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Intersection Representation

In an intersection representation of a graph each
vertex is represented as a set such that two sets
intersect if and only if the corresponding vertices
are adjacent.

For a collection S of sets Sq,...,S,,
the intersection graph G(S) of S has
vertex set S and edge set

{5,S;:i,je{1,...,n},i #j, and $;NS; # B}.
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Let G be a graph. <>—<> Let S be a set of geometric objects

Represent each vertex v by a geometric object S(v

G g

In an S contact representation of G, S(u) and S(v) touch iff uv € E
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Contact Representation of Graphs

Let G be a graph. <>—<> Let S be a set of geometric objects

Represent each vertex v by a geometric object S(v

" S

In an S contact representation of G, S(u) and S(v) touch iff uv € E

= &P =
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( . . )
A contact representation is an

Contact Representation of Gr aphs intersection representation with

interior-disjoint sets.
. J
Let G be a graph. <>—<> Let S be a set of geometric objects

Represent each vertex v by a geometric object S(v

% 0 %? @ \ rectangular cuboids

In an S contact representation of G, S(u) and S(v) touch iff uv € E

= % o

G is planar Koebe 1930] » disks » polygons
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Contact Representation of Planar Graphs

Is the intersection graph of a contact
representation always planar?

B No, not even for connected object types. @

Some obiject types are used to represent special
classes of planar graphs:

bipartite graphs max. triangle-free graphs planar triangulations
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General Approach

How to compute a contact representation of a given graph G?

B Consider only inner triangulations

(or maximally bipartite graphs, etc)
m Triangulate by adding vertices, O > %@

not by adding edges

B Describe contact representation combinatorically.
m Which objects contact each other in which way?

B Compute combinatorical description.

B Show that combinatorical description can be used to
construct drawing.
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In This Lecture

Representations with right-triangles and corner contact
B Use Schnyder realizer to describe contacts between triangles

B Use canonical order to calculate drawing

Representation with dissection of a rectangle, called rectangular dual
B Find similar description like Schnyder realizer for rectangles

B Construct drawing via st-digraphs, duals, and topological sorting
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Triangle Corner Contact Representation

Idea.
Use canonical order and Schnyder realizer to find
coordinates for triangles.

Observation.

B Can set base of triangle at height equal to
position in canonical order.

B Triangle tip is precisely at base of triangle
corresponding to cover neighbor.

B Outgoing edges in Schnyder forest indicate
corner contacts.




Triangle Contact Representation Example




Triangle Contact Representation Example

16
15
14
13
12
11
10

— N W H= U1 0NN 00 NO



Triangle Contact Representation Example

16
15
14
13
12
11
10

N = 010N N 00 NO




Triangle Contact Representation Example




Triangle Contact Representation Example




Triangle Contact Representation Example




Triangle Contact Representation Example




Triangle Contact Representation Example




Triangle Contact Representation Example




Triangle Contact Representation Example

-10



Triangle Contact Representation Example

16

15
14
113
12
11
:

il

(



Triangle Contact Representation Example

-12



Triangle Contact Representation Example




Triangle Contact Representation Example

-14



Triangle Contact Representation Example

-15



Triangle Contact Representation Example

-16



Triangle Contact Representation Example

-17



Triangle Contact Representation Example

-18



T-shape Contact Representation

10 -



T-shape Contact Representation

10 -



T-shape Contact Representation

10 -



T-shape Contact Representation

10 -



W Universitit Trier

Visualization of Graphs

Lecture 9:
Contact Representations of Planar Graphes:
Triangle Contacts and Rectangular Duals

é/ Rectangular Duals

z vy

Philipp Kindermann



Cartograms

12 -



Cartograms

WBRLD
MAPDER ==

COVID19 reported deaths (January 1, 2021)

12 -



Cartograms

©worldmapper.org

12 -



Cartograms

e

©worldmapper.org

2008 camEes
Russia BEijing

Britain g}

h‘

Gcrman‘f Belarus

| 4

A
- . -

d _.L -‘LLJIw{rzur'u:-.‘|l 1
A _4 J « Xy
L r ’ '

-

, ® Australia

12-4



Cartograms

2008 GamES
Beijing

Australia

©worldmapper.org ©New York Times

12-5



Cartograms

R

©worldmapper.org

uuuuu

2008 crmEs
Beijing

Australia

©New York Times

12-6



Cartograms

Y
e L
‘_ ‘4 Qermany Ahlilus~ "
raine
y

*toony W

France M4 Uiraine J

- N =
* 4 A _4

Spain N L J vl

e.

== o ~1:) - ) o ] ] wﬁ& -':"

2008 GamES
Beijing

Australia

©worldmapper.org ©New York Times

12-7



Cartograms

2008 crmEs
Beijing

©worldmapper.org

12 -8



Cartograms

2008 crmEs
Beijing

uuuuu

b ¢ z 5T o raine
v L N .
. =, a A
/ .
- J ! ain 3
~ » s N Y . tal
= . D ’ Australia
R — - . iben = ° b

©worldmapper.org ©New York Times

©Bettina Speckmann




©worldmapper.org

y4

Germany
- e

~«
* r s
France ~ Ukraine
L X
Al

vt

28 ——

2008 GamES
Beijing

©New York Times

=
E
= b= - =
= £ =
= =
| = =
n -IE = F
o
=

Obama 243 Meeds 27
ELECTORAL VOTES to win

A8 Leaming L.

125 Solid Obama

States sized by number of electoral votes

28 Tossup Yotes 28 Le...

I
270 needed to win

Meeds 64
to win

2 0 6 Romney
ELECTORAL VOTES

180 Solid Romney

Maine and Mebraska give two
electoral votes to the statewide
winner and allocate the rest by
congressional district.

2H

©Bettina Speckmann

3|
e

12 -10



Cartograms

R

©worldmapper.org

uuuuu

2008 crmEs
Beijing

Australia

©New York Times

©Bettina Speckmann

States sized by number of electoral votes.

N
\

©New York Times

12 -11



Cartograms

©worldmapper.org

2008 crmEs
Beijing

©New York Times

©Bettina Speckmann

Loama 243 s 206 Romney
= Stm FTS ey

[ -
e

s B

Geographic View

w [

©New York Times

12-12



12-13

Cartograms

2008 crmEs
Beijing

=
N
Bl
N.Y.

China /'S
' South
“

Korea
=

& & . BB

©worldmapper.org ©New York Times ©Bettina Speckmann ©New York Times




12-14

Cartograms

2008 crmEs
Beijing

Loama 243 s 206 Romney
Thlenmo | o

uuuuuuu

n
China /'S
' South
“

Korea
=

©worldmapper.org ©New York Times ©Bettina Speckmann ©New York Times




12 -15

Cartograms

2008 crmEs
Beijing

Loama 243 s 206 Romney
Thlenmo | o

uuuuuuu

n
China /'S
' South
“

Korea
=

©worldmapper.org ©New York Times ©Bettina Speckmann ©New York Times




Rectangular Dual




Rectangular Dual




Rectangular Dual

RD

Rectangular Dual R

13 -



Rectangular Dual

RD

Rectangular Dual R

K

13 -



Rectangular Dual

Rectangular Dual R

RD

K

Us

A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.

13 -



Rectangular Dual

K s>

Rectangular Dual R
RD i

Us

A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.

B no four rectangles share a point




Rectangular Dual

Rectangular Dual R

RD

K

Us

A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.

B no four rectangles share a point, and

B the union of all rectangles is a rectangle




Rectangular Dual

K =1

Rectangular Dual R
RD i

Us
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Refined Canonical Order

‘Theorem.

Let G be a PTP graph. There exists a labeling
U1 = Ug, Uy = Uw,03,...,0,; = vy oOf the vertices of G such that
for every 4 < k < n:

B The subgraph G;_q induced by vy, ...,vx_1 is biconnected o U
and boundary C;_; of Gy_; contains the edge (vs, vy ).

B 0 is in exterior face of Gy_1, and its neighbors in G;_1
form a (at least 2-element) subinterval of the path

Ci—1 \ (vs,0w).
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B 0 is in exterior face of Gy_1, and its neighbors in G;_1
form a (at least 2-element) subinterval of the path

Ci—1 \ (vs,0w).
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Refined Canonical Order — REL

We construct a REL as follows:
B Fori < j, orient (v;, v]-) from v; to v;;
B v; has incoming edges from v; ,...,v;, we say that
of v, and vy, is of v;.
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We construct a REL as follows:
B Fori < j, orient (v;, v]-) from v; to v;;
B v; has incoming edges from v; ,...,v;, we say that
of v, and vy, is of v;.
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We construct a REL as follows:

B Fori < j, orient (v;, v]-) from v; to v;;
B v; has incoming edges from v; ,...,v;, we say that is
of v, and v, is of v;. Uy
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of v, and v, is of v;. Uy
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B Base edge of vy is (v, v; ), where t; < k is minimal.




Refined Canonical Order — REL

We construct a REL as follows:
B Fori < j, orient (v;, v]-) from v; to v;;
B v; has incoming edges from v; ,...,v;, we say that
of v, and vy, is of v;.

B Base edge of vy is (v, v; ), where t; < k is minimal.
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Refined Canonical Order — REL

We construct a REL as follows:
B Fori < j, orient (v;, v]-) from v; to v;;
B 0; has incoming edges from v, ,...,v;,, we say that v, is
of v, and vy, is of v;.

B Base edge of vy is (v, v; ), where t; < k is minimal.

W If v,,..., 0, are higher numbered neighbors of v, we call
(U, U, ) left edge and (v, vy, ) right edge.
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B v; has incoming edges from v; ,...,v;, we say that is
of v, and v, is of v;. Uy
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Refined Canonical Order — REL

We construct a REL as follows:

m For i < j, orient (v;,v;) from v; to vj; Uky Uk,

B v; has incoming edges from v; ,...,v;, we say that is
of v, and v, is of v;. Uy

B Base edge of vy is (v, v; ), where t; < k is minimal.

W If v,,..., 0, are higher numbered neighbors of v, we call o,

(Uk, Uk, ) left edge and (vy, vk, ) right edge. / : \
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Refined Canonical Order — REL

We construct a REL as follows:

m For i < j, orient (v;,v;) from v; to vj; Uky Uk,

B v; has incoming edges from v; ,...,v;, we say that is
of v, and vy, is of v;. Uk

B Base edge of vy is (v, v; ), where t; < k is minimal.

W If v,,..., 0, are higher numbered neighbors of v, we call o,

(Uk, Uk, ) left edge and (vy, vk, ) right edge. / : \

Lemma 1.
A left edge or right edge cannot be a base edge.
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Refined Canonical Order — REL

We construct a REL as follows:
m For i < j, orient (v;,v;) from v; to vj; Uky Uk,

B v; has incoming edges from v; ,...,v;, we say that is
of v, and vy, is of v;. Vg

B Base edge of vy is (v, v; ), where t; < k is minimal.

W If v,,..., 0, are higher numbered neighbors of v, we call Ur,
(U, U, ) left edge and (v, vy, ) right edge. / \

Lemma 1.
A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (vy, vy, ) is base edge of vy, .
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Refined Canonical Order — REL

We construct a REL as follows:

m For i < j, orient (v;,v;) from v; to vj; Uky Uk,

B v; has incoming edges from v; ,...,v;, we say that is
of v, and vy, is of v;. Uk

B Base edge of vy is (v, v; ), where t; < k is minimal.

W If v,,..., 0, are higher numbered neighbors of v, we call o,

(Uk, Uk, ) left edge and (vy, vk, ) right edge. / : \
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A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (vy, vy, ) is base edge of vy, .
Since G triangulated, (v;,, vy, ) € E(G).
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Refined Canonical Order — REL

We construct a REL as follows:

m For i < j, orient (v;,v;) from v; to vj; Uky Uk,

B v; has incoming edges from v; ,...,v;, we say that is
of v, and vy, is of v;. Uk

B Base edge of vy is (v, v; ), where t; < k is minimal.

W If v,,..., 0, are higher numbered neighbors of v, we call o,

(Uk, Uk, ) left edge and (vy, vk, ) right edge. / : \

Lemma 1.
A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (vy, vy, ) is base edge of vy, .
Since G triangulated, (v;,, vy, ) € E(G).
Contradiction since v >
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Refined Canonical Order — REL

Lemma 2.
An edge is either a left edge, a right edge or a base edge.
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Refined Canonical Order — REL

Lemma 2.
An edge is either a left edge, a right edge or a base edge. Yk Yk,

Proof.
B Exclusive “or” follows from Lemma 1.
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Refined Canonical Order — REL

Lemma 2.
An edge is either a left edge, a right edge or a base edge.

Proof.
B Exclusive “or” follows from Lemma 1.

B Let (v;,,0;) be base edge of vy.




18 -19

Refined Canonical Order — REL

Lemma 2.
An edge is either a left edge, a right edge or a base edge.

Proof.
B Exclusive “or” follows from Lemma 1.

B Let (v;,,0;) be base edge of vy.

B v, is right point of v;__,
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Lemma 2.
An edge is either a left edge, a right edge or a base edge.

Proof.
B Exclusive “or” follows from Lemma 1.

B Let (v;,,0;) be base edge of vy.

B v, is right point of v;__,
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Refined Canonical Order — REL

Lemma 2.
An edge is either a left edge, a right edge or a base edge.

Proof.
B Exclusive “or” follows from Lemma 1.

B Let (v;,,0;) be base edge of vy.

W v, isright point of vy _; vs,__ is right point of v, . :

<
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Lemma 2.
An edge is either a left edge, a right edge or a base edge. Yk k,

Proof.
B Exclusive “or” follows from Lemma 1.

B Let (v;,,0;) be base edge of vy.

B o is of vy, ,; vy,_ 1s right point of vy, ,: / :
® v;, has at least two higher-numbered neighbors.
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[Lemma 2. ]

An edge is either a left edge, a right edge or a base edge. Yk k,

Proof.

B Exclusive “or” follows from Lemma 1. K

B Let (v;,,0;) be base edge of vy.

B o is of vy, ,; vy,_ 1s right point of vy, ,: / - \
® v;, has at least two higher-numbered neighbors.

® One of them is vy; the other one is either v;, | or vy, ,.
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[Lemma 2. ]

An edge is either a left edge, a right edge or a base edge. Yk k,

Proof.

B Exclusive “or” follows from Lemma 1. K

B Let (v;,,0;) be base edge of vy.

B o is of vy, ,; vy,_ 1s right point of vy, ,: / - \
® v;, has at least two higher-numbered neighbors.

® One of them is vy; the other one is either v;, | or vy, ,.

mForl<i<a-—1,itisv;_,.
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[Lemma 2. ]

An edge is either a left edge, a right edge or a base edge. Yk k,

Proof.

B Exclusive “or” follows from Lemma 1. K

B Let (v;,,0;) be base edge of vy.

B o is of vy, ,; vy,_ 1s right point of vy, ,: / - \
® v;, has at least two higher-numbered neighbors.

® One of them is vy; the other one is either v;, | or vy, ,.
mForl<i<a-—1,itisv;_,.

B Analogously, v, is of vy, ,



18 - 26

Refined Canonical Order — REL

[Lemma 2. ]

An edge is either a left edge, a right edge or a base edge. Yk k,

Proof.

B Exclusive “or” follows from Lemma 1. K

B Let (v;,,0;) be base edge of vy.

B o is of vy, ,; vy,_ 1s right point of vy, ,: / - \
® v;, has at least two higher-numbered neighbors.

® One of them is vy; the other one is either v;, | or vy, ,.
mForl<i<a-—1,itisv;_,.
B Analogously, v, is of vy, ,

B Edges (v, v;), 1 <i <a—1,areright edges.
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Refined Canonical Order — REL

[Lemma 2. ]

An edge is either a left edge, a right edge or a base edge. Yk k,

Proof.

B Exclusive “or” follows from Lemma 1. ok

B Let (v;,,0;) be base edge of vy.

B o is of vy, ,; vy,_ 1s right point of vy, ,: / - \
® v;, has at least two higher-numbered neighbors.

® One of them is vy; the other one is either v;, | or vy, ,.
mForl<i<a-—1,itisv;_,.

B Analogously, vy, , is of vy, ,

B Edges (v, v;), 1 <i <a—1,areright edges.

B Similarly, (v, vg), fora+1 <i <, are left edges.
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ri ght left
edges edges

base

edge
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Refined Canonical Order — REL

Coloring. right left
B Color right (left) edges in red (blue). edgewdges

base

edge



Refined Canonical Order — REL

Coloring. right left
B Color right (left) edges in red (blue). edgemdges

B Color a base edge (v;,v;) red if i =1 and base
blue if i = | and otherwise arbitrarily. edge
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Refined Canonical Order — REL

Coloring. right left
B Color right (left) edges in red (blue). edgemdges

B Color a base edge (v;,v;) red if i =1 and base U

blue if i = | and otherwise arbitrarily. edge left
edges
base

edge
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Refined Canonical Order — REL

Coloring. right loft right
edges edges
B Color right (left) edges in red (blue). 5 edges

B Color a base edge (v;,v;) red if i =1 and base U base

blue if i = | and otherwise arbitrarily. edge loft edge
edges
base

edge
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Refined Canonical Order — REL

Coloring. right loft right
edges edges
B Color right (left) edges in red (blue). 5 edges

B Color a base edge (v;,v;) red if i =1 and base U base
blue if i = I and otherwise arbitrarily. edge loft edge
Let T, be the red edges and T} the blue edges. edges
base

edge
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Refined Canonical Order — REL

Coloring. right loft right
edges edges
B Color right (left) edges in red (blue). 5 edges

B Color a base edge (v;,v;) red if i =1 and base U base
blue if i = I and otherwise arbitrarily. edge loft edge
Let T, be the red edges and T} the blue edges. edges
base

Lemma 3. edge
{T,, T,} is a regular edge labeling.
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Refined Canonical Order — REL

] Ok oht Uk
Coloring. right loft rig
: : edges edges
B Color right (left) edges in red (blue). edges
B Color a base edge (v;,v;) red if i =1 and base o base
blue if i = | and otherwise arbitrarily. edge left edge
Let T, be the red edges and T}, the blue edges. edges
b
Lemma 3. e?i;ee
{T,, T,} is a regular edge labeling.
Proof.
ko > 2
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Ok oht Uk
Coloring. right loft rig
: : edges edges
B Color right (left) edges in red (blue). edges
B Color a base edge (v;,v;) red if i =1 and base o base
blue if i = | and otherwise arbitrarily. edge left edge
Let T, be the red edges and T}, the blue edges. edges
base
Lemma 3. edge
{T,, T,} is a regular edge labeling.
Proof.
ko > 2

Ok

1 Uk,
left tht edge

of vy Uk of vy
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Ok : Uk
Coloring. right right
edges left edges
B Color right (left) edges in red (blue). edges
B Color a base edge (v;,v;) red if i =1 and base o base
blue if i = | and otherwise arbitrarily. edge left edge
Let T, be the red edges and T}, the blue edges. edges
base
Lemma 3. edge
{T,, T,} is a regular edge labeling.
Proof.
ko > 2 base edges of
vkl vko Ukz “o vko—l
left edge right edge

of vy Uk of vy
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] Ok oht Uk
Coloring. right loft rig
: : edges edges
B Color right (left) edges in red (blue). dees )A}
B Color a base edge (v;,v;) red if i =1 and base o base
blue if i = | and otherwise arbitrarily. edge left edge
Let T, be the red edges and T}, the blue edges. edges
b
Lemma 3. egzee
{T,, T,} is a regular edge labeling.

kg = max{vg, ... v }

Proof.
/

ko > 2 base edges of

left edge right edge
of v, Uy of vy



18 - 39

Refined Canonical Order — REL

Ok oh Uk
Coloring. right loft right
: : edges edges
B Color right (left) edges in red (blue). edges
B Color a base edge (v;,v;) red if i =1 and base o base
blue if i = | and otherwise arbitrarily. edge left edge
Let T, be the red edges and T}, the blue edges. edges
base
Lemma 3. edge
{T,, T,} is a regular edge labeling.
Proof. o~ ki = max{vy, ..o} W ky <ky<...<kyand
ko > 2 base edges of kg >kgiq1>... >k
vkl Ukz “o vko—l
left edge right edge

of vy Uk of vy
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Ok oht Uk
Coloring. right loft rig
: : edges edges
B Color right (left) edges in red (blue). edges
B Color a base edge (v;,v;) red if i =1 and base o base
blue if i = | and otherwise arbitrarily. edge left edge
Let T, be the red edges and T}, the blue edges. edges
base
Lemma 3. edge
{T,, T},} is a regular edge labeling.
Proof. o~ ki = max{vy, ..o} W ky <ky<...<kyand
ko > 2 base edges of kg >kgiq1>... >k
v . .
“ k2w Thoa B (vr, 0k ),2<i<d—1areblue
left edge right edge

of vy Uk of vy
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Ok oh Uk
Coloring. right loft right
: : edges edges
B Color right (left) edges in red (blue). edges
B Color a base edge (v;,v;) red if i =1 and base o base
blue if i = | and otherwise arbitrarily. edge left edge
Let T, be the red edges and T}, the blue edges. edges
base
Lemma 3. edge
{T,, T,} is a regular edge labeling.
Proof. o~ ki = max{vy, ..o} W ky <ky<...<kyand
ko > 2 base edges of kg >kgiq1>... >k
v
“ k2w Thoa B (vr, 0k ),2<i<d—1areblue
left edge right edge = (v, Uki)’ d+1<i<o—1arered

of vy Uk of vy
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Coloring. right loft right
edges edges
B Color right (left) edges in red (blue). 5 edges

B Color a base edge (v;,v;) red if i =1 and base o base
blue if i = | and otherwise arbitrarily. edge left edge
Let T, be the red edges and T}, the blue edges. edges
base
Lemma 3. edge
{T,, T,} is a regular edge labeling.
Proof. o~ ki = max{vy, ..o} W ky <ky<...<kyand
ko > 2 base edges of kg >kgiq1>... >k
0 -
“ k2w Thoa B (vr, 0k ),2<i<d—1areblue
left edge right edge = (v, Uki)’ d+1<i<o—1arered
of v, T of vy B (vy, g, ) is either red or blue
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Uk ioh Uk
Coloring. right loft right
: : edges edges
B Color right (left) edges in red (blue). edges
B Color a base edge (v;,v;) red if i =1 and base o base
blue if i = | and otherwise arbitrarily. edge loft edge
Let T, be the red edges and T}, the blue edges. edges
base
Lemma 3. edge
{T,, T,} is a regular edge labeling.
Proof. ~ kg = max{v, ... v, } mki<ky<...<kyjand
ko > 2 base edges of ka > kg1 > ... >k
v e o o
“ ky -+ koo B (v, Uki)/ 2<i<d-—1areblue
left edge right edge B (v, 0 ), d+1<i<o-—1arered
of v, T of vy B (vy, g, ) is either red or blue

= circular order of outgoing edges at vy correct
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From REL to st-digraphs to Coordinates

dual of Gyer
compute topological order
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For a PTP graph G = (V, E):
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ordering fyer of G,
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For a PTP graph G = (V, E):
B Find a REL {T,, T, } of G;

B Construct a SN network Gyer of G (consists of T}, plus outer edges)

B Construct the dual G}, of Gyer and compute a topological

ordering fyer of G,

B For each vertex v € V, let ¢ and /1 be the face on the left and face
on the right of v.
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For a PTP graph G = (V, E):
B Find a REL {T,, T, } of G;

B Construct a SN network Gyer of G (consists of T}, plus outer edges)

B Construct the dual G}, of Gyer and compute a topological

ordering fyer of G,

B For each vertex v € V, let ¢ and /i be the face on the left and face
on the right of v. Set x1(v) = fyer () and x3(v) = fuer ().

B Define xq (UN) =1,x (Us) = 2 and
x(vn) = max fyer — 1, x2(vg) = max fyer
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Rectangular Dual Algorithm

For a PTP graph G = (V, E):

Find a REL {T;, T;,} of G;
Construct a SN network G of G (consists of T, plus outer edges)

Construct the dual G}, of Gyer and compute a topological

ordering fyer of G,

For each vertex v € V, let ¢ and /1 be the face on the left and face
on the right of v. Set x1(v) = fyer () and x3(v) = fuer ().

Define x1(vy) =1, x1(vs) = 2 and
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Rectangular Dual Algorithm

For a PTP graph G = (V, E):

Find a REL {T;, T;,} of G;
Construct a SN network G of G (consists of T, plus outer edges)

Construct the dual G}, of Gyer and compute a topological

ordering fyer of G,

For each vertex v € V, let ¢ and /1 be the face on the left and face
on the right of v. Set x1(v) = fyer () and x3(v) = fuer ().

Define x1(vy) =1, x1(vs) = 2 and
x(vn) = max fyer — 1, x2(vg) = max fyer

Analogously compute y; and y, with Gy,

For each v € V, assign a rectangle R(v) bounded by x-coordinates
x1(v), x2(v) and y-coordinates y1(v), y»2(v) .
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Reading off Coordinates to get Rectangular Dual

x1(vn) =1, x(vn) =15
x1(vs) =2, xp(vs) =16
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Reading off Coordinates to get Rectangular Dual

x1(vy) =1, xp(vn) =15
x1(vs) =2, xp(vs) =16

x1(ow) = 0,xp(vpy) =1




Reading off Coordinates to get Rectangular Dual
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Reading off Coordinates to get Rectangular Dual
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Reading off Coordinates to get Rectangular Dual

x1(vy) =1, xp(vn) =15
x1(vg) =2, xp(vg) =16
x1(ow) = 0,xp(vpy) =1
x1(vp) =15, x2(vp) = 16
X1 (
X1 (

a) =1, xp(a) =3
b) = 3, xz(b) =5




Reading off Coordinates to get Rectangular Dual

x1(vn) =1, xp(vny) =15

, X2(c) =14
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Reading off Coordinates to get Rectangular Dual
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Reading off Coordinates to get Rectangular Dual
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Reading off Coordinates to get Rectangular Dual
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Reading off Coordinates to get Rectangular Dual

(

(

(
x1(a) =1, xp(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xo(d) =15
x1(e) =13, xp(e) =15
y1(ow) = 0,y2(ow) =9
y1(ve) =1, ya2(vp) =10
y1(vn) =9, ya(on) =10
y1(vs) =0, ya(vs) =1
yi(a) =1, y2(a) =2

() =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

10 x1(ow) = 0,xp(vpy) =1

a) =1, xp(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xp(d) = 15

> x1(e) =13, xp(e) =15
y1(ow) = 0,y2(vwy) =9
y1(ve) =1, y2(ve) =10
y1(on) =9, y2(on) = 10
o 10 15 y1(vs) =0, y2(vs) =1
y1(a) =1, ya(a) =2
(b) =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

10 x1(vw) = 0,x2(vp) =1

a) =1, xp(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xp(d) = 15

> x1(e) =13, xp(e) =15
y1(ow) = 0,y2(vwy) =9
y1(ve) =1, y2(ve) =10
y1(on) =9, y2(on) = 10
o 10 15 y1(vs) =0, y2(vs) =1
y1(a) =1, ya(a) =2
(b) =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

10 x1(vw) =0, x2(vpy) =1

a) =1, xp(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xp(d) = 15

b x1(e) =13, xp(e) =15
y1(ow) = 0,y2(vwy) =9
y1(ve) =1, y2(ve) =10
y1(on) =9, y2(on) = 10

— o 10 15 y1(vs) =0, y2(vs) =1
y1(a) =1, ya(a) =2

(b) =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

(

10 x1(vw) = 0,x2(vpy) =1
Xl(UE) — 15, xz(vg) =16
x1(a) =1, xp(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xy(d) =15

o x1(e) =13, xp(e) =15
y1(ow) = 0,y2(vwy) =9
y1(ve) =1, ya(vg) = 10

! y1(on) =9, y2(on) = 10

..... 5 W . . . a0, . . . 15 yl(vs):(),yz(vs):l
y1(a) =1, ya(a) =2
(b) =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

(

10 x1(vw) = 0,x2(vpy) =1
Xl(UE) — 15, XZ(UE) =16
x1(a) =1, xp(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xy(d) =15

o x1(e) =13, xp(e) =15
y1(ow) = 0,y2(vwy) =9
y1(ve) =1, ya(vg) = 10

! y1(on) =9, y2(on) = 10

..... 5 W . . . a0, . . . 15 yl(vs):o,yz(vs):l
y1(a) =1, ya(a) =2
(b) =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

(

10 x1(vw) = 0,x2(vpy) =1
Xl(UE) — 15, xz(vg) =16
x1(a) =1, xp(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xy(d) =15

o x1(e) =13, xp(e) =15
y1(ow) = 0,y2(vwy) =9

a y1(ve) = 1, y2(vg) = 10

! y1(on) =9, y2(on) = 10

..... 5 W . . . a0, . . . 15 yl(vs):(),yz(vs):l
y1(a) =1, ya(a) =2
(b) =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

(

10 x1(vw) = 0,x2(vpy) =1
Xl(UE) — 15, xz(vg) =16
x1(a) =1, xp(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xy(d) =15

o x1(e) =13, xp(e) =15
y1(ow) = 0,y2(vwy) =9

a ; y1(ve) = 1, y2(vg) = 10

! y1(on) =9, y2(on) = 10

..... 5 W . . . a0, . . . 15 yl(vs):(),yz(vs):l
y1(a) =1, ya(a) =2
(b) =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

10 x1(vw) =0, x2(vpy) =1

(
(
x1(vp) =15, x2(vp) = 16
x1(a) =1, xo(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xy(d) =15
P x1(e) =13, xp(e) =15
y1(ow) = 0,y2(vw) =9
a ; - y1(ve) = 1, y2(vg) = 10
y1(vn) =9, ya(on) =10
..... o M | | B — lo y1(vg) =0, yp(vg) =1
y1(a) =1, ya(a) =2
() =1, y2(b) =2



22 -21

Reading off Coordinates to get Rectangular Dual

10 x1(vw) =0, x2(vpy) =1

(
(
x1(vp) =15, x2(vp) = 16
x1(a) =1, xo(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xy(d) =15
P x1(e) =13, xp(e) =15
y1(ow) = 0,y2(vw) =9
a b c d yl(vE) =1, yZ(UE) =10
y1(vn) =9, ya(on) =10
..... o M | | B — lo y1(vg) =0, yp(vg) =1
y1(a) =1, ya(a) =2
() =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

(

10 x1(vw) = 0,x2(vpy) =1
Xl(UE) — 15, xz(vg) =16
x1(a) =1, xp(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xp(d) = 15

o x1(e) =13, xp(e) =15

e y1(ow) = 0,y2(vwy) =9
a b c d yl(vE) =1, yZ(UE) =10
y1(on) =9, y2(on) = 10
..... 5 W . . . a0, . . . 15 yl(vs):(),yz(vs):l
y1(a) =1, ya(a) =2
(b) =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

10 x1(vw) =0, x2(vpy) =1

(
(
x1(vp) =15, x2(vp) = 16
x1(a) =1, xo(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xy(d) =15
P x1(e) =13, xp(e) =15
f e y1(ow) = 0,y2(vw) =9
a b c d yl(vE) =1, yZ(UE) =10
y1(vn) =9, ya(on) =10
..... o M | | B — lo y1(vg) =0, yp(vg) =1
y1(a) =1, ya(a) =2
() =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

(

10 x1(ow) = 0,x2(ow) =1
x1(vp) =15, x2(vp) = 16
x1(a) =1, xo(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14
x1(d) =14, xy(d) =15

P x1(e) =13, xp(e) =15

k h g
f e y1(ow) = 0,y2(ow) =9
a b c d yl(vE) =1, yZ(UE) =10
y1(vn) =9, ya(on) =10
..... o M | | B — lo y1(vg) =0, yp(vg) =1
y1(a) =1, ya(a) =2
() =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

(

10 x1(ow) = 0,x2(ow) =1
x1(vp) =15, x2(vp) = 16
x1(a) =1, xo(a) =
x1(b) =3, x2(b) =
x1(c) =5, xp(c) =14

l — x1(d) = 14, x5(d) = 15
P x1(e) =13, xp(e) =15
k h g n 0
f e y1(ow) = 0,y2(ow) =9
a b c d yl(vE) =1, yZ(UE) =10
y1(on) =9, y2(on) =10
..... o M | P — s y1(vg) =0, yp(vg) =1
yi(a) =1, ya(a) =2
() =1, ya2(b) =2



22 - 26

Reading off Coordinates to get Rectangular Dual

(

10 x1(ow) = 0,x2(ow) =1
x1(vp) =15, x2(vp) = 16
x1(a) =1, xo(a) =
x1(b) =3, x2(b) =

. x1(c) =5, xp(c) =14
l — F | x1(d) = 14, xp(d) =15
P x1(e) =13, xp(e) =15
k h g n 0
f e y1(ow) = 0,y2(ow) =9
a b c d yl(UE) =1, yZ(UE) =10
y1(on) =9, y2(on) =10
..... o M | P — s y1(vg) =0, yp(vg) =1
yi(a) =1, ya(a) =2
() =1, ya2(b) =2



22 - 27

Reading off Coordinates to get Rectangular Dual

(

10 x1(ow) = 0,x2(ow) =1
x1(vp) =15, x2(vp) = 16
x1(a) =1, xo(a) =

; 5 x1(b) =3, x2(b) =
. x1(c) =5, xp(c) =14
l — F | x1(d) = 14, xp(d) =15
P x1(e) =13, xp(e) =15
k h g n 0
f e y1(ow) = 0,y2(vw) =9
a b c d yl(UE) =1, yZ(UE) =10
y1(on) =9, y2(vn) =10
..... o M | R — L y1(vg) =0, yp(vg) =1
yi(a) =1, y2(a) =2
() =1, y2(b) =2
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Reading off Coordinates to get Rectangular Dual

(
10 x1(ow) = 0,x2(ow) =1
x1(vp) =15, x2(vp) = 16
u w x1(a) =1, x3(a) =
S : x1(b) =3, x2(b) =
t . x1(c) =5, xp(c) =14
l — F | x1(d) = 14, xp(d) =15
P x1(e) =13, xp(e) =15
k h g n 0
f e y1(ow) = 0,y2(ow) =9
a b c d yl(UE) =1, yZ(UE) =10
y1(on) =9, y2(vn) =10
..... 5 W . . . a0, . . . 15 yl(vs) =0, yZ(US) —1
yi(a) =1, ya(a) =2
() =1, ya2(b) =2



Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xp(u) = x1(v)
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xp(u) = x1(v)

B and the vertical segments of their rectangles overlap
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xp(u) = x1(v)
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xp(u) = x1(v)

Y1 (U) — fhor(a)

23 -



Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xp(u) = x1(v)

yl(v) — fhor(a) < yl(u) — fhor(b)
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xp(u) = x1(v)

23 -
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xp(u) = x1(v)
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xp(u) = x1(v)

B If path from u to v in red at least two edges long, then x; (1) < x1(v).



23 -12

Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xp(u) = x1(v)

B If path from u to v in red at least two edges long, then x; (1) < x1(v).

B No two boxes overlap.



23-13

Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xp(u) = x1(v)

B If path from u to v in red at least two edges long, then x; (1) < x1(v).

B No two boxes overlap.

B for details see He's paper [He "93]



Rectangular Dual Result

‘Theorem.
Every PTP graph G has a rectangular dual, which

can be computed in linear time.
\.
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Rectangular Dual Result

‘Theorem.
Every PTP graph G has a rectangular dual, which

can be computed in linear time.
\. J

Proof.

B Compute a planar embedding of G.
Compute a refined canonical ordering of G.
Traverse the graph and color the edges.
Construct Gyer and Gy,

Construct their duals G{,, and G/ _ .

Compute a topological ordering for vertices of G

*
ver

*
and Ghor'
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Rectangular Dual Result

‘Theorem.
Every PTP graph G has a rectangular dual, which

can be computed in linear time.
\. J

Proof.

B Compute a planar embedding of G.
Compute a refined canonical ordering of G.
Traverse the graph and color the edges.
Construct Gyer and Gy,

Construct their duals G{,, and G/ _ .

Compute a topological ordering for vertices of G, and G _ .

Assing coordinates to the rectangles representing vertices.

24 -



Discussion

B A layout is area-universal if any assignment of areas to rectangles
can be realized by a combinatorially equivalent rectangular layout.
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