next up previous contents index
Next: The Convex Algorithm ( Up: Planar Straight-Line Layout Methods Previous: The de Fraysseix, Pach,   Contents   Index


The Schnyder Algorithm ( SchnyderLayout )

Baseclasses


\begin{picture}(9.5,5.5)
\thicklines
\put(0,4.5){\framebox (5,1){\bf AGDModule...
...ector(0,-1){1}}\put(4.5,0){\framebox (5,1){\bf SchnyderLayout}}
\end{picture}

Definition

The class SchnyderLayout represents the layout algorithm by Schnyder [Sch90].

This algorithm draws a planar graph G straight-line without crossings. G must not contain self-loops or multiple edges. The grid layout size is (n - 2) x (n - 2) for a graph with n nodes (n > = 3).

The algorithm runs in three phases. In the first phase, the graph is augmented by adding new artificial edges to get a triangulated plane graph. Then, a partition of the set of interior edges in three trees (also called Schnyder trees) with special orientation properties is derived. In the third step, the actual coordinates are computed.

General Information

Algorithm
name Schnyder
long name Schnyder
author W. Schnyder
Implementation
author D. Ambras, D. Alberts
date February 1997
version

Pre- and Postcondition

precondition = planar, simple, noselfloops }
postcondition(PRE) = straight - line, nocrossings }

#include < AGD/SchnyderLayout.h >

Creation

SchnyderLayout L creates an instance L of type SchnyderLayout.

Operations

Standard Interface (Inherited Methods) The detailed description of these methods can be found in the manual entries of the base classes (LayoutModule, GridLayoutModule).

bool L.check(const graph& G, AgdKey& p)

void L.call(const graph& G, LayoutInterface& A)

void L.call(const graph& G, face f, LayoutInterface& A)

void L.call_grid(const graph& G, GridLayout& gl)

void L.call_grid(const graph& G, face f, GridLayout& gl)

IRect L.bounding_box()

void L.set_mapper(const GridCoordinateMapper& gcm)

Implementation

The computation of the layout takes time $ \protectO$(n), where n is the number of nodes of the input graph.


next up previous contents index
Next: The Convex Algorithm ( Up: Planar Straight-Line Layout Methods Previous: The de Fraysseix, Pach,   Contents   Index

© Copyright 1998-2001, Algorithmic Solutions Software GmbH. All rights reserved.
2001-08-13