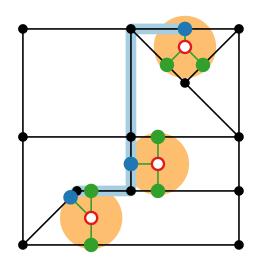
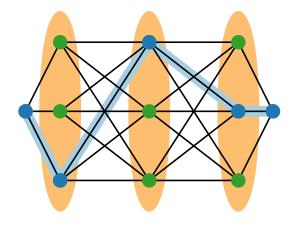


Algorithmen für geographische Informationssysteme

4. Vorlesung Map Matching Algorithmen



Teil I: Map Matching mit Fréchet Distanz



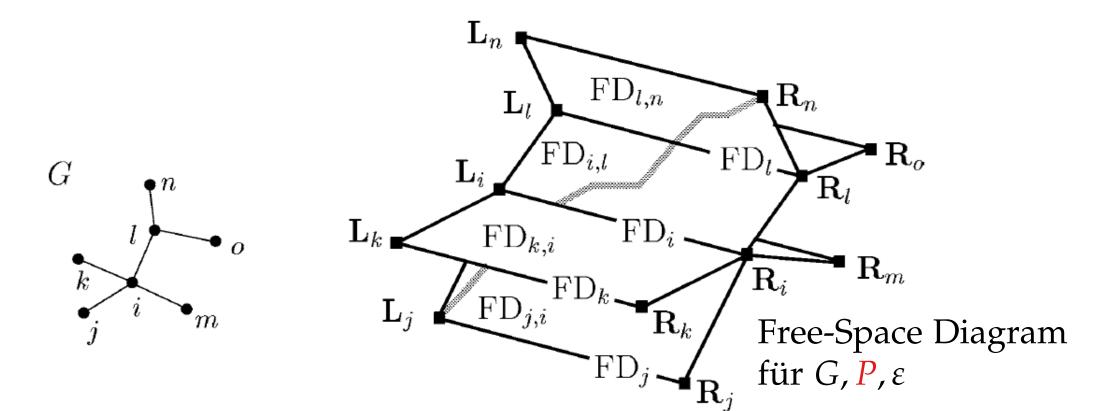
Map Matching mit Fréchet Distance

Optimierungsproblem:

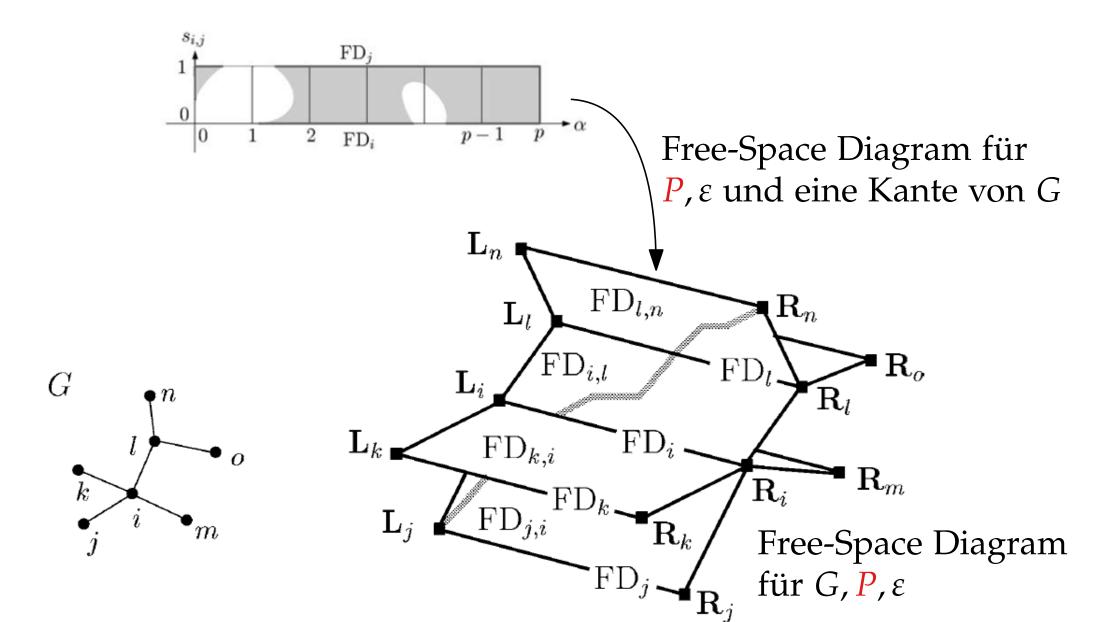
Gegeben ein geometrischer Graph *G* und ein Linienzug *P*, finde einen Pfad in *G* mit minimaler Fréchet Distanz zu to *P*.

Entscheidungsproblem:

Gegeben G, P und ε , gibt es einen Pfad Q in G mit $d_F(P,Q) \leq \varepsilon$?



Map Matching mit Fréchet Distance



Map Matching mit Fréchet Distance

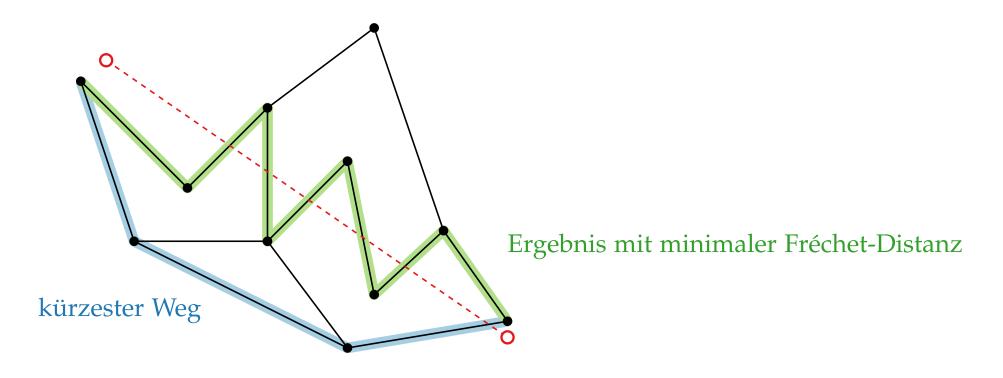
Gehe ähnlich wie Dijkstra vor:

- Finde immer den ersten Punkt (von links nach rechts), der erreichbar ist.
- Dann betrachte anliegende Zellen und update ihren erreichbaren Punkte, wenn möglich.
- Laufzeit für Entscheidungsproblem: $\mathcal{O}(mp\log m)$
- Laufzeit für Optimiserungsproblem: $O(mp \log m \log mp)$

[Alt et al. 2003: Matching Planar Maps, J. Algorithm., 49:262–283]

Problem

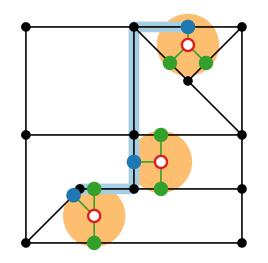
GPS-Punkte der Trajektorie weisen häufig einen relativ großen Abstand zueinander auf. z.B. [Lou et al.: Map-Matching for Low-Sampling-Rate GPS Trajectories, ACM GIS '09]: Ein Punkt etwa alle zwei Minuten (z.B. zur Aufzeichnung & Analyse von Taxirouten)



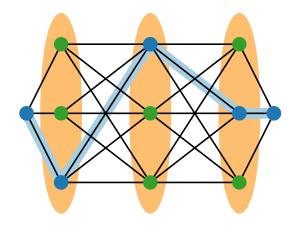
Fahrer wählen bevorzugt kürzeste Wege im Straßennetz.

Algorithmen für geographische Informationssysteme

4. Vorlesung Map Matching Algorithmen

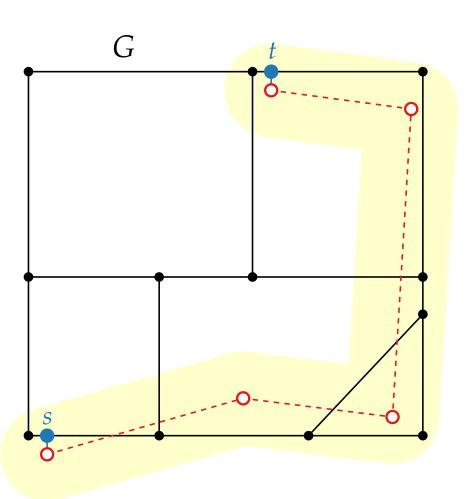


Teil II: Andere Ansätze



Dalumpines & Scott (2011)

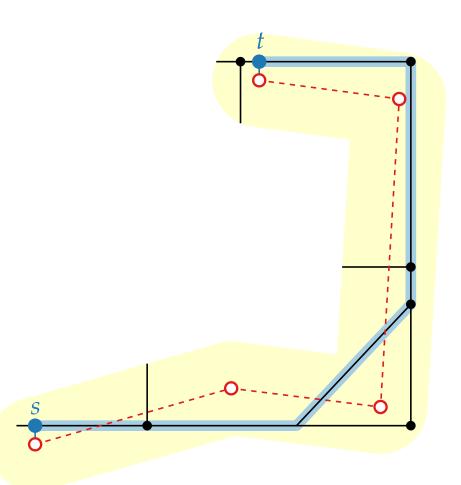
- Erstelle Puffer der Größe ε (vom Benutzer festgelegt).
- Finde Punkte *s* und *t* in *G* mit min. Euklidischen Abstand zu Start und Ende der Trajektorie.
- Berechne Schnitt *G'* von *G* mit Puffer.



Dalumpines & Scott (2011)

- \blacksquare Erstelle Puffer der Größe ε (vom Benutzer festgelegt).
- Finde Punkte *s* und *t* in *G* mit min. Euklidischen Abstand zu Start und Ende der Trajektorie.
- Berechne Schnitt G' von G mit Puffer.
- Suche kürzesten s–t–Pfad in G'.

Problem: Algorithmus betrachtet nur Endpunkte!



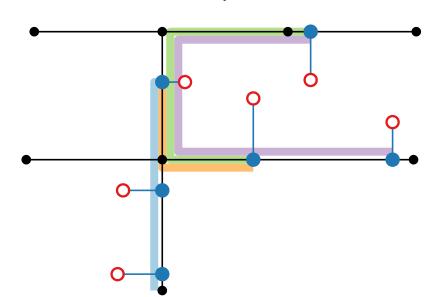
G'

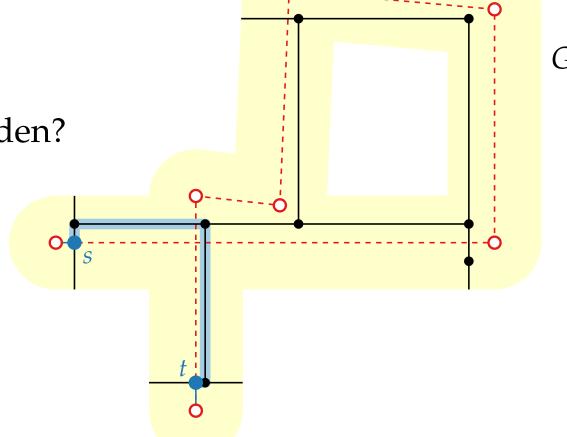
Dalumpines & Scott (2011)

- \blacksquare Erstelle Puffer der Größe ε (vom Benutzer festgelegt).
- Finde Punkte *s* und *t* in *G* mit min. Euklidischen Abstand zu Start und Ende der Trajektorie.
- Berechne Schnitt G' von G mit Puffer.
- Suche kürzesten s–t–Pfad in G'.

Problem: Algorithmus betrachtet nur Endpunkte!

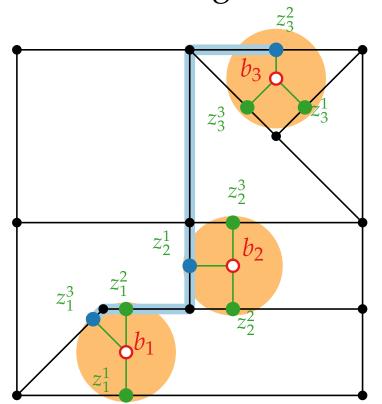
Algorithmus zwischen jedem Punktepaar verwenden?

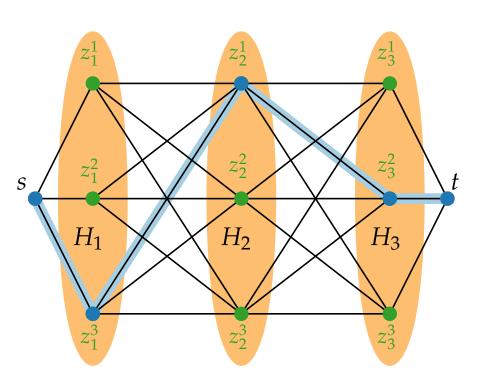




Newson & Krumm (2009)

Idee: Methode der größten Plausibilität + Markow-Kette + Verdecktes Markowmodell





Vorgehen: Berechne Kandidatenmenge für GPS Punkte

- Berechne Trellis-Graph (Kanten entsprechen kürzesten Wegen in *G*, Kantengewichte basierend auf probabilistischem Modell)
- Berechne *s*–*t*–Pfad mit größtem Gewicht
- Rekonstruiere entsprechenden Graph in *G*

Newson & Krumm (2009)

Für jeden Punkt der Trajektorie gibt es zwei Zufallsvariablen:

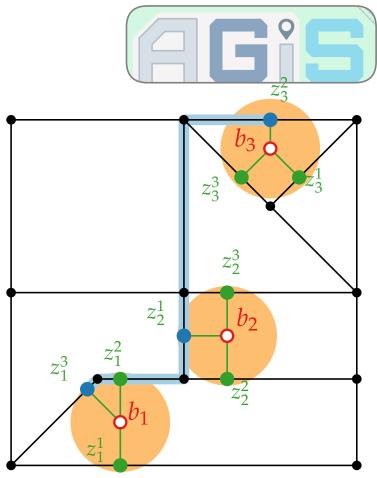
- B_i ist die beobachtete GPS Koordinate (Domäne \mathbb{R}^2)
- Z_i ist die Position im Straßennetz (diskrete Domäne $\{z_i^1, \ldots, z_i^k\}$)
- Wahrscheinlichkeitsverteilung $P[B_i \mid Z_i]$ ist bekannt.

Gegeben Position im Straßennetz, was ist die Wahrscheinlichkeit der GPS Beobachtung?

Üblicherweise wird Normalverteilung um Position im Straßennetz angenommen.

■ Wahrscheinlichkeitsverteilung $P[Z_i \mid Z_{i-1}]$ ist bekannt.

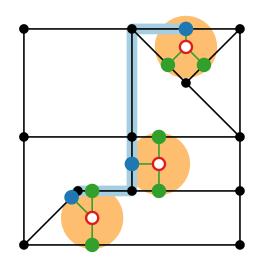
Gegeben Position im Straßennetz zu Zeitpunkt i-1, was ist die Wahrscheinlichkeit der Position im Straßennetz zum Zeitpunkt i? Hängt insbesondere von Distanz zwischen den zwei Positionen im Straßennetz ab.



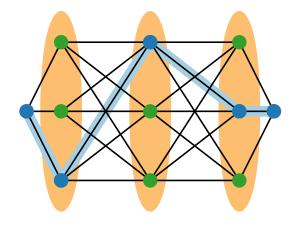
Frage: Welche Sequenz der Positionen im Straßennetzwerk ist am wahrscheinlichsten?

Algorithmen für geographische Informationssysteme

4. Vorlesung Map Matching Algorithmen



Teil III: Methode der größten Plausibilität



Methode der größten Plausibilität

Wahrscheinlichkeit vs. Plausibilität

- Wir werfen eine Münze.
 - P[Kopf] = p
 - P[Zahl] = 1 p

Modell

- Wir werfen eine Münze 3 mal.
- Was ist die Wahrscheinlichkeit, das Ergebnis x = (K, K, Z) zu erhalten? Ergebnis? $P[x(K,K,Z)] = p \cdot p \cdot (1-p)$
- Angenommen, die Münze ist fair $(p = \frac{1}{2})$

Parameter

$$ightharpoonup P[x(K,K,7)|_{P} - \frac{1}{2}] - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

p ist keine Zufallsvariable!

$$ightharpoonup P[x(K,K,Z); p = \frac{1}{2}] = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

Methode der größten Plausibilität

Wahrscheinlichkeit vs. Plausibilität

- Wir werfen eine Münze.
 - P[Kopf] = p
 - P[Zahl] = 1 p
- Wir haben eine Münze 3 mal geworfen.
- Das Ergebnis war x = (K, K, Z).

Was ist die Wahrscheinlichkeit Plausibilität, dass die Münze fair ist $(p = \frac{1}{2})$?

Modell

Ergebnis

Parameter?

Plausibilitätsfunktionen

- Gegeben ein Parameterwert θ , wie wahrscheinlich ist das Ergebnis x?
- Gegeben ein Ergebnis x, wie plausibel ist ein bestimmter Parameterwert θ ?
- Definiere Plausibilitätsfunktion $L(\theta \mid x) = P[x; \theta]$
- Das Ergebnis war x = (K, K, Z)
- Wie plausibel ist es, dass die Münze fair ist $(p = \frac{1}{2})$?

Keine Wahrscheinlichkeit!

$$\rightarrow L(p = \frac{1}{2} \mid x = (K, K, Z)] = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = 0.125$$

$$\rightarrow$$
 $L(p = 0.1 \mid x = (K, K, Z)] = 0.1 \cdot 0.1 \cdot 0.9 = 0.009$

→
$$L(p = \frac{2}{3} \mid x = (K, K, Z)]$$
 = $\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}$ = $0,\overline{148}$

Wahrscheinlichkeit vs. Plausibilität

Wahrscheinlichstes Ergebnis

- Gegeben Parameter $p = \frac{2}{3}$
- \blacksquare Das wahrscheinlichste Ergebnis ist (K, K, K)

$$ightharpoonup P[x = (K, K, K); p = \frac{2}{3}] = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = 0,\overline{296}$$

$$ightharpoonup P[x = (K, K, Z); p = \frac{2}{3}] = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} = 0,\overline{148}$$

Größte Plausibilität

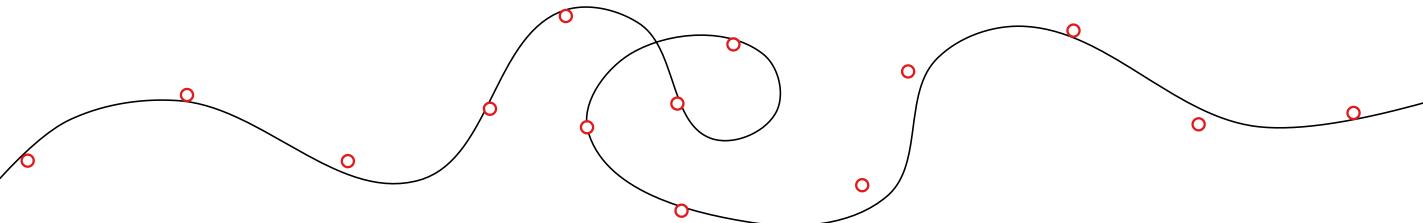
- Gegeben Ergebnis x = (Z, K, Z)
- Die größte Plausibilität ist $p = \frac{1}{3}$
 - ightharpoonup Der Wert von p "exklärt das Ergebnis am Besten"
 - → Der Wert von p macht das Ergebnis "am wenigsten überraschend"

Zurück zu Karten

Modell?
Parameter?
Ergebnis?

Wahrscheinlichstes Ergebnis

- Gegeben ein Pfad im Straßennetz
- Welche GPS Trajektorie wird am wahrscheinlichsten beobachtet? (mit Ungenauigkeit?)

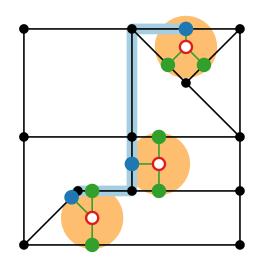


Größte Plausibilität

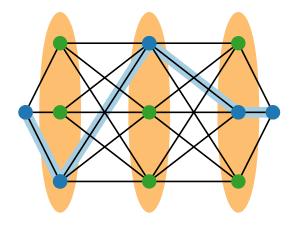
- Gegeben eine beobachtete GPS Trajektorie
- Welcher Pfad im Straßennetz ist am plausibelsten?
- "Welcher Pfad durchs Straßennetz erklärt am Besten die beobachtete Trajektorie?"

Algorithmen für geographische Informationssysteme

4. Vorlesung Map Matching Algorithmen



Teil IV: Markow-Ketten



Markow-Ketten

Gegeben Sequenz von Zufallsvariablen X_1, X_2, X_3, \ldots

Markow-Eigenschaft:

$$P[X_{n+1} \mid X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_1 = x_1]$$

= $P[X_{n+1} \mid X_n = x_n]$

"Wenn man die Gegenwart kennt, ist die Zukunft unabhängig von der Vergangenheit."

Wir schreiben $P[X_1]$, $P[X_2 \mid X_1]$, $P[X_3 \mid X_2]$, etc . . .

Andrei Andrejewitsch Markow *1856, Rjasan †1922, Petrograd

Markow-Ketten – Beispiel

Zwei mögliche Zustände: $Z = \{Sonne, Regen\}.$

$$P[X_1 = \text{Regen}] = 0.3$$

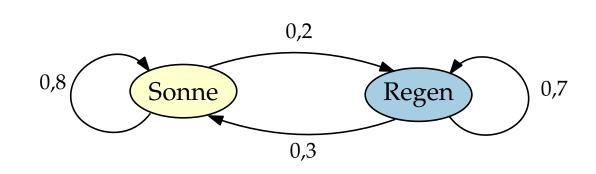
■
$$P[X_1 = Sonne] = 0.7$$

$$P[X_{n+1} = \text{Regen} \mid X_n = \text{Regen}] = 0.7$$

$$P[X_{n+1} = Sonne \mid X_n = Regen] = 0.3$$

$$P[X_{n+1} = \text{Regen} \mid X_n = \text{Sonne}] = 0.2$$

■
$$P[X_{n+1} = Sonne \mid X_n = Sonne] = 0.8$$



$$P[X_2 = \text{Regen}] = 0.3 \cdot 0.7 + 0.7 \cdot 0.2 = 0.21 + 0.14 = 0.35$$

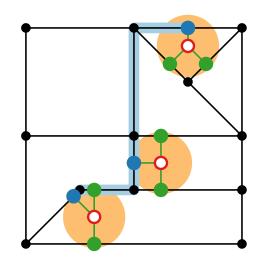
$$P[X_2 = Sonne] = 0.65$$

$$P[X_3 = \text{Regen}] = 0.375$$

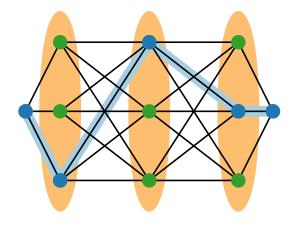
■
$$P[X_3 = Sonne] = 0,625$$

Algorithmen für geographische Informationssysteme

4. Vorlesung Map Matching Algorithmen



Teil V: Verdecktes Markow-Modell



Verdecktes Markow-Modell

Modelliert ein System durch eine Markow-Kette

Zu jedem Zeitpunkt befindet sich das System in einem bestimmten Zustand

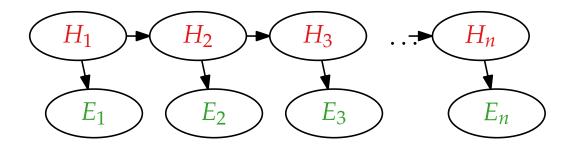
Aber: der Zustand ist verdeckt!

Wir können den Zustand nicht beobachten.

Wir bekommen nur Emissionen

- Beobachtbare Ausgabesymbole
- Eine Emission pro Zeitpunkt
- Je nach Zustand unterschiedliche Wahrscheinlichkeiten
- Emissionen in jedem Schritt unabhängig

Ziel ist es, aus den Emissionen auf die plausibelsten verdeckten Zustände zu schließen.



Verdeckte Variablen (Zustände)

Beobachtete Variablen (Emissionen)

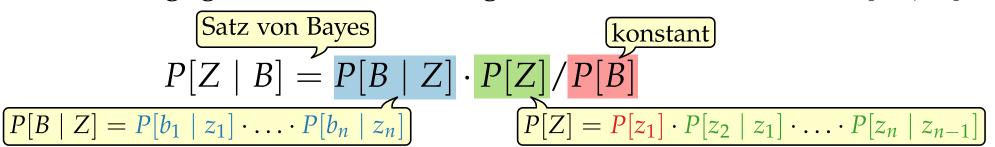
Verdecktes Markow-Modell

- **Gegeben:** Beobachtungen $B = (b_1, \ldots, b_n)$, je eine pro Zeitpunkt
 - Mögliche Systemzustände Z
 - Für jeden Systemzustand $z \in Z$ und jede Beobachtung o
 - die Wahrscheinlichkeit $P[b \mid z]$ oder

Falls diskreter Zustandsraum

- die Wahrscheinlichkeitsdichtefunktion f[b|z], Falls kontinuierlicher Zustandsraum dass b bei Zustand z beobachtet wird
- Für jedes Paar von Zuständen $z_1, z_2 \in Z$ die Wahrscheinlichkeit $P[z_2 \mid z_1]$ (Übergangswahrscheinlichkeit)
- Für jeden Zustand $z \in Z$ die (a-priori-)Wahrscheinlichkeit P[z]

Gesucht: Folge $Z = (z_1, \dots, z_n)$ von Zuständen, die sich am Besten mit den gegeben Beobachtungen erklären lässt, also $P[Z \mid B]$ maximiert.



Thomas Bayes *1701, London †1761, Tunbridge Wells

- **Gegeben:** Beobachtungen B = (nass, nass, trocken, nass, trocken)
 - \blacksquare Mögliche Systemzustände $Z = \{Sonne, Regen\}$
 - Beobachtungswahrscheinlichkeiten:
 - \blacksquare P[nass | Sonne] = 0,1
 - $P[\text{trocken} \mid \text{Sonne}] = 0.9$
 - P[nass | Regen] = 0.95
 - $P[\text{trocken} \mid \text{Regen}] = 0.05$
 - A-priori-Wahrscheinlichkeiten:
 - P[Sonne] = 0,7

$$= 0.7$$

P[Regen] = 0.3

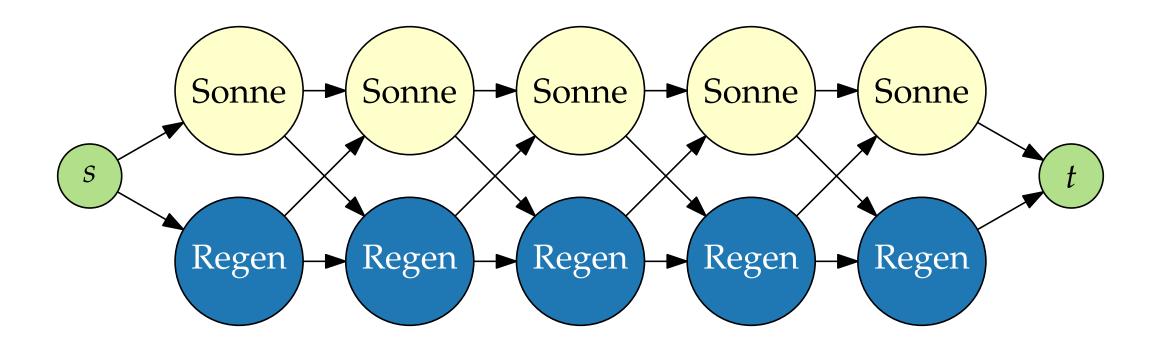
$$= 0,3$$

Ubergangswahrscheinlichkeiten:

- P[Sonne | Sonne] = 0.8
- P[Regen | Sonne] = 0.2
- P[Sonne | Regen] = 0.3
- P[Regen | Regen] = 0.7

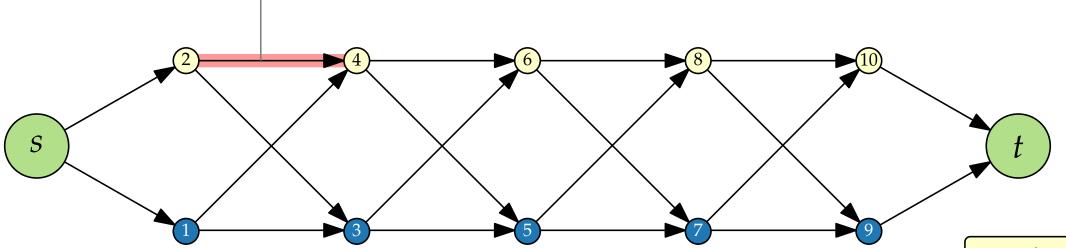
Gesucht: Folge $Z = (z_1, ..., z_n)$ von Zuständen, so dass $P[Z \mid B]$ maximal ist.

■ Beobachtungen B = (nass, nass, trocken, nass, trocken)



■ Beobachtungen B = (nass, nass, trocken, nass, trocken)

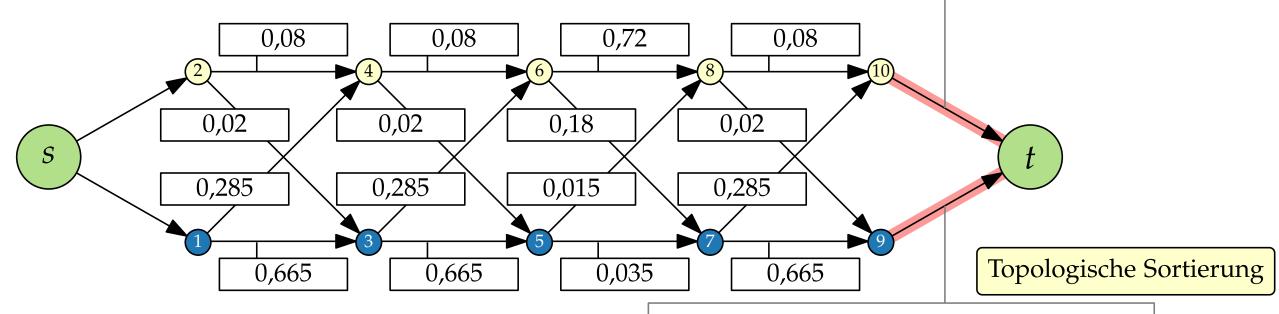
$$P[B_1 = \text{nass} \mid Z_1 = \text{Sonne}] \cdot P[Z_2 = \text{Sonne} \mid Z_1 = \text{Sonne}]$$



Topologische Sortierung

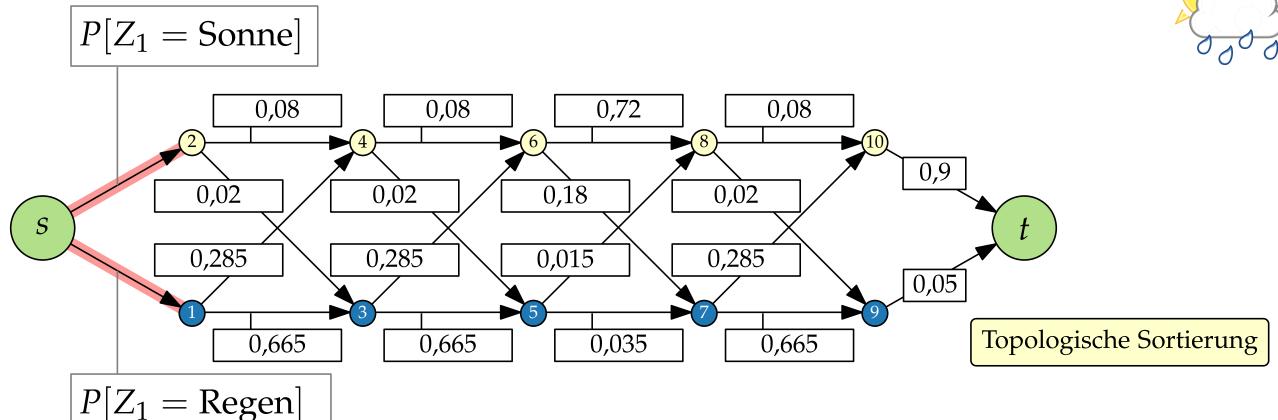
■ Beobachtungen B = (nass, nass, trocken, nass, trocken)

$$P[B_5 = \text{trocken} \mid Z_5 = \text{Sonne}]$$



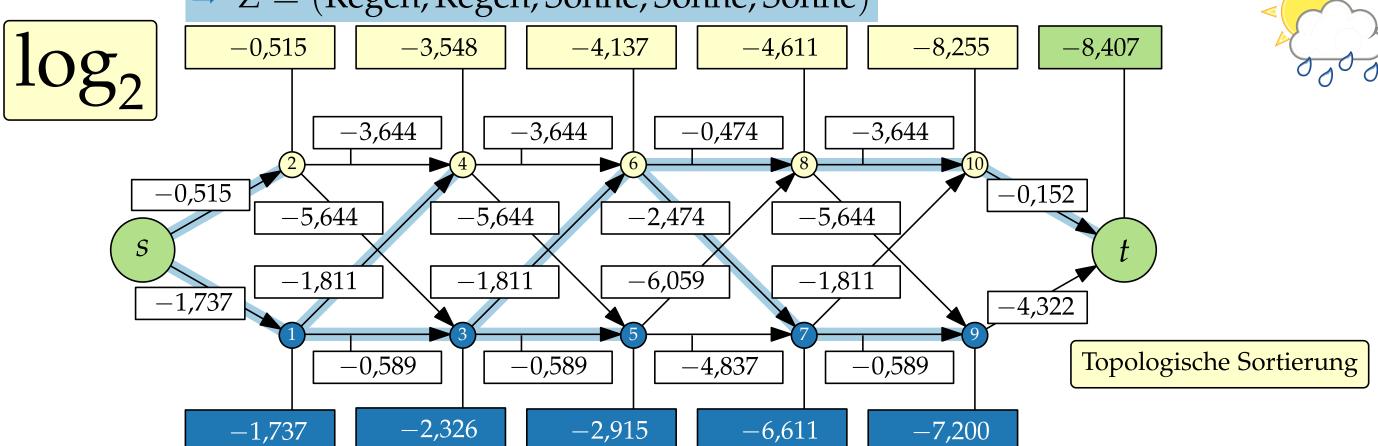
$$P[B_5 = \text{trocken} \mid Z_5 = \text{Regen}]$$

■ Beobachtungen B = (nass, nass, trocken, nass, trocken)



■ Beobachtungen B = (nass, nass, trocken, nass, trocken)

ightharpoonup Z = (Regen, Regen, Sonne, Sonne, Sonne)



Produkt $x_1 \cdot x_2 \cdot \ldots \cdot x_k$ ist maximal genau dann wenn $\log(x_1 \cdot x_2 \cdot \ldots \cdot x_k) = \log x_1 + \log x_2 + \ldots + \log x_k$ maximal ist.

LongestPath()

for i = 1 to n do

∟ Berechne schwersten *s*–*i*–Pfad.

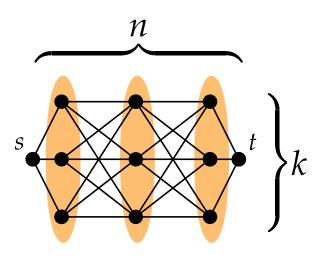
Algorithmus

LongestPath(Gerichteter azyklischer Graph G = (V, E))

Berechne topologische Sortierung von $V \Rightarrow v_1, \ldots, v_n$

$$v_1.d = 0$$
 $v_1.\pi = nil$
 $\mathbf{for} \ j = 2 \ \mathbf{to} \ n \ \mathbf{do}$

$$\begin{vmatrix} v_j.d = -\infty \\ v_j.\pi = nil \\ \mathbf{for} \ v_iv_j \in E \ \mathbf{do} \\ & | \mathbf{if} \ v_i.d + w(v_iv_j) > v_j.d \ \mathbf{then} \\ & | v_j.d = v_i.d + w(v_iv_j) \\ & | v_j.\pi = v_i \end{vmatrix}$$



Laufzeit $\mathcal{O}(n+m)$

DIJKSTRA: $O(n \log n + m)$

Laufzeit bei n Messungen und k Zuständen? nk + 2 Knoten, $(n-1)k^2 + 2k$ Kanten $\rightarrow \mathcal{O}(nk^2)$.

Newson & Krumm (2009) – letzte Details

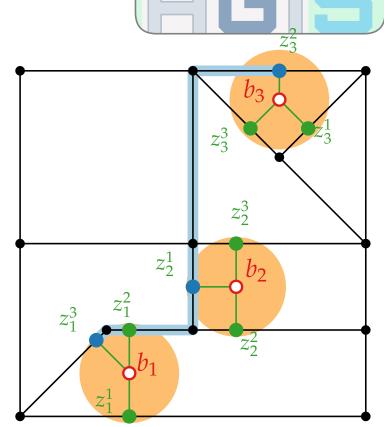
Für jeden Punkt der Trajektorie gibt es zwei Zufallsvariablen:

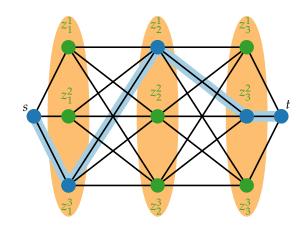
- B_i ist die beobachtete GPS Koordinate (Domäne \mathbb{R}^2)
- Z_i ist die Position im Straßennetz (diskrete Domäne $\{z_i^1, \dots, z_i^k\}$)
- Wahrscheinlichkeitsverteilung $P[B_i \mid Z_i]$ ist bekannt.

$$P[B_i = b_i \mid Z_i = z_i^j] = \frac{1}{\sqrt{2\pi\varepsilon}} e^{-\frac{d_{\text{Eudlid}}(b_i, z_i^j)^2}{2\varepsilon^2}} \quad \text{(Normal verteilung um } z_i^j)$$

Wahrscheinlichkeitsverteilung $P[Z_i \mid Z_{i-1}]$ ist bekannt.

$$P[Z_{i} = z_{i}^{r} \mid Z_{i-1} = z_{i-1}^{s}] = \frac{d_{\text{Euklid}}(b_{i}, b_{i-1})}{d_{\text{Graph}}(z_{i}^{r}, z_{i-1}^{s})}$$





Frage: Welche Sequenz der Positionen im Straßennetzwerk ist am wahrscheinlichsten?