
Property 7.2. If d(s) 2: n, the residual network contains no directed path from 
the source node to the sink node. 

The correctness of this observation follows from the facts that d(s) is a lower 
bound on the length of the shortest path from s to t in the residual network, and 
therefore no directed path can contain more than (n - 1) arcs. Therefore, if 
d(s) 2: n, the residual network contains no directed path from node s to node t. 

We now introduce some additional notation. We say that the distance labels 
are exact if for each node i, d(i) equals the length of the shortest path from node i 
to node t in the residual network. For example, in Figure 7.1, if node 1 is the source 
node and node 4 is the sink node, then d = (0,0,0,0) is a valid vector of distance 
label, and d = (3, 1, 2, 0) is a vector of exact distance labels. We can determine 
exact distance labels for all nodes in O(m) time by performing a backward breadth
first search of the network starting at the sink node (see Section 3.4). 

Figure 7.1 Residual network. 

Admissible Arcs and Admissible Paths 

We say that an arc (i, j) in the residual network is admissible if it satisfies the 
condition that d(i) = d(j) + 1; we refer to all other arcs as inadmissible. We also 
refer to a path from node s to node t consisting entirely of admissible arcs as an 
admissible path. Later, we use the following property of admissible paths. 

Property 7.3. An admissible path is a shortest augmenting path from the 
source to the sink. 

Since every arc (i,j) in an admissible path P is admissible, the residual capacity 
of this arc and the distance labels of its end nodes satisfy the conditions (1) rij > 0, 
and (2) d(i) = d(j) + 1. Conditiori (1) implies that P is an augmenting path and 
condition (2) implies that if P contains k arcs, then d(s) = k. Since d(s) is a lower 
bound on the length of any path from the source to the sink in the residual network 
(from Property 7.1), the path P must be a shortest augmenting path. 

7.3 CAPACITY.SCALING ALGORITHM 

We begin by describing the maximum capacity augmenting path algorithm and noting 
its computational complexity. This algorithm always augments flow along a path 
with the maximum residual capacity. Let x be any flow and let v be its flow value. 
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As before, let v* be the maximum flow value. The flow decomposition property (i.e., 
Theorem 3.5), as applied to the residual network G(x), implies that we can find m 
or fewer directed paths from the source to the sink whose residual capacities sum 
to (v* - v). Thus the maximum capacity augmenting path has residual capacity at 
least (v* - v)/m. Now consider a sequence of 2m consecutive maximum capacity 
augmentations starting with the flow x. If each of these augmentations augments at 
least (v* - v)/2m units of flow, then within 2m or fewer iterations we will establish 
a maximum flow. Note, however, that if one of these 2m consecutive augmentations 
carries less than (v* - v)/2m units of flow, then from the initial flow vector x, we 
have reduced the residual capacity of the maximum capacity augmenting path by a 
factor of at least 2. This argument shows that within 2m consecutive iterations, the 
algorithm either establishes a maximum flow or reduces the residual capacity of the 
maximum capacity augmenting path by a factor of at least 2. Since the residual 
capacity of any augmenting path is at most 2U and is at least 1, after O(m log U) 
iterations, the flow must be maximum. (Note that we are essentially repeating the 
argument used to establish the geometric improvement approach discussed in Sec
tion 3.3.) 

As we have seen, the maximum capacity augmentation algorithm reduces the 
number of augmentations in the generic labeling algorithm from O(nU) to 
O(m log U). However, the algorithm performs more computations per iteration, 
since it needs to identify an augmenting path with the maximum residual capacity, 
not just any augmenting path. We now suggest a variation of the maximum capacity 
augmentation algorithm that does not perform more computations per iteration and 
yet establishes a maximum flow within O(m log U). Since this algorithm scales the 
arc capacities implicitly, we refer to it as the capacity scaling algorithm. 

The essential idea underlying the capacity scaling algorithm is conceptually 
quite simple: We augment flow along a path with a sufficiently large residual ca
pacity, instead of a path with the maximum augmenting capacity because we can 
obtain a path with a sufficiently large residual capacity fairly easily-in O(m) time. 
To define the capacity scaling algorithm, let us introduce a parameter ~ and, with 
respect to a given flow x, define the ~-residual network as a network containing arcs 
whose residual capacity is at least ~. Let G(x, ~) denote the ~-residual network. 
Note that G(x, 1) = G(x) and G(x, ~) is a subgraph of G(x). Figure 7.2 illustrates 
this definition. Figure 7.2(a) gives the residual network G(x) and Figure 7.2(b) gives 
the ~-residual network G(x, ~) for ~ = 8. Figure 7.3 specifies the capacity scaling 
algorithm. 

Let us refer to a phase of the algorithm during which ~ remains constant as a 
scaling phase and a scaling phase with a specific value of ~ as a ~-scaling phase. 
Observe that in a ~-scaling phase, each augmentation carries at least ~ units of flow. 
The algorithm starts with ~ = 2l1og UJ and halves its value in every scaling phase 
until ~ = 1. Consequently, the algorithm performs 1 + Llog UJ = O(1og U) scaling 
phases. In the last scaling phase, ~ = 1, so G(x, ~) = G(x). This result shows that 
the algorithm terminates with a maximum flow. 

The efficiency of the algorithm depends on the fact that it performs at most 
2m augmentations per scaling phase. To establish this result, consider the flow at 
the end of the ~-scaling phase. Let x' be this flow and let v' denote its flow value. 
Furthermore, let S be the set of nodes reachable from node s in G(x', Ll). Since 
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