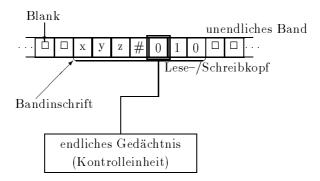
1.3 Turing-Berechenbarkeit

Turings Vorschlag war, den Berechenbarkeitsbegriff mit Hilfe einer sehr einfachen Rechenmaschine (heute Turing-Maschine genannt) zu erfassen.



Definition.

Eine (Nichtdeterministische) Turingmaschine (kurz TM) ist ein 7-Tupel

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \square, E)$$

mit

Q endliche Menge von "Zuständen" Σ endliche Menge von "Eingabesymbolen" (Eingabealphabet) $\Sigma \supset \Sigma$ endliche Menge von "Bendeumbelen" (Arbeitselphabet)

 $\Gamma\supset\Sigma$ endliche Menge von "Bandsymbolen" (Arbeitsalphabet) .

$$\left. \begin{array}{l} \delta: Q \times \Gamma \to Q \times \Gamma \times \{\mathrm{L,R,N}\} \text{ "deterministische"} \\ \delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{\mathrm{L,R,N}\}} \text{ "nichtdeterministische"} \end{array} \right\} \ddot{\mathrm{U}} \mathrm{berf\ddot{u}hrungsfunktion}$$

 $q_0 \in Q$ "Startzustand"

 $\square \in \Gamma - \Sigma \text{ "Blank" (leeres Bandsymbol)}$

 $E \subseteq Q$ endliche Menge von "Endzuständen"

Informal bedeutet

$$\delta(q, a) = (q', b, m)$$
 bzw. $\delta(q, a) \ni (q', b, m)$

folgendes:

Befindet sich M in Zustand q und liest Bandsymbol a (unter Lese-/Schreibkopf), so geht M im nächsten Schritt in Zustand q' über, überschreibt a durch b und

führt Kopfbewegung $m \in \{L(inks), R(echts), N(ichts)\}$ aus.

Definition.

Eine Konfiguration einer TM M ist ein Wort $k \in \Gamma^*Q\Gamma^*$

Konfigarationen sind "Momentaufnahmen" von M: $k = \alpha q \beta$ bedeutet:

 $\alpha\beta$ ist der nichtleere (bzw. besuchte) Teil der Bandinschrift. qist der Zustand der TM .

Das erste Zeichen von β ist das Zentrum des Lese-/Schreibkopfes.

Startkonfiguration bei Eingabe $w \in \Sigma^* : q_0 w$

wsteht auf dem Band Der Lese-/Schreibkopf steht auf dem ersten Symbol von w Mist in Zustand q_0

Formale Beschreibung der Arbeit einer TM:

Definition.

Beschreibe die Relation - auf der Menge der Konfigurationen von M:

$$a_1 \dots a_m q b_1 \dots b_n \vdash \begin{cases} a_1 \dots a_m q' c b_2 \dots b_n & \text{falls } (q', c, N) \in \delta(q, b_1) \ m \geq 0, n \geq 1 \\ a_1 \dots a_m c q' b_2 \dots b_n & \text{falls } (q', c, R) \in \delta(q, b_1) \ m \geq 0, n \geq 2 \\ a_1 \dots a_{m-1} q' a_m c b_2 \dots b_n & \text{falls } (q', c, L) \in \delta(q, b_1) \ m \geq 1, n \geq 1 \\ a_1 \dots a_m \Box q' c & \text{falls } (q', c, R) \in \delta(q, b_1) \ \text{und } n = 1 \\ q' \Box c b_2 \dots b_n & \text{falls } (q', c, L) \in \delta(q, b_1) \ \text{und } m = 0 \end{cases}$$

⊢* bezeichne den transitiven Abschluß von ⊢

Beispiel.

Eine TM, die die Eingabe $w \in \Sigma^*$ als Binärzahl interpretiert und 1 hinzuaddiert:

$$M = (\{q_0, q_1, q_2, q_e\}, \{0, 1\}, \{0, 1, \square\}, \delta, q_0, \square, \{q_e\})$$

mit

$$\delta(q_0, 0) = (q_0, 0, R)$$

 $\delta(q_0, 1) = (q_0, 1, R)$
 $\delta(q_0, \square) = (q_1, \square, L)$

 $\delta(q_1, 0) = (q_2, 1, L)$

$$\delta(q_1, 1) = (q_1, 0, L)
\delta(q_1, \square) = (q_e, 1, N)
\delta(q_2, 0) = (q_2, 0, L)
\delta(q_2, 1) = (q_2, 1, L)
\delta(q_2, \square) = (q_e, \square, R)$$

Beispiel.

w = 101

$$q_0 \vdash 1q_001 \vdash 10q_01 \vdash 101q_0 \Box \vdash 10q_1 \Box \vdash 1q_100 \Box \vdash q_2110 \Box \vdash q_2\Box 110 \Box \vdash \Box q_e110$$

Definition.

Eine Funktion $f: \mathbb{N}^* \to \mathbb{N}$ heißt Turing-berechenbar, falls es eine (deterministische) TM M gibt, so daß für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt:

$$f(n_1,\ldots,n_k)=m$$

 \iff

$$q_0 bin(n_1) \# bin(n_2) \# \dots \# bin(n_k) \vdash^* q_e bin(m)$$

wobei $q_e \in E$.

(bin(n)) bezeichnet die Binärdarstellung von $n \in \mathbb{N}$ ohne führende Nullen)

Definition.

Eine Funktion $f: \Sigma^* \to \Sigma$ heißt Turing-berechenbar, falls es eine (deterministische) TM M gibt, so daß für alle $x, y \in \Sigma^*$ gilt:

$$f(x) = y$$

 \iff

 $q_0x \vdash^* q_ey$

wobei $q_e \in E$.

Damit ist ausgedrückt, daß im Falle f(x) = undef. M in eine unendliche Schleife geht.

9

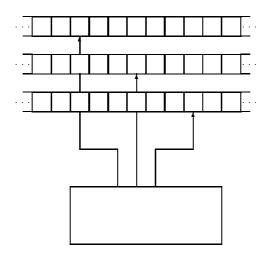
Beispiel.

- 1. $f: n \to n+1$ ist Turing-berechenbar. Das Beispiel überführt bin(n) in bin(n+1)
- 2. die überall nichtdefinierte Funktion ist Turing-berechenbar; z.B.: durch eine TM mit

$$\delta(q_0, a) = (q_0, a, R)$$
 für alle $a \in \Gamma$

3. Typ 0- (semientscheidbare) Sprachen sind berechenbar.

Mehrband-TM:



Die Lese-/Schreibköpfe können sich unabhängig voneinander bewegen.

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L,R,N\}^k$$

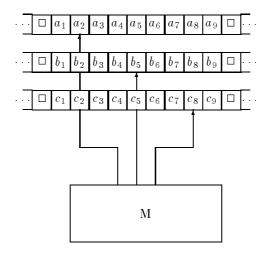
Satz.

Zu jeder Mehrband-TM M gibt es eine 1-Band TM M' die dieselbe Funktion berechnet wie M.

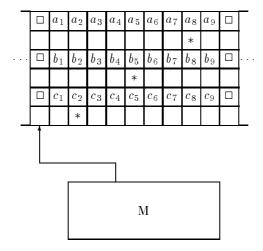
Beweis.

Sei k die Anzahl der Bänder, Γ Arbeitsalphabet von M .

<u>Idee:</u>



wird simuliert durch:



${\bf Formal}$

 $\Gamma' := (\Gamma \cup \{*\})^{2k}$

M' simuliert M wie folgt:

Gestartet mit Eingabe $x_1,\ldots,x_n\in\Gamma^*$ erzeugt M' die Darstellung der Startkonfiguration von M in Spuren-Darstellung.

M' simuliert jeweils einen Schritt von M durch mehrere Schritte:

M' positioniert den Lese-/Schreibkopf links von allen *-Markierungen.

M' geht nach rechts bis alle k Markierungen überschritten sind und "weiß" nun worauf die δ -Funktion von M anzuwenden ist.

M' geht in den entsprechenden Zustand über.

$$(\text{denn } |Q'| \geq |Q \times \Gamma^k|)$$

Man kann in Zukunft einfach eine Mehrbandmaschine angeben, und wissen, daß diese durch eine 1-Band Maschine simuliert werden kann.

 \bullet Sei M eine 1–Band TM .

$$M(i,k)$$
; $i < n$

bezeichne die $k\mathrm{-Band}\ \mathrm{TM}$, die aus M dadurch entsteht, daß alle Aktionen auf Band i ablaufen.

Beispiel.

$$M:\delta(q,a)=(q',b,y)$$
 , $y\in\{L,R,N\}$ entspreche den Übergang in M'

$$\delta'(q, c_1, c_2, a, c_3, c_4) = (q', c_1, c_2, b, c_3, c_4, N, N, y, N, N)$$

falls k unwichtig ist, dann schreibe lediglich M(i) statt M(i,k).

• "Hintereinanderschaltung" von TM:

Seien
$$M_i = (Q_i, \Sigma, \Gamma_i, \delta_i, q_i, \square, F_i)$$
; $i = 1, 2$; $Q_1 \cap Q_2 = \emptyset$

$$\operatorname{start} \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \operatorname{stop}$$

bzw.

$$M_1; M_2$$

bezeichnet die TM:

$$M = (Q_1 \cup Q_2, \Sigma, \Gamma_1 \cup \Gamma_2, \delta, q_1, \square, F_2)
\delta = \delta_1 \cup \delta_2 \cup \{(q_e, a, q_2, a, N) : q_e \in F_1, a \in \Gamma_1)$$

12

Beispiel.

*start

"Band:=Band+1"

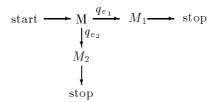
"Band:=Band+1"

"Band:=Band+1"

*stop

bezeichnet die TM, die 3 hinzuaddiert.

•



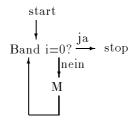
bezeichnet die TM , die im Endzustand $q_{e_1} \quad M_1$ startet und im Endzustand $q_{e_2} \quad M_2$

• Betrachte: Die TM "Band=0?":

$$\begin{array}{lll} Q = \{q_0,q_1,\mathrm{ja},\mathrm{nein}\} & q_0 \; \mathrm{Startzustand} \\ \\ \delta(q_0,a) &= & (\mathrm{nein},a,N) \; f\ddot{u}r \; a \neq \square \\ \\ \delta(q_0,0) &= & (q1,0,R) \\ \\ \delta(q_1,a) &= & (\mathrm{nein},a,L) \; f\ddot{u}r \; a \neq \square \\ \\ \delta(q_1,\square) &= & (\mathrm{ja},\square,L) \end{array}$$

Schreibe "Band i=0?" anstelle von "Band=0?"

 \bullet "WHILE Band i $\neq 0$ DO M"



14

1.4 LOOP-, WHILE- und GOTO-Berechenbarkeit

Die einfache Programmiersprache LOOP:

- Variablen: x_0, x_1, \ldots
- Konstanten: 0, 1, 2,...
- Trennsymbole: ;, :=
- Operationszeichen: +, -
- Schlüsselwörter: LOOP, DO, END

Induktive Definition der Syntax von LOOP:

• Wertzuweisung

$$\begin{aligned} x_i &:= x_j + c \\ x_i &:= x_j - c \text{ , } c \text{ } Konstante \end{aligned}$$

ist ein LOOP-Programm

- Sind P_1, P_2 LOOP-Programme, dann auch $P_1; P_2$
- $\bullet \;$ Ist Pein LOOP-Programm, x_i Variable, dann auch

LOOP
$$x_i$$
 DO P END;

Semantik der LOOP-Programme:

Soll ein LOOP-Programm eine k-stellige Funktion berechnen, und ist (n_1, \ldots, n_k) das Argument, dann gilt:

$$x_i := \begin{cases} n_i & i \le k & (\text{Startsituation}) \\ 0 & \text{sonst} \end{cases}$$

Die Wertzuweisung wird wie üblich interpretiert:

$$x_i := x_j + c$$
.

Bei

$$x_i := x_i - c$$

modifizierte Substitution

$$x_i := \left\{ \begin{array}{ll} x_i - c & c \le x_i \\ 0 & \text{sonst} \end{array} \right.$$

 $P_1; P_2$ wird so interpretiert, daß zuerst P_1 und dann P_2 ausgeführt wird.

LOOP x_i DO P END wird so interpretiert, daß P sooft ausgeführt wird, wie der Wert der Variable x_i zu Beginn angibt.

Das Resultat ergibt sich als Wert von x_0 .

Definition.

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar, falls es ein LOOP-Programm P gibt, das gestartet mit n_1, \ldots, n_k in den Variablen x_1, \ldots, x_k mit dem Wert $f(n_1, \ldots, n_k)$ in x_0 stoppt.

Bemerkung

Alle LOOP-berechenbaren Funktionen sind total definiert.

• IF x = 0 THEN A END

kann simuliert werden durch

```
y := 1;
LOOP x DO y := 0 END;
LOOP y DO A END
```

Beispiel.

• Die Addition " $x_0 := x_1 + x_2$ " ist LOOP-berechenbar:

```
\begin{array}{l} x_0 := x_1; \\ \text{LOOP} \ x_2 \ \text{DO} \ x_0 := x_0 + 1 \ \text{END} \end{array}
```

mit Verallgemeinerung auf " $x_0 := x_i + x_i$ "

• Die Multiplikation " $x_0 := x_1 * x_2$ " ist LOOP-berechenbar:

```
x_0 := 0;
LOOP x_2 DO x_0 := x_0 + x_1 END
```

Man kann auch DIV, MOD durch LOOP-Programme beschreiben → x:=(y DIV z) + (x MOD 5) * z

Erweiterung der LOOP-Programme durch die WHILE-Schleife Ergebnis: WHILE-Programme:

• Ist P ein WHILE-Programm, x_i Variable, dann ist auch

WHILE
$$x \neq 0$$
 DO P END;

ein WHILE-Programm.

Semantik.

P wird solange ausgeführt, wie $x_i \neq 0$ gilt.

Man kommt in WHILE-Programmen ohne LOOP aus:

LOOP
$$x$$
 DO P END;

wird simuliert durch

```
y := x; WHILE y \neq 0 DO y := y - 1; P END;
```

Definition.

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt WHILE-berechenbar, falls es ein WHILE-Programm P gibt, das gestartet mit n_1, \ldots, n_k in x_1, \ldots, x_k (0 sonst) mit dem Wert $f(n_1, \ldots, n_k)$ in x_0 stoppt. Sonst stoppt P nicht.

Satz.

TM können WHILE-Programme simulieren. D.h. jede WHILE-berechenbare Funktion ist auch TM -berechenbar.

Beweis.

Man kann die Wertzuweisungen, Sequenzen und WHILE-Schleifen mit einer Mehrband TM simulieren.

(Wobei das i-te Band der i-ten Variablen (binär) entspricht.)

Man kann eine Mehrband TM mit einer 1-Band TM simulieren.

Beweis der Umkehrung:

Betrachte GOTO-Programme.

GOTO-Programme bestehen aus Folgen von markierten Anweisungen

```
M_1:A_1; M_2:A_2; \ldots; M_k:A_k
```

Als Anweisungen sind zugelassen:

Wertzuweisungen: $x_i := x_j \pm c$ unbedingter Sprung: GOTO M_i

bedingter Sprung: IF x_i =c THEN GOTO M_i