Prof. Dr. Stefan Näher

Exercise sheet 8 Visualization of Graphs

Exercise 1 – Minimum Feedback (Arc) Set

Let G=(V,E) be a directed graph. For a set of edges $E'\subseteq E$, let $E'_r:=\{vu\mid uv\in E'\}$ be the set of reversed edges. A set of edges $E^\star\subseteq E$ with minimal cardinality

- ullet such that $G-E^\star$ is acyclic is called a <code>MINIMUM</code> <code>FEEDBACK</code> ARC <code>Set</code>, and
- \bullet such that $G-E^{\star}+E_{r}^{\star}$ is acyclic is called a Minimum Feedback Set.

Show that $E^\star\subseteq E$ is a MINIMUM FEEDBACK SET if and only if E^\star is a MINIMUM FEEDBACK ARC SET.

Hint: Assume that there is a cycle in $G - E^* + E_r^*$ that contains an edge $e \in E_r^*$. Then find a cycle in $G - E^*$.

Exercise 2 - Optimal One-Sided Crossing Minimization

We consider the problem of one-sided crossing minimization, i.e., we are given a bipartite graph $G=(L_1\cup L_2,E)$ with a permutation π_1 of L_1 and we search for a permutation π_2 of L_2 that minimizes the number of crossings.

Suppose there exists a permutation π_2^{\star} of L_2 such that no edges cross.

- a) Show that in this case the *barycenter heuristic* also yields a permutation π_2' that results in no crossings. **3 Points**
- b) Show that in this case the *median heuristic* also yields a permutation π_2'' that results in no crossings. 3 Points

Exercise 3 - Upward Planar Drawings

By iteratively applying the heuristics from the lecture, does one always find a crossing-free drawing of a graph (with more than two layers, where necessary) if the graph is upward planar? Justify your answer.

2 Points