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The Post Correspondence Problem, considered first by E.Post in [P], is perhaps
the most useful problem as far as undecidable properties of formal languages are con-
cerned (see, e.g., [Hl, [HV] and [S1]).

It can be formulated as follows.

Definition. Let ® be an alphabet and let h,g be two homomorphisms of z*. The Post
Correspondence Problem (PCP for short) is to determine whether or not there exists
a word w in 2" such that h(w) = g(w). If 2 = n then we say that we deal with the Post
Correspondence Problem of length n (PCP(n) for short). o
The set of solutions of an instance of PCP (that is the set of all words satisfying
the equation h(w) = g(w)) is referred to as an equality Zanguage. The "descriptional
power" of PCP stems from the fact that it is able to code computations by arbitrary
Turing Machines. This is reflected in the fact that equality languages form a natural
base in several characterizations of the class of recursively enumerable languages
and its various subclasses (see, e.g. [BB], [C], [ER] and [S2]).

One particular aspect of PCP attracted quite a lot of attention. Since it is such
a simply formulated problem of such a strong descriptional power it forms an excellent
framework for an attempt to formulate a boundary between "decidable" and "undecidable”
{or “"computable" and "noncomputable”}. In other words one would like to establish as
small as possible u such that PCP{u) is undecidable and as big as possible bound 2
such that PCP(z) is decidable.

The best possible u so far is 10, which is derivable from a result of Matijasevic
(see [C1]). As far as ¢ is concerned the only available (trivial) observation until
now was the fact that PCP{1) is decidable. To establish whether or not PCP(2) is de-
cidable turned out to be a challenging open problem. There are also several results
available which establish the decidability or undecidablility of PCP not depending on
the length but rather on other, more structural properties of the homomecrphisms in-
volved. For example, in [Le] it is proved that PCP remains undecidable when the in-
volved homomorphisms are codes. Several interesting results concerning PCP can be
found in [CK] and [KS].

In this paper we consider a more general version of PCP(2) which is defined as
follows.
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Definition. Let Z, A be alphabets, h,g be two homomorphisms from z¥into 4% and
let al’a2’b1’b be words over A. The Generalized Post Corresponcienee Problem (GPCP for
short) is to determine whether or not there exists a word w in 2" such that
alh(w)a2 = blg(w)bz. If #2 = n then we say that we deal with the Generalized Post
Correspondence Problem of length n {GPCP{n) for short). o

Note that if we set a; =3, = b1 = b2 = A then GPCP(n) reduces to PCP(n).

We prove that GPCP(2) is decidable. OQur solution of this result is rather involved
and so in this extended abstract we can merely indicate some more important constructs
and reductions used in the solution.

In addition to standard language-theoretic notation and terminology we will use
also the following notation: for a word x, |x| denotes its length and for words x,y
we write xPREFy if either x is a prefix of y or y is a prefix of x.

Clearly in considering an instance alh(x)a2=blg(x)b2 of GPCP(2) one can restrict one-
self to an alphabet {0,1}, words al,az,bl,b2 over {0,1} and h,g which are nonerasing
endomorphisms of {0,11*,

Definition. Let f be an endomorphism of {0,1}*,
{1). f is marked if f(0) and f{1) have different first letters.
(2). f is periodie if (0} f(1) = f{1) F{0). o

Definition. lLet I = (h’g’al’aZ’bl’bz) be an instance of GPCP(2).
{(1}. 1 is marked if both h and g are marked.
(2). I is periodic if either h or g is periodic. n

Definition. Let I = (h,g,al,az,bl,bz) be an instance of GPCP(2).
(1). 1 is marked if both h and g are marked.
{2). 1 is periodic if either h or g is periodic. o

First we get a rather easy result.
Theorem 1. It is decidable whether or not an arbitrary periodic instance of
GPCP(2) has a solution. o

Then we get our first reduction theorem.

Theorem 2. There exists an algorithm which given an arbitrary instance I of
GPCP(2) that is not periodic, produces a positive integer D and a finite set MAR(I)
of marked instances of GPCP(2) such that I has a solution if and only if either I
has a solution not Tonger than D, or there exists a J ¢ MAR{I) such that J has a
solution. o

Hence we can restrict our attention to marked instances of GPCP(2) only. The
equality collector of a given instance of GPCP(2} is the very basic construct of our
solution and it is defined, in several stages, as follows.

Definition. Let h,g be marked homomorphisms from {0,1}* into {0,1}* and let
a,B € {0,1}*. For a nonnegative integer i we define (a,B)g . inductively as follows.
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0: (@)} = () (g.).

The h-projection of (a,B)éOé , denoted by ((a,B)éog)h or simply by (B,a)éo),
whenever ¢ is understood, is defined by (a,B)éO) = A.
)
’ ,g)g
whenever h is understood, is defined by (a,B)éO) = A

po 1 (ap) )

[

The g-projection of (G:B)éoé , denoted by ((a B)é or simply by (a,B)éo}

is defined if and only if

ah<<a,a><i)>PR£F¢ag((a,g>§*)> and ah((wp){) # pol(ae)M).

(1+1)

(
g
(a,B) is defined and ¢ € {0,1} then

1+1}

(a). if h((a,a}( Ne orer 8 9((e®){T) then (2.:2){7F) = (ap) () (huc-tnd(n),

and

(b). 7 6 9((a8){ e pres o h((ap)f1)) then (@) 13 = (a8){ ) (g.c-inalg)).

£ (a ,B)(‘+1) is defined then the h-projection of it and the g-projection of it are

defined by:

if (a) holds then (a,){ ™) = (e,p){ M e-ind(h) and (a,B)éi+l) - (a,B)éi),
and

£ (b) holds then (,p){ "™ = (a,g)ﬁi) and (a,B)éi+l) = (@) 1 ) einag).

g

For i = 0 we say that

(a,B)(i) is successful if a h((a,B)éi)) =B g((a,ﬁ)éi)), and
(as8) () blocks if it is not true that o h{{a.e)} ) )PREF p g{(a,g)éi3). 5

Definition. Let h,g be marked homomoyphisms from {0,11% into 10,13% and let
asp € {0,13*. The (a,B)-sequence {with respect to h,g}, denoted by (a,ﬁ)h g’ is
b
defined as follows.

(a). Assume that i1 = 0 is such that {a,ﬁ)( } is successful (note that i is unique).

Then (a,8) = (a,ﬁ)( i) and we say that (a,B)h g is suvcessful.

h,g h,g

b). Assume that 1 = 0 is such that (a, }(1) blocks {note that i is unique). Then
B
- (1)
(a,B)h’g = (a’g)h,g and we say that (“’B)h,g blocks.

{c). If there is no i satisfying either (a) or (b) then (a,s)h g is the infinite
(to the right) word over the alphabet {(h,a), (h,0}, (h,1}, (9,4), (9,0), (g,1)}

such that for each i = 0, (a,B)( } is its prefix.
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The h=projection of (a,ﬁ)h g° denoted by ((a,ﬁ)h g)h or simply by (a,B)h whenever
3 3
g is understood, is defined by:

if (a) holds then (c,g), = (G’B)éi)‘

i (b) holds then (e,p), = (a-2)\"), and
if {c) holds then (a,s)h is the infinite (to the right) word over {0,1} such that for

each i = J, (a,B}é1) is its prefix.

The g-projection of (a,B}h g’ denoted by ((a,B}h g)g or simply by (a,g}g whenever
h is understood, is defined by:

if (a) holds then (a,p), = {a’g)éi}’

if (b} holds then (a,B)g (a,B)éi)s and

if {c) holds then (a,B)g is the infinite (to the right) word over {0,1} such that for

each 1 = 0, (a,ﬁ)é1) is its prefix. o

Definition. Let (h,g) be an ordered pair of marked homomorphisms such that both
the sequence (h(O),g(u(O)))h’g and the sequence (h(l),g(u(l)))h,g are successful.
Then the equality collector of (h,g), denoted as ecol (h,g), is the pair of homomor-
phisms (h,g) on {0,1}* defined by
h(0) = 0(h(0),9(1(0))),» (1) = L(h(1), 9(e(1)))y>
§W)=sMOHhW)GQW)Hgand§U)=.M1Mhﬂ)ﬂ(mlﬂ)w
where for i,j € {0,1} u(i) = j if and only if the first letters of h(i) and g(j) are
identical. o

In the sequel given a pair of homomorphisms (h,q) we will use the "bar notation"
{(h,g) to denote ecol (h,q).

Definition. Let I = (h’g’al’aZ’bl’bZ) be a marked instance of GPCP(2) such that
both the sequence (h(O),Q(@(O)))h g and the sequence (h(l),g(u(l)})h g are success-
ful. The tail equation ofl, denoted as ETai](f)’ is the eguation
h(x)a, = g(y)b,
in variables x, y ranging over {0,1}". A pair of words {u,w) is called a short solu~
tion of ETai}(I} if h{u}a2 = g(w)b2 and moreover,

= ! i h ; :
Ih(u)ayl = lagby| + [bA(0)] + [hR(1)[. The set of all short solutions of Erain(n)
is denoted by soZ(E

O

Tail(1))-

The notion of the equality collector is extended now to instances of GPCP(2) as
follows.
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Definition. Let 1 = (h’g’al’aZ’bl’bZ) be a marked instance of GPCP(2) such that
the sequence (al,bl)h’ is successful, the sequence (h(O),g(u(O))}h,g is successful,
the sequence (h(l),g(u(l)))h,g is successful and SO?EFIQi](I)) # P. Then an equality
collector of I, denoted ecol I, is an instance J = (h,g,al,u,Bl,w) of GPCP(2) such
that (h,g) = ecol({h,q9), El = (al’bl)h’bl = (al’bl)g and (u,w) ¢ SOZ(ET&?](I))' The
set of all equality collectors of I is denoted by ECOL{I). =

Definition. If 1 is a marked instance of GPCP(2) such that ECOL(I) # @ then we
say that I is successful; otherwise we say that I is umsuccessful. o

The following result "justifies” the use of ECOL transformation as a tool in
solving the GPCP(2).

Theorem 3. Let I be a marked instance of GPCP(2) such that ECOL(I) is not empty.
One can effectively compute a positive integer constant C such that: I has a solution
if and only if either I has a solution not longer than C or there exists a J in
ECOL({I) such that J has a solution. o

We can also handle the "unsuccessful situation".
Theorvem 4. 1t is decidable whether or not an arbitrary unsuccessful instance of
GPCP(2) has a solution. o

We will use the notation trace (h,g) to denote the sequence (h,g), ecol (h,g),
ecolz {hyg9)s...., . If this sequence is infinite then it turns out to be ultimately
periodic. We use thres (h,g) to denote the length of its threshold part and per (h,g)
to denote the length of its period part.

In our solution of the GPCP(2) (in the case of marked instances) we will itera-
tively apply the ECOL transformation until we reach the "stable situation" which is
formally defined as follows.

Definition. Let I = (h,g,al,az,bl,bz) be an instance of marked GPCP(2) such that
trace (h,g) is infinite and let thres (h,g) = r.

Then ecolr+1 (h.g) is called stable.
We say that J = (ﬁ,g},él,éz,ﬁl,fyz) is a stable version of 1 whenever J ¢ ECOL™*L(1);
the set of all stable versions of I is denoted by STABLE(I]. We also say then that

J is a stable instance of GPCP(2) (with respect to I). o

Our next step is to demonstrate that if one considers the decidability status of
stable instances of GPCP(2) then it suffices to consider nine "quite concrete® cases.
{In what follows, for a word x such that [x| = 2, we use #wo(x) to denote the prefix
of x consisting of the first two letters of x.)

Theorem 5. There exists an algorithm which given an arbitrary stable instance
I= (h,g,al,az,bl,bz) of GPCP{2) decides whether or not it has a solution, unless I
belongs to one of the following nine categories.
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Ic¢ CATI if .

h(0) = 0, h{(1) = la, where a € {0,1} , and
g{0) = 08, g(1)} = 1, where B ¢ {0,1}+= and
For i ¢ {0,1}, I ¢ CATZ,i if

h{0) = 0, h(1l) = la, where a ¢ {0,1}+; and
g(i) = 08, g(1-i) = Iv, where B,y ¢ {0,1}".
For 1 € {0,1}, I ¢ CAT3,1 if

awo(h(0)) = 00, two(h{1)) = 10,

ao(g(i)) = 00, two(g{1-1)) = 10.

For i € {0,1}, I € CAT, ,; if

a0(n(0)) = 01, two(h(1)) = 10,

two(g(i)) = 01, #two(g(l-i) = 10.

For i ¢ {0,1}, 1 ¢ CATg ; if

two(h(0)) = 00, two(h(1)) = 11,

two{g{i}) = 00, two(g{l-1}) = 11.

Now we demonstrate that in considering the decidability status of GPCP(2) it suf-
fices to consider sijx categories which quite precisely describe the exact pattern of
images of homomorphisms involved in an instance of GPCP(2).

We start by defining six {regular) languages.

For i € {0,13, A, = i*, B, = 1(1-1)" and €y = i((1-1)1) 4, (1-1)).

Theorem 6. There exists an algorithm which given an arbitrary stable instance
I-= (h,g,al,az,bl,bz) of GPCP(2) decides whether or not I has a solution, unless 1
belongs to one of the following six categories .
For i e {0,1}, T ¢ CLA if

i
h(0) ¢ Ago h{(l) ¢ Al’ g(i) ¢ AO and g(1-1) ¢ Al.

For i € {0,1}, I ¢ CLB_ if

1
h(0) € Ag, h(1) € By, g(i) € Aj and g(1-i) € B,.

For i € {0,1}, I € CLC if
i

h(0) € Cos h(1) € C;s g(3) € Cy and g(1-1) € C

a

1
Then it turns out that we can also handle the remaining six categories.

Theorem 7. 11 is decidable whether or not an arbitrary stable instance I of
GPCP(2) such that T € CL, UCLy UCL. where i € {0,1}, has a solution. ©
i i i
Combining the above results we can finally prove our main result.
Theorem 8. It is decidable whether or not an arbitrary instance of GPCP(2) has a
solution. o

Actually, the following algorithm given an arbitrary instance 1 of GPCP(2) gives
answer YES if I has a solution and answer N0 if I has no solution.
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{In the following flowchart of our algorithm, D and C are effectively computable con-
stants and the set MAR(I) is the effectively computable set referred to in the state-
ment of Theorem 2).
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INPUT := 1 OUTPUT. := NO

sofution

of T exists OUTPUT := YES
?

I periodic

of I not longe?

than D exists OUTPUT := YES

Construct
MAR(I)={J 5. .0}

OUTPUT := NO
solution o
3, exists? OUTPUT := YES
Construct
STABLE(J, )=
{Ikl""’Ikn } olution of
k Jy not Tonger OUTPUT := YES

than C exists?

solution

of I, exists
K5

OUTPUT := YES

OUTPUT := NO
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Corollary. It is decidable whether or not an arbitrary instance of PCP(2) has a
solution. o

Remark. A simpler proof of Theorem 8 was obtained recently. It is presented in
[EKR]
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