Next: Index
Up: The AGD-1.2 Manual
Previous: Class Overview
  Contents
  Index
-
- CG72
-
E. G. Coffman and R. L. Graham.
Optimal scheduling for two processor systems.
Acta Informatica, 1:200-213, 1972.
- CK93
-
M. Chrobak and G. Kant.
Convex grid drawings of 3-connected planar graphs.
Technical Report RUU-93-45, Dept. of Computer Sci., Utrecht Univ.,
1993.
- CK97
-
M. Chrobak and G. Kant.
Convex grid drawings of 3-connected planar graphs.
Interntl. Journal on Computational Geometry and Applications,
7(3):211-224, 1997.
- DETT99
-
G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis.
Graph Drawing.
Prentice Hall, 1999.
- DPP90
-
H. De Fraysseix, J. Pach, and R. Pollack.
How to draw a planar graph on a grid.
Combinatorica, 10(1):41-51, 1990.
- DT96a
-
G. Di Battista and R. Tamassia.
On-line maintanance of triconnected components with spqr-trees.
Algorithmica, 15:302-318, 1996.
- DT96b
-
G. Di Battista and R. Tamassia.
On-line planarity testing.
SIAM J. Comput., 25(5):956-997, 1996.
- EK86
-
P. Eades and D. Kelly.
Heuristics for reducing crossings in 2-layered networks.
Ars Combinatoria, 21(A):89-98, 1986.
- EL95
-
P. Eades and X. Lin.
A new heuristic for the feedback arc set problem.
Australian Journal of Combinatorics, 12:15-26, 1995.
- EW86
-
P. Eades and N. Wormald.
The median heuristic for drawing 2-layers networks.
Technical Report 69, Department of Computer Science, University of
Queensland, 1986.
- Fia97
-
S. Fialko.
Das planare Augmentierungsproblem.
Diplomarbeit, Universität des Saarlandes, Saarbrücken,
1997.
- FM98
-
S. Fialko and P. Mutzel.
A new approximation algorithm for the planar augmentation problem.
In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA '98), pages 260-269, San Francisco, California,
1998. ACM Press.
- FR91
-
T. Fruchterman and E. Reingold.
Graph drawing by force-directed placement.
Softw. - Pract. Exp., 21(11):1129-1164, 1991.
- GJR84
-
M. Grötschel, M. Jünger, and G. Reinelt.
A cutting plane algorithm for the linear ordering problem.
Operations Research, 32:1159-1220, 1984.
- GJR85
-
M. Grötschel, M. Jünger, and G. Reinelt.
On the acyclic subgraph polytope.
Mathematical Programming, 33:28-42, 1985.
- GKNV93
-
E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo.
A technique for drawing directed graphs.
IEEE Trans. Softw. Eng., 19(3):214-230, 1993.
- GM97
-
C. Gutwenger and P. Mutzel.
Grid embedding of biconnected planar graphs.
Extended Abstract, Max-Planck-Institut für Informatik,
Saarbrücken, Germany, 1997.
- GM98
-
C. Gutwenger and P. Mutzel.
Planar polyline drawings with good angular resolution.
In S. Whitesides, editor, Graph Drawing (Proc. GD '98), volume
1547 of Lecture Notes in Computer Science, pages 167-182.
Springer-Verlag, 1998.
- Him97
-
M. Himsolt.
The Graphlet system.
Proc. Graph Drawing '96, LNCS, 1190:233-240, 1997.
See also
http://www.uni-passau.de/Graphlet .
- HT73
-
J. E. Hopcroft and R. E. Tarjan.
Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135-158, 1973.
- JLM96
-
M. Jünger, S. Leipert, and P. Mutzel.
On computing a maximal planar subgraph using PQ-trees.
Technical Report 96.227, Institut für Informatik, Universität zu
Köln, 1996.
- JLM97
-
M. Jünger, S. Leipert, and P. Mutzel.
Pitfalls of using PQ-trees in automatic graph drawing.
In G. Di Battista, editor, Graph Drawing (Proc. GD '97), volume
1353 of Lecture Notes in Computer Science, pages 193-204.
Springer-Verlag, 1997.
- JLM98
-
M. Jünger, S. Leipert, and P. Mutzel.
A note on computing a maximal planar subgraph using pq-trees.
IEEE Transactions on Computer-Aided Design, 1998.
to appear.
- JM94
-
M. Jünger and P. Mutzel.
The polyhedral approach to the maximum planar subgraph problem: New
chances for related problems.
In DIMACS Graph Drawing '94, volume 894 of LNCS, pages
119-130. Springer-Verlag, 1994.
- JM96
-
M. Jünger and P. Mutzel.
Maximum planar subgraphs and nice embeddings: Practical layout tools.
Algorithmica, Special Issue on Graph Drawing, 16(1):33-59,
1996.
- JT97
-
M. Jünger and S. Thienel.
The design of the branch and cut system ABACUS.
Technical Report No. 97.260, Institut für Informatik, Universität
zu Köln, 1997.
See also
http://www.informatik.uni-koeln.de/ls_juenger/pr
ojects/abacus.html .
- JTS89
-
R. Jayakumar, K. Thulasiramans, and M.N.S. Swamy.
On (n2)algorithms for graph planarization.
Transactions on Computer-Aided Design, 8(3):257-267, March
1989.
- Kan96
-
G. Kant.
Drawing planar graphs using the canonical ordering.
Algorithmica, Special Issue on Graph Drawing, 16(1):4-32,
1996.
- Kla97
-
G. Klau.
Quasi-orthogonales Zeichnen planarer Graphen mit wenigen
Knicken.
Diplomarbeit, Max-Planck-Institut für Informatik,
Saarbrücken, Germany, 1997.
- KM98a
-
G. W. Klau and P. Mutzel.
Optimal compaction of orthogonal grid drawings.
Technical report, Max-Planck-Institut für Informatik,
Saarbrücken, December 1998.
- KM98b
-
G. W. Klau and P. Mutzel.
Quasi-orthogonal drawing of planar graphs.
Technical Report MPI-I-98-1-013, Max-Planck-Institut für
Informatik, Saarbrücken, 1998.
- Lei95
-
S. Leipert.
Berechnung maximal planarer Untergraphen mit Hilfe von
PQ-Bäumen.
Diplomarbeit, Institut für Informatik, Universität zu
Köln, 1995.
- Lei96
-
S. Leipert.
The tree interface - version 1.0 user manual.
Technical Report No. 96.242, Institut für Informatik,
Universität zu Köln, 1996.
- LS77
-
S. Lam and R. Sethi.
Worst case analysis of two scheduling algorithms.
SIAM J. Comput., 6(3):518-536, 1977.
- MN95
-
K. Mehlhorn and S. Näher.
LEDA: A platform for combinatorial and geometric
computing.
Comm. Assoc. Comput. Mach., 38:96-102, 1995.
- MNSU99
-
K. Mehlhorn, S. Näher, M. Seel, and Ch. Uhrig.
The LEDA User Manual (Version R 3.8), 1999.
Max-Planck-Institut für Informatik, Saarbrücken, Germany. See
also http://www.mpi-sb.mpg.de/LEDA/leda.html .
- MSM00
-
C. Matuszewski, R. Schönfeld, and P. Molitor.
Using sifting for k-layer crossing minimization.
In Graph Drawing (Proc. GD '99), Lecture Notes in Computer
Science. Springer-Verlag, 2000.
to appear.
- Mut94
-
P. Mutzel.
The maximum planar subgraph problem.
PhD thesis, Institut für Informatik, Universität zu Köln,
1994.
- Mut95
-
P. Mutzel.
A polyhedral approach to planar augmentation and related problems.
In Paul Spirakis, editor, Annual European Symposium on
Algorithms (ESA-3) : Corfu, Greece, September 2 5-27, 1995; proceedings,
volume LNCS 979, pages 494-507, Berlin, 1995. Springer.
- Pur97
-
H. Purchase.
Which aesthetic has the greatest effect on human understanding?
In G. Di Battista, editor, Graph Drawing (Proc. GD '97), volume
1353 of Lecture Notes in Computer Science, pages 248-261.
Springer-Verlag, 1997.
- RT81
-
E. Reingold and J. Tilford.
Tidier drawing of trees.
IEEE Trans. Softw. Eng., SE-7(2):223-228, 1981.
- RT86
-
P. Rosenstiehl and R. E. Tarjan.
Rectilinear planar layouts and bipolar orientations of planar graphs.
Discrete Comput. Geom., 1(4):343-353, 1986.
- Rud93
-
R. Rudell.
Dynamic variable ordering for ordered binary decision diagrams.
In Proc. International Conf. on Computer-Aided Design
(ICCAD), pages 42-47, 1993.
- Sch90
-
W. Schnyder.
Embedding planar graphs on the grid.
In Proc. 1st ACM-SIAM Sympos. Discrete Algorithms, pages
138-148, 1990.
- STT81
-
K. Sugiyama, S. Tagawa, and M. Toda.
Methods for visual understanding of hierarchical systems.
IEEE Trans. Syst. Man Cybern., SMC-11(2):109-125, 1981.
- Tam87
-
R. Tamassia.
On embedding a graph in the grid with the minimum number of bends.
SIAM J. Comput., 16(3):421-444, 1987.
- Tut63
-
W. T. Tutte.
How to draw a graph.
Proceedings London Mathematical Society, 13(3):743-768, 1963.
- Wal90
-
J. Q. Walker II.
A node-positioning algorithm for general trees.
Softw. - Pract. Exp., 20(7):685-705, 1990.
© Copyright 1998-2001, Algorithmic Solutions Software GmbH. All rights reserved.
2001-08-13