next up previous contents index
Next: C-Planarity Embedding ( CPlanarEmbed Up: Further Modules Previous: Shape Module ( ShapeModule   Contents   Index


Testing Triconnectivity ( TriconnectivityTest )

Baseclasses


\begin{picture}(6.5,2.5)
\thicklines
\put(0,1.5){\framebox (5.5,1){\bf AGDModu...
...or(0,-1){1}}\put(1,0){\framebox (6,1){\bf TriconnectivityTest}}
\end{picture}

Definition

The class TriconnectivityTest represents the triconnectivity test algorithm according to Hopcroft and Tarjan [HT73]. It tests if a graph G is triconnected and returns a witness (cut vertex, separation pair) if not. There are no restrictions on the input graph G, i.e., G may contain multiple edges or self loops.

General Information

Algorithm
name Triconnectivity Test
long name Triconnectivity Test (Hopcroft/Tarjan)
author J. E. Hopcroft, R. E. Tarjan
Implementation
author C. Gutwenger
date Novembre 1998
version 1.0

Pre- and Postcondition

precondition = $ \emptyset$

#include < AGD/TriconnectivityTest.h >

Creation

TriconnectivityTest T creates an instance T of type TriconnectivityTest.

Operations

bool T.call(const leda_graph& G)
    calls T for graph G. Returns true iff G is triconnected.

bool T.call(const leda_graph& G, leda_node& s1, leda_node& s2)
    calls T for graph G. Returns true iff G is triconnected. Returns in s1 and s2 nodes whose deletion disconnect the graph, i.e. s1 = nil and s2 = nil $ \Rightarrow$ G is not connected, s1! = nil and s2 = nil $ \Rightarrow$ s1 is a cut vertex, s1! = nil and s2! = nil $ \Rightarrow$ (s1, s2) is a separation pair.

Implementation

Testing a graph G = (V, E) for triconnectivity takes time $ \protectO$(| V| + | E|).


next up previous contents index
Next: C-Planarity Embedding ( CPlanarEmbed Up: Further Modules Previous: Shape Module ( ShapeModule   Contents   Index

© Copyright 1998-2001, Algorithmic Solutions Software GmbH. All rights reserved.
2001-08-13