Prof. Dr. Stefan Näher

Exercise sheet 5 Visualization of Graphs

Exercise 1 – Canonical Orders for Outerplanar Graphs

A graph is *outerplanar* if it has a planar embedding such that all vertices are on the same face, usually the outer face. It is a *maximal outerplanar graph* if it is internally triangulated.

Describe a special canonical order built precisely for maximal outerplanar graphs.

- a) Reformulate the conditions (C1)–(C3) for maximal outerplanar graphs. Can we enforce a bound on the degree of v_{k+1} ? 2 Points
- b) How can we use the algorithm for maximal planar graphs to obtain a canonical order for maximal outerplanar graphs?

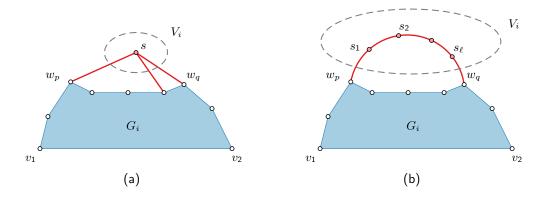
 2 Points

Exercise 2 - Canonical Orders for 3-Connected Planar Graphs

Canonical orders for planar 3-connected graphs are a generalization of canonical orders for plane triangulations. Let G be a 3-connected planar graph. Let $\pi=(V_1,V_2,\ldots,V_K)$ be an ordered partition of V(G). That is, $V_1\cup V_2\cup\ldots\cup V_K=V(G)$ and $V_i\cap V_j=\emptyset$ for all $i\neq j$. Define G_i to be the planar subgraph of G induced by $V_1\cup V_2\cup\cdots\cup V_i$. Let G_i be the subgraph of G induced by the edges on the boundary of the outer face of G_i . As illustrated below, π is a *canonical order* of G if:

- $V_1 = \{v_1, v_2\}$, where v_1 and v_2 lie on the outer face and $v_1v_2 \in E(G)$.
- $V_K = \{v_n\}$, where v_n lies on the outer face, $v_1v_n \in E(G)$, and $v_n \neq v_2$.
- Each C_i (i > 1) is a cycle containing v_1v_2 .
- Each G_i is biconnected and internally 3-connected; that is, removing any two interior vertices of G_i does not disconnect it.

- For each $i \in \{2, 3, \dots, K-1\}$, one of the following conditions holds:
 - (i) $V_i = \{s\}$ where s is a vertex of C_i with at least two neighbors in C_{i-1} , and s has at least one neighbor in $G \setminus G_i$.
 - (ii) $V_i = (s_1, s_2, \dots, s_\ell)$, $\ell \geq 2$, is a path in C_i , where each vertex in V_i has at least one neighbor in $G \setminus G_i$. Furthermore, s_1 and s_ℓ have one neighbor in C_{i-1} , and these are the only two edges between V_i and G_{i-1} .



a) Suppose that G_i is 3-connected. How can we choose V_i ?

1 Point

b) If G_i contains a vertex of degree two, where is it in G_i ?

- 1 Point
- c) A separation pair of a graph G is a pair of vertices $\{a,b\}$ such that $G\setminus\{a,b\}$ consists of two or more components.
 - Suppose that G_i is 2-connected. Show that for every separation pair $\{a,b\}$ both vertices lie on C_i of G_i .

 3 Points
- d) Show that the canonical order described above exists for all planar 3-connected graphs.

 5 Points

Hint: Make a case distinction between whether G_i is 3-connected or 2-connected. In the latter case, consider a minimal separation pair.