Berechenbarkeit und Komplexitätstheorie

Wintersemester 2025/2026 Aufgabenblatt 4

Abgabe: 25. November 2025 um 12:15 Uhr (in der Übung)

Definition(en)

Seien $L_1, L_2 \subseteq \Sigma^*$ zwei Sprachen. Wir definieren die Konkatenation von Sprachen als $L_1 \circ L_2 := \{w_1 \cdot w_2 : w_1 \in L_1 \land w_2 \in L_2\}.$

Aufgabe 4.1 (3 Punkte)

Seien $L_1, L_2 \subseteq \Sigma^*$ entscheidbare Sprachen. Zeigen Sie, dass $L_1 \circ L_2$ ebenfalls entscheidbar ist.

Aufgabe 4.2 (4 Punkte)

Seien $A, \bar{A} \subseteq \Sigma^*$ semi-entscheidbare Sprachen (wobei $\bar{A} = \Sigma^* \setminus A$ das Komplement von A bezeichnet).

Zeigen Sie: A ist entscheidbar.

(*Hinweis*: Für ein beliebiges $w \in \Sigma^*$ hält mindestens eine der beiden Turingmaschinen, die die jeweilige charakteristische Funktion berechnen. Überlegen Sie sich, wie Sie diese beiden Turingmaschinen "parallel" laufen lassen können.)

Aufgabe 4.3 (4 Punkte)

Seien $A, B \subseteq \mathbb{N}^k$ semi-entscheidbare Mengen. Welche der Mengen $A \cup B$, $A \cap B$, \bar{A} und $A \setminus B$ sind ebenfalls semi-entscheidbar? Und welche nicht? Begründen Sie Ihre Antworten.

Aufgabe 4.4 (2 + 2 Punkte)

Zeigen Sie die folgenden Aussagen:

- a) $\mathbb{P} := \{ p \in \mathbb{N} : p \text{ ist eine Primzahl.} \}$ ist entscheidbar.
- b) $\{n \in \mathbb{N}: \text{Es gibt eine Primzahl } p, \text{ sodass } p+1, \ldots, p+n \text{ keine Primzahlen sind.} \}$ ist semi-entscheidbar.