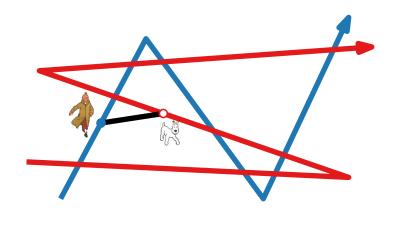
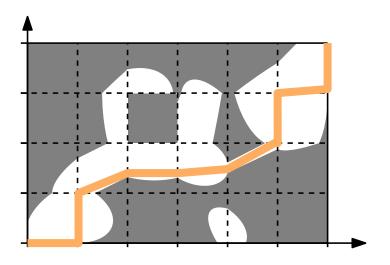


Algorithmen für geographische Informationssysteme

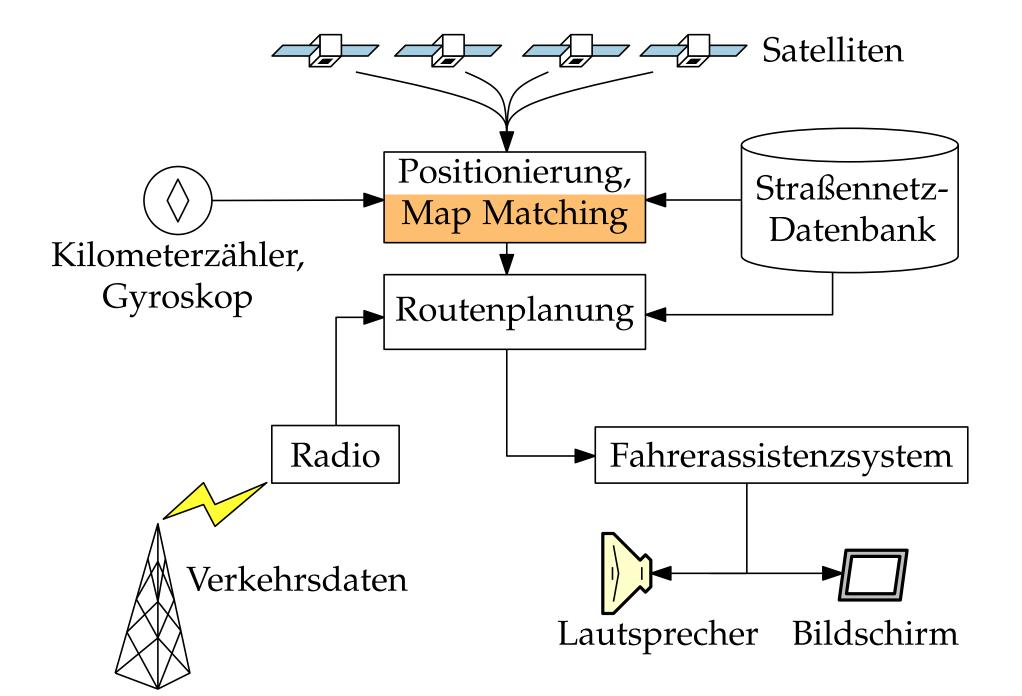
3. Vorlesung Map Matching



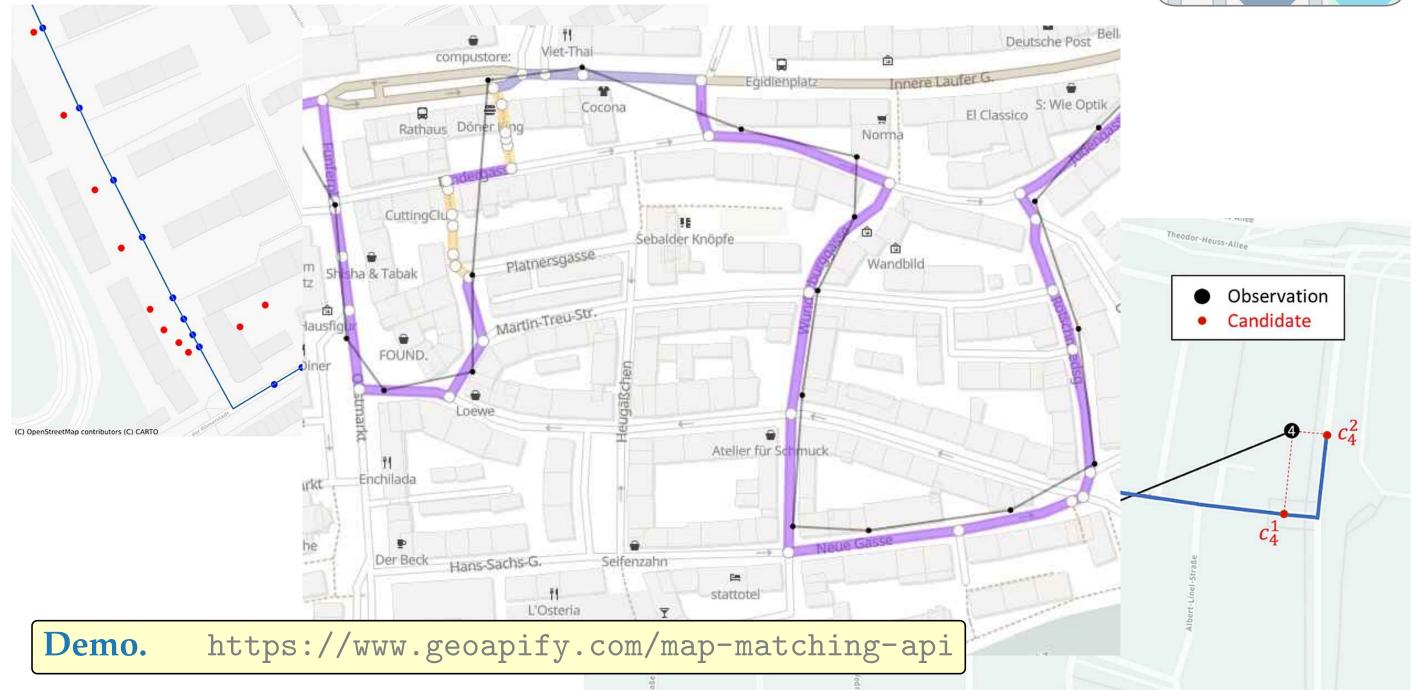
Teil I: Problemstellung



Navigationssysteme



Map Matching



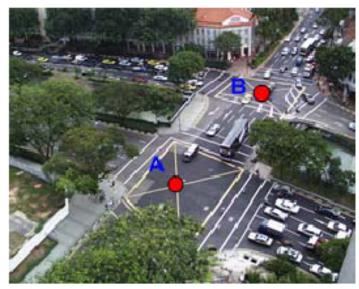
Schwierigkeiten

Ungenaue Beobachtungen

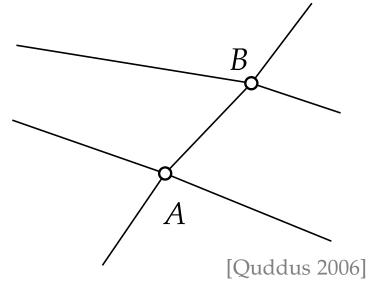
GPS: Positionsgenauigkeit ca. 20 m

[Wikipedia]

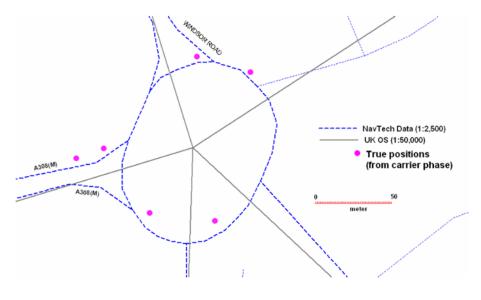
Abstrahierte/vereinfachte Repräsentation des Straßennetzes



tatsächliche Straßenkreuzung



Repräsentation als Graph



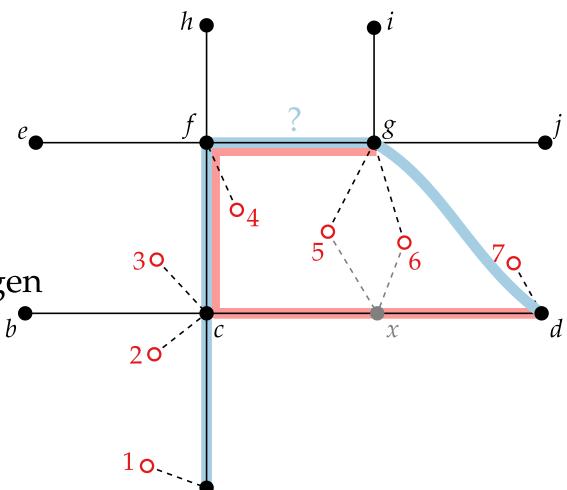
Unterschiede zweier Datensätze

Naive Ansätze

- Welche tatsächliche Route ist wahrscheinlich?
 - a-c-d?
 - a-c-f-g?
- Benötigen ein Maß, das Ähnlichkeit bestimmt

Ideen für Berechnung?

- Punkt-zu-Punkt-Zuordnung
 - Probleme?
 - Berechnung?
 - ightharpoonup Naiv: $\mathcal{O}(pn)$ für p Punkte und n Kreuzungen
 - $\rightarrow \mathcal{O}(p \log n)$ mit z.B. Range Trees

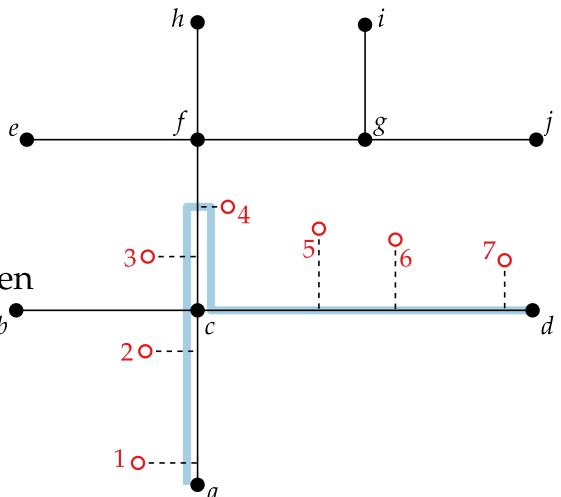


Naive Ansätze

- Welche tatsächliche Route ist wahrscheinlich?
 - a-c-d?
 - a-c-f-g?
- Benötigen ein Maß, das Ähnlichkeit bestimmt

Ideen für Berechnung?

- Punkt-zu-Punkt-Zuordnung
 - Probleme?
 - Berechnung?
 - \rightarrow Naiv: $\mathcal{O}(pn)$ für p Punkte und n Kreuzungen
 - $\rightarrow \mathcal{O}(p \log n)$ mit z.B. Range Trees
- Punkt-zu-Kante-Zuordnung
 - Probleme?
 - Berechnung?



Problemdefinition

MAPMATCHING

- **Gegeben:** Das Straßennetz als planar eingebetteter Graph G = (V, E)mit *n* Knoten und *m* Kanten
 - Die GPS-Trajektorie als Folge *P* von *p* Punkten

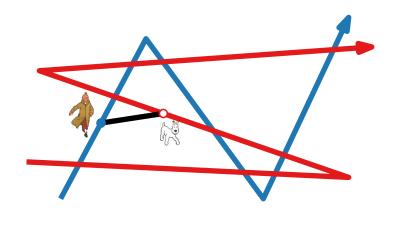
Weg in *G*, der minimale Distanz zu *P* hat.

Betrachten 2 Maße:

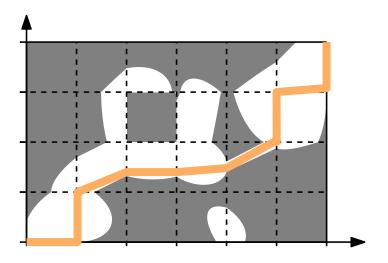
- Hausdorff Distanz
- Fréchet Distanz

Algorithmen für geographische Informationssysteme

3. Vorlesung Map Matching

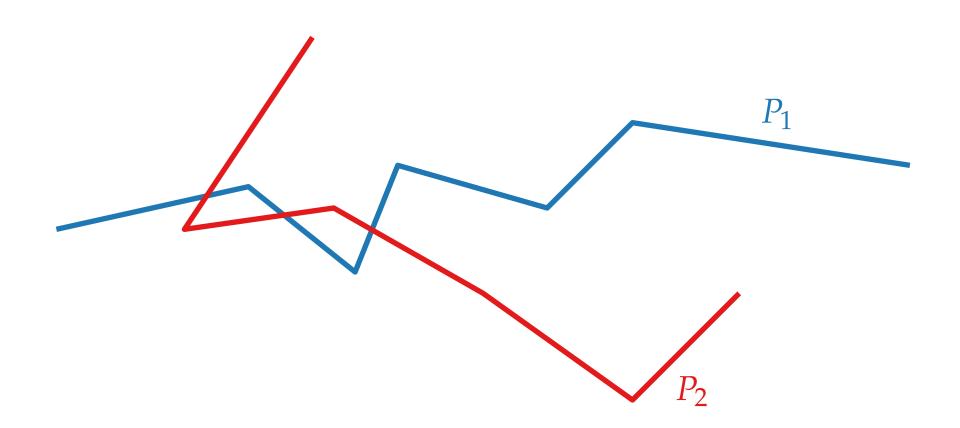


Teil II: Hausdorff Distanz



Abstände zwischen Linienzügen

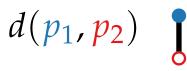
Gegeben zwei Linienzüge P_1 und P_2 , was ist der Abstand zwischen P_1 und P_2 ?



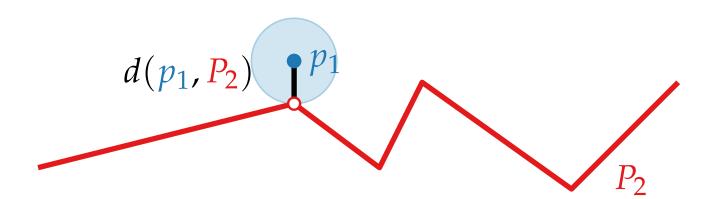
Euklidischer Abstand

Euklidischer Abstand zwischen zwei Punkten:

$$d(p_1, p_2) = |p_2 - p_1|$$



Min. Euklidischer Abstand zwischen Punkt p_1 und Linienzug P_2 : $d(p_1, P_2) = \min\{d(p_1, p_2) \mid p_2 \in P_2\}$



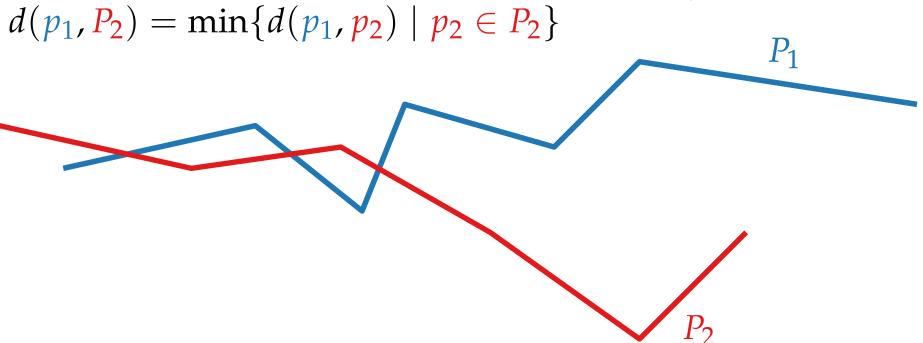
Euklidischer Abstand

Euklidischer Abstand zwischen zwei Punkten:

$$d(p_1, p_2)$$

$$d(p_1, p_2) = |p_2 - p_1|$$

■ Min. Euklidischer Abstand zwischen Punkt p_1 und Linienzug P_2 :



- Min. Euklidischer Abstand zwischen zwei Linienzügen P_1 , P_2 : $d(P_1, P_2) = \min\{d(p_1, p_2) \mid p_1 \in P_1, p_2 \in P_2\}$
- $d(P_1, P_2)$ als Distanzmaß ungeeignet, weil $d(P_1, P_2) = 0$ wenn sich P_1 und P_2 schneiden.

(Gerichtete) Hausdorff Distanz

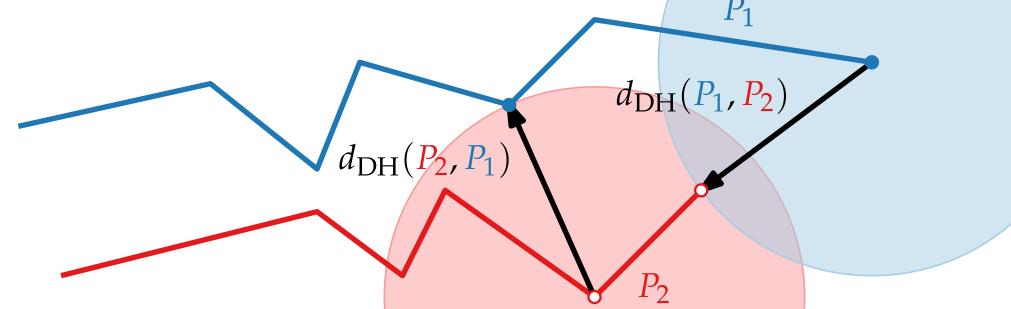
Euklidischer Abstand zwischen zwei Punkten:

$$d(p_1, p_2) = |p_2 - p_1|$$

$$d(p_1, p_2)$$

■ Min. Euklidischer Abstand zwischen Punkt p_1 und Linienzug P_2 :

$$d(p_1, P_2) = \min\{d(p_1, p_2) \mid p_2 \in P_2\}$$



Gerichtete Hausdorff Distanz: $d_{DH}(P_1, P_2) = \max\{d(p_1, P_2) \mid p_1 \in P_1\}$

Achtung: Allgemein gilt $d_{\text{DH}}(P_1, P_2) \neq d_{\text{DH}}(P_2, P_1)$

■ Hausdorff Distanz: $d_H = \max\{d_{DH}(P_1, P_2), d_{DH}(P_2, P_1)\}$

Hausdorff Distanz – Berechnung

Es gibt unendlich viele Punkte auf P_1 und P_2 . Wie können wir die Berechnung vereinfachen?

- Berechnen gerichteter Hausdorff Distanz reicht aus.
- Hausdorff Distanz bezieht immer mindestens eine Ecke ein.

- → Naive Berechnung in $\mathcal{O}(n_1n_2)$ Zeit.
- Berechnung mit Voronoi-Diagramm und Sweep-Line Algorithmus in $\mathcal{O}((n_1 + n_2) \log(n_1 + n_2))$ Zeit. [Alt et al. 1995]

Die Hausdorff Distanz stellt für jeden Punkt $p_1 \in P_1$ einen Bezug zu einem Punkt $p_2 \in P_2$ her.

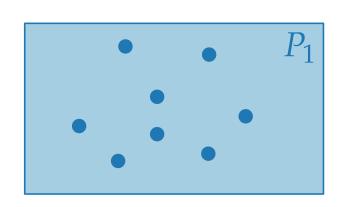
→ Wichtig für Map Matching!

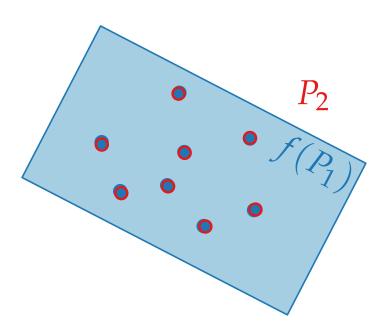
Beispiel – Point Pattern Matching

Typische Aufgabe:

Gegeben: Zwei diskrete Punktmenge P_1 , P_2

Gesucht: Finde Rotation/Verschiebung f, so dass $d_H(f(P_1), P_2)$ minimal ist.



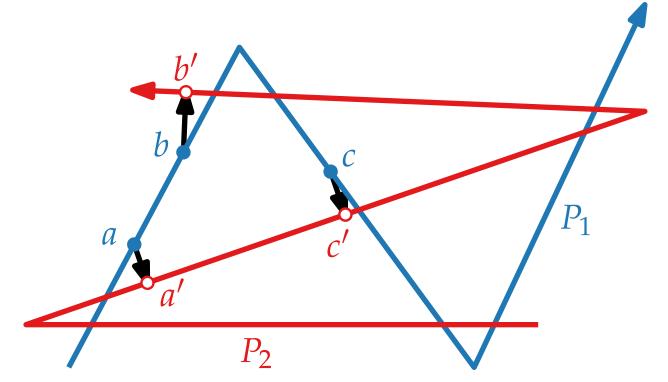


Hausdorff Distanz – Probleme?

Bezugspunkte auf P_2 halten nicht die Reihenfolge der Punkte auf P_1 ein!

$$P_1:a\to b\to c$$

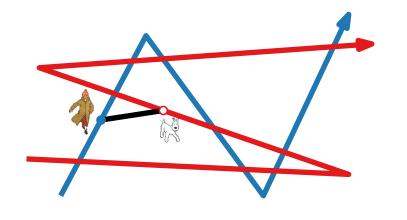
$$P_2: a' \rightarrow c' \rightarrow b'$$



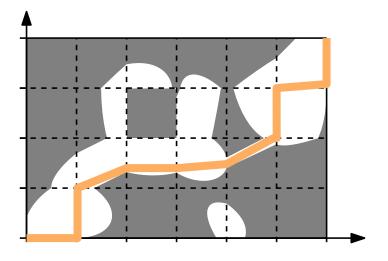
Zuordnung der Punkte nicht plausibel.

Algorithmen für geographische Informationssysteme

3. Vorlesung Map Matching

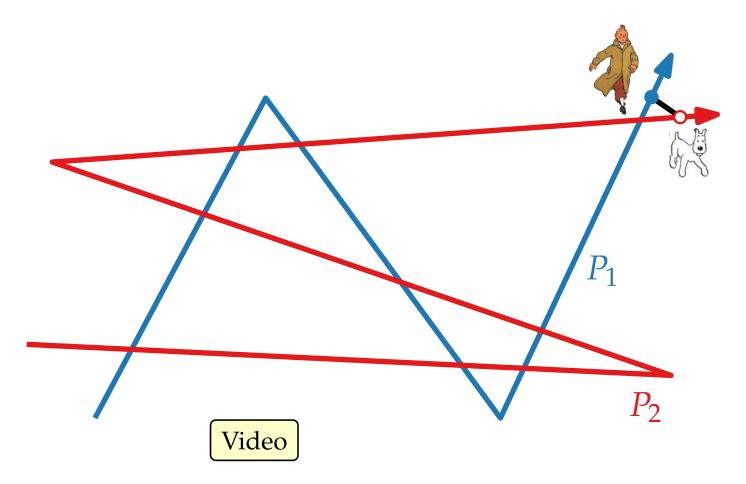


Teil III: Fréchet Distanz



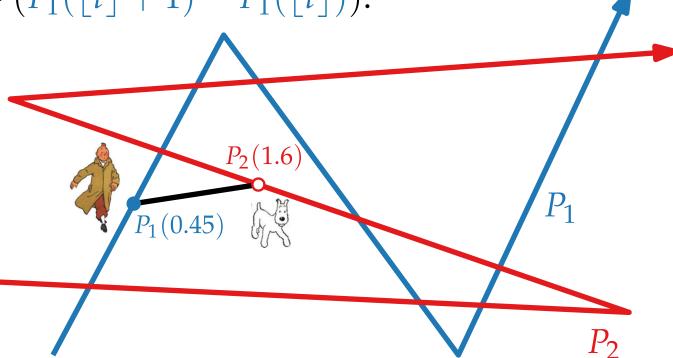
Fréchet Distanz – Idee

- **Herrchen** läuft entlang P_1 ohne jemals umzukehren.
- \blacksquare Hund läuft entlang P_2 ohne jemals umzukehren.
- Herrchen und Hund sind über Hundeleine verbunden.
- Wie lang muss die Hundeleine mindestens sein?



Parametrisierte Kurve

- Stelle Bezug zwischen Zeitpunkt und Punkten auf Linienzügen her.
- Beide bewegen sich von Zeitpunkt 0 bis Zeitpunkt 1.
- $ightharpoonup P_1(t)$ mit $0 \le t \le n_1 1$ ist ein Punkt auf P_1 .
- $P_2(t)$ mit $0 \le t \le n_2 1$ ist ein Punkt auf P_2 .
- Für ganzzahlige s ist $P_1(t)$ ($P_2(t)$) die (t+1)-te Ecke von P_1 (P_2).
- Sonst ist $P_1(t) = P_1(\lfloor t \rfloor) + (t \lfloor t \rfloor) \cdot (P_1(\lfloor t \rfloor + 1) P_1(\lfloor t \rfloor))$.

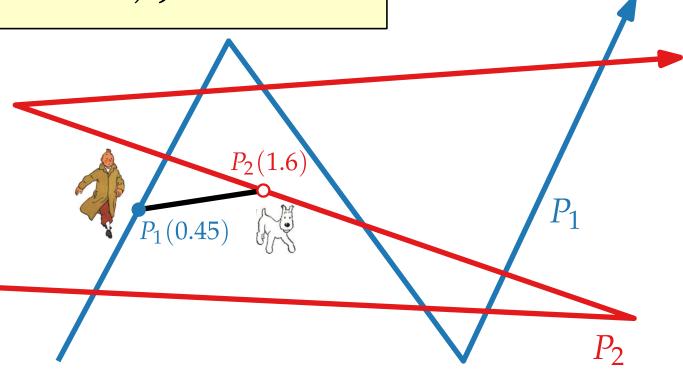


Fréchet Distance – Definition

Seien $\alpha:[0,1] \to [0,n_1-1]$ und $\beta:[0,1] \to [0,n_2-1]$ surjektive, monoton wachsende und stetige Funktionen.

[Jeder Zielwert wird angenommen] [gehen nicht zurück] [teleportieren sich nicht]

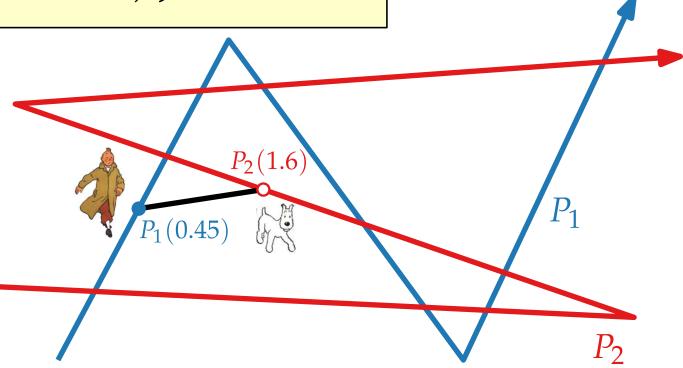
$$\rightarrow d_{\mathrm{F}}(P_1, P_2) = \min_{\alpha, \beta} \max_{t \in [0,1]} \left\{ d\left(P_1(\alpha(t)), P_2(\beta(t))\right) \right\}$$



Fréchet Distanz – Berechnung

- Löse Entscheidungsproblem: Gegeben $\varepsilon \in \mathbb{R}$: Ist $d_F(P_1, P_2) \leq \varepsilon$?
- Verwende parametrisierte Suche (ähnlich wie binäre Suche) um kleinstes ε zu finden, sodass die Antwort ja ist.

$$\rightarrow d_{\mathrm{F}}(P_1, P_2) = \min_{\alpha, \beta} \max_{t \in [0,1]} \left\{ d\left(P_1(\alpha(t)), P_2(\beta(t))\right) \right\}$$

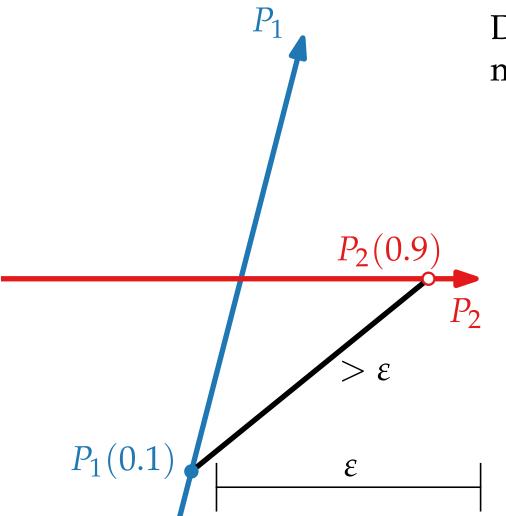


Free-Space Diagram – 1 Segment

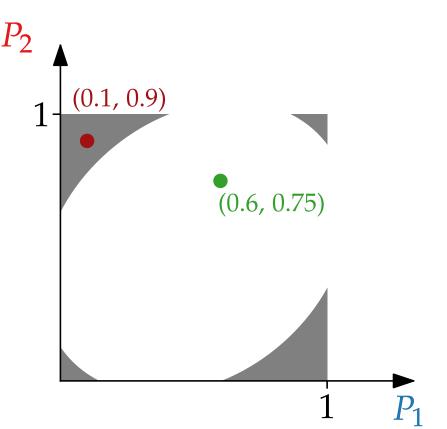
Spezialfall: P_1 und P_2 bestehen nur aus einem Segment.

 $P_1(0.6)$ und $P_2(0.75)$ können verbunden werden.

 $P_1(0.1)$ und $P_2(0.9)$ können **nicht** verbunden werden.



Das Free-Space Diagram F_{ε} zeigt an, welche Punktepaare mit einer Leine der Länge ε verbunden werden können.



Free-Space Diagram – 1 Segment

- $F_{\varepsilon} = \left\{ (s,t) \in [0,1]^2 \mid d(P_1(s), P_2(t)) \le \varepsilon \right\}$ hat die Form einer Ellipse.
- $d_{\rm F}(P_1, P_2) \le \varepsilon \Leftrightarrow F_{\varepsilon}$ enthält einen Pfad von (0,0) bis (1,1), der in beide Richtungen monoton ist.

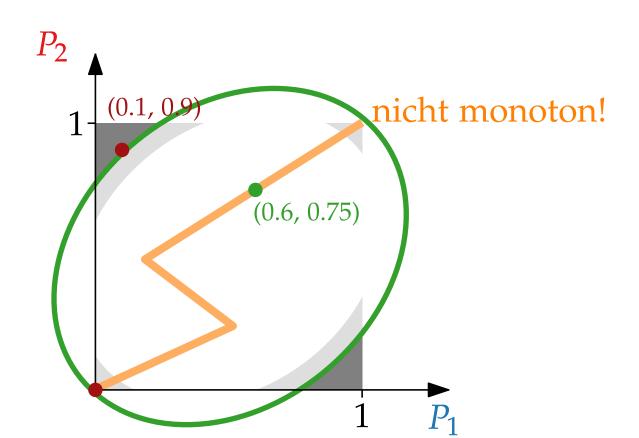
Unser Beispiel:

$$(0,0) \notin F_{\varepsilon} \Rightarrow d_{\mathcal{F}}(P_1,P_2) > \varepsilon$$

Aber für etwas größeres ε :

$$d_{\mathrm{F}}(P_1, P_2) \leq \varepsilon$$

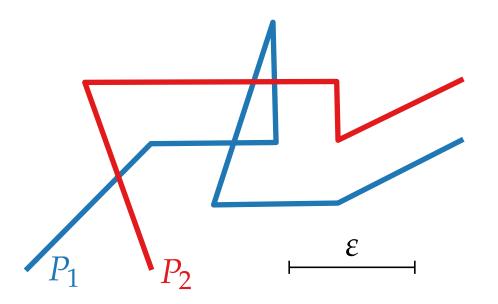
Mehr als ein Segment?

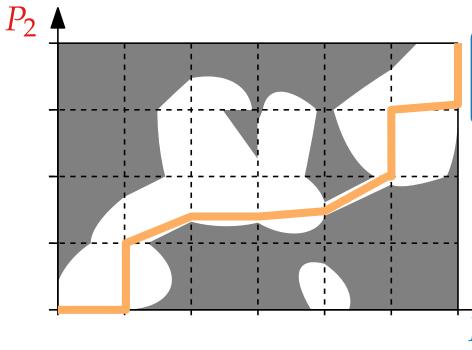


Free-Space Diagram – Allgemein

Allgemeiner Fall: P_1 und P_2 haben mehrere Segmente.

Free-Space Diagram
$$F_{\varepsilon} = \left\{ (s,t) \in [0,n_1-1] \times [0,n_2-1] \mid d(P_1(s),P_2(t)) \leq \varepsilon \right\}$$
 besteht aus freien Bereichen für jedes Paar von Segmenten.





 F_{ε} kann in $\mathcal{O}(n_1n_2)$ Zeit berechnet werden.

 $(\mathcal{O}(1)$ Zeit pro Segmentpaar).

TODO:

Zulässigen Pfad finden

Unser Beispiel:

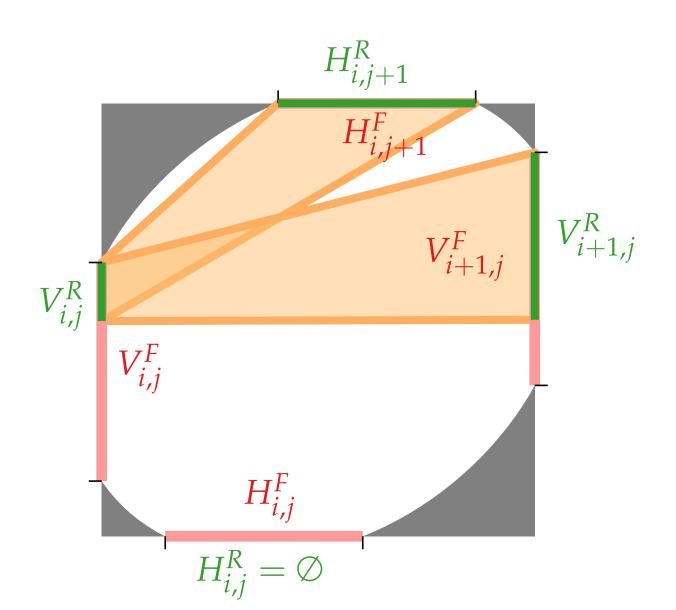
 F_{ε} enthält monotonen Pfad von (0,0) nach (n_1-1,n_2-1)

$$\Rightarrow d_{\rm F}(P_1, P_2) \leq \varepsilon$$

Demo. https://algo.uni-trier.de/demos/frechet

Monotonen Pfad finden

Kanten einer Zelle im Free-Space Diagram: $H_{i,j}^F$, $H_{i,j+1}^F$, $V_{i,j}^F$, $V_{i+1,j}^F$



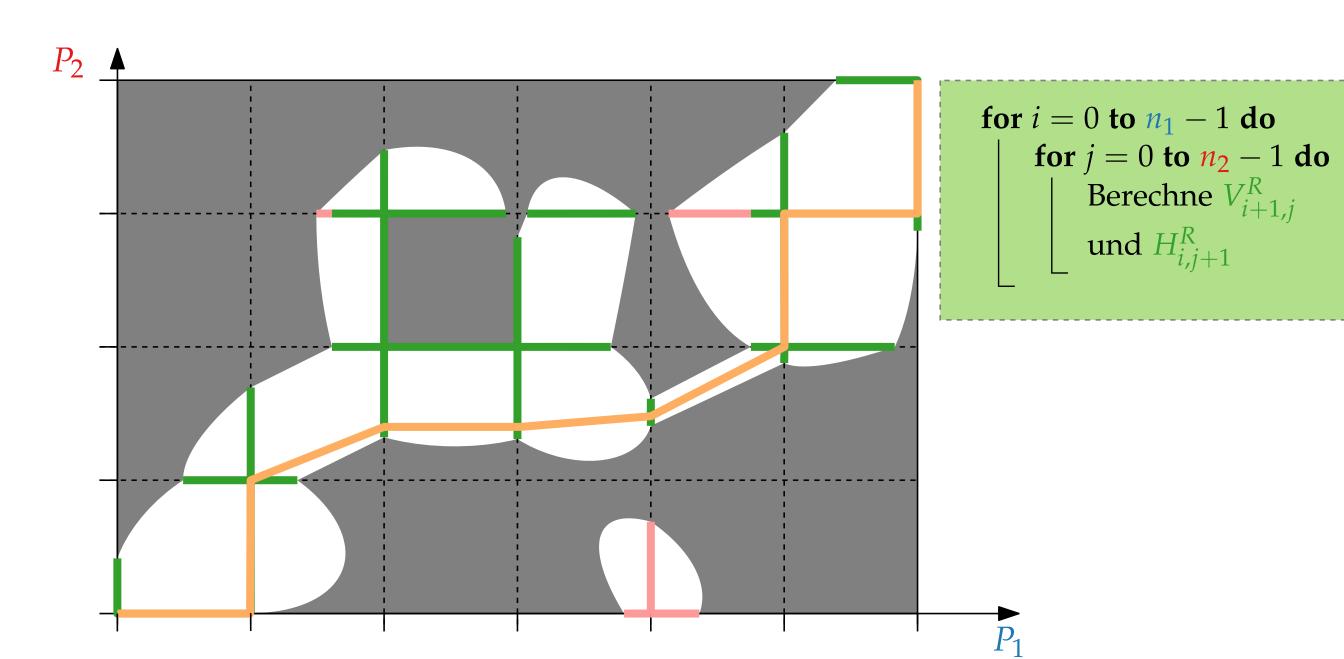
Teile dieser Kanten, die von (0,0) aus erreichbar sind:

$$H_{i,j}^{R}$$
, $H_{i,j+1}^{R}$, $V_{i,j}^{R}$, $V_{i+1,j}^{R}$

 $H_{i,j}^R$ und $V_{i,j}^R$ sind bekannt.

 \rightarrow $H_{i,j+1}^R$ und $V_{i+1,j}^R$ können berechnet werden.

Algorithmus



Algorithmus – Zusammenfassung

Für gegebenes ε :

- Berechne F_{ε} in $\mathcal{O}(n_1n_2)$ Zeit. (Jedes Segmentpaar benötigt $\mathcal{O}(1)$ Zeit.)
- Berechne monotonen Pfad in F_{ε} in $\mathcal{O}(n_1n_2)$ Zeit:

```
for i = 0 to n_1 - 1 do

for j = 0 to n_2 - 1 do

Berechne V_{i+1,j}^R und H_{i,j+1}^R
```

Allgemein:

- \blacksquare Verwende parametrisierte Suche, um kleinstes gültiges ε zu finden
- Logarithmische Suche $\rightarrow \mathcal{O}(n_1n_2\log n_1n_2)$ Zeit insgesamt.