next up previous contents index
Next: Greedy Switch ( GreedySwitchHeuristic Up: Two Layer Crossing Minimization Previous: Split Heuristic ( SplitHeuristic   Contents   Index


Greedy Insert ( GreedyInsertHeuristic )

Baseclasses


\begin{picture}(8,4)
\thicklines
\put(0,3){\framebox (5.5,1){\bf AGDModule}}...
...,-1){1}}\put(1.5,0){\framebox (7,1){\bf GreedyInsertHeuristic}}
\end{picture}

Definition

The module GreedyInsertHeuristic proceeds from left to right by successively choosing the next vertex v to be the one which minimizes the number of crossings that edges adjacent to v make with edges adjacent to vertices to the left of v (see Eades and Kelly [EK86]).

General Information

Algorithm
name Greedy-Insert
long name Greedy-Insert (Eades,Kelly)
author P. Eades, D. Kelly
Implementation
author M. Krüger, Th. Ziegler
date March 1998
version 1.0

Pre- and Postcondition

precondition = $ \emptyset$
postcondition(PRE) = $ \emptyset$

#include < AGD/GreedyInsertHeuristic.h >

Creation

GreedyInsertHeuristic M creates an instance M of type GreedyInsertHeuristic.

Operations

Standard Interface (Inherited Methods) The detailed description of these methods can be found in the manual entries of the base class (TwoLayerCrossMin).

bool M.check(const leda_graph& G, const Layer& L, AgdKey& p)

void M.init(const leda_graph& G, const Hierarchy& H)

void M.call(const leda_graph& G, Layer& L)

void M.cleanup()

Implementation

Let nL denote the number of nodes on the changeable layer and mL the number of edges between the fixed and the changeable layer. The algorithm computes in a preprocessing step a so-called crossing matrix, which takes time $ \protectO$(nLmL). The actual crossing reduction algorithm takes time $ \protectO$(nL2). Both steps are implemented in the call()-method. The init()-method takes time $ \protectO$(n), where n is the number of nodes in the input graph.


next up previous contents index
Next: Greedy Switch ( GreedySwitchHeuristic Up: Two Layer Crossing Minimization Previous: Split Heuristic ( SplitHeuristic   Contents   Index

© Copyright 1998-2001, Algorithmic Solutions Software GmbH. All rights reserved.
2001-08-13