Contents

13 Onthe Implementation of LEDA

13.1 Parameterized Data Types

13.2 A Simple List Data Type

13.3 The Template Approach

13.4 The LEDA Solution

13.5 Optimizations

13.6 Implementation Parameters

13.7 Independent ltem Types (Handle Types)
13.8 Memory Management

13.9 lIteration

13.10 Priority Queues by Fibonacci Heaps (A Complete Exainpl

Bibliography

Index

13
On the Implementation of LEDA

This chapter deals with the implementation of LEDA. It gitlee details of the implemen-

tation of parameterized data types, implementation patensiehandle types, the memory
management, and iteration macros. We close the chapterandtmprehensive example
that illustrates all concepts discussed.

13.1 Parameterized Data Types

The definition of parameterized data types of LEDA has bestudised in Chapter 2. In the
next sections we describe how they are implemented. We Bstribe the €+ template
approach to parameterized data types using a simple liattga¢. Then we use the same
example to explain the basic idea of the LEDA solution for liempenting parameterized
data types and discuss the reasons for choosing this sulRioally, we extend the basic
solution and apply it to more advanced data types and dewmdtimizations for the case
where the actual type parameters are small (fit into one mewmord) or are basic built-in

types.

13.2 A Simple List Data Type

We start this section by giving a very simple implementafimna data typdist of singly
linked lists of integers. It offers about the same set of afiens as the LEDAstackdata
type. There is @ushoperation that inserts a given integer at the front of thealigl apop
operation that removes the first element from the list angrnstit. Operatiomeadreturns
the first element without changing the list, and finally, @tiem sizereturns the number

13.2 A Simple List Data Type 3

of elements of the list. Of course, we also have to providersitactor, destructor, copy
constructor and an assignment operator in order to rnstkefully equipped @+ data type.

Note that we use this simple type only as a first example foothicing some aspects
of the LEDA mechanism for implementing parameterized dapes. Of course, LEDA
contains much more powerful and useful list types, see @e&ti2.

As usual, the declaration (or specification) of our list slascontained in a header file
called_list.h and the implementations of its operations are containedsieparate source
code file_listc. We let the file names start with because we want to use the file names
without the underscore later in the section.

The header fildisth might look as follows:

(list.hy=
class list {

struct list_elem
{ // a local structure for representing the elements of the list
int entry;
list_elem* succ;
list_elem(const int& x, list_elem* s) : entry(x), succ(s) {}
friend class list;
};
list_elem* hd; // head of list
int sz; // size of list
public:
void push(int);
void pop(int&);
int head() const;
int size() const;
list();
~“list();
list(const list&);
};

The corresponding source code flist.c is as follows:

(list.c)=
#include "_list.h"
#define NULL O

int list::head() const { return hd->entry; }

void list::push(int x)
{ hd = new list_elem(x,hd);
sSz++;
}
void list::pop(int& y)
{ y = hd->entry;
list_elem* p = hd;
hd = p->succ;
delete p;
sz-—;

4 On the Implementation of LEDA

}

list::1list()

{ // construct an empty list
hd = NULL;
sz = 0;

}

list::1list(const list& L)

{ // construct a copy of L

hd = NULL;
sz = L.sz;
if (sz > 0)

{ hd = new list_elem(L.hd->entry,0); // first element
list_elem* q = hd;
// subsequent elements
for (list_elem* p = L.hd->succ; p != NULL; p = p->succ)
{ g->succ = new list_elem(p->entry,NULL);
q = gq—>succ;
}
}
}
list::"1list()
{ // destroy the list
while (hd)
{ list_elem* p = hd->succ;
delete hd;
hd = p;
}
}

13.3 The Template Approach

Most data types in LEDA are parameterized. LEDA does not offlyr lists of integers but
lists of an arbitrary element type. In this section we discuss the+€ standard approach
to parameterized data types. We explain the approach acakdisvhy we have not taken it
in LEDA. The solution which we adopted in LEDA is describedlie next section.

C++ supports parameterized classes by means tetitplate featureHow can one obtain
lists of char from our implementation of lists dht? It seems to be very simple. Replace
in files list.h and list.c all occurrences ot by char. Well, that's not quite true. Actually,
we should replace only those occurrencesnbtthat refer to the element type of the list.
So the declarations of variabézand the return type dfizg) stay unchanged. Since it is
completely mechanical to derive list of characters fronslisf integers we might as well
ask the compiler to do it. All we have to do is to mark those ommnces ofint that are to
be replaced. The template feature efds an elegant way to automate this transformation.
The following simple textual transformation changes thiéniton of our list class into the
definition of a parameterized list class:

13.3 The Template Approach 5

e Replacein list.h all occurrencesiot that refer to the element type of our lists by a
new class name, sdy.

e Prefix the definition of claskst in the file list.h and the definition of each member
function in the file list.c bytemplate<class BE>. This informs the compiler th&t is
the name of a type parameter and not the name of a concrete type

e Replacein list.c all occurrenceslidt that refer to the name of the list class by
tlist<E>. This replacement is not really necessary. We make it sontbatan later
contrast classdsst andtlist.

For concreteness, we include excerpts from the modifiedtfiissh and tlist.c.

(tlist.hy=
template <class E>
class t_list {

struct list_elem
{ E entry;
list_elem* succ;
list_elem(const E& x, list_elem* s) : entry(x), succ(s) {}
};
list_elem* hd; // head of list
int sz; // size of list
public:
void push(const E&);
void pop (E&);
const E& head() const;
int size() const;
t_list();
t_list(const t_list<E>&);
“t_list();
};

and file tlist.c is as follows:

(tlist.cy=
#include "t_list.h"
#define NULL O
template <class E> t_list<E>::t_list()
{ hd = NULL;
sz = 0;
}
template <class E> const E& t_list<E>::head() comnst
{ return hd->entry; }
template <class E> void t_1list<E>::push(const E& x)
{ hd = new list_elem(x,hd);
sz++;

}

6 On the Implementation of LEDA

template <class E> void t_list<E>::pop(E& y)
{ y = hd->entry;

list_elem* p = hd;

hd = p->succ;

delete p;

sz-—;

In an application program we can now write

t_list<char> L1;
t_list<segment> L2;

to define a list.1 of char and a listL2 of line segments, respectively. When the compiler
encounters these definitions it constructs two versionsex liist.c and list.h by substituting
E by char and bysegmentrespectively, which it can then process in the standard gty

us summarize:

e The template feature is powerful and elegant. The impleerarita data type simply
prefixes his code btemplat&class B and otherwise writes his code as usual, and the
user of a parameterized data type only needs to specify thaldgpe parameter in
angular brackets.

e The template feature duplicates code. This increases eodéh and compilation time.
It has to duplicate code because the layout of the elemeiat$igifin memory (type
listelen) depends on the size of the objects of tfpand hence the code generating
new list elements depends on the size of the objects of thaldgpe parameter.

e Separate compilation is impossible. Since the code to bergead depends on the
actual type parameter one cannot precompiligtic to obtain an object file list.o.
Rather both files_tist.h and tlist.c have to be included in an application and have to
be compiled with the application. For an application, tregsimany parameterized
data types from the library, this leads to a large source la@akfore large compilation
times. Moreover, it forces the library designer to make tuBles public.

e When we started this project, most-€compilers did not support templates and, even
today, many do not support them fully. Some compilers usesigqries of
precompiled object code to avoid multiple instantiatiohthe same template code.
However, there is no standard way for solving this problem.

We found in particular the drawback of large compilationdswnacceptable and there-
fore decided against the strategy of implementing paraizetédata types directly by the
template feature of €.

The LEDA solution uses templates in a very restricted forinallbws separate com-
pilation, it allows us to keep the .c-files private, and it sle®t over-strain existing €
compilers. We discuss it in the next section.

Let us summarize. The template feature is an elegant methoghtize parameterized

13.4 The LEDA Solution 7

data types (from a user’s as well as an implementor’s poimieyf). However, it also has a
certain weakness. It duplicates code, it does not allow psdoompile the data types, and
it is only partially supported by compilers.

13.4 The LEDA Solution

In LEDA every parameterized data type is realized by a paclafses: &lass for the ab-
stract data typand aclass for the data structure.g., we have a dictionary class (= the data
type class) and a binary tree class (= the data structurs)cl@&nly the data type classes
use the template mechanism. All data type classes are ggEicifihe header file directory
LEDAROOQTIincl/LEDA and only their header files are to be included in applicatian p
grams. All data structures are precompiled into the objededibraries IjbL, libG, libP,
libw, ...)and are linked to application programs by thetdinker. Instead of abstract data
type class we will also say data type class or data type tdmptabstract class and instead
of data structure class we will also say implementationsctasconcrete class.
Precompilation of a data structure is only possible if itplementation does not depend
on the actual type parameters of the corresponding paramestelata type. In particular:

e the layout of the data structure in memory must not depenti®size of the objects
stored in it. We achieve this (in a first step) by always stppointers to objects
instead of the objects themselves in our data structuresei@b that the space
requirement of a pointer is independent of the type of theailjjointed to. In a
second step (cf. Section 13.5.1) we show how to avoid thi vindirection in the
case of small types (types whose size in memory is at mosize@ta pointer).

e all functions used in the implementation whose meaning n@épen the actual type
parameters use the dynamic binding mechanisnaf, Ce., are realized as virtual
functions. A prime example is the comparison function in panison based data
structures. The comparison function is defined as a virtwahber function of the
implementation class, usually callethpkey. In the definition of the abstract data type
template we bingmpkeyto a functioncomparethat defines the linear order on the
actual type parameter.

The remainder of this section is structured as follows. W jive the basic idea for pa-
rameterized data types in LEDA. Then we discuss the use tfatifunctions and dynamic
binding for the implementation of assignment, copy cortitiy default constructor, and
destruction. In the sections to follow we describe an imprognt for so-called one-word
or small types, and show how implementation parametersatezed. Finally, we give the
full implementation of priority queues by Fibonacci heapsd dlustrate all features in one
comprehensive example.

On the Implementation of LEDA

X1 > X2 » X3
> >

A4 \ 4 v

x1 X2 X3

Figure 13.1 A tlist and alist: The top part shows @list< E> with three elements, X2, X3. The
bottom part shows the correspondiisi data structure in the LEDA approach.

13.4.1 TheBasicldea
We introduce the basic idea for realizing parameterized tlgies in LEDA, the idea will
be refined in later sections:

The data fields in the containers of all data structures argpefvoids, the generic
pointer type of G+. They contain pointers to objects of the actual type pararaet
Consider a data structure whose containers have a slotfingiobjects of a typd,
e.g., the typelist<T>.

In the LEDA approach the objects of tyfleare not stored directly in the containers of
the data structure but on the heap. The data slots of theinerddave typeoidx, the
generic pointer type of €+, and contain pointers to the objects on the heap. More
precisely, if a container has a slot of tyjpdn the template solution artds the object
stored in it (at a particular time) then the correspondingtaimer in the LEDA

solution will have a field of type&oid« and this field will contain a pointer th See
Figure 13.1 for an illustration.

The abstract data type class uses the template mechanissderized from the
implementation class.

Type casting is used to bridge the gap between the untypdd withe
implementation class (all dataweid«) and the typed world of the abstract class.

We use our singly linked list data type as a first example twithte our approach. We

saw an implementation of lists, callédist, using the template approach in the preceding
section.

Our goal is to realize the parameterized data tygeT> by a concrete data structure

listimpl that stores pointers of typmid«. The definition oflistimpl is straightforward. It
is essentially a list of typelist<void x >

13.4 The LEDA Solution 9

(list_impl.hy=
class list_impl {
struct list_impl_elem
{ void* entry;
list_impl_elem* succ;
list_impl_elem(void* x,list_impl_elem* s):entry(x),succ(s) {}
friend class list_impl;
};
list_impl_elem* hd;
int sz;
protected:
list_impl();
“list_impl();
void* head() const;
void* pop();
void push(void* x);
void clear();
int size() const;

};

and

(listiimpl.c)=
#include "list_impl.h"
list_impl::1list_impl() : hd(0), sz(0) {}
list_impl::~list_impl() { clear(); }
void* list_impl::head() const { return hd->entry; }

void list_impl::push(void* x)
{ hd = new list_impl_elem(x,hd);

Sz++;
}
void* list_impl: :pop()
{ void* x = hd->entry;

list_impl_elem* p = hd;
hd = p->succ;

delete p;

sz--;

return x;

}
void list_impl::clear() { while (hd) pop(); }

int list_impl::size() const { return sz; }

We declared the member functionslistimpl protected so that they can only be used in
derived classes. We can now easily derive the data type sdelipt<T> for arbitrary types
T from listimpl. We makelistimpl a private base class ¢it<T> and implement the
member functions dfst<T > in terms of the member functions of the implementation class

10 On the Implementation of LEDA

Making the implementation class a private base class makasdible to the users of the
list<T> class. This guarantees type safety as we argue at the engl séction.

A member function ofist<T> with an argument of typ& first copies the argument into
the dynamic memory (also called heap), then casts a poontieetcopy tosoidx, and finally
passes the pointer to the corresponding function of theemphtation class.

All member functions oflist<T> that return a result of typ& call the corresponding
function of the implementation class (which returns a resitype voids), cast the pointer
to T, and return the dereferenced pointer.

We next give the details.

template<class T>

class list : private list_impl {

public:

list() : list impl() {3}

The constructor dfist<T> constructs an emptistimpl.
void push(const T& x) { list_impl::push((void#*) new T(x)); }

L.pushx) makes a copy ok in dynamic memory (by calling the copy constructorTofn
the context of thewewoperator) and passes a pointer to this copy (after castiog did«)
to listimpl::push The conversion fronT x to void« is a built-in conversion of & and
hence we may equivalently write

void push(const T& x) { list_impl::push(new T(x)); }

Let us relatdist<T>::push(x) to tlist<T>::push(x). The latter operation stores a copy of
x directly in the entry-field of a new list element and the formekes a copy o on the
heap and stores a pointer to the copy in entry-field.

const T& head() const { return *(T*)list_impl::head(); }

L.head) casts thevoidx result oflistimpl::head) to aT * pointer, dereferences the result,
and returns the object obtained as a const-reference. dtréturns the element of the list
that was pushed last.
T pop()
{ T* p = (T*)1list_impl: :pop();
T x = *p;
delete p;
return x;

}
L.pop(x) casts and dereferences trad« result oflistimpl::pop assigns it to a local vari-
ablex, deletes the copy (made Higt<T>::push, and returnx. Observe that the assign-

ment tox makes a copy, and it is therefore OK to delete the copy magrubli It is also
necessary to delete it, as we would have a memory leak otberwi

int size() const { return list_impl::size(); }

void clear()
{ while (size() > 0) delete (T*)list_impl::pop();

13.4 The LEDA Solution 11

list_impl::clear();
}

“list() { clear(); }
};

The implementations aflear and of the destructor are subtl€lear first empties the list
and then calldistimpl::clear. The latter call is unnecessary as popping all elements from
the list already has the effect of clearing the list. We mdieedall for reasons of unifor-
mity (all clear functions of abstract classes in LEDA first destroy all otjemntained in
the data structure and then call ttlear function of the implementation). It is, however,
absolutely vital to destroy the objects stored in the ligbbe callinglistimpl::clear. An
implementation

void clear() { list_impl::clear(); }

has a memory leak as it leaves the elements contained irstteslorphans on the heap.
The destructor first callslear and then the destructor of the base class (the latter call
being automatically inserted by the compiler). The bassscthestructor-listimpl deletes
all list elements. Observe that it does not suffice to cadl tiastructor as this will leave all
entries contained in the elements of the list on the heap.
If our list implementation class would support iteratioritie LEDA forall style an alter-
native implementation of the clear function would be
void clear()
{ void* p;
forall(p,*this) delete (T*)p;

list_impl::clear();
}

Let us assess our construction:

e The construction is non-trivial. Please read it severa¢tino make sure that you
understand it and try to mimic the approach for other datagypee the exercises).
The construction is certainly more complicated than the pemplate approach
presented in the preceding section.

e The data typdist<T> simulates the data tygdist<T>. Suppose that we perform the
same sequence of operations dis&T> Sand atlist<T> TS Assume thako, ...,
X;_1 are the entries of Safter performing the sequence. ThBalso hag elements
and the corresponding entries contain pointers to copigg tfx;_1 in dynamic
memory, see Figure 13.1.

e All operations oflist<T> are implemented by very simple inline member functions.
Except forpop, clear, and~list() they do not produce any additional code. We wiill
show in the next section how the code fmpandclear can also be moved into the
data structure by the use of virtual functions. This will redke definition of the
abstract class cleaner.

12 On the Implementation of LEDA

e The implementation class can be precompiled; see below.

e The above implementation of lists is incomplete. In pattcithe definitions of the
copy constructor and of the assignment operator are miséifagvill discuss them in
Section??.

The abstract data typist<T > can be used in the usual way.

list<string> L;

L.push("fun");

L.push("is");

L.push("LEDA");

while (L.size() > 0) cout << L.pop() << endl;

Separate Compilation: We defined two classes, the implementation clatsmpl and the
abstract data type clafist<T>, in three files: the fildistimplh contains the skeleton of
the class definition dfst.impl, namely the definition of the private data of the class and the
declarations of the member functions, the figimplc contains the implementation of all
member functions ofistimpl and the filelist.h contains the definition of the abstract data
type and its implementation in terms of the implementatiass. We have shown all three
files above. It is still worthwile to repeat their global stture.

(listZiimpl.h)=
class list_impl {
(definition of private data
protected:

(declaration of member functions
};

The filelistimplc contains the implementations of all member functions. Istnuclude
listimplh

(listiimpl.c)=
#include <list_impl.h>
(implementation of all member functigns

The abstract class templdist<T > is defined in fildist.h. It is derived from clas$istimpl
and all member functions of the abstract class are realigecabing the corresponding
member function of the implementation class as describedeabThe calls also do the
appropriate type conversions from typeto void« and vice versa. Since clakstimpl is
only used to implement its derived clas$ist<T > it is qualified as a private base class of
the list template. Of course, we have to inclug&implh before usindistimpl as a base
class.

13.4 The LEDA Solution 13

(list.h)=
#include "list_impl.h"

template<class T>
class list : private list_impl {

public:
void push(const T& x) { list_impl::push(new T(x)); }
const T& head() const { return *(T*)list_impl::head(); }

void pop(T& x)

{ T* p = (T*)1list_impl: :pop();
X = *p;
delete p;

}

int size() const { return list_impl::size(); }

void clear()

{ while (size() > 0) delete (T*)list_impl::pop();
list_impl::clear();

}

list() : list_impl() {}
“list() { clear(); }
};

The filelistimplc can be compiled into the object code fiktimplo. An application pro-
gram, saylist progc, using lists needs to includisth and can be compiled separately into
file list progo. Finally, list progo andlistimplo can be linked to an executable program.

In the LEDA system the header files of implementation classescollected in the
directory LEDAROOQT incl/LEDA/impl and the header files of abstract classes are col-
lected inLEDAROQTincl/LEDA. All .c-files are contained in the various subdirectories
of LEDAROQT/src.

Type Safety: We next comment on the type safety of the construction desdrabove.
The implementation cladstimpl is untyped in the sense that anything can be pushed onto
a list of typelistimpl, the clasdist is typed in the sense that only objects of typecan

be pushed onto a list of tydist<T>. In the definition of clas$ist we make the transition
from the safer (typed) world to a potentially unsafer (uetypworld. Since we declared all
operations ofistimpl protected and madestimpl a private base class b6$t, the untyped
world is completely encapsulated inside clissand invisible to any application program.
Only the implementation clagistimplworks in the untyped world; we designed it carefully
so as to avoid the dangers of the untyped world. We concluatehle construction is type
safe.

Efficiency: The construction is also efficient. Note that no code neethe tgenerated for
the type conversions; the casts simply tell the compiler twsventries of the list are to
be interpreted. Also all member functions of the abstraas<lare trivial inline functions
and their calls can be eliminated by optimizing compilers,, ithere is, for example, no

14 On the Implementation of LEDA

need first to call the abstract functidiet::pushwhich in turn calls the concrete function
listimpl::push The compiler will directly call the concrete function.

Genericness:Finally, the construction is elegant, although not as elega the solution
relying completely on templates. The definition of the inmpéntation class is completely
natural, it is essentiallyt list<void«>. The definition of the abstract class in terms of the
implementation class is somewhat inelegant because oétjugred type conversions. How-
ever, these type conversions follow a very simple rule. dimg values are converted to
voidk and return-values are converted back to type

13.4.2 Virtual Functionsand Dynamic Binding

In the example of the preceding section the implementatlassdistimpl required no
knowledge about the actual type argument of the data typel&eldist<T>. This is an
exceptional situation; in most situations the implemeatabeeds to have some knowledge
about the actual type argument. We give two examples.

The first example is a print operation for our list type thangr all elements to the
standard output. We want to realize this operation Ipyiat member function in the im-
plementation claskstimpl. Of course, this function needs to know how to print an object
of the actual type parameter. The second example is coropabased implementations
of dictionaries, e.g., binary search trees. Any comparizased implementation of the
parameterized data typéictionarkK, I > (cf. Section 5.3) needs to know how to com-
pare keys. In LEDA, the linear order on a key tyfeis defined by a global function
int comparéconst K&, const K&) (cf. Section 2.10) and hence the implementation class
must be able to call this function.

In both examples we need a mechanism to transfer functigralithe actual type pa-
rameters from the abstract data type template to the impitatien class. The appropriate
C++ feature is dynamic binding and virtual functions. Detaitkscussions of this concept
can be found in [Str91, ES90]. The following should be cleamawithout prior knowledge
of the concept.

In the first example, the claistimpl uses a virtual functioprint elenmvoid x p) to print
elements to standard output. This function is declaredénirtiplementation class but its
implementation is left undefined by labeling it as pure \attuSyntactically, pure virtual
functions are designated by the key waittual and the assignment0” which replaces
the body. The implementation class may use the virtual fandh its other member func-
tions, e.g.Jistimpl usesprint elemin a functionprint that prints the entire list.

class list_impl {
virtual void print_elem(void#*) const = O;

void print() const

1 You may want to include typedef voigt T; to make it look even more natural.

13.4 The LEDA Solution 15

{ for(list_impl elem* p = hd; p; p = p->succ) print_elem(p->entry); }

};
The implementation oprint.elemis provided in the derived cladist<T>. It converts its
argument fromvoid« to T (observe that this conversion makes sense on the level of the
data type template) and then hands the object pointed tetoutput operator) of type
T (assuming that this operator is defined 19t

template<class T>
class list : private list_impl {

void print_elem(void* p) const { cout << *(T*)p << endl; }

void print() const { list_impl::print(); }

};...

When a listis created, say through the declardtgtrnchar = > L; the definition ofprintelem
in terms ofoperator« (ostrean&, charx) is associated witl.. In a callL.print() which
leads vidistimpl::print() to a call oflistimpl::print.elemthe implementation gfrint.elem
bound toL is used. In this way, information about the actual type p&tamis transported
into the implementation class.

We turn to our second example. All implementationglmftionarkK, |1 > use a virtual
member functionnt cmpkeyvoidx, void«) for comparing keys. We discuss the implemen-
tation clasdintree As in the previous examplempkeyis declared as pure virtual in the
implementation class. In the derived class tempditéonanxK, |1 > we definecmpkeyin
terms of the compare function of tyfpe. We have

class bin_tree {
virtual int cmp_key(void*,void*) const = O;

};
in the implementation class and

template<class K, class I>
class dictionary: private bin_tree {

int cmp key(void* x, void* y) const { return compare(*(K*)x,*x(K*)y); }

};...

in the data type template (note the conversion fr@it« to K in the implementation of
cmpkey).

The construction associates the appropriate comparaduanetth every dictionary, e.g.,
comparégconst in&, const in&) with dictionaryint, int>. Furthermore, the compare func-
tion is available in the implementation cldsis.treeand can be called by its member func-
tions (e.g. lookup).

16 On the Implementation of LEDA

In the remainder of this section and in the next section we giere details of thein.tree
class. This will allow us to discuss further aspects of th®REpproach to parameterized
data types.

The nodes of hin treeare realized by a classntreenode Each node contains a key and
an information, both of typeoid«, and additional data members for building the actual tree.
For unbalanced trees the pointers to the two children suffioe balanced trees additional
information needs to be maintained. All implementationdalanced trees in LEDA are
derived from thebintreeclass.

In the remainder of this chapter we will use the type n&@a@Ptrfor the generic pointer
typevoidk.

typedef void* GenPtr;
class bin_treenode {

GenPtr key;
GenPtr inf;

bin_tree node* left_child;
bin_tree node* right_child;

// allow bin_tree to access all members
friend class bin_tree;

};

The clasdintreecontains some private data, such as a pointer to the root tfdb. The
member functions realizing the usual dictionary operatiare declared protected to make
them accessible for derived classes (edictionankK, 1>) and thecmpkey function is
declared a private pure virtual function. Finally, we define item type (cf. Section 2.2.2)
for classbintree (bintree::item) to be equal to typeintreenodex.

class bin_tree {
private:

bin_tree node* root;

int cmp_key(GenPtr,GenPtr) const = O;
protected:

typedef bin tree node* item;

item insert(GenPtr,GenPtr);
item lookup(GenPtr) const;
void del_item(item);

GenPtr key(item p) const { return p->key; }
GenPtr inf(item p) const { return p->inf; }

bin_tree();
“bin_tree();
};
The virtualcmpkeyfunction is used to compare keys, e.g., in lbekupmember function
that returns a pointer to the node storing a givenkey nil if k is not present in the tree.
bin_tree node* bin_tree::lookup(GenPtr k) const

{ bin_tree node* p = root;
while (p)

13.4 The LEDA Solution 17

{ int ¢ = cmpkey(k,p->key);

if (c == 0) break;

p = (c > 0) ? p—>right child : p->left_child;
}

return p;

}

In the definition of the data type templadictionankK, | > we definecmpkeyin terms
of the compare function for typK. The dictionary operations are realized by calling the
corresponding member functionshifitree As in the list example, we also need to perform
the necessary type conversions. The item type of dictieadflicitem) is defined to be
equal to the item type of the implementation classtree:.item

typedef bin tree::item dic_item;

template<class K, class I>
class dictionary : private bin_tree {

int cmp_key(GenPtr x, GenPtr y) const
{ return compare(*(K*)x,*(Kx)y); }

public:
const K& key(dic_item it) const { return *(K#)bin tree::key(it); }
const I& inf(dic_item it) const { return *(I*)bin_tree::inf(it); }

dic_item insert(const K& k const I& i)
{ return bin_tree::insert(new K(k), new I(i)); }

dic_item bin_tree::lookup(const K& k) const
{ return bin_tree:lookup(&k); }

};

Observe thabin tree::lookupexpects a&enPtrand hence we pass the addresk tf it.

The code for classdsntreeanddictionank K, I > is distributed over the filekintreeh,
bintreec, anddictionaryh as described in the previous section: clagsasreenodeand
bintreeare defined il.EDA/impl/bintreeh, the implementation dfin treeis contained in
LEDAROOQT src/dict/bintreec, anddictionankK, I > is defined inLEDA/dictionaryh.

The above implementation of dictionaries has a weaknessiwye will overcome in the
next section). Consider the insert operation. Accordinthéspecification of dictionaries
(see Section 5.3) a cab.insert(k, i) adds a new itemk, i) to D when there is no item
with key k in D yet and otherwise replaces the information of the item weli k by i.
However, in the implementation given abadietionarnkK, I >::insertk, i) makes a copy
of k and then passes a pointer to this copyiatree::insert If k is already in the tree
bintree::insertmust destroy the copy again (otherwise, there would be a melsak). It
would be better to generate the copykadnly when needed.

In the next section we show how to shift the responsibilitydopying and deleting data
objects to the implementation class by means of virtualtions. We will also show how
to implement the missing copy constructor, assignmentaiperand destructor.

18 On the Implementation of LEDA

13.4.3 Copy Constructor, Assignment, and Destruction

Copying, assignment, and destruction are fundamentahtipas of every data type. In
C++ they are implemented by copy constructors, assignmenatgst and destructors. Let
us see how they are realized in LEDA. As an example, consideassignment operation
D1 = D2forthe data typelictionarkK, I >. A first approach would be to implement this
operation on the level of abstract types, i.e., in the dada tgmplatelictionankK, 1 >. We
could simply first cleab1 by a call ofD1.clear() and then insert the key/information pairs
for all itemsit of D2 by callingDLlinsertD2keyit), D2inf (it)) for every one of them. This
solution is inflexible and inefficient; the assignment wotakle timeO(nlogn) instead of
time O(n).

A second approach is to realize the operation on the levdi®imhplementation class
bintree This requires thabintree knows how to copy a key and an information. In the
destructor it also needs to know how to destroy them. Therealso many other reasons
why the implementation class should have these abilitesjeawill see. In LEDA, we use
virtual functions and dynamic binding to provide this knedge.

In the dictionary example, we have the following virtual mMeEmfunctions in addition to
cmpkey

void copykey(GenPti& x) andvoid copyinf (GenPti& x) that make a copy of the object
pointed to byx and assign a pointer to this copyxp

void clearkey(GenPtr ¥ andvoid clearinf (GenPtr X that destroy the object pointed to
by x, and finally

void assigrkey(GenPtr x GenPtr y) andvoid assigrnf (GenPtr x GenPtr y) that as-
sign the object pointed to byto the object pointed to by.

We exemplify the use of the virtual copy and clear functionvito recursive member
functionscopysubtreeandclear subtreeof bintreethat perform the actual copy and clear
operations for binary trees. The copy constructor, thegassént operator, the destruc-
tor, and theclear function of classbintree are then realized in terms oebpysubtreeand
clearsubtree The use ofassigninf will be demonstrated later in the realization of the
operationchangenf.

In the header fildintreeh we extend clasbintreeas follows.

class bin_tree {
private:

virtual void copy key(GenPtr&) const = 0;
virtual void clear key(GenPtr) const = 0;
virtual void assign key(GenPtr x, GenPtr y) const =0;

virtual void copy_inf (GenPtr&) const = 0;
virtual void clear_inf (GenPtr) const = 0;
virtual void assign_inf (GenPtr x, GenPtr y) const =0;

void clear_subtree(bin_tree node* p);
// deletes subtree rooted at p

bin_tree node* copy_subtree(bin tree nodex p);
// copies subtree rooted at p, returns copy of p

13.4 The LEDA Solution 19

protected:
void clear();
bin_tree(const bin_tree& T);
bin tree& operator=(const bin_tree& T);
“bin_tree() { clear(); %}

};

In the data type templatictionark K, | > we realize the virtual copy, assign, and clear
functions by type casting, dereferencing, and calling the, rmssignment, or delete opera-
tors of the corresponding parameter typeand|. Copy constructor, assignment operator,
and destructor of typdictionaryare implemented by calling the corresponding operations
of the base cladsintree

template<class K, class I>
class dictionary: private bin_tree {

void copy key(GenPtr& x) const { x = new K(*(K*)x); }
void copy_inf (GenPtr& x) const { x = new I(*(I*)x); }
void clear key(GenPtr x) const { delete (K*)x); }
void clear_inf (GenPtr x) const { delete (I*)x); }
void assign key(GenPtr x, GenPtr y) const { *(K*)x
void assign inf (GenPtr x, GenPtr y) const { *(I*)x

*(Kx)y; }
*(Ix)y; }

public:

dictionary(const dictionary<K,I>& D) : bin_tree(D) {}

dictionary<K,I>& operator=(const dictionary<K,I>& D)
{ bin_tree::operator=(D); return *this; }

“dictionary() { bin_tree::clear(); }

};

The functionsin tree::copysubtree bin tree::clearsubtreg bin tree::clear, the copy con-
structor, the destructor, and the assignment operatorgriemented in biriree.c.

bin_tree node* bin_tree::copy_subtree(bin tree node* p) {
if (p == nil) return nil;
bin_treenode* q = new bin_tree_node;
g->1_child = copy_subtree(p->1_child);
g->r_child = copy_subtree(p->r_child);
q->key = p->key;
q->inf = p->inf;
copy-key (q->key) ;
copy-inf (q->inf) ;
return q;

}

void bin_tree::clear _subtree(bin tree nodex p) {
if (p == nil) return;
clear_subtree(p->1_child);
clear_subtree(p->r_child);
clear key(p->key) ;
clear_inf (p->inf);

20 On the Implementation of LEDA

delete p;
X

void bin_tree::clear() {
clear_subtree(root);
root = nil;

}

bin_tree& bin_tree::operator=(const bin_tree& T) {
if (this !'= &T)
{ clear();
root = copy_subtree(T.root);

}

return *this;

}

The implementation of the copy constructor is subtle. Itesypting to write (as in
operator=)

bin tree::bin tree(const bin_tree& T) { root = copy_subtree(T.root); }

This will not work. The correct implementation is
bin tree::bin tree(const bin_tree& T) { root = T.copy_subtree(T.root); }

What is the difference? In the first case we aapysubtreefor the object under con-
struction, and in the second case we calbysubtreefor the existing treél'. The body of
copysubtreeseems to make no reference to eitfieor the object under construction. But
note that all member functions of a class have an implicitiargnt, namely the instance
to which they are applied. In particular, the functiammgpykeyandcopyinf are eithefT’s
versions of these functions or the new object’s versions. @dint is that these versions are
different.

ObjectT belongs to clasdictionarkK, 1> and hence knows the correct interpretation
of copykeyandcopyinf. The object under construction does not know them yet. linano
them only when the construction is completed. As long as iinder construction the
functionscopykey and copyinf are as defined in clagsntree and not as defined in the
derived classlictionarnk K, I >. In other words, when an object of typestionankK, | > is
constructed we first constructen treeand then turn théintreeinto adictionanxK, I >.
The definitions of the virtual functions are overwritten whe bintreeis turned into a
dictionankK, I >.

What will happen when the wrong definition of tkepysubtreefunction is used, i.e.,
when the copy constructor bintreeis defined as

bin_tree: :bin tree(const bin tree& T) { root = copy_subtree(T.root); }

In this situation, the original definition afopykeyis used. According to the specification
of C++ the effect of calling a virtual function directly or indirtg for the object being
constructed is undefined. The compilers that we use integppeire virtual function as a
function with an empty body and hence the program above witiile but no copies will
be made. One may guard against the inadvertent call of a pwahMunction by using a
virtual function whose call rises an error instead, e.ge way define

13.4 The LEDA Solution 21

virtual void copy_key(GenPtr&) { assert(false); return 0; }

Destructors give rise to the same problem as constructaorsa destructor of a base
class virtual member functions also have the meaning defin¢lde base class and not
the meaning given in a derived class. What does this mearh&déstructor of class
dictionankK, I>? It first callsbintree::clear and then the destructor of the base class
bintree(the latter call is generated by the compiler). The desbruct bin tree again calls
bintree::clear. So why do we need the first call at all? We need it because ttende
call uses the “wrong” definitions of the virtual functiookearkey andclearinf. When
bintree::clearis called for the second time the object to be destroyed doeknow any-
more that it was aictionanxK, 1>. The second call of thelear is actually unnecessary.
We put it for reasons of uniformity; it incurs only very smatditional cost.

Sincebintree now knows how to copy and destroy the objects of t¥pand|, respec-
tively, we can write correct implementations of the openagidelitem andinsert on the
level of the implementation class, i.e., use precompiledigas of these functions, too.

void bin_tree::del_item(bin_tree nodex p) {
// remove p from the tree

clear key(p->key);
clear_inf (p->inf) ;
delete p;

}

bin_treenode* bin_tree::insert(GenPtr k, GenPtr i) {
bin_tree node* p = lookup(k);
if (p !'= nil) { // k already present
change_inf (p,i);
return p;
}
copy-key (k) ;
copy-inf (i) ;
p = new bin_treemnode();
p—>key = k;
p—>inf = i;
// insert p into tree
return p;
}
By using the virtuahssigninf function we can realize thehangenf operation on the level
of the implementation class, too.

void bin_tree::change inf(bin tree node* p, GenPtr i) {
assign inf (p->inf,i);

}

With this modification the corresponding operations in ditionanxK, | > template do

22 On the Implementation of LEDA

not need to copy or destroy a key or an information anymorey st pass the addresses
of their arguments of typ& and| to the member functions of clab tree

template<class K, class I>
class dictionary: private bin_tree {

public:

void del_item(dic_item it) { bin_tree::del_item(it); }

void change inf(dic_item it, const I& i)
{ bin_tree::change inf(it,&i); }

dic_item insert(const K& k, const I& i) { bin_tree::insert(&k,&i); }

13.4.4 Arraysand Default Construction

Some parameterized data types require that the actualeiéype has a default constructor,
i.e., a constructor taking no arguments, that initializesdbject under construction to some
default value of the data type. The LEDA data typesay andmapare examples for such

types.
The declaration

array<string> A(1,100) ;

creates an array of 100 variables of tygteng and initializes every variable with the empty
string (using the default constructor of typeing).
The declaration

map<int,vector> M;

creates a map with index typet and element typgector, i.e., a mapping from the set of
all integers of typent to the set of variables of typeector. All variables are initialized with
the vector of dimension zero (the default value of typetol).

Note that a default constructor does not necessarily ne#tttalize the object under
construction to a unique default value. There are data tiipeshave no natural default
value (for example, a line segment) and there are othersenhéialization to a default
value is not done for efficiency reasons. In these cases, @faultl constructor simply
constructs some arbitrary object of the data type. Exanfplesuch types are the built-in
types of G+. The declaration

int x;
declarex as a variable of typimt initialized to some unspecified integer, and the declamatio
array<int> A(1,100);

creates an array of 100 variables of typeeach holding some arbitrary integer.

As for copying, assignment, and destruction, LEDA impletaetefault initialization of
parameterized data types in the corresponding implementalass by virtual functions
and dynamic binding. We use the array data type as an example.

13.4 The LEDA Solution 23

The parameterized data typgay<T > is derived from the implementation clagsnarray
of arrays for generic pointers. The clagsnarray provides two operationisit all_entries
and clearall_entrieswhich can be called to initialize or to destroy all entriestloé ar-
ray, respectively. They use the virtual member functigosl initentryGenPti&) and
void clearentryGenPtp to do the actual work, i.e., they use the first function toidhit
ize an array entry and the second function to destroy one.

class gen_array {

GenPtr* first;
GenPtr* last;

virtual void init_entry(GenPtr& x)
virtual void clear_entry(GenPtr x)

non
o

protected:
void init_all_entries()
{ for(GenPtr* p = first; p <= last; p++) init_entry(*p); }
void clear_all _entries()
{ for(GenPtr* p = first; p <= last; p++) clear_entry(xp); }
};
In the data type clasarray<T > we definenit_entryandclearentryby calling the new and
delete operator of typ&, respectively. The constructor afray<T> usesinit_all_entries
to initialize all elements of the array and the destruct@siesear all_entriesto destroy all
objects stored in the array.
template <class T>
class array : private gen array {

void init_entry(GenPtr& x) { x = new T; }
void clear_entry(GenPtr x) { delete (T*)x; }

public:
array(int 1, int h) : gen_array(l,h) { init_all_entries(); }
~array() { clear_all entries(); }
};
We give one more example of default construction tee@nodeandnewedgeoperations

of parameterized grapl@RAPHvtype etype. There are two variants of these operations:
the first one takes an argument that is used to initializentfernation associated with the

new object (node or edge).

node G.new node(const vtype&)
edge G.new_edge(node, node, const etype&)

The second one does not take such an argument. Here the atfonnassociated with the
objectis initialized by the default constructor of the @sponding typevtypeor etypé.

node G.new_node()
edge G.new_edge(node v, node w)

24 On the Implementation of LEDA

The following piece of code constructs a graph with two nodesidw connected by an
edgee = (v, w). The nodes are labeled with the default value of tspmg, i.e., the empty
string, and edge is labeled with a vector of dimension zero, the default valti¢ype
vector.

GRAPH<string,vector> G;

node v = G.new_node();
node w = G.new_node();
edge e = G.new_edge(v,w);

Default initialization for nodes and edges is also used bPAE various graph generators.
If Gis a parameterized graph of ty@dRAPHVtype etype, a callrandomgraph(G, n, m)
constructs a random graph withnodes anan edges where each node information is ini-
tialized by the default constructor of typ#ypeand each edge information is initialized by
the default constructor of typetype

13.4.5 Some Useful Function Templates
In <LEDA/paramtypesh> we define five function templates that are useful to define the
virtual functions required in the LEDA approach.

template <class T>

inline T& leda_access(const T*, const GenPtr& p) { return *(Tx)p; }
returns a reference to the object of typepointed to byp. The first argument of this
function template is a dummy pointer argument of tyipethat is used for selecting the
correct instantiation. For instance, to access an objetpaf T through a generic pointer
p we writeledaacces§(T x)0, p). As an abbreviation LEDA provides the macro.

#define LEDA_ACCESS(T,p) leda_access((T*)0,p)

The function template

template <class T>
inline GenPtr leda_create(const T*) { return new T; }

returns a generic pointer to an object of typénitialized with the default value of typé€.
Again, there is a dummy pointer argument of type
The function template

template<class T>
inline GenPtr leda copy(const T& x) { return new T(x); }

returns a generic pointer to an object of typénitialized with a copy oi.
The function template

template <class T>
inline void leda_clear(T& x) { T* p = &x; delete p; }

destroys the object storedatind the function template

13.4 The LEDA Solution 25

template <class T>
inline GenPtr leda_cast(const T& x) { return (GenPtr)&x; }

returns the address &fcasted to a generic pointer.

Given these function pointers it is easy to define the vifurattion required in the LEDA
approach in a generic way for every type parameéter

void create T(GenPtr& p) { p = leda create((T*)0); }

void copy.T (GenPtr& p) { p = leda_copy(LEDA_ACCESS(T,p)); }

void clear.T (GenPtr p) { leda clear(LEDA_ACCESS(T,p)); }

void assign T(GenPtr& p, GenPtr q)
{ LEDA_ACCESS(T,p) = LEDA_ACCESS(T,q); }

We return to the dictionary and array data type template®toahstrate the use of the
above defined function templates and macros. We have

class dictionary : public bin_tree {

int cmp(GenPtr x, GenPtr y) const
{ return compare(LEDA_ACCESS(K,x), LEDA_ACCESS(K,x,y); }

void clear key(GenPtr& x) const { leda clear (LEDA_ACCESS(K,x)); }
void clear_inf (GenPtr& x) const { leda_clear (LEDA_ACCESS(I,x)); }
void copy key(GenPtr& x) const { x leda_copy(LEDA_ACCESS(K,x)); }
void copy_inf (GenPtr& x) const { x = leda_copy(LEDA_ACCESS(I,x)); }

void assign_inf (GenPtr& x, GenPtr y) const
{ LEDA_ACCESS(I,x) = LEDA_ACCESS(I,y); }

public:

key(dic_item it) const
return LEDA_ACCESS(K,bin tree::key(it)); }
inf(dic_item it) const
return LEDA_ACCESS(I,bin tree::inf(it)); }

dic_item insert(const K& k, const I& i)
{ return bin_tree::insert(leda_cast(k),ledacast(i)); }

AMH AR

dic_item lookup(const K& k) const
{ return bin tree::lookup(ledacast(k)); }

void change inf(dic_item it, const I& i)
{ bin_tree::change inf(it,leda cast(i)); }
};
and

template <class T>
class array : private gen array {

void init_entry(GenPtr& x) { x = leda create((T*)0); }
void clear_entry(GenPtr x) { leda_clear (LEDA_ACCESS(T,x)); }

};...

26 On the Implementation of LEDA

13.4.6 Further Usesof Virtual Functions

There are many other situations where LEDA uses virtualtfans for transferring func-
tionality of actual type arguments from the data type clasthe implementation class.
Examples are:

e Printing and Reading

e Hashing

e Id-Numbers

e Type Information (see the next section)
e Rebalancing of binary trees

We touched upon printing and reading in Section 5.7.3, amel& of the use of id-
numbers can be found in Section 5.1.2, and we will see tymermtion in Section 13.5.3.

Exercisesfor 13.4

1 Write a template implementation of the LEDA data typeue

2 Is it correct to change the interfacemdpto const T& pop()?

3 The implementation dfst<T > ::clear which simply calldistimpl::clearhas a memory
leak, as it leaves the entries contained in the elementsdisthas orphans on the heap.
Why doedt list<T>::clear not have a memory leak?

4 Define a clasdlist<T> that implements doubly linked lists for elements of typeUse
the template approach and convert the solution to the LEO¥agzh.

5 Add an operatiopop(T & X) to the list data type that returns the result of the pop oper-
ation in the reference parameter

6 In the text we established a relationship between correfipg states otlist<T> and
list<T>. Argue that the implementations of the various functionshef list data type
leave this correspondence invariant.

7 Consider the following skeleton for the functibimtree::insert

bin_tree_node* insert(void* k, voidx* i)
{ bin_treenode *p = root, *q = nil; // q is always the parent of p
int c;
while (p)
{ ¢ = cmp key(k,p->key);
if (c == 0)
{ // something is missing here
return p;

}
q
p

pP;

(c > 0) ? p—>right_child : p->left_child;

}

if (¢ > 0) return g->right child = new bin tree node(k,i);
else return g->left_child) = new bin_treenode(k,i);

}
Complete the code. Make sure that your implementation hasemory leak.

13.5 Optimizations 27

13.5 Optimizations

In this section we describe some optimizations that can pkeato special type arguments
of parameterized data types.

13.5.1 Small Types
The LEDA solution for parameterized data types presentatdrpreceding sections uses
one additional (generic) pointer field for every value orembjthat is stored in the data
type. The method incurs overhead in space and time, in spadbd additional pointer
and in time for the additional indirection. We show how to iavthe overhead for types
whose values are no larger than a pointer. #+ @e space requirement of a type is easily
detemined:sizeof T) returns the size of the objects of typein bytes. We call a typd
smallif sizeofT) < sizeo{GenPtn andlarge otherwise. By definition, all pointer types
are small. On 32 bit systems the built-in typser, short, int, long, floatare small as well,
and typedoubleis big. On 64 bit systems even the tygeubleis small. Note that class
types can be small too, e.g., a class containing a singldgyailata member. An example
for small class types are the LEO#andle typeshat will be discussed in Section 13.7.
Values of any small typ& can be stored directly in a data field of typ@id« or GenPtr
by using than-place new operatoof C++. If p is a pointer of type/oid

new(p) T(x);

calls the copy constructor of typle to construct a copy of at the address in memory that
p points to, in other words witthis = p. Similarly,

new(p) T;

calls the default constructor of type (if defined) to construct the default value of type
at the location thap points to.

We use the in-place new operator as followsy i a variable corresponding to a data
field of some container ant is a small type then

new(&y) T(x);

new(&y) T;
constuct a copy ot and the default value of directly iny.

Of course, small objects have to be destroyed too. For tmgse we will use thexplicit
destructor callof C++. If zis a variable of some typéE,

z."T()

calls the destructor of for the object stored iz. Destructor calls for named objects are
constructed automatically in#3 when the scope of the object ends, and therefore few C
programmers ever need to make an explicit destructor call.

We have to. Observe that we construct objects of fyga variables of typesoid« and
therefore cannot rely on the compiler to generate the deisirgall. We destroy an object
of typeT stored in a variablg of typevoid« by casting the address gfto a pointer of type
T and calling the destructor explicitly as in

28 On the Implementation of LEDA

((T*)&y)->"T(O) ;

To access the value of a small typestored in avoid« data fieldy we take the address of
y, castit into ar = pointer, and dereference this pointer.

((T)&y)

13.5.2 Summary of LEDA Approach to Parameterized Data Types

We summarize the LEDA approach to parameterized data typestore values of arbitrary
typesT in data fields of typeoid« (also calledsenPty. We distinguish between small and
large types.

For objects of a large typ& (sizeofT) > sizeo{GenPtn) we make copies in the dy-
namic memory using theewoperator and store pointers to the copies.

For objects of a small typ€ (sizeofT) < sizeof{GenPtn) we avoid the overhead of an
extra level of indirection by copying the value directlyanthe void« data field using the
“in-place” variant of thenewoperator.

We next give versions dedacopy, ledacreate ledaclear, ledaaccess andledacast
that can handle small and large types. The functions areatkiiinL EDA/paramtypes.h.

GenPtr ledacopy(const T& x) makes a copy af and returns it as a generic pointer of type
GenPtr If T is a small type, the copy ofis constructed directly in @enPtrvariable using
the in-place new operator df, and if T is a big type, the copy af is constructed in the
dynamic memory (using the default new operator) and a poiatthis copy is returned.

template<class T>

inline GenPtr leda_copy(const T& x)

{ GenPtr p;
if (sizeof(T) <= sizeof(GenPtr)) new(&p) T(x);
if (sizeof(T) > sizeof(GenPtr)) p = new T(x);
return p;

}

GenPtr ledacreatgconst Tx) constructs the default value of tyeby a call of either the
in-place new or the normal new operatorTaf

template <class T>

inline GenPtr leda_create(const T*)

{ GenPtr p;
if (sizeof(T) <= sizeof(GenPtr)) new(&p) T;
if (sizeof(T) > sizeof(GenPtr)) p = new T;
return p;

}

void ledaclear(T & x) destroys the object stored ineither by calling the destructor Gf
explicitly or by calling thedeleteoperator on the address xf
template <class T>

inline void leda_clear(T& x)
{ T* p = &x;

13.5 Optimizations 29

if (sizeof (T) <= sizeof(GenPtr)) p->"T();
if (sizeof(T) > sizeof(GenPtr)) delete p;
}

T& ledaaccesgconst T, const GenP®& p) returns a reference to the object of type
stored inp or pointed to byp respectively.

template <class T>

inline T& leda_ access(const T*, const GenPtr& p)

{ if (sizeof(T) <= sizeof(GenPtr)) return *(T*)&p;
if (sizeof(T) > sizeof(GenPtr)) return *(T*)p;

}

GenPtr ledacasiconst T& x) either returns the value of or the address of casted to a
generic pointer.
template <class T>
inline GenPtr leda_cast(const T& x)
{ GenPtr p;
if (sizeof(T) <= sizeof(GenPtr)) *(T*)&p = x;
if (sizeof(T) > sizeof(GenPtr)) p = (GenPtr)é&x;
return p;

}

The functions above incur no overhead at run time. Note thabaparisons between
the size ofT and the size of a pointer can be evaluated at compile-time\iisantiating
the corresponding function template and therefore do nedeany overhead at run time.

13.5.3 Optimizationsfor Built-in Types

Our method of implementing parameterized data types stbessbjects of the data type in
void« data fields and uses virtual member functions for passing-sgecific functionality
from the data type template to the implementation class.

In a previous section we already showed how to avoid the spaatiead of an additional
pointer for small types. However, there is also an overhedifie. Every type-dependent
operation, such as comparing two keys in a dictionary, ifize by a virtual member
function. Calling such a function, e.g., in the inner loopaentsearching down a tree, can
be very expensive compared to the cost of applying a budbmparison operator.

LEDA has a mechanism for telling the implementation claas &m actual type parameter
is one of the built-in types in order to avoid this overheadr the identification of these
types we use an enumeration. For every built-in tyge this enumeration contains an
elemenXYZTYPEID. There is also aWiNKNOWNTYPEID member used for indicating
that the corresponding type is unknown, i.e., is not one @hihilt-in types.

enum { UNKNOWN_TYPE_ID, CHAR_TYPE ID, SHORT_TYPE_ID, INT_TYPE_ID,
LONG_TYPE_ID, FLOAT_TYPE_ID, DOUBLE_TYPE_ID };

To compute the type identification for a given type we use aagléunctionledatypeid.
Given a pointer to some typE this function returns the corresponding type identifiaatio
e.g., ifT =int, it will return INT_-TYPEID, if T is not one of the recognized types, the result

30 On the Implementation of LEDA

is UNKNOWNTYPEID. We first define a default function template returning thecgde
valueUNKNOWNTYPEID and then define specializations for all built-in types.

template <class T>

inline int leda_type_id(const Tx) return UNKNOWN_TYPE_ID; }

{
inline int leda_type_id(const char*) { return CHAR TYPE ID; }
inline int leda_type_id(const intx*) { return INT_TYPE_ID; }
inline int leda_type_id(const long#*) { return LONG_TYPE ID; }
inline int leda_type_id(const doublex){ return DOUBLE_TYPE_ID; }

Now we can add a virtual functiokeytypeid to the dictionary implementation and de-
fine it in the corresponding data type template by callingléiatypeid function with an
appropriate pointer value.

class bin_tree {
virtual int key_type_id() = O;

};...

template <class K, class I>
class dictionary {

int key_type_id() { return leda_type_id((K*)0); }
};

In the implementation of the various dictionary operatigdinsbintreec) we can now
determine whether the actual key type is one of the basistgpd choose between different
optimizations. We use thain tree::searchmember function as an example. Let us assume
we want to write a special version of this function for theltun type int that does not call
the expensivempkeyfunction but compares keys directly. First we dgibeid() to get
the actual key type id and in the caseNT_TYPEID we use a special searching loop that
compares keys using thdaDAACCESSmnacro and the built-in comparison operators for
typeint.

bin_tree node* bin_tree::search(GenPtr x) const
{

bin_tree node* p = root;
switch (type_id()) {

case INT_TYPE_ID: {
int x_int = LEDA_ACCESS(int,x);
while (p)
{ int p_int = LEDA_ACCESS(int,p->k);
if (x_int == p_int) break;
p = (x_int < p_int) ? p->left_child : p->right_child;
}
break;

}
default: {

13.5 Optimizations 31

n myint int

1000000 6.74 0.68

Table 13.1 The effect of the optimization for built-in types. The timedort an array of
random elements is shown. The table was generated with tigegm
built_in_typesoptimization in directory LEDAROOT/demo/book/Impl.

while (p)
{ int ¢ = cmp(x,p->k);
if (c == 0) break;
p = (c < 0) ? p—>left_child : p->right _child;
¥
break;
}
}

return p;

}

The above piece of code is easily extended to other buiitpag.

Table 13.1 shows the effect of the optimization. We definethssmyintthat encapsu-
lates annt

(class myint=
class myint {
int x;
public:
myint () {}
myint (const int _x): x(_x) {}
myint (const myint& p) { x = p.x; }

friend void operator>>(istream& is, myint& p) { is >> p.x; };
friend ostream& operator<<(ostream& os, myint& p)
{ os << p.x; return os; };
friend int compare(const myint&,const myint&);
};
int compare(const myint& p,const myint& q)
{
if (p.x == q.x) return 0;
if (p.x < q.x) return -1; else return +1;

}

and then built two arrays of size one filled with randonints and the other one filled with
the samemyints. We then sorted both arrays. Table 13.1 shows that the igption leads
to a considerable reduction in running time.

32 On the Implementation of LEDA

Exercisefor 13.5
1 Extend the search procedure for binary trees such thaeé the optimization also for
doubles.

13.6 Implementation Parameters

There are many implementations of dictionaries: binargdreskiplists, hashing, sorted
arrays, self-adjusting lists, Which implementatibogld be included in a library?

If one provides only one implementation, then this impletagan should clearly be the
“best” possible. This was the direction taken in the firstsi@ns of LEDA. In the case of
the dictionary data type, we included red-black trees beedliey are asymptotically as
efficient as any other implementation. But, of course, oslynaptotically. Also, there are
better implementations for special cases, e.g., for imkggs from a bounded universe.
For other data types, e.g., range trees, there are implatrerg with vastly differing per-
formance parameters (time-space tradeoff) and so therd sven an asymptotically best
implementation. All of this implies that providing only of@plementation for each data
type is not satisfactory.

So, one has to provide many and allow for the possibility afiag more. What properties
should a mechanism for choosing between different impld¢atiems have?

(1) There should be a simple syntax for choosing betweeardifit implementations. In
LEDA, the declaration

_dictionary<K,I,rb tree> D;

creates an empty dictionary with key typeand information typd and selects red-black
trees as the implementation variardjctionarkK, I, impl> selects the implementation
impl. The actual type parameter fionpl has to be a dictionary implementation, i.e., must be
a class that provides a certain set of operations and ugaahfiinctions for type dependent
operations. This will be discussed below. The declaration

dictionary<K,I> D;

selects the default implementation (skiplists in the aurkeersion).

Remark: Because templates cannot be overloaded+we have to use different names
dictionaryand.dictionary. The general rule is that the data type variant with impletagm
parameter starts with an underscore.

(2) Applications can be written that work with any implemeidn. For example, ap-
plications that use a dictionary are written as functionthain additional parameter of the
abstract dictionary type. Then the function can be calletth awhy implementation of the
dictionary type. We illustrate this feature with the worokat example.

void WORD_COUNT(const list<string>& L, dictionary<string,int>& D)

{ string s;
forall(s,L)

13.6 Implementation Parameters 33

ABSTRACT DATA TYPES DATA STRUCTURES
p_queuekK,l> dictionary <K, > rb_tree fibonacci heap
_p_queu&kK,l,rb_tree> _p_queu&K,l,f_heap>

_dictionary <K,l,rb _tree>
CONCRETE DATA TYPES

Figure 13.2 Multiple inheritance combines abstract data types andstatatures to concrete
data types.

{ dic_item it = D.lookup(s);
if (it == nil)
D.insert(s,1);
else
D.change_inf (it,D.inf (it)+1);
}
dic_item it;
forall_items(it,D)
cout << D.key(it) << " appeared " << D.inf(it) << " times.";

}
In the context of the declarations

dictionary<string, int> SLD; // skiplists
_dictionary<string, int, rb_tree> RBD; // red-black trees
_dictionary<string, int, my_impl> MY D; // user implementation

the calls

WORD_COUNT (L,SL.D) ;
WORD_COUNT (L ,RBD) ;
WORD_COUNT (L ,MY D) ;

are now possible.

The realization of the implementation parameter mechammskes use of multiple in-
heritance, cf. Figure 13.2. Every concrete data type, saijodiary with the rbtree imple-
mentation, is derived from the abstract data type and thesiaicture used to implement it.
In the abstract data type class, all functions are virtual, have unspecified implementa-
tions. In the data structure class the details of the impitgation are given and the classes
in the bottom line of Figure 13.2 are used to match the akldmactions with the concrete
implementations.

34

template<class K,class I> class dictionary :

{
int cmp key(GenPtr x, GenPtr y)

On the Implementation of LEDA

private default_impl

{ return compare(LEDA_ACCESS(K,x), LEDA_ACCESS(K,y)); }
void clear key(GenPtr x) { leda_clear (LEDA_ACCESS(K,x)); }

public:
virtual K
virtual dic_item lookup(K y)

virtual dic_item insert(K x, I y)

virtual void del(X y)

};...

key(dic_item it)

= 0;
= 0;
= 0;
=0:

3

Dictionaries with implementation parameter can now bevéerfrom the abstract dictionary

class.

template<class K, class I,class IMPL>

class _dictionary :

{
public:

private IMPL, public dictionary<K,I>

K key(dic_item it) { return LEAD_ACCESS(K,IMPL::key(it)); }

dic_item lookup(K y)

dic_item insert(K x, I y)

{ return IMPL::lookup(ledacast(y)); }

{ return IMPL::insert(ledacast(x),ledacast(y)); }

void del(K y)

};...

{ IMPL::del(leda cast(y)); }

Of course, an implementation clad8PL can be used as actual implementation parame-
ter of a parameterized data type only if it provides all neaegoperations and definitions
and calls type-dependent functions through the apprepwiatual member functions. For
item-based types, it must in addition define a local tigpmrepresenting the items of the
data type. In the case of dictionaries, any cldissmpl with the following definitions and
declarations can be used as implementation class.

class dic_impl {
// type

virtual
virtual

dependent functions
int

int type_id()

virtual
virtual
virtual
virtual
virtual

public:

void
void
void
void
void

clear key (GenPtr&)
clear_inf (GenPtr&)
copy_key (GenPtr&)
copy-inf (GenPtr&)

// definition of the item type

typedef

item;

cmp (GenPtr, GenPtr) const =
const =

const
const
const

const =
assign inf (GenPtr&, GenPtr)

// construction, destruction, copying
dic_impl();

13.7 Independent Item Types (Handle Types) 35

dic_impl(const dic_impl&);
“dic_impl();

dic_impl& operator=(const dic_impl&);
// dictionary operations

GenPtr key(item) const;
GenPtr inf(item) const;

item insert(GenPtr,GenPtr);
item lookup(GenPtr) const;

void change_inf (item,GenPtr) ;
void del_item(item);

void del(GenPtr);

void clear();

int size() const;

// iteration

item first_item() const;
item next_item(item) const;

};

For most of its parameterized data types LEDA provides s¢umplementation classes.
Before using an implementation claggthe corresponding header fdle EDA/impl/xyzh>
has to be included. The following dictionary implementati@re currently available: AVL-
Trees avltree), (a,b)-Treesdhtree), BB[«]-Trees phtree), Skiplists €kiplis)), Red-Black-
Trees (b.tre€), Randomized Search Trees {ree), Dynamic Perfect Hashinglfhashing,
and Hashing with Chainingfithashing.

Section “Available Implementations” of the LEDA user mahgigies the complete list of
all available implementations.

Exercisesfor 13.6
1 Write an implementation class for dictionaries based erstisetclass of Section 3.2.
2 Write an implementation class for priority queues.

13.7 Independent Item Types (Handle Types)

All independent item types of LEDA (cf. Section 2.2.2) argplemented by so-calldaan-

dle types Basically, a handle typél is a pointer (or handle) to some representation class

H_rep that contains all data members used for the representdtianects of typeH. As-

signment and copy operations translate to simple pointgaents and the test for iden-

tity translates to the equality test for pointers. Thusgesient, copy operations, and iden-

tity functions are easily handled, but destruction of repreation objects causes a problem.
Arepresentation object has to be destroyed as soon as nkeligpdinting to it anymore.

To detect this situation we use a technique catéddrence countingEvery representation

object has a reference countef_countthat contains the number of handles which are

36 On the Implementation of LEDA

still in scope and point to the object. The counters are gutlat the copy constructor,
assignment operator, and destructor of the correspondindlé class.

We use a two-dimensional point clapsint as an example. The representation class
pointrep has three data members, a pair of floating-point coordinates and a reference
counteref_count A constructor initializing the coordinates to two giverues and setting
the reference counter to one is the only member function.

class point_rep {

double x, y;
int ref_count;

point_rep(double a, double b) :x(a),y(b),ref count(1) {}

’

Now we could implement points by pointers to the represartaiasgpointrep. However,
just using the typ@ointreps« for representing points, as in

typedef point_rep* point;

would not make reference counting work automatically whanables of typeooint are
created, assigned to each other, or destroyed. Thenefimehas to be implemented by a
real G++ class with constructors, destructor, and assignment tipera

The only data member of clapsintis a pointer to the corresponding representation class
pointrep.

class point {
point_rep* ptr;
public:

point (double,double) ;
point (const point&);
point& operator=(const point&);

“point () ;
double xcoord() const;
double ycoord() const;

point translate() const;
friend bool identical(const point& x, const point& y);

};

The constructor of clagsoint creates a new representation object (wihcountequal
to one) in the dynamic memory and assigns the pointptrtoThe copy constructor copies
the corresponding pointer and increases the referencderonfrithe representation object
by one. The destructor decreases the corresponding reeoeninter by one and deletes
the representation object if the new value of the counteglie.z

point::point(double x, double y) { ptr = new point.rep(x,y); }
point::point(const point& p)
{ ptr = p.ptr;

ptr->count++;

}
point::“point() { if (--ptr->ref _count == 0) delete ptr; }

13.7 Independent Item Types (Handle Types) 37

In an assignment operatian = p we first increase the reference counter of the repre-
sentation object pointed to iy and then decrease the counter of the representation object
pointed to byg. If the counter of the representation object pointed tq ig/zero afterwards
thenqg was the only handle pointing to the representation objedtvem have to delete it.
Note that in the case th@andq are identical the same reference counter is first increased
and then decreased and hence is unchanged in the end.

point& point::operator=(const point& p)

{ p.ptr->count++;

if (--ptr->count == 0) delete ptr;
ptr = x.ptr;
return *this;

}

Two handles are identical if they share a common representalbject, i.e., thédentical
function reduces to pointer equality.

bool identical(const point& x, const point& y)

{ return x.ptr == y.ptr; }
The above defined member functions and operators are conoralhhiandle types. We
will show how to put them in a common base class for all hangles below.

In order to complete the definition giints we still have to implement the individual
operations specific to them. For example,

double point::xcoord() const { return ptr->x; }

double point::ycoord() const { return ptr->y; }

point point::translate(double dx, double dy) const
{ return point(ptr->x+dx, ptr->y+dy); }

Classes handlgep and handlebase: As mentioned above, there is a group of opera-
tions that is the same for all handle types (copy construassignment, destructor, iden-
tity). LEDA encapsulates these operations in two classesllerep andhandlebase(see
<LEDA/handletypesh>). Concrete handle types and their representation classedea
rived from them. This will be demonstrated for theint type at the end of this section.
Thehandlerepbase class contains a reference counter ofityyees its only data member,
a constructor initializing the counter to 1, and a triviakttactor. Later we will derive
representation classes of particular handle types (@mtrep) from this base class adding
type specific individual data members (exy. andy-coordinates of typeoublg.

class handlerep {
int ref_count;

handle rep() : ref_count(1l) {}
virtual “handlerep() {}

friend class handle_base;

};

38 On the Implementation of LEDA

Thehandlebaseclass has a data membB&FRof typehandlerepx, a copy constructor, an
assignment operator, and a destructor. Furthermore, itetedi friend functiordenticalthat
declares twdhandlebaseobjects identical if and only if thelPTRfields point to the same
representation object. Specific handle types (@agjnt) derived fromhandlebaseuse the
PTRfield for storing pointers to the corresponding represé@ntatbjects (e.g.pointrep)
derived fromhandlerep.

class handle base {
handle_rep* PTR;

handle base(const handle_base& x)
{ PTR = x.PTR;
PTR->ref _count++;

}

handle base& operator=(const handle base& x)
{ x.PTR->ref_count++;
if (--PTR->ref_count == 0) delete PTR;
PTR = x.PTR;
return *this;

}
~“handle_base() { if (--PTR->ref_count == 0) delete PTR; }
friend bool identical(const handle base& x, const handle_base& y)
{ return x.PTR == y.PTR; }
};
This completes the definition of classeandlebaseandhandlerep. We can now derive an
independent item typ€& from handlebaseand the corresponding representation classp
from handlerep. We demonstrate the technique using the point example.
pointrepis derived fromhandlerepadding two data members for tkeandy-coordinates
and a constructor initializing these members.

class point._rep : public handle rep {
double x, y;

point_rep(double a, double b) x(a), y(b) { }
“point_rep() {}

};
We will next derive claspoint from handlebase The classpoint uses the inherited
PTRfield for storingpointerrepx pointers. The constructor constructs a new object of type

pointrepin the dynamic memory and stores a pointer to it in BieRfield, and copy con-
structor and assignment reduce to the corresponding iamofithe base class. In order to
access the representation object we €a3Rto pointrepx. This is safe sinc€TRalways
points to apointrep. For convenience, we add an inline member funcpitni) that per-
forms this casting. Now we can wriggr() wherever we useptr in the originalpoint class
at the beginning of this section. The full class definitioassfollows:

13.8 Memory Management 39

class point : public handle_base

{
point rep* ptr() const { return (point_rep*)PTR; }

public:
point (double x=0, double y=0) { PTR = new point_rep(x,y); }

point (const point& p) : handle base(p) {}
“point () {}

point& operator=(const point& p)
{ handle base::operator=(p); return *this; }

double xcoord() const { return ptr()->x; }
double ycoord() comnst { return ptr()->y; }

point translate(double dx, double dy) const
{ return point(xcoord() + dx, ycoord() + dy); }
};
Note that all the “routine work” (copy construction, assiggnt, destruction) is done by the
corresponding functions of the base claasdlebase

Exercisesfor 13.7

1 Explain why the destructdrandlerep::~handlerep() is declaredsirtual.

2 How would the above code have to be changed if it werevintautal?

3 Implement astring handle type using the mechanism described above.

4 Add an array subscript operatohar& string::operatof] (inti) to your string class.
What kind of problem is caused by this operator and how carsptue it?

13.8 Memory Management

Many LEDA data types are implemented by collections of smbjects or nodes in the
dynamic memory, e.g., lists consist of list elements, gsagnsist of nodes and edges, and
handle types are realized by pointers to small representabjects.

Most of these data types are dynamic and thus spend conslieléirae for the creation
and destruction of these small objects by callingritberanddeleteoperators.

Typically, the G-+ defaultnewoperator is implemented by calling theallocfunction of
the C standard library

void* operator new(size_t bytes) { return malloc(bytes) }
and the defaultieleteoperator by calling théreelibrary function
void operator delete(void* p) { free(p); }

Unfortunatelymallocandfreeare rather expensive system calls on most systems.

LEDA offers an efficient memory manager that is used for atlayedge and item types.
The manager can easily be applied to a user defined Gldsg adding the macro call

40 On the Implementation of LEDA

“LEDA _MEMORY (T)” to the declaration of the class. This redefines the new and delete
operators for typd', such that they allocate and deallocate memory using LED#snal
memory manager.

The basic idea in the implementation of the memory manager asnortize the expen-
sive system calls tonalloc and free over a large sequence of requests (calls®ivand
deletd for small pieces of memory. For this purpose, LEDA usesloc only for the al-
location of large memory blocks of a fixed size (e.g., 4 kbyt&hese blocks are sliced
into chunks of the requested size and the chunks are magataira singly linked list. The
strategy just outlined is efficient if the size of the chunksinall compared to the size of
a block. Therefore the memory manager applies this straiatyyto requests for memory
pieces up to a certain size. Requests for larger pieces ofomyefaften called vectors)
are directly mapped tmalloccalls. The maximal size of memory chunks handled by the
manager can be specified in the constructor. For the stantlembry manager used in the
LEDAMEMORYmacros this upper bound is set to 255 bytes.

The heads of all lists of free memory chunks are stored inla fedelist[256]. Whenever
an application asks for a piece of memory of §ze< 256 the manager first checks whether
the corresponding lidteelist[sZ is empty. If the list is non-empty, the first element of the
listis returned, and if the list is empty, it is filled by allating a new block and slicing it as
described above. Freeing a piece of memory of size 256 in a call of thaleleteoperator
is realized by inserting it at the front of lifeelist[sZ.

Applications can call the global functigurint statisticsto get a summary of the current
state of the standard memory manager. It prints for everpkisize that has been used in
the program the number of free and still used memory chunks.

The following example illustrates the effect of the memorgmager. We defined a class
pair and a classlumhpair. The definitions of the two classes are identical except that
dumbpair does not use the LEDA memory managetr.

(class paiy=

class pair {
double x, y;

public:
pair(double a=0, double b=0) : x(a), y(b) { }
pair(const pair& p) : x(p.x), y(p.y) { }
friend ostream& operator<<(ostream& ostr, const pair&) {return ostr;}
friend istream& operator>>(istream& istr, pair&) { return istr; }

LEDA_MEMORY (pair) // not present in dumb_pair
};

We then built a list oh pairs or dumb pairs, respectively, and cleared them againleT.3.2
shows the difference in running time. We also printed the orymatatistics before and after
theclear operation.

13.9 lteration 41

n LEDAmemory G+ memory

1000000 0.94 2.77

Table 13.2 The effect of the memory manager. We built and destroyed aflis pairs or dumb
pairs, respectively. Pairs use the LEDA memory manager antbcpairs do not. The table was
generated with program memmtgst.c in LEDAROOT/demo/book/Impl.

(timing for dumb paif=
list<dumb_pair> DL;
for (i = 0; 1 < n; i++) DL.append(dumb_pair());
print_statistics();
DL.clear();
print_statistics();
UT = used_time(T);

13.9 lteration

For most of its item-based data types LEDA provides iteratiacros . These macros can
be used to iterate over the items or elements of lists, arsafs, dictionaries, and priority

queues or over the nodes and edges of graphs. Iteration srzamdoe used similarly to the

C++ for-statement. We give some examples.

For all item-based data types:
forall items(it,D) { ... }
iterates over the items of D and
forall rev_items(it,D) { ... }
iterates over the items of D in reverse order.
For sets, lists and arrays:
forall(x,D) { ... }
iterates over the elementsof D and
forall rev(x,D) { ... }
iterates over the elementsof D in reverse order.
For graphs:
forall nodes(v,G) { ... }

iterates over the nodesof G,

42 On the Implementation of LEDA

STD_MEMORY_MGR (memory status)

g +
| size used free blocks bytes |
- +
| 12 1000001 388 1469 12004668 |
| 16 1000000 110 1961 16001760 |
| 20 29 379 1 8160 |
| 28 1 290 1 8148 |
| 40 2 201 1 8120 I
| > 255 - - 1 300 |
g +
| time: 0.64 sec space:27450.88 kb |
- +

g +
| size used free blocks bytes |
e +
| 12 1 1000388 1469 12004668 |
| 16 0 1000110 1961 16001760 |
| 20 29 379 1 8160 |
| 28 1 290 1 8148 |
| 40 2 201 1 8120 |
| > 255 - - 1 300 |
g +
| time: 0.98 sec space:27450.88 kb |
e +

Figure 13.3 Statistic of memory usage. We built a listmf= 1CP pairs of doubles. A list of
pairs requires list items of 12 bytes each amdpairs of 16 bytes each. The upper statistic
shows the situation before the clear operations and ther Istatistic shows the situation after
the clear operations. The figure was generated with programmygttest.c in
LEDAROOT/demo/book/Impl.

forall edges(e,G) { ... }
iterates over the edgesf G,
forall_adj_edges(e,v) { ... }
iterates over all edgesadjacent taw, and
forall adjnodes(u,v) { ... }

iterates over all nodesadjacent ta.

Inside the body of a forall loop insertions into or deletioriom the collection iterated
over are not allowed, with one exception, the current iterolgject of the iteration may be
removedas in

// remove self-loops
forall edges(e,G) { if (G.source(e) == G.target(e)) G.del_ edge(e); }

13.9 lteration 43

TheforallLitem(it, S) iteration macro can be applied to instan&asf all item-based data
typesT that defineT ::itemas the corresponding item type and that provide the follgwin
member functions:

T::item S.first_item()
returns the first item o8 andnil if Sis empty
T::item S.next_item(T::item it)

returns the successor of itatrin S(nil if it = Slastitem() orit = nil).
Theforall_revitemgit, S) macro can be used if the following member functions are de-
fined:

T::item S.last_item()
returns the last item dd andnil if Sis empty, and
T::item S.pred_item(T::item it)

returns the predecessor of itéhin S(nil if it = Sfirstitem() orit = nil).

Theforall(x, S) andforall_rev(x, S) iteration macros in addition require that the opera-
tion Sinf (T ::item it) is defined and returns the information associated with item

A first try of an implementation of thirallLitemsmacro could be

#define forall_items(it,S)\

for(it = S.first_item(); it != nil; it = S.next_item(it))
However, with this implementation the current item of tlegdttion cannot be removed from
S. To allow this operation we use a temporary variaplalways containing the successor
item of the current iterit. Since our macro has to work for all item-based LEDA datasype
the item type (e.gdicitemfor dictionaries) is not known explicitly, but is given inmigitly
by the type of the variabli. We therefore use a temporary iterafpof type voidx and a
function templaté.oopAssigitemtypek it, void x p) to copy the contents gj to it before
each execution of the for-loop body. The details are givethbyfollowing piece of code.

template <class T>

inline bool LoopAssign(T& it, void* p) { it = (T)p; }

#define forall_items(it,S)\
for(void* p = S.first_item(); \
LoopAssign(it,p), p = S.next_item(it), it !'= nil;)

#define forall_rev_items(it,S)\
for(void* p = S.last_item(); \
LoopAssign(it,p), p = S.pred_item(it), it !'= nil;)
With the above implementation of tHierall_itemsloop the current item (but not its succes-
sor) may be deleted. There are many situations where thesisatble.
The following piece of code deletes all occurrences of argivemberx from a listL of
integers:

44 On the Implementation of LEDA

list_item it;
forall items(it,L) if (L[it] == x) L.del_item(it);

The following piece of code removes self-loops from a gr&ph

edge e;
forall adj_edges(e,G) if (source(e) == target(e)) G.del_edge(e);

Exercisesfor 13.9

1 Design a forall macro allowing insertions at the end of thkection.

2 Implement an iteration macro for the binary tree classtree traversing the nodes in
in-order.

13.10 Priority Queues by Fibonacci Heaps (A Complete Example)

We give a comprehensive example that illustrates most o€dmeepts introduced in this
chapter, the implementation of the priority queue data fgpeeugP, | > by Fibonacci
heaps. The data tygequeu&P, | > was discussed in Section 5.4 and is defined in the
header file<LEDA/pqueueh>. We show the header file below, but without the manual
comments that generate the manual page.

We call the implementation claBRIQIMPL. There is one slight anomaly in the deriva-
tion of pqueu&P, 1> from PRIQIMPL: What is calledpriority in the data type template
is calledkeyin the implementation class, since in the first version of lBEDiorities were
called keys and this still shows in the implementation class

13.10.1The Data Type Template
We start with the data type template.

(p_queue.h=
#define PRIO_IMPL f_heap
typedef PRIO_IMPL::item pq_item;

template<class P, class I>
class p_queue: private PRIO_IMPL
{
int key_type_id() const { return leda_type_id((P*)0); }
int cmp(GenPtr x, GenPtr y) const
{ return compare(LEDA_ACCESS(P,x),LEDA_ACCESS(P,y)); }

void clear_key(GenPtr& x) const { leda_clear (LEDA_ACCESS(P,x)); }
void clear_inf (GenPtr& x) const { leda_clear (LEDA_ACCESS(I,x)); }

void copy_key(GenPtr& x) const { x = leda_copy(LEDA_ACCESS(P,x)); }
void copy_inf (GenPtr& x) const { x = leda_copy(LEDA_ACCESS(I,x)); }
public:

p_queue() {3}

13.10 Priority Queues by Fibonacci Heaps (A Complete Exampl 45

p_queue(const p_queue<P,I>& Q) :PRIO_IMPL(Q) {}
“p_queue() { PRIO_IMPL::clear(); }

p_queue<P,I>& operator=(const p_queue<P,I>& Q)
{ PRIO_IMPL::operator=(Q); return *this; }

P prio(pg_item it) const

{ return LEDA_CONST_ACCESS(P,PRIO_IMPL: :key(it)); }
I inf (pgq_item it) const

{ return LEDA_CONST_ACCESS(I,PRIO_IMPL::inf(it)); }
pg_item find min() const { return PRIO_IMPL::find_min(); }
void del_min() { PRIO_IMPL::del_min(); }

void del_item(pq_item it) { PRIO_IMPL::del_item(it); }

pg_item insert(const P& x, const I& i)
{ return PRIO_IMPL: :insert(leda_cast(x),leda_cast(i)); }

void change_inf(pq_item it, const I& i)
{ PRID_IMPL: :change_inf(it,leda_cast(i)); }
void decrease_p(pg_item it, const P& x)
{ PRIO_IMPL::decrease_key(it,leda_cast(x)); }
int size() const { return PRIO_IMPL::size(); }
bool empty() const { return (size()==0) ? true : false; }
void clear() { PRIO_IMPL::clear(); }
pg_item first_item() const { return PRIO_IMPL::first_item(); }

pg_item next_item(pqg_item it) const { return PRIO_IMPL: :next_item(it); }
};

Every implementation clas®3RIQIMPL for pqueu&P, I > has to provide the following
operations and definitions.

class PRIO_IMPL

{
virtual int key_type_id() const = 0;
virtual int cmp(GenPtr, GenPtr) const = 0;
virtual void clear key(GenPtr&) const = O;
virtual void clear_inf (GenPtr&) const = 0;
virtual void copy.key(GenPtr&) const = O;
virtual void copy-inf (GenPtr&) const = 0

public:
typedef ... item;
protected:

PRIO_IMPL();
PRIO_IMPL(const PRIOD_IMPL&);

virtual “PRIO_IMPL();
PRIO_IMPL& operator=(const PRIO_IMPLZ) ;

item insert(GenPtr,GenPtr);
item find min() const;

GenPtr key(item) const;
GenPtr inf(item) const;

void delmin();
void del_item(item);

46 On the Implementation of LEDA

(7) (3) 19
@ @ @ (5 @
19 (6) (9
L@ @

Figure 13.4 A heap-ordered forest.

void decrease key(item,GenPtr) ;
void change_inf (item,GenPtr) ;
void clear();

int size() const;

//iteration
item first_item() const;
item next_item(item) const;

};

13.10.2Fibonacci Heaps
In the remainder of this section we give the Fibonacci heafization of PRIQIMPL.

Definition and Header File: Fibonacci heaps (classheap) are one of the best realizations
of priority queues [FT87]. They represent priority queusshaap-ordered forests. The
items of the priority queue are in one-to-one corresponeltmthenodesof the forest; so it
makes sense to talk about the key and the information of a.ndderest isheap-ordered
if each tree in the forest iseap-orderedand a tree is heap-ordered if the key of every non-
root node is no less than the key of the parent of the node.hier etords, the sequence of
keys along any root to leaf path is non-decreasing. Figu di®ows a heap-ordered forest.

In the storage representationfoieafs every node contains a pointer to its parent (the
parent pointer of a root isil) and to one of its children. The child-pointerrig if a node
has no children. The children of each node and also the rdoite drees in &_heapform
a doubly-linked circular list (pointerdeft andright). In addition, every node contains the
four fieldsrank, marked next andpred Therankfield of each node contains the number
of children of the node and thearkedfield is a boolean flag whose purpose will be made
clear below. Thenextandpredfields are used to keep all nodes of a Fibonacci heap in a
doubly-linked linear list. This list is needed for tfierallLitemsiteration. Anf_heapitem
(typeF_heap:item) is a pointer to a node. Figure 13.5 shows the storage repedsm of
the heap-ordered forest of Figure 13.4.

The constructor of cladsheapnodecreates a new nodg, i) and initializes some of the

13.10 Priority Queues by Fibonacci Heaps (A Complete Exampl a7

parent
= X

—right ——

left
child
parent parent
13 7
> right > right —
=~ left left |«
f child chﬁld
parent
-0
] right —
left

child 1

Figure 13.5 The storage representation of the heap-ordered foresgafé-i.3.4. Théey, rank,
marked next andpredfields are not shown, informations are integers and nil{gognare shown
as pointing to “ground”.

fields to their obvious values. It also adds the new item tdritnat of the list of all items of
the heap. The LEDA memory management is used farapnodes (cf. Section 13.8).

(f_heap.h=
#include <LEDA/basic.h>
class f_heap_node;
typedef f_heap_nodex* f_heap_item;
class f_heap_node {

friend class f_heap;

f_heap_item left; // left and right siblings (circular list)
f_heap_item right;

f_heap_item parent; // parent node

f_heap_item child; // a child

f_heap_item next; // list of all items

f_heap_item pred;

int rank; // number of children

bool marked; // mark bit

GenPtr key; // key

GenPtr inf; // information

f_heap_node(GenPtr k, GenPtr info, f_heap_item n)
{

48

}

}

On the Implementation of LEDA

// the third argument n is always the first item in the list
// of all items of a Fibonacci heap. The new item is added
// at the front of the list

key = k;
inf = info;
rank = 0;

marked = false;

parent = child = nil;
next = n;

if (n) n->pred = this;

LEDA_MEMORY (f_heap_node)

’

The storage representation offaheapconsists of five fields:

numberof_nodes the number of nodes in the heap

power the smallest power of two greater than or equaitmberof_nodes
logp the binary logarithm of power
minptr a pointer to a root with minimum key
nodelist first element in the list of all nodes
(f_heap.h+=

class f_heap {

int number_of_nodes;
int power;

int logp;

f_heap_item minptr;
f_heap_item node_list;

(virtual functions related to keys and infs
(auxiliary function$

public:

typedef f_heap_item item;

protected:

// constructors, destructor, assignment
f_heap();

f_heap(const f_heap&);

f_heap& operator=(const f_heap&);
virtual “f_heap();

// priority queue operations
f_heap_item insert(GenPtr, GenPtr);
f_heap_item find _min() const;

void del_min();

void decrease_key(f_heap_item,GenPtr);
void change_inf (f_heap_item,GenPtr);
void del_item(f_heap_item);

void clear();

GenPtr key(f_heap_item) const;
GenPtr inf (f_heap_item) const;

13.10 Priority Queues by Fibonacci Heaps (A Complete Exampl 49

int size() const;
bool empty() const;

// iteration
f_heap_item first_item() const;
f_heap_item next_item(f_heap_item) const;

};

We turn to the implementation of the member functions. Thee filheap.c contains the
implementations of all operations drhears.

Construction: To create an emptiyheapsetnumberof_nodesto zero,powerto one,logp
to zero, andminptr andnodelist to nil.

(f_heap.¢=
#include <LEDA/basic.h>
#include "f_heap.h"

f_heap::f_heap()

{ number_of_nodes = 0;
power = 1;
logp = O;
minptr = nil;
node_list = nil;

Simple Operations on Heaps:We discuss create, findmin, size, empty, key, inf, and
changekey. Afindminoperation simply returns the item pointed toynptr. The empty
operation compargsimberof_nodego zero, and theizeoperation returnsumberof_nodes
Both operations take constant time.

Thekeyandinf operations apply to an item and return the appropriate coepoof the
item.

The changenf operations applies to an iterand an informationnf and changes the
information associated witk to a copy ofinf. It also clears the memory used for the old
information.

(f_heap.¢+=
f_heap_item f_heap::find_min() const { return minptr; }
int f_heap::size() const { return number_of_nodes; }
bool f_heap::empty() const
{ return number_of_nodes == 0; }
GenPtr f_heap::key(f_heap_item x) const { return x->key; }
GenPtr f_heap::inf (f_heap_item x) const { return x->inf; }

void f_heap::change_inf (f_heap_item x, GenPtr i)
{ clear_inf (x->inf);

copy_inf (i);

x->inf = i;

}

50 On the Implementation of LEDA

We have used functiordear keyand copykeywithout defining them. Both functions be-
long to the set of virtual functions of clagheapwhich we need to makkeheapa param-
eterized data structure. We declare these functions asviitwal and define them in the
definition of the clasp.queugK, | > as discussed in Section 13.4.

The six virtual functions arecmpcompares two keys (of typ@), clearkeyandclearinf
deallocate a key and an information, respectivebpykeyandcopyinf return a copy of
their argument, an#teytypeid() determines whether its argument belongs to a built-in
type as discussed in Section 13.5. It is used to bypass tlse@abmpare function for such

types.

(virtual functions related to keys and infs

virtual int cmp (GenPtr,GenPtr) const = 0;
virtual void clear_key(GenPtr&) const = 0;
virtual void clear_inf (GenPtr&) const = 0;
virtual GenPtr copy_key(GenPtr&) const = 0;
virtual GenPtr copy_inf (GenPtr&) const = 0;
virtual int key_type_id() const = 0;

Some Theory: The non-trivial operations aiiasert, decreasénf anddelmin. We discuss
them in some detail now. The discussion will be on the levdiedp-ordered forests. All
implementation details will be given later.

An insert adds a new single node tree to the Fibonacci hegpfartessary, adjusts the
minptr. So a sequence ofinserts into an initially empty heap will simply createsingle
node trees. The cost of an insert is cleddyl).

A delmin operation removes the node indicatedrhinptr. This turns all children of
the removed node into roots. We then scan the set of rootaatadew) to find the new
minimum. To find the new minimum we need to inspect all roold émd new), a potentially
very costly process. We make the process even more expdbgigeconstant factor) by
doing some useful work on the side, namely combining treesqofal rank into larger
trees. A simple method to combine trees of equal rank is dswsl Let maxrank be
the maximal rank of any node. Maintain a set of buckets,dlytiempty and numbered
from 0 tomaxrank. Then step through the list of old and new roots. When a rocaoKi
is considered inspect theth bucket. If the -th bucket is empty then put the root there. If
the bucket is non-empty then combine the two trees into opendiking the root with the
larger information a child of the other root). This emptiesit-th bucket and creates a root
of ranki + 1. Try to throw the new tree into the+ 1st bucket. If it is occupied, combine
.... When all roots have been processed in this way, we hawdlexiton of trees whose
roots have pairwise distinct ranks. What is the running tofihne deLmin operation?

Let K denote the number of roots before the caldeimin. The cost of the operation is
O(K 4+ maxrank) (since the deleted node has at mmstxrank children and hence there
are at mosK + maxrankroots to start with. Moreover, every combine reduces thetrarm
of roots by one). After the call there will be at mastaxrank roots (since they all have

13.10 Priority Queues by Fibonacci Heaps (A Complete Exampl 51

Bo Bx B2 B3 Bs

Figure 13.6 Binomial trees. Deletion of the high-lighted node and ajjlighted edges
decomposes, into binomial trees.

different ranks) and hence the number of roots decreaseslbgsdK — maxrank. Thus,
if we use the potential functiod®; with

@71 = number of roots

then the amortized cost ofdeletemin operation isO(maxrank). The amortized cost of
an insert isO(1); note thatn inserts increase the potenti@dh by one. We will extend the
potential by a second terdh, below.

What can we say about the maximal rank of a node in a FibonaeghLet us consider
a very simple situation first. Suppose that we perform a sszpief inserts followed by
a singledelmin. In this situation, we start with a certain number of singtela trees and
all trees formed by combining are so-callediomial treesas shown in Figure 13.6. The
binomial treeBy consists of a single node and the binomial tBpe; is obtained by joining
two copies of the tre®;. This implies that the root of the tre® has ranki and that the
tree B; contains exactly i2nodes. We conclude that the maximal rank in a binomial tree
is logarithmic in the size of the tree. If we could guaranteg@éneral that the maximal
rank of any node is logarithmic in the size of the tree theratiertized cost of thdelmin
operation would be logarithmic.

We turn to thedecreasédkeyoperation next. It is given a nhodeand a new information
newkeyand decreases the informatiomato newkey Of coursenewkeymust not be larger
than the old information associated with Decreasing the information associated with
will in general destroy the heap property. In order to maintae heap property we delete
the edge connecting to its parent and turm into a root. This has the side effect that for
any ancestow of v different fromv’s parent the size oiv’s subtree decreases by one but
w’s rank is unchanged. Thus, if we want to maintain the propdt the maximal rank of
any node is logarithmic in the size of the subtree rootedantbde, we need to do more
than just cutting’s link to its parent.

An old solution suggested by Vuillemin [Vui78] is to keep tattes in the heap binomial.
This can be done as follows: for any proper ancegtof v delete the edge inta on the
path fromwv to z, call it e, and all edges inta that were created later thanIn Figure 13.6 a
node and a set of edges is high-lighted in the Bgelf all high-lighted edges are removed
then B, decomposes into two copies Bf and one copy each @i, B,, andBs. It is not
too hard to see that at molstedges are removed whenBg is disassembled (since Bx

52 On the Implementation of LEDA

® ©® O

amﬂ@

i
!
;

Figure 13.7 A decrease key oRr is performed ang andz are marked but is not; X, y, andz
become roots, roots are unmarked, arftecomes marked. Marked nodes are shown shaded. A
dashed edge stands for a path of edges.

decomposes into twBj’s and one each dBj1, ..., Bx_1 forsomej, with0 < j <k—-1)
and hence this strategy gives a logarithmic time bound fdétreasdeyoperation.

In some graph algorithms thiecreaséeyoperation is executed far more often than the
other priority queue operations, e.g., Dijkstra’s sharpeth algorithm (cf. Section 6.6)
executesn decreas#e)s and onlyn insers anddelmins, wherem andn are the number of
edges and nodes of the graph, respectively. Simoeight be as large as’ it is desirable
to make thalecreasdkeyoperation cheaper than the other operations. Fredman ajzh Ta
showed how to decrease its cosQ@l) without increasing the cost of the other operations.
Their solution is surprisingly simple and we describe ittnex

When a node loses a child becaustecreasdeyis applied to the child the nodeis
marked; this assumes thathas not already been marked. When a marked mddees a
child, we turnx into a root, remove the mark from and attempt to mark’s parent. If
X’s parent is marked already then In other words, supfitaene applydecreasdkey
to a nodev and that the&k-nearest ancestors ofare marked, then turm and thek-nearest
ancestors ob into roots and mark th& + 1st-nearest ancestor of(if it is not a root).
Also unmark all the nodes that were turned into roots, cfufédlL3.7. Why is this a good
strategy?

First, adecreasd&eymarks at most one node and unmarks some nuikbé&nodes. No
other operation marks a node and hence in an amortized keree be at most one (we
cannot unmark more nodes than we mark). However, we alseaserthe number of roots
by k which in turn increases the potenti&h by k and therefore we have to argue more
carefully. Let

®, = 2 - number of marked nodes

and letd = ®; + ®,. A decreaséeyoperation where the nodehask marked ancestors

13.10 Priority Queues by Fibonacci Heaps (A Complete Exampl 53

has actual cogD(k + 1) and decreases the potential by at legkt21) — (k+1) = k — 3.
Note that the number of marked nodes is decreased by atkeadt (at leask nodes are
unmarked and at most one node is marked) and that the numieotsfis increased by

k 4+ 1. The amortized cost of decreasdeyis thereforeO(1). insers do not chang®,
anddelmins do not increas@, (it may decrease it because the marked children of the
removed node become unmarked roots) and hence their agtbetizt does not increase by
the introduction ofbs.

How does the strategy affect the maximal rank. We show thsthits logarithmic. In
order to do so we need some notation. Eg=0,F; =1, andF = Fi_1 + Fi_o>fori > 2
be the sequence of Fibonacci numbers. It is well-knownfhat > (1 + \/5/2)i > 1.618
foralli > 0.

Lemma 1Letv be any node in a Fibonacci heap and leti be the rank.oFhen the subtree
rooted atv contains at least 5, nodes. In a Fibonacci heap with n nodes all ranks are
bounded by.4404 logn.

Proof Consider an arbitrary nodeof ranki. Order the children ob by the time at which
they were made children af. Let w; be thej-th child, 1< j <i. Whenw; was made
child of v both nodes had the same rank. Also, since at least the nodes. , w;_1 were
nodes ofv at that time, the rank af was at leas} — 1 at the time whemw; was made a child
of v. The rank ofw; has decreased by at most 1 since then because othesyiseuld be
aroot. Thus the current rank of; is at leastj — 2.

We can now set up a recurrence for the minimal nun$ef nodes in a tree whose root
hasrank. ClearlyS =1,S5 =2,and§ > 2+ S+ S + ...+ S_2. The last inequality
follows from the fact that forj > 2, the number of nodes in the subtree with ragtis
at leastS;_», and that we can also count the noageandw;. The recurrence above (with
= instead of>) generates the sequence 1, 2, 3, 5, 8,...which is identdhkt Fibonacci
sequence (minus its first two elements).

Let’s verify this by induction. Leflo = 1, Ty = 2, andTy = 2+ To+ ...+ Tj_, for
i >2. Then,fori >2, T, 1—-Ti=24+To+...+Ti.1—-2—-To—...— Ti_o=Ti_3,l.e.,
Tiz1 = T + Ti_1. This provesT; = Fo.

For the second claim, we only have to observe that < nimpliesi - log(1+ +/5/2) <
logn which in turn implies < 1.4404 logn. O

This concludes our theoretical treatment of Fibonacci ke'fe have shown the follow-
ing time bounds: atinsertand adecreasd&keytake constant amortized time andlelmin
takes logarithmic amortized time. The operati@ize empty andfindmintake constant
time.

We now return to the implementation.

Insertions: An insertoperation takes a kdyand an informatiom and creates a new heap-
ordered tree consisting of a single na#tei). In order to maintain the representation invari-

54

ant

On the Implementation of LEDA

it must also add the new node to the circular list of rootrementnumberof_nodes

and may bgowerandlogp, and changeninptr if k is smaller than the current minimum
key in the queue.

(f_heap.¢+=
f_heap_item f_heap::insert(GenPtr k, GenPtr i)

{

}

k copy_key (k) ;
i = copy_inf(i);

f_heap_item new_item = new f_heap_node(k,i,node_list);

if (number_of_nodes == 0)
{ // insertion into empty queue
minptr = new_item;
// build trivial circular list
new_item->right = new_item;
new_item->left = new_item;
// power and logp have already the correct value
}
else
{ // insertion into non-empty queue;
// we first add to the list of roots
new_item->left = minptr;
new_item->right = minptr->right;
minptr->right->left = new_item;
minptr->right = new_item;
if (cmp(k,minptr->key) < O) minptr = new_item; // new minimum
if (number_of_nodes >= power) // log number_of_nodes grows by one
{ power = power * 2;
logp = logp + 1;
}
}

number_of_nodes++;

return new_item;

Deletemin: A delmin operation removes the item pointed to tmnptr, i.e., an item of
minimumkey. This turns all children of the removed node into roots. Wenthcan the set
of roots (old and new) to find the new minimum.

(f_heap.¢+=
void f_heap::del_min()

{

// removes the item pointed to by minptr
if (minptr == nil)
error_handler(1,"f_heap: deletion from empty heap");
number_of_nodes--;
if (number_of_nodes==0)
{ // removal of the only node
// power and logp do not have to be changed.

13.10 Priority Queues by Fibonacci Heaps (A Complete Exampl 55

clear_key(minptr->key) ;
clear_inf (minptr->inf);
delete minptr;

minptr = nil;

node_list = nil;
return;

}

/* removal from a queue with more than one item. */

(turn children of minptr into roots;
(combine trees of equal rank and compute new minijgum
(remove old minimuin

We now discuss the removal of a node of minimkeyfrom anf_heapwith more than
one item. Recall thatumberof_nodesalready has its new value. We first updpt®verand
logp (if necessary) and then turn all childrenminptr into roots (by setting their parent
pointer to nil and their mark bit to false and combining the 6f children ofminptr with
the list of roots). We do not deleteinptryet. It is convenient to keep it as a sentinel.

The cost of turning the children of theinptr into roots isO(maxranK;

Note that the body of the loop is executed for each child ofntb@eminptr and that, in
addition, to the children ahinptr we accessninptr and its right sibling.

(turn children of minptr into roots=
if (2 * number_of_nodes <= power)
{ power = power / 2;
logp = logp - 1;

f_heap_item rl = minptr->right;
f_heap_item r2 = minptr->child;

if (r2)
{ // minptr has children
while (r2->parent)
{ // wvisit them all and make them roots
r2->parent = nil;
r2->marked = false;
r2 = r2->right;
}
// combine the lists, i.e. cut r2’s list between r2 and its left
// neighbor and splice r2 to minptr and its left neighbor to ri

r2->left->right = ri;
ri->left = r2->left;
minptr->right = r2;
r2->left = minptr;

The task of the combining phase is to combine roots of equi irsto larger trees. The
combining phase uses a procediim& which combines two trees of equal rank and returns
the resulting tree.

56

On the Implementation of LEDA

(f_heap.¢+=

f_

{

}

heap_item f_heap::1ink(f_heap_item r1, f_heap_item r2)

// rl and r2 are roots of equal rank, both different from minptr;
// the two trees are combined and the resulting tree is returned.
f_heap_item hi;

f_heap_item h2;

if (ecmp(ri1->inf,r2->inf) <= 0)

{ // r2 becomes a child of ri

hi = ri;
h2 = r2;
}
else
{ // rl becomes a child of r2
hl = r2;
h2 = ri;
}

// we now make h2 a child of hl. We first remove h2 from
// the list of roots.
h2->left->right = h2->right;
h2->right->left = h2->left;
/* we next add h2 into the circular list of children of hl */
if (hi1->child == nil)
{ // h1l has no children yet; so we make h2 its only child
hi->child = h2;
h2->left = h2;
h2->right = h2;
}
else
{ // add h2 to the list of children of hi
h2->left = hi->child;
h2->right = hi->child->right;
hil->child->right->left = h2;
hi->child->right = h2;
}

h2->parent = hi;
hil->rank++;

return hi;

Let’s not forget to add the declaration of link to the set ofiaary functions ofclass theap

(auxiliary function$=

f_

heap_item 1link(f_heap_item, f_heap_item);

Next comes the code to combine trees of equal rank. The taslkstep through the list of
old and new roots, to combine roots of equal rank, and to aeterthe node of minimum

key.

We solve this task iteratively. We maintain an arragkarray of length maxrank

of pointers to rootsrankarray[i] points to a root of rank, if any and tonil otherwise.

13.10 Priority Queues by Fibonacci Heaps (A Complete Exampl 57

Initially all entries point tonil. When a root of rank is inspected andankarray[r] is
nil, storer there. If it is non-empty, combine with the array entry and replaceby the
combined tree. The combined tree has rank one higher. Waréeahk array as an array
of length 12« sizeof(int). This is a save choice since the number of nodes in a heap is
certainly bounded bWIAXINT = 28sizeofint) - Hencemaxrank< 1.5 % log(MAXINT) =
12 x sizeofint).

There is a small subtlety in the following piece of code. We mmning over the list of
roots and simultaneously modifying it. This is potentiadlgngerous, but our strategy is
safe. Imagine the list of roots drawn with th@nptr at the far right. Thercurrentpoints
to the leftmost element initially. At a general step of therdtioncurrent points at some
arbitrary list element. All modifications of the list by calbf link take place strictly to the
left of current For this reason it is important to advanogrentat the beginning of the
loop.

(combine trees of equal rank and compute new minifeeim

f_heap_item rank_array[12*sizeof (int)];
for (int i = (int)1.5%logp; i >= 0; i--) rank_array[i] = nil;

f_heap_item new_min = minptr->right;
f_heap_item current = new_min;

while (current != minptr)
{ // old min is used as a sentinel
rl = current;
int rank = ril->rank;
// it’s important to advance current already here
current = current->right;

while (r2 = rank_array[rank])

{ rank_array[rank] = nil;
// link combines trees rl and r2 into a tree of rank one higher
rl = link(rl,r2);

rank++;
}
rank_array[rank] = ri;
if (cmp(rl->inf,new_min->inf) <= 0) new_min = ri;

We complete the operation by actually deleting the old mimimand settingninptr to its
new value.

{remove old minimuipeE

minptr->left->right = minptr->right;
minptr->right->left = minptr->left;

clear_key(minptr->key) ;
clear_inf (minptr->inf);
rl = minptr->pred;

r2 = minptr->next;

if (r2) r2->pred = ri;

58 On the Implementation of LEDA

if (rl1) ri->next = r2; else node_list = r2;
delete minptr;

minptr = new_min;

Decreasekey, Clear, and Delitem: decreasdkeymakes use of an auxiliary functi@ut(x)
that turns a non-root nodeinto a root and returns its old parent.

(auxiliary function$+=
f_heap_item cut(f_heap_item);

(f_heap.¢+=
f_heap_item f_heap::cut(f_heap_item x)
{
f_heap_item y = x->parent;
if (y->rank == 1) y->child = nil; // only child
else
{ /* y has more than one child. We first make sure that its childptr
does not point to x and then delete x from the list of children */
if (y->child == x) y->child = x->right;
x->left->right = x->right;

x->right->left = x->left;
X
y->rank--;
x->parent = nil;
x->marked = false;

// add to circular list of roots
x->left = minptr;

x->right = minptr->right;
minptr->right->left = x;
minptr->right = x;

return y;

Now we can give the implementation décreaséey.

(f_heap.¢+=
void f_heap::decrease_key(f_heap_item v, GenPtr newkey)
{
/ * changes the key of f_heap_item v to newkey;
newkey must be no larger than the old key;
if newkey is no larger than the minimum key
then v becomes the target of the minptr */

if (cmp(newkey,v->key) > 0)
error_handler(l,"f_heap: key too large in decrease_key.");
// change v’s key
clear_key(v->key) ;
v->key = copy_key(newkey);

13.10 Priority Queues by Fibonacci Heaps (A Complete Exampl 59

if (v->parent)
{ f_heap_item x = cut(v); // make v a root
while (x->marked) x = cut(x); // a marked f_heap_node
// is a non-root
if (x->parent) x->marked = true; // mark x if it not a root

}

// update minptr (if necessary)
if (cmp(newkey,minptr->key) <= 0) minptr = v;

To clear a heap simply remove the minimum until the heap istgnihe cost ofclear
is bounded by times the cost ofleLmin. We can also uselear as the destructor of class
f_heap

(f_heap.¢+=
void f_heap::clear() { while (number_of_nodes > 0) del_min(); }
f_heap::"f_heap() { clear(); }

To remove an arbitrary item from a heap, we first decreadeeitso the minimum key
(this makes the item the target of threnptr) and then remove the minimum. The cost of
removing an item is therefore bounded ©y1) plus the cost oflecreasékeyplus the cost
of delmin.

(f_heap.¢+=
void f_heap::del_item(f_heap_item x)
{ decrease_key(x,minptr->key); // the minptr now points to x
del_min();
}

Assignment, Iteration, and Copy Constructor: Next comes the assignment operator. In
order to execut& = H we simply step through all the items Bif and insert their key and
information intoS. We must guard against the trivial assignmeint= H.

(f_heap.¢+=
f_heap& f_heap::operator=(const f_heap& H)
{ if (this !'= &H)
{ clear();
for (f_heap_item p = H.first_item(); p; p = H.next_item(p))
insert (p->key,p->inf);
}

return *this;

}

The assignment operator makes use of the two funcfimtstemandnextitem They allow
us to iterate over all items of a heap. We use these functiotisei assignment operator,
the copy constructor, and tHerall_itemsiteration. The last use forces us to make both

60 On the Implementation of LEDA

functions public members of the class. However, we do nothism in the manual and so
they are only semi-public. For this reasoextitemdoes not check whether its argument is
distinct fromnil.

(f_heap.¢+=
f_heap_item f_heap::first_item() const { return node_list; }

f_heap_node* f_heap::next_item(f_heap_node* p) const
{ return p ? p->next : 0; }

The last operation to implement is the copy constructor.dkes a copy of its argument
H. The strategy is simple. For each itemldfwe create a single node tree with the same
key and information.

There is a subtle point in the implementation. When a virfuattion is applied to an
object under construction then the default implementadibtihe function is used and not
the overriding definition in the derived class. It is therefonportant in the code below to
call the virtual functiongopykey, copyinf andcmpthrough the already existing objeldt;
leaving out the prefiH. would select the default definitions (which do not do anyghin

(f_heap.¢+=
f_heap::f_heap(const f_heap& H)
{ number_of_nodes = H.size();
minptr = nil;
node_list = nil;
f_heap_item first_node = nil;

for(f_heap_item p = H.first_item(); p; p = H.next_item(p))
{ GenPtr k = H.copy_key(p->key);
GenPtr i H.copy_inf (p->inf);
f_heap_item q = new f_heap_node(k,i,node_list);
g->right = node_list->next;
if (node_list->next) node_list->next->left = q;
if (minptr == nil) { minptr = q; first_node = q; }
else if (H.cmp(k,minptr->key) < O) minptr = q;
}
first_node->right = node_list;
node_list->left = first_node;

Bibliography

[ES90] M.A. Ellis and B. StroustrupThe Annotated
C++ Reference ManualAddison-Wesley, 1990.

[FT87] M.L. Fredman and R.E. Tarjan. Fibonacci
heaps and their uses in improved network
optimization algorithmsJournal of the ACM
34:596-615, 1987.

[Str91] B. StroustrupThe C++ Programming
Language Addison-Wesley Publishing
Company, 1991.

[Vui78] J. Vuillemin. A data structure for
manipulating priority queuesCommunication
of the ACM 21:309-314, 1978.

61

array
implementation, 22
assignment
for handle types, 37
implementation, 18

bin_treg, 16
binary trees, 16
binomial tree, 51
built-in types, 30

cmpkey, 15

compare
implementation, 14, 16

concrete class, 7

constructor
implementation, 18, 22

copy constructor
implementation, 18

data structureseedata type
data type
handle type, 36

implementationseeimplementation of ...

large type, 27
parameterized type, 7
small type, 27
default constructor
implementation, 22
deleteoperator, 40
destructor
explicit call, 28
implementation, 18
dictionary
implementation, 15-22
dynamic binding, 14
dynamic memoryseeheap

explicit destruction, 28

Index

62

Fibonacci heap
implementation, 44—61

assignment, 60
clear, 59
construction, 49
decreasgey, 51
delitem, 60
delmin, 51, 55
heap-ordered forest, 46
insertion, 54
item, 47
iteration, 60
simple operations, 50
storage, 47
virtual functions, 50

generic pointersee GenPtr
genericness, 14
GenPtr 16

handle type, 36—-39
handlebase 38
handlerep, 38
heap, 8, 10

identity
for handle types, 37
implementation class, 7
implementation of data types, 2—-36
abstract class, 7
arrays, 22-24
assignment, 18-22
concrete class, 7
copy constructor, 18-22
default constructor, 22—-24
destructor, 18-22
detailed examples
dictionary, 15-22

Index 63

Fibonacci heap, 44-61 ledatypeid, 30

list, 2-15 linear order
efficiency, 13 implementation, 14
genericness, 14 linker, 7
implementation parameters, 32—36 list
large type, 27 list
LEDA approach, 7-27 implementation, 15
ledaaccess25, 29 list
ledacast 25, 29 implementation, 2
ledaclear, 25, 29
leda.copy, 25, 28 memory leak, 11, 14, 18
leda.create 25, 29 memory management, 40—41
ledatypeid, 30 multiple inheritance and implementation parameters, 34
optimizations, 27-32
pure virtual functions, 15 newoperator, 10, 40
small type, 27 in-place version, 27
summary of LEDA approach, 28
template approach, 4-7 object code, 7, 13

type safety, 13
virtual functions and dynamic binding, 14-18

impl tati t p-auee

Implementation parameter implementationseeFibonacci heap
implementation, 32—-36 point

!n;‘pla_;:enewoperator, 27 implementation, 36

Inheritance point_repv 36

and parameterized data types, 33
initialization, 23
item type
dependent item type
implementation, 16, 35
independent item type
implementation, 36
iteration
deletion from data structure, 43
implementation, 43—44
insertion into data structure, 43
macro expansion, 41
summary offorall-statements, 41-43

precompilation, 7
print_statistics 40

private base class, 10
private members, 16
protected members, 9, 16
pure virtual functions, 16

reference counting, 36

separate compilation, 6, 12
small type, 27

template approach to data types, 4

large type, 27 type safety, 13

leda.access?25, 29

ledacast 25, 29 virtual functions,seeimplementation of data structures,
ledaclear, 25, 29 14,15, 21

leda_copy; 25, 28 void*, see GenPtr

ledacreate 25, 29
LEDA_MEMORY, 40 word count program, 33

