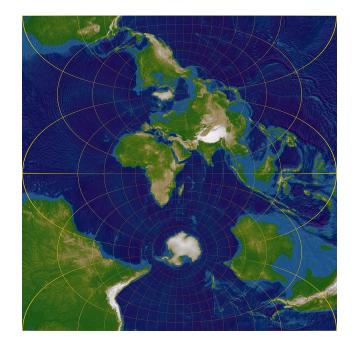


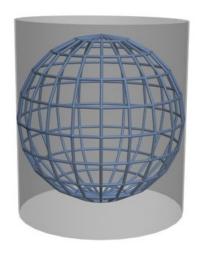
Algorithmen für geographische Informationssysteme

1. Vorlesung Einführung & Geodäsie



Philipp Kindermann

Teil I: Einführung



Geoinformatik

Geobotanik Wirtschaftsinformatik

Geodäsie Luft- und Raumfahrtinformatik

Geographie Bioinformatik

Geologie technische Informatik

Geomatik Medieninformatik

Geowissenschaften Sozialinformatik

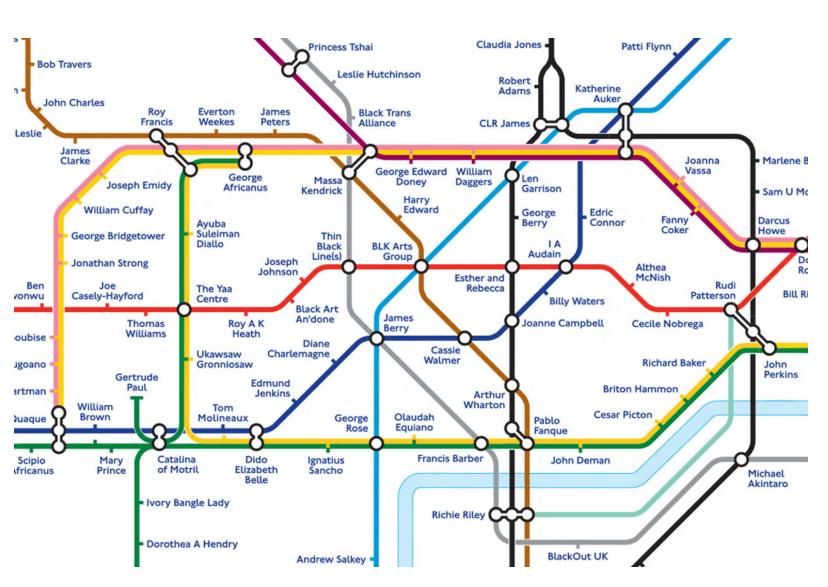
•••

Geoinformatik

Wissenschaftliche Grundlage für Geographische InformationsSysteme (GIS)

- Erfassung
- Verwaltung
- Analyse
- Präsentation

raumbezogener Information

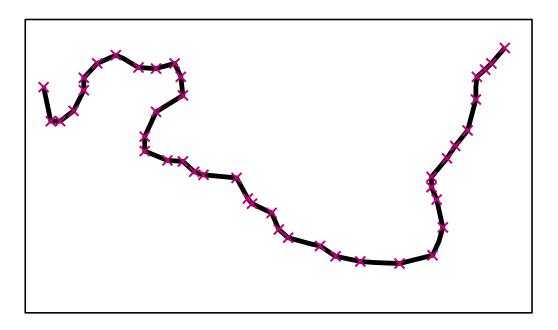


Software

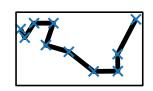
	Platzhirsche	freie Software
Desktop-GIS	ArcGIS	QGIS Grass (Vektor) (Raster)
räumliche Datenbank	SPATIAL	PostGIS Spatial PostgreSQL
Programmierbibliothek		JTS Topology Suite

Beispiel 1: Vereinfachung von Kantenzügen

- viele Objekte in Landkarten werden durch Polygone oder Kantenzüge repräsentiert
- Detailgrad abhängig vom Maßstab (Generalisierung)



Maßstab 1:X



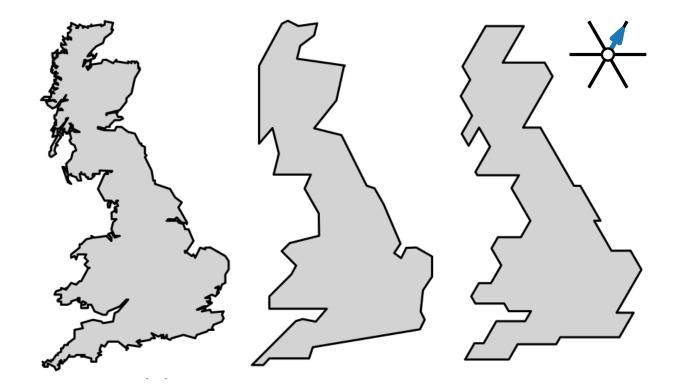
Maßstab 1:(4X)

Geg. Kantenzug *P*

Ges. Kantenzug Q mit weniger Knoten und kleinem Fehler |P-Q|

Beispiel 2: Schematisierung von Polygonen

- schematische Karten nutzen oft eingeschränkte Kantenrichtungen
- Polygonflächen müssen geeignet schematisiert werden

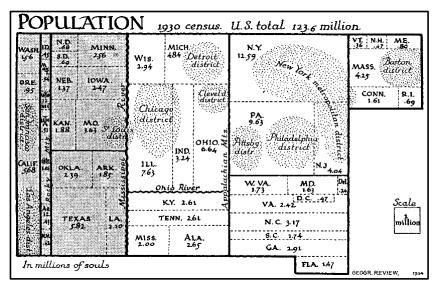


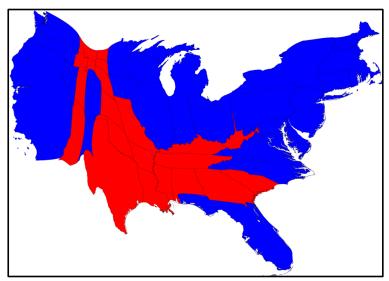
Geg. Polygon P mit Fläche A, Richtungsmenge C

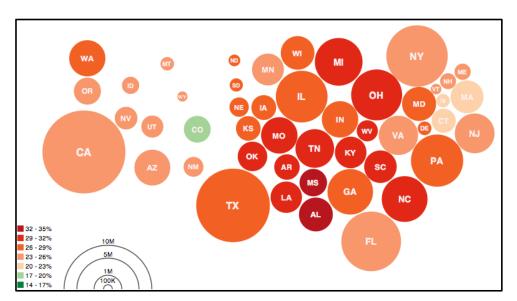
Ges. C-orientiertes Polygon Q mit gleicher Fläche A und kleinem Fehler |P-Q|

Beispiel 3: Flächenkartogramme

- abstrakte statistische thematische Karten nutzen u.a. verzerrte proportionale Flächen
- proportionale Kontaktrepräsentation des Dualgraphs



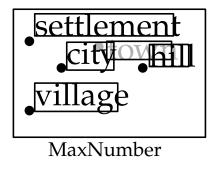


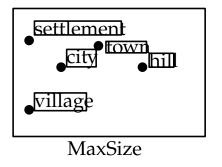


gewichtete politische Karte (Unterteilung der Ebene) entsprechende verzerrte Karte, deren Flächen proportional Ges. zu den Gewichten sind

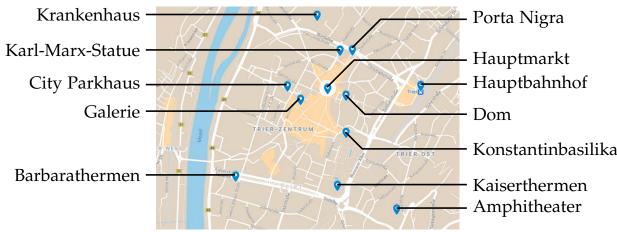
Beispiel 4: Beschriftung von Landkarten

- Objekte in Karten benötigen meist einen eindeutig zugeordneten Namen (Label)
- verschiedene interne und externe Labelpositionen möglich





interne Label



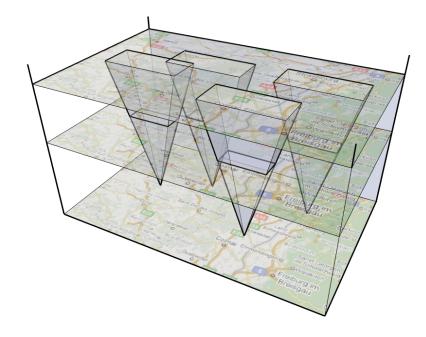
externe Label

Geg. Punktmenge P mit Labelmenge L

gültige, optimale Beschriftung von P mit L, je nach Beschriftungsmodell

Beispiel 5: Dynamische Karten

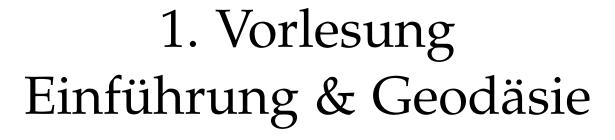
- moderne elektronische Karten sind interaktiv & dynamisch
- Formen und Beschriftungen müssen sich kontinuierlich an die Kartenansicht anpassen

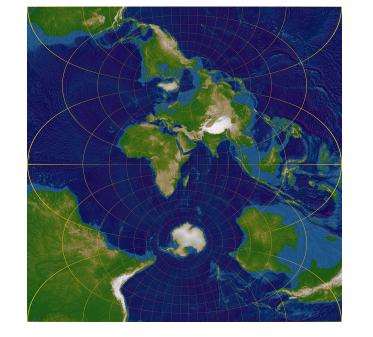


Geg. Punktmenge *P* mit Labelmenge *L*

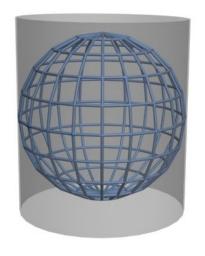
gültige, optimale und **konsistente** Beschriftung von *P* mit *L* unter Zoom, Drehen etc.

Algorithmen für geographische Informationssysteme





Philipp Kindermann



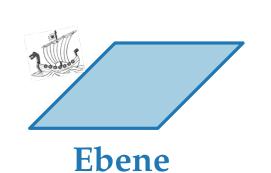
Geodätische Grundlagen

Geodäsie:

"Wissenschaft von der Ausmessung und Abbildung der Erdoberfläche"

Friedrich Robert Helmert (1843–1917)

Welche Form hat die Erde?

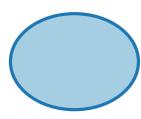


Kugel

(zuerst ca. 500 v.

Chr. bekannt)

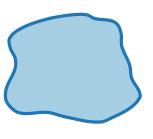
Radius $\approx 6370 \text{ km}$



Ellipsoid

(um 1736 nachgewiesen)

gr. Halbachse $a \approx 6378$ km kl. Halbachse $b \approx 6357$ km Abplattung $f = \frac{a-b}{a} \approx 1:300$



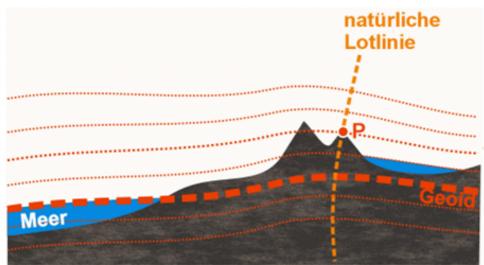
Geoid

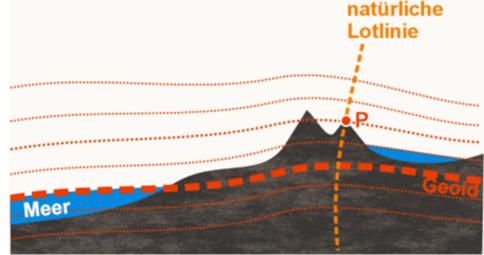
(ab 1828)

−106 bis +85 mAbweichung vonEllipsoid

Welche Form hat die Erde?

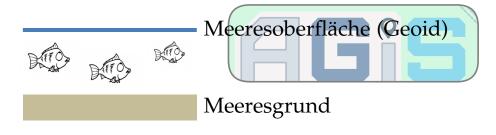
- Wie definieren wir nach oben?
- Wie definieren wir die *Höhe*?

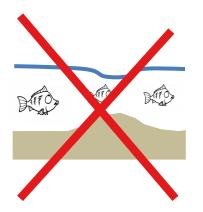


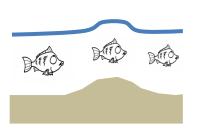


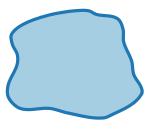
Das Geoid entspricht einer ruhend gedachtes Meeresoberfläche (fortgesetzt unter den Kontinenten).

Geoid = Fläche gleichen Schwerepotentials







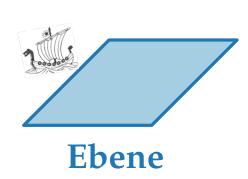


Geoid (ab 1828)

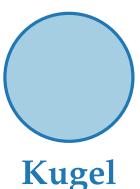
-106 bis +85 mAbweichung von Ellipsoid

Welche Form hat die Erde?

■ Wann verwenden wir welches Modell?



als lokale Näherung; Distanzmessungen > 10 km müssen auf Kugel reduziert werden



als Grundlage für

Karten mit

Maßstab < 1:2

Mio.

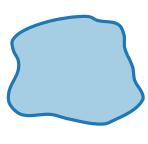
Ellipsoid

als Grundlage für

Karten mit

 $Maßstab \ge 1:2$

Mio.

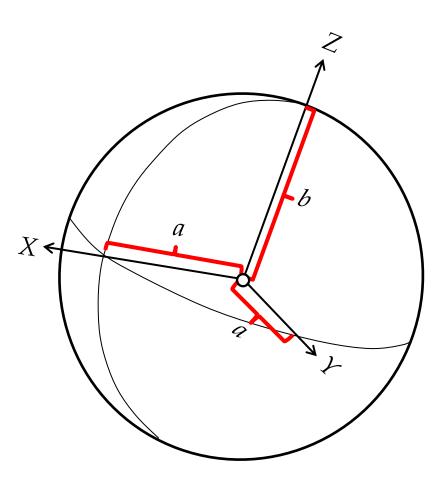


Geoid

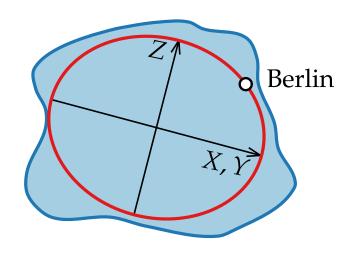
Für Höhen

Geodätisches Datum bestimmt Ursprung, Orientierung und Maßstab eines Bezugssystems X, Y, Z im Verhältnis zu einem grundlegenden absoluten System.

Außerdem: Form eines Bezugsellipsoids



Beispiel 1: Rauenberg-Datum (auch Potsdam-Datum)



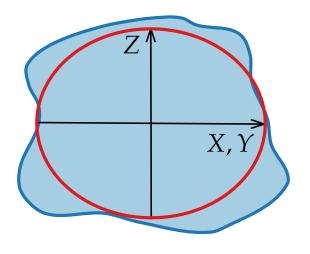
Form: lokal an Deutschland angepasst (Bessel-Ellipsoid)

Lage: Lage Fundamentalpunkt Rauenberg & Azimut zur

Marienkirche in Berlin festgelegt

Verwendung: Deutsches Hauptdreiecksnetz, auch heute noch Grundlage vieler Daten

Beispiel 2: WGS84



Form: global angepasst

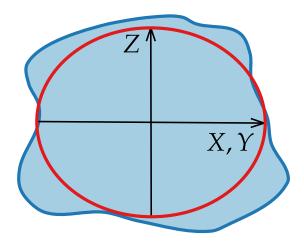
Lage: Zentrum des Ellipsoids = Massenschwerpunkt Erde

Z-Achse in Richtung Nordpol; Greenwich in X-Z-Ebene

Realisiert durch Fundamentalstationen

Verwendung: GPS

Beispiel 3: ETRS89



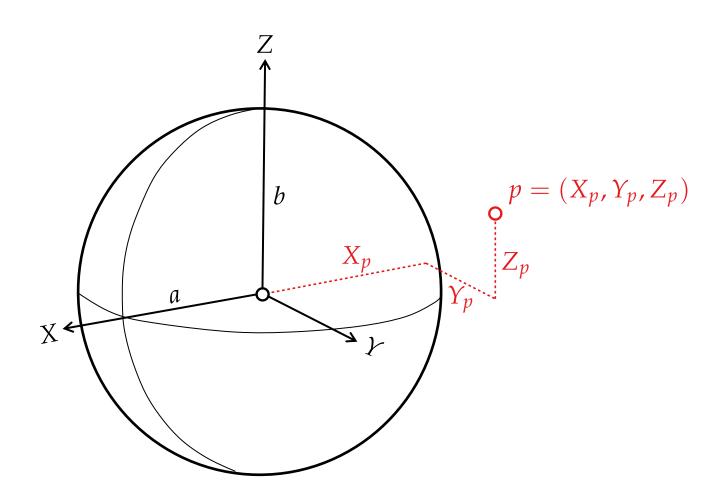
Form: global angepasst

Lage: bis 1.1.1989 wie WGS84

danach an aurasische Platte gebunden

Verwendung: Deutsche Landesvermessungen ab 1991

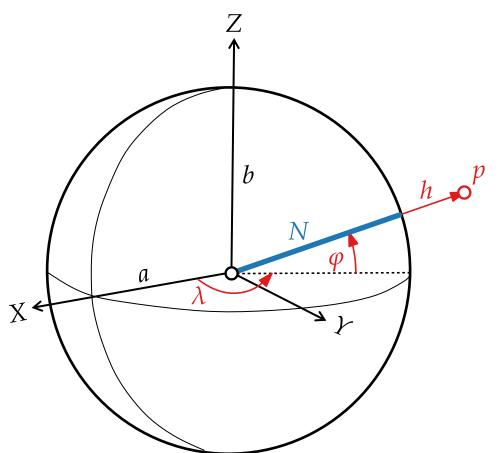
Dreidimensionale kartesische Koordinaten



Verwendung: z.B. Rechnen mit Raumstrecken

Geographische Koordinaten

Länge λ und Breite φ



h = ellipsoidische Höhe von p (wird selten verwendet, aber zur Berechnung von (X_p, Y_p, Z_p) aus geogr. Koord. erforderlich)

Einheiten: Bogenminuten $(60' = 1^{\circ})$ $\varphi = 62^{\circ} 14' 13.33''$ $\approx 62,237036^{\circ} \text{Bogensekunden } (60'' = 1')$

Faustregel: $1'' \approx 30$ Meter

Zusammenhang:

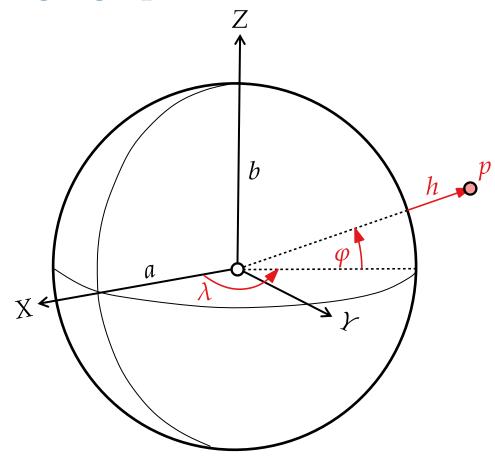
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} (N+h)\cos\varphi\cos\lambda \\ (N+h)\cos\varphi\sin\lambda \\ \left(\frac{N}{1+e'}+h\right)\sin\varphi \end{pmatrix}$$

mit
$$N = \frac{a^2}{\sqrt{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi}}$$

$$e' = \frac{a^2 - b^2}{b^2}$$

Projektionen

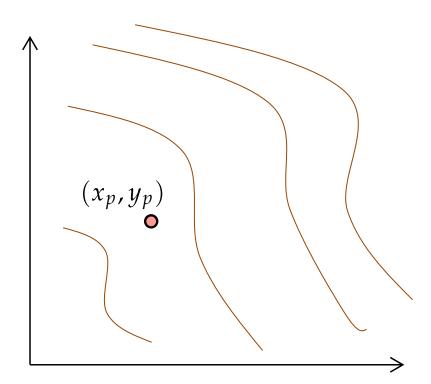
geographische Koordinaten



Kartenabbildung

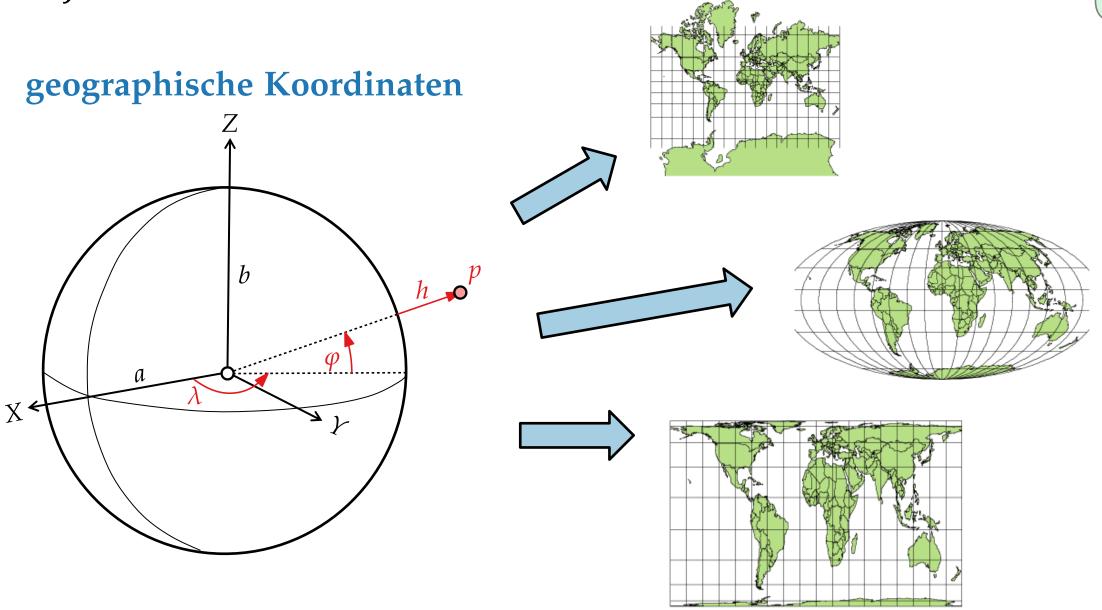
$$\begin{pmatrix} x_p \\ y_p \end{pmatrix} = f(\varphi_p, \lambda_p)$$

projizierte Koordinaten



normalerweise: Höhen in Karte beziehen sich aufs Geoid

Projektionen



verschiedene Abbildungen für verschiedene Zwecke

Was brauchen wir?

dreidimensionale kartesische Koordinaten (X, Y, Z): geodätisches Datum

geographische Koordinaten (λ, φ) : geodätisches Datum

+ Form des Ellipsoids

zweidimensionale Koordinaten (x, y):

geodätisches Datum

+ Form des Ellipsoids

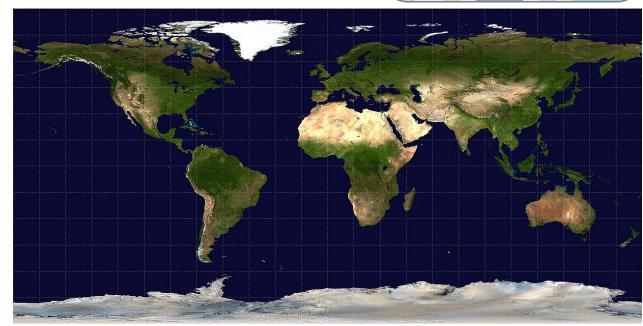
+ verwendete Kartenabbildung

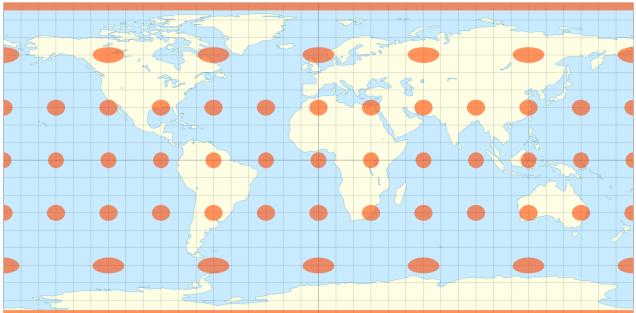
$$\begin{pmatrix} x \\ y \end{pmatrix} = f(\varphi, \lambda)$$
gesucht!

$$\begin{pmatrix} x \\ y \end{pmatrix} = f(\varphi, \lambda) = \begin{pmatrix} R\lambda \\ R\varphi \end{pmatrix}$$

Nachteile:

- Breitenkreise werden extrem gestreckt
- Proportionen (auch lokal!) gehen verloren





Welche Eigenschaften soll eine Abbildung haben?

- Winkeltreue (Konformität)
- Gerade Linien bleiben gerade
- Längentreue

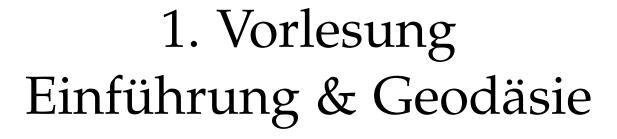
Flächentreue

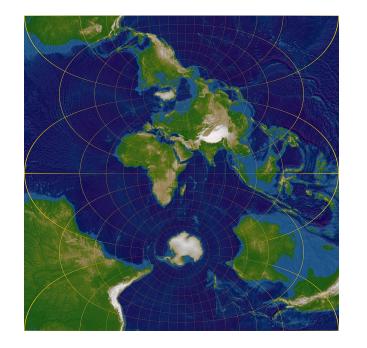
• • •

Aufgabe: Wähle Eigenschaften aus und finde eine Abbildung, die diese erfüllt.

Es gibt keine Abbildung, die alle Distanzen unverzerrt abbildet!

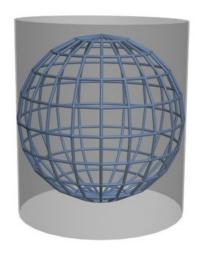
Algorithmen für geographische Informationssysteme



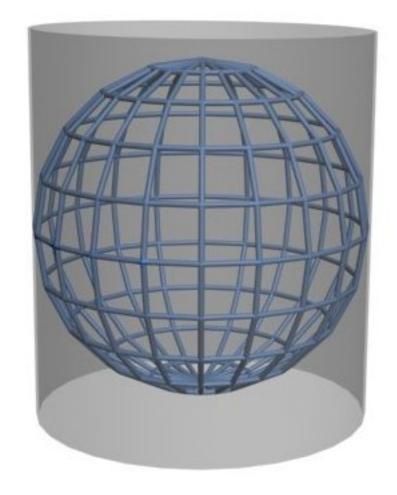


Philipp Kindermann

Teil III: Mercatorprojektion

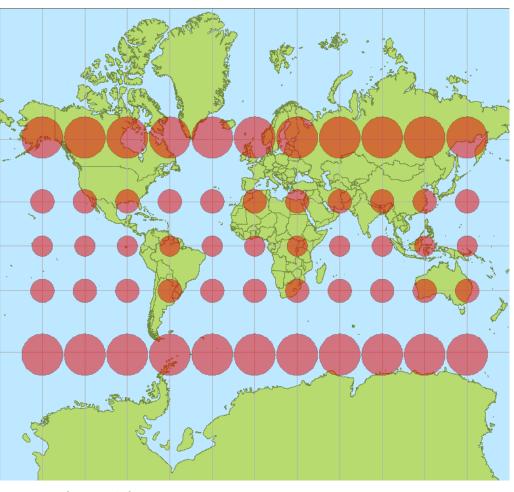


Mercatorprojektion



Vorteil:

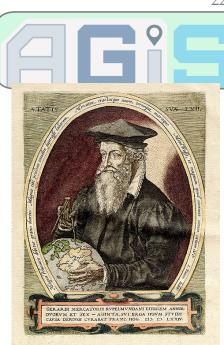
Winkelträue



Nachteil:

Flächenverzerrung

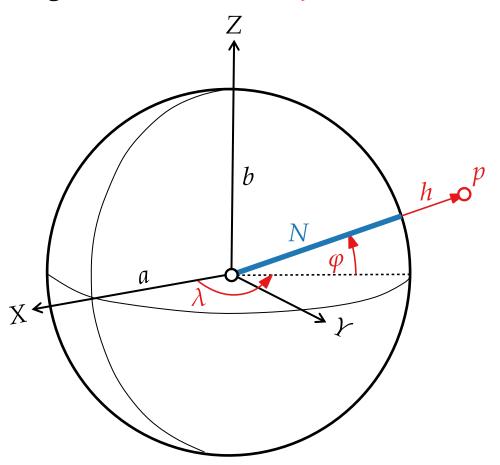
Google Maps benutzt (eine Variante der) Mercatorprojektion Mercator Puzzle: https://bramus.github.io/mercator-puzzle-redux/



Gerhard Mercator (geb. Gheert Cremer) 1512–1594

Kartesische Koordinaten der Kugel

Länge λ und Breite φ



$$\overrightarrow{X} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} R\cos\varphi\cos\lambda \\ R\cos\varphi\sin\lambda \\ R\sin\varphi \end{pmatrix}$$

Z hängt nicht von λ ab – warum?

Kartesische Koordinaten:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} (N+h)\cos\varphi\cos\lambda \\ (N+h)\cos\varphi\sin\lambda \\ \left(\frac{N}{1+e'} + h\right)\sin\varphi \end{pmatrix}$$

mit
$$N = \frac{a^2}{\sqrt{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi}}$$

$$e' = \frac{a^2 - b^2}{b^2}$$

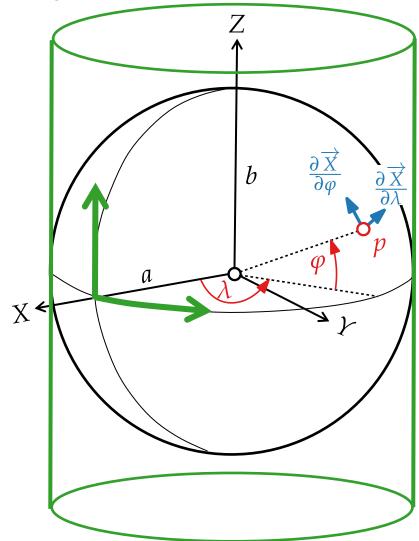
Mercatorprojektion geht von Kugel aus!

$$\rightarrow a = b = R \text{ und } h = 0$$

$$ightharpoonup e' = \frac{R^2 - R^2}{R^2} = 0$$

$$N = \frac{R^2}{\sqrt{R^2 \cos^2 \varphi + R^2 \sin^2 \varphi}} = \frac{R^2}{R\sqrt{\cos^2 \varphi + \sin^2 \varphi}} = R$$

Länge λ und Breite φ



$$\overrightarrow{X} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} R\cos\varphi\cos\lambda \\ R\cos\varphi\sin\lambda \\ R\sin\varphi \end{pmatrix}$$

Was bewirkt eine Änderung von λ oder φ ?

Tangentialvektoren:

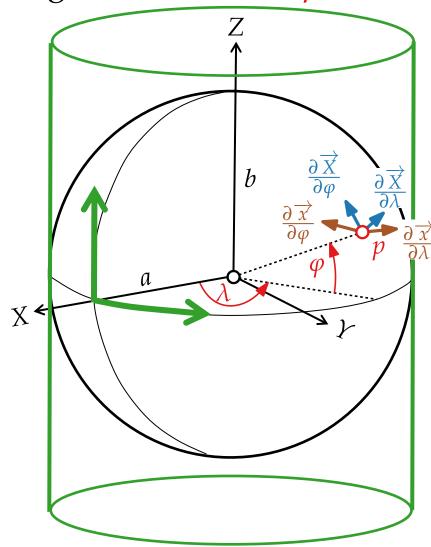
$$\frac{\partial \overrightarrow{X}}{\partial \varphi} = \begin{pmatrix} -R\sin\varphi\cos\lambda \\ -R\sin\varphi\sin\lambda \\ R\cos\varphi \end{pmatrix} \qquad \frac{\partial \overrightarrow{X}}{\partial \lambda} = \begin{pmatrix} -R\cos\varphi\sin\lambda \\ R\cos\varphi\cos\lambda \\ 0 \end{pmatrix}$$

Zylinderabbildung:

 λ bildet x-Koordinate direkt ab

$$\overrightarrow{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} R\lambda \\ f(\varphi) \end{pmatrix}$$

Länge λ und Breite φ



Tangentialvektoren:

$$\frac{\partial \overrightarrow{X}}{\partial \varphi} = \begin{pmatrix} -R\sin\varphi\cos\lambda \\ -R\sin\varphi\sin\lambda \\ R\cos\varphi \end{pmatrix} \qquad \frac{\partial \overrightarrow{X}}{\partial \lambda} = \begin{pmatrix} -R\cos\varphi\sin\lambda \\ R\cos\varphi\cos\lambda \\ 0 \end{pmatrix}$$

Zylinderabbildung:

 λ bildet x-Koordinate direkt ab

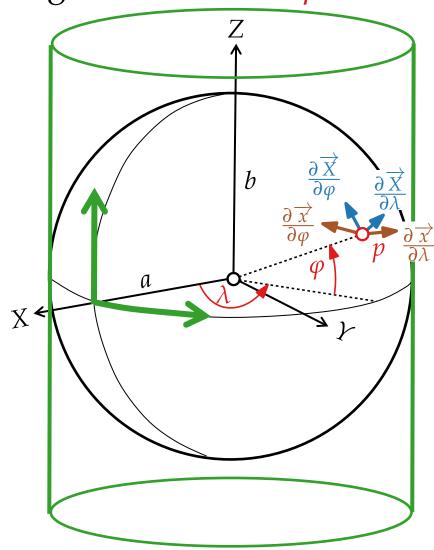
$$\overrightarrow{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} R\lambda \\ f(\varphi) \end{pmatrix}$$

Was bewirkt eine Änderung von λ oder φ ?

Tangentialvektoren:

$$\frac{\partial \overrightarrow{x}}{\partial \varphi} = \begin{pmatrix} 0 \\ f'(\varphi) \end{pmatrix} \qquad \frac{\partial \overrightarrow{x}}{\partial \lambda} = \begin{pmatrix} R \\ 0 \end{pmatrix}$$

Länge λ und Breite φ



Tangentialvektoren:

$$\frac{\partial \overrightarrow{X}}{\partial \varphi} = \begin{pmatrix} -R\sin\varphi\cos\lambda \\ -R\sin\varphi\sin\lambda \\ R\cos\varphi \end{pmatrix} \qquad \frac{\partial \overrightarrow{X}}{\partial \lambda} = \begin{pmatrix} -R\cos\varphi\sin\lambda \\ R\cos\varphi\cos\lambda \\ 0 \end{pmatrix}$$

$$\frac{\partial \overrightarrow{X}}{\partial \lambda} = \begin{pmatrix} -R\cos\varphi\sin\lambda \\ R\cos\varphi\cos\lambda \\ 0 \end{pmatrix}$$

Tangentialvektoren:

$$\frac{\partial \overrightarrow{x}}{\partial \varphi} = \begin{pmatrix} 0 \\ f'(\varphi) \end{pmatrix}$$

$$\frac{\partial \overrightarrow{x}}{\partial \lambda} = \begin{pmatrix} R \\ 0 \end{pmatrix}$$

Ziel: Konformität: Gleiches Seitenverhältnis der aufgespannten Rechtecke

$$|\frac{\partial \overrightarrow{x}}{\partial \varphi}|/|\frac{\partial \overrightarrow{x}}{\partial \lambda}| = |\frac{\partial \overrightarrow{X}}{\partial \varphi}|/|\frac{\partial \overrightarrow{X}}{\partial \lambda}|$$

$$\sqrt{\left(\frac{\partial \overrightarrow{X}}{\partial \varphi}\right)^{2}} = \sqrt{\left(\frac{0}{f'(\varphi)}\right)^{2}} = \sqrt{f'(\varphi)^{2}} = f'(\varphi) \qquad \sqrt{\left(\frac{\partial \overrightarrow{X}}{\partial \lambda}\right)^{2}} = \sqrt{\left(\frac{R}{0}\right)^{2}} = \sqrt{R^{2}} = R$$

$$\sqrt{\left(\frac{\partial \overrightarrow{X}}{\partial \varphi}\right)^{2}} = \sqrt{\left(\frac{-R\sin\varphi\cos\lambda}{-R\sin\varphi\sin\lambda}\right)^{2}} = \sqrt{\frac{R^{2}\sin^{2}\varphi\cos^{2}\lambda + R^{2}\sin^{2}\varphi\sin^{2}\lambda + R^{2}\cos^{2}\varphi}{R\cos\varphi}}$$

$$= \sqrt{R^{2}\sin^{2}\varphi(\cos^{2}\lambda + \sin^{2}\lambda) + R^{2}\cos^{2}\varphi}$$

$$= \sqrt{R^{2}(\sin^{2}\varphi + \cos^{2}\varphi)}$$

$$= R$$

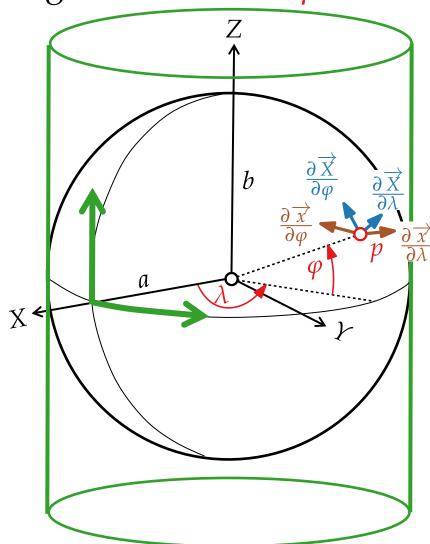
$$= \sqrt{\frac{-R\cos\varphi\sin\lambda}{0}} = \sqrt{\frac{-R\cos\varphi\sin\lambda}{R\cos\varphi\cos\lambda}}$$

$$= \sqrt{\frac{-R\cos\varphi\sin\lambda}{0}} = \sqrt{\frac{R^{2}\cos^{2}\varphi\sin^{2}\lambda + R^{2}\cos^{2}\varphi\cos^{2}\lambda}{R\cos\varphi\cos\lambda}}$$

$$= \sqrt{\frac{-R\cos\varphi\sin\lambda}{0}} = \sqrt{\frac{-R\cos\varphi\sin\lambda}{0}} = \sqrt{\frac{R^{2}\cos^{2}\varphi\sin^{2}\lambda + R^{2}\cos^{2}\varphi\cos^{2}\lambda}{R\cos\varphi\cos\lambda}}$$

$$= \sqrt{\frac{-R\cos\varphi\sin\lambda}{0}} = \sqrt{\frac{-R\cos\varphi\cos\lambda}{0}} = \sqrt{\frac{-R\cos\varphi\cos\lambda$$

Länge λ und Breite φ



Ziel: Konformität: Gleiches Seitenverhältnis der aufgespannten Rechtecke

$$|\frac{\partial \overrightarrow{x}}{\partial \varphi}|/|\frac{\partial \overrightarrow{x}}{\partial \lambda}| = |\frac{\partial \overrightarrow{X}}{\partial \varphi}|/|\frac{\partial \overrightarrow{X}}{\partial \lambda}|$$

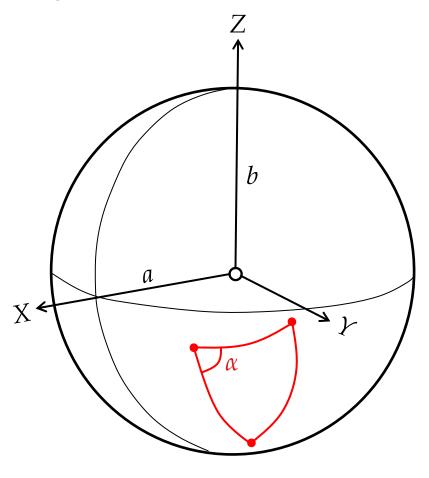
$$\rightarrow f'(\varphi)/R = R/R\cos\varphi$$

$$\rightarrow f'(\varphi) = R/\cos\varphi$$

$$\rightarrow f(\varphi) = R \ln \tan(\varphi/2 + \pi/4)$$

Winkeltreue

Länge λ und Breite φ



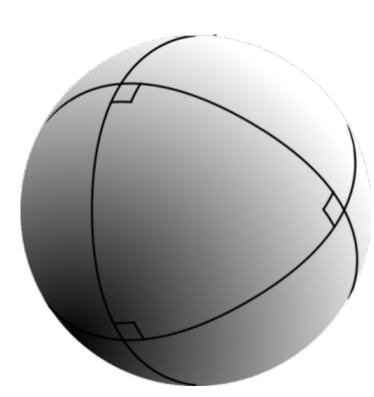
Ziel: Konformität: Gleiches Seitenverhältnis der aufgespannten Rechtecke

$$ightharpoonup f(\varphi) = R \ln \tan(\varphi/2 + \pi/4)$$

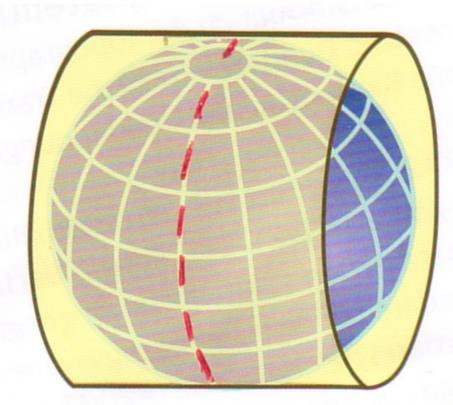
Achtung: Winkel haben gleiches Verhältnis, sind aber nicht gleich!



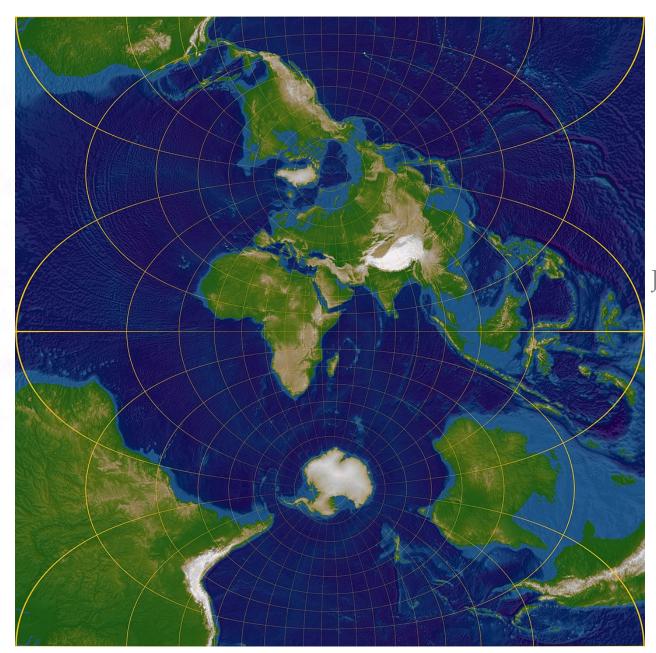
Winkelsumme auf der Sphäre ist anders als in der Ebene



Variante 1: Transversale Lage



- Liegender Zylinder
- Mittelmeridian kann beliebig gewählt werden



Johann Heinrich Lambert 1728–1777

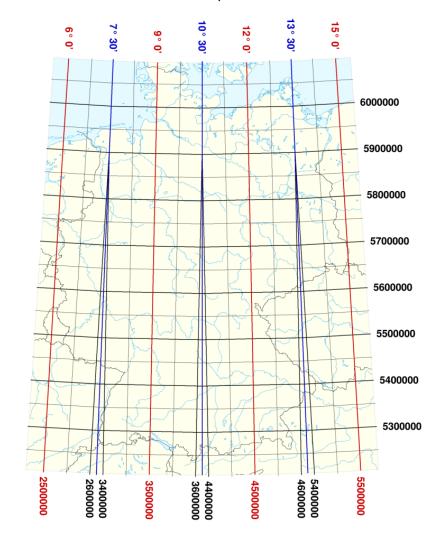
Starke Verzerrung entfernt von Mittelmeridian

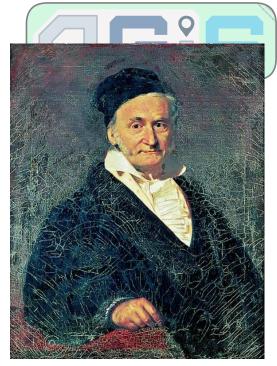
Variante 2: Gauß-Krüger-Koordinatensystem

- Erde wird in 3° breite Streifen unterteilt
- Jeder Streifen wird mit einer transversalen Mercatorprojektion abgebildet (Mittelmeridian = Streifenzentrum)

Verwendung:

- Deutsche Landesvermessungen (mit Potsdam-Datum)
- Ab 1991 durch **UTM** abgelöst





Johann Carl Friedrich Gauß 1777–1855

Johann Heinrich Louis Krüger 1857–1923

Variante 3: Universal Transversal Mercator (UTM)

- Prinzip wie Gauß-Krüger
- Streifenbreite 6°
- Projektionszylinder schneidet Erdball an zwei parallel verlaufenden Durchdringungskreisen, sodass ein streifenförmiger Teil des Erdballs aus der Zylinderoberfläche herausragt
- → Weniger Verzerrung auf die gesamte Breite des Streifens bezogen

Verwendung:

- GPS-Koordinaten (WGS84)
- Deutsche Landesvermessungen (ETRS89)

