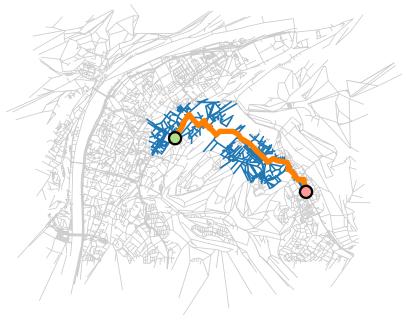


Algorithmen für geographische Informationssysteme

2. Vorlesung Routenplanung

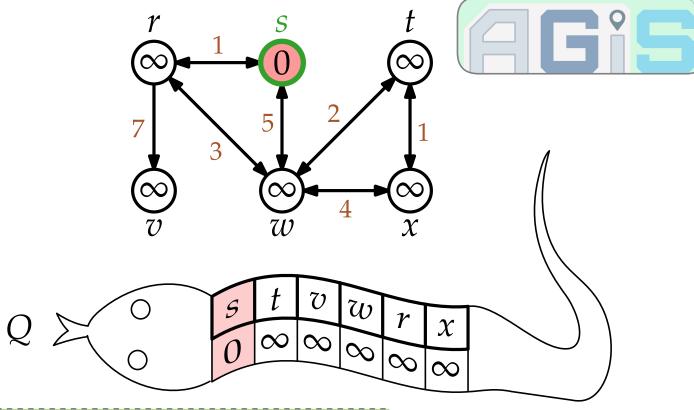
Teil I: Problemstellung

Philipp Kindermann



Wintersemester 2024/25


```
Dijkstra(WeightedGraph G, Vertex s)
 Initialize (G, s)
 Q = new PriorityQueue(V, d)
 while not Q.Empty() do
     u = Q.ExtractMin()
    foreach v \in Adj[u] do
        if v.d > u.d + w(u,v) then
           v.d = u.d + w(u,v)
           v.\pi = u
           Q.DecreaseKey(v, v.d)
```



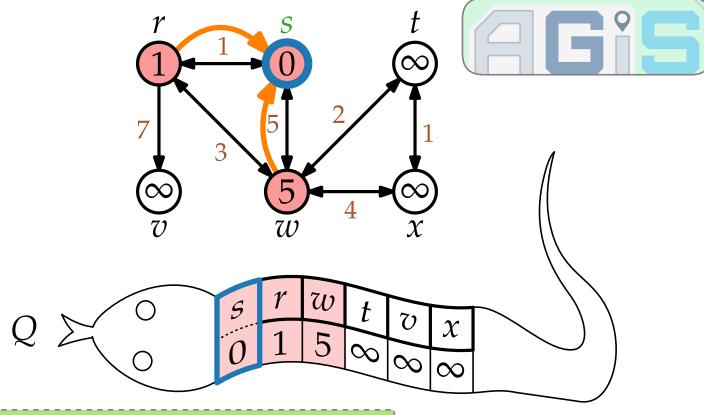
INITIALIZE(Graph
$$G$$
, Vertex s)

foreach $u \in V$ do
$$u.d = \infty$$

$$u.\pi = nil$$

$$s.d = 0$$

```
Dijkstra(WeightedGraph G, Vertex s)
 Initialize (G, s)
 Q = new PriorityQueue(V, d)
 while not Q.Empty() do
     u = Q.ExtractMin()
    foreach v \in Adj[u] do
        if v.d > u.d + w(u,v) then
           v.d = u.d + w(u,v)
           v.\pi = u
           Q.DecreaseKey(v, v.d)
```



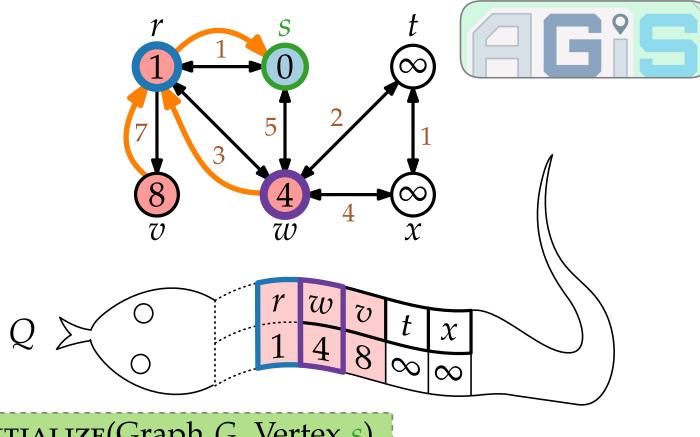
INITIALIZE(Graph
$$G$$
, Vertex s)

foreach $u \in V$ do
$$u.d = \infty$$

$$u.\pi = nil$$

$$s.d = 0$$

```
Dijkstra(WeightedGraph G, Vertex s)
 Initialize (G, s)
 Q = new PriorityQueue(V, d)
 while not Q.Empty() do
     u = Q.ExtractMin()
    foreach v \in Adj[u] do
        if v.d > u.d + w(u,v) then
           v.d = u.d + w(u,v)
           v.\pi = u
           Q.DecreaseKey(v, v.d)
```



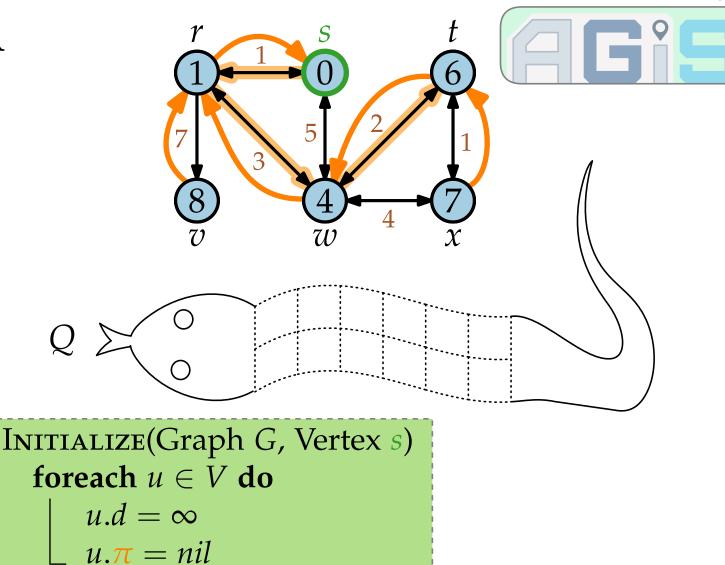
Initialize(Graph
$$G$$
, Vertex s)

foreach $u \in V$ do
$$u.d = \infty$$

$$u.\pi = nil$$

$$s.d = 0$$

```
Dijkstra(WeightedGraph G, Vertex s)
 Initialize (G, s)
 Q = new PriorityQueue(V, d)
 while not Q.Empty() do
     u = Q.ExtractMin()
    foreach v \in Adj[u] do
        if v.d > u.d + w(u,v) then
           v.d = u.d + w(u,v)
           v.\pi = u
           Q.DecreaseKey(v, v.d)
```

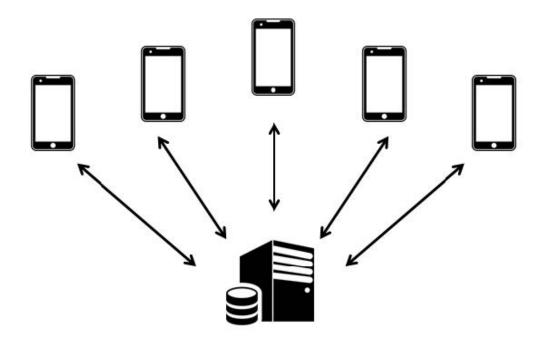


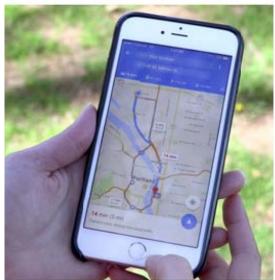
s.d = 0

Motivation

"Jeden Tag werden mit den Google Maps 1 Milliarde Kilometer navigiert"

(https://www.googlewatchblog.de/2017/05/offizielle-statistiken-google-nutzerzahlen/)



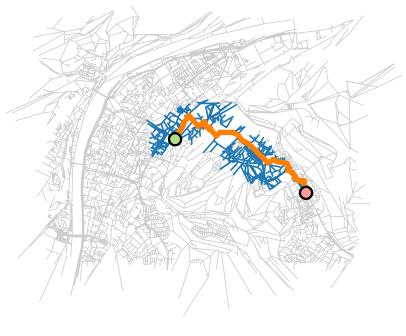


Algorithmen für geographische Informationssysteme

2. Vorlesung Routenplanung

Teil II: Schätzfunktionen

Philipp Kindermann



Wintersemester 2024/25

GreedyBestFirstSearch


```
Idee:
```

```
Wir schätzen!

PHASE 1 PHASE 2 PHASE 3

Finde
gute
Schätz-
funktion

Geschätzt) nähesten
Knoten zu t
```

Demo.

https://algo.uni-trier.de/demos/shortestpath.html

GBFS(WeigtedGraph G, Vertices s, t)

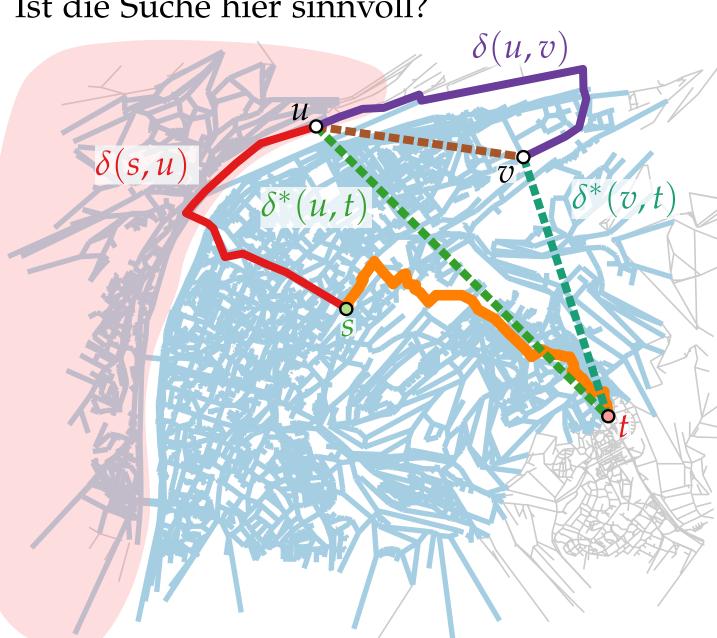
```
Initialize (G, s)
Q = \text{new PriorityQueue}(V, d)
while not Q.\text{Empty}() do
\begin{array}{c|c} u = Q.\text{ExtractMin}() \\ \text{if } u == t \text{ then return} \\ \text{foreach } v \in \text{Adj}[u] \text{ do} \\ \hline & \text{if } v.d == \infty \\ \hline & v.d = \delta^*(v, t) \\ \hline & v.\pi = u \\ \hline & Q.\text{DecreaseKey}(v, v.d) \\ \end{array}
```

Greedy Best-First-Search berechnet schnell eine gute Lösung...

...die aber nicht immer optimal ist!

Schätzfunktionen

Ist die Suche hier sinnvoll?



 $\delta^*: V \times V \to \mathbb{R}$ ist eine **optimistische** Schätzfunktion genau dann wenn $\delta(u, t) \geq \delta^*(u, t)$ für alle $u \in V$.

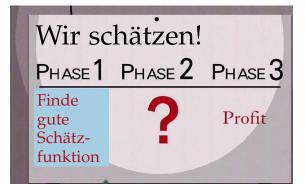
$$\delta(u,v) + \delta^*(v,t) \quad \left[\geq \delta^*(u,v) + \delta^*(v,t) \right]$$

$$\geq \delta^*(u,t)$$

 $\delta^*: V \times V \to \mathbb{R}$ ist eine monotone Schätzfunktion genau dann wenn $\delta(u,v) + \delta^*(v,t) \ge \delta^*(u,t)$ für alle $u, v \in V$.

Gute Schätzfunktion

Idee:



1.
$$\delta^*(u, t) = 0$$

- (+) leicht zu berechnen
- nicht aussagekräftig

2.
$$\delta^*(u, t) = \delta(u, t)$$

- sehr genau
- zum Ausrechnen müssen wir das Kürzester-Pfad-Problem lösen ...

3.
$$\delta^*(u, t) = \delta_{\text{Euklid}}(u, t) = \sqrt{(x(u) - x(t))^2 + (y(u) - y(t))^2}$$

- relativ genau
- funktioniert nur für Graphen mit geometrischen Informationen

4.
$$\delta^*(u, t) = \delta_{\text{Euklid}}^2(u, t) = (x(u) - x(t))^2 + (y(u) - y(t))^2$$

Prelativ genau keine Wurzel

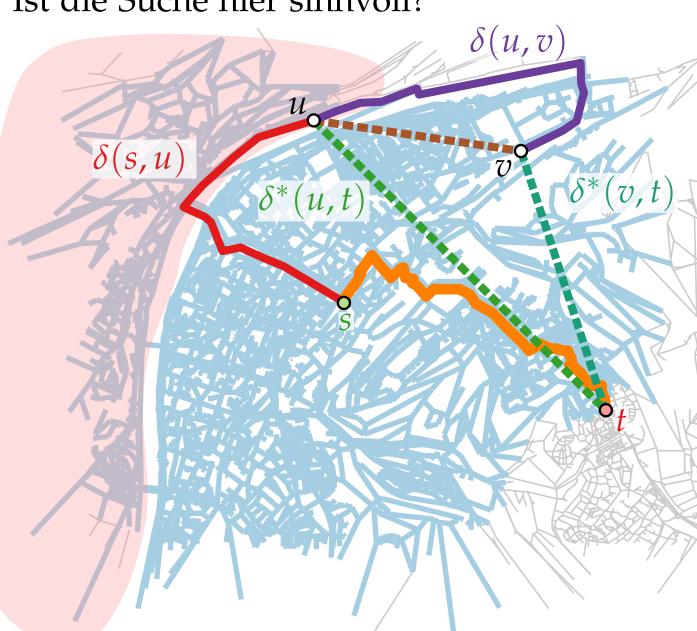
- relativ genau, keine Wurzel
- nicht optimistisch

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **optimistische** Schätzfunktion genau dann wenn $\delta(u, t) \geq \delta^*(u, t)$ für alle $u \in V$.

 $\delta^*: V \times V \to \mathbb{R}$ ist eine monotone Schätzfunktion genau dann wenn $\delta(u,v) + \delta^*(v,t) \ge \delta^*(u,t)$ für alle $u, v \in V$.

Neue Gewichte

Ist die Suche hier sinnvoll?



 $\delta^*: V \times V \to \mathbb{R}$ ist eine **optimistische** Schätzfunktion genau dann wenn $\delta(u, t) \geq \delta^*(u, t)$ für alle $u \in V$.

$$\delta(u,v) + \delta^*(v,t) \quad \left[\geq \delta^*(u,v) + \delta^*(v,t) \right]$$

$$\geq \delta^*(u,t)$$

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **monotone** Schätzfunktion genau dann wenn $\delta(u,v) + \delta^*(v,t) \geq \delta^*(u,t)$ für alle $u,v \in V$.

Neue Kantengewichte:

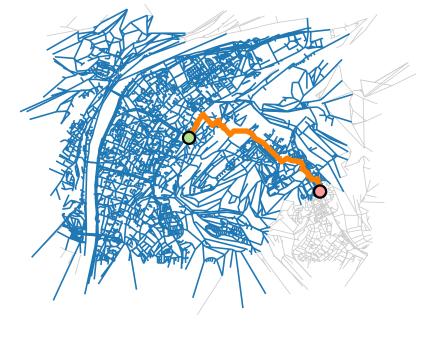
$$w'(u,v) = w(u,v) + \delta^*(v,t) - \delta^*(u,t)$$

"wie viel näher kommen wir zu *t*?"

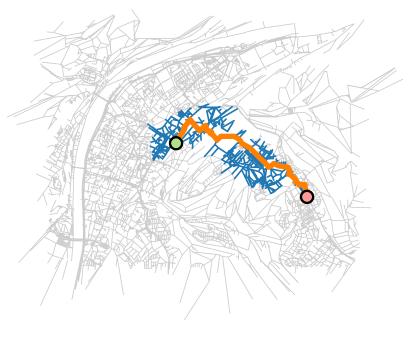
Algorithmen für geographische Informationssysteme

2. Vorlesung Routenplanung

Teil III: A*-Algorithmus



Philipp Kindermann



Wintersemester 2024/25

A*-Algorithmus

Idee:

$$w'(u,v) = w(u,v) + \delta^*(v,t) - \delta^*(u,t)$$

```
A*(WeightedGraph G, Vertices s, t)
```

```
Initialize (G, s)
```

Q =**new** PriorityQueue(V, d)

while not Q.Empty() do

```
u = Q.ExtractMin()
```

if u == t then return

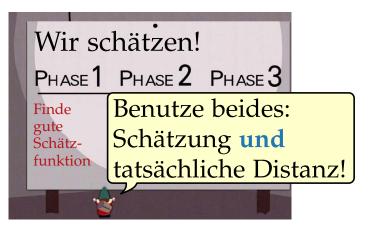
foreach $v \in Adj[u]$ do

```
if v.d > u.d + w'(u,v) then
```

$$v.d = u.d + w'(u,v)$$

 $v.\pi = u$

Q.DecreaseKey(v, v.d)

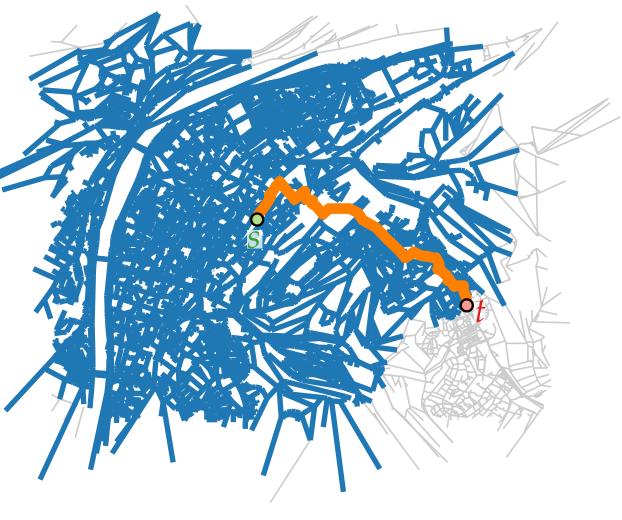


 $\delta^*: V \times V \to \mathbb{R}$ ist eine **optimistische** Schätzfunktion genau dann wenn $\delta(u, t) \geq \delta^*(u, t)$ für alle $u \in V$.

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **monotone** Schätzfunktion genau dann wenn $\delta(u,v) + \delta^*(v,t) \ge \delta^*(u,t)$ für alle $u, v \in V$.

INITIALIZE(Graph *G*, Vertex *s*) foreach $u \in V$ do $u.d = \infty$ $u.\pi = nil$ s.d = 0

Vergleich Dijkstra – A*



Dijkstra

Demo.

https://algo.uni-trier.de/demos/shortestpath.html

A* – Korrektheit

$$w'(u,v) = w(u,v) + \delta^*(v,t) - \delta^*(u,t)$$

$$v'(P) = w'(v)$$

$$v'(v)$$

kürzester *s*–*t*–Pfad *P*

$$w'(P') = w(P') + \delta^*(t,t) - \delta^*(s,t)$$

$$w'(P) = w(P) + \delta^*(t,t) - \delta^*(s,t)$$

$$w'(v_3,t) = w(v_3,t) + \delta^*(t,t) - \delta^*(v_3,t)$$

$$w'(v_2, v_3) = w(v_2, v_3) + \delta^*(v_3, t) - \delta^*(v_2, t)$$

$$w'(v_1, v_2) = w(v_1, v_2) + \delta^*(v_2, t) - \delta^*(v_1, t)$$

Satz.

DIJKSTRA berechnet in einem Graphen G = (V, E; w)mit $w: E \to \mathbb{Q}_{>0}$ in $\mathcal{O}(E + V \log V)$ Zeit den kürzesten Weg zwischen zwei Knoten.

anderer s-t-Pfad P' Lemma.

Ein Pfad P ist optimal bzgl. $w' \Leftrightarrow P$ ist optimal bzgl. $w' \Leftrightarrow P$

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **optimistische** Schätzfunktion genau dann wenn $\delta(u, t) \geq \delta^*(u, t)$ für alle $u \in V$.

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **monotone** Schätzfunktion genau dann wenn $\delta(u,v) + \delta^*(v,t) \geq \delta^*(u,t)$ für alle $u,v \in V$.

Lemma. Jede monotone Schätzfunktion mit $\delta^*(t,t) = 0$ ist optimistisch.

Beweis. Betrachte beliebigen Knoten $u \in V$.

Wähle v = t.

Dann gilt
$$\delta(u,t) + \frac{\delta^*(t,t)}{\delta^*(u,t)} \ge \delta^*(u,t)$$

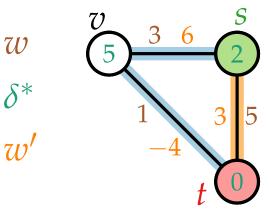
 $\Rightarrow \delta(u,t) \ge \delta^*(u,t)$

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **optimistische** Schätzfunktion genau dann wenn $\delta(u, t) \geq \delta^*(u, t)$ für alle $u \in V$.

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **monotone** Schätzfunktion genau dann wenn $\delta(u,v) + \delta^*(v,t) \ge \delta^*(u,t)$ für alle $u,v \in V$.

Lemma. Wenn δ^* **nicht monoton** ist, dann kann es sein, dass A^* nicht den kürzesten Pfad findet.

Beweis.



$$\frac{\delta(v,t) + \delta^*(t,t) < \delta^*(v,t)}{1}$$
 also nicht monoton

Lösung A*: Länge 5

Kürzester Pfad: Länge 4

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **optimistische** Schätzfunktion genau dann wenn $\delta(u, t) \geq \delta^*(u, t)$ für alle $u \in V$.

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **monotone** Schätzfunktion genau dann wenn $\delta(u,v) + \delta^*(v,t) \ge \delta^*(u,t)$ für alle $u,v \in V$.

Lemma. Wenn δ^* monoton ist, dann sind die Kantengewichte w' nicht-negativ.

Beweis.
$$w'(u,v) = w(u,v) + \delta^*(v,t) - \delta^*(u,t) \ge \delta(u,v) + \delta^*(v,t) - \delta^*(u,t) \ge 0$$

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **optimistische** Schätzfunktion genau dann wenn $\delta(u, t) \geq \delta^*(u, t)$ für alle $u \in V$.

 $\delta^*: V \times V \to \mathbb{R}$ ist eine **monotone** Schätzfunktion genau dann wenn $\delta(u,v) + \delta^*(v,t) \geq \delta^*(u,t)$ für alle $u,v \in V$.

Lemma. Ein Pfad P ist optimal bzgl. $w' \Leftrightarrow P$ ist optimal bzgl. w

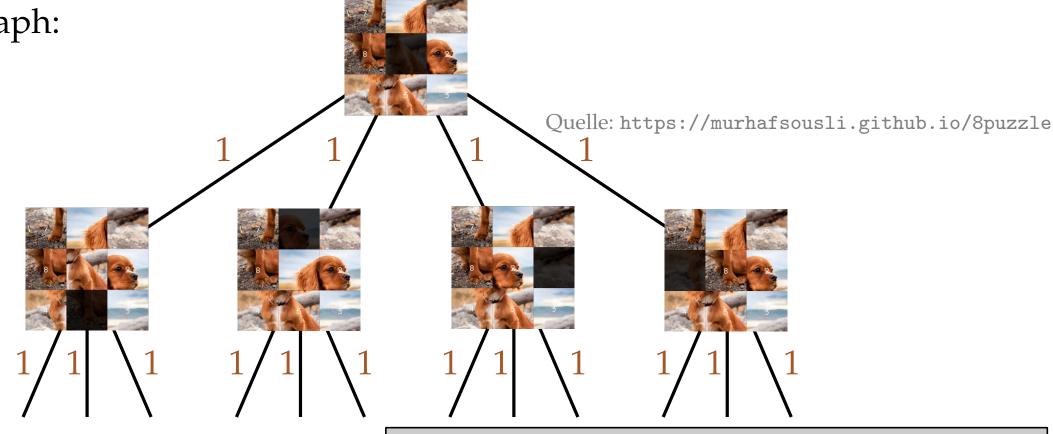
Lemma. Jede monotone Schätzfunktion mit $\delta^*(t,t) = 0$ ist optimistisch.

Lemma. Wenn δ^* **nicht monoton** ist, dann kann es sein, dass A^* nicht den kürzesten Pfad findet.

Lemma. Wenn δ^* monoton ist, dann sind die Kantengewichte w' nicht-negativ.

Satz. Wenn δ^* monoton ist, dann berechnet A^* in einem Graphen G=(V,E;w) mit $w\colon E\to \mathbb{Q}_{\geq 0}$ in $\mathcal{O}(E+V\log V)$ Zeit den kürzesten Weg zwischen zwei Knoten. (gilt sogar, wenn δ^* "nur" optimistisch ist.)

Nicht-geometrische Probleme: Schiebepuzzle



Lösung: kürzester Weg von kürzester weg von

Durchschnittliche Anzahl besuchter Knoten wenn kürzester Pfad Länge *x* hat:

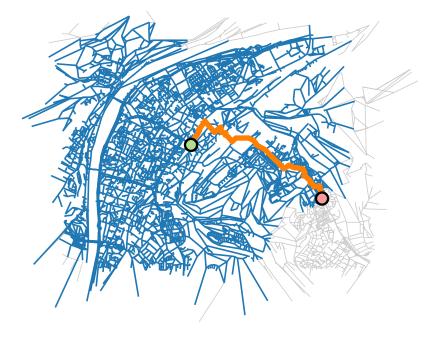
	$\chi = 4$	$x = \delta$	x = 12
Dijkstra	112	6 300	3 600 000
A^*	13	39	227

Schätzfunktion? #Kacheln an falscher Position

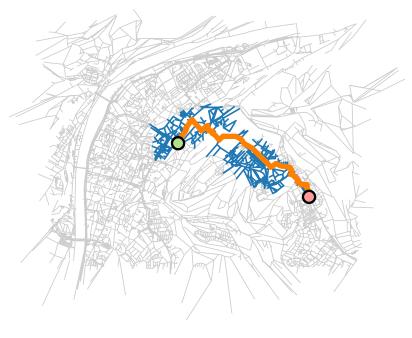
Algorithmen für geographische Informationssysteme

2. Vorlesung Routenplanung

Teil IV: Contraction Hierarchies



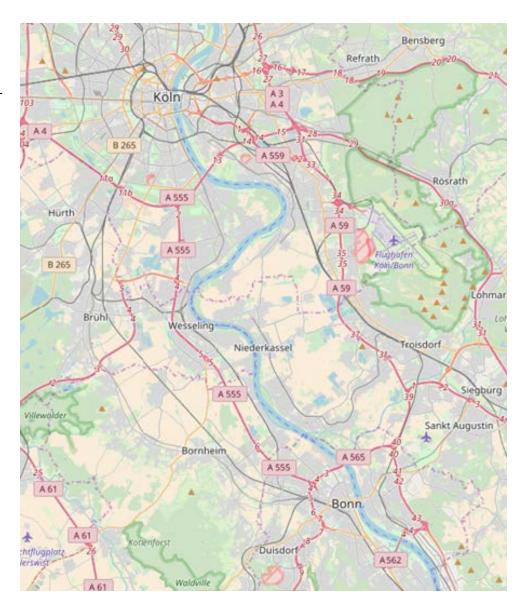
Philipp Kindermann



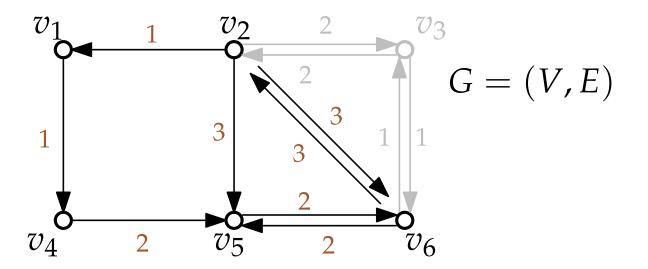
Wintersemester 2024/25

Contraction Hierarchies – Idee

- Dijkstra zu langsam für Server Queries
- A* funktioniert nicht für beliebige Kostenfunktionen
- Idee: Informationen vorberechnen um Queries zu beschleunigen
- Time-Space Tradeoff
- Es gibt eine Hierarchie:
 Autobahn → Bundesstraße → Landstraße
 → Kreisstraße → Gemeindestraße → Feldwege
- Entferne nach und nach unwichtigste Knoten
- Füge Abkürzungen in das Straßennetz ein, um kürzeste Wege aufrechtzuerhalten



Kontraktion

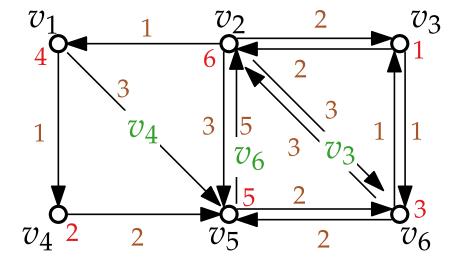


Kontraktion eines Knotens $v \in V$, z.B. v_3 :

- v und inzidente Kanten werden aus G entfernt (*deaktiviert*)
- Für jeden kürzesten Pfad *uvw* wird eine neue Kante *uw* mit entsprechendem Gewicht eingefügt.

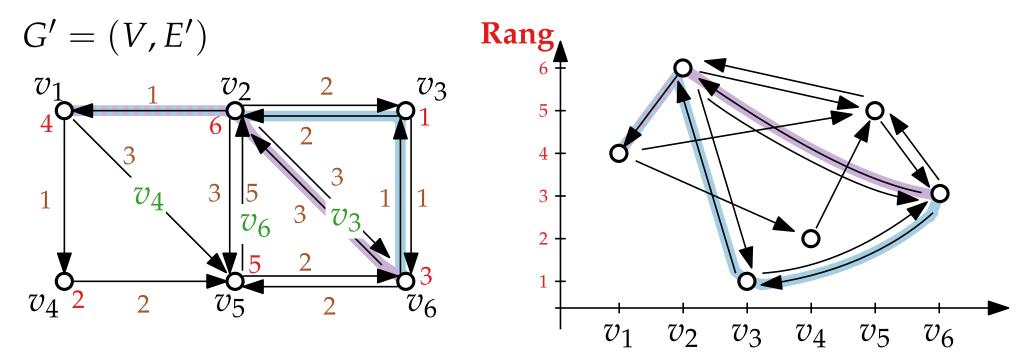
Contraction Hierarchies – Definition

$$G' = (V, E')$$



- Knoten werden in bestimmter Reihenfolge kontrahiert, z.B. v_3 , v_4 , v_6 , v_1 , v_5 , v_2 .
- Für jeden kontrahierten Knoten speichern wir den Rang, d.h., wann der Knoten kontrahiert wurde.
- Für jede neue Kante speichern wir, welche Knoten übersprungen wurden.

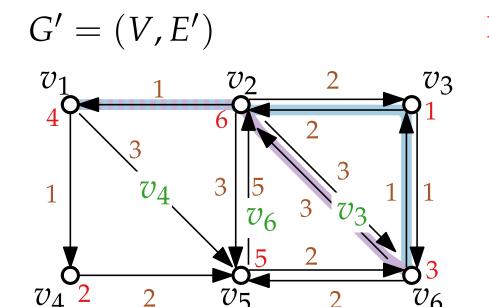
Contraction Hierarchies – Eigenschaften

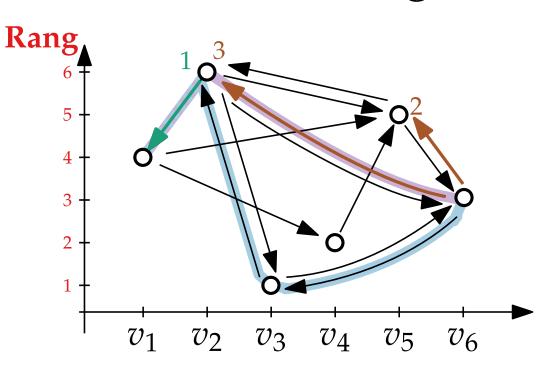


Für zwei Knoten $u, v \in V$, sei P_{uv} ein kürzester u-v-Pfad in G. Es gibt einen kürzesten u-v Pfad P'_{uv} in G', so dass:

- die Ränge der Knoten steigen zuerst und sinken dann,
- man erhält den Pfad P_{uv} aus P'_{uv} , indem man nach und nach die gespeicherten Abkürzungen auflöst.

Contraction Hierarchies – Benutzung





P_{uv} berechnen:

- 1. Berechne $P'_{\mu\tau}$.
- 2. Transformiere P'_{uv} zu P_{uv} .

- 1. Benutze Dijkstra von *u* aus mit nur aufsteigenden Kanten
- 2. Benutze Dijkstra von v aus mit nur absteigenden Rückwärtskanten
- 3. "Wendepunkt" hat niedrigste kumulative Distanz (1 + 3 = 4).

Contraction Hierarchies – Anmerkungen

- Die beiden Dijkstra-Durchläufe können gleichzeitig anstelle von nacheinander durchgeführt werden, indem eine *bidirektionale Suche* verwendet wird. Dadurch können noch mehr Knoten unerforscht bleiben.
- Die Methode funktioniert für jede Kontraktionssequenz, aber die Wahl der Knotenreihenfolge beeinflusst die Laufzeit erheblich. Es existieren mehrere Methoden zur Optimierung der Reihenfolge.