29

1.7 Entscheidbarkeit und Semi-Entscheidbarkeit

- Der Berechenbarkeitsbegriff betrifft Funktionen.
- Einführung eines entsprechenden Begriffs für Sprachen.

Definition.

 $A\subseteq \Sigma^*$ heißt entscheidbar, falls die charakteristische Funktion $\chi_A:\Sigma^*\to\{0,1\}$

$$\chi_A(w) = \begin{cases} 1 & \text{falls } w \in A \\ 0 & \text{sonst} \end{cases}$$

berechenbar ist.

 $A\subseteq \Sigma^*$ heißt semi-entscheidbar,falls die charakteristische Funktion $\chi_A':\Sigma^*\to\{0,1\}$

$$\chi_A'(w) = \begin{cases} 1 & \text{falls } w \in A \\ \text{undefiniert} & \text{sonst} \end{cases}$$

berechenbar ist.

- Man kann an Stelle von $A\subseteq \Sigma^*$ auch $A\subseteq I\!\!N$ betrachten.
- Das <u>Entscheidungsproplem</u> für A ist die Frage nach einem stoppenden Algorithmus mit

0

Hat der Algorithmus noch nicht gestoppt, dann ist unklar ob $w \in A$ oder nicht.

Beispiel.

Das Entscheidungsproblem für die Prädikatenlogik ("Theorembeweiser").

Satz.

A ist entscheidbar \Leftrightarrow sowohl A als auch \overline{A} sind semi-entscheidbar.

$\underline{\text{Beweis.}}$

- (\rightarrow) : klar.
- (\leftarrow): Sei M_1 ein Semi-Entscheidungsverfahren für A. Sei M_2 ein Semi-Entscheidungsverfahren für \overline{A} . Erhalte ein Entscheidungsverfahren für A: INPUT(x); FOR $s:=1,2,3,\ldots$ DO

 IF M_1 bei Eingabe x in s Schritten stoppt THEN OUTPUT(1) END; IF M_2 bei Eingabe x in s Schritten stoppt THEN OUTPUT(0) END; END

Definition.

 $A \subseteq \Sigma^*$ heißt rekursiv aufzählbar, falls $A = \emptyset$ oder es eine totale und berechenbare Funktion $f: \mathbb{N} \to \Sigma^*$ gibt mit

```
A = \{f(0), f(1), f(2), \ldots\}"f zählt A auf." (evtl. mit f(i) = f(j) für i \neq j!)
```

Satz.

Eine Sprache ist rekursiv aufzählbar, genau dann wenn sie semi-entscheidbar ist.

Beweis

- (\rightarrow) : Sei A rekursiv aufzählbar mittels der Funktion f. Erhalte ein Semi-Entscheidungsverfahren für A: INPUT(x); FOR $n:=0,1,2,3,\ldots$ DO

 IF f(n)=x THEN OUTPUT(1) END; END
- (\leftarrow): Sei $A \neq \emptyset$ semi-entscheidbar mittels Algorithmus M. Sei $a \in A$ fixiert

 Definiere eine totale und berechenbare Funktion f mit $f(I\!N)=A$ mittels folgendem Algorithmus: INPUT(n);* Interpretiere n als Kodierung n=c(x,y) mit $x=c_1(n), y=c_2(n)*$ $x:=c_1(n);$ $y:=c_2(n);$ IF M angesetzt auf x in y Schritten stoppt

 THEN OUTPUT(x) ELSE OUTPUT(a) END;

31

Der Algorithmus stoppt stets und gibt nur Elemente aus A aus.

 \Rightarrow f ist total und berechenbar, $f(\mathbb{N}) \subseteq A$

Noch zu zeigen: f(IN) = A, denn

Sei $b \in A$ beliebig.

 $\Rightarrow M$ stoppt bei Eingabe b in s Schritten.

Betrachte: n = c(b, s)

 $\Rightarrow f(n) = b$ nach Konstruktion des Algorithmus

Insgesamt erhält man:

Satz.

Eine Sprache A ist entscheidbar, genau dann wenn A und \overline{A} rekursiv aufzählbar sind.

Zusammenfassung:

Bisher ist die Äquivalenz der folgenden Aussagen gezeigt worden:

A ist rekursiv aufzählbar.

- $\Leftrightarrow A$ ist semi-entscheidbar.
- \Leftrightarrow A ist vom Typ 0 (als formale Sprache).
- $\Leftrightarrow A = L(M)$ für eine TM M.
- $\Leftrightarrow \chi_A'$ ist berechenbar.
- $\Leftrightarrow A$ ist Definitionsbereich einer berechenbaren Funktion.
- $\Leftrightarrow A$ ist Wertebereich einer berechenbaren Funktion.

Abschließende Bemerkung zum Zusammenhang

Abzählbarkeit — rekursive Aufzählbarkeit

Definition.

A heißt abzählbar, falls $A = \emptyset$ oder es gibt eine totale Funktion f gibt mit

$$A = \{f(0), f(1), f(2), \ldots\}$$

 \bullet Aist rekursiv aufzählbar, falls A durch eine totale rekursive Funktion abzählbar ist.

<u>Unterschied:</u>

 $\overline{\text{Sei } A \text{ abz\"{a}hlbar}}, A' \subseteq A \Rightarrow A' \text{ ist abz\"{a}hlbar}$

$\underline{\text{Beweis.}}$

Sei A abzählbar mittels f, $a \in A'$ fixiert.

Betrachte:

$$g(n) = \begin{cases} f(n) & \text{falls } f(n) \in A' \\ a & \text{sonst} \end{cases}$$

$$g(n)$$
zählt A' ab, da $A' = \{g(0), g(1), \ldots\}$

Sei A rekursiv abzählbar.

Es gibt Teilmengen $A''\subseteq A,$ die nicht
 $\underline{\text{rekursiv}}$ abzählbar sind.

$\underline{\text{Beweis}}$.

später.

1.8 Das Halte-Problem und die Reduzierbarkeit

- Kennenlernen unentscheidbarer Probleme.
 Besonders berühmt: Das Halteproplem für TM.
 Dazu Kodierung der TM M = (Q, Σ, Γ, δ, q₀, □, F) als Wort über {0,1}
 - 1. Kodierung von M als Wort über $\{0,1,\#\}$:

Sei
$$Q = \{q_0, \dots, q_n\}$$

 $\Gamma = \{a_0, \dots a_k\}$

Schreibe $\delta(q_i, a_j) = (q_{i'}, a_{j'}, y)$ als

$$w_{i,j,i',j',y} = \#\#bin(i)\#bin(j)\#bin(i')\#bin(j')\#bin(m) \text{ mit } m = \begin{cases} 0 & y = L \\ 1 & y = R \\ 2 & y = N \end{cases}$$

Kodierung von M durch Konkatenation aller Worte $w_{i,j,i',j',y}$, die zu δ gehören.

2. Kodierung von M durch ein Wort über { 0,1}: Kodierung mit Hilfe von

$$0 \mapsto 00$$

$$1 \mapsto 01$$

$$\# \mapsto 11$$

 $w_{i,j,i',j',y}$ durch ein Wort über $\{0,1\}$

Sei M_0 eine fixierte TM

$$w \in \{0, 1\}^* \mapsto M_w = \begin{cases} M & \text{falls } w \text{ Codewort von } M \text{ ist} \\ 0 & \text{sonst} \end{cases}$$

Definiton

Die folgende Sprache

$$K = \{w \in \{0, 1\}^* \mid M_w \text{ angesetzt auf } w \text{ h\"alt}\}$$

heißt spezielles Halte-Problem.

Satz.

Das spezielle Halte-Problem ist nicht entscheidbar.

1 BERECHENBARKEITSTHEORIE

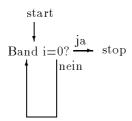
34

Beweis.

Annahme: K ist entscheidbar.

 $\Leftrightarrow \chi_K$ ist berechenbar mittles TM M.

Betrachte: TM M'



M' stoppt, falls M 0 ausgibt.

Gibt M 1 aus, geht M' in eine Endlos-Schleife.

Sei
$$w' \in \{0, 1\} \text{ mit } M_{w'} = M$$

Es gilt:

M' angesetzt auf w' hält.

 \Leftrightarrow M angesetzt auf w' gibt 0 aus.

$$\Leftrightarrow \chi_K(w') = 0 \text{ (Def. von } M)$$

 $\Leftrightarrow w' \in K$

 $\Leftrightarrow M_{w'} = M'$ hält angesetzt auf w' nicht. (Widerspruch)

Das Reduktionskonzept ermöglicht eine "leichte" Übertragung dieses Resultats auf weitere Probleme:

Definition.

Seien $A, B \subseteq \Sigma^*$

A heißt auf B reduzierbar $(A \leq B)$, falls es eine totale und berechenbare Funktion $f: \Sigma^* \to \Sigma^*$ gibt mit

$$x \in A \Leftrightarrow f(x) \in B$$

für alle $x \in \Sigma^*$.

Lemma

- (i) Gilt $A \leq B$ und ist B entscheidbar, so ist auch A entscheidbar.
- (ii) Gilt $A \leq B$ und ist B semientscheidbar, so ist auch A semientscheidbar.

Beweis.

 $\overline{\text{(i) Sei } A} \leq B \text{ mittels } f$

Sei χ_B berechenbar $\Leftrightarrow \chi_B \circ f$ ist berechenbar Es gilt:

$$\chi_A(x) = \left\{ \begin{array}{cc} 1 & x \in A \\ 0 & x \notin A \end{array} \right\} = \left\{ \begin{array}{cc} 1 & f(x) \in B \\ 0 & f(x) \notin B \end{array} \right\} = \chi_B(f(x))$$

 $\Leftrightarrow \chi_A$ ist berechenbar und A ist entscheidbar

(ii) ersetze in (i) χ durch χ' und 0 durch undefiniert.

Korollar

 $A \leq B$ und A ist nicht entscheidbar. \Rightarrow B ist nicht entscheidbar.

Beweis.

Kontraposition von (i)

Definition.

Die Sprache

$$H = \{w \# x \mid M_w \text{ angesetzt auf } x \text{ h\"alt}\}$$

heißt (allgemeines) Halte-Problem.

Satz.

Das Halte-Problem ist nicht entscheidbar.

Beweis.

Es reicht zu zeigen: $K \leq H$ wähle f(w) = w # w $\Rightarrow w \in K \Leftrightarrow f(w) \in H$

Definiton

Die Sprache

$$H_0 = \{ w \mid M_w \text{ angesetzt auf leeren Band hält} \}$$

heißt Halte-Problem auf leeren Band.

Satz.

Das Halte-Problem auf dem leeren Band H₀ ist nicht entscheidbar.

$\underline{\text{Beweis}}$.

Es reicht zu zeigen: $H \leq H_0$. Ordne w # x folgende TM zu: