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ABSTRACT. This paper describes an efficient algorithm to determine whether an arbitrary graph G 
can be embedded in the plane. The algorithm may be viewed as an iterative version of a method 
originally proposed by Auslander and Parter and correctly formulated by Goldstein. The algorithm 
uses depth-first search and has O(V) time and space bounds, where V is the number of vertices in 
G. An ALGOS implementation of the algorithm successfully tested graphs with as many as 900 vertices 
in less than 12 seconds. 
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1. Introduction 

Graph theory is an endless source of easily s ta ted yet  very hard problems. Many  of these 
problems require algorithms; given a graph, one may ask if the graph has a certain prop- 
erty, and an algori thm is to provide the answer. Since graphs are widely used as models 
of real phenomena, it  is impor tant  to discover e~cient algorithms for answering graph- 
theoretic questions. This paper presents an efficient algorithm to determine whether a 
graph G can be embedded (without any crossing edges) in the plane. 

The planar i ty  algori thm may be viewed as an i terat ive version of a recursive method 
originally proposed b y  Auslander and Pat te r  [1] and correctly formulated by  Goldstein 
[2]. The algorithm uses depth-first search to order the calculations and thereby achieve 
efficiency. Depth-first  search, or backtracking,  has been widely used for finding solu- 
tions to problems in combinatorial  theory and artificial intelligence [3, 4]. Recently this 
type of search has been used to construct efficient algorithms for solving several problems 
in graph theory, including finding biconnected components [5, 6], finding triconnected 
components [7, 81, finding strongly connected components [61, finding dominators [9], 
and determining whether a directed graph is reducible [10, 11]. 

In  order to analyze the theoretical efficiency of the planar i ty  algorithm, a random ac- 
cess computer model is used. Da ta  storage and retrieval, ari thmetic operations, compari- 
sons, and logical operations are assumed to require fixed times. A memory cell is allowed 
to hold integers whose absolute value is bounded by  kV for some constant  k, where V is 
the number of vertices in the problem graph. Cook [12] describes an exact computer model 
along these lines. If f and g are functions of x, we say " f (x)  is O(g(x) )"  if, for some 
constants kI and k2, I f (x)  I -< ki I g(x) I + k2 for all x. Within this framework, the  
planar i ty  algorithm has 0 (V) t ime and space bounds and is opt imal  to within a constant  
factor. 

The practical efficiency of the algorithm was measured by  implementing i t  in ALGOL 
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W, the Stanford University version of ALGOL [13]. The algorithm in this paper is much 
simpler than the one originally programmed, but the program was able to analyze graphs 
with up to 900 vertices in less than 12 seconds of IBM 360/67 processing time. 

2. Previous Research on Planarity Algorithms 

Embedding a graph in a plane has several applications. The design of integrated circuits 
requires knowing when a circuit may be embedded in a plane. Determining isomorphism 
of chemical structures is simplified if the structures are planar [7, 14-20]. The importance 
of the problem is suggested by the number of published planarity algorithms. Examples 
include [1, 2, 21-32]. Surprisingly little work has been directed toward a rigorous analysis 
of their running times, however, and algorithms continue to appear which are obviously 
inferior to previously published ones. We shall examine several of the best algorithms 
here; a more complete history of the planarity problem may be found in Shirey's disserta- 
tion [28], which contains an extensive bibliography. 

']?he earliest characterization of planar graphs was given by Kuratowski [33]. He proved 
that every nonplanar graph contains a subgraph which upon removal of degree two ver- 
tices is isomorphic either to the complete graph on five vertices or to a complete bipartite 
graph on six vertices (Figure 1). Conversely, no planar graph contains either of these 
graphs. Although elegant, Kuratowski's condition is useless as a practical test of planarity; 
testing for such subgraphs directly may require an amount of time proportional to at least 
V 8, if not much worse, where V is the number of vertices in the graph. 

The best approach to the planarity problem seems to be an attempt to construct a 
representation of a planar embedding of the given graph. If such a representation can be 
completed then the graph is planar; if not, then the graph is nonplanar. The first such 
algorithm was proposed by Auslander and Parter [1]. First, a cycle is found in the graph. 
When this cycle is removed, the graph falls into several pieces. The algorithm is called 
recursively to embed each piece in the plane with the original cycle. Then the embeddings 
of the pieces are combined, if possible, to give an embedding of the entire graph. Unfor- 
tunately, Auslander and Parter's paper contains an error; the proposed method may loop 
indefinitely. Goldstein [2] correctly formulated the algorithm, using iteration instead of 
recursion. Shirey [28] implemented this method using a list structure representation for 
graphs, and proved an asymptotic time bound of 0 (V a) for his variation of the algorithm. 

Lempel, Even, and Cederbaum [25] have presented an alternate method for building 
a graph in the plane. They start with a single vertex, and add all edges incident to that 
vertex. They then add all edges incident to one of the new vertices, and continue in this 
way until the entire graph is constructed. Vertices must be selected in a special order if 
the algorithm is to work correctly. Lempel, Even, and Cederbaum give no implementation 
or time bound for their method; however, Tarjan [34] has implemented the algorithm in 
a "way which requires 0 (V) space and 0 (V ~) time. 

Mondshein [27] has recently proposed another constructive algorithm. He adds one 
vertex at a time until the entire graph is constructed. The order of vertex selection is 
again crucial. Mondshein's implementation requires O(V ~) time. Hopcroft and Tarjan 
[24], using depth-first search in a complicated program, have devised a variant of Gold- 
stein's algorithm with a time bound of O (V log V). Subsequently they discovered an im- 
proved algorithm with 0 (V) time bound, an early version of which appears in Tarjan's 
dissertation [29]. The algorithm to be presented here is a considerable simplification of 
[29]. 

A few algorithms deserve mention because of their novel approach. Fisher [23] gives 
an algorithm which works directly from the incidence matrix of a graph. This method, 
however, is not very efficient, nor is any method which uses incidence matrices. Bruno, 
Steiglitz, and Weinberg [21] present an algorithm based on some theorems of Tutte relat- 
ing to triconnected planar graphs. Instead of constructing a graph in the plane, they re- 
duce it to simpler and simpler graphs. Although they give no explicit time bound, the 
algorithm does not compare favorably with those mentioned above. 
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FIa. 1. The Kuratowski subgraphs 

3. Preliminaries 

This section outlines some of the graph-theoretic concepts needed to understand the 
planarity algorithm. I t  also describes how graphs are represented in a computer, and how 
a depth-first search works. We use definitions similar to those found in any text on graph 
theory, e.g. [35-38]. 

A graph G = (~, E) is an ordered pair consisting of a finite set of vertices ~ and a 
finite set of edges E. V denotes the number of vertices in G; E denotes the number of 
edges. If each edge is an unordered pair of distinct vertices, then the graph is undirected. 
If each edge is an ordered pair of distinct vertices, then the graph is directed. If (v, w) is 
an edge in a directed graph, we say the edge leaves v and enters w. A graph G = (~1, ~ )  
is a subgraph of a graph G2 = ( ~ ,  8~) if ~1 ~ ~2 and ~1 ~ 82. If G is a directed graph, 
the undirected version of G is the undirected graph formed by converting each edge of G 
to an undirected edge and removing duplicate edges. 

A sequence of vertices vi, 1 < i < n, and edges ei, 1 < i < n, such that  e~ = (v~, v~+~), 
is called a path of G from v~ to v,. There is a path of no edges from any vertex to itself. 
A vertex w is reachable from a vertex v if there is a path from v to w. A path is simple 
if all its vertices are distinct. A path from a vertex to itself is a closed path. A closed path 
from v to v with one or more edges is a cycle if all its edges are distinct and the only vertex 
to appear twice is v, which appears exactly twice. Two cycles which are cyclic permuta- 
tions of each other are considered to be the same cycle. We use p:v ~ *  w to denote that  
p is a path from v to w. 

An undirected graph G is connected if any vertex in G is reachable from any other 
vertex. The maximal connected subgraphs of G are well defined and vertex-disjoint [38], 
and are called the connected components of G. If G contains three distinct vertices x, v, w 
such that  w is reachable from v but  every path p:v ~ *  w contains x, then x is a cutnode 
or separation point of G. If G is connected and contains no separation points, then G is 
biconnected. The maximal biconnected subgraphs of G are welt defined and edge-disjoint 
[37], and are called the biconnected components of G. If G is biconnected but  contains four 
distinct vetrices x, y, v, w such that  every path p:v ~ *  w contains either x or y, then 
(x, y) is called a separation pair of G. If G is biconnected and contains no separation pairs, 
G is triconneected. The triconnected components of a graph may be defined in several ways 
[8, 39]. We may extend these definitions to directed graphs by considering their undi- 
rected versions. 

A (directed, rooted) tree T is a directed graph with one distinguished vertex, called the 
root r, such that  every vertex in T is reachable from r, no edges enter r, and exactly one 
edge enters every other vertex in T. The relation "(v, w) is an edge in T" is denoted by 
v ~ w. The relation "there is a path from v to w in T" is denoted by v ---+* w. If v --+ w, 
v is the father of w and w is a son of v. If v --~,* w, v is an ancestor of w and w is a descendant 
of v. Every vertex is an ancestor and a descendant of itself. If v ---+* w and v ~ w, v is a 
proper ancestor of w and w is a proper descendant of v. If T~ is a tree and T~ is a subgraph 
of a tree T2, then Tx is a subtree of T~. If T is a tree which is a subgraph of a directed 
graph G and T contains all the vertices of G, then T is a spanning tree of G. 

A graph G is planar if and only if there exists a mapping of the vertices and edges of 
the graph into the plane such that  (1) each vertex is mapped into a distinct point, (2) 
each edge (v, w) is mapped onto a simple curve, with the vertices v and w mapped onto 
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the endpoints of the curve, and (3) mappings of distinct edges have only the mappings 
of their common endpoints in common. 

A mapping of G which satisfies the conditions above is called a planar embedding of G. 
(If G is planar, there is a planar embedding of G in which the edges are mapped into 
straight lines. ) We need two lemmas about planar graphs. 

LEMMA I. I f  G isplanar, E _< 3V - 3.1 
PROOF. This lemma is an immediate consequence of Euler's theorem relating the 

number of vertices, faces, and edges in a planar graph [35]. 
LEMMA 2. Let G be a planar graph embedded in the plane. For brevity we identify each 

edge of G with its embedding. Let p~, P2, P3 be three paths leading from x to y such that any 
two of the paths have only x and y as common vertices. Let (x, Vl), (x, v~), (x, v~) be the first 
edges of pl, p~, p~, respectively, and let (wl, y), (w~, y), (w3, y) be the last edges of pl, p~, p~. 
I f  the orientation of edges clockwise around x in the plane is (x, vl), (x, v~), (x, v3), then the 
orientation of edges clockwise around y is (Wl, y), (w3, y ), (w2, y) (Figure 2). 

PROOF. This |emma is a corollary of the Jordan Curve Theorem, which states that  a 
simple closed curve divides the plane into exactly two connected regions. We accept the 
lemma without proof; the Jordan Curve Theorem is very hard to prove. (See [40, 41]. ) 

An arbitrary (undirected) graph with V vertices may have as many as E = V(V -- 
1)/'2 edges. However, a planar graph has E _< 3V - 3 by Lemma 1. Thus it may be 
possible to devise a planarity algorithm with a time bound which is linear in the number 
of vertices. One way to represent a graph in a computer is to use a V X V adjacency 
matrix M = (m~), where mi~ = 1 if (i, j )  is an edge, m~j = 0 otherwise. However, the 
amount of storage space required by an adjacency matrix is 0 (V 2), and it can be shown 
rigorously that  many graph problems (including the planarity problem) require examina- 
tion of every bit in the matrix and thus have a computation time proportional to at least 
V 2 [42]. For this reason we use a list structure called an adjacency structure to represent a 
graph. We construct a set of adjacency lists A (v), one for each vertex v. The list for vertex 
v contains each vertex w such that  (v, w) is an edge of the graph. If  G is an undirected 
graph, each edge (v, w) is represented twice: w appears in A(v)  and v appears in A(w).  

, I f  G is directed, each edge (v, w) is represented once. w appears in A(v). 
Graph algorithms require a systematic way of exploring a graph. We use one called 

depth-first search. We start from some vertex s of G and choose an edge leading from s. 
Traversing the edge leads to a new vertex. In general we continue the search by  selecting 
and traversing an unexplored edge leading from the most recently reached vertex which 
still has unexplored edges. If  G is connected, each edge will be traversed exactly once. 

If  G is undirected, a depth-first search of G imposes a direction on each edge of G given 
by the direction in which the edge is traversed during the search. Thus the search con- 
verts G into a directed graph G'. The search also partitions the (now-directed) edges into 
two classes: a set of tree arcs, defining a spanning tree T of G', and a set of fronds (v, w) 
which satisfy w --~* v in T [6]. A frond (v, w) is denoted by v -- --, w. A directed graph 
G' whose edges may be partitioned in this way is called a palm tree. Depth-first search is 
important  because the structure of paths in a palm tree is very simple. 

To implement a depth-first search of a connected, undirected graph, we use a simple 
recursive procedure which keeps a stack of the old vertices with possibly unexplored 
edges. The procedure uses a set of adjacency lists of the graph to be searched, and the 
exact search order depends on the order of edges in the adjacency lists. The procedure 
numbers the vertices from 1 to V in the order they are reached during the search, in addi- 
tion to identifying tree arcs and fronds. 

begin  c o m m e n t  routine for depth-first search of a graph G represented by adjacency lists A(v). 
Variable n denotes the last number assigned to a vertex; 

in teger  n; 

1 Under the assumption that V > 3, this bound can be tightened to E < 3V - 6, but this is not 
important for our purposes. 
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3 % /  

Illustration of Lemma 2. Path P2 is inside the simple closed curve formed by pt and P3. 

p r o c e d u r e  DFS(v, u); comment vertex u is the father of vertex v in the spanning tree being 
constructed; 

b e g i n  
n := NUMBER(v) := n + 1; 
a: comment dummy statement; 
for w E A(v) d o  b e g i n  

if  NUMBER(w) = 0 t h e n  b e g i n  
c o m m e n t  a is a new vertex; 
mark (v, w) as a tree arc; 
DFS (w, v) ; 
b: c o m m e n t  dummy statement; 

e n d  
else if NUMBER(w) < NUMBER(v) and w # u t h e n  b e g i n  

c o m m e n t  this test is necessary to avoid exploring an edge in both directions; 
mark (v, w) as a frond; 
c: c o m m e n t  dummy statement; 

e n d  ; 
e n d  ; 

e n d  ; 
f o r  i : =  I u n t i l  V d o  NUMBER(i) := O; 
n : = 0 ;  
c o m m e n t  the search starts at vertex s; 
DFS(s, 0); 

e n d  ; 

LEMMA 3. The procedure above correctly carries out a depth-first search of an undirected 
graph and requires 0 (V + E)  time if the graph has V vertices and E edges. The vertices are 
numbered so that if (v, w) is a tree arc, N U M B E R ( v )  < N U M B E R ( w ) ;  and if  (v, w) is 
a frond, N UMBER (w) < N UMBER (v). 

PROOF. See [6]. 
Figure 3 shows a connected graph G and a palm tree generated from G using depth- 

first search. 

4. An  Outline of the Planarity Algorithm 

This section sketches the ideas behind the planarity algorithm. Sections 5 and 6 develop 
the detailed components and Section 7 presents the algorithm in toto. The first step of the 
algorithm gets rid of graphs with too many edges. We count the number of edges in the 
graph and if the count ever exceeds 3V -- 3, we declare the graph nonplanar. Next, we 
divide the graph into biconnected components. (A graph is planar if and only if all its 
bieonnected components are planar [35].) References [5, 6] describe how to divide a 
graph into biconnected components in 0 (V + E)  time. Then we test the planarity of 
each component. 

To test the planarity of a component, we apply DFS, converting the graph into a palm 
tree P and numbering the vertices. Now we use Auslander, Parter, and Goldstein's al- 
gorithm. This algorithm finds a cycle in the graph and deletes it, leaving a set of discon- 
nected pieces. Then the algorithm checks the planarity of each piece plus the original 
cycle (by applying itself recursively), and determines whether the embeddings of the 
pieces can be combined to give an embedding of the entire graph. Let us separately ex- 
amine the cycle finding part of this process and the planarity testing part. 
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(b) 
FiG. 3. (a) A graph G to be tested for planarity; (b) a palm tree P generated from G. Upward, solid 

edges are tree arcs. Downward, dotted edges are fronds. Vertices are numbered in search order. 

Each recursive call on the algori thm requires tha t  we find a cycle in the  piece of the  
graph to be tested for planari ty.  This cycle will consist of a simple pa th  of edges not  in 
previously found cycles, plus a simple pa th  of edges in old cycles. We use depth-first  
search to divide the graph into simple paths  which may  be assembled into the cycles 
necessary for planar i ty  testing. We need a second search to find paths,  because the search 
must  be carried out  in a special order if the p lanar i ty  test is to be efficient. Section 5 de- 
scribes the pa th  finding process in detail  and proves some impor tan t  properties of the  
generated paths.  

Now consider the first cycle c. I t  will consist of a sequence of tree arcs followed b y  one 
frond in P.  The numbering of vertices is such tha t  the vertices are in order by  number  
along the cycle. Each piece not  par t  of the cycle will consist either of a single frond 
(v, w), or of a tree arc (v, w) plus a subtree with root  w, plus all fronds which lead from 
the subtree. We process the pieces and add them to a planar  representat ion in decreasing 
order of v. Each piece can go either "inside" or "outs ide"  c by  the Jordan Curve Theorem. 
When we add a piece, certain other pieces must be moved from the inside to the outside 
or from the outside to the inside of c. (See Figure 4.) We continue to add new pieces and 
move old pieces if necessary until either a piece cannot be added or the entire graph is 
embedded in the plane. Section 6 describes the da ta  structures necessary to keep t rack  of 
the pieces as they are moved. Below is an outline of the entire algorithm. 

p r o c e d u r e  PLANARITY(G) ; 
b e g i n  c o m m e n t  an outline of the planarity algorithm; 

i n t e g e r  E;  
E : = 0 ;  
for each edge of G do  b e g i n  

E : = E + I ;  
if E > 3V -- 3 t h e n  go  to  nonplanar; 

e n d  ; 
divide G into biconnected components; 
for each biconnected component G do b e g i n  

explore C to number vertices and transform C into a palm tree P; 
find a cycle c in P; 
construct planar representation for c; 
for each piece formed when c is deleted do  b e g i n  

apply algorithm recursively to determine if piece plus cycle is planar; 
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FiG. 4. Conflict between pieces. To add dotted piece $4 on the inside of c and maintain planarity, 
pieces S~ and S~ must be moved from the inside to the outside. Piece $2 must be moved from the 

outside to the inside. 

i f  p i ecep luscyc le i sp lana rand  piece maybe  added to p l ana r r ep re sen t a t i on then  add i t e i s e  
go to nonplanar; 

end; 
end;  

end; 

5. Pathfinding 

Hencefor th  vie assume tha t  G is a b iconnected graph which has been explored using D F S  
to number  the vert ices  and generate  a pa lm tree P .  We will ident i fy  vert ices  by  their  
number .  If  v is a ver tex,  let  S,  = {w I ~u(v -+* u and u --  --~ w)}. S~ is the  set of ver t ices  
reached by  fronds from descendants  of v. Let  

L O W P T I ( v )  = min({v} I.J S~), and 

L O W P T 2  (v) = min  ({v} 0 (S,  - { L O W P T 1  (v)}) ). 

L O W P T 1  (v) is the  lowest ver tex  below v reachable  by  a frond f rom a descendant  of v, 
and L O W P T 2  (v) is the  second lowest  ver tex  below v reachable by  a frond f rom a descen- 
dan t  of v. By  convent ion,  these values are equal  to v if they  are not  defined. L O W P T 1  (v) 
# L O W P T 2  (v) unless L O W P T 1  (v) = L O W P T 2  (v) = v. The  L O W P T  values  of a ver-  
tex v depend only on the L O W P T  values  of sons of v and on the  fronds leaving v; thus  i t  
is easy to calculate L O W P T  values using DFS.  Inser t ing  the  following s t a t ements  for the  
d u m m y  s ta tements  a, b, and c in D F S  will produce a rout ine to compute  L O W P T  values. 

comment  additions to DFS for calculation of LOWPT1, LOWPT2; 
a: LOWPTI(v) := LOWPT2(v) := NUMBER(v); 
b: i f  LOWPTI(w) < LOWPTI(v) t h e n  begin 

LOWPT2(v) := min{LOWPTl(v), LOWPT2(w)}; 
LOWPT1 (v) : = LOWPT1 (w) ; 

end 
else i f  LOWPTI(w) := LOWPTI(v) then  

LOWPT2 (v) : = rain {LOWPT2 (v), LOWPT2 (w) } ; 
else LOWPT2(v) := min{LOWPT2(v), LOWPTI(w)}; 
c: i f  NUMBER(w) < LOWPTI(v) then  begin 

LOWPT2(v) := LOWPTI(v); 
LOWPTI(v) := NUMBER(w); 

end 
else i f  NUMBER(w) > LOWPTI(v) then  

LOWPT2(v) := min{LOWPT2(v), NUMBER(w)}; 
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I t  is easy to verify that  DFS as modified above will compute LOWPT values correctly 
in 0 (V + E)  time. (See [6, 8, 29]. ) LOWPT1 may be used to test the biconnectivity of 
G, as described in [5, 6]. One related lemma is important :  

LEMMA 4. I f  G is biconnected and w --~ w, L O W P T 1  (w ) < v unless v = 1, in which 
case L O W P T 1  (w) = v = 1. Also, L O W P T 1  (1) = 1. 

PROOF. See [6]. 
To generate paths, we sort the adjacency lists of P according to LOWPT values and 

perform another depth-first search. Let ~b be a function defined on the edges (v, w) of 
P as follows: 

I 2.w if v - - ~ w ,  
( (v ,w) )  = 2 . L O W P T i ( w )  if v ~ w  and LOWPT2(w) ~ v ,  

[ 2 . L O W P T I ( w )  + 1 if v---~w and LOWPT2(w) < v. 

We calculate ~ ((v, w))  for each edge in P and order the adjacency lists according to in- 
creasing value of ¢, using a radix sort to achieve an O ( V  + E )  time bound. This can be 
implemented as follows: 

c o m m e n t  construction of ordered adjacency lists; 
for. i := 1 u n t i l  2*V + 1 do BUCKET(i) := the empty list; 
for. (v, w) an edge of G d o  b e g i n  

compute ~ ((v, w)); 
add (v, w) to BUCKET(4~((v, w))); 

e n d  ; 
for v := 1 u n t i l  V d o  A(v) := the empty list; 
f o r  i := 1 un t i l  2*V + 1 d o  

for (v, w) E BUCKET(i) do add w to end of A(v); 

This routine gives a set of properly ordered adjacency lists representing P. Now we 
generate paths by applying depth-first search to P, using the new adjacency lists. Each 
time we traverse an edge we add it to the path being built. Each time we traverse a frond, 
the frond becomes the last edge of the current path. The next edge starts a new path. 
Thus each path consists of a sequence of tree arcs followed by a single frond. To accom- 
plish this, we use the following steps: 

b e g i n  c o m m e n t  routine to generate paths in a biconnected palm tree with specially ordered ad- 
jacency lists A(v). Vertex s is a global variable, the start vertex of the current path, and is in- 
itialized to 0; 

p r o c e d u r e  PATHFINDER (v) ; 
f o r  w E A (v) d o  

i f  v ~ w t h e n  b e g i n  
i f  s = 0 t h e n  b e g i n  

8 : =  U; 

start new path; 
e n d  ; 
add (v, w) to current path; 
PATHFINDER (w) ; 

e n d  
e l s e  b e g i n  

c o m m e n t  v - -  --~ w ;  
i f  8 = 0 t h e n  b e g i n  

8 : =  V; 

start new path 
e n d  ; 
add (v, w) to current path; 
output current path; 
s : =  0; 

e n d  ; 
s :~ O; 
c o m m e n t  vertex 1 is the start vertex of the search; 
PATHFINDER(I) 

e n d  ; 
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FiG. 5. (a) Paths generated by P A T H F I N D E R  from the graph in Figure 3. A: (1,2,3,4,5,6,7,8,  
9, ]0,11,]2,1);  B: (]3,14,15,5); C: (15,9); D: (15,]3); E: (14,]1); F: (10,]6,2); (3: (16,3); 

H:  (8,6); I :  (7,4); (b) segments with respect to initial cycle. 

The paths generated in this manner have several important properties, which are sum- 
marized in the following lemmas. Figure 5 shows a set of paths generated from the graph 
in Figure 3. Procedure P A T H F I N D E R  requires O (V -k E )  time to find paths in a graph 
with V vertices and E edges; the total number of edges added to paths is O ( V  -k E ) ,  
and P A T H F I N D E R  is just a depth-first search with a few additional operations to con- 
struct paths. In  fact, all that  we need to know for the p|anarity algorithm is the starting 
vertex and the finishing vertex of each path. 

LEMMA 5. Let p: s ~ * f be a generated path. I f  we consider the fronds which have not been 
used in any path when the first edge in p is traversed, then f is the lowest vertex reachable via 
such a frond from any descendant of s. I f  v ~ s, v ~ f ,  and v lies on p, then f is the lowest 
vertex reachable from a descendant of v via any frond (all fronds from descendants of v are 
unused when the first edge of p is traversed). 

PROOF. This lemma is an immediate consequence of the ordering of the adjacency 
lists. 

LEMMA 6. Let p: s ~ * f be a generated path. Then f --~* s in the spanning tree of P. I f  
p is the first path, p is a cycle; otherwise p is simple. I f  p is not the initial path, p contains 
exactly two vertices (f  and s) in common with previously generated paths. 

PROOF. Let p: s ~ * f  be any generated path. If  the path consists of a single frond, the 
path is simple and f --~* s. If  the path contains a tree arc, let s --~ v be the first such tree 
arc. Then f = LOWPT1 (v) by  Lemma 5. If  s = 1 the path is a cycle, and if s > 1 the 
path is simple, by  Lemma 4. In  any case f --~* s. If  f is reached during the pathfinding 
search, then s has already been reached, so any path except the first has exactly two ver- 
tices, f and s, in common with previously generated paths. 

LEMMA 7. Let pl: sl ~ *  f~ arm p2:s2 ~ *  f2 be two generated paths. I f  pl is generated before 
p2 and sl is an ancestor of s2, then f l  _< J~. 

PROOF. The frond which ends p~ leads from a descendant of s~ and is unused when pl 
is generated. By Lemma 5, fl ~ f2. 

LEMMA 8. Let pl : s ~ * f and p2 : s ~ *  f be two generated paths with the same start and 
finish vertices. Let vl be the second vertex of pl and let v2 be the second vertex of p2. Suppose pl 
is generated before p2, vl ~ f ,  and LOWPT2(v l )  < s. Then v2 ~ f and LOWPT2(v2) < s. 

PROOF. Vertex vl must appear before vertex v2 in A (s) because pl is generated before 
p2. The lemma follows from the ordering imposed on A (s). 

Lemma 8 is the reason we need to include LOWPT2 values in the pathfinding algorithm. 
When we consider the embedding of paths in the plane, we shall see why this lemma is 
important. 

If  p: s ~ *  f is a generated path, we may form a cycle by adding the set of tree arcs 
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f --,* s to p. The cycles formed in this way are the cycles generated b y  recursive calls in 
the Auslander-Parter-Goldstein planar i ty  algorithm. They have a very simple structure;  
each corresponds to a frond of P.  We need one more definition before we consider the 
embedding of paths. If  p:  s ~ *  f is a simple pa th  generated by  the patlafinding algorithm, 
let  po: So ~ * f o  be the earliest generated pa th  containing vertex s. Iffo < f, then p is called 
a normal path. If  fo = f then p is called a special path. The case fo > f cannot occur by  
Lemma 7. 

6. Embedding the Paths 

If  G is a biconnected graph with a set of paths  generated by  the pathfinding algorithm, we 
test  the planar i ty  of G by  a t tempt ing to embed the paths  one at  a t ime in the plane. Let  
c be the first path  (a cycle). The cycle consists of a set of tree arcs I ~ vl ~ v2 --~ - • • --+ vn 
followed by  a frond vn --  ~ 1. The vertex numbering is such tha t  1 < v~ < - - -  < v~. 
When c is removed, G falls into several connected pieces, called segments. Each segment 
S consists either of a single frond (v~, w), or of a tree arc (v~, w) plus a subtree with root 
w plus all fronds leading from the subtree. The order of pa th  generation is such tha t  all 
paths  in one segment are generated before paths  in any other segment, and the segments 
are explored in decreasing order of vi. 

A segment must  be embedded completely on one side of c by  the Jordan Curve Theorem. 
A segment is a t tached to c by  one arc (v~, w) leading from c and by  one or more fronds 
leading to c. (If the segment is a single frond, both endpoints of the frond are on c. ) We 
say the segment S is embedded on the left (of e) if the orientation of edges (clockwise in 
the plane)  around v~ is (re-l, v~), (vi, w), (v~, vi+l). The segment is embedded on the right 
if the orientation of edges around v~ is (v~_~, v~), (vl, v~+l), (vi, w). We say a frond which 
enters c is embedded on the left (right) if the segment to which i t  belongs is on the left 
(r ight)  of c. If  (x, vi) is a frond which enters c on the left, the orientation of edges around 

Vj is (Vj--i, Yj), (X, Yj), (Vj, V/.-t-1) by Lemma 2. 
Suppose c and segments explored before S have been somehow embedded in the plane. 

Let  p:v~ ~ *  vj be the first pa th  found in S. The next lemma gives a necessary and suffi- 
cient condition for adding p to the embedding. 

LEMMA 9. Path p:v~ ~ *  v¢ may be added to the planar embedding by placing it on the 
left (right) of c if and only if no frond ( x, vk ) previously embedded on the left (right)'satisfies 
vj. < vk < v~. 

PROOF. If no frond satisfies the condition, then no embedded edge of any sort enters 
or leaves c on the left (r ight)  between vj and v~. Pa th  p may  be embedded on the left 
(r ight)  of c if i t  is placed sufficiently close to e. Conversely, suppose we want  to embed p 
on the left bu t  some embedded frond (x, vk) with vj < v~ < vl enters c on the left. Ei ther  
x lies on c (say x = v~) or (x, vk) is par t  of a segment S '  with first edge (vz, w). We know 
vz > vl by  the order of path  generation. We must  consider two cases. 

Case 1. vl > vi (Figure 6 (a)) .  Suppose p is embedded on the left. F rom p, a pa th  in 
S" joining v~ and vk, and the pa th  of tree arcs from v¢ to v~ we can construct three paths  
from v~ to vk which violate Lemma 2. Thus p cannot be embedded on the left. 

Case 2. vl = v~. Let  p~:v~ ~ *  vm be the first pa th  found in segment S'.  We have 
v,~ _< vj by  Lemma 7. There are two subcases. 

Subcase A. vm < vj (Figure 6 (b) ) .  Suppose p is embedded on the left. F rom pa th  p, 
a pa th  in S '  from vk to vm, and the path of tree arcs from Vm to V~ we may  form three paths  
from vk to v¢ which violate Lemma 2. Thus p cannot be embedded on the left. 

Subcase B. vm = v¢ (Figure 6 (c)) .  Let  y be the second vertex on p (w is a lready de- 
fined as the second vertex on pl). Since segment S '  contains frond (x, vk), w # v~ and 
LOWPT2(w)  < vi. Comparing p and pl and applying Lemma 8, we have y # vj and 
LOWPT2 (y) < vi. Fur thermore LOWPT2 (y) > vj since LOWPT1 (y) = re, by  Lemma 
5. Suppose p is embedded on the left. F rom p, p~, a pa th  from a vertex on p to 
LOWPT2(y ) ,  a pa th  from a vertex on p~ to vk, and a (possibly emp ty )  pa th  of tree 
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v; vk vk 

Vk LOWPT2 (y) 

v i Vm: v; 
(o) (b) (c) 

Fxo. 6. Illustration of the cases in Lemma 9. Path to be embedded leads from ul to vl. Blocking 
segment leads from vL to v~ to vm. (a) vz > vi; (b) vl = vl and v,~ < v~; (c) v~ = v~ and 

v~ = vj. (Note: the order of vk and L0WPT2(y) is undetermined.) 

arcs joining vk and LOWPT2 (y) we may form three paths which violate Lemma 2. Thus 
p cannot be embedded on the left. 

We use Lemma 9 to test planarity, in the following way: first we embed the cycle c in 
the plane. Then we embed the segments one at a time in the order they are explored 
during pathfinding. To embed a segment S, we find a path in it, say p. We choose a side, 
say the left, on which to embed p. We compare p with previously embedded fronds to 
determine if p can be embedded. If not, we move segments which have fronds blocking p 
from the left to the right. If p can be embedded after moving segments, we embed it. 
However, if we move segments from the left to the right we may have to move other seg- 
ments from the right to the left. Thus it may be impossible to embed p. If so, we declare 
the graph nonplanar. If p can be embedded, we try to embed the rest of S by  in essence 
using the algorithm recursively. Then we try to embed the next segment. 

We need some good data structures to efficiently implement this method. If we are 
about to embed a segment which starts at vertex v~, we must know which vertices on the 
tree path from 1 to v~ have fronds entering them from the left and the right. We use two 
stacks (L and R)  for this purpose. Stack L will contain (in order) vertices v~ such that  
1 --~* vk --~* vl, 1 < v~ < v~, and some embedded frond enters vk on the left. L need only 
include a vertex vk once for each segment which has a frond leading to vk, but  sometimes 
two fronds from the same segment may lead to the same vertex vk, and this may cause 
v, to appear twice on the stack even though vk is only representing a single segment. Stack 
R fulfills the same function as L for embedded fronds entering c on the right. 

Stacks L and R must be updated in four ways. 
(1) After all segments starting at v~+l are explored and embedded, all occurrences of 

v~ on L and R must be deleted, since segments yet to be explored start at vertices no 
greater than v~. This updating requires removing a few of the entries on top of L and R. 

(2) If p: s ~ *  f is the first path in a segment S, and p is normal, f must be added to a 
stack when p is embedded. (Since s lies on c, p is normal if and only i f f  > 1. ) By Lemma 
9, p can only be embedded on the left (right) when every vertex on L ( R )  is no greater 
than f, so f may be added to the top of L (R). 

(3) Recursive application of the algorithm must add entries for other paths in the 
segment S. We shall examine recursive application of the algorithm later. 

(4) Entries must be shifted from one stack to another as the corresponding segments 

are moved. The embedding of a frond, say on the left, forces fronds in the same segment 
to be embedded on the left by Lemma 2 and may force fronds in other segments to be 
embedded on the right by Lemma 9. Let a block B be a maximal set of entries on L and 
R which correspond to fronds such that  the placement of any one of the fronds deter- 
mines the placement of all the others. The blocks change as the content of the stacks 
change, but  the blocks always partition the stack entries. Furthermore, the blocks have a 
simple structure given by the next lemma. 

LEMMA 10. Let B be a block. Then the entries in B N L (B n R )  are adjacent on L (R ). 
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Alto, there are vertices vj, v~ on c such that for v~ C L (J R: (1) i f  vl < vz < v~ then vz E B, 
(2 ) i f  v~ < vj or vl > v~ then vz ~ B. 

PROOF. The proof is by  induction on the number of segments embedded and the num- 
ber of entries deleted from L and R. The lemma is certainly true before any segments are 
embedded since both stacks are empty. If the lemma is true before all occurrences of v~ 
are deleted from the top of L and R, the lemma is certainly true afterwards, since ddet ing 
occurrences of v~ from L and R may only cause complete blocks (consisting only of v~) 
to be deleted plus causing the top remaining block to lose occurrences of its top vertex. 

Suppose the lemma is true before segment S is embedded. Let p: s ~ *  f be the first 
path in S. Suppose S is to be embedded on the left. When entries corresponding to S are 
added to L, a new block B is formed containing the entries corresponding to S and also 
containing all old blocks B with an entry vz in R satisfying f < vz < s, by Lemma 9. Let 
v0 be the lowest entry v~ in any such block B. All entries vm in other old blocks satisfy vm 
rain(v0, f).  The new block B'  consists of old blocks with entries on top of L and R, plus 
the new entries corresponding to S, which are on top of L. Block B' thus satisfies the lemma 
with vj = rain (v0, f )  and v~ = s. Other old blocks are unchanged. The lemma follows by 
induction on the number of segments embedded and the number of entries deleted from 
L and R. 

Lemma 10 indicates how we can keep track of the blocks. The blocks give us enough 
intormation to easily move entries from one stack to another. We use linked lists to store 
L and R. Then to switch a block of entries between stacks we need only switch list pointers 
at the beginning and the end of the block. We use a stack B to keep track of the blocks. 
Each entry on B represents a block and is an ordered pair (x, y), with x pointing to the 
last block entry on L and y pointing to the last block entry on R. If x = 0 (y = 0), the 
block has no entries on L (R). The routine which follows implements the embedding al- 
gorithm. The necessary list-processing operations are presented in detail in Section 7. 

procedure EMBED; b e g i n  
c o m m e n t  routine to embed a properly ordered biconnected graph in the plane, if possible; 
L := R := B := the empty stack; 
find first cycle c; 
while some segment is unexplored do  b e g i n  

initiate search for path in next segment S; 
when backing down tree arc v ~ w delete entries on L and R and blocks on B containing vertices 

no.smaller than v; 
let p : s ~ *  f be first path found in segment S; 
while position of top block determines position of p do  b e g i n  

delete top block from B; 
if  block entries on left then switch block of entries from L to R and from R to L by switching 

list pointers; 
i f  block still has an entry on left in conflict with p 

t h e n  g o  t o  nonplanar;  
e n d  ; 
i f  p is normal t h e n  add last  vertex of p to L; 
add new block to B corresponding to p and blocks just  removed from B; 
d: apply algorithm recursively to embed other paths in S; 
c o m m e n t  details of the recursive application are discussed later. After completion of this step, 

other paths in S which lead to ancestors of S will be represented on L. One new block cor- 
responding to these paths will appear on B; 

combine top two blocks on B; 
e n d ;  

e n d  ; 

LEMMA 11. Procedure E M B E D  runs to completion i f  and only i f  G is planar. Otherwise 
the procedure branches to location "nonplanar." 

PROOF. E M B E D  is a straightforward implementation of the algorithm previously 
described. At all times, stacks L and R contain entries for the fronds embedded on the 
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left and right of the cycle c, and stack B contains information about the end of each block 
of entries. Lemma 9 is used to test planarity, and Lemma 10 is used to modify the blocks 
as the routine executes. Assuming that step d (recursive application of the algorithm) is 
implemented correctly, it is straightforward to prove by induction that (1) embedding 
any frond in a block completely determines the embedding of all fronds in a block, and 
(2) the embedding of a frond from one block does not restrict the embedding of a frond 
not in the block. By Lemmas 9 and 10 the routine correctly tests planarity. 

Consider the embedding of the second and subsequent paths in a segment. Suppose 
cycle c, all segments before S, and the first path p: s ~ *  ] in S have been embedded. I t  is 
easy to see that the rest of S can be added to the embedding if and only if S and e together 
form a planar graph. (In fact, this follows from Auslander and Parter's results [1]. ) 
Figure 7 shows S and c. Path p and the path of tree arcs from f to s form a cycle c' used 
for recursive application of the embedding algorithm. 

After p is embedded on the left by EMBED, the top entry on L is f. All fronds in S 
lead to vertices no less than f by Lemma 5. Suppose we place an end-of-stack marker on 
top of R and apply the embedding algorithm recursively to determine if cycle c' plus the 
segments in S formed when c' is deleted can be embedded in the plane. If the recursion is 
finished successfully, stacks L and R will contain entries corresponding to fronds ending 
normal paths in S, and stack B may contain a few new blocks. The rest of cycle c can be 
added to the embedding of S and c' if and only if no new block has entries on both R and 
L. If no new block has entries on both R and L, then any new block with an entry on R 
can be moved to L with the result that no new block will have an entry on R. 

Thus to finish testing the planarity of c and S, we must attempt to move the new blocks 
from R to L. To continue with the top-level application of the algorithm, we must com- 
bine all the new blocks into one block corresponding to paths in S minus p and we must 
delete the end-of-stack marker on R. Then R will be restored, L will have entries for fronds 
in S on top of its other entries, and B will contain one extra block corresponding to the 
fronds in S minus p. Step d can be implemented as follows: 

d: c o m m e n t  apply algorithm recursively to embed the rest of S; 
add end-of-stack marker to R; 
call embedding algorithm recursively; 
for  each new block (x, y) on B do  b e g i n  

i f  (x # O) a n d  (y # O) t h e n  go  to  nonplanar; 
i f  (y # O) t h e n  move entries in block to L; 
delete  (x, y) from B; 

e n d  ; 
delete end-of-stack marker on R; 
add one block to B to represent S minus path p; 

LEMMA 12. I f  step d is implemented as above, the embedding algorithm correctly tests 
planarity. 

PROOF. This lemma follows from Lemma 11 and Auslander and Parter's result that 
S minus p can be added to the planar embedding if and only if S plus c is planar. Old entries 
on L, R, and B cannot interfere with recursive application of the algorithm, since R has 
an end-of-stack marker and all entries on L are no greater than f. When the recursive 
application is completed, the information on L, R, and B is exactly what is needed to con- 
tinue top-level application of the algorithm. Figure 8 illustrates the contents of the stacks 
L, R, and B as the embedding algorithm is applied to the graph in Figure 5. Section 7 
gives the complete embedding algorithm in detail. 

7. The Complete Path Embedding Algorithm 

Since paths are embedded as they are found, the embedding algorithm may be combined 
with the pathtinding algorithm. A complete implementation appears below. Steps in- 
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FiG. 7. 

c 

Recursive application of the embedding algorithm. Segment S consists of first path p and 
new segments S~, S~, 8~ 

(a) i i  (11,13) (b) i i  ( i i , 0 )  

5 9 ~  (~T09 9 (9,0) 
(9,O) 5 (5,0) 
(5,0) 1 (z,o) 

1 EOS (i,0) 

L R B 

L R B 

(c) ii (d) 2 
9 ~ ~> 
5 (5,0) ~ (2,5) 
1 (i,0) 1 (I,0) 

L R B L R B 

(e) 3 (f) 6 (g) 4 
2 9 (2,5) 3 (6,0) 3 
1 5 (1,0) 2 (2,5) 2 6 (2,5) 

1 5 (1,0) 1 5 (1,0) 

L R B 
L R B L R B 

FIG. 8. Contents of stacks L, R, B as graph in Figure 5 is embedded: (a) after embedding paths in 
first segment; (b) afterbackingup tovertex 13; (c) after recursivereturn from embedding first segment; 
(d) after embedding first path in second segment; (e) after recursive return from embedding second 

segment; (f) after embedding third segment; (g) after embedding fourth segment. 

w)lving L and  R are i m p l e m e n t e d  in detai l  to  make  the  runn ing  t ime of t he  a lgor i thm 
obvious.  

procedure EMBED(G) ; begin  
c o m m e n t  procedure to determine if a bieonnected graph G is embeddable in the plane. G is repre- 

sented by a set of properly ordered adjacency lists A(v). Stacks L and R are stored as linked 
lists using arrays STACK and NEXT. STACK (i) gives a stack entry, and NEXT(i) points to the 
next entry on the same stack. NEXT((}) points to the first entry on L. NEXT(--1) points to 
the first entry on R. FREE is the first unused location in STACK. Variable p denotes the num- 
ber of the current path. If v is a vertex PATH(v) denotes the number of the first path containing 
v. If i is the number of a path, f(i) denotes the last vertex on the path numbered i. Blocks are 
represented as ordered pairs on stack B. If (x, y) is on B, x denotes the last entry on L in the 
block, and y denotes the last entry on R in the block. If x = 0 (y = 0), the block has no entries 
on L(R). SAVE is a temporary variable used for switching; 
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i n t e g e r  a r r a y  STAC K(0  ::  E) ,  N E X T ( - 1  ::  E), f(1 : :  E -- V + 1), P A T H ( 1  ::  V); B(1 ::  E ) ;  
p r o c e d u r e  P A T H F I N D E R  (v) ; b e g i n  

c o m m e n t  th is  recursive procedure finds pa t h s  and embeds  them if possible. I t  is based on the  
mater ia l  in Sect ions 5 and  6. Variable v is the  cur ren t  ver tex in the  depth-f i rs t  search used to 
find pa ths ,  s is the  s t a r t  ver tex  of the  cur ren t  pa t h ;  

f o r  w C A ( v ) d o  
i f  v --~ w t h e n  b e g i n  

i f  s = 0 t h e n  b e g i n  
8 : =  V; 
p : = p + l ;  

e n d  ; 
PATH(w)  :=  p; 
P A T H F I N D E R ( w )  ; 
c o m m e n t  delete s tack  entr ies  and blocks corresponding to ver t ices  no smal ler  t h a n  v; 
w h i l e  ix, y) on B has  ( (STACK(x)  ~ v) o r  (x = 0)) a n d  ( (STACK(y)  ~ v) or (y = 0)) 

d o  delete ix, y) f rom B;  
i f  (x, y) on B has  STACK(x)  > v t h e n  replace (x, y) on B by (0, y);  
i f  (x, y) on B has  STACK(y)  > v t h e n  replace (x, y) on B by (x, 0); 
w h i l e  N E X T ( - 1 )  ~ 0 a n d  S T A C K ( N E X T ( - 1 ) )  ~ v 

d o  N E X T ( - 1 )  := N E X T i N E X T ( - 1 ) ) ;  
w h i l e  NEXT(0)  ~ 0 a n d  S T A C K ( N E X T ( 0 ) )  > v 

d o  NEXT(0)  :=  N E X T ( N E X T ( 0 ) ) ;  
i f  PATH(w)  ¢ PATH(v)  t h e n  b e g i n  

c o m m e n t  all of segment  wi th  first edge (v, w) has  been embedded.  New blocks m u s t  be 
moved from r ight  to left;  

L' := 0; 
w h i l e  (x, y) on B has  (STACK(x) > f (PATH(w) ) )  o r  (STACK(y) > f ( P A T H i w ) ) )  a n d  

( S T A C K ( N E X T ( -  1) ~ 0)) do  b e g i n  
i f  STACK(x)  > f (PATH(w) )  t h e n  b e g i n  

i f  STACK(y)  > f (PATH(w) )  t h e n  go to  nonplanar ;  
L '  :=  x; e n d  

e l s e  b e g i n  c o m m e n t  STACK(y)  > f ( P A T H i w ) ) ;  
SAVE := N E X T ( L ' ) ;  
N E X T ( L ' )  :=  N E X T ( - 1 ) ;  
N E X T ( - 1 )  :=  N E X T i y ) ;  
N E X T / y )  :=  SAVE; 
L '  := y; 

e n d  ; 
delete (x, y) f rom B;  

e n d  ; 
c o m m e n t  block on B mus t  be combined wi th  new blocks j u s t  deleted;  
delete (x, y) f rom B; 
i f  x ~ 0 t h e n  add (x, y) to B 
e l s e  i f  (L' # 0) o r  (y # 0) t h e n  add (L', y) to B; 
c o m m e n t  delete end-of-s tack marker  on r ight  s tack;  
N E X T ( - 1 )  :=  N E X T ( N E X T ( - 1 ) ) ;  

e n d ;  e n d  
e l s e  b e g i n  c o m m e n t  v -- --~ w. Cur ren t  pa t h  is complete.  

P a t h  is normal  if f ( P A T H ( s ) )  < w; 
i f  s = 0 t h e n  b e g i n  

p : = p + l ;  
S : = V ;  

e n d  ; 

f (p)  :=  w; 
c o m m e n t  switch blocks of entr ies  from left  to r ight  so tha t  p m a y  be embedded  on left ;  
L '  = 0; 
R '  = --I; 
w h i l e  ( N E X T ( L ' )  ~ 0) a n d  ( S T A C K ( N E X T ( L ' ) )  > w) o r  ( N E X T ( R ' )  ~ 0) a n d  

( S T A C K ( N E X T ( R ' ) )  > w) do  b e g i n  
i f  (x, y) on B has  (x ~ 0) a n d  iY ~ 0) t h e n  b e g i n  

i f  S T A C K ( N E X T ( L ' ) )  > w t h e n  b e g i n  
i f  S T A C K ( N E X T ( R ' ) )  > w t h e n  go to nonplanar ;  
SAVE := N E X T ( R ' ) ;  
N E X T ( R ' )  :=  N E X T ( L ' ) ;  
N E X T ( L ' )  :=  SAVE; 
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SAVE := NEXT(x);  
NEXT(x) := NEXT(y);  
NEXT(y) := SAVE; 
L'  := y; 
R ~ := x; 

e n d  e l s e  B e g i n  c o m m e n t  STACK(NEXT(R') )  > w; 
L t := x; 
R '  := y; e n d  

e n d  e l s e  i f  (x, y) on B has x ~ O t h e n  b e g i n  c o m m e n t  
STACK (NEXT(L'))  > w; 

SAVE := NEXT(x);  
NEXT(x) := NEXT(W) ;  
NEXT(W)  := NEXT(L ' ) ;  
NEXT(L ' )  := SAVE; 
R ~ :=  x; e n d  

e l s e  i f  (x, y) on  B has  y ~ O t h e n  R f = y; 
delete (x, y) from B; 

e n d  ; 
c o m m e n t  add P to left stack if p is normal; 
i f  f (PATH(s)) < w t h e n  b e g i n  

i f  L'  = O t h e n  L ~ := FREE;  
STACK(FREE) := f ;  
NEXT(FREE)  := NEXT(0);  
NEXT(0) := FREE;  
FREE := FREE + 1; 

e n d  ; 
c o m m e n t  add new block corresponding to combined old blocks. New block may be empty 

if segment containing current path is not a single frond; 
i f R  ~ = --1 t h e n  R '  := O; 
i f  (L' ~ O) o r  (R' ~ O) o r  v ~ s t h e n  add (L',  R ' )  to  B;  
c o m m e n t  if segment containing current pa th  is not a single frond, add an end-of-stack 

marker to right stack; 
i f  v ~ s t h e n  b e g i n  

STACK(FREE) := 0; 
NEXT(FREE)  := NEXT(- -1) ;  
N E X T ( - 1 )  := FREE;  
FREE := FREE + 1; 

e n d ;  
s:=O; 

e n d  ; e n d  ; 
c o m m e n t  initialization; 
N E X T ( - 1 )  := NEXT(0) := 0; 
FREE := 1; 
STACK(0) := 0; 
B := the empty stack; 
p:=s:=O; 
PATH (i) := I; 
c o m m e n t  vertex 1 is the start  vertex of the search; 
PATHFIN~DER (1) ; 

e n d  ; 

LEMMA 13. E M B E D  correctly tests the planarity of a graph G. 
PROOF. E M B E D  is a s t r a i g h t f o r w a r d  i m p l e m e n t a t i o n  of t he  p a t h f i n d i n g  a n d  e m b e d -  

d ing  a lgo r i t hms  descr ibed  in Sect ions  5 a n d  6. 
LEMMA 14. E M B E D  requires 0 (V + E )  time to test a graph with V vertices and E 

edges. 
PROOF. T h e  p a t h f i n d i n g  p a r t  of t he  a l g o r i t h m  requi res  0 (V + E )  t i m e  as d iscussed  

in  Sec t ion  5; i t  is a dep th - f i r s t  sea rch  w i t h  a few add i t i ona l  ca lcula t ions .  T h e  on ly  pieces 
of i n f o r m a t i o n  a b o u t  p a t h s  which  t h e  e m b e d d i n g  p a r t  of t he  a l g o r i t h m  uses are  t he  end-  
po in t s  of t he  pa ths .  T h e  e m b e d d i n g  p a r t  of t he  a l g o r i t h m  consis ts  of a sequence  of s t a c k  
man ipu l a t i ons .  A d d i n g  a n  e l e m e n t  to  a s t ack  or de le t ing  a n  e l emen t  f rom a s t a c k  requ i res  
a c o n s t a n t  a m o u n t  of t ime.  (The  exact  n u m b e r  of s teps  for a n y  g iven  such  o p e r a t i o n  m a y  
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be determined by examining the program. ) The total number of entries made on stacks 
L, R, or B is O(V -k E), since the number of paths is E -- V "b 1. Thus the stack cal- 
culations require 0 (V + E) time. Initialization requires a constant amount of time, so 
the entire algorithm requires 0 (V -~ E)  time. 

LEMMA 15. The planarity algorithm requires 0 (V) time to test the planarity of a graph 
with V vertices. 

PROOF. The algorithm stops if the number of edges of G exceeds 3V - 3, so counting 
the edges takes 0 (V) time. If G has 0 (V) edges, the initial depth-first search requires 
0 (V) time, the sorting of edges using LOWPT values requires 0 (V) time, and the path- 
finding/embedding algorithm requires 0 (V) time. Thus the total time is 0 (V). I t  is also 
easy to see that the algorithm requires 0 (V) storage space. 

8. Implementation and Experiments 

A more complicated version of the planarity algorithm was programmed in ALOOL W, the 
Stanford University version of ALGOL [13], and run on an IBM 360/67. A program listing 
and a more complete discussion appear in [29]. The program was extensively tested. The 
planarity algorithm was applied to a group of planar and nonplanar graphs to verify that 
the implementation was correct. The algorithm was also applied to a series of randomly 
generated complete planar graphs, in order to determine the experimental running time. 

These test graphs were generated by starting with a complete graph of three vertices. 
At each step, a triangular face of the graph was selected at random and split into three 
new triangular faces by adding one vertex and three edges. A graph of this type has the 
property that V = 3E - 6; no new edge may be added without destroying the planarity 
of the graph. Although not all complete planar graphs can be generated by dividing tri- 
angular faces in this way, the test graphs seemed to give the planarity program a satis- 
factory workout. 

The test results indicated that for this class of graphs T = .0125V - .07 where T is 
the running time of the program in seconds and V is the number of vertices in the graph. 
The program indeed requires time linear in the number of vertices of the graph. The data 
may be summarized in another way: the program will analyze a graph at the rate of 80 
vertices/second (or faster, if E ~ 3V - 6). Nonplanar graphs generally require less time 
than planar ones, since the algorithm halts as soon as the graph is found to be nonplanar. 
The planarity program was space-limited rather than time-limited; a 1000-vertex, 2994- 
edge graph could not be analyzed in the space available (417,792 bytes) although no 
more than 12.5 seconds would be required for processing such a graph. No special care 
was taken in conserving storage space; careful reprogramming or use of auxiliary storage 
devices would allow much larger graphs to be analyzed. I t  is also expected that implement- 
ing the simpler algorithm presented here would cut down the space and time requirements 
considerably. 

I t  is difficult to compare the experimental running times of different algorithms, since 
implementations and machines vary greatly. However, an algorithm devised by Bruno, 
Steiglitz, and Weinberg [21] required about 30 seconds to process a 28-vertex planar graph 
using an IBM 360/65. The algorithm presented here required .4 second to test the same 
graph. The time discrepancy would be much greater on larger graphs. The experimental 
results were quite satisfactory, and they demonstrate that the planarity algorithm pre- 
sented here is of significant practical as well as theoretical value. 

9. Applications and Conclusions 

The planarity algorithm as described here tests a graph G for planarity, but it does not 
actually construct a planar representation of G. However the algorithm collects enough in- 
formation to make the construction of a planar representation easy, and the algorithm 
may be modified slightly to carry out this step. One way to accomplish this is to construct 
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FIG. 9. A dependency graph and a planar embedding for the graph in Figures 3 and 5: (a) dependency 
graph. Each vertex denotes a path in the original graph. Paths joined by an "o" edge must be on 
opposite sides of a cycle. Paths joined by an "s" edge must be on the same side of a cycle; (b) planar 

embedding of original graph. 

a dependency graph D. The vertices of the dependency graph will correspond to the paths 
found in G. Two paths will be joined by  an edge if the position of one path determines the 
position of the other path. Edges are of two types, depending upon whether the paths 
must be embedded on the same side or on opposite sides of the appropriate cycle. A color- 
ing of the vertices of D with two colors in a way which satisfies the edge constraints then 
corresponds to an embedding of G. For details see [29]. Figure 9 shows a dependency graph 
and an embedding for the graph in Figures 3 and 5. I t  is easy to modify the embedding 
algorithm so that  it constructs and colors a dependency graph. This modified algorithm 
may be used to accomplish tasks such as laying out electronic circuit boards. 

The planarity algorithm may be combined with algorithms for determining connec- 
tivity properties of graphs [5, 6, 8] and with an algorithm of Hopcroft 's  [15, 17] to test 
isomorphism of triconnected planar graphs, to give an algorithm for determining whether 
two arbitrary planar graphs are isomorphic [7, 16]. This algorithm requires 0 (V log V) 
time and 0 (V) space. The algorithm promises to be of value to chemists, since most mole- 
cules may be represented as planar graphs. A canonical form for molecules which follows 
from the isomorphism algorithm might be used to speed searches of the chemical litera- 
ture. The algorithm may also be used for enumeration of various types of planar graphs. 
(See Grace [43], for instance. ) 

The planarity algorithm and the other algorithms which use depth-first search illustrate 
the value of this technique as an efficient, systematic method for exploring graphs. The 
planarity algorithm also illustrates the value of carefully chosen data structures. These 
ideas may find application in efficient algorithms for solving many other problems. 
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