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The Post Correspondence Problem, considered f i r s t  by E. Post in [P], is perhaps 

the most useful problem as far  as undecidable properties of  formal languages are con- 

cerned (see, e .g . ,  [H], [HV] and [$1]). 

I t  can be formulated as fo l lows. 

Def in i t ion.  Let Z be an alphabet and l e t  h,g be two homomorphisms of z*.  The Post 

Oorrespondenee Problem (PCP for  short) is to determine whether or not there ex is ts  

a word w in % + such that  h(w) = g(w). I f  s = n then we say that  we deal wi th the Post 

aorrespondenae Problem of length n (PCP(n) for  short ) .  [] 

The set of solutions of an instance of PCP (that is the set of al l  words satisfying 

the equation h(w) = g(w)) is referred to as an equality lo~age. The "descriptional 

power" of PCP stems from the fact that i t  is able to code computations by arbitrary 

Turing Machines. This is reflected in the fact that equality languages form a natural 

base in several characterizations of the class of recursively enumerable languages 

and i ts various subclasses (see, e.g. [BB], [C], [ER] and [$2]). 

One particular aspect of PCP attracted quite a lot  of attention. Since i t  is such 

a simply formulated problem of such a strong descriptional power i t  forms an excellent 

framework for an attempt to formulate a boundary between "decidable" and "undecidable" 

(or "computable" and "noncomputable"). In other words one would l ike to establish as 

small as possible u such that PCP(u) is undeci~ble and as big as possible bound 

such that PCP(¢) is decidable. 

The best possible u so far is 10, which is derivable from a result of Matijasevic 

(see [Cl]). As far as ~ is concerned the only available ( t r i v i a l )  observation unti l 

now was the fact that PCP(1} is decidable. To establish whether or not PCP(2) is de- 

cidable turned out to be a challenging open problem. There are also several results 

available which establish the decidability or undecidablility of PCP not depending on 

the length but rather on other, more structural properties of the homomorphisms in- 

volved. For example, in [Le] i t  is proved that PCP remains undecidable when the in- 

volved homomorphisms are codes. Several interesting results concerning PCP can be 

found in [CK] and [KS]. 

In this paper we consider a more general version of PCP(2) which is defined as 

follows. 
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Definition. Let Z, A be alphabets, h,g be two homomorphisms from z ' i n t o  8" and 

l e t  a l ,a2,b l ,b2 be words over ~. The Generalized Post Correspondence Problem (GPCP for 

short) is to determine whether or not there exists a word w in z + such that 

alh(W)a 2 = blg(W)b 2. I f  #S = n then we say that we deal with the Generalized Post 

Correspondence Problem of length n (GPCP(n) for  short).  [] 

Note that i f  we set a I = a 2 = b I = b 2 = A then GPCP(n) reduces to PCP(n). 

We prove that GPCP(2) is decidable. Our solut ion of th is  resu l t  is rather involved 

and so in th is  extended abstract we can merely indicate some more important constructs 

and reductions used in the solut ion. 

In addit ion to standard language-theoretic notation and terminology we w i l l  use 

also the fol lowing notation: fo r  a word x, Ixl denotes i t s  length and for  words x,y 

we wr i te xPREFy i f  e i ther  x is a pre f ix  of y or y is a p re f ix  of x. 

Clearly in considering an instance alh(X)a2=blg(X)b2 of GPCP(2) one can r e s t r i c t  one- 

se l f  to an alphabet {0,1},  words a l ,a2 ,b l ,b  2 over {0 , I }  and h,g which are nonerasing 

endomorphisms of {0,1}*.  

Definition. Let f be an endomorphism of {0,1}*.  

(1). f is  marked i f  f(O) and f (1)  have d i f fe ren t  f i r s t  l e t t e rs .  

(2). f is periodic i f  f(O) f(1) = f (1)  f(O). o 

Defini t ion. Let I = (h,g,a l ,a2,b l ,b2)  be an instance of GPCP(2). 

(1). I is  marked i f  both h and g are marked. 

(2). I is periodic i f  e i ther  h or g is periodic. 

Defini t ion. Let I = (h,g,a l ,a2,b l ,b2)  be an instance of GPCP(2). 

(1). I is  marked i f  both h and g are marked. 

(2). I is  periodic i f  e i ther  h 

F i r s t  we get a rather easy 

Theorem 1. I t  is  decidable 

GPCP(2) has a solut ion. D 

or g is  periodic, o 

resu l t .  

whether or not an a rb i t ra ry  periodic instance of 

Then we get our f i r s t  reduction theorem. 

Theorem 2. There exists an algorithm which given an a rb i t ra ry  instance I of 

GPCP(2) that  is not periodic, produces a pos i t ive  integer D and a f i n i t e  set MAR(1) 

of marked instances of GPCP(2) such that I has a solut ion i f  and only i f  e i ther  I 

has a solut ion not longer than D, or there exists a J ~ ~R(~) such that J has a 
solut ion. 

Hence we can r e s t r i c t  our at tent ion to marked instances of GPCP(2) only. The 

equali ty co l lector  of a given instance of GPCP(2) is the very basic construct of our 

solution and i t  is  defined, in several stages, as fol lows. 

Def in i t ion.  Let h,g be marked homomorphisms from {Q,1}* into {0,1}* and l e t  

a,~ E {0,1} *. For a nonnegative integer i we define (a,~)~i~ induct ive ly  as fol lows. 
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O: (a,~)~0~ = (h,A)(g,A). 

(o) The h-projectian of (a,~ I(0) denoted by {la,B ~(0)~ or simply by (B,a)h Jh,g ' ~ Jh,gJh ' 
whenever g is understood, is defined by (a,p)~ 0) = A. 

The g-projection of (a,5)~O~ ~ denoted by ((~ ~,(0), ' 'h,g 'g or simply by (a,6)~ 0) 

whenever h is understood, is defined by (a,#)~ 0) = A. 

i + I: (a,~ ~(i+I) is defined i f  and only i f  
" r ~ h , g  

ah((~,~)~i))PREF~g((a,~)~ i ) )  and ah( (a ,~)~ i ) )  # ~g( (a ,6)~ i ) ) .  

• . ( i + 1 )  I f  (a,#)h,g is defined and c ~ {0 , I }  then 

a ~ ~ ~a~ ' ( i+1) (a,~)~]~(h,c-in~(h)) (a). i f  h((a,~) i ) )c  pref ~ g((a,#) i ) )  then , , i~h,g = 

and 

• a (a,~ ' ( i+1) = (a,5)~]~(g,c-ind(g)). (b) i f  # g((a,i~)~i))c pref h((a,#)~ i ) )  then ~'h,g 

"a . ( i+ l )  I f  ( '#)h,g is defined then the h-projection of i t  and the g-projection of i t  are 

defined by: 

i f  (a) holds then (a,#)~ i+1) 

and 
"a . (i+1) 

i f  (b) holds then ( '~)h 

For i ~ 0 we say that 

= ~ '~'h )c-ind(h) and ,.m,p) i+1) (a,5) i )  

= ~= ~ ( i )  ' '~'h and (~,p)~i+l)= (~,B)~i+1)c_i~d(g). 

(~,~)(i) is ~acesef~l i f  ~ h((~,~)~ i)) = ~ g((~,~)~i)),  and 

"a . ( i  ~ i ) )  (a,#) ( i )  bloaks i f  i t  is not true that a h(( ,B~ h ))PREF # g((a,#) . m 

Definition. Let h,g be marked homomorphisms from {0,1}* into {0,1}* and let  
a,~ ~ {0,1}*.  The (a,~)-eequ~oe (with respect ~o h,g), denoted by (a,~)h,g, is 

defined as follows. 

(a) Assume that i > 0 is such that (a,p ~(i) is successful (note that i is unique). " - Jh,g 
Then (a,~)h,g : (a,~)~i~ and we say that (a,5)h,g is su~oeeeful. 

(b). Assume that i > 0 is such that (a,p ~(i) blocks (note that i is unique). Then 
- ~ h , g  

(a'~)h,g = (a'8~(i)' ~h,g and we say that (a,~)h,g blocks. 

(c). I f  there is no i sat is fy ing ei ther (a) or (b) then (a,B)h,g is the i n f i n i t e  

(to the r ight)  word over the alphabet {(h,A), (h,0), (h,1), (g,&), (g,0), (g,1)} 

such that for  each i ~>~ O, (a,~)~i,~ is i t s  pref ix .  
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The h-projection of (a,#)h,g,  denoted by ((a,~)h,g)h or simply by (a,#) h whenever 
g is understood, is defined by: 

i f  (a) holds then (a,#) h = (a,#)~i )  

i f  (b) holds then (a,#) h = (a,#)~ i ) ,  and 

i f  (c) holds then (a,#) h is the i n f i n i t e  (to the r igh t )  word over {0,1} such that for  

each i ~ J, (a,B)~ i )  is  i t s  p re f ix .  

The g-projeation of (a,p)h,g,  denoted by ((a,P)h,g)g or simply by (a,p)g whenever 
h is understood, is defined by: 

i f  (a) holds then (a,~)g = (a,~)~ i ) ,  

i f  (b) holds then (a,~)g = (a,~)~ i ) ,  and 

i f  (c) holds then (a,~)g is the i n f i n i t e  (to the r ight )  word over {0,1} such that for  

( i )  is i t s  pre f ix .  each i m 0, (a,~)g 

Definition. Let (h,g) be an ordered pai r  of marked homomorphisms such that both 

the sequence (h(0) ,g(~(0) ) )h  g and the sequence (h(1) ,g(~(1) ) )h ,g  are successful. 
Then the equality collector of (h,g),  denoted as ecol (h,g) ,  is the pa i r  of homomor- 
phisms (~,g) on {0,1}* defined by 

h(0) = 0(h(0) ,g(m(0)))h,  h(1) = 1(h(1),  g(~(1)) )h,  
g(0) = ~(0)(h(0) ,g(~0)) )g  andg(Z) = ~(1) (h(1) ,g(~(1) ) )g ,  

where for i , j  E {0,1} m(i) = j i f  and only i f  the f i r s t  l e t te rs  of h ( i )  and g( j )  are 
iden t ica l .  

In the sequel given a pa i r  of homomorphisms (h,g) we w i l l  use the "bar notat ion" 
(~,g) to denote ecol (h,g).  

Definition. Let I = (h ,g ,a l ,a2 ,b l ,b2)  be a marked instance of GPCP(2) such that 

both the sequence (h(0) ,g(~(0) ) )h ,g  and the sequence (h(1),g(m(1)))h,g are success- 

fu l .  The t a i l  equation o f l ,  denoted as ETai l (~) ,  is the equation 

h(x)a 2 = g(y)b 2 
in var iables x, y ranging over {0,1}* .  A pa i r  of words (u,wl is cal led a short solu- 

t ion of ETai l ( l  ) i f  h(u)a 2 = g(w)b 2 and moreover, 

lh(u)a21 ~ la2b2! ÷ lhh(0)I + I ~ ( 1 ) ! .  The set of a l l  short solut ions of ETail(1 ) 

is denoted by so~(ETai l (1)) .  D 

The notion of the equa l i ty  co l lec to r  is extended now to instances of GPCP(2) as 
fol 1 ows. 
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Definition. Let I = (h,g,a l ,a2,b l ,b2)  be a marked instance of GPCP(2) such that 

the sequence (a l ,b l )h ,g  is  successful, the sequence (h(O),g(~(O)))h,g is successful, 

the sequence (h(1),g(~(1)))h,g is successful and sol(ETall(1). ) # ~" Then an equality 

co l lec to r  o f  I ,  denoted cool I ,  is  an instance J = (h,g,al,U,~l,W) of GPCP(2) such 

that (~,g) = ecol (h,g) ,  a l  : (a1"bz)h'bl = (a l ' b l )g  and (u,w) E so l (ETai l (1) ) .  The 
set of a l l  equal i ty  col lectors of I is  denoted by ECOL(1). 

Definition. I f  I is a marked instance of GPCP(2) such that ECOL(1) # ~ then we 

say that I is  successful; otherwise we say that I is unsuccessful. [] 

The fol lowing resu l t  " j u s t i f i e s "  the use of ECOL transformation as a tool in 

solving the GPCP(2). 

Theorem 3. Let I be a marked instance of GPCP(2) such that ECOL(1) is not empty. 

One can e f f ec t i ve l y  compute a posi t ive integer constant C such that:  I has a solution 

i f  and only i f  e i ther  I has a solut ion not longer than C or there exists a J in 

ECOL(1) such that J has a solut ion. D 

We can also handle the "unsuccessful s i tuat ion" .  

Theorem 4. I t  is decidable whether or not an a rb i t ra ry  unsuccessful instance of 

GPCP(2) has a solut ion, o 

We w i l l  use the notation trace (h,g) to denote the sequence (h,g), ecol (h,g),  

cool 2 (h,g) . . . . . . .  I f  th is sequence is i n f i n i t e  then i t  turns out to be u l t imate ly  

periodic. We use thres (h,g) to denote the length of i t s  threshold part and per (h,g) 

to denote the length of i t s  period part. 

In our solut ion of the GPCP(2) ( in the case of marked instances) we w i l l  i te ra-  

t i v e l y  apply the ECOL transformation unt i l  we reach the "stable s i tuat ion"  which is 

formally defined as fol lows. 

Def in i t ion .  Let I = (h ,g ,a l ,a2 ,b l ,b  2) be an instance of marked GPCP(2) such that 

trace (h,g) is i n f i n i t e  and l e t  thres (h,g) = r .  

Then cool r+ l  (h,g) is cal led stable. 
ECOLr+I(1) ; We say that J = (h,g,a l ,a2,b l ,b2)  is a stable persion of I whenever J E 

the set of a l l  stable versions of I is  denoted by STABLE(I). We also say then that 

J is a stable instance of GPCP(2) (~i th respect to I ) .  

Our next step is to demonstrate that i f  one considers the dec idab i l i t y  status of 

stable instances of GPCP(2) then i t  suff ices to consider nine "quite concrete" cases. 

(In what fol lows, for  a word x such that Ixl m 2, we use two(x) to denote the pre f ix  

of x consisting of the f i r s t  two le t te rs  of ~.)  

Theorem 5. There exists an algorithm which given an a rb i t ra ry  stable instance 

I = (h,g,a l ,a2,b l ,b2)  of GPCP(2) decides whether or not i t  has a solut ion,  unless I 

belongs to one of the fol lowing nine categories. 
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I ~ CAT 1 i f  

h(O) = 0, h(1) = la ,  where a E {0 ,1}  + , and 

g(0) = 0~, g ( l }  = 1, where p ~ { 0 , ! }  + , and 

For i E { 0 , i } ,  I ~ CAT2, i i f  

h(0) = 0, h(1) = la ,  where a E { 0 , i }  +, and 

g ( i )  = 0~, g (1 - i )  = 1y, where p,y  E {0,1}  + . 

For i E {0 ,1 } ,  I E CAT3, i i f  

~ o ( h ( 0 ) )  = 00, ~ o ( h ( Z ) )  = 10, 

#wo(g( i ) )  = 00, ~ o ( g ( Z - i ) )  = I0.  

For i E {0 ,1 } ,  I ~ CAT4, i i f  

~ o ( h ( 0 ) )  = 01, ~ o ( h ( 1 ) )  = 10, 

~ o ( g ( i ) )  = 01, ~ o ( g ( Z - i )  = 10. 

For i E {0 ,1 } ,  I G CAT5, i i f  

~ o ( h ( O ) )  = 00, ~ o ( h ( Z ) )  = 11, 

~wo(g( i ) )  = 00, ~-~o(g(1-i))  = 11. 

Now we demonstrate tha t  in consider ing the d e c i d a b i l i t y  s tatus of  GPCP(2) i t  suf -  

f i ces  to consider s i x  categor ies which qu i te  p rec ise ly  describe the exact pat tern of  

images of  homomorphisms invo lved in  an instance of  GPCP(2). 

We s t a r t  by de f i n ing  s i x  ( regu lar )  languages. 

For i E { 0 , I } ,  A i = i +, B i : i ( l - i )  ~ and C i = i ( ( 1 - i ) i ) * { A , ( 1 - i ) } .  

Theorem 6. There ex is ts  an a lgor i thm which given an a r b i t r a r y  s tab le  instance 

I = ( h , g , a l , a 2 , b l , b 2 )  o f  GPCP(2) decides whether or not I has a s o l u t i o n ,  unless I 

belongs to one of  the fo l l ow ing  s i x  categor ies . 

For i ~ {0 ,1 } ,  I ~ CLA. i f  
1 

h(O) ( a 0, h(1) ( A 1, g ( i )  E A 0 and g (1 - i )  E A 1. 

For i E {0 ,1 } ,  I ~ CLBi i f  

h(O) ~ A 0, h(1) ~ B 1, g ( i )  E A 0 and ~ ( I - i )  E B I .  

For i E {0 ,1 } ,  I E CLcI. i f  

h(O) E C O , h(1) E C 1, g ( i )  E C 0 and g (1 - i )  E C 1. 

Then i t  turns out tha t  we can also handle the remaining s i x  categor ies.  

Theorem 7. I t  is  decidable whether or  not an a r b i t r a r y  s tab le  instance I o f  

GPCP(2) such tha t  I E CLAi U CLBi U CLci where i E {0 ,1 } ,  has a so lu t i on ,  o 

Combining the above resu l t s  we can f i n a l l y  prove our main resu l t .  

Theorem 8. I t  is decidable whether or not an a r b i t r a r y  instance of  GPCP(2) has a 

so lu t i on .  [] 

A c t u a l l y ,  the f o l l ow ing  a lgor i thm given an a r b i t r a r y  instance I o f  GPCP(2) gives 

answer YES i f  I has a so lu t i on  and answer NO i f  I has no so l u t i on .  
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(In the fo l lowing f lowchart of our algorithm, D and C are e f f ec t i ve l y  computable con- 

stants and the set MAR(1) is the e f f ec t i ve l y  computable set referred to in the state-  

ment of  Theorem 2), 
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INPUT := I OUTPUT No NO 

Yes ~ ution ~ Yes 
" ~ f  I exists J ~ OUTPUT := YES 

~ N o N  Yes ; OUTPUT := YES 

~,o 

t I MAR(I)={J1 ..... dm},, ~ k  := k+l 

Yes J solution o f "~  Yes 
No Y ~  ~ OUTPUT := YES 

b 

Construct 
STABLE(Jk)= 

{Ikl ..... Iknk} 

~, No 
i := 1~ 

~ Yes 

w 

No 

Yes OUTPUT := YES 

OUTPUT := YES 

Yes 
OUTPUT := NO 

No 

k := k+l ] 
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Corollary. I t  is  decidable whether or not an arb i t ra ry  instance of PCP(2) has a 

solut ion. D 

Remark. A simpler proof of Theorem 8 was obtained recently. I t  is presented in 

[EKR] 
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