEFT | A_NODE | A_DOUBLE)

describes a double click of the left mouse button on a node.

Setting Edit Actions. The following operations can be used to change the actiortifurs
associated with events.

gw_action gw.set_action(long mask,void (*func) (GraphWin&, const point&));
sets the action on conditianaskto funcand return the previous action of this condition.

After this call funcis called with theGraphWinobject and the current edit position as
arguments whenever the condition definedigskbecomes true.

void gw.reset_actions();

resets all actions to their default values and

void gw.clear_actions();

sets all actions ttNULL.
The following piece of code shows part of the initializatwiithe default edit actions.

// left button (create,move,scroll,zoom)

set_action(A_LEFT , gw_newnode);
set_action(A_LEFT A NODE , gwnew_edge);
set_action(A_LEFT A DRAG |A_NODE , gwmove node);

|
|
set_action(A_LEFT | A DRAG |A_EDGE , gw.move_edge);

|

set_action(A_LEFT A _DRAG , gw_scroll _graph);
set_action(A_LEFT | A DRAG |A_SLIDER, gwmove edge slider);
set_action(A_LEFT |A_SHIFT |ADRAG |ANODE , gwmove_component);
set_action(A_LEFT |A_DOUBLE | A NODE , gw_setup_node);
set_action(A_LEFT |A_DOUBLE | A_EDGE , gw_setup_edge);

An Example Program: The following program redefines some of the default actifors,
example, when the left mouse button is clicked over a node thi control key pressed,
the node color will be increased by one.

(gw_action.g=
#include<LEDA/graphwin.h>
void change_node_color(GraphWin& gw, const point&)
{ node v = gw.get_edit_node();
int col = (gw.get_color(v) + 1) % 16;
gw.set_color(v,color(col));

}
void change_edge_color(GraphWin& gw, const point&)

12.6 Visualizing Geometric Structures 35

{ edge e = gw.get_edit_edge();
int col = (gw.get_color(e) + 1) % 16;
gw.set_color(e,color(col));

}

void center_node(GraphWin& gw, const point& p)
{ node v = gw.get_edit_node();
gw.set_position(v,p);

}

void delete_node(GraphWin& gw, const point&)
{ node v = gw.get_edit_node();
gw.del_node(v);
}
void zoom_up(GraphWin& gw, const point&) { gw.zoom(1.5); }
void zoom_down(GraphWin& gw, const point&) { gw.zoom(0.5); }

main()

{
GraphWin gw;
gw.set_action(A_LEFT | A_NODE | A_CTRL, change_node_color);
gw.set_action(A_LEFT | A_EDGE | A_CTRL, change_edge_color);
gw.set_action(A_LEFT | A_NODE | A_SHIFT, center_node);
gw.set_action(A_RIGHT| A_NODE, delete_node);

gw.set_action(A_LEFT | A_CTRL, zoom_up);
gw.set_action(A_RIGHT| A_CTRL, zoom_down) ;

gw.display(window: :center,window: :center) ;
gw.edit();

12.6 Visualizing Geometric Structures

Many geometric data structures of LEDA are implemented bglied graphs, e.g., Delau-
nay diagrams are represented by graphs of GRPAPHpoint, int> and Voronoi diagrams
are represented as graphs of tfpRAPHCIRCLE POINT>. Many geometry demos have
a GraphWin-button for viewing the underlying graph struetu

We sketch how this button is realized. In the demo below wemdmthe Delaunay
triangulationDT of a setL of twenty-five points on a regular grid. We then declare a
GraphWingw for DT, tell gw that we want each nodeto be drawn at positioDT[v], as
a circle of radius eight pixels, and without label, and thatwant each edge to be drawn
with a color indicating its label. Start the demo and the gralpown in Figure 12.12 will
appeatr.

(gw_delaunay.g=

#include <LEDA/plane_alg.h>
#include <LEDA/graphwin.h>

main()

36

E ==

File Edit Graph Layout ‘Window Options Help << done |
% °5 o5 % 9
Iy o 4 ‘__j P 4 L 4
e H)z @ >3 X
£ h a A Ed
5‘ n!r ﬂjl.a s "L]r
X F F '
i S o < \q‘ N 4
JE:Q o .il\‘:li P i s
L 4 k N i &
&Q g =@ = >0
nodes: 25 edges: 112 -15.56 26.60

Figure 12.12 GraphWin displaying a Delaunay triangulation.

GRAPH<rat_point,int> DT;

list<rat_point> L;
lattice_points(25,100,L);

DELAUNAY_TRIANG(L,DT);
GraphWin gw(DT);

node

v

forall_nodes(v,DT)
{ rat_point p = DT[v];

gw.
gw.
gw.
gw.

X
edge

set_position(v,p.to_point());
set_label _type(v,no_label);
set_width(v,8);
set_height(v,8);

€;

forall_edges(e,DT)

{ switch (DT[e]) {
case DIAGRAM_EDGE: gw.set_color(e,green?); break;
case NON_DIAGRAM_EDGE: gw.set_color(e,yellow); break;

GraphWin

12.7 A Recipe for On-line Demos of Network Algorithms 37

case HULL_EDGE: gw.set_color(e,red); break;
}
}

gw.display();
gw.zoom_graph() ;
gw.edit();

12.7 A Recipefor On-line Demos of Network Algorithms

Networks are graphs whose edges (and sometimes nodespatedavith numbers, e.g.,
capacities or costs. On-line demos of network algorithnoaikhallow the user to edit the
underlying graph as well as the edge capacities. We havadsireeen how to react on-
line to update operations. In this section we will show howntplement capacity changes
by edge sliders. All demos of network algorithms follow thergadigm presented in this
section. We use the min cost flow algorithm as our exampleothiér demos are simpler.
Figure 12.13 shows a screenshot.

The global structure of our demo is as follows. We define edgpsoap andcostin
order to make edge capacities and edge costs globally bleaflar the handler functions.
We then define a function that runs the min cost flow algoritimeh displays the result and
we define handlers for edge events and handlers for slideteve

In the main program we generate the grid gr&bkhown in Figure 12.13 and associate
the edge mapsap andcostwith it. We define a GraphWigw for G and set its header to
“Min Cost Max Flow”. We disable edge bends since sliders camed for straight line
edges only. We set the node and edge attributes to the coftesltat in the figure, and we
adjust the size of the layout such that it uses about 90% atithéow. Finally, we open the
window and put it into edit mode.

(gw.mcmflow.i=
#include <LEDA/graphwin.h>
#include <LEDA/graph_alg.h>
static edge_map<int> cap;
static edge_map<int> cost;
(run min cost flow and display resilt
(edge handlens
(capacity and cost slideys

int main()

{
// construct a (grid) graph
graph G;
node_array<double> xcoord;
node_array<double> ycoord;

38

GraphWin
= EE
File Edit GCraph Layout ‘Window Cpticns Help << done ‘
Total Flow: 52 Total Cost: 14309
hodes: 25 edges: 40 78.11 140.10

Figure 12.13 Animation of a min-cost-flow algorithm.

grid_graph(G,xcoord,ycoord,5);

// initialize cap and cost maps
cap.init (G);

cost.init (G);

GraphWin gw(G,"Min Cost Max Flow");

// disable edge bends
gw.set_action(A_LEFT | A_DRAG | A_EDGE , NULL);

(set handlers
(set attributes of nodes and edyes

12.7 A Recipe for On-line Demos of Network Algorithms 39

//adjust layout
gw.adjust_coords_to_win(xcoord,ycoord) ;
gw.set_layout (xcoord,ycoord) ;
gw.zoom(0.9);

// open gu

gw.display();

gw.edit();

return 0O;

}

Setting the node and edge attributes is routine.

(set attributes of nodes and edges
gw.set_node_color(yellow);
gw.set_node_shape(circle_node);
gw.set_node_label_type(no_label);
gw.set_node_width(14);
gw.set_node_height(14);
gw.set_edge_direction(directed_edge) ;
node s = G.first_node();
gw.set_shape(s,rectangle_node);
gw.set_width(s,22);
gw.set_height (s,22);
gw.set_color(s,cyan);
gw.set_label(s,"S");
node t = G.last_node();
gw.set_shape(t,rectangle_node);
gw.set_width(t,22);
gw.set_height (t,22);
gw.set_color(t,cyan);
gw.set_label(t,"T");

The function that runs the min cost flow algorithm and displiy result is similar to the
display function in the strongly connected components defriifection 12.4, but slightly
more complex because we are aiming for a more elaboratedlization.

We obtain the grapks from gw, we sets andt to the first and last node, respectively, and
compute the flow using the global edge mappandcost We compute the flow value and
the cost of the flow and we set the width of every edge propuatito the flow through the
edge. Edges with flow zero are faded to grey. We reset fluske wnnessage containing
flow value and cost, and redraw.

(run min cost flow and display resp#t

void run_mcm_flow(GraphWin& gw)

{ bool flush = gw.set_flush(false);
graph& G = gw.get_graph();
node s G.first_node();
node t = G.last_node();

gw.message ("\\bf Computing MinCostMaxFlow");

40 GraphWin

edge_array<int> flow(G);

int F = MIN_COST_MAX_FLOW(G,s,t,cap,cost,flow);
int C = 0;
// sum up total cost and indicate flow[e] by the width of e
edge e;
forall_edges(e,G)
{ C += flow[el*cost[e];
gw.set_label_color(e,black);
gw.set_label(e,string("d",flow[e]));
gw.set_width(e,1+int ((flow[e]+4)/5.0));
if (flowl[el == 0)
gw.set_color(e,grey2); // O-flow edges are faded to grey
else
gw.set_color(e,black);
}
gw.set_flush(flush);
gw.message (string ("\\bf Flow: %d \\bf Cost: %d",F,C));
gw.redraw();

}

We come to the edge handlers. We first define an auxiliary fmmutit edgethat sets the
capacity and the cost of an edge to random values and setkdievalues for the zeroth
and the first slider of the edge accordingly. Tihi2_handlerinitializes all edges, computes
a min cost flow and displays it. The new edge handler initslithe edge, computes a min
cost flow and displays it.

The init handler and the node and edge handlegadre set in the obvious way.

(edge handlens=

void init_edge(GraphWin& gw, edge e)
{ // init capacity and cost to a random value
caple] = rand_int(10,50);
cost[e] = rand_int(10,75);
// set sliders accordingly
gw.set_slider_value(e,cap[e]l/100.0,0); // slider zero
gw.set_slider_value(e,cost[e]/100.0,1); // slider one
}

void init_handler (GraphWin& gw)

{ edge e;
forall_edges(e,gw.get_graph()) init_edge(gw,e);
run_mcm_flow(gw) ;

}

void new_edge_handler (GraphWin& gw, edge e)
{ init_edge(gw,e);
run_mcm_flow(gw) ;

}

(set handlers=
gw.set_init_graph_handler (init_handler);

12.7 A Recipe for On-line Demos of Network Algorithms 41

gw.set_del_edge_handler (run_mcm_flow);
gw.set_del_node_handler (run_mcm_flow);
gw.set_new_edge_handler (new_edge_handler);

We come to the sliders. The cap slider handlers handle thegehaf capacities. We use
the zeroth edge slider for the capacities. When an edger stigecked up we display an
appropriate message. As long as the slider is moved we gig@anew capacity. When the
edge slider is released we recompute the flow and display it.

(capacity and cost slideys
// capacity sliders

void start_cap_slider_handler (GraphWin& gw, edge, double)
{ gw.message("\\bf\\blue Change Edge Capacity"); }

void cap_slider_handler (GraphWin& gw,edge e, double f)
{ caple]l = int(100%f);
gw.set_label_color(e,blue);
gw.set_label(e,string("cap = %d",caplel));
}

void end_cap_slider_handler (GraphWin& gw, edge, double)
{ run_mcm_flow(gw); }

(set handlers+=

gw.set_start_edge_slider_handler(start_cap_slider_handler,0);
gw.set_edge_slider_handler (cap_slider_handler,0);
gw.set_end_edge_slider_handler(end_cap_slider_handler,0);
gw.set_edge_slider_color(blue,0);

Cost sliders are treated completely analogously.

(capacity and cost slideyg-=
// cost sliders

void start_cost_slider_handler (GraphWin& gw, edge, double)
{ gw.message("\\bf\\red Change Edge Cost"); }

void cost_slider_handler (GraphWin& gw, edge e, double f)
{ cost[e] = int (100%f);
gw.set_label_color(e,red);
gw.set_label(e,string("cost = %d",cost[e]));
}

void end_cost_slider_handler(GraphWin& gw, edge, double)
{ run_mcm_flow(gw); }

(set handlers+=

gw.set_start_edge_slider_handler(start_cost_slider_handler,1);
gw.set_edge_slider_handler(cost_slider_handler,1);
gw.set_end_edge_slider_handler(end_cost_slider_handler,1);
gw.set_edge_slider_color(red,1);

42 GraphWin

= GregWimld [

File Edit Craph Layout Windew Options Help done|

AVL Tree
15 B4 99 B8 B9 57 88 36 40 933 80 65 &1

Figure 12.14 Visualization of an AVL tree.

Exercises for 12.7

1 Add menus to the main window for running and displaying tesuit of the different
shortest-path and network flow algorithms of LEDA. Use edgtess for the input of
edge cost and capacities.

2 Design and implement an animation of the vertex additiamgtity test algorithm dis-
cussed in Chapter 8.

3 Write an animation program of the generic preflow-pushrigam for computing a max-
imum flow in a network.

12.8 A Binary Tree Animation

We close this chapter with a demo which animates severaleimehtations of balanced
binary trees, namely AVL-trees, BBJ-trees, and red-black trees.
All balanced binary tree implementations use a common hhseglassedintree and

bintreenode A bintreeis a collection obintreenodes. Eachbintreenodestores pointers
to its parent and its children, and a balance of tige The interpretation of the balance

12.8 A Binary Tree Animation 43

of a node depends on the tree structure. In the case of Ads-tas the height difference
between the left and right subtree, in the case ofdgBfees it is the number of nodes in
the subtree rooted at the node, and in the case of red-bleek itrencodes the color of the
node. The access functions

int T.get bal(bin_tree nodex*)

bin_tree node* T.parent(bin tree node*)

bin_treemnodex T.l_child(bin_tree_nodex)
bin_treemnodex T.r_child(bin_tree_nodex)

give access to the fields of a node. One can also ask whetheledsha root or a leaf

bool T.is_root(bin_tree nodex)
bool T.is_leaf(bin_tree_nodex*)

and one can inquire about the type and name of a tree. The naaiee® is one of "AVL
Tree”, “BB[alpha] Tree”, ..., and the type of a tree is an ggefrom an enumeration type
encoding the same information as the name.

int T.tree_type()
char* T.tree_name()

A pointer to abintreenodeis abintreeitem

The overall structure of the demo is as follows. We define therol parameters, the
number of insertionsnput, the choice between random and sorted insertionskemtithe
type of tree to be used, we define a panel that allows us toesebtitrol parameters, and we
define thredbintreesand initialize them to an empty AVL-tree, B&J-tree, and red-black
tree, respectively. We then enter a loop.

In each iteration of the loop we open the panel and ask theergadset the control
parameters. We then define an obj€atf classanimbin treefor the GraphWirgw and the
tree selected bkind. The classaanimbintree will be discussed below and does the bulk
of the work. We perfornm insertions onl' with either random inputs or increasing inputs.
Finally, we display the message “Press done to continue’pamdw into edit mode such
that the user can reply.

(gw_bintree.¢=

#include <LEDA/graphwin.h>

#include <LEDA/impl/bin_tree.h>
#include <LEDA/impl/avl_tree.h>
#include <LEDA/impl/bb_tree.h>
#include <LEDA/impl/rb_tree.h>
#include <LEDA/impl/rs_tree.h>

#include <LEDA/map.h>
(class animbin_trees

int main()

{
GraphWin gw(500,400) ;

gw.set_node_width(18);
gw.set_node_height(18);

44 GraphWin

gw.set_node_label_type(no_label);
gw.set_node_label_font(roman_font,10);
gw.set_edge_direction(undirected_edge);
gw.set_show_status(false);

gw.display(window::center,window::center);

int n = 16;
int input = O;
int kind = 0;

// define a panel P to control n, input, and kind

panel P;

P.text_item("\\bf\\blue Binary Tree Animation");

.text_item("");

.choice_item("tree type",kind, "avl-tree","bb-tree","rb-tree");
.choice_item("input data",input,"random", "1 2 3 ...");
.int_item("# inserts'",n,0,64);

.button("ok",0);

.button("quit",1);

‘o' 'u ‘o 9o

bin_tree* tree[3];

tree[0] = new avl_tree;
tree[1] = new bb_tree;
tree[2] = new rb_tree;

while (gw.open_panel(P) == 0)
{

anim_bin_tree T(gw,tree[kind]);
switch (input) {

case 0: { // random
for(int i=0;i<n;i++) T.insert(rand_int(0,99));
break;

}

case 1: { // increasing
for(int i=0;i<n;i++) T.insert(i);
break;
}

}

gw.message ("Press done to continue.");
gw.edit();
}

deletel[] tree;

return 0;

}

It remains to explain the clagsntreeanim An object of this class consists of a reference
T to abintree and a referencgw to a GraphWin, &GRAPHpoint, int> G, and a map
NODE from tree items to graph nodeb;andgw are set in the constructor to references of
our GraphWin and the selected tree, respectively.

The idea is thaG represents a drawing df and thatNODE makes the translation from
tree nodes to graph nodes. In the constructor we ntakbke graph ofgw and setflush

12.8 A Binary Tree Animation 45

to false, and in the destructor we redeto the empty tree. The other functions will be
discussed below.

(class animbin_treeg=
class anim_bin tree {
GraphWin& gw;
bin_tree& T;
GRAPH<point,int> G;
map<bin_tree_item,node> NODE;
(functions to compute a drawing of T
public:
anim_bin_tree(GraphWin& gwin, bin_tree* tptr) : gw(gwin), T(*tptr)
{ gw.message(string("\\bf\\blue %s",T.tree_name()));
//G.clear();

gw.set_flush(false);
gw.set_graph(G);

“anim_bin_tree() { T.clear(); }
(anim.bin_tree:: inser
};

We next explain the functioscantree that computes the layout and sets the visual pa-
rameters of the nodes by callisgtnodeparamsfor each itenr of T. Setting the node
parameters is easy. We draw leaves and the root as rectarglesl other nodes as el-
lipses. For non-leaves we display the balance of the node eparopriate form: in the
case of AVL-trees we use the labets =, and>, in the case of BB}]-trees we display the
balance, and in the case of red-black trees we display tlaabalas a color.

(functions to compute a drawing of £

void set_node_params(bin_tree_item r)

{

node v = NODE[r];

if (T.is_leaf(r))

{ gw.set_color(v,ivory);
gw.set_label(v,string("%d",T.key(r)));
gw.set_shape(v,rectangle_node) ;
return;

}

if (T.is_root(r))
gw.set_shape(v,rectangle_node) ;

else
gw.set_shape(v,ellipse_node);

gw.set_color(v,greyl);
int bal = T.get_bal(r);

switch (T.tree_type()) {
case LEDA_AVL_TREE:

46 GraphWin

switch (bal) {
case O0: gw.set_label(v,"="); break;
case —-1: gw.set_label(v,")"); break;
case 1: gw.set_label(v,"<"); break;
}

break;

case LEDA_BB_TREE:
gw.set_label(v,string("%d",bal));
break;

case LEDA_RB_TREE:
gw.set_label_type(v,no_label);
gw.set_color(v,(bal == 0) ? red : grey3);
break;

The functionscantree computes the layout for the subtree rooted @nd also adds the
edges in the subtree ®. The subtree is placed in the rectangle with left boundéryight
boundaryx1, upper boundary, and vertical displacemeity between parents and their
children. Such a layout is easily computed. We setttemordinate of to the midpoint
of x0 andx1 and they-coordinate to the upper boundary and then place the leftesiin
the left half of the rectangle and the right subtree in thatrigalf of the rectangle. In both
halves we lower the upper boundary dy

(functions to compute a drawing of F=

node scan_tree(bin_tree_item r,double x0, double x1, double y, double dy)
{
set_node_params(r);
node v = NODE[r];
double x = (x0 + x1)/2;
G[v] = point(x,y);
bin_tree_item left
bin_tree_item right

T.1_child(r);
T.r_child(r);
if (left) G.new_edge(v,scan_tree(left,x0,x,y-dy,dy));
if (right) G.new_edge(v,scan_tree(right,x,x1,y-dy,dy));

return v;

We finally explain the insertion procedure. We lookypur trees store generic pointers of
typevoid« as explained in Chapter 13. We therefore need to comvigrta generic pointer.

If x is already in the tree, we do nothing. Otherwise, we insertpir (x, 0) into T and
store the tree item returned m If pis the root ofT, i.e., the current insertion was the first
insertion intoT, we add a node tgw (and hencés), place it at the origin, and associate it
with p. If pis not the root off and hence the current insertion is not the first, the insertio
added two nodes to the tree as shown in Figure 12.15. The migla leaf of T and p and

r = T.getlastnodd) are the new nodes df.

12.8 A Binary Tree Animation a7

©

I OEE————0
E’ insertion of p 0 rebalancing

Figure 12.15 Insertion of a new key adds a new lgafnd a new node. The search for the key
of pin the old tree ended ig and the key ofp is either smaller or larger than the keyafin the
former casep will be the left child orr and in the latter case it will be the right child. After the
addition of the new leaf the tree is rebalanced emgight move to a different position in the
tree. A call of T.getlastnodg) after the insertion returns We set the initial positions gb and

r to the position ofy before the insertion.

We add two new nodes @w, one corresponding tp and the other one corresponding
tor. We place both nodes on top gf We next compute the drawing area and update the
drawing. We compute the drawing area as follows. We leavegoels unused on either
side and we divide thg-extension of the window into ten (since our trees will neyew
deeper than eight) strips. We leave the two top-most stripsed.

(animbin_tree:: insery=
void insert(int x)

{
if (T.lookup(GenPtr(x))) return;

bin_tree_item p = T.insert(GenPtr(x),0);

if (T.is_root(p))
NODE[p] = gw.new_node(point(0,0));
else
{ bin_tree_item f = T.parent(p);
bin_tree_item q = T.1l_child(f);
if (p == q) q = T.r_child(f);
point pos = gw.get_position(NODE[q]);
bin_tree_item r = T.get_last_node();
NODE [p] gw.new_node (pos) ;
NODE [r] gw.new_node (pos) ;
}

node v = NODE[p];

// compute drawing area

double dx = gw.get_window() .pix_to_real(4);
double x0 = gw.get_xmin() + dx;

double x1 = gw.get_xmax() - dx;

double yO = gw.get_ymin();

double y1 = guw.get_ymax();

48 GraphWin

double dy = (y1-y0)/10;

(update drawing
}

It remains to explain how we update the drawing. We first regradivedges fron and then
call scantreefor the root of T and the entire drawing area. This buill$n G and computes
a new layout in the node data Gf We then inforrgwthatG has changed and set the color
of the new node to green. We set flush to true so that changedaeffect and change the
node positions to the node data®fby the callgwsetposition G.nodedata()). Because
layout changes are animated this will make the tree movelglioio its new shape. You
may change the speed in the options menu. When the tree snew form we reset the
color of v and set flush back to false.

(update drawing=
G.del_all_edges();
scan_tree(T.root(),x0,x1,y1-2*dy,dy) ;
gw.update_graph() ;
color col = gw.set_color(v,green2);

gw.set_flush(true);
gw.set_position(G.node_data());
gw.set_color(v,col);
gw.set_flush(false);

Exercise for 12.8
1 Extend the binary tree animation of this chapter to allovetitens of keys by clicking
on the corresponding leaves.

Bibliography

[Him97] M. Himsolt. The graphlet systenhecture
Notes in Computer Scienc&190:233-?7?, 1997.
[JMN] M. Junger, P. Mutzel, and S. Naher. The
AGD graph drawing library. search the WEB
for AGD or one of the authors.
[LK] Lauer and M. Kaufmann. GraVis.
http://wwu-pr.informatik.uni-tuebingen.de/Forschung/GraVis.

49

animation see GraphWin

Delaunay triangulations
visualization, 35
dictionary array
animation, 42

GML-format, 17

GraphWin see also windoy2—-48
animation of data structures, 42—-48
associating a graph, 11
attributes seeparameters itsraphWin
default menu, 4
done-button, 5
edit operations, 4
file operations, 4
graph drawing operations, 5
graph generators and modifiers, 4
options, 5
undo-button, 5
zoom operations, 5
example programs
gw.g 13
gw_action.g 34
gw_attributes.¢ 16
gw_bintree.¢ 43
gw._delaunay.¢35
gw_handler.c 26
gw.mcmflow.¢37
gw.menu.¢ 32
gw_plandemo.c21
animation of data structures, 42
edit and run, 13
extending the menu, 31
min-cost-flow, 37
on-line demos, 26-27, 37-42
planarity demo, 21
simple demos, 20-23

| ndex

interface, 11-20, 24-35
accessing and changing parameters, 14
animation speed, 10, 18
call-back functions, 24
creation of egraphwin 11
edit actions, 32
entering edit mode, 12
event handling, 24
graph operations, 13
handler functions, 24
input and output, 17
layout operations, 17
leaving edit mode, 12
menus, 27
miscellaneous functions, 20
slider, 25, 41
zooming, 11, 19

mouse interaction
creating a node, 3
double click, 4
dragging a node, 4
moving a node, 4
resizing a node, 4

overview, 3-5

panel, 20seepanel

parameters, 6-11
change of, 14
default values, 15
edge attributes, 9
global parameters, 10
node attributes, 6
reading them, 14

postscript output, 17

visualizing geometric structures, 35-37

visualization,see GraphWin
Voronoi diagrams

50

visualization, 35

