next up previous contents index
Next: Ranking to Minimize Height Up: Rank Assignment Previous: Rank Assignment   Contents   Index


RankAssignment Modules ( RankAssignment )

Baseclasses


\begin{picture}(6.5,2.5)
\thicklines
\put(0,1.5){\framebox (5.5,1){\bf AGDModu...
...tor(0,-1){1}}\put(1.5,0){\framebox (5.5,1){\bf RankAssignment}}
\end{picture}

Definition

Modules of type RankAssignment partition the nodes of a graph G into levels. Each node v is assigned a non-negative rank i, what means that v belongs to the ith level.

Such a ranking can be used to build a node hierarchy of G. The hierarchical drawing method by Sugiyama builds a node hierarchy in a first step and computes a layout that represents the hierarchy, i.e., all nodes on the same level have the same y-coordinate.

Input and Output Parameters

input parameter: graph in_graph=1
output parameter: ordered node partition out_node_partition=1

The integer constants in_hierarchy and out_node_partition denote the positions in the input and output parameter lists. The values can be used to reference the desired parameter when setting the pre- and postcondition.

#include < AGD/RankAssignment.h >

Initialization

RankAssignment R initializes a rank assignment module.

Operations

Standard Interface

bool R.check(const leda_graph& G, AgdKey& p)
    returns true if G satisfies the precondition of R. Otherwise, false is returned, and p contains a property that is not satisfied.

void R.call(const leda_graph& G, leda_node_array<int>& rank)
    implements the module call. Returns the rank for each node v $ \in$ G in rank[v].


next up previous contents index
Next: Ranking to Minimize Height Up: Rank Assignment Previous: Rank Assignment   Contents   Index

© Copyright 1998-2001, Algorithmic Solutions Software GmbH. All rights reserved.
2001-08-13